Sample records for airborne magnetic survey

  1. Airborne electromagnetic and magnetic survey data of the Paradox and San Luis Valleys, Colorado

    USGS Publications Warehouse

    Ball, Lyndsay B.; Bloss, Benjamin R.; Bedrosian, Paul A.; Grauch, V.J.S.; Smith, Bruce D.

    2015-01-01

    In October 2011, the U.S. Geological Survey (USGS) contracted airborne magnetic and electromagnetic surveys of the Paradox and San Luis Valleys in southern Colorado, United States. These airborne geophysical surveys provide high-resolution and spatially comprehensive datasets characterizing the resistivity structure of the shallow subsurface of each survey region, accompanied by magnetic-field information over matching areas. These data were collected to provide insight into the distribution of groundwater brine in the Paradox Valley, the extent of clay aquitards in the San Luis Valley, and to improve our understanding of the geologic framework for both regions. This report describes these contracted surveys and releases digital data supplied under contract to the USGS.

  2. Airborne full tensor magnetic gradiometry surveys in the Thuringian basin, Germany

    NASA Astrophysics Data System (ADS)

    Queitsch, M.; Schiffler, M.; Goepel, A.; Stolz, R.; Meyer, M.; Meyer, H.; Kukowski, N.

    2013-12-01

    In this contribution we introduce a newly developed fully operational full tensor magnetic gradiometer (FTMG) instrument based on Superconducting Quantum Interference Devices (SQUIDs) and show example data acquired in 2012 within the framework of the INFLUINS (Integrated Fluid Dynamics in Sedimentary basins) project. This multidisciplinary project aims for a better understanding of movements and interaction between shallow and deep fluids in the Thuringian Basin in the center of Germany. In contrast to mapping total magnetic field intensity (TMI) in conventional airborne magnetic surveys for industrial exploration of mineral deposits and sedimentary basins, our instrument measures all components of the magnetic field gradient tensor using highly sensitive SQUID gradiometers. This significantly constrains the solutions of the inverse problem. Furthermore, information on the ratio between induced and remanent magnetization is obtained. Special care has been taken to reduce motion noise while acquiring data in airborne operation. Therefore, the sensors are mounted in a nonmagnetic and aerodynamically shaped bird made of fiberglas with a high drag tail which stabilizes the bird even at low velocities. The system is towed by a helicopter and kept at 30m above ground during data acquisition. Additionally, the system in the bird incorporates an inertial unit for geo-referencing and enhanced motion noise compensation, a radar altimeter for topographic correction and a GPS system for high precision positioning. Advanced data processing techniques using reference magnetometer and inertial unit data result in a very low system noise of less than 60 pT/m peak to peak in airborne operation. To show the performance of the system we present example results from survey areas within the Thuringian basin and along its bordering highlands. The mapped gradient tensor components show a high correlation to existing geologic maps. Furthermore, the measured gradient components indicate

  3. Workflow with pitfalls to derive a regional airborne magnetic compilation

    NASA Astrophysics Data System (ADS)

    Brönner, Marco; Baykiev, Eldar; Ebbing, Jörg

    2017-04-01

    Today, large scale magnetic maps are usually a patchwork of different airborne surveys from different size, different resolution and different years. Airborne magnetic acquisition is a fast and economic method to map and gain geological and tectonic information for large areas, onshore and offshore. Depending on the aim of a survey, acquisition parameters like altitude and profile distance are usually adjusted to match the purpose of investigation. The subsequent data processing commonly follows a standardized workflow comprising core-field subtraction and line leveling to yield a coherent crustal field magnetic grid for a survey area. The resulting data makes it possible to correlate with geological and tectonic features in the subsurface, which is of importance for e.g. oil and mineral exploration. Crustal scale magnetic interpretation and modeling demand regional compilation of magnetic data and the merger of adjacent magnetic surveys. These studies not only focus on shallower sources, reflected by short to intermediate magnetic wavelength anomalies, but also have a particular interest in the long wavelength deriving from deep seated sources. However, whilst the workflow to produce such a merger is supported by quite a few powerful routines, the resulting compilation contains several pitfalls and limitations, which were discussed before, but still are very little recognized. The maximum wavelength that can be resolved of each individual survey is directly related to the survey size and consequently a merger will contribute erroneous long-wavelength components in the magnetic data compilation. To minimize this problem and to homogenous the longer wavelengths, a first order approach is the combination of airborne and satellite magnetic data commonly combined with the compilation from airborne data, which is sufficient only under particular preconditions. A more advanced approach considers the gap in frequencies between airborne and satellite data, which motivated

  4. High resolution three-dimensional magnetization mapping in Tokachidake Volcano using low altitude airborne magnetic survey data

    NASA Astrophysics Data System (ADS)

    Iwata, M.; Mogi, T.; Okuma, S.; Nakatsuka, T.

    2016-12-01

    Tokachidake Volcano, central Hokkaido, Japan erupted in 1926, 1962 and 1988-1989 in the 20th century from the central part. In recent years, expansions of the edifice of the volcano at shallow depth and increases of the volcanic smoke in the Taisho crater were observed (Meteorological Agency of Japan, 2014). Magnetic changes were observed at the 62-2 crater by repeated magnetic measurements in 2008-2009, implying a demagnetization beneath the crater (Hashimoto at al., 2010). Moreover, a very low resistivity part was found right under the 62-2 crater from an AMT survey (Yamaya et al., 2010). However, since the station numbers of the survey are limited, the area coverage is not sufficient. In this study, we have re-analyzed high-resolution aeromagnetic data to delineate the three-dimensional magnetic structure of the volcano to understand the nature of other craters.A low altitude airborne magnetic survey was conducted in 2014 mainly over the active areas of the volcano by the Ministry of Land, Infrastructure, Transport and Tourism to manage land slide risk in the volcano. The survey was flown at an altitude of 60 m above ground by a helicopter with a Cesium magnetometer in the towed-bird 30m below the helicopter. The low altitude survey enables us to delineate the detailed magnetic structure. We calculated magnetic anomaly distribution on a smooth surface assuming equivalent anomalies below the observation surface. Then the 3D magnetic imaging method (Nakatsuka and Okuma, 2014) was applied to the magnetic anomalies to reveal the three-dimensional magnetic structure.As a result, magnetization highs were seen beneath the Ground crater, Suribachi crater and Kitamuki crater. This implies that magmatic activity occurred in the past at these craters. These magma should have already solidified and acquired strong remanent magnetization. Relative magnetization lows were seen beneath the 62-2 crater and the Taisho crater where fumarolic activity is active. However a

  5. Airborne electromagnetic and magnetic survey of parts of the Upper Peninsula of Michigan and Northern Wisconsin

    USGS Publications Warehouse

    ,; Heran, William D.

    1981-01-01

    The data presented in this report is from an airborne electromagnetic INPUT (Registered trademark of Barringer Research Ltd.) and total field magnetic survey conducted by Geoterrex Limited of Ottawa Canada. The survey is located in eight areas in the Upper Peninsula of Michigan and one area in Northern Wisconsin. The accompanying report describes the basic parameters for the areas surveyed (figure 1). All of the areas except area E (figure 1) are within the Iron River 2° quadrangle. This quadrangle is being studied as part of the U.S. Geological Survey (USGS) CUSMAP (Conterminous United States Mineral Appraisal Program) project. The survey was done in order to provide geophysical information which will aid in the integrated geological assessment of the Iron River 2° quadrangle.

  6. Results of airborne geophysical surveys in the Weser-Elbe area in Northern Germany

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Siemon, B.; Steuer, A.; Ibs-von Seht, M.; Voss, W.; Miensopust, M. P.; Wiederhold, H.

    2012-12-01

    Airborne geophysical surveys were carried out by the German Federal Institute for Geosciences and Natural Resources (BGR) in Northern Germany close to the estuaries of the Weser and Elbe rivers from 2000 to 2010. Two of the six helicopter-borne surveys were conducted in cooperation with the Leibniz Institute for Applied Geophysics (LIAG). The common aim was the acquisition of a reference data set for monitoring climate or man-made induced changes of the saltwater/freshwater interface at the German North Sea coast and to build up a data base containing all airborne geophysical data sets. Airborne frequency-domain electromagnetic, magnetic, and radiometric data were collected simultaneously with the helicopter-borne geophysical system operated at BGR. The airborne geophysical results show both geological and hydrogeological structures down to about 100 m depth. The electromagnetic results reveal several hydrogeological important features such as the distribution of sandy or clayey sediments, the extension of saltwater intrusion, and buried valleys. These results are supported by magnetic and radiometric data indicating lateral changes of weakly magnetized sediments or mineral compositions of the top soil. The airborne geophysical data sets provide serve as base-line data for a variety of applications and particularly for groundwater modeling and monitoring.

  7. Airborne Geophysical Surveys Applied to Hydrocarbon Resource Development Environmental Studies

    NASA Astrophysics Data System (ADS)

    Smith, B. D.; Ball, L. B.; Finn, C.; Kass, A.; Thamke, J.

    2014-12-01

    Application of airborne geophysical surveys ranges in scale from detailed site scale such as locating abandoned well casing and saline water plumes to landscape scale for mapping hydrogeologic frameworks pertinent to ground water and tectonic settings relevant to studies of induced seismicity. These topics are important in understanding possible effects of hydrocarbon development on the environment. In addition airborne geophysical surveys can be used in establishing baseline "snapshots", to provide information in beneficial uses of produced waters, and in mapping ground water resources for use in well development. The U.S. Geological Survey (USGS) has conducted airborne geophysical surveys over more than 20 years for applications in energy resource environmental studies. A majority of these surveys are airborne electromagnetic (AEM) surveys to map subsurface electrical conductivity related to plumes of saline waters and more recently to map hydrogeologic frameworks for ground water and plume migration. AEM surveys have been used in the Powder River Basin of Wyoming to characterize the near surface geologic framework for siting produced water disposal ponds and for beneficial utilization in subsurface drip irrigation. A recent AEM survey at the Fort Peck Reservation, Montana, was used to map both shallow plumes from brine pits and surface infrastructure sources and a deeper concealed saline water plume from a failed injection well. Other reported applications have been to map areas geologically favorable for shallow gas that could influence drilling location and design. Airborne magnetic methods have been used to image the location of undocumented abandoned well casings which can serve as conduits to the near surface for coproduced waters. They have also been used in conjunction with geologic framework studies to understand the possible relationships between tectonic features and induced earthquakes in the Raton Basin. Airborne gravity as well as developing deeper

  8. Airborne electromagnetic and magnetic geophysical survey data of the Yukon Flats and Fort Wainwright areas, central Alaska, June 2010

    USGS Publications Warehouse

    Ball, Lyndsay B.; Smith, Bruce D.; Minsley, Burke J.; Abraham, Jared D.; Voss, Clifford I.; Astley, Beth N.; Deszcz-Pan, Maria; Cannia, James C.

    2011-01-01

    In June 2010, the U.S. Geological Survey conducted airborne electromagnetic and magnetic surveys of the Yukon Flats and Fort Wainwright study areas in central Alaska. These data were collected to estimate the three-dimensional distribution of permafrost at the time of the survey. These data were also collected to evaluate the effectiveness of these geophysical methods at mapping permafrost geometry and to better define the physical properties of the subsurface in discontinuous permafrost areas. This report releases digital data associated with these surveys. Inverted resistivity depth sections are also provided in this data release, and data processing and inversion methods are discussed.

  9. Investigation of coastal areas in Northern Germany using airborne geophysical surveys

    NASA Astrophysics Data System (ADS)

    Miensopust, Marion; Siemon, Bernhard; Wiederhold, Helga; Steuer, Annika; Ibs-von Seht, Malte; Voß, Wolfgang; Meyer, Uwe

    2014-05-01

    Since 2000, the German Federal Institute for Geosciences and Natural Resources (BGR) carried out several airborne geophysical surveys in Northern Germany to investigate the coastal areas of the North Sea and some of the North and East Frisian Islands. Several of those surveys were conducted in cooperation with the Leibniz Institute for Applied Geophysics (LIAG). Two helicopter-borne geophysical systems were used, namely the BGR system, which collects simultaneously frequency-domain electromagnetic, magnetic and radiometric data, and the SkyTEM system, a time-domain electromagnetic system developed by the University of Aarhus. Airborne geophysical surveys enable to investigate huge areas almost completely with high lateral resolution in a relatively short time at economic cost. In general, the results can support geological and hydrogeological mapping. Of particular importance are the airborne electromagnetic results, as the surveyed parameter - the electrical conductivity - depends on both lithology and groundwater status. Therefore, they can reveal buried valleys and the distribution of sandy and clayey sediments as well as salinization zones and fresh-water occurrences. The often simultaneously recorded magnetic and radiometric data support the electromagnetic results. Lateral changes of Quaternary and Tertiary sediments (shallow source - several tens of metres) as well as evidences of the North German Basin (deep source - several kilometres) are revealed by the magnetic results. The radiometric data indicate the various mineral compositions of the soil sediments. This BGR/LIAG project aims to build up a geophysics data base (http://geophysics-database.de/) which contains all airborne geophysical data sets. However, the more significant effort is to create a reference data set as basis for monitoring climate or man-made induced changes of the salt-water/fresh-water interface at the German North Sea coast. The significance of problems for groundwater extraction

  10. Airborne gamma-ray spectrometer and magnetometer survey: Durango Quadrangle (Colorado). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    Results from the airborne gamma-ray spectrometer and magnetometer survey of Durango Quadrangle in Colorado are presented in the form of radiometric multiple-parameter stacked profiles, histograms, flight path map, and magnetic and ancillary stacked profile data.

  11. Aerial radiometric and magnetic survey: Lander National Topographic Map, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Lander National Topographic Map NK12-6 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included.more » Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.« less

  12. Airborne gamma-ray spectrometer and magnetometer survey: Platoro Caldera Detail Survey, Durango quadrangle (Colorado). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-02-01

    Between October 18 and November 7, 1978, a high sensitivity airborne gamma-ray spectrometer and magnetometer survey was conducted over the Durango Detailed Survey Area No. 3, which is centered about 20 miles northeast of Pagosa Springs, Colorado and located within the San Juan Mountains. The study was carried out as part of the Aerial Radiometric and Magnetic Reconnaissance Survey Program, designed to map the regional distribution of the natural radioelements for the principal rock units of the United States in support of the National Uranium Resource Evaluation (NURE) program.

  13. Aerial radiometric and magnetic survey: Aztec National Topographic Map, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Aztec National Topographic Map NJ13-10 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included.more » Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.« less

  14. Nepal and Papua Airborne Gravity Surveys

    NASA Astrophysics Data System (ADS)

    Olesen, A. V.; Forsberg, R.; Kasenda, F.; Einarsson, I.; Manandhar, N.

    2011-12-01

    Airborne gravimetry offers a fast and economic way to cover vast areas and it allows access to otherwise difficult accessible areas like mountains, jungles and the near coastal zone. It has the potential to deliver high resolution and bias free data that may bridge the spectral gap between global satellite gravity models and the high resolution gravity information embedded in digital terrain models. DTU Space has for more than a decade done airborne gravity surveys in many parts of the world. Most surveys were done with a LaCoste & Romberg S-meter updated for airborne use. This instrument has proven to deliver near bias free data when properly processed. A Chekan AM gravimeter was recently added to the airborne gravity mapping system and will potentially enhance the spatial resolution and the robustness of the system. This paper will focus on results from two recent surveys over Nepal, flown in December 2010, and over Papua (eastern Indonesia), flown in May and June 2011. Both surveys were flown with the new double gravimeter setup and initial assessment of system performance indicates improved spatial resolution compared to the single gravimeter system. Comparison to EGM08 and to the most recent GOCE models highlights the impact of the new airborne gravity data in both cases. A newly computed geoid model for Nepal based on the airborne data allows for a more precise definition of the height of Mt. Everest in a global height system. This geoid model suggests that the height of Mt. Everest should be increased by approximately 1 meter. The paper will also briefly discuss system setup and will highlight a few essential processing steps that ensure that bias problems are minimized and spatial resolution enhanced.

  15. Helicopter magnetic survey conducted to locate wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veloski, G.A.; Hammack, R.W.; Stamp, V.

    2008-07-01

    A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3’s (NPR-3) Teapot Dome Field near Casper, Wyoming. The survey’s purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations formore » all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.« less

  16. Infrared airborne spectroradiometer survey results in the western Nevada area

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1982-01-01

    The Mark II airborne spectroradiometer system was flown over several geologic test sites in western Nevada. The infrared mineral absorption bands were observed and recorded for the first time using an airborne system with high spectral resolution in the 2.0 to 2.5 micron region. The data show that the hydrothermal alteration zone minerals, carbonates, and other minerals are clearly visible in the airborne survey mode. The finer spectral features that distinguish the various minerals with infrared bands are also clearly visible in the airborne survey data. Using specialized computer pattern recognition methods, it is possible to identify mineralogy and map alteration zones and lithologies by airborne spectroradiometer survey techniques.

  17. Airborne surveys in the Arctic and Antarctic for geophysics, sea-ice thickness, and CryoSat validation

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Olesen, A. V.; Hvidegaard, S.; Skourup, H.

    2010-12-01

    Airborne laser and radar measurements over the Greenland ice sheet, Svalbard, and adjacent parts of the Arctic Ocean have been carried out by DTU-Space in a number of recent Danish/Greenlandic and European project campaigns, with the purpose to monitor ice sheet and sea-ice changes, support of Greenland societal needs (oil exploration and hydropower), and support of CryoSat pre-launch calibration and validation campaigns. The Arctic campaigns have been done using a Twin-Otter aircraft, carrying laser scanners and various radars. Since 2009 a new program of long-range gravity and magnetic surveys have been initiated using a Basler DC3 aircraft for large-scale surveys in the Arctic Ocean and Antarctica, with the 2010 cooperative Danish-Argentinean-Chilean-US ICEGRAV survey of the Antarctic Peninsula additionally including a UTIG 60 MHz ice-penetrating radar. In the paper we outline the recent and upcoming airborne survey activities, outline the usefulness of the airborne data for satellite validation (CryoSat and GOCE), and give examples of measurements and comparisons to satellite and in-situ data.

  18. Airborne geophysical surveys conducted in western Nebraska, 2010: contractor reports and data

    USGS Publications Warehouse

    ,

    2014-01-01

    This report contains three contractor reports and data files for an airborne electromagnetic survey flown from June 28 to July 7, 2010. The first report; “SkyTEM Survey: Nebraska, USA, Data” describes data aquisition and processing from a time-domain electromagnetic and magnetic survey performed by SkyTEM Canada, Inc. (the North American SkyTEM subsidiary), in western Nebraska, USA. Digital data for this report are given in Appendix 1. The airborne geophysical data from the SkyTEM survey subsequently were processed and inverted by Aarhus Geophysics ApS, Aarhus, Denmark, to produce resistivity depth sections along each flight line. The result of that processing is described in two reports presented in Appendix 2, “Processing and inversion of SkyTEM data from USGS Area UTM–13” and “Processing and inversion of SkyTEM data from USGS Area UTM–14.” Funding for these surveys was provided by the North Platte Natural Resources District, the South Platte Natural Resources District, and the Twin Platte Natural Resources District, in Scottsbluff, Sidney, and North Platte, Nebraska, respectively. Any additional information concerning the geophysical data may be obtained from the U.S. Geological Survey Crustal Geophysics and Geochemistry Science Center, Denver Colorado.

  19. Airborne EM survey in volcanoes : Application to a volcanic hazards assessment

    NASA Astrophysics Data System (ADS)

    Mogi, T.

    2010-12-01

    Airborne electromagnetics (AEM) is a useful tool for investigating subsurface structures of volcanoes because it can survey large areas involving inaccessible areas. Disadvantages include lower accuracy and limited depth of investigation. AEM has been widely used in mineral exploration in frontier areas, and have been applying to engineering and environmental fields, particularly in studies involving active volcanoes. AEM systems typically comprise a transmitter and a receiver on an aircraft or in a towed bird, and although effective for surveying large areas, their penetration depth is limited because the distance between the transmitter and receiver is small and higher-frequency signals are used. To explore deeper structures using AEM, a semi-airborne system called GRounded Electrical source Airborne Transient ElectroMagnetics (GREATEM) has been developed. The system uses a grounded-electrical-dipole as the transmitter and generates horizontal electric fields. The GREATEM technology, first proposed by Mogi et al. (1998), has recently been improved and used in practical surveys (Mogi et al., 2009). The GREATEM survey system was developed to increase the depth of investigation possible using AEM. The method was tested in some volcanoes at 2004-2005. Here I will talk about some results of typical AEM surveys and GREATEM surveys in some volcanoes in Japan to mitigate hazards associated with volcano eruption. Geologic hazards caused by volcanic eruptions can be mitigated by a combination of prediction, preparedness and land-use control. Risk management depends on the identification of hazard zones and forecasting of eruptions. Hazard zoning involves the mapping of deposits which have formed during particular phases of volcanic activity and their extrapolation to identify the area which would be likely to suffer a similar hazard at some future time. The mapping is usually performed by surface geological surveys of volcanic deposits. Resistivity mapping by AEM is useful

  20. The alpine Swiss-French airborne gravity survey

    NASA Astrophysics Data System (ADS)

    Verdun, Jérôme; Klingelé, Emile E.; Bayer, Roger; Cocard, Marc; Geiger, Alain; Kahle, Hans-Gert

    2003-01-01

    In February 1998, a regional-scale, airborne gravity survey was carried out over the French Occidental Alps within the framework of the GéoFrance 3-D research program.The survey consisted of 18 NS and 16 EW oriented lines with a spacing of 10 and 20 km respectively, covering the whole of the Western French Alps (total area: 50 000 km2; total distance of lines flown: 10 000 km). The equipment was mounted in a medium-size aircraft (DeHavilland Twin Otter) flowing at a constant altitude of 5100 m a.s.l, and at a mean ground speed of about 280 km h-1. Gravity was measured using a LaCoste & Romberg relative, air/sea gravimeter (type SA) mounted on a laser gyro stabilized platform. Data from 5 GPS antennae located on fuselage and wings and 7 ground-based GPS reference stations were used to determine position and aircraft induced accelerations.The gravimeter passband was derived by comparing the vertical accelerations provided by the gravimeter with those estimated from the GPS positions. This comparison showed that the gravimeter is not sensitive to very short wavelength aircraft accelerations, and therefore a simplified formulation for computing airborne gravity measurements was developed. The intermediate and short wavelength, non-gravitational accelerations were eliminated by means of digital, exponential low-pass filters (cut-off wavelength: 16 km). An important issue in airborne gravimetry is the reliability of the airborne gravity surveys when compared to ground surveys. In our studied area, the differences between the airborne-acquired Bouguer anomaly and the ground upward-continued Bouguer anomaly of the Alps shows a good agreement: the rms of these differences is equal to 7.68 mGal for a spatial resolution of 8 km. However, in some areas with rugged topography, the amplitudes of those differences have a striking correlation with the topography. We then argue that the choice of an appropriate density (reduction by a factor of 10 per cent) for computing the

  1. Extraction of remanent magnetization from magnetization vector inversions of airborne full tensor magnetic gradiometry data

    NASA Astrophysics Data System (ADS)

    Queitsch, M.; Schiffler, M.; Stolz, R.; Meyer, M.; Kukowski, N.

    2017-12-01

    Measurements of the Earth's magnetic field are one of the most used methods in geophysical exploration. The ambiguity of the method, especially during modeling and inversion of magnetic field data sets, is one of its biggest challenges. Additional directional information, e.g. gathered by gradiometer systems based on Superconducting Quantum Interference Devices (SQUIDs), will positively influence the inversion results and will thus lead to better subsurface magnetization models. This is especially beneficial, regarding the shape and direction of magnetized structures, especially when a significant remanent magnetization of the underlying sources is present. The possibility to separate induced and remanent contributions to the total magnetization may in future also open up advanced ways for geological interpretation of the data, e.g. a first estimation of diagenesis processes. In this study we present the results of airborne full tensor magnetic gradiometry (FTMG) surveys conducted over a dolerite intrusion in central Germany and the results of two magnetization vector inversions (MVI) of the FTMG and a conventional total field anomaly data set. A separation of the two main contributions of the acquired total magnetization will be compared with information of the rock magnetization measured on orientated rock samples. The FTMG inversion results show a much better agreement in direction and strength of both total and remanent magnetization compared to the inversion using only total field anomaly data. To enhance the separation process, the application of additional geophysical methods, i.e. frequency domain electromagnetics (FDEM), in order to gather spatial information of subsurface rock susceptibility will also be discussed. In this approach, we try to extract not only information on subsurface conductivity but also the induced magnetization. Using the total magnetization from the FTMG data and the induced magnetization from the FDEM data, the full separation of

  2. Airborne Multi-Spectral Minefield Survey

    DTIC Science & Technology

    2005-05-01

    Swedish Defence Research Agency), GEOSPACE (Austria), GTD ( Ingenieria de Sistemas y Software Industrial, Spain), IMEC (Ineruniversity MicroElectronic...RTO-MP-SET-092 18 - 1 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Airborne Multi-Spectral Minefield Survey Dirk-Jan de Lange, Eric den...actions is the severe lack of baseline information. To respond to this in a rapid way, cost-efficient data acquisition methods are a key issue. de

  3. Preliminary Results from an Integrated Airborne EM and Aeromagnetic Survey in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Dickey, K.; Holbrook, W. S.; Finn, C.; Auken, E.; Carr, B.; Sims, K. W. W.; Bedrosian, P.; Lowenstern, J. B.; Hurwitz, S.; Pedersen, J. B. B.

    2017-12-01

    Yellowstone National Park hosts over 10,000 thermal features (e.g. geysers, fumaroles, mud pots, and hot springs), yet little is known about the circulation depth of meteoric water feeding these features, nor the lithological and structural bounds on the pathways that guide deep, hot fluids to the surface. Previous near-surface geophysical studies have been effective in imaging shallow hydrothermal pathways in some areas of the park, but these methods are difficult to conduct over the large areas needed to characterize entire hydrothermal systems. Transient electromagnetic (TEM) soundings and 2D direct current (DC) resistivity profiles show that hydrothermal fluids at active sites have a higher electrical conductivity than the surrounding hydrothermally inactive areas. For that reason, airborne TEM is an effective method to characterize large areas and identify hydrothermally active and inactive zones using electrical conductivity. Aeromagnetic data have been useful in mapping faults that localize hot springs, making the integration of aeromagnetic and EM data effective for structurally characterizing fluid pathways. Here we present the preliminary results from an airborne transient electromagnetic (TEM) and magnetic survey acquired jointly by the U.S. Geological Survey (USGS) and the University of Wyoming (UW) in November 2016. We integrate the EM and magnetic data for the purpose of edge detection of rhyolite flow boundaries as well as source depth of hydrothermal features. The maximum horizontal gradient technique applied on magnetic data is a useful tool that used to estimate source depth as well as indicate faults and fractures. The integration of EM with magnetics allows us to distinguish hydrothermally altered fault systems that guide fluids in the subsurface. We have used preliminary 2D inversions of EM from Aarhus Workbench to delineate rhyolite flow edges in the upper 300-600 meters and cross-checked those boundaries with the aeromagnetic map.

  4. High resolution and low altitude magnetic surveys for structural geology mapping in the Seabee mine, Saskatchewan, Canada, using UAV-MAG™ technology.

    NASA Astrophysics Data System (ADS)

    Braun, A.; Parvar, K.; Burns, M.

    2017-12-01

    Uninhabited Aerial Vehicles (UAV) provide the operational flexibility and ease of use which makes them ideal tools for low altitude and high resolution magnetic surveys. Being able to fly at lower altitudes compared to manned aircrafts provides the proximity to the target needed to increase the sensitivity to detect smaller and less magnetic targets. Considering the same sensor specifications, this further increases the signal to noise ratio. However, to increase spatial resolution, a tighter line spacing is needed which increases the survey time. We describe a case study in the Seabee mine in Saskatchewan, Canada. Using Pioneer Exploration Ltd. UAV-MAG™ technology, we emphasize the importance of altitude and line spacing in magnetic surveys with UAVs in order to resolve smaller and less magnetic targets compared to conventional manned airborne magnetic surveys. Mapping lithological or stratigraphic changes along the target structure requires an existing gradient in magnetic susceptibility. Mostly, this criterium is either not presented or the is weaker than the sensor's signal to noise ratio at a certain flying altitude. However, the folded structure in the study region shows high susceptibility changes in rock formations in high altitude regional magnetic surveys. In order to confirm that there are no missed structural elements in the target region, a UAV magnetic survey using a GEM Systems GSMP-35A potassium vapor magnetometer on Pioneer Exploration's UAV-MAG™ platform was conducted to exploit the structure in detail and compare the gain in spatial resolution from flying at lower altitude and with denser flight lines. The survey was conducted at 25 meters above ground level (AGL). Line spacing was set to 15 meters and a total of 550 kilometers was covered using an autonomous UAV. The collected data were compared to the regional airborne data which were collected at 150 meters AGL with a line spacing of 100 meters. Comparison revealed an anticline with plunge

  5. Digital data from the Great Sand Dunes airborne gravity gradient survey, south-central Colorado

    USGS Publications Warehouse

    Drenth, B.J.; Abraham, J.D.; Grauch, V.J.S.; Labson, V.F.; Hodges, G.

    2013-01-01

    This report contains digital data and supporting explanatory files describing data types, data formats, and survey procedures for a high-resolution airborne gravity gradient (AGG) survey at Great Sand Dunes National Park, Alamosa and Saguache Counties, south-central Colorado. In the San Luis Valley, the Great Sand Dunes survey covers a large part of Great Sand Dunes National Park and Preserve. The data described were collected from a high-resolution AGG survey flown in February 2012, by Fugro Airborne Surveys Corp., on contract to the U.S. Geological Survey. Scientific objectives of the AGG survey are to investigate the subsurface structural framework that may influence groundwater hydrology and seismic hazards, and to investigate AGG methods and resolution using different flight specifications. Funding was provided by an airborne geophysics training program of the U.S. Department of Defense's Task Force for Business & Stability Operations.

  6. A 0.4 to 10 GHz airborne electromagnetic environment survey of USA urban areas

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1976-01-01

    An airborne electromagnetic-environment survey of some U.S. metropolitan areas measured terrestrial emissions within the broad frequency spectrum from 0.4 to 10 GHz. A Cessna 402 commercial aircraft was fitted with both nadir-viewing and horizon-viewing antennas and instrumentation, including a spectrum analyzer, a 35 mm continuous film camera, and a magnetic tape recorder. Most of the flights were made at a nominal altitude of 10,000 feet, and Washington, D. C., Baltimore, Philadelphia, New York, and Chicago were surveyed. The 450 to 470 MHz land-mobile UHF band is especially crowded, and the 400 to 406 MHz space bands are less active. This paper discusses test measurements obtained up to 10 GHz. Sample spectrum analyzer photograhs were selected from a total of 5,750 frames representing 38 hours of data.

  7. 0.4- to 10-GHz airborne electromagnetic-environment survey of United States urban areas

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1976-01-01

    An airborne electromagnetic-environment survey of some U.S. metropolitan areas measured terrestrial emissions within the broad-frequency spectrum from 0.4 to 10 GHz. A Cessna 402 commercial aircraft was fitted with both nadir-viewing and horizon-viewing antennas and instrumentation, including a spectrum analyzer, a 35-mm continuous-film camera, and a magnetic-tape recorder. Most of the flights were made at a nominal altitude of 10,000 ft, and Washington, Baltimore, Philadelphia, New York, and Chicago were surveyed. The 450- to 470-MHz land-mobile UHF band is especially crowded, and the 400- to 406-MHz space bands are less active. Test measurements obtained up to 10 GHz are discussed. Sample spectrum-analyzer photographs were selected from a total of 5750 frames representing 38 hours of data.

  8. Airborne-biogeochemical survey test-case results

    USGS Publications Warehouse

    Collins, William E.; Chang, Sheng-Huei; Raines, Gary L.; Canney, Frank C.; Ashley, Roger; Barringer, Anthony R.

    1980-01-01

    Airborne spectroradiometer surveys over several forest-covered sulfide bodies indicate that mineralization has affected the overlying vegetation; anomalous spectral reflectivity properties can be detected in the vegetation using appropriate remote-sensing interments and data-reduction techniques. Mineralization induces subtle changes in the shape of the chlorophyll a and b absorption spectrum between 550 and 750 nm. The observed spectral variations appear specifically to be on the wings of the broad red chlorophyll bars, centered at about 680 nm.

  9. EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements

    USGS Publications Warehouse

    Maus, S.; Barckhausen, U.; Berkenbosch, H.; Bournas, N.; Brozena, J.; Childers, V.; Dostaler, F.; Fairhead, J.D.; Finn, C.; von Frese, R.R.B; Gaina, C.; Golynsky, S.; Kucks, R.; Lu, Hai; Milligan, P.; Mogren, S.; Muller, R.D.; Olesen, O.; Pilkington, M.; Saltus, R.; Schreckenberger, B.; Thebault, E.; Tontini, F.C.

    2009-01-01

    A global Earth Magnetic Anomaly Grid (EMAG2) has been compiled from satellite, ship, and airborne magnetic measurements. EMAG2 is a significant update of our previous candidate grid for the World Digital Magnetic Anomaly Map. The resolution has been improved from 3 arc min to 2 arc min, and the altitude has been reduced from 5 km to 4 km above the geoid. Additional grid and track line data have been included, both over land and the oceans. Wherever available, the original shipborne and airborne data were used instead of precompiled oceanic magnetic grids. Interpolation between sparse track lines in the oceans was improved by directional gridding and extrapolation, based on an oceanic crustal age model. The longest wavelengths (>330 km) were replaced with the latest CHAMP satellite magnetic field model MF6. EMAG2 is available at http://geomag.org/models/EMAG2 and for permanent archive at http://earthref.org/ cgi-bin/er.cgi?s=erda.cgi?n=970. ?? 2009 by the American Geophysical Union.

  10. Interpretation of high resolution airborne magnetic data (HRAMD) of Ilesha and its environs, Southwest Nigeria, using Euler deconvolution method

    NASA Astrophysics Data System (ADS)

    Olurin, Oluwaseun Tolutope

    2017-12-01

    Interpretation of high resolution aeromagnetic data of Ilesha and its environs within the basement complex of the geological setting of Southwestern Nigeria was carried out in the study. The study area is delimited by geographic latitudes 7°30'-8°00'N and longitudes 4°30'-5°00'E. This investigation was carried out using Euler deconvolution on filtered digitised total magnetic data (Sheet Number 243) to delineate geological structures within the area under consideration. The digitised airborne magnetic data acquired in 2009 were obtained from the archives of the Nigeria Geological Survey Agency (NGSA). The airborne magnetic data were filtered, processed and enhanced; the resultant data were subjected to qualitative and quantitative magnetic interpretation, geometry and depth weighting analyses across the study area using Euler deconvolution filter control file in Oasis Montag software. Total magnetic intensity distribution in the field ranged from -77.7 to 139.7 nT. Total magnetic field intensities reveal high-magnitude magnetic intensity values (high-amplitude anomaly) and magnetic low intensities (low-amplitude magnetic anomaly) in the area under consideration. The study area is characterised with high intensity correlated with lithological variation in the basement. The sharp contrast is enhanced due to the sharp contrast in magnetic intensity between the magnetic susceptibilities of the crystalline and sedimentary rocks. The reduced-to-equator (RTE) map is characterised by high frequencies, short wavelengths, small size, weak intensity, sharp low amplitude and nearly irregular shaped anomalies, which may due to near-surface sources, such as shallow geologic units and cultural features. Euler deconvolution solution indicates a generally undulating basement, with a depth ranging from -500 to 1000 m. The Euler deconvolution results show that the basement relief is generally gentle and flat, lying within the basement terrain.

  11. Use of Airborne Electromagnetic Geophysical Survey to Map Discontinuous Permafrost in Goldstream Valley, Interior Alaska

    NASA Astrophysics Data System (ADS)

    Daanen, R. P.; Emond, A.; Liljedahl, A. K.; Walter Anthony, K. M.; Barnes, D. L.; Romanovsky, V. E.; Graham, G.

    2016-12-01

    An airborne electromagnetic (AEM) survey was conducted in Goldstream Valley, Alaska, to map the electrical resistivity of the ground by sending a magnetic field down from a transmitter flying 30m above the ground into the subsurface. The recorded electromagnetic data are a function of the resistivity structure in the ground. The RESOLVE system used in the survey records data for six frequencies, resulting in a depth of investigation from 1-3 meters and up to 150 meters, depending on resistivity of the ground. Recording six frequencies enables the use of inversion methods to find a solution for a discretized resistivity model providing resistivity as a function of depth below ground surface. Using the airborne RESOLVE system in a populated study area involved challenges related to signal noise, access, and public opinion. Noise issues were mainly the consequence of power lines, which produce varying levels and frequencies of noise. We were not permitted to fly directly over homes, cars, animals, or people because of safety concerns, which resulted in gaps in our dataset. Public outreach well in advance of the survey informed residents about the methods used, their benefits to understanding the environment, and their potential impacts on the environment. Inversion of the data provided resistivity models that were interpreted for frozen and thawed ground conditions; these interpretation were constrained by alternate data sources such as well logs, borehole data, ground-based geophysics, and temperature measurements. The resulting permafrost map will be used to interpret groundwater movement into the valley and methane release from thermokarst lakes.

  12. On the use of high-gradient magnetic force field in capturing airborne particles

    DOE PAGES

    Cheng, Mengdawn; Murphy, Bart L.; Moon, Ji Won; ...

    2018-06-01

    Airborne particles in the environment are generally smaller than a couple of microns. Use of magnetic force to collect aerosol particles thus has not been popular as the other means. There are billions of airborne particles emitted by a host of man-made sources with the particle size smaller than 1 µm and possess some magnetic susceptibility. We are thus interested in the use of high-gradient magnetic collection to extract the magnetic fraction in an aerosol population. Here in this study, we reported that the magnetic force is the dominant force in collection of ferromagnetic particles of mobility equivalent size largermore » than or equal to 50 nm in a high-gradient permanent-magnetic aerosol collector, while the diffusiophoretic force is responsible for particles smaller than 10 nm. Both forces compete for particles in between these two sizes in the magnetic aerosol collector designed for this study. To enable a wide-range effective collection of aerosol particles across entire size spectrum from a few nanometers to tens of a micron, the ORNL-designed high-gradient magnetic collector would require the use of an engineered matrix. Thus, the matrix design for a specific application becomes application specific. Irrespective of the collection efficiency, the use of permanent magnets to collect magnetic particles is feasible and also highly selective because it tunes into the magnetic susceptibility of the particles as well as the size. Lastly, the use of permanent magnets enables the collector to be operated at a minimal power requirement, which is a critical factor in long-term field operation.« less

  13. On the use of high-gradient magnetic force field in capturing airborne particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Murphy, Bart L.; Moon, Ji Won

    Airborne particles in the environment are generally smaller than a couple of microns. Use of magnetic force to collect aerosol particles thus has not been popular as the other means. There are billions of airborne particles emitted by a host of man-made sources with the particle size smaller than 1 µm and possess some magnetic susceptibility. We are thus interested in the use of high-gradient magnetic collection to extract the magnetic fraction in an aerosol population. Here in this study, we reported that the magnetic force is the dominant force in collection of ferromagnetic particles of mobility equivalent size largermore » than or equal to 50 nm in a high-gradient permanent-magnetic aerosol collector, while the diffusiophoretic force is responsible for particles smaller than 10 nm. Both forces compete for particles in between these two sizes in the magnetic aerosol collector designed for this study. To enable a wide-range effective collection of aerosol particles across entire size spectrum from a few nanometers to tens of a micron, the ORNL-designed high-gradient magnetic collector would require the use of an engineered matrix. Thus, the matrix design for a specific application becomes application specific. Irrespective of the collection efficiency, the use of permanent magnets to collect magnetic particles is feasible and also highly selective because it tunes into the magnetic susceptibility of the particles as well as the size. Lastly, the use of permanent magnets enables the collector to be operated at a minimal power requirement, which is a critical factor in long-term field operation.« less

  14. Airborne Gravity Survey and Ground Gravity in Afghanistan: A Website for Distribution of Data

    USGS Publications Warehouse

    Abraham, Jared D.; Anderson, Eric D.; Drenth, Benjamin J.; Finn, Carol A.; Kucks, Robert P.; Lindsay, Charles R.; Phillips, Jeffrey D.; Sweeney, Ronald E.

    2008-01-01

    Afghanistan?s geologic setting suggests significant natural resource potential. Although important mineral deposits and petroleum resources have been identified, much of the country?s potential remains unknown. Airborne geophysical surveys are a well- accepted and cost-effective method for remotely obtaining information of the geological setting of an area. A regional airborne geophysical survey was proposed due to the security situation and the large areas of Afghanistan that have not been covered using geophysical exploration methods. Acting upon the request of the Islamic Republic of Afghanistan Ministry of Mines, the U.S. Geological Survey contracted with the U.S. Naval Research Laboratory to jointly conduct an airborne geophysical and remote sensing survey of Afghanistan. Data collected during this survey will provide basic information for mineral and petroleum exploration studies that are important for the economic development of Afghanistan. Additionally, use of these data is broadly applicable in the assessment of water resources and natural hazards, the inventory and planning of civil infrastructure and agricultural resources, and the construction of detailed maps. The U.S. Geological Survey is currently working in cooperation with the U.S. Agency of International Development to conduct resource assessments of the country of Afghanistan for mineral, energy, coal, and water resources, and to assess geologic hazards. These geophysical and remote sensing data will be used directly in the resource and hazard assessments.

  15. The next generation Antarctic digital magnetic anomaly map

    USGS Publications Warehouse

    von Frese, R.R.B; Golynsky, A.V.; Kim, H.R.; Gaya-Piqué, L.; Thébault, E.; Chiappinii, M.; Ghidella, M.; Grunow, A.; ,

    2007-01-01

    S (Golynsky et al., 2001). This map synthesized over 7.1 million line-kms of survey data available up through 1999 from marine, airborne and Magsat satellite observations. Since the production of the initial map, a large number of new marine and airborne surveys and improved magnetic observations from the Ørsted and CHAMP satellite missions have become available. In addition, an improved core field model for the Antarctic has been developed to better isolate crustal anomalies in these data. The next generation compilation also will likely represent the magnetic survey observations of the region in terms of a high-resolution spherical cap harmonic model. In this paper, we review the progress and problems of developing an improved magnetic anomaly map to facilitate studies of the Antarctic crustal magnetic field

  16. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  17. Airborne and Ground Electrical Surveys for Subsurface Mapping of the Arbuckle Aquifer, Central Oklahoma

    NASA Astrophysics Data System (ADS)

    Smith, D.; Smith, B. D.; Blome, C. D.; Osborn, N.

    2008-12-01

    Airborne and ground electrical surveys have been conducted to map the subsurface hydrogeologic character of the Arbuckle-Simpson aquifer in south central Oklahoma. An understanding of the geologic framework and hydrogeologic characteristics is necessary to evaluate groundwater flow through the highly faulted, structurally complex, carbonate aquifer. Results from this research will further understanding of the aquifer and will assist in managing the water resources of the region. The major issues include water quality, the allocation of water rights, and the potential impacts of pumping on springs and stream. Four areas in the Hunton anticline area, with distinctly different geology, were flown with a frequency domain helicopter electromagnetic system (HEM) in March, 2007. Ground electrical studies include dc resistivity imaging and natural field audiomagnetotelluric (AMT), and magnetotelluric (MT) surveys. The HEM resistivity and total field magnetic survey was flown in four blocks, A through D, mostly with a line spacing of 400 m. Block A extends from the Chickasaw National Recreational Area (CHIC) to Mill Creek on the west side of the anticline. The surface geology of this block is mostly dolomitic limestone of the Arbuckle Group that is in fault contact with younger Paleozoic clastic rocks. The flight line spacing was 800 meters in the western half of the block and 400 meters in the eastern part. Airborne magnetic data indicate that the Sulphur fault bends south to merge with the Mill Creek fault which substantiates an earlier hypothesis first made from interpretation of gravity data. Block B, located on the north side of the anticline consists of mostly of Arbuckle and Simpson Group rocks. Block C, covering most of the Clarita horst on the east side of the anticline, consists of the Upper Ordovician to the Lower Pennsylvanian shales. Block D, which was flown to include a deep test well site at Spears ranch, consisted of eight lines spaced at 400 meters. The HEM

  18. Description and preliminary map, airborne electromagnetic survey of parts of Iron, Baraga, and Dickson counties, Michigan

    USGS Publications Warehouse

    Heran, William D.; Smith, Bruce D.

    1980-01-01

    The data presented herein is from an airborne electromagnetic INPUT* survey conducted by Geoterrex Limited of Canada for the U.S. Geological Survey. The survey area is located in the central part of the Upper Peninsula of Michigan, within parts of Iron, Baraga, and Dickinson Counties. The general area covered is between 46°00' and 46°30' latitude and 88°00' and 88°30' longitude (fig. 1).The INPUT survey was flown as part of a U.S. Geological Survey CUSMAP (Conterminous United States Mineral Appraisal Program) project focusing on the Iron River 2° quadrangle. The survey was flown in order to provide geophysical information which will aid in an integrated geological assessment of mineral potentials of this part of the Iron River 2 quadrangle. The flight-line spacing was chosen to maximize the aerial coverage without a loss of resolution of major lithologic and structural features. East-west flight lines were flown 400 feet above ground at 1/2-mile intervals. Aerial photos were used for navigation and the flight path was recorded on continuous-strip film. A continuously recording total field ground magnetic station was used to monitor variations in the Earth's magnetic field. One north-south line was flown to provide a tie for the magnetic data which was recorded simultaneously with the electromagnetic data by a sensor mounted in the tail of the aircraft. This report is one of two open-file reports. The map in the present report contains locations of the fiducial points, the flight lines, and preliminary locations of anomalies and conductive zones, all plotted on an air photomosaic. The latitude and longitude ticks marked on this map are only approximate due to distortion in air photos used to recover the flight line position. This map is preliminary and is not to be considered a final interpretation. The other report (Reran and Smith, 1980) contains a description of the instrument specifications, a copy of the ground station magnetic data, and a microfilm

  19. Inference of lithologic distributions in an alluvial aquifer using airborne transient electromagnetic surveys

    USGS Publications Warehouse

    Dickinson, Jesse; Pool, D.R.; Groom, R.W.; Davis, L.J.

    2010-01-01

    An airborne transient electromagnetic (TEM) survey was completed in the Upper San Pedro Basin in southeastern Arizona to map resistivity distributions within the alluvial aquifer. This investigation evaluated the utility of 1D vertical resistivity models of the TEM data to infer lithologic distributions in an alluvial aquifer. Comparisons of the resistivity values and layers in the 1D resistivity models of airborne TEM data to 1D resistivity models of ground TEM data, borehole resistivity logs, and lithologic descriptions in drill logs indicated that the airborne TEM identified thick conductive fine-grained sediments that result in semiconfined groundwater conditions. One-dimensional models of ground-based TEM surveys and subsurface lithology at three sites were used to determine starting models and constraints to invert airborne TEM data using a constrained Marquardt-styleunderparameterized method. A maximum structural resolution of six layers underlain by a half-space was determined from the resistivity structure of the 1D models of the ground TEM data. The 1D resistivity models of the airborne TEM data compared well with the control data to depths of approximately 100 m in areas of thick conductive silt and clay and to depths of 200 m in areas of resistive sand and gravel. Comparison of a 3D interpolation of the 1D resistivity models to drill logs indicated resistive (mean of 65 ohm-m ) coarse-grained sediments along basin margins and conductive (mean of 8 ohm-m ) fine-grained sediments at the basin center. Extents of hydrologically significant thick silt and clay were well mapped by the 1D resistivity models of airborne TEM data. Areas of uncertain lithology remain below conductive fine-grained sediments where the 1D resistivity structure is not resolved: in areas where multiple lithologies have similar resistivity values and in areas of high salinity.

  20. Instrument specifications and geophysical records for airborne electromagnetic survey of parts of Iron, Baraga, and Dickson Counties, Michigan

    USGS Publications Warehouse

    Heran, William D.; Smith, Bruce D.

    1980-01-01

    The data presented herein is from an airborne electromagnetic INPUT* survey conducted by Geoterrex Limited of Canada for the U.S. Geological Survey. The survey area is located in the central part of the Upper Peninsula of Michigan, within parts of Iron, Baraga, and Dickinson Counties. The general area covered is between 46°00' and 46°30' latitude and 88°00' and 88°30' longitude (fig. 1).The INPUT survey was flown as part of a U.S. Geological Survey CUSMAP (Conterminous United States Mineral Appraisal Program) project focusing on the Iron River 2° quadrangle. The survey was flown in order to provide geophysical information which will aid in an integrated geological assessment of mineral potentials of this part of the Iron River 2° quadrangle. The flight line spacing was chosen to maximize the areal coverage without a loss of resolution of major lithologic and structural features.East-west flight lines were flown 400 feet above ground at 1/2 mile intervals. Aerial photos were used for navigation, and the flight path was recorded on continuous-strip film. A continuously recording total field ground magnetic station was used to monitor variations in the Earth's magnetic field. One north-south line was flown to provide a tie for the magnetic data, which was recorded simultaneously with the electromagnetic data by a sensor mounted in the tail of the aircraft. This report is one of two open-file reports. The map in the other report Heran and Smith (1980) shows locations of the fiducial points, the flight lines, preliminary locations of anomalies and conductive zones; all plotted on an air photomosaic. The latitude and longitude ticks marked on this map are only approximate due to distortion in air photos used to recover the flight line position. This map is preliminary and is not to be considered a final interpretation. The present report contains a description of the instrument specifications, a copy of the ground station magnetic data, and a record of the

  1. Basis and methods of NASA airborne topographic mapper lidar surveys for coastal studies

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Sallenger, Asbury H.; Krabill, William B.; Swift, Robert N.

    2002-01-01

    This paper provides an overview of the basic principles of airborne laser altimetry for surveys of coastal topography, and describes the methods used in the acquisition and processing of NASA Airborne Topographic Mapper (ATM) surveys that cover much of the conterminous US coastline. This form of remote sensing, also known as "topographic lidar", has undergone extremely rapid development during the last two decades, and has the potential to contribute within a wide range of coastal scientific investigations. Various airborne laser surveying (ALS) applications that are relevant to coastal studies are being pursued by researchers in a range of Earth science disciplines. Examples include the mapping of "bald earth" land surfaces below even moderately dense vegetation in studies of geologic framework and hydrology, and determination of the vegetation canopy structure, a key variable in mapping wildlife habitats. ALS has also proven to be an excellent method for the regional mapping of geomorphic change along barrier island beaches and other sandy coasts due to storms or long-term sedimentary processes. Coastal scientists are adopting ALS as a basic method in the study of an array of additional coastal topics. ALS can provide useful information in the analysis of shoreline change, the prediction and assessment of landslides along seacliffs and headlands, examination of subsidence causing coastal land loss, and in predicting storm surge and tsunami inundation.

  2. Determining a pre-mining radiological baseline from historic airborne gamma surveys: a case study.

    PubMed

    Bollhöfer, Andreas; Beraldo, Annamarie; Pfitzner, Kirrilly; Esparon, Andrew; Doering, Che

    2014-01-15

    Knowing the baseline level of radioactivity in areas naturally enriched in radionuclides is important in the uranium mining context to assess radiation doses to humans and the environment both during and after mining. This information is particularly useful in rehabilitation planning and developing closure criteria for uranium mines as only radiation doses additional to the natural background are usually considered 'controllable' for radiation protection purposes. In this case study we have tested whether the method of contemporary groundtruthing of a historic airborne gamma survey could be used to determine the pre-mining radiological conditions at the Ranger mine in northern Australia. The airborne gamma survey was flown in 1976 before mining started and groundtruthed using ground gamma dose rate measurements made between 2007 and 2009 at an undisturbed area naturally enriched in uranium (Anomaly 2) located nearby the Ranger mine. Measurements of (226)Ra soil activity concentration and (222)Rn exhalation flux density at Anomaly 2 were made concurrent with the ground gamma dose rate measurements. Algorithms were developed to upscale the ground gamma data to the same spatial resolution as the historic airborne gamma survey data using a geographic information system, allowing comparison of the datasets. Linear correlation models were developed to estimate the pre-mining gamma dose rates, (226)Ra soil activity concentrations, and (222)Rn exhalation flux densities at selected areas in the greater Ranger region. The modelled levels agreed with measurements made at the Ranger Orebodies 1 and 3 before mining started, and at environmental sites in the region. The conclusion is that our approach can be used to determine baseline radiation levels, and provide a benchmark for rehabilitation of uranium mines or industrial sites where historical airborne gamma survey data are available and an undisturbed radiological analogue exists to groundtruth the data. © 2013.

  3. HPMSS(High Precision Magnetic Survey System) and InterRidge

    NASA Astrophysics Data System (ADS)

    Isezaki, N.; Sayanagi, K.

    2012-12-01

    From the beginning of 1990s to the beginning of 2000s, the Japanese group of IntreRidge conducted many cruises for three component magnetic survey using Shipboard Three Component Magnetometer (STCM) and Deep Towed Three Component Magnetometer (DTCM) in the world wide oceans. We have been developing HPMSS during this time with support of Dr.Tamaki(the late representative of InterRidge Japan) who understood the advantages of three component geomagnetic anomalies (TCGA). TCGA measured by STCM determines the direction of geomagnetic anomaly lineations precisely at every point where TCGA were observed, which playes the important role in magnetic anomaly lineation analysis. Even in the beginning of 2000s, almost all marine magnetic scientists believed that the total intensity anomly (TIA) is the better data than TCGA for analysis because the scalar magnetometers (e.g. proton precession magnetometer) have the better accuracy than any other magnetometers (e.g.flux gate magnetometer (FGM)). We employed the high accrate gyroscope (e.g.ring lase gyroscope (RLG)/optical fiber gyroscope (OFG)) to improve the accuracy of STCM/DTCM equipped with FGM. Moreover we employed accurate and precise FGM which was selected among the market. Finally we developed the new magnetic survey system with high precision usable as airborn, shipboard and dee-ptowed magnetometers which we call HPMSS(High Precision Magnetic Survey System). As an optional equipment, we use LAN to communicate between a data aquisiitin part and a data logging part, and GPS for a position fix. For the deep-towed survey, we use the acoustic position fix (super short base line method) and the acoustic communication to monitor the DTCM status. First we used HPMSS to obtain the magnetization structure of the volcanic island, Aogashima located 300km south of Tokyo using a hellcopter in 2006 and 2009. Next we used HPMSS installed in DTCM in 2010,2011 and 2012 using R/V Bosei-maru belonging to Tokai University. Also we used

  4. Airborne pollen survey in Bangkok, Thailand: A 35-year update.

    PubMed

    Songnuan, Wisuwat; Bunnag, Chaweewan; Soontrapa, Kitipong; Pacharn, Punchama; Wangthan, Unchalee; Siriwattanakul, Umaporn; Malainual, Nat

    2015-09-01

    Pollen allergy is a growing global health issue. While airborne pollen counts are reported daily in several countries, such information is lacking in Thailand. This study aimed to survey airborne pollens at five sites in Bangkok, comparing data with the previous study performed 35 years ago in 1980. Sample collection was done using the ROTOROD® sampler by exposing the rods for one hour each day twice a week from May 2012-April 2013. Overall, we found that the average pollen count was relatively high throughout the year, at an average of 242 grains/m3. The highest peak was found in September (700 grains/m3). Interestingly, we found that the pollen count was noticeably lower in 2012-2013 when compared to the 1980 study. We also observed the approximate shift of pollen peaks about one to two months earlier in the 2012-2013 study. However, the major groups of airborne pollens did not change significantly. Grass, sedge, amaranthus pollens and fern spores still dominated. The unidentified pollen group was the only group with a higher pollen count when compared to the previous study.

  5. ROV advanced magnetic survey for revealing archaeological targets and estimating medium magnetization

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev

    2013-04-01

    Magnetic survey is one of most applied geophysical method for searching and localization of any objects with contrast magnetic properties (for instance, in Israel detailed magneric survey has been succesfully applied at more than 60 archaeological sites (Eppelbaum, 2010, 2011; Eppelbaum et al., 2011, 2010)). However, land magnetic survey at comparatively large archaeological sites (with observation grids 0.5 x 0.5 or 1 x 1 m) may occupy 5-10 days. At the same time the new Remote Operation Vehicle (ROV) generation - small and maneuvering vehicles - can fly at levels of few (and even one) meters over the earth's surface (flowing the relief forms or straight). Such ROV with precise magnetic field measurements (with a frequency of 20-25 observations per second) may be performed during 10-30 minutes, moreover at different levels over the earth's surface. Such geophysical investigations should have an extremely low exploitation cost. Finally, measurements of geophysical fields at different observation levels could provide new unique geophysical-archaeological information (Eppelbaum, 2005; Eppelbaum and Mishne, 2011). The developed interpretation methodology for magnetic anomalies advanced analysis (Khesin et al., 1996; Eppelbaum et al., 2001; Eppelbaum et al., 2011) may be successfully applied for ROV magnetic survey for delineation of archaeological objects and estimation averaged magnetization of geological medium. This methodology includes: (1) non-conventional procedure for elimination of secondary effect of magnetic temporary variations, (2) calculation of rugged relief influence by the use of a correlation method, (3) estimation of medium magnetization, (4) application of various informational and wavelet algorithms for revealing low anomalous effects against the strong noise background, (5) advanced procedures for magnetic anomalies quantitative analysis (they are applicable in conditions of rugged relief, inclined magnetization, and an unknown level of the total

  6. Airborne optic and magnetic observatory (ABOMO) for the investigation of the ionosphere, magnetosphere, and atmospheric proceses

    NASA Astrophysics Data System (ADS)

    Raspopov, Oleg M.; Pochtarev, V. I.; Domaratskij, Serguej N.

    1993-11-01

    The St. Petersburg Filial (Division) of IZMIRAN has recently initiated a major new research project involving the Airborne Optic and Magnetic Observatory (ABOMO). ABOMO is designed specifically for studies of auroral, magnetic, ionospheric and atmospheric phenomena including ozone and other important atmospheric constituents. The observatory is constructed aboard a modified four-engine turboprop aircraft AN-12.

  7. Airborne gamma-ray and magnetic anomaly signatures of serpentinite in relation to soil geochemistry, northern California

    USGS Publications Warehouse

    McCafferty, A.E.; Van Gosen, B. S.

    2009-01-01

    Serpentinized ultramafic rocks and associated soils in northern California are characterized by high concentrations of Cr and Ni, low levels of radioelements (K, Th, and U) and high amounts of ferrimagnetic minerals (primarily magnetite). Geophysical attributes over ultramafic rocks, which include airborne gamma-ray and magnetic anomaly data, are quantified and provide indirect measurements on the relative abundance of radioelements and magnetic minerals, respectively. Attributes are defined through a statistical modeling approach and the results are portrayed as probabilities in chart and map form. Two predictive models are presented, including one derived from the aeromagnetic anomaly data and one from a combination of the airborne K, Th and U gamma-ray data. Both models distinguish preferential values within the aerogeophysical data that coincide with mapped and potentially unmapped ultramafic rocks. The magnetic predictive model shows positive probabilities associated with magnetic anomaly highs and, to a lesser degree, anomaly lows, which accurately locate many known ultramafic outcrops, but more interestingly, locate potentially unmapped ultramafic rocks, possible extensions of ultramafic bodies that dip into the shallow subsurface, as well as prospective buried ultramafic rocks. The airborne radiometric model shows positive probabilities in association with anomalously low gamma radiation measurements over ultramafic rock, which is similar to that produced by gabbro, metavolcanic rock, and water bodies. All of these features share the characteristic of being depleted in K, Th and U. Gabbro is the only rock type in the study area that shares similar magnetic properties with the ultramafic rock. The aerogeophysical model results are compared to the distribution of ultramafic outcrops and to Cr, Ni, K, Th and U concentrations and magnetic susceptibility measurements from soil samples. Analysis of the soil data indicates high positive correlation between

  8. Airborne survey of major air basins in California

    NASA Technical Reports Server (NTRS)

    Gloria, H. R.; Bradburn, G.; Reinisch, R. F.; Pitts, J. N., Jr.; Behar, J. V.; Zafonte, L.

    1974-01-01

    An instrumented aircraft was used to study the chemical and transport properties of air pollution in two major urban centers in California and to survey certain aspects of air pollution within this state. State-of-the-art measurement techniques and sampling procedures are discussed. It is found that meteorological transport mechanisms are better portrayed by vertical pollutant profiles. Airborne measurements define the nature of the mixing layer for atmospheric pollutants. Results show that the pollutants are found to be concentrated in distinct layers up to at least 18,000 feet and the O3 buildup occurring in advected air masses is a result of a continuous photochemical aging of air mass.

  9. Helicopter electromagnetic and magnetic geophysical survey data, portions of the North Platte and South Platte Natural Resources Districts, western Nebraska, May 2009

    USGS Publications Warehouse

    Smith, B.D.; Abraham, J.D.; Cannia, J.C.; Minsley, B.J.; Deszcz-Pan, M.; Ball, L.B.

    2010-01-01

    This report is a release of digital data from a helicopter electromagnetic and magnetic survey that was conducted during June 2009 in areas of western Nebraska as part of a joint hydrologic study by the North Platte Natural Resource District (NRD), South Platte NRD, and U.S. Geological Survey (USGS). Flight lines for the survey totaled 937 line kilometers (582 line miles). The objective of the contracted survey, conducted by Fugro Airborne, Ltd., is to improve the understanding of the relation between surface-water and groundwater systems critical to developing groundwater models used in management programs for water resources. A unique aspect of the survey is the flight line layout. One set of flight lines was flown in a zig-zag pattern extending along the length of the previously collected airborne data. The success of this survey design depended on a well-understood regional hydrogeologic framework and model developed by the Cooperative Hydrologic Study of the Platte River Basin and the airborne geophysical data collected in 2008. Resistivity variations along lines could be related to this framework. In addition to these lines, more traditional surveys consisting of parallel flight lines, separated by about 400 meters were carried out for three blocks in the North Platte NRD, the South Platte NRD and in the area of Crescent Lakes. These surveys helped to establish the spatial variations of the resistivity of hydrostratigraphic units. An additional survey was flown over the Crescent Lake area. The objective of this survey, funded by the USGS Office of Groundwater, was to map shallow hydrogeologic features of the southwestern part of the Sand Hills that contain a mix of fresh to saline lakes.

  10. Helicopter electromagnetic and magnetic geophysical survey data, Swedeburg and Sprague study areas, eastern Nebraska, May 2009

    USGS Publications Warehouse

    Smith, B.D.; Abraham, J.D.; Cannia, J.C.; Minsley, B.J.; Ball, L.B.; Steele, G.V.; Deszcz-Pan, M.

    2011-01-01

    This report is a release of digital data from a helicopter electromagnetic and magnetic survey conducted by Fugro Airborne Surveys in areas of eastern Nebraska as part of a joint hydrologic study by the Lower Platte North and Lower Platte South Natural Resources Districts, and the U.S. Geological Survey. The survey flight lines covered 1,418.6 line km (882 line mile). The survey was flown from April 22 to May 2, 2009. The objective of the contracted survey was to improve the understanding of the relation between surface water and groundwater systems critical to developing groundwater models used in management programs for water resources. The electromagnetic equipment consisted of six different coil-pair orientations that measured resistivity at separate frequencies from about 400 hertz to about 140,000 hertz. The electromagnetic data were converted to georeferenced electrical resistivity grids and maps for each frequency that represent different approximate depths of investigation for each survey area. The electrical resistivity data were input into a numerical inversion to estimate resistivity variations with depth. In addition to the electromagnetic data, total field magnetic data and digital elevation data were collected. Data released in this report consist of flight line data, digital grids, digital databases of the inverted electrical resistivity with depth, and digital maps of the apparent resistivity and total magnetic field. The range of subsurface investigation is comparable to the depth of shallow aquifers. The survey areas, Swedeburg and Sprague, were chosen based on results from test flights in 2007 in eastern Nebraska and needs of local water managers. The geophysical and hydrologic information from U.S. Geological Survey studies are being used by resource managers to develop groundwater resource plans for the area.

  11. Relationships between ground and airborne gamma-ray spectrometric survey data, North Ras Millan, Southern Sinai Peninsula, Egypt.

    PubMed

    Youssef, Mohamed A S

    2016-02-01

    In the last decades of years, there was considerable growth in the use of airborne gamma-ray spectrometry. With this growth, there was an increasing need to standardize airborne measurements, so that they can be independent of survey parameters. Acceptable procedures were developed for converting airborne to ground gamma-ray spectrometric measurements of total-count intensity as well as, potassium, equivalent uranium and equivalent thorium concentrations, due to natural sources of radiation. The present study aims mainly to establish relationships between ground and airborne gamma-ray spectrometric data, North Ras Millan, Southern Sinai Peninsula, Egypt. The relationships between airborne and ground gamma-ray spectrometric data were deduced for the original and separated rock units in the study area. Various rocks in the study area, represented by Quaternary Wadi sediments, Cambro-Ordovician sandstones, basic dykes and granites, are shown on the detailed geologic map. The structures are displayed, which located on the detailed geologic map, are compiled from the integration of previous geophysical and surface geological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. 2002 Airborne Geophysical Survey at Pueblo of Isleta Bombing Targets, New Mexico, April 10 May 6, 2002 (Rev 1)

    DTIC Science & Technology

    2005-12-01

    helicopter geophysical survey performed by US Army Engineering Support Center, Huntsville (USAESCH) and Oak Ridge National Laboratory ( ORNL ) over areas...Array Detection System NAD North American Datum ORAGS Oak Ridge Airborne Geophysical System ORNL Oak Ridge National Laboratory RMS Root...used by ORNL in 1999 for.....................5 Figure 2.4 ORAGS-Hammerhead airborne magnetometer system used at Badlands Bombing Range in FY2000

  13. Coverage by land, sea, and airplane surveys, 1900-1967.

    NASA Technical Reports Server (NTRS)

    Fabiano, E.; Cain, S. J.

    1971-01-01

    The worldwide coverage of the earth by land, sea, and aircraft magnetic surveys since the beginning of the 20th century is shown on three world maps for surface surveys spanning the periods of 1900-1930, 1930-1955, and 1955-1967, respectively, on a fourth map for ship-towed magnetometer surveys performed after 1956, and on a fifth map for 1953-1966 airborne survey data. The technique used, involving a position plotting of each measurement with a microfilm plotter, results in the appearance of heavily surveyed regions as completely darkened areas. The coverage includes measurements at about 100,000 land stations, airborne measurements at over 90,000 points, and marine measurements at over 25,000 points. The marine measurements cover over 1,000,000 km of trackline.

  14. An interpretation of the 1997 airborne electromagnetic (AEM) survey, Fort Huachuca vicinity, Cochise County, Arizona

    USGS Publications Warehouse

    Bultman, M.W.; Gettings, M.E.; Wynn, Jeff

    1999-01-01

    Executive Summary -- In March of 1997, an airborne electromagnetic (AEM) survey of the Fort Huachuca Military Reservation and immediate surrounds (location map, http://geopubs.wr.usgs.gov/open-file/of99-007-b/index.jpg) was conducted. This survey was sponsored by the U.S. Army and contracted through the Geologic Division of the U.S. Geological Survey (USGS). Data were gathered by Geoterrex-Dighem Ltd. of Ottawa, Canada. The survey aircraft is surrounded by a coil through which a large current pulse is passed. This pulse induces currents in the Earth which are recorded by a set of three mutually perpendicular coils towed in a 'bird' about 100 m behind and below the aircraft. The bird also records the Earth's magnetic field. The system samples the Earth response to the electromagnetic pulse about every 16 m along the aircraft flight path. For this survey, the bulk of the flightpaths were spaced about 400 m apart and oriented in a northeast-southwest direction extending from bedrock over the Huachuca Mountains to bedrock over the Tombstone Hills. A preliminary report on the unprocessed data collected in the field was delivered to the U.S. Army by USGS in July 1997 (USGS Open-File Report 97?457). The final data were delivered in March, 1998 by the contractor to USGS and thence to the U.S. Army. The present report represents the final interpretive report from USGS. The objectives of the survey were to: 1) define the structure of the San Pedro basin in the Sierra Vista-Fort Huachuca-Huachuca City area, including the depth and shape of the basin, and to delineate large faults that may be active within the basin fill and therefore important in the hydrologic regime; 2) define near surface and subsurface areas that contain a large volume fraction of silt and clay in the basin fill and which both reduce the volume of available storage for water and reduce the permeability of the aquifer; and 3) to evaluate the use of the time domain electromagnetic method in the southwest

  15. SURVEY OF CULTURABLE AIRBORNE BACTERIA AT FOUR DIVERSE LOCATIONS IN OREGON: URBAN, RURAL, FOREST, AND COASTAL

    EPA Science Inventory

    To determine the risks of microbial air pollution from microorganisms used for pesticides and bioremediation, or emanating from composting, fermentation tanks, or other agricultural and urban sources, airborne microbial levels must be evaluated. This study surveyed the atmospheri...

  16. Marine magnetic survey and onshore gravity and magnetic survey, San Pablo Bay, northern California

    USGS Publications Warehouse

    Ponce, David A.; Denton, Kevin M.; Watt, Janet T.

    2016-09-12

    IntroductionFrom November 2011 to August 2015, the U.S. Geological Survey (USGS) collected more than 1,000 line-kilometers (length of lines surveyed in kilometers) of marine magnetic data on San Pablo Bay, 98 onshore gravity stations, and over 27 line-kilometers of ground magnetic data in northern California. Combined magnetic and gravity investigations were undertaken to study subsurface geologic structures as an aid in understanding the geologic framework and earthquake hazard potential in the San Francisco Bay Area. Furthermore, marine magnetic data illuminate local subsurface geologic features in the shallow crust beneath San Pablo Bay where geologic exposure is absent.Magnetic and gravity methods, which reflect contrasting physical properties of the subsurface, are ideal for studying San Pablo Bay. Exposed rock units surrounding San Pablo Bay consist mainly of Jurassic Coast Range ophiolite, Great Valley sequence, Franciscan Complex rocks, Miocene sedimentary rocks, and unconsolidated alluvium (Graymer and others, 2006). The contrasting magnetic and density properties of these rocks enable us to map their subsurface extent.

  17. Low and room temperature magnetic features of the traffic related urban airborne PM

    NASA Astrophysics Data System (ADS)

    Winkler, A.; Sagnotti, L.

    2012-04-01

    We used magnetic measurements and analyses - such as hysteresis loops and FORCs both at room temperature and at 10K, isothermal remanent magnetization (IRM) vs temperature curves (from 10K to 293K) and IRM vs time decay curves - to characterize the magnetic properties of the traffic related airborne particulate matter (PM) in Rome. This study was specifically addressed to the identification of the ultrafine superparamagnetic (SP) particles, which are particularly sensitive to thermal relaxation effects, and on the eventual detection of low temperature phase transitions which may affect various magnetic minerals. We compared the magnetic properties at 10K and at room temperature of Quercus ilex leaves, disk brakes, diesel and gasoline exhaust pipes powders collected from vehicles circulating in Rome. The magnetic properties of the investigated powders significantly change upon cooling, and no clear phase transition occurs, suggesting that the thermal dependence is mainly triggered by the widespread presence of ultrafine SP particles. The contribution of the SP fraction to the total remanence of traffic related PM samples was quantified at room temperature measuring the decay of a IRM 100 s after the application of a saturation magnetic field. This same method has been also tested at 10K to investigate the temperature dependence of the observed time decay.

  18. Airborne electromagnetic data and processing within Leach Lake Basin, Fort Irwin, California: Chapter G in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    USGS Publications Warehouse

    Bedrosian, Paul A.; Ball, Lyndsay B.; Bloss, Benjamin R.; Buesch, David C.

    2014-01-01

    From December 2010 to January 2011, the U.S. Geological Survey conducted airborne electromagnetic and magnetic surveys of Leach Lake Basin within the National Training Center, Fort Irwin, California. These data were collected to characterize the subsurface and provide information needed to understand and manage groundwater resources within Fort Irwin. A resistivity stratigraphy was developed using ground-based time-domain electromagnetic soundings together with laboratory resistivity measurements on hand samples and borehole geophysical logs from nearby basins. This report releases data associated with the airborne surveys, as well as resistivity cross-sections and depth slices derived from inversion of the airborne electromagnetic data. The resulting resistivity models confirm and add to the geologic framework, constrain the hydrostratigraphy and the depth to basement, and reveal the distribution of faults and folds within the basin.

  19. Comparison of Precision of Biomass Estimates in Regional Field Sample Surveys and Airborne LiDAR-Assisted Surveys in Hedmark County, Norway

    NASA Technical Reports Server (NTRS)

    Naesset, Erik; Gobakken, Terje; Bollandsas, Ole Martin; Gregoire, Timothy G.; Nelson, Ross; Stahl, Goeran

    2013-01-01

    Airborne scanning LiDAR (Light Detection and Ranging) has emerged as a promising tool to provide auxiliary data for sample surveys aiming at estimation of above-ground tree biomass (AGB), with potential applications in REDD forest monitoring. For larger geographical regions such as counties, states or nations, it is not feasible to collect airborne LiDAR data continuously ("wall-to-wall") over the entire area of interest. Two-stage cluster survey designs have therefore been demonstrated by which LiDAR data are collected along selected individual flight-lines treated as clusters and with ground plots sampled along these LiDAR swaths. Recently, analytical AGB estimators and associated variance estimators that quantify the sampling variability have been proposed. Empirical studies employing these estimators have shown a seemingly equal or even larger uncertainty of the AGB estimates obtained with extensive use of LiDAR data to support the estimation as compared to pure field-based estimates employing estimators appropriate under simple random sampling (SRS). However, comparison of uncertainty estimates under SRS and sophisticated two-stage designs is complicated by large differences in the designs and assumptions. In this study, probability-based principles to estimation and inference were followed. We assumed designs of a field sample and a LiDAR-assisted survey of Hedmark County (HC) (27,390 km2), Norway, considered to be more comparable than those assumed in previous studies. The field sample consisted of 659 systematically distributed National Forest Inventory (NFI) plots and the airborne scanning LiDAR data were collected along 53 parallel flight-lines flown over the NFI plots. We compared AGB estimates based on the field survey only assuming SRS against corresponding estimates assuming two-phase (double) sampling with LiDAR and employing model-assisted estimators. We also compared AGB estimates based on the field survey only assuming two-stage sampling (the NFI

  20. Investigations of the petrogeneration zones western Bering sea by airborne geophysical data

    NASA Astrophysics Data System (ADS)

    Litvinova, T.; Petrova, A.

    2012-04-01

    In 2011, work continued on the interpretation of geophysical data in western Bering Sea. Bering Sea oil-and-gas bearing province occupies a single sedimentary megabasin of the Bering Sea, the formation of which is caused by stage of the Alpine geodynamic development cycle of the Pacific mobile belt. At present, the geological-geophysical exploration maturity of the Bering Sea with respect to oil-gasbearing prognosis is at the level of regional study stage. In 2003, an additional study of oil-gas prospective zones of the Kamchatka Shelf of the Bering Sea was carried out. In the course of works, profile seismic studies and airborne gravity-magnetic survey at 1:200,000 scale were made at three territories: Ilpinsky, Olyutorsky I, and Olyutorsky II. Average survey elevation for the whole area is 300 meters. Geological modeling of sedimentary basin systems was made for this area. Geomagnetic sections it possible to compare the location of the magnetic and weakly magnetic structures with seismic and geological boundaries marker and conducting layers of geoelectric sections. This makes it possible to trace the features of placing magnetic differences in the geologic rock section, to identify their stratigraphic association, select the layers flyuidstubborn, adumbrate reservoir heterogeneity and establish the heterogeneity of internal structure oil-gasbearing zones. Age correlation, thickness estimation and formational characteristics of litho-stratigraphic complexes building up sections are carried out. Geomagnetic deep sections transecting main zones of prospective oil-gas accumulation to airborne magnetic data. Distribution of magnetization in the development interval of potentially productive sandy strata at depths from 1 to 5 km is obtained. The most prospective zones of possible oil-gas accumulation are distinguished in the Olyutorsky and Ilpinsky sedimentary basins. At height of 400 km this minimum keeps the form that speaks about stability of a condition of the

  1. Analysis of airborne LiDAR surveys to quantify the characteristic morphologies of northern forested wetlands

    Treesearch

    Murray C. Richardson; Carl P. J. Mitchell; Brian A. Branfireun; Randall K. Kolka

    2010-01-01

    A new technique for quantifying the geomorphic form of northern forested wetlands from airborne LiDAR surveys is introduced, demonstrating the unprecedented ability to characterize the geomorphic form of northern forested wetlands using high-resolution digital topography. Two quantitative indices are presented, including the lagg width index (LWI) which objectively...

  2. Program Update for GRAV-D (Gravity for the Redefinition of the American Vertical Datum): Recent Airborne Surveys

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Diehl, T. M.; Roman, D. R.; Smith, D. A.

    2009-05-01

    The mission of NOAA's National Geodetic Survey (NGS) is to "define, maintain and provide access to the National Spatial Reference System" (NSRS). NAVD 88 (North American Vertical Datum of 1988) provides the vertical reference for the NSRS. However, comparisons of NAVD 88 with the Gravity Recovery and Climate Experiment (GRACE) satellite gravity data have demonstrated significant problems with the vertical reference, with an average difference between the two of 0.98 m and std dev of 0.37m. As repairing NAVD 88 through a massive leveling effort is impractical, our approach will be to establish a gravimetric geoid as the vertical reference. The linchpin in NGS's effort is the Gravity for the Redefinition of the American Vertical Datum (GRAV- D) program, which will ultimately incorporate satellite, airborne and terrestrial gravity data to build the 1-2 cm geoid that the U.S. surveying public is demanding. The program involves both an airborne component, for measuring a "baseline" gravity field, and a relative and absolute terrestrial program, for monitoring time variations of the gravity field. The GRAV-D aerogravity program commenced with a survey based from Anchorage, AK in the summer of 2008, additionally in support of NOAA's Hydropalooza program. Starting in October, the GRAV-D team has undertaken a concerted effort to survey Puerto Rico/US Virgin Islands, and then the Gulf Coast for the US Army Corps of Engineers. Gulf operations were from New Orleans, Lake Charles, and Austin, TX. This survey provides a continuous airborne field measurement at 10 km line spacing from the GA/AL state line to the Mexican border. We will present the results of these data collection efforts and outline the plans for the GRAV- D program during the remainder of 2009.

  3. Helicopter Electromagnetic and Magnetic Survey Data and Maps, Seco Creek Area, Medina and Uvalade Counties, Texas

    USGS Publications Warehouse

    Smith, Bruce D.; Smith, David V.; Hill, Patricia L.; Labson, Victor F.

    2003-01-01

    A helicopter electromagnetic and magnetic (HEM) survey was completed of a 209 square kilometer (81 square miles) area of the central Edwards aquifer. This open-file report is a release of the airborne geophysical data and a summary of the hydrologic application. The survey area was centered on the Valdina Farms sinkhole along the Seco Creek drainage in western Medina County, Texas. Flight lines were flown north south with three east west tie lines to aid in leveling the magnetic data. Additional lines were flown on each side of the Seco and Little Seco Creek drainages. A five kilometer (4 mile) extension of 15 lines was flown north of the main survey block centered on Seco Creek. This digital data release contains the flight line data, grids, and maps of the HEM survey data. The Edwards aquifer in this area consists of three hydrologic zones: catchment, recharge, and confined. The Glen Rose Formation is exposed in the catchment area. The recharge zone is situated in the Balcones fault zone where the Devils River Group of the Edwards aquifer has been exposed by normal faults. The magnetic data is not discussed in depth here, but does have high amplitude closed anomalies caused by shallow igneous intrusives. The Woodard Cave Fault that separates the recharge and catchment zones is in places associated with a weak linear magnetic low. The HEM data has been processed to produce apparent resistivities for each of the six EM coil pairs and frequencies. Maps of the apparent resistivity for the five horizontal coil pairs show that the catchment, recharge, and confined zones all have numerous linear features that are likely caused by structures, many of which have not been mapped. The distribution of high resistivity areas reflects the lithologic differences within the Trinity and Edwards aquifers.

  4. Survey of airborne pollen in Hubei province of China.

    PubMed

    Liu, Guang-hui; Zhu, Rong-fei; Zhang, Wei; Li, Wen-jing; Wang, Zhong-xi; Chen, Huan

    2008-12-01

    To study the genera and seasonal distribution of airborne pollen in Hubei province of China, and its relationship with pollinosis. From November 2003 to October 2004, an airborne pollen investigation was performed in 16 chosen areas in 12 cities of Hubei province using gravity sedimentation technique. Meanwhile, univalent skin prick tests of pollens were performed and the invasion season was studied on 2,300 patients with pollinosis. Among them, 352 cases underwent the airway responsiveness measurements, and the correlation between airway responsiveness and results of pollen count was analyzed. A total of 61 pollen genera were observed and 257,520 pollens were collected. The peak of airborne pollen distribution occurred in two seasons each year: spring (March and April) and autumn (from August to October). The attack of pollinosis corresponded to the peak of pollen distribution. There was a significantly negative relationship between the provocation dose causing a 20% decrease of forced expiratory volume in one second (FEV1) from baseline and airborne pollen concentration (r= -0.6829, P < 0.05). This study provides useful information for airborne pollen epidemiology of Hubei province, and it provides important insights to clinical prevention, diagnosis, and treatment of pollen-related allergic diseases.

  5. Mapping Ground Water in Three Dimensions - An Analysis of Airborne Geophysical Surveys of the Upper San Pedro River Basin, Cochise County, Southeastern Arizona

    USGS Publications Warehouse

    Wynn, Jeff

    2006-01-01

    This report summarizes the results of two airborne geophysical surveys conducted in the upper San Pedro Valley of southeastern Arizona in 1997 and 1999. The combined surveys cover about 1,000 square kilometers and extend from the Huachuca Mountains on the west to the Mule Mountains and Tombstone Hills on the east and from north of the Babocomari River to near the Mexican border on the south. The surveys included the acquisition of high-resolution magnetic data, which were used to map depth to the crystalline basement rocks underlying the sediments filling the basin. The magnetic inversion results show a complex basement morphology, with sediment thickness in the center of the valley ranging from ~237 meters beneath the city of Sierra Vista to ~1,500 meters beneath Huachuca City and the Palominas area near the Mexican border. The surveys also included acquisition of 60-channel time-domain electromagnetic (EM) data. Extensive quality analyses of these data, including inversion to conductivity vs. depth (conductivity-depth-transform or CDT) profiles and comparisons with electrical well logs, show that the electrical conductor mapped represents the subsurface water-bearing sediments throughout most of the basin. In a few places (notably the mouth of Huachuca Canyon), the reported water table lies above where the electrical conductor places it. These exceptions appear to be due to a combination of outdated water-table information, significant horizontal displacement between the wells and the CDT profiles, and a subtle calibration issue with the CDT algorithm apparent only in areas of highly resistive (very dry) overburden. These occasional disparities appear in less than 5 percent of the surveyed area. Observations show, however, that wells drilled in the thick unsaturated zone along the Huachuca Mountain front eventually intersect water, at which point the water rapidly rises high into the unsaturated zone within the wellbore. This rising of water in a wellbore implies

  6. Airborne geophysical surveys of unexplored regions of Antarctica - results of the ESA PolarGap campaign

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Olesen, A. V.; Ferraccioli, F.; Jordan, T. A.; Matsuoka, K.

    2016-12-01

    Major airborne geophysical surveys have recently mapped large unexplored regions in the interior of East Antarctica, in a Danish-UK-Norwegian cooperation. Long-range aerogeophysics data have been collected both over the Recovery Lakes region (2012/13), as well as around the Pole (2015/16). The primary purpose of these campaigns was to map gravity to fill-in data voids in global gravity field models and augment results from the European Space Agency GOCE gravity field satellite mission. Additionally magnetic, ice-penetrating radar and lidar data are used to explore and understand the subglacial topography and geological setting, providing an improved foundation for ice sheet modeling. The most recent ESA-sponsored Polar Gap project used a BAS Twin-Otter aircraft equipped with both spring gravimeter and IMU gravity sensors, magnetometers, ice penetrating radar over the essentially unmapped regions of the GOCE polar gap. Additional detailed flights over the subglacial Recovery Lakes region, followed up earlier 2013 flights over this region. The operations took place from two field camps (near Recovery Lakes and Thiel Mountains), as well as from the Amundsen-Scott South Pole station, thanks to a special arrangement with NSF. In addition to the airborne geophysics program, data with an ESA Ku-band radar were also acquired, in support of the CryoSat-2 mission, and scanning lidar collected across the polar gap, beyond the coverage of IceSat. In the talk we outline the Antarctic field operations, and show first results of the campaign, including performance of the gravity sensors, with comparison to limited existing data in the region (e.g., AGAP, IceBridge), as well as examples of lidar, magnetics and radar data. Significant new features detected from the geophysical data includes an extensive subglacial valley system between the Pole and the Filchner-Ronne ice shelf region, as well as extensive subglacial mountains, both consistent with observed ice stream patterns in

  7. An interpretation of the 1997 airborne electromagnetic (AEM) survey, Fort Huachuca vicinity, Cochise County, Arizona

    USGS Publications Warehouse

    Bultman, Mark W.; Gettings, Mark E.; Wynn, Jeff

    1999-01-01

    In March of 1997, an airborne electromagnetic (AEM) survey of the Fort Huachuca Military Reservation and immediate surrounds was conducted. This survey was sponsored by the U.S. Army and contracted through the Geologic Division of the U.S. Geological Survey (USGS). Data were gathered by Geoterrex-Dighem Ltd. of Ottawa, Canada. The survey aircraft is surrounded by a coil through which a large current pulse is passed. This pulse induces currents in the Earth which are recorded by a set of three mutually perpendicular coils towed in a "bird" about 100 m behind and below the aircraft. The bird also records the Earth's magnetic field. The system samples the Earth response to the electromagnetic pulse about every 16 m along the aircraft flight path. For this survey, the bulk of the flightpaths were spaced about 400 m apart and oriented in a northeast-southwest direction extending from bedrock over the Huachuca Mountains to bedrock over the Tombstone Hills. A preliminary report on the unprocessed data collected in the field was delivered to the U.S. Army by USGS in July 1997 (USGS Open-File Report 97–457). The final data were delivered in March, 1998 by the contractor to USGS and thence to the U.S. Army. The present report represents the final interpretive report from USGS. The objectives of the survey were to: 1) define the structure of the San Pedro basin in the Sierra Vista-Fort Huachuca-Huachuca City area, including the depth and shape of the basin, and to delineate large faults that may be active within the basin fill and therefore important in the hydrologic regime; 2) define near surface and subsurface areas that contain a large volume fraction of silt and clay in the basin fill and which both reduce the volume of available storage for water and reduce the permeability of the aquifer; and 3) to evaluate the use of the time domain electromagnetic method in the southwest desert setting as a means of mapping depth to water.

  8. PIXE analysis of airborne particulate matter from Monterrey, Mexico. A first survey

    NASA Astrophysics Data System (ADS)

    Aldape, F.; Flores M, J.; Díaz, R. V.; Hernández-Méndez, B.; Montoya Z, J. M.; Blanco, E. E.; Fuentes, A. F.; Torres-Martínez, L. M.

    1999-04-01

    A first survey of elemental contents in airborne particulate matter from Monterrey, Nuevo León, Mexico, was performed using PIXE. This second largest industrial city is located 715 km north of Mexico City, and counts with a population of nearly three million inhabitants in its conurbation. Air pollution in the place comes from a great variety of industries ranging from iron smelters to furniture manufacturing, as well as from fuel combustion in vehicles and industries. This study presents results of elemental contents in airborne particulate matter in two particle size fractions: PM 2.5 and PM 15. The samples were collected during five weeks on working days, Monday-Friday, from 9 December 1996 to 14 January 1997. Two samples a day were collected, 12 h each, night-time and day-time. These first results show local pollution as typical from a large urban area in conjunction with an active industry. Thirteen elements were consistently detected in most of the samples and some episodes due to both industrial and human activities were identified. A general discussion about the results obtained is presented.

  9. Airborne electromagnetics (EM) as a three-dimensional aquifer-mapping tool

    USGS Publications Warehouse

    Wynn, Jeff; Pool, Don; Bultman, Mark; Gettings, Mark; Lemieux, Jean

    2000-01-01

    The San Pedro River in southeastern Arizona hosts a major migratory bird flyway, and was declared a Riparian Conservation Area by Congress in 1988. Recharge of the adjacent Upper San Pedro Valley aquifer was thought to come primarily from the Huachuca Mountains, but the U. S. Army Garrison of Fort Huachuca and neighboring city of Sierra Vista have been tapping this aquifer for many decades, giving rise to claims that they jointly threatened the integrity of the Riparian Conservation Area. For this reason, the U. S. Army funded two airborne geophysical surveys over the Upper San Pedro Valley (see figure 1), and these have provided us valuable information on the aquifer and the complex basement structure underlying the modern San Pedro Valley. Euler deconvolution performed on the airborne magnetic data has provided a depth-to-basement map that is substantially more complex than a map obtained earlier from gravity data, as would be expected from the higher-resolution magnetic data. However, we found the output of the Euler deconvolution to have "geologic noise" in certain areas, interpreted to be post-Basin-and-Range Tertiary volcanic flows in the sedimentary column above the basement but below the ground surface.

  10. Airborne Gravity Gradiometry Resolves a Full Range of Gravity Frequencies

    NASA Astrophysics Data System (ADS)

    Mataragio, J.; Brewster, J.; Mims, J.

    2007-12-01

    mostly targeting large, regional\\- scale crustal structures as well as regional mapping of both lithology and regolith. Air\\-FTGR mapping is especially effective in areas of thick lateritic and/or clay cover where other geophysical methods such as airborne magnetics or electromagnetics become less effective. For instance, an Air\\-FTGR survey was successfully flown in Brazil in the Province of Minas Gerais, where several crustal\\-scale structures associated with iron oxide mineralization were identified ( Mataragio et. al., 2006). In addition, in 2006 Air\\-FTGR had good success in the regional mapping of structures associated with Iron Oxide Copper Gold (IOCG) and uranium mineralization in the Wernecke Mountains in the Yukon, and Northwest Territories, Canada. On the basis of these successful surveys, Bell Geospace has initiated a number of high altitude test surveys aiming at evaluating the performance of the Air\\-FTGR system in capturing low frequency signal that may be associated with regional\\-scale, deeper structures. One of the test surveys was conducted in December of 2006 in Australia, where the performance of Air\\-FTGR and the conventional Airborne Gravity were evaluated. Airborne gravity is currently considered well suited for capturing low frequency signal.

  11. Application of airborne thermal imagery to surveys of Pacific walrus

    USGS Publications Warehouse

    Burn, D.M.; Webber, M.A.; Udevitz, M.S.

    2006-01-01

    We conducted tests of airborne thermal imagery of Pacific walrus to determine if this technology can be used to detect walrus groups on sea ice and estimate the number of walruses present in each group. In April 2002 we collected thermal imagery of 37 walrus groups in the Bering Sea at spatial resolutions ranging from 1-4 m. We also collected high-resolution digital aerial photographs of the same groups. Walruses were considerably warmer than the background environment of ice, snow, and seawater and were easily detected in thermal imagery. We found a significant linear relation between walrus group size and the amount of heat measured by the thermal sensor at all 4 spatial resolutions tested. This relation can be used in a double-sampling framework to estimate total walrus numbers from a thermal survey of a sample of units within an area and photographs from a subsample of the thermally detected groups. Previous methods used in visual aerial surveys of Pacific walrus have sampled only a small percentage of available habitat, resulting in population estimates with low precision. Results of this study indicate that an aerial survey using a thermal sensor can cover as much as 4 times the area per hour of flight time with greater reliability than visual observation.

  12. A stable downward continuation of airborne magnetic data: A case study for mineral prospectivity mapping in Central Iran

    NASA Astrophysics Data System (ADS)

    Abedi, Maysam; Gholami, Ali; Norouzi, Gholam-Hossain

    2013-03-01

    Previous studies have shown that a well-known multi-criteria decision making (MCDM) technique called Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE II) to explore porphyry copper deposits can prioritize the ground-based exploratory evidential layers effectively. In this paper, the PROMETHEE II method is applied to airborne geophysical (potassium radiometry and magnetometry) data, geological layers (fault and host rock zones), and various extracted alteration layers from remote sensing images. The central Iranian volcanic-sedimentary belt is chosen for this study. A stable downward continuation method as an inverse problem in the Fourier domain using Tikhonov and edge-preserving regularizations is proposed to enhance magnetic data. Numerical analysis of synthetic models show that the reconstructed magnetic data at the ground surface exhibits significant enhancement compared to the airborne data. The reduced-to-pole (RTP) and the analytic signal filters are applied to the magnetic data to show better maps of the magnetic anomalies. Four remote sensing evidential layers including argillic, phyllic, propylitic and hydroxyl alterations are extracted from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images in order to map the altered areas associated with porphyry copper deposits. Principal component analysis (PCA) based on six Enhanced Thematic Mapper Plus (ETM+) images is implemented to map iron oxide layer. The final mineral prospectivity map based on desired geo-data set indicates adequately matching of high potential zones with previous working mines and copper deposits.

  13. Joint geophysical investigation of a small scale magnetic anomaly near Gotha, Germany

    NASA Astrophysics Data System (ADS)

    Queitsch, Matthias; Schiffler, Markus; Goepel, Andreas; Stolz, Ronny; Guenther, Thomas; Malz, Alexander; Meyer, Matthias; Meyer, Hans-Georg; Kukowski, Nina

    2014-05-01

    In the framework of the multidisciplinary project INFLUINS (INtegrated FLUid Dynamics IN Sedimentary Basins) several airborne surveys using a full tensor magnetic gradiometer (FTMG) system were conducted in and around the Thuringian basin (central Germany). These sensors are based on highly sensitive superconducting quantum interference devices (SQUIDs) with a planar-type gradiometer setup. One of the main goals was to map magnetic anomalies along major fault zones in this sedimentary basin. In most survey areas low signal amplitudes were observed caused by very low magnetization of subsurface rocks. Due to the high lateral resolution of a magnetic gradiometer system and a flight line spacing of only 50m, however, we were able to detect even small magnetic lineaments. Especially close to Gotha a NW-SE striking strong magnetic anomaly with a length of 1.5 km was detected, which cannot be explained by the structure of the Eichenberg-Gotha-Saalfeld (EGS) fault zone and the rock-physical properties (low susceptibilities). Therefore, we hypothesize that the source of the anomaly must be related to an anomalous magnetization in the fault plane. To test this hypothesis, here we focus on the results of the 3D inversion of the airborne magnetic data set and compare them with existing structural geological models. In addition, we conducted several ground based measurements such as electrical resistivity tomography (ERT) and frequency domain electromagnetics (FDEM) to locate the fault. Especially, the geoelectrical measurements were able to image the fault zone. The result of the 2D electrical resistivity tomography shows a lower resistivity in the fault zone. Joint interpretation of airborne magnetics, geoelectrical and geological information let us propose that the source of the magnetization may be a fluid-flow induced impregnation with iron-oxide bearing minerals in the vicinity of the EGS fault plane.

  14. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea.

    PubMed

    Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un

    2012-04-30

    Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the <25 μm size fractions with minor fractions of Mg, Al, Si, Ca, S, and C. From SEM analysis, the floor dusts of the <25 μm size fractions collected on railroad ties appeared to be smaller than 10 μm, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount of Fe mixed with Na, Mg, Al, Si, S, Ca, and C. The difference in composition of the Fe-containing particles between the two subway stations was attributed to the different ballast tracks used. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Using airborne geophysical surveys to improve groundwater resource management models

    USGS Publications Warehouse

    Abraham, Jared D.; Cannia, James C.; Peterson, Steven M.; Smith, Bruce D.; Minsley, Burke J.; Bedrosian, Paul A.

    2010-01-01

    Increasingly, groundwater management requires more accurate hydrogeologic frameworks for groundwater models. These complex issues have created the demand for innovative approaches to data collection. In complicated terrains, groundwater modelers benefit from continuous high‐resolution geologic maps and their related hydrogeologic‐parameter estimates. The USGS and its partners have collaborated to use airborne geophysical surveys for near‐continuous coverage of areas of the North Platte River valley in western Nebraska. The survey objectives were to map the aquifers and bedrock topography of the area to help improve the understanding of groundwater‐surface‐water relationships, leading to improved water management decisions. Frequency‐domain heliborne electromagnetic surveys were completed, using a unique survey design to collect resistivity data that can be related to lithologic information to refine groundwater model inputs. To render the geophysical data useful to multidimensional groundwater models, numerical inversion is necessary to convert the measured data into a depth‐dependent subsurface resistivity model. This inverted model, in conjunction with sensitivity analysis, geological ground truth (boreholes and surface geology maps), and geological interpretation, is used to characterize hydrogeologic features. Interpreted two‐ and three‐dimensional data coverage provides the groundwater modeler with a high‐resolution hydrogeologic framework and a quantitative estimate of framework uncertainty. This method of creating hydrogeologic frameworks improved the understanding of flow path orientation by redefining the location of the paleochannels and associated bedrock highs. The improved models reflect actual hydrogeology at a level of accuracy not achievable using previous data sets.

  16. Project MAGNET High-level Vector Survey Data Reduction

    NASA Technical Reports Server (NTRS)

    Coleman, Rachel J.

    1992-01-01

    Since 1951, the U.S. Navy, under its Project MAGNET program, has been continuously collecting vector aeromagnetic survey data to support the U.S. Defense Mapping Agency's world magnetic and charting program. During this forty-year period, a variety of survey platforms and instrumentation configurations have been used. The current Project MAGNET survey platform is a Navy Orion RP-3D aircraft which has been specially modified and specially equipped with a redundant suite of navigational positioning, attitude, and magnetic sensors. A review of the survey data collection procedures and calibration and editing techniques applied to the data generated by this suite of instrumentation will be presented. Among the topics covered will be the determination of its parameters from the low-level calibration maneuvers flown over geomagnetic observatories.

  17. ATV magnetometer systems for efficient ground magnetic surveying

    USGS Publications Warehouse

    Athens, Noah D.; Glen, Jonathan M. G.; Morin, Robert L.; Klemperer, Simon L.

    2011-01-01

    Ground magnetic data contain information, not pre-sent in aeromagnetic data, which may be useful for precisely mapping near-surface faults and contacts, as well as constraining or aiding interpretation of other geophysical methods. However, collecting ground magnetic data on foot is labor-intensive and is therefore limited to small surveys. In this article, we present two newly developed all-terrain vehicle (ATV) magnetometer systems that significantly expand the survey area that is possible in a ground magnetic survey without greatly reducing the quality of data.

  18. Aeromagnetic survey of Howard Pass quadrangle and the East half of Misheguk Mountain quadrangle, Alaska—a Web site for the distribution of data

    USGS Publications Warehouse

    Brown, Philip J.

    2009-01-01

    U.S. Geological Survey Open-File-Report 2009-1256 is for the preliminary release of magnetic data (and associated contractor reports) for an airborne survey in the Brooks Range, northwest of Bettles, Alaska.

  19. Utility of Satellite Magnetic Observations for Estimating Near-Surface Magnetic Anomalies

    NASA Technical Reports Server (NTRS)

    Kim, Hyung Rae; vonFrese, Ralph R. B.; Taylor, Patrick T.; Kim, Jeong Woo; Park, Chan Hong

    2003-01-01

    Regional to continental scale magnetic anomaly maps are becoming increasingly available from airborne, shipborne, and terrestrial surveys. Satellite data are commonly considered to fill the coverage gaps in regional compilations of these near-surface surveys. For the near-surface Antarctic magnetic anomaly map being produced by the Antarctic Digital Magnetic Anomaly Project (ADMAP), we show that near-surface magnetic anomaly estimation is greatly enhanced by the joint inversion of the near-surface data with the satellite observations relative to the conventional technique such as minimum curvature. Orsted observations are especially advantageous relative to the Magsat data that have order-of-magnitude greater measurement errors, albeit at much lower orbital altitudes. CHAMP is observing the geomagnetic field with the same measurement accuracy as the Orsted mission, but at the lower orbital altitudes covered by Magsat. Hence, additional significant improvement in predicting near-surface magnetic anomalies can result as these CHAMP data are available. Our analysis also suggests that considerable new insights on the magnetic properties of the lithosphere may be revealed by a further order-of-magnitude improvement in the accuracy of the magnetometer measurements at minimum orbital altitude.

  20. Airborne radioactivity surveys in the Mojave Desert region, Kern, Riverside, and San Bernardino Counties, California

    USGS Publications Warehouse

    Moxham, Robert M.

    1952-01-01

    Airborne radioactivity surveys in the Mojave Desert region Kern, Riverside, and Bernardino counties were made in five areas recommended as favorable for the occurrence of radioactive raw materials: (1) Rock Corral area, San Bernardino County. (2) Searles Station area, Kern county. (3) Soledad area, Kern County. (4) White Tank area, Riverside and San Bernardino counties. (5) Harvard Hills area, San Bernardino County. Anomalous radiation was detected in all but the Harvard Hills area. The radioactivity anomalies detected in the Rock Corral area are of the greatest amplitude yet recorded by the airborne equipment over natural sources. The activity is apparently attributable to the thorium-beating mineral associated with roof pendants of crystalline metamorphic rocks in a granitic intrusive. In the Searles Station, Soledad, and White Tank area, several radioactivity anomalies of medium amplitude were recorded, suggesting possible local concentrations of radioactive minerals.

  1. NASA IceBridge: Scientific Insights from Airborne Surveys of the Polar Sea Ice Covers

    NASA Astrophysics Data System (ADS)

    Richter-Menge, J.; Farrell, S. L.

    2015-12-01

    The NASA Operation IceBridge (OIB) airborne sea ice surveys are designed to continue a valuable series of sea ice thickness measurements by bridging the gap between NASA's Ice, Cloud and Land Elevation Satellite (ICESat), which operated from 2003 to 2009, and ICESat-2, which is scheduled for launch in 2017. Initiated in 2009, OIB has conducted campaigns over the western Arctic Ocean (March/April) and Southern Oceans (October/November) on an annual basis when the thickness of sea ice cover is nearing its maximum. More recently, a series of Arctic surveys have also collected observations in the late summer, at the end of the melt season. The Airborne Topographic Mapper (ATM) laser altimeter is one of OIB's primary sensors, in combination with the Digital Mapping System digital camera, a Ku-band radar altimeter, a frequency-modulated continuous-wave (FMCW) snow radar, and a KT-19 infrared radiation pyrometer. Data from the campaigns are available to the research community at: http://nsidc.org/data/icebridge/. This presentation will summarize the spatial and temporal extent of the OIB campaigns and their complementary role in linking in situ and satellite measurements, advancing observations of sea ice processes across all length scales. Key scientific insights gained on the state of the sea ice cover will be highlighted, including snow depth, ice thickness, surface roughness and morphology, and melt pond evolution.

  2. Staff - Abraham M. Emond | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , and management of airborne electromagnetic and magnetic data under the AGGMI and SCM programs airborne magnetic, electromagnetic, and radiometric data. Prior to joining DGGS I worked as a geophysicist , Gina, and Goldak Airborne Surveys, 2015, Airborne magnetic geophysical survey of the Tanacross region

  3. Three decades of BGR airborne geophysical surveys over the polar regions - a review

    NASA Astrophysics Data System (ADS)

    Damaske, Detlef

    2013-04-01

    The Federal Institute for Geosciences and Natural Resources (BGR) has been conducting geological polar research since 1979. A few years later BGR engaged in airborne geophysical projects. Investigation of the lithosphere of the continent and the continental margins was one of the key issues for BGR. Right from the beginning geophysical research was closely associated with the geological activities. The GANOVEX (German Antarctic North Victoria Land Expedition) program combined geological research with geophysical (mainly airborne) investigations. This proved to be a fruitful approach to many of the open questions regarding the tectonic development of the Ross Sea region. Aeromagnetic surveys evolved into a powerful tool for identifying geological structures and following them underneath the ice covered areas - not accessible to direct geological investigations. To achieve this aim it was essential to lay out these surveys with a relatively closely spaced line separation on the expense of covering large areas at the same time. Nevertheless, over many years of continues research areas of more than a just regional extent could be covered. This was, however, only possible through international collaboration. During the first years, working in the Ross Sea area, the cooperation with the US and Italian programs played a significant role, especially the GITARA (German-Italian Aeromagnetic Research in Antarctica) program has to be mentioned. GEOMAUD (Geoscientific Expedition to Dronning Maud Land) and the German-Australian joint venture PCMEGA (Prince Charles Mountains Expedition of Germany & Australia) expanded research activities to the East Antarctic shield area. In the International Polar Year (IPY), BGR played a leading role in the international project AGAP (Antarctica's GAmburtsev Province) as part of the main topic "Venture into Unknown Regions". AGAP was jointly conducted by the USA, Great Britain, Australia, China and Germany. While in the Ross Sea area even

  4. Airborne radioactivity survey of parts of Atlantic Ocean beach, Virginia to Florida

    USGS Publications Warehouse

    Moxham, R.M.; Johnson, R.W.

    1953-01-01

    The accompanying maps show the results of an airborne radioactivity survey along the Atlantic Ocean beach from Cape Henry, Virginia to Cape Fear, North Carolina and from Savannah Bach Georgia to Miami Beach, Florida. The survey was made March 23-24, 1953, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation detection equipment mounted in a Douglas DC-3 aircraft and consisted of one flight line, at a 500-foot altitude, parallel to the beach. The vertical projection of the flight line coincided approximately with the landward limit of the modern beach. The width of the zone on the ground from which anomalous radiation is measured at the normal 500 foot flight altitude varies with the areal extent radioactivity of the source. For strong sources of radioactivity the width of the zone would be as much as 1,400 feet. The location of the flight lines is shown on the index map below. No abnormal radioactivity was detected along the northern flight line between Cape Henry, Virginia and Cape Fear, North Carolina. Along the southern flight line fourteen areas of abnormal radioactivity were detected between Savannah Beach, Georgia and Anastasia Island, Florida as shown on the map on the left. The abnormal radioactivity is apparently due to radioactive minerals associated with "black sand" deposits with occur locally along the beach in this region. The present technique of airborne radioactivity measurement does not permit distinguishing between activity sue to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to one or to a combination of these elements. It is not possible to determine the extent or radioactive content of the materials responsible for the abnormal radioactivity. The information given on the accompanying map indicates only those localities of greater-than-average radioactivity and, therefore suggest areas in which uranium and thorium deposits are more

  5. The State of the Industry and Research in Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Hodges, G.

    2007-12-01

    Development of airborne geophysical methods has tended to proceed in rushes of energy, when many new systems are developed for the same application simultaneously along many pathways. The tremendous growth of airborne EM through the '50s to '70s was followed by natural selection in the '80s and '90s down to two styles: fixed-wing aircraft with high-powered time domain systems (FTEM) offering depth of exploration but poor spatial resolution, and helicopter-borne frequency-domain systems (HFEM) offering the best resolution but poor depth of exploration. At the end of the '90s there was an incredible spurt of energy toward helicopter time domain development, spurred technological advances in electronics and materials. By 2007 there were 8 systems operational. Perhaps the most daring current research is toward airborne EM systems utilizing ambient EM fields as sources. Magnetic sensors are almost universally cesium-vapor total field sensors (0.01nT sampled at 0.1s). Because the limitation on target detection is ambient, in-band noise, there is little to gain from producing higher-sensitivity meters. Data quality improvements are being sought by measuring horizontal and vertical gradients more accurately. The new wave of research for magnetic surveys is the measurement of vector or tensor magnetic data with directional sensors, generally either fluxgates or SQUIDS. Magnetometers on autonomous aircraft are newly available. Gamma Ray Spectrometry surveys with sodium-iodide crystal detectors give good performance, and the low cost allows for large volumes to make up for the relatively low sensitivity. The last few years have seen development of new systems in which each crystal in the detector array is monitored, calibrated and stabilized individually using natural radiation. Airborne gravity systems available use the LaCoste zero-length pendulum, or orthogonal accelerometers. Separation of gravity from acceleration is generally done with platforms stabilized for both

  6. Payload-Directed Control of Geophysical Magnetic Surveys

    NASA Technical Reports Server (NTRS)

    Lee, Ritchie; Yeh, Yoo-Hsiu; Ippolito, Corey; Spritzer, John; Phelps, Geoffrey

    2010-01-01

    Using non-navigational (e.g. imagers, scientific) sensor information in control loops is a difficult problem to which no general solution exists. Whether the task can be successfully achieved in a particular case depends highly on problem specifics, such as application domain and sensors of interest. In this study, we investigate the feasibility of using magnetometer data for control feedback in the context of geophysical magnetic surveys. An experimental system was created and deployed to (a) assess sensor integration with autonomous vehicles, (b) investigate how magnetometer data can be used for feedback control, and (c) evaluate the feasibility of using such a system for geophysical magnetic surveys. Finally, we report the results of our experiments and show that payload-directed control of geophysical magnetic surveys is indeed feasible.

  7. New Airborne LiDAR Survey of the Hayward Fault, Northern California

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Prentice, C. S.; Phillips, D. A.; Bevis, M.; Shrestha, R. L.

    2007-12-01

    We present a digital elevation model (DEM) constructed from newly acquired high-resolution LIght Detection and Ranging (LIDAR) data along the Hayward Fault in Northern California. The data were acquired by the National Center for Airborne Laser Mapping (NCALM) in the spring of 2007 in conjunction with a larger regional airborne LIDAR survey of the major crustal faults in northern California coordinated by UNAVCO and funded by the National Science Foundation as part of GeoEarthScope. A consortium composed of the U. S. Geological Survey, Pacific Gas & Electric Company, the San Francisco Public Utilities Commission, and the City of Berkeley separately funded the LIDAR acquisition along the Hayward Fault. Airborne LIDAR data were collected within a 106-km long by 1-km wide swath encompassing the Hayward Fault that extended from San Pablo Bay on the north to the southern end of its restraining stepover with the Calaveras Fault on the south. The Hayward Fault is among the most urbanized faults in the nation. With its most recent major rupture in 1868, it is well within the time window for its next large earthquake, making it an excellent candidate for a "before the earthquake" DEM image. After the next large Hayward Fault event, this DEM can be compared to a post-earthquake LIDAR DEM to provide a means for a detailed analysis of fault slip. In order to minimize location errors, temporary GPS ground control stations were deployed by Ohio State University, UNAVCO, and student volunteers from local universities to augment the available continuous GPS arrays operated in the study area by the Bay Area Regional Deformation (BARD) Network and the Plate Boundary Observatory (PBO). The vegetation cover varies along the fault zone: most of the vegetation is non-native species. Photographs from the 1860s show very little tall vegetation along the fault zone. A number of interesting geomorphic features are associated with the Hayward Fault, even in urbanized areas. Sag ponds and

  8. Publications - GPR 2011-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey content DGGS GPR 2011-4 Publication Details Title: Iditarod survey area: Airborne magnetic and ., Fugro Airborne Surveys Corp., and Fugro GeoServices, Inc., 2015, Iditarod survey area: Airborne magnetic

  9. Publications - GPR 2015-6 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey content DGGS GPR 2015-6 Click to enlarge Publication Details Title: Airborne magnetic geophysical survey ., Graham, Gina, and Goldak Airborne Surveys, 2015, Airborne magnetic geophysical survey of the Tanacross

  10. Publications - GPR 2015-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey electromagnetic and magnetic airborne geophysical survey data compilation Authors: Burns, L.E., Fugro Airborne magnetic airborne geophysical survey data compilation: Alaska Division of Geological & Geophysical

  11. Self-Organizing Maps: A Data Mining Tool for the Analysis of Airborne Geophysical Data Collected over the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Carneiro, C.; Fraser, S. J.; Crosta, A. P.; Silva, A.; Barros, C.

    2011-12-01

    Regional airborne geophysical data sets are being collected worldwide to promote mineral exploration and resource development. These data sets often are collected over highly prospective terranes, where access is limited or there are environmental concerns. Such regional surveys typically consist of two or more sensor packages being flown in an aircraft over the survey area and vast amounts of near-continuous data can be acquired in a relatively short time. Increasingly, there is also a need to process such data in a timely fashion to demonstrate the data's value and indicate the potential return or value of the survey to the funding agency. To assist in the timely analysis of such regional data sets, we have used an exploratory data mining approach: the Self Organizing Map (SOM). Because SOM is based on vector quantization and measures of vector similarity, it is an ideal tool to analyze a data set consisting of disparate geophysical input parameters to look for relationships and trends. We report on our use of SOM to analyze part of a regional airborne geophysical survey collected over the prospective Anapu-Tuere region of the Brazilian Amazon. Magnetic and spectrometric gamma ray data were used as input to our SOM analysis, and the results used to discriminate and identify various rock types and produce a "pseudo" geological map over the study area. The ability of SOM to define discrete domains of rock-types with similar properties allowed us to expand upon existing geological knowledge of the area for mapping purposes; and, often it was the combination of the magnetic and radiometric responses that identified a lithology's unique response. One particular unit was identified that had an association with known gold mineralization, which consequently highlighted the prospectivity of that unit elsewhere in the survey area. Our results indicate that SOM can be used for the semi-automatic analysis of regional airborne geophysical data to assist in geological mapping

  12. Magnetic surveys for locating abandoned wells

    USGS Publications Warehouse

    ,

    1995-01-01

    Abandoned and unrecorded wells may act as conduits for the contamination of groundwater supplies by oil field brines and other pollutants. The casings of abandoned wells eventually develop leaks, which, if not properly plugged, can allow pollutants to reach freshwater aquifers that supply drinking water. Sources of pollutants include brine ponds, landfill sites, agricultural activities, industrial activities, illegal disposal sites, or accidental spills. The problem is particularly acute in regions where there are old petroleum fields or where water wells have been extensively used for agricultural irrigation. Even urban areas can contain wells that were abandoned and concealed during development. Carefully designed ground magnetic or aeromagnetic surveys can be used to locate abandoned wells by mapping the magnetic disturbances or "anomalies" produced by their steel well casings. The U.S. Geological Survey (USGS) can, at the request of other Federal, State, or local agencies, conduct, process, and interpret such surveys, or it can aid in the design and monitoring of contracts for such surveys.

  13. Magnetic character of a large continental transform: an aeromagnetic survey of the Dead Sea Fault

    USGS Publications Warehouse

    ten Brink, Uri S.; Rybakov, Michael; Al-Zoubi, Abdallah S.; Rotstein, Yair

    2007-01-01

    New high-resolution airborne magnetic (HRAM) data along a 120-km-long section of the Dead Sea Transform in southern Jordan and Israel shed light on the shallow structure of the fault zone and on the kinematics of the plate boundary. Despite infrequent seismic activity and only intermittent surface exposure, the fault is delineated clearly on a map of the first vertical derivative of the magnetic intensity, indicating that the source of the magnetic anomaly is shallow. The fault is manifested by a 10–20 nT negative anomaly in areas where the fault cuts through magnetic basement and by a

  14. Performance metrics for state-of-the-art airborne magnetic and electromagnetic systems for mapping and detection of unexploded ordnance

    NASA Astrophysics Data System (ADS)

    Doll, William E.; Bell, David T.; Gamey, T. Jeffrey; Beard, Les P.; Sheehan, Jacob R.; Norton, Jeannemarie

    2010-04-01

    Over the past decade, notable progress has been made in the performance of airborne geophysical systems for mapping and detection of unexploded ordnance in terrestrial and shallow marine environments. For magnetometer systems, the most significant improvements include development of denser magnetometer arrays and vertical gradiometer configurations. In prototype analyses and recent Environmental Security Technology Certification Program (ESTCP) assessments using new production systems the greatest sensitivity has been achieved with a vertical gradiometer configuration, despite model-based survey design results which suggest that dense total-field arrays would be superior. As effective as magnetometer systems have proven to be at many sites, they are inadequate at sites where basalts and other ferrous geologic formations or soils produce anomalies that approach or exceed those of target ordnance items. Additionally, magnetometer systems are ineffective where detection of non-ferrous ordnance items is of primary concern. Recent completion of the Battelle TEM-8 airborne time-domain electromagnetic system represents the culmination of nearly nine years of assessment and development of airborne electromagnetic systems for UXO mapping and detection. A recent ESTCP demonstration of this system in New Mexico showed that it was able to detect 99% of blind-seeded ordnance items, 81mm and larger, and that it could be used to map in detail a bombing target on a basalt flow where previous airborne magnetometer surveys had failed. The probability of detection for the TEM-8 in the blind-seeded study area was better than that reported for a dense-array total-field magnetometer demonstration of the same blind-seeded site, and the TEM-8 system successfully detected these items with less than half as many anomaly picks as the dense-array total-field magnetometer system.

  15. DATA ACQUISITION AND APPLICATIONS OF SIDE-LOOKING AIRBORNE RADAR IN THE U. S. GEOLOGICAL SURVEY.

    USGS Publications Warehouse

    Jones, John Edwin; Kover, Allan N.

    1985-01-01

    The Side-Looking Airborne Radar (SLAR) program encompasses a multi-discipline effort involving geologists, hydrologists, engineers, geographers, and cartographers of the U. S. Geological Survey (USGS). Since the program began in 1980, more than 520,000 square miles of aerial coverage of SLAR data in the conterminous United States and Alaska have been acquired or contracted for acquisition. The Geological Survey has supported more than 60 research and applications projects addressing the use of this technology in the earth sciences since 1980. These projects have included preparation of lithographic reproductions of SLAR mosaics, research to improve the cartographic uses of SLAR, research for use of SLAR in assessing earth hazards, and studies using SLAR for energy and mineral exploration through improved geologic mapping.

  16. Magnetic susceptibility of spider webs as a proxy of airborne metal pollution.

    PubMed

    Rachwał, Marzena; Rybak, Justyna; Rogula-Kozłowska, Wioletta

    2018-03-01

    The purpose of this pilot study was to test spider webs as a fast tool for magnetic biomonitoring of air pollution. The study involved the investigation of webs made by four types of spiders: Pholcus phalangioides (Pholcidae), Eratigena atrica and Agelena labirynthica (Agelenidae) and Linyphia triangularis (Linyphiidae). These webs were obtained from outdoor and indoor study sites. Compared to the clean reference webs, an increase was observed in the values of magnetic susceptibility in the webs sampled from both indoor and outdoor sites, which indicates contamination by anthropogenically produced pollution particles that contain ferrimagnetic iron minerals. This pilot study has demonstrated that spider webs are able to capture particulate matter in a manner that is equivalent to flora-based bioindicators applied to date (such as mosses, lichens, leaves). They also have additional advantages; for example, they can be generated in isolated clean habitats, and exposure can be monitored in indoor and outdoor locations, at any height and for any period of time. Moreover, webs are ubiquitous in an anthropogenic, heavily polluted environment, and they can be exposed throughout the year. As spider webs accumulate pollutants to which humans are exposed, they become a reliable source of information about the quality of the environment. Therefore, spider webs are recommended for magnetic biomonitoring of airborne pollution and for the assessment of the environment because they are non-destructive, low-cost, sensitive and efficient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Russellville quadrangle, Arkansas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-09-01

    The Russellville quadrangle in north central Arkansas overlies thick Paleozoic sediments of the Arkoma Basin. These Paleozoics dominate surface exposure except where covered by Quaternary alluvial materials. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. Eighty-eight groups of uranium samples were defined as anomalies and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data show character that suggest structural and/or lithologic complexity, but imply relatively deep-seated sources.

  18. Development of airborne remote sensing methods for surveys of Pacific walrus

    USGS Publications Warehouse

    Burn, Douglas M.; Udevitz, Mark S.; Webber, M.A.; Garlich-Miller, Joel L.

    2006-01-01

    In April 2003, we conducted an operational test of an airborne multispectral scanner (AMS) over pack ice in the Bering Sea to evaluate the potential of this system as a survey tool for Pacific walruses. We scanned a total of 28,875 km2 of sea ice habitat at a spatial resolution of 4 m and collected high resolution photographs from a subset of the thermally detected walrus groups. We found a significant positive relationship between walrus group size and the amount of heat measured by the AMS and used this relationship to estimate total walrus numbers in the survey area. The number of walruses hauled out onto sea ice in our study area was estimated at 4,785 animals with a 95% confidence interval of 2,499–7,111. We believe that the AMS system as configured for this study would be a highly effective tool for surveying large areas of sea ice habitat for walrus groups. With a 6 km swath width, it should be possible to sample more 10,000 km2 in an 8-hr flight. Although walrus groups > 4 animals were easily detected and enumerated in the 4 m thermal data, the system was unable to detect individual walruses or seals (Phoca spp. and Erignathus barbatus). We found that most (94.6%) of the walruses photographed in our survey area occurred in groups > 6 animals, therefore we expect the magnitude of any bias due to undetected groups of hauled out animals would be relatively small.

  19. Latest Advancement In Airborne Relative Gravity Instrumentation.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2011-12-01

    Airborne gravity surveying has been performed with widely varying degrees of success since early experimentation with the Lacoste and Romberg dynamic meter in the 1950s. There are a number of different survey systems currently in operation including relative gravity meters and gradiometers. Airborne gravity is ideally suited to rapid, wide coverage surveying and is not significantly more expensive in more remote and inhospitable terrain which makes airborne measurements one of the few viable options available for cost effective exploration. As improved instrumentation has become available, scientific applications have also been able to take advantage for use in determining sub surface geologic structures, for example under ice sheets in Antarctica, and more recently direct measurement of the geoid to improve the vertical datum in the United States. In 2004, Lacoste and Romberg (now Micro-g Lacoste) decided to build on their success with the newly developed AirSea II dynamic meter and use that system as the basis for a dedicated airborne gravity instrument. Advances in electronics, timing and positioning technology created the opportunity to refine both the hardware and software, and to develop a truly turnkey system that would work well for users with little or no airborne gravity experience as well as those with more extensive experience. The resulting Turnkey Airborne Gravity System (TAGS) was successfully introduced in 2007 and has since been flown in applications from oil, gas and mineral exploration surveys to regional gravity mapping and geoid mapping. The system has been mounted in a variety of airborne platforms including depending on the application of interest. The development experience with the TAGS enabled Micro-g Lacoste to embark on a new project in 2010 to completely redesign the mechanical and electronic components of the system rather than continuing incremental upgrades. Building on the capabilities of the original TAGS, the objectives for the

  20. Airborne gamma-ray spectrometer and magnetometer survey: Susanville quadrangle, California. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Susanville, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. Amore » total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1642.8 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.« less

  1. Airborne gamma-ray spectrometer and magnetometer survey, Medford Quadrangle Oregon. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Medford, Oregon, map area. Traverse lines were flown in an east-west direction at a line spacing of three miles. Tie lines were flown north-south approximately twelve miles apart. A total ofmore » 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 2925 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.« less

  2. Airborne gamma-ray spectrometer and magnetometer survey: Durango Quadrangle (Colorado). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-08-01

    Between September 26 and November 9, 1978, Aero Service Division Western Geophysical Company of America conducted a high sensitivity airborne gamma-ray spectrometer and magnetometer survey over the 2/sup 0/ x 1/sup 0/ NTMS quadrangle of Durango, Colorado. The survey area is bounded by the 106/sup 0/W and 108/sup 0/W meridians and the 37/sup 0/N and 38/sup 0/N parallels. The area contains rocks of the Colorado Plateau suite in the southwestern part. The remainder of the area, with the exception of the eastern margin, is underlain by intrusive and extrusive igneous rocks and volcano-clastic sediments of Tertiary age. The eastern marginmore » of the map is formed by the Quaternary alluvium of the San Juan Valley. The major river in the area is the Rio Grande, which drains the San Juan mountains to the east of the continental divide. The southwestern part of the San Juan mountains is drained by the San Juan river, a tributary of the Colorado River.« less

  3. Airborne Hyperspectral Survey of Afghanistan 2007: Flight Line Planning and HyMap Data Collection

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Livo, K. Eric

    2008-01-01

    Hyperspectral remote sensing data were acquired over Afghanistan with the HyMap imaging spectrometer (Cocks and others, 1998) operating on the WB-57 high altitude NASA research aircraft (http://jsc-aircraft-ops.jsc.nasa.gov/wb57/index.html). These data were acquired during the interval of August 22, 2007 to October 2, 2007, as part of the United States Geological Survey (USGS) project 'Oil and Gas Resources Assessment of the Katawaz and Helmand Basins'. A total of 218 flight lines of hyperspectral remote sensing data were collected over the country. This report describes the planning of the airborne survey and the flight lines that were flown. Included with this report are digital files of the nadir tracks of the flight lines, including a map of the labeled flight lines and corresponding vector shape files for geographic information systems (GIS).

  4. Research on a New Method of Estimating the Potential Depth of Slope Failure Using the Airborne Electromagnetic Survey

    NASA Astrophysics Data System (ADS)

    Seto, Shuji; Takahara, Teruyoshi; Kinoshita, Atsuhiko; Mizuno, Hideaki; Kawato, Katsushi; Okumura, Minoru; Kageura, Ryouta

    2017-04-01

    In Japan, at Ontake volcano in 1984 and Kurikoma volcano in 2008, parts of the volcanoes collapsed and large-scale sediment-related disasters occurred. These disasters were unrelated to volcanic eruption directly. We conducted the case studies by using the airborne electromagnetic surveys to investigate the slopes likely to induce landslides on such volcanoes. The airborne electromagnetic surveys are the effective exploration tool when we investigate in extreme environments that person can't enter and it's necessary to investigate with wide range by a short time. The surveys were conducted by using a helicopter carrying the survey instruments; this method of non-contact investigation acquires resistivity data by the electromagnetic induction. In Japan, the surveys were conducted of 15 active volcanoes where volcanic disasters could have serious social implications. These cases focused on the seeking for the possible slopes that landslides would occur. However, the depth of the slope failure was not evaluated. Therefore in the study, we proposed a new method to determine the potential depth of slope failure. First, we categorized the three characteristics as the cap rock type, the extended collapse type, and the landslide type on the basis of collapsed cases and paid attention to the slope of the cap rock type and also defined the collapse range based on the topography and geological properties. Second, we analyzed resistivity structure about collapsed cases with the differential filter and made clear that collapse occurred in the depth which resistivity suddenly changes. In other volcanoes, we could estimate failure depth by extracting the part which resistivity suddenly changes. In the study, we use the three volcanoes as the main cases, Hokkaido Komagatake, Asama Volcano, and Ontake volcano.

  5. Association between first airborne cedar pollen level peak and pollinosis symptom onset: a web-based survey.

    PubMed

    Bando, Harumi; Sugiura, Hiroaki; Ohkusa, Yasushi; Akahane, Manabu; Sano, Tomomi; Jojima, Noriko; Okabe, Nobuhiko; Imamura, Tomoaki

    2015-01-01

    Cedar pollinosis in Japan affects nearly 25 % of Japanese citizens. To develop a treatment for cedar pollinosis, it is necessary to understand the relationship between the time of its occurrence and the amount of airborne cedar pollen. In the spring of 2009, we conducted daily Internet-based epidemiologic surveys, which included 1453 individuals. We examined the relationship between initial date of onset of pollinosis symptoms and daily amount of airborne cedar pollen to which subjects were exposed. Approximately 35.2 % of the subjects experienced the onset of pollinosis during a one-week interval in which the middle day coincided with the peak pollen count. The odds ratio for this one-week time interval was 4.03 (95 % confidence interval: 3.34-4.86). The predicted date of the cedar pollen peak can be used to determine the appropriate date for initiation of self-medication with anti-allergy drugs and thus avoid development of sustained and severe pollinosis.

  6. NASA airborne laser altimetry and ICESat-2 post-launch data validation

    NASA Astrophysics Data System (ADS)

    Brunt, K. M.; Neumann, T.; Studinger, M.; Hawley, R. L.; Markus, T.

    2016-12-01

    A series of NASA airborne lidars have made repeated surveys over an 11,000-m ground-based kinematic GPS traverse near Summit Station, Greenland. These ground-based data were used to assess the surface elevation bias and measurement precision of two airborne laser altimeters: Airborne Topographic Mapper (ATM) and Land, Vegetation, and Ice Sensor (LVIS). Data from the ongoing monthly traverses allowed for the assessment of 8 airborne lidar campaigns; elevation biases for these altimeters were less than 12.2 cm, while assessments of surface measurement precision were less than 9.1 cm. Results from the analyses of the Greenland ground-based GPS and airborne lidar data provide guidance for validation strategies for Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products. Specifically, a nested approach to validation is required, where ground-based GPS data are used to constrain the bias and measurement precision of the airborne lidar data; airborne surveys can then be designed and conducted on longer length-scales to provide the amount of airborne data required to make more statistically meaningful assessments of satellite elevation data. This nested validation approach will continue for the ground-traverse in Greenland; further, the ICESat-2 Project Science Office has plans to conduct similar coordinated ground-based and airborne data collection in Antarctica.

  7. Airborne laser mapping of Assateague National Seashore Beach

    USGS Publications Warehouse

    Krabill, W.B.; Wright, C.W.; Swift, R.N.; Frederick, E.B.; Manizade, S.S.; Yungel, J.K.; Martin, C.F.; Sonntag, J.G.; Duffy, Mark; Hulslander, William; Brock, John C.

    2000-01-01

    Results are presented from topographic surveys of the Assateague Island National Seashore using an airborne scanning laser altimeter and kinematic Global Positioning System (GPS) technology. The instrument used was the Airborne Topographic Mapper (ATM), developed by the NASA Arctic Ice Mapping (AIM) group from the Goddard Space Flight Center's Wallops Flight Facility. In November, 1995, and again in May, 1996, these topographic surveys were flown as a functionality check prior to conducting missions to measure the elevation of extensive sections of the Greenland Ice Sheet as part of NASA's Global Climate Change program. Differences between overlapping portions of both surveys are compared for quality control. An independent assessment of the accuracy of the ATM survey is provided by comparison to surface surveys which were conducted using standard techniques. The goal of these projects is to make these measurements to an accuracy of ± 10 cm. Differences between the fall 1995 and 1996 surveys provides an assessment of net changes in the beach morphology over an annual cycle.

  8. Airborne gamma-ray spectrometer and magnetometer survey, Durango A, B, C, and D, Colorado. Volume I. Detail area. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the Durango A, Durango B, Durango C, and Durango D Detail Areas of southwestern Colorado. The Durango A Detail Area is within the coverage of the Needle Mountains and Silverton 15' map sheets, and the Pole Creek Mountain, Rio Grande Pyramid, Emerald Lake, Granite Peak, Vallecito Reservoir, and Lemon Reservoir 7.5' map sheets of the National Topographic Map Series (NTMS). The Durango B Detail Area is within the coverage of the Silverton 15' map sheet and the Wetterhorn Peak, Uncompahgre Peak, Lake City, Redcloudmore » Peak, Lake San Cristobal, Pole Creek Mountain, and Finger Mesa 7.5' map sheets of the NTMS. The Durango C Detail Area is within the coverage of the Platoro and Wolf Creek Pass 15' map sheets of the NTMS. The Durango D Detail Area is within the coverage of the Granite Lake, Cimarrona Peak, Bear Mountain, and Oakbrush Ridge 7.5' map sheets of the NTMS. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, gridded, and contoured to produce maps of the radiometric variables, uranium, potassium, and thorium; their ratios; and the residual magnetic field. These maps have been analyzed in order to produce a multi-variant analysis contour map based on the radiometric response of the individual geological units. A geochemical analysis has been performed, using the radiometric and magnetic contour maps, the multi-variant analysis map, and factor analysis techniques, to produce a geochemical analysis map for the area.« less

  9. ASPIRE - Airborne Spectro-Polarization InfraRed Experiment

    NASA Astrophysics Data System (ADS)

    DeLuca, E.; Cheimets, P.; Golub, L.; Madsen, C. A.; Marquez, V.; Bryans, P.; Judge, P. G.; Lussier, L.; McIntosh, S. W.; Tomczyk, S.

    2017-12-01

    Direct measurements of coronal magnetic fields are critical for taking the next step in active region and solar wind modeling and for building the next generation of physics-based space-weather models. We are proposing a new airborne instrument to make these key observations. Building on the successful Airborne InfraRed Spectrograph (AIR-Spec) experiment for the 2017 eclipse, we will design and build a spectro-polarimeter to measure coronal magnetic field during the 2019 South Pacific eclipse. The new instrument will use the AIR-Spec optical bench and the proven pointing, tracking, and stabilization optics. A new cryogenic spectro-polarimeter will be built focusing on the strongest emission lines observed during the eclipse. The AIR-Spec IR camera, slit jaw camera and data acquisition system will all be reused. The poster will outline the optical design and the science goals for ASPIRE.

  10. Aeromagnetic Survey of Taylor Mountains Area in Southwest Alaska, A Website for the Distribution of Data

    USGS Publications Warehouse

    ,

    2006-01-01

    USGS Data Series Report for the release of aeromagnetic data collected in the Taylor Mountains Area of Southwest Alaska and associated contractor reports. Summary: An airborne high-resolution magnetic and coincidental horizontal magnetic gradiometer survey was completed over the Taylor Mountains area in southwest Alaska. The flying was undertaken by McPhar Geosurveys Ltd. on behalf of the United States Geological Survey (USGS). First tests and calibration flights were completed by April 7, 2004, and data acquisition was initiated on April 17, 2004. The final data acquisition and final test/calibrations flight was completed on May 31, 2004. Data acquired during the survey totaled 8,971.15 line-miles.

  11. Airborne gamma-ray spectrometer and magnetometer survey: Chico quadrangle, California. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Chico, California, map area. Traverse lines were flown in an east-west direction at a line spacing of three. Tie lines were flown north-south approximately twelve miles apart. A total of 16,880.5more » line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 3026.4 line miles are in the quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.« less

  12. Magnetic properties and element concentrations in lichens exposed to airborne pollutants released during cement production.

    PubMed

    Paoli, Luca; Winkler, Aldo; Guttová, Anna; Sagnotti, Leonardo; Grassi, Alice; Lackovičová, Anna; Senko, Dušan; Loppi, Stefano

    2017-05-01

    The content of selected elements (Al, As, Ca, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, S, Ti, V and Zn) was measured in samples of the lichen Evernia prunastri exposed for 30, 90 and 180 days around a cement mill, limestone and basalt quarries and urban and agricultural areas in SW Slovakia. Lichens transplanted around the investigated quarries and the cement mill rapidly (30 days) reflected the deposition of dust-associated elements, namely Ca (at the cement mill and the limestone quarry) and Fe, Ti and V (around the cement mill and the basalt quarry), and their content remained significantly higher throughout the whole period (30-180 days) with respect to the surrounding environment. Airborne pollutants (such as S) progressively increased in the study area from 30 to 180 days. The magnetic properties of lichen transplants exposed for 180 days have been characterized and compared with those of native lichens (Xanthoria parietina) and neighbouring bark, soil and rock samples, in order to test the suitability of native and transplanted samples as air pollution magnetic biomonitors. The magnetic mineralogy was homogeneous in all samples, with the exception of the samples from the basalt quarry. The transplants showed excellent correlations between the saturation remanent magnetization (Mrs) and the content of Fe. Native samples had a similar magnetic signature, but the values of the concentration-dependent magnetic parameters were up to two orders of magnitude higher, reflecting higher concentrations of magnetic particles. The concentrations of As, Ca and Cr in lichens correlated with Mrs values after neglecting the samples from the basalt quarry, which showed distinct magnetic properties, suggesting the cement mill as a likely source. Conversely, Ti and Mn were mostly (but not exclusively) associated with dust from the basalt quarry. It is suggested that the natural geological characteristics of the substrate may strongly affect the magnetic properties of lichen thalli

  13. Survey of the Pompeii (IT) archaeological Regions with the multispectral thermal airborne TASI data

    NASA Astrophysics Data System (ADS)

    Pignatti, Stefano; Palombo, Angelo; Pascucci, Simone; Santini, Federico; Laneve, Giovanni

    2017-04-01

    Thermal remote sensing, as a tool for analyzing environmental variables with regards to archaeological prospecting, has been growing ever mainly because airborne surveys allow to provide to archaeologists images at meter scale. The importance of this study lies in the evaluation of TIR imagery in view of the use of unmanned aerial vehicles (UAVs) imagery, for the Conservation of Cultural Heritage, that should provide at low cost very high spatial resolution thermal imaging. The research aims at analyzing the potential of the thermal imaging [1] on some selected areas of the Pompeii archaeological park. To this purpose, on December the 7th, 2015, a TASI-600, an [2] airborne multispectral thermal imagery (32 channels from 8 to 11.5 nm with a spectral resolution of 100nm and a spatial resolution of 1m/pixel) has surveyed the archaeological Pompeii Regions. Thermal images have been corrected, calibrated in order to obtain land surface temperatures (LST) and emissivity data set to be applied for the further analysis. The thermal data pre-processing has included: ii) radiometric calibration of the raw data and the correction of the blinking pixel; ii) atmospheric correction performed by using MODTRAN; iii) Temperature Emissivity Separation (TES) to obtain emissivity and LST maps [3]. Our objective is to shows the major results of the IR survey, the pre-processing of the multispectral thermal imagery. LST and emissivity maps have been analysed to describe the thermal/emissivity pattern of the different Regions as function of the presence, in first subsurface, of archaeological features. The obtained preliminary results are encouraging, even though, the vegetation cover, covering the different Pompeii Regions, is one of the major issues affecting the usefulness of the TIR sensing. Of course, LST anomalies and emissivity maps need to be further integrated with the classical geophysical investigation techniques to have a complete validation and to better evaluate the

  14. Helicopter Electromagnetic and Magnetic Geophysical Survey Data for Portions of the North Platte River and Lodgepole Creek, Nebraska, June 2008

    USGS Publications Warehouse

    Smith, Bruce D.; Abraham, Jared D.; Cannia, James C.; Hill, Patricia

    2009-01-01

    This report is a release of digital data from a helicopter electromagnetic and magnetic survey that was conducted during June 2008 in areas of western Nebraska as part of a joint hydrologic study by the North Platte Natural Resource District, South Platte Natural Resource District, and U.S. Geological Survey. The objective of the contracted survey, conducted by Fugro Airborne, Ltd., was to improve the understanding of the relationship between surface water and groundwater systems critical to developing groundwater models used in management programs for water resources. The survey covered 1,375 line km (854 line mi). A unique aspect of this survey is the flight line layout. One set of flight lines were flown paralleling each side of the east-west trending North Platte River and Lodgepole Creek. The survey also included widely separated (10 km) perpendicular north-south lines. The success of this survey design depended on a well understood regional hydrogeologic framework and model developed by the Cooperative Hydrologic Study of the Platte River Basin. Resistivity variations along lines could be related to this framework. In addition to these lines, more traditional surveys consisting of parallel flight lines separated by about 270 m were carried out for one block in each of the drainages. These surveys helped to establish the spatial variations of the resistivity of hydrostratigraphic units. The electromagnetic equipment consisted of six different coil-pair orientations that measured resistivity at separated frequencies from about 400 Hz to about 140,000 Hz. The electromagnetic data along flight lines were converted to electrical resistivity. The resulting line data were converted to geo-referenced grids and maps which are included with this report. In addition to the electromagnetic data, total field magnetic data and digital elevation data were collected. Data released in this report consist of data along flight lines, digital grids, and digital maps of the

  15. Developing a magnetism conceptual survey and assessing gender differences in student understanding of magnetism

    NASA Astrophysics Data System (ADS)

    Li, Jing; Singh, Chandralekha

    2012-02-01

    We discuss the development of a research-based conceptual multiple-choice survey of magnetism. We also discuss the use of the survey to investigate gender differences in students' difficulties with concepts related to magnetism. We find that while there was no gender difference on the pre-test. However, female students performed significantly worse than male students when the survey was given as a post-test in traditionally taught calculus-based introductory physics courses with similar results in both the regular and honors versions of the course. In the algebra-based courses, the performance of female and male students has no statistical difference on the pre-test or the post-test.

  16. Publications - GPR 2015-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey electromagnetic and magnetic airborne geophysical survey data compilation Authors: Burns, L.E., Geoterrex-Dighem Graham, G.R.C., 2015, Livengood mining district electromagnetic and magnetic airborne geophysical survey

  17. Investigating distribution patterns of airborne magnetic grains trapped in tree barks in Milan, Italy: insights for pollution mitigation strategies

    NASA Astrophysics Data System (ADS)

    Vezzola, Laura C.; Muttoni, Giovanni; Merlini, Marco; Rotiroti, Nicola; Pagliardini, Luca; Hirt, Ann M.; Pelfini, Manuela

    2017-08-01

    High levels of air particulate matter (PM) have been positively correlated with respiratory diseases. In this study, we performed a biomonitoring investigation using samples of bark obtained from trees in a selected study area in the city of Milan (northern Italy). Here, we analyse the magnetic and mineralogical properties of the outer and inner barks of 147 trees, finding that magnetite is the prevalent magnetic mineral. The relative concentration of magnetite is estimated in the samples using saturation isothermal remanent magnetization (SIRM) and hysteresis parameters. We also make a first-order estimate of absolute magnetite concentration from the SIRM. The spatial distribution of the measured magnetic parameters is evaluated as a function of the distance to the main sources of magnetic PM in the study area, for example, roads and tram stops. These results are compared with data from a substantially pollution-free control site in the Central Italian Alps. Magnetic susceptibility, SIRM and magnetite concentration are found to be the highest in the outer tree barks for samples that are closest to roads and especially tram stops. In contrast, the inner bark samples are weakly magnetic and are not correlated to the distance from magnetite PM sources. The results illustrate that trees play an important role acting as a sink for airborne PM in urban areas.

  18. Test plan and preliminary report of airborne electromagentic environment survey over USA urban areas 0.4 to 18.0 GHz

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1975-01-01

    An airborne electromagnetic environment survey is described of five urban areas where terrestrially-generated radio-frequency interference was measured over the frequency range from 0.4 to 18.0 GHz. A chartered Cessna 402 aircraft contained necessary measurement test equipment, including the receiving antennas mounted beneath the fuselage. Urban areas including Washington, D.C.; Baltimore, MD; Philadelphia, PA; New York, NY; Chicago, ILL; and Palestine, TX were surveyed. A flight test plan and preliminary test results for the 0.4 to 1.4 GHz frequency range, are included; a final test report describes more detailed results.

  19. Geoid determination by airborne gravimetry - principles and applications

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Olesen, A. V.

    2009-12-01

    The operational development of long-range airborne gravimetry has meant that large areas can be covered in a short time frame with high-quality medium-wavelength gravity field data, perfectly matching the needs of geoid determination. Geoid from a combination of surface, airborne and satellite data not only is able to cover the remaining large data voids on the earth, notably Antarctica and tropical jungle regions, but also provide seamless coverage across the coastal zone, and tie in older marine and land gravity data. Airborne gravity can therefore provide essential data for GPS applications both on land and at sea, e.g. for marine construction projects such as bridges, wind mill farms etc. Current operational accuracies with the DTU-Space/UiB airborne system are in the 1-2 mGal range, which translates into geoid accuracies of 5-10 cm, dependent on track spacing. In the paper we will outline the current accuracy of airborne gravity and geoid determination, and show examples from recent international airborne gravity campaigns, aimed at either providing national survey infrastructure, or scientific applications for e.g. oceanography or sea-ice thickness determination.

  20. Improved Airborne Gravity Results Using New Relative Gravity Sensor Technology

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2013-12-01

    Airborne gravity data has contributed greatly to our knowledge of subsurface geophysics particularly in rugged and otherwise inaccessible areas such as Antarctica. Reliable high quality GPS data has renewed interest in improving the accuracy of airborne gravity systems and recent improvements in the electronic control of the sensor have increased the accuracy and ability of the classic Lacoste and Romberg zero length spring gravity meters to operate in turbulent air conditions. Lacoste and Romberg type gravity meters provide increased sensitivity over other relative gravity meters by utilizing a mass attached to a horizontal beam which is balanced by a ';zero length spring'. This type of dynamic gravity sensor is capable of measuring gravity changes on the order of 0.05 milliGals in laboratory conditions but more commonly 0.7 to 1 milliGal in survey use. The sensor may have errors induced by the electronics used to read the beam position as well as noise induced by unwanted accelerations, commonly turbulence, which moves the beam away from its ideal balance position otherwise known as the reading line. The sensor relies on a measuring screw controlled by a computer which attempts to bring the beam back to the reading line position. The beam is also heavily damped so that it does not react to most unwanted high frequency accelerations. However this heavily damped system is slow to react, particularly in turns where there are very high Eotvos effects. New sensor technology utilizes magnetic damping of the beam coupled with an active feedback system which acts to effectively keep the beam locked at the reading line position. The feedback system operates over the entire range of the system so there is now no requirement for a measuring screw. The feedback system operates at very high speed so that even large turbulent events have minimal impact on data quality and very little, if any, survey line data is lost because of large beam displacement errors. Airborne testing

  1. Aeromagnetic survey of Dillingham area in southwest Alaska, a website for the preliminary distribution of data

    USGS Publications Warehouse

    ,

    2006-01-01

    An airborne high-resolution magnetic survey was completed over the Dillingham and Nushagak Bay and Naknek area in southwestern Alaska. The flying was undertaken by McPhar Geosurveys Ltd. on behalf of the United States Geological Survey (USGS). First tests and calibration flights were completed by August 26th, 2005 and data acquisition was initiated on September 1st, 2005. The final data acquisition flight was completed on October 22nd, 2005. A total of 8,630 line-miles of data were acquired during the survey.

  2. Satellite and airborne IR sensor validation by an airborne interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gumley, L.E.; Delst, P.F. van; Moeller, C.C.

    1996-11-01

    The validation of in-orbit longwave IR radiances from the GOES-8 Sounder and inflight longwave IR radiances from the MODIS Airborne Simulator (MAS) is described. The reference used is the airborne University of Wisconsin High Resolution Interferometer Sounder (HIS). The calibration of each sensor is described. Data collected during the Ocean Temperature Interferometric Survey (OTIS) experiment in January 1995 is used in the comparison between sensors. Detailed forward calculations of at-sensor radiance are used to account for the difference in GOES-8 and HIS altitude and viewing geometry. MAS radiances and spectrally averaged HIS radiances are compared directly. Differences between GOES-8 andmore » HIS brightness temperatures, and GOES-8 and MAS brightness temperatures, are found to be with 1.0 K for the majority of longwave channels examined. The same validation approach will be used for future sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). 11 refs., 2 figs., 4 tabs.« less

  3. The Study of Aeromagnetic Surveys in Taiwan

    NASA Astrophysics Data System (ADS)

    Li, P. T.; Tong, L. T.; Lin, W.; Chang, S. F.

    2016-12-01

    The airborne magnetic survey is a cost-effective method for regional geological investigation. Most of developed countries use aeromagnetic data as important fundamental information for resources development. The first aeromagnetic survey was conducted in the offshore areas of west and southern Taiwan in 1968 by U.S. Naval Oceanographic Office to help Taiwan finding oil. Later, in 2007, a helicopter-borne magnetic survey was proceed in east Taiwan for underground granite bodies. In order to improve better understanding of deep geological structures associated with the Holocene volcanism in Taiwan, we applied helicopter-borne magnetic technique in northern Taiwan include Tatun Volcano Group (TVG) and Kueishan island in 2013 and 2014 to obtain the distribution information of potential magma chamber as well as hydrothermal pathways along regional geological structures. The most important findings of the high-resolution aeromagnetic dataset since 1960's to 2014 acquired include: (1) the distribution of subsurface igneous rocks and the Curie point depth in Tatun Volcano Group, Keelung Volcano Group, and Kueishantao Volcano; (2) the widely distributed NE high-magnetic belts in northern Taiwan may be associated with NE fractures created by long-term subsidence in this area; (3) the high-magnetic belts in south of Lanyang River which is very different from the magnetic characteristics of the Central Range may imply paleo oceanic plate; (4) the NE high-magnetic belts in Penghu area formed by magma intrusion along NE fractures and the dense and high-magnetic anomalies may be associated with the Miocene basaltic lava overlying on the pre-Tertiary igneous dykes and are widely spread in northern Penghu area. The new aeromagnetic survey techniques help us to investigate the areas with steep terrain or covered by dense vegetation which was difficult to obtain reasonable geological understanding, and also provide an opportunity for us to apply the geothermal energy prospecting.

  4. High Resolution Marine Magnetic Survey of Shallow Water Littoral Area

    PubMed Central

    Ginzburg, Boris; Cohen, Tsuriel Ram; Zafrir, Hovav; Alimi, Roger; Salomonski, Nizan; Sharvit, Jacob

    2007-01-01

    The purpose of this paper is to present a system developed for detection and accurate mapping of ferro-metallic objects buried below the seabed in shallow waters. The system comprises a precise magnetic gradiometer and navigation subsystem, both installed on a non-magnetic catamaran towed by a low-magnetic interfering boat. In addition we present the results of a marine survey of a near-shore area in the vicinity of Atlit, a town situated on the Mediterranean coast of Israel, about 15 km south of Haifa. The primary purpose of the survey was to search for a Harvard airplane that crashed into the sea in 1960. A magnetic map of the survey area (3.5 km2 on a 0.5 m grid) was created revealing the anomalies at sub-meter accuracy. For each investigated target location a corresponding ferro-metallic item was dug out, one of which turned to be very similar to a part of the crashed airplane. The accuracy of location was confirmed by matching the position of the actual dug artifacts with the magnetic map within a range of ± 1 m, in a water depth of 9 m. PMID:28903191

  5. Discovery of kimberlite in a magnetically noisy environment: a case study of the Syferfontein and Goedgevonden kimberlites (Invited)

    NASA Astrophysics Data System (ADS)

    Webb, S. J.; Van Buren, R.

    2013-12-01

    Airborne geophysical methods play an important role in the exploration for kimberlites. As regions become more intensively explored, smaller kimberlites, which can be extremely difficult to find, are being targeted. These smaller kimberlites, as evidenced by the M-1 Maarsfontein pipe in the Klipspringer cluster in South Africa, can be highly profitable. The Goedgevonden and Syferfontein pipes are small kimberlites (~0.2 ha) ~25 km NNE of Klerksdorp in South Africa. The Goedgevonden pipe has been known since the 1930s and is diamondiferous, but not commercially viable due to small stone size and low quality of stones. In the early 1990s, Gold Fields used this pipe as a typical kimberlite to collect example geophysical data. The nearby (~1 km to the east) Syferfontein pipe is not diamondiferous but was discovered in 1994 as part of a speculative airborne EM survey conducted by Gold Fields and Geodass (now CGG) as part of their case study investigations. Both kimberlites have had extensive ground geophysical survey data collected and have prominent magnetic, gravity and EM responses that aided in the delineation of the pipes. These pipes represent a realistic and challenging case study target due to their small size and the magnetically noisy environment into which they have been emplaced. The discovery of the Syferfontein pipe in 1994 stimulated further testing of airborne methods, especially as the surface was undisturbed. These pipes are located in a region that hosts highly variably magnetized Hospital Hill shales, dolerite dykes and Ventersdorp lavas, a 2-3 m thick resistive ferricrete cap and significant cultural features such as an electric railroad and high tension power line. Although the kimberlites both show prominent magnetic anomalies on ground surveys, the airborne data are significantly noisy and the pipes do not show up as well determined targets. However, the clay-rich weathered zone of the pipes provides an ideal target for the EM method, and both

  6. Airborne gamma radiation soil moisture measurements over short flight lines

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.; Carrol, Thomas R.; Lipinski, Daniel M.

    1990-01-01

    Results are presented on airborne gamma radiation measurements of soil moisture condition, carried out along short flight lines as part of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE). Data were collected over an area in Kansas during the summers of 1987 and 1989. The airborne surveys, together with ground measurements, provide the most comprehensive set of airborne and ground truth data available in the U.S. for calibrating and evaluating airborne gamma flight lines. Analysis showed that, using standard National Weather Service weights for the K, Tl, and Gc radiation windows, the airborne soil moisture estimates for the FIFE lines had a root mean square error of no greater than 3.0 percent soil moisture. The soil moisture estimates for sections having acquisition time of at least 15 sec were found to be reliable.

  7. Martian Magnets Under the Microscope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Mars Exploration Rover Spirit acquired this microscopic imager view of its capture magnet on sol 92 (April 6, 2004). Both Spirit and the Mars Exploration Rover Opportunity are equipped with a number of magnets. The capture magnet, as seen here, has a stronger charge than its sidekick, the filter magnet. The lower-powered filter magnet captures only the most magnetic airborne dust with the strongest charges, while the capture magnet picks up all magnetic airborne dust.

    The magnets' primary purpose is to collect the martian magnetic dust so that scientists can analyze it with the rovers' Moessbauer spectrometers. While there is plenty of dust on the surface of Mars, it is difficult to confirm where it came from, and when it was last airborne. Because scientists are interested in learning about the properties of the dust in the atmosphere, they devised this dust-collection experiment.

    The capture magnet is about 4.5 centimeters (1.8 inches) in diameter and is constructed with a central cylinder and three rings, each with alternating orientations of magnetization. Scientists have been monitoring the continual accumulation of dust since the beginning of the mission with panoramic camera and microscopic imager images. They had to wait until enough dust accumulated before they could get a Moessbauer spectrometer analysis. The results of that analysis, performed on sol 92, have not been sent back to Earth yet.

  8. 3D characterization of the critical zone within a basaltic catchment using an airborne electromagnetic survey

    NASA Astrophysics Data System (ADS)

    Dumont, Marc; Join, Jean-Lambert; Wendling, Valentin; Aunay, Bertrand

    2017-04-01

    Shield volcano islands come from the succession of constructive phases and destructive phases. In this complex geological setting, weathering and paleo-weathering profiles have a major impact on the critical zone hydrology. Nevertheless those underground structures are difficult to characterize, which leads to a leak of understanding of the water balance, infiltration, and ground water flows. Airborne transient electromagnetic method, as SkyTEM dispositive, allows to proceed regional 3D resistivity mapping with almost no topographic and vegetation limitations with an investigation depth higher than 300 m. Electromagnetics results are highly sensitive to conductive layers depending of clay content, water content and water mineralization. Skytem investigations are useful to characterize the thickness of the weathering profile and its lateral variations among large areas. In addition, it provides precise information about buried valleys and paleo-weathering of older lavas flows which control preferential groundwater flows. The French Geological Survey (BRGM) conducted a SkyTEM survey over Reunion Island (2500 km2). This survey yields on a dense 3D resistivity mapping. This continuous information is used to characterize the critical zone of the experimental watershed of Rivière des Pluies. A wide range of weathering profiles has been identified. Their variations are highly dependent of lava flow ages. Furthermore, 3D resistivity model highlights buried valleys characterized by specific weathering due to groundwater flows. Hydrogeological implication is a partitioning of groundwater flows in three different reservoirs: (i) deep basal aquifer, (ii) perched aquifers and (iii) superficial flows. The two latter behaviors have been characterized and mapped above our experimental watershed. The 3D manner of airborne electromagnetics results allows describing the continuity of weathering and alteration structures. The identification of specific groundwater flow paths provides

  9. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  10. Assessing New GRAV-D Airborne Gravimetry Collected over the United States

    NASA Astrophysics Data System (ADS)

    Holmes, S. A.; Li, X.; Roman, D. R.

    2013-12-01

    The U.S. National Geodetic Survey [NGS], through their Gravity for the Redefinition of the American Vertical Datum [GRAV-D] program, is updating its terrestrial gravimetry holdings by flying new airborne gravity surveys over a large fraction of the USA and its territories. By 2020, NGS intends that all orthometric heights in the USA will be determined in the field by using a reliable national gravimetric geoid model to transform from geodetic heights obtained from GPS. Towards this end, the newly-collected airborne-gravimety is repeatedly evaluated by using it to support experimental gravitational models and gravimetric geoids, and then comparing these against independent data sets, such as ';satgrav' models (GRACE/GOCE), GPS/Leveling, astronomical vertical defections, and others. Here we show some results from these tests for GRAV-D airborne gravimetry collected over 2012/2013.

  11. Airborne dust and soil particles at the Phoenix landing site, Mars

    NASA Astrophysics Data System (ADS)

    Madsen, M. B.; Drube, L.; Goetz, W.; Leer, K.; Falkenberg, T. V.; Gunnlaugsson, H. P.; Haspang, M. P.; Hviid, S. F.; Ellehøj, M. D.; Lemmon, M. T.

    2009-04-01

    The three iSweep targets on the Phoenix lander instrument deck utilize permanent magnets and 6 different background colors for studies of airborne dust [1]. The name iSweep is short for Improved Sweep Magnet experiments and derives from MER heritage [2, 3] as the rovers carried a sweep magnet, which is a very strong ring magnet built into an aluminum structure. Airborne dust is attracted and held by the magnet and the pattern formed depends on magnetic properties of the dust. The visible/near-infrared spectra acquired of the iSweep are rather similar to typical Martian dust and soil spectra. Because of the multiple background colors of the iSweeps the effect of the translucence of thin dust layers can be studied. This is used to estimate the rate of dust accumulation and will be used to evaluate light scattering properties of the particles. Some particles raised by the retro-rockets during the final descent came to rest on the lander deck and spectra of these particles are studied and compared with those of airborne dust and with spectra obtained from other missions. High resolution images acquired by the Optical Microscope (OM) [4] showed subtle differences between different Phoenix soil samples in terms of particle size and color. Most samples contain orange dust (particles smaller than 10 micrometer) as their major component and silt-sized (50-80 micrometer large) subrounded particles. Both particle types are substantially magnetic. Based on results from the Mars Exploration Rovers, the magnetization of the silt-sized particles is believed to be caused by magnetite. Morphology, texture and color of these particles (ranging from colorless, red-brown to almost black) suggest a multiple origin: The darkest particles probably represent lithic fragments, while the brighter ones could be impact or volcanic glasses. [1] Leer K. et al. (2008) JGR, 113, E00A16. [2] Madsen M.B. et al. (2003) JGR, 108, 8069. [3] Madsen M.B. et al. (2008) JGR (in print). [4] Hecht M.H. et

  12. Drilling of airborne radioactivity anomalies in Florida, Georgia, and South Carolina, 1954

    USGS Publications Warehouse

    Cathcart, J.B.

    1954-01-01

    From April 22 to May 19, 1953, airborne radioactivity surveys totalling 5,600 traverse miles were made in 10 areas in Florida (Moxham, 1954).  Abnormal radioactivity was recorded in Bradford, Clay, DeSoto, Dixie, Lake, Marion, Orange, Sumter, Taylor, and Union Counties, Florida.  Additional airborne surveys were made in the Spring of 1954 in Hardee and Manatee Counties, Florida, on the drainage of the Altamaha River in Georgia, and in the area of the old phosphate workings in and around Charleston County, South Carolina.

  13. Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton.

    PubMed

    Churnside, James H; Thorne, Richard E

    2005-09-10

    Airborne lidar has the potential to survey large areas quickly and at a low cost per kilometer along a survey line. For this reason, we investigated the performance of an airborne lidar for surveys of zooplankton. In particular, we compared the lidar returns with echo-sounder measurements of zooplankton in Prince William Sound, Alaska. Data from eight regions of the Sound were compared, and the correlation between the two methods was 0.78. To obtain this level of agreement, a threshold was applied to the lidar return to remove the effects of scattering from phytoplankton.

  14. Unmanned airborne vehicle (UAV): Flight testing and evaluation of two-channel E-field very low frequency (VLF) instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    Using VLF frequencies, transmitted by the Navy`s network, for airborne remote sensing of the earth`s electrical, magnetic characteristics was first considered by the United States Geological Survey (USGS) around the mid 1970s. The first VLF system was designed and developed by the USGS for installation and operation on a single engine, fixed wing aircraft used by the Branch of Geophysics for geophysical surveying. The system consisted of five channels. Two E-field channels with sensors consisting of a fixed vertical loaded dipole antenna with pre-amp mounted on top of the fuselage and a gyro stabilized horizontal loaded dipole antenna with pre-ampmore » mounted on a tail boom. The three channel magnetic sensor consisted of three orthogonal coils mounted on the same gyro stabilized platform as the horizontal E-field antenna. The main features of the VLF receiver were: narrow band-width frequency selection using crystal filters, phase shifters for zeroing out system phase variances, phase-lock loops for generating real and quadrature gates, and synchronous detectors for generating real and quadrature outputs. In the mid 1990s the Branch of Geophysics designed and developed a two-channel E-field ground portable VLF system. The system was built using state-of-the-art circuit components and new concepts in circuit architecture. Small size, light weight, low power, durability, and reliability were key considerations in the design of the instrument. The primary purpose of the instrument was for collecting VLF data during ground surveys over small grid areas. Later the system was modified for installation on a Unmanned Airborne Vehicle (UAV). A series of three field trips were made to Easton, Maryland for testing and evaluating the system performance.« less

  15. Crustal structure beneath the Paleozoic Parnaíba Basin revealed by airborne gravity and magnetic data, Brazil

    USGS Publications Warehouse

    de Castroa, David L.; Fuck, Reinhardt A.; Phillips, Jeffrey D.; Vidotti, Roberta M.; Bezerra, Francisco H. R.; Dantas, Elton L.

    2014-01-01

    The Parnaíba Basin is a large Paleozoic syneclise in northeastern Brazil underlain by Precambrian crystalline basement, which comprises a complex lithostructural and tectonic framework formed during the Neoproterozoic–Eopaleozoic Brasiliano–Pan African orogenic collage. A sag basin up to 3.5 km thick and 1000 km long formed after the collage. The lithologic composition, structure, and role in the basin evolution of the underlying basement are the focus of this study. Airborne gravity and magnetic data were modeled to reveal the general crustal structure underneath the Parnaíba Basin. Results indicate that gravity and magnetic signatures delineate the main boundaries and structural trends of three cratonic areas and surrounding Neoproterozoic fold belts in the basement. Triangular-shaped basement inliers are geophysically defined in the central region of this continental-scale Neoproterozoic convergence zone. A 3-D gravity inversion constrained by seismological data reveals that basement inliers exhibit a 36–40.5 km deep crustal root, with borders defined by a high-density and thinner crust. Forward modeling of gravity and magnetic data indicates that lateral boundaries between crustal units are limited by Brasiliano shear zones, representing lithospheric sutures of the Amazonian and São Francisco Cratons, Tocantins Province and Parnaíba Block. In addition, coincident residual gravity, residual magnetic, and pseudo-gravity lows indicate two complex systems of Eopaleozoic rifts related to the initial phase of the sag deposition, which follow basement trends in several directions.

  16. 3D inversion of SPECTREM and ZTEM airborne electromagnetic data from the Pebble Cu-Au-Mo porphyry deposit, Alaska

    NASA Astrophysics Data System (ADS)

    Pare, Pascal; Gribenko, Alexander V.; Cox, Leif H.; Čuma, Martin; Wilson, Glenn A.; Zhdanov, Michael S.; Legault, Jean; Smit, Jaco; Polome, Louis

    2012-04-01

    Geological, geochemical, and geophysical surveys have been conducted in the area of the Pebble Cu-Au-Mo porphyry deposit in south-west Alaska since 1985. This case study compares three-dimensional (3D) inversion results from Anglo American's proprietary SPECTREM 2000 fixed-wing time-domain airborne electromagnetic (AEM) and Geotech's ZTEM airborne audio-frequency magnetics (AFMAG) systems flown over the Pebble deposit. Within the commonality of their physics, 3D inversions of both SPECTREM and ZTEM recover conductivity models consistent with each other and the known geology. Both 3D inversions recover conductors coincident with alteration associated with both Pebble East and Pebble West. The high grade CuEqn 0.6% ore shell is not consistently following the high conductive trend, suggesting that the SPECTREM and ZTEM responses correspond in part to the sulphide distribution, but not directly with the ore mineralization. As in any exploration project, interpretation of both surveys has yielded an improved understanding of the geology, alteration and mineralization of the Pebble system and this will serve well for on-going exploration activities. There are distinct practical advantages to the use of both SPECTREM and ZTEM, so we draw no recommendation for either system. We can conclude however, that 3D inversion of both AEM and ZTEM surveys is now a practical consideration and that it has added value to exploration at Pebble.

  17. Crisp clustering of airborne geophysical data from the Alto Ligonha pegmatite field, northeastern Mozambique, to predict zones of increased rare earth element potential

    NASA Astrophysics Data System (ADS)

    Eberle, Detlef G.; Daudi, Elias X. F.; Muiuane, Elônio A.; Nyabeze, Peter; Pontavida, Alfredo M.

    2012-01-01

    The National Geology Directorate of Mozambique (DNG) and Maputo-based Eduardo-Mondlane University (UEM) entered a joint venture with the South African Council for Geoscience (CGS) to conduct a case study over the meso-Proterozoic Alto Ligonha pegmatite field in the Zambézia Province of northeastern Mozambique to support the local exploration and mining sectors. Rare-metal minerals, i.e. tantalum and niobium, as well as rare-earth minerals have been mined in the Alto Ligonha pegmatite field since decades, but due to the civil war (1977-1992) production nearly ceased. The Government now strives to promote mining in the region as contribution to poverty alleviation. This study was undertaken to facilitate the extraction of geological information from the high resolution airborne magnetic and radiometric data sets recently acquired through a World Bank funded survey and mapping project. The aim was to generate a value-added map from the airborne geophysical data that is easier to read and use by the exploration and mining industries than mere airborne geophysical grid data or maps. As a first step towards clustering, thorium (Th) and potassium (K) concentrations were determined from the airborne geophysical data as well as apparent magnetic susceptibility and first vertical magnetic gradient data. These four datasets were projected onto a 100 m spaced regular grid to assemble 850,000 four-element (multivariate) sample vectors over the study area. Classification of the sample vectors using crisp clustering based upon the Euclidian distance between sample and class centre provided a (pseudo-) geology map or value-added map, respectively, displaying the spatial distribution of six different classes in the study area. To learn the quality of sample allocation, the degree of membership of each sample vector was determined using a-posterior discriminant analysis. Geophysical ground truth control was essential to allocate geology/geophysical attributes to the six classes

  18. Observations of the Earth's magnetic field from the shuttle: Using the Spartan carrier as a magnetic survey tool

    NASA Technical Reports Server (NTRS)

    Webster, W. J., Jr.

    1986-01-01

    The shuttle-deployed and recovered Spartan shows promise as an inexpensive and simple support module for potential field measurements. The results of a preliminary engineering study on the applications of the Spartan carrier to magnetic measurements shows: (1) Extension of the mission duration to as long as 7 days is feasible but requires more reconfiguration of the internal systems; (2) On-board recording of Global Positioning System signals will provide position determination with an accuracy consistent with the most severe requirements; and (3) Making Spartan a magnetically clean spacecraft is straight forward but requires labor-intensive modifications to both the data and power systems. As a magnetic survey tool, Spartan would allow surveys at regularly spaced intervals and could make quick-reaction surveys at times of instability in the secular variation.

  19. Targeted Investigation of Base Metal Mineralization beneath Glacial Cover using Magnetic Field Methods, Petrophysics, and Petrology

    NASA Astrophysics Data System (ADS)

    Veglio, E.; Ugalde, H. A.; Lenauer, I.; Milkereit, B.

    2017-12-01

    Magnetic anomalies near areas of known base metal sulphide mineralization were seen in regional airborne data from the Bay of Chaleur in northern New Brunswick, Canada. A ground magnetic investigation was performed over this area to better characterize the source of these regional anomalies and to investigate their relation to the sulphide mineralization. The mineralization is hosted in Late Silurian to Early Devonian volcano-sedimentary stratigraphy and has been identified in several boreholes. This volcano-sedimentary stratigraphy was deposited in a half-graben shallow marine setting, where hydrothermal fluids transported sulphide mineralization through a fault network. The ground magnetic surveys show that two anomalous regions characterized by a total magnetic field of 54,100 nT and 55,500 nT, whereas the shallow alteration associated with mineralized zones are approximately 53,450 nT. These are significant magnetic anomalies are close to 700 nT and 2,000 nT greater than the surrounding area. In order to compare the ground data to the existing airborne, the ground magnetic data was upward continued to a height of 100 meters. The few occurrences of bedrock outcrops on the property confirm the occurrence of rhyolites and tuffs, as well as the presence of sulphide mineralization. However, much of the study area is densely vegetated and covered by glacial sediments of up to 25 meters thickness. Thus, to better interpret the geology and occurrence of the sulphide mineralization, several boreholes were examined on the basis of magnetic susceptibility and further correlated with the borehole logs and observations of lithologies in core. It was found that an individual mafic unit has several orders of magnitude higher magnetic susceptibility than the alteration zones and felsic tuffs where mineralization occurs. This indicates that the magnetic anomaly identified both in the regional magnetic survey and the ground survey is likely caused by the occurrence of this mafic

  20. Occupational exposure to beryllium in French enterprises: a survey of airborne exposure and surface levels.

    PubMed

    Vincent, Raymond; Catani, Jacques; Créau, Yvon; Frocaut, Anne-Marie; Good, Andrée; Goutet, Pierre; Hou, Alain; Leray, Fabrice; André-Lesage, Marie-Ange; Soyez, Alain

    2009-06-01

    An assessment survey of occupational exposure to beryllium (Be) was conducted in France between late 2004 and the end of 2006. Exposure estimates were based on the analytical results of samples collected from workplace air and from work surfaces in 95 facilities belonging to 37 sectors of activity. The results of this study indicated airborne Be concentrations in excess of the occupational exposure limit value of 2 microg m(-3) recommended in France. Metallurgy and electronic component manufacturing represented the activities and occupations where workers had the highest arithmetic mean exposures to Be. Surface contamination levels were also high and frequently exceeded thresholds recommended by different bodies. These results should prompt the development of prevention programmes that include Be substitution, process control and surface decontamination, in conjunction with suitable medical surveillance.

  1. The MiMeS Survey of Magnetism in Massive Stars

    NASA Astrophysics Data System (ADS)

    Wade, G. A.; Grunhut, J. H.; MiMeS Collaboration

    2012-12-01

    The Magnetism in Massive Stars (MiMeS) survey represents a high-precision systematic search for magnetic fields in hot, massive OB stars. To date, MiMeS Large Programs (ESPaDOnS@CFHT, Narval@TBL, HARPSpol@ESO3.6 m) and associated PI programs (FORS@VLT) have yielded nearly 1200 circular spectropolarimetric observations of over 350 OB stars. Within this sample, 20 stars are detected as magnetic. Follow-up observations of new detections reveals (i) a large diversity of magnetic properties, (ii) ubiquitous evidence for magnetic wind confinement in optical spectra of all magnetic O stars, and (iii) the presence of strong, organized magnetic fields in all known Galactic Of?p stars, and iv) a complete absence of magnetic fields in classical Be stars.

  2. Publications - GPR 2016-1 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey electromagnetic and magnetic airborne geophysical survey data compilation Authors: Burns, L.E., Fugro Airborne geophysical survey data compilation: Alaska Division of Geological & Geophysical Surveys Geophysical

  3. Environmental magnetism and magnetic mapping of urban metallic pollution (Paris, France)

    NASA Astrophysics Data System (ADS)

    Isambert, Aude; Franke, Christine; Macouin, Mélina; Rousse, Sonia; Philip, Aurélio; de Villeneuve, Sybille Henry

    2017-04-01

    Airborne pollution in dense urban areas is nowadays a subject of major concern. Fine particulate pollution events are ever more frequent and represent not only an environmental and health but also a real economic issue. In urban atmosphere, the so-called PM2.5 (particulate matter < 2.5 μm in diameter) and ultrafine fractions (< 100 nm) due to combustion, causes many adverse health effects. Environmental magnetic studies of airborne PM collected on air filters or plants have demonstrated their potential to follow the metallic pollution and determine their sources (Sagnotti et al., 2012). In this study, we report on magnetic measurements of traffic-related airborne PM in the city of Paris, France. Two distinct environments were sampled and analyzed along the Seine River: the aquatic environment in studying fluvial bank and river bed sediments and the atmospheric environment by regarding magnetic particles trapped in adjacent tree barks (Platanus hispanica). About 50 sediment samples and 350 bark samples have been collected and analysed to determine their magnetic properties (susceptibility, hysteresis parameters, IRM, frequency-dependent susceptibility) and to estimate the presence and spatial concentration of superparamagnetic or multi-domain particles for each sample type. The bark results allow proposing a high spatial resolution mapping (< 50 m) of magnetic susceptibility and frequency dependent susceptibility on a 30 km long profile along the river. Variations in that profile may be linked to the atmospheric metallic pollution. In addition to that, the sampling of banks and riverbed sediments of the Seine allow a global estimation on the anthropogenic versus detrital and biologic input in the city of Paris. The first results presented here show a general increase of the concentration in magnetic particles from upstream to downstream Paris probably linked to urban pollutions as previously observed for suspended particulate matter (Franke et al. 2009; Kayvantash

  4. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  5. Classroom-sized geophysical experiments: magnetic surveying using modern smartphone devices

    NASA Astrophysics Data System (ADS)

    Tronicke, Jens; Trauth, Martin H.

    2018-05-01

    Modern mobile devices (i.e. smartphones and tablet computers) are widespread, everyday tools, which are equipped with a variety of sensors including three-axis magnetometers. Here, we investigate the feasibility and the potential of using such mobile devices to mimic geophysical experiments in the classroom in a table-top setup. We focus on magnetic surveying and present a basic setup of a table-top experiment for collecting three-component magnetic data across well-defined source bodies and structures. Our results demonstrate that the quality of the recorded data is sufficient to address a number of important basic concepts in the magnetic method. The shown examples cover the analysis of magnetic data recorded across different kinds of dipole sources, thus illustrating the complexity of magnetic anomalies. In addition, we analyze the horizontal resolution capabilities using a pair of dipole sources placed at different horizontal distances to each other. Furthermore, we demonstrate that magnetic data recorded with a mobile device can even be used to introduce filtering, transformation, and inversion approaches as they are typically used when processing magnetic data sets recorded for real-world field applications. Thus, we conclude that such table-top experiments represent an easy-to-implement experimental procedure (as student exercise or classroom demonstration) and can provide first hands-on experience in the basic principles of magnetic surveying including the fundamentals of data acquisition, analysis and processing, as well as data evaluation and interpretation.

  6. User definition and mission requirements for unmanned airborne platforms, revised

    NASA Technical Reports Server (NTRS)

    Kuhner, M. B.; Mcdowell, J. R.

    1979-01-01

    The airborne measurement requirements of the scientific and applications experiment user community were assessed with respect to the suitability of proposed strawman airborne platforms. These platforms provide a spectrum of measurement capabilities supporting associated mission tradeoffs such as payload weight, operating altitude, range, duration, flight profile control, deployment flexibility, quick response, and recoverability. The results of the survey are used to examine whether the development of platforms is warranted and to determine platform system requirements as well as research and technology needs.

  7. Dynamic Dust Accumulation and Dust Removal Observed on the Mars Exploration Rover Magnets

    NASA Technical Reports Server (NTRS)

    Bertelsen, P.; Bell, J. F., III; Goetz, W.; Gunnlaugsson, H. P.; Herkenhoff, K. E.; Hviid, S. F.; Johnson, J. R.; Kinch, K. M.; Knudsen, J. M.; Madsen, M. B.

    2005-01-01

    The Mars Exploration Rovers each carry a set of Magnetic Properties Experiments designed to investigate the properties of the airborne dust in the Martian atmosphere. It is a preferred interpretation of previous experiments that the airborne dust in the Martian atmosphere is primarily composed by composite silicate particles containing one or more highly magnetic minerals as a minor constituent. The ultimate goal of the magnetic properties experiments on the Mars Exploration Rover mission is to provide some information/ constraints on whether the dust is formed by volcanic, meteoritic, aqueous, or other processes. The first problem is to identify the magnetic mineral(s) in the airborne dust on Mars. While the overall results of the magnetic properties experiments are presented in, this abstract will focus on dust deposition and dust removal on some of the magnets.

  8. Exploring Liquid Water Beneath Glaciers and Permafrost in Antarctica Through Airborne Electromagnetic Surveys

    NASA Astrophysics Data System (ADS)

    Auken, E.; Tulaczyk, S. M.; Foley, N.; Dugan, H.; Schamper, C.; Peter, D.; Virginia, R. A.; Sørensen, K.

    2015-12-01

    Here, we demonstrate how high powered airborne electromagnetic resistivity is efficiently used to map 3D domains of unfrozen water below glaciers and permafrost in the cold regions of the Earth. Exploration in these parts of the world has typically been conducted using radar methods, either ground-based or from an airborne platform. Radar is an excellent method if the penetrated material has a low electrical conductivity, but in materials with higher conductivity, such as sediments with liquid water, the energy is attenuated . Such cases are efficiently explored with electromagnetic methods, which attenuate less quickly in conductive media and can therefore 'see through' conductors and return valuable information about their electrical properties. In 2011, we used a helicopter-borne, time-domain electromagnetic sensor to map resistivity in the subsurface across the McMurdo Dry Valleys (MDV). The MDV are a polar desert in coastal Antarctica where glaciers, permafrost, ice-covered lakes, and ephemeral summer streams coexist. In polar environments, this airborne electromagnetic system excels at finding subsurface liquid water, as water which remains liquid under cold conditions must be sufficiently saline, and therefore electrically conductive. In Taylor Valley, in the MDV, our data show extensive subsurface low resistivity layers beneath higher resistivity layers, which we interpret as cryoconcentrated hypersaline brines lying beneath glaciers and frozen permafrost. These brines appear to be contiguous with surface lakes, subglacial regions, and the Ross Sea, which could indicate a regional hydrogeologic system wherein solutes may be transported between surface reservoirs by ionic diffusion and subsurface flow. The system as of 2011 had a maximum exploration depth of about 300 m. However, newer and more powerful airborne systems can explore to a depth of 500 - 600 m and new ground based instruments will get to 1000 m. This is sufficient to penetrate to the base of

  9. The Geoid Slope Validation Survey 2014 and GRAV-D airborne gravity enhanced geoid comparison results in Iowa

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Becker, C.; Mader, G.; Martin, D.; Li, X.; Jiang, T.; Breidenbach, S.; Geoghegan, C.; Winester, D.; Guillaume, S.; Bürki, B.

    2017-10-01

    Three Geoid Slope Validation Surveys were planned by the National Geodetic Survey for validating geoid improvement gained by incorporating airborne gravity data collected by the "Gravity for the Redefinition of the American Vertical Datum" (GRAV-D) project in flat, medium and rough topographic areas, respectively. The first survey GSVS11 over a flat topographic area in Texas confirmed that a 1-cm differential accuracy geoid over baseline lengths between 0.4 and 320 km is achievable with GRAV-D data included (Smith et al. in J Geod 87:885-907, 2013). The second survey, Geoid Slope Validation Survey 2014 (GSVS14) took place in Iowa in an area with moderate topography but significant gravity variation. Two sets of geoidal heights were computed from GPS/leveling data and observed astrogeodetic deflections of the vertical at 204 GSVS14 official marks. They agree with each other at a {± }1.2 cm level, which attests to the high quality of the GSVS14 data. In total, four geoid models were computed. Three models combined the GOCO03/5S satellite gravity model with terrestrial and GRAV-D gravity with different strategies. The fourth model, called xGEOID15A, had no airborne gravity data and served as the benchmark to quantify the contribution of GRAV-D to the geoid improvement. The comparisons show that each model agrees with the GPS/leveling geoid height by 1.5 cm in mark-by-mark comparisons. In differential comparisons, all geoid models have a predicted accuracy of 1-2 cm at baseline lengths from 1.6 to 247 km. The contribution of GRAV-D is not apparent due to a 9-cm slope in the western 50-km section of the traverse for all gravimetric geoid models, and it was determined that the slopes have been caused by a 5 mGal bias in the terrestrial gravity data. If that western 50-km section of the testing line is excluded in the comparisons, then the improvement with GRAV-D is clearly evident. In that case, 1-cm differential accuracy on baselines of any length is achieved with the

  10. Airborne East Coast/Midwest urban survey at 121.5/243 MHz. [radio frequency interference measurement

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1979-01-01

    Results of an airborne RF interference measurement survey of the emergency-distress, Search and Rescue frequency bands at 121.5 and 243 MHz at an altitude of 25,000 ft over the U.S. East Coast and Midwest urban areas are presented. Included are a series of minutely median profile plots of antenna-noise temperature computed from RF interference power measurements at the output terminal of a quarter-wavelength monopole antenna, for both daytime and nighttime observations. The greatest value, 450,000 K, of minutely median temperature was recorded over New York City at 121.5 MHz during the day. East Coast urban areas exhibited a day-night effect at 121.5 MHz, where nighttime observations had a median value of 8.6-dB below daytime values; Midwest counterparts did not exhibit a significant day-night effect at 121.5 MHz.

  11. Magnetic mapping around Les Saintes islands (Lesser Antilles, Guadeloupe) for structural interpretation

    NASA Astrophysics Data System (ADS)

    Mercier de Lépinay, J.; Munschy, M.; Géraud, Y.; Diraison, M.; Navelot, V.; Verati, C.; Corsini, M.; Lardeaux, J. M.

    2016-12-01

    In Les Saintes archipelago, the outcrop analysis of Terre-de-Haut island allows to point out several fault systems and geological objects such as lava domes and lava flows. Moreover an exhumed geothermal paleo-system was identified and is thought to be an interesting analogue of the active geothermal system of Bouillante, Guadeloupe. To fully understand this area, the offshore continuation of the geological features is a major concern. The previously known onshore features are visible on airborne magnetic maps due to the highly magnetized material in Les Saintes archipelago. Moreover hydrothermal processes alter the magnetized minerals of volcanic rocks, creating a significant variation in the magnetic measurements. Therefore an adapted marine magnetic study can help the geological understanding of this particular area. In order to correctly link the offshore and onshore structures, the magnetic survey must be close enough to the shoreline and detailed enough so as to correctly outline the tectonic structures. An appropriate solution for such a survey was to use a magnetometer aboard a speedboat. Such a boat allows more navigation flexibility than a classic oceanic vessel towing a magnetometer; it can sail at higher speed on calm seas and closer to the shoreline. This kind of set up is only viable because the magnetic effect of the ship can be compensated using the same algorithms than those used for airborne magnetometry. Studies were implemented through the GEOTREF program which benefits from the support of both the ADEME and the French public funds "Investments for the future". The use of magnetic field transformations allows a large variety of structures to be highlighted, providing insights that help to build a general understanding of the nature and distribution of the magnetic sources. Using a reduction to the pole map operator we are able to prolong the volcanic structures at sea. The marine part of the paleo-geothermal system extension is also roughly

  12. A Flight Test of the Strapdown Airborne Gravimeter SGA-WZ in Greenland

    PubMed Central

    Zhao, Lei; Forsberg, René; Wu, Meiping; Olesen, Arne Vestergaard; Zhang, Kaidong; Cao, Juliang

    2015-01-01

    An airborne gravimeter is one of the most important tools for gravity data collection over large areas with mGal accuracy and a spatial resolution of several kilometers. In August 2012, a flight test was carried out to determine the feasibility and to assess the accuracy of the new Chinese SGA-WZ strapdown airborne gravimeter in Greenland, in an area with good gravity coverage from earlier marine and airborne surveys. An overview of this new system SGA-WZ is given, including system design, sensor performance and data processing. The processing of the SGA-WZ includes a 160 s length finite impulse response filter, corresponding to a spatial resolution of 6 km. For the primary repeated line, a mean r.m.s. deviation of the differences was less than 1.5 mGal, with the error estimate confirmed from ground truth data. This implies that the SGA-WZ could meet standard geophysical survey requirements at the 1 mGal level. PMID:26057039

  13. Comparison of New Airborne Gravity Results and GRACE Anomalies in the Thwaites Glacier Catchment of the Amundsen Sea Embayment, West Antarctica

    NASA Astrophysics Data System (ADS)

    Diehl, T. M.; Holt, J. W.; Blankenship, D. D.; Richter, T. G.; Filina, I. Y.

    2005-12-01

    The West Antarctic Ice Sheet is a marine ice sheet of which 75% is resting on bedrock below sea level. This situation is highly unstable and as the climate warms, the potential for rapid discharge of the ice sheet grows. Examining the areas of the ice sheet that are most likely to react to changing climate is essential. The Amundsen Sea Embayment contains two of the most important outlet glaciers in West Antarctica: Thwaites and Pine Island Glaciers. These two glaciers have among the highest discharge velocities in West Antarctica and they lack large protective ice shelves, making them susceptible to warming ocean waters. The area is currently a target of interest for both GRACE and GLAS, as well as future land- and air-based surveys. To date, we have conducted the only large-scale geophysical survey over the catchment of Thwaites Glacier: an airborne survey completed during the austral summer 2004-2005. Over 43,500 line-kilometers of data were collected with a geophysical platform that included ice-penetrating radar, gravity, magnetics, laser and pressure altimetry, and GPS. Free-air gravity, in conjunction with magnetics and radar-derived subglacial topography, is capable of delineating microplate and rift boundaries as well as basin and volcano locations. A free-air gravity map of these structures helps ascertain the contribution of subglacial geology to the ice sheet's decay in the Thwaites Glacier catchment. The acquisition, reduction, and initial results of the airborne gravity survey will be presented and then compared to GRACE gravity anomalies. Extreme relief in ice surface elevation across the survey area necessitated short, smooth vertical altitude changes at survey block boundaries to maintain adequate flight altitude for the onboard ice-penetrating radar systems. Weather conditions sometimes required additional elevation changes or course corrections, producing significant aircraft motion during data acquisition. The impacts of these aircraft motions

  14. Evaluation of airborne topographic lidar for quantifying beach changes

    USGS Publications Warehouse

    Sallenger, A.H.; Krabill, W.B.; Swift, R.N.; Brock, J.; List, J.; Hansen, M.; Holman, R.A.; Manizade, S.; Sontag, J.; Meredith, A.; Morgan, K.; Yunkel, J.K.; Frederick, E.B.; Stockdon, H.

    2003-01-01

    A scanning airborne topographic lidar was evaluated for its ability to quantify beach topography and changes during the Sandy Duck experiment in 1997 along the North Carolina coast. Elevation estimates, acquired with NASA's Airborne Topographic Mapper (ATM), were compared to elevations measured with three types of ground-based measurements - 1) differential GPS equipped all-terrain vehicle (ATV) that surveyed a 3-km reach of beach from the shoreline to the dune, 2) GPS antenna mounted on a stadia rod used to intensely survey a different 100 m reach of beach, and 3) a second GPS-equipped ATV that surveyed a 70-km-long transect along the coast. Over 40,000 individual intercomparisons between ATM and ground surveys were calculated. RMS vertical differences associated with the ATM when compared to ground measurements ranged from 13 to 19 cm. Considering all of the intercomparisons together, RMS ??? 15 cm. This RMS error represents a total error for individual elevation estimates including uncertainties associated with random and mean errors. The latter was the largest source of error and was attributed to drift in differential GPS. The ??? 15 cm vertical accuracy of the ATM is adequate to resolve beach-change signals typical of the impact of storms. For example, ATM surveys of Assateague Island (spanning the border of MD and VA) prior to and immediately following a severe northeaster showed vertical beach changes in places greater than 2 m, much greater than expected errors associated with the ATM. A major asset of airborne lidar is the high spatial data density. Measurements of elevation are acquired every few m2 over regional scales of hundreds of kilometers. Hence, many scales of beach morphology and change can be resolved, from beach cusps tens of meters in wavelength to entire coastal cells comprising tens to hundreds of kilometers of coast. Topographic lidars similar to the ATM are becoming increasingly available from commercial vendors and should, in the future

  15. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

    NASA Astrophysics Data System (ADS)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-03-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  16. Detailed magnetic survey at Dahshour archeological sites Southwest Cairo, Egypt

    NASA Astrophysics Data System (ADS)

    Mekkawi, Mahmoud; Arafa-Hamed, Tarek; Abdellatif, Tareq

    2013-06-01

    Dahshour area has recently shown a great potential of archeological findings. This was remarkable from the latest discovery of the causeway and the mortuary temple of the Pyramid of Amenemhat III using geophysical data. The main objective of the present work is to locate the buried archeological remains in the area of Dahshour, Southwest Cairo using magnetic survey for shallow investigations. Land magnetic data is acquired using proton magnetometer (two sensors) with a sensor separation of 0.8 m; i.e. gradiometer survey. The study area is located nearby the two known pyramids of Dahshour. The field data is processed and analyzed using Oasis Montaj Geosoft™ software. The processed data is presented in order to delineate the hidden artifacts causing the magnetic anomalies. The results indicated a distribution of the buried archeological features within the study area. These archeological features are detected according to the magnetic contrast between the magnetic archeological sources (such as mud bricks, basalt and granite) and the surroundings; mainly sandy soil. The delineated archeological features at Dahshour are probably dated back to the old kingdom having a depth reach up to 3.0 m. Consequently it is highly recommended to carry out excavation to precisely classify them and high light their nature and value.

  17. Using an Optionally Piloted Aircraft for Airborne Gravity Observations with the NOAA GRAV-D Project

    NASA Astrophysics Data System (ADS)

    Youngman, M.; Johnson, J. A.; van Westrum, D.; Damiani, T.

    2017-12-01

    The U.S. National Geodetic Survey's (NGS) Gravity for the Redefintion of the American Vertical Datum (GRAV-D) project is collecting airborne gravity data to support a 1 cm geoid. Started in 2008, this project will collect airborne gravity data over the entire U.S. and territories by 2022. As of June 30, 2017, the project was almost 62% complete. With recent technological developments, NGS has been exploring using unmanned aircraft for airborne gravity measurements. This presentation will focus on results from two surveys over the U.S. Appalachian and Rocky Mountains using the Aurora Centaur Optionally Piloted Aircraft and the Micro-g Lacoste Turnkey Airborne Gravimeter System 7 (TAGS7). Collecting high quality data as well as dealing with remote locations has been a challenge for the GRAV-D project and the field of airborne gravity in general. Unmanned aircraft could potentially improve data quality, handle hard to reach locations, and reduce pilot fatigue. The optionally piloted Centaur aircraft is an attractive option because it is not restricted in U.S. airspace and delivers high quality gravity data. Specifically, the Centaur meets U.S. Federal Aviation Administration regulations for Unmanned Aircraft Systems (UAS) by using a safety pilot on board to maintain line of sight and the ability to take control in the event of an emergency. Even though this is a sizeable UAS, most traditional gravimeters are too large and heavy for the platform. With a smaller and lighter design, the TAGS7 was used for its ability to conform to the aircraft's size restrictions, with the added benefit of upgraded performance capabilities. Two surveys were performed with this aircraft and gravimeter, one in April and one in August to September of 2017. Initial results indicate that the high-gain, fast response of the Centaur autopilot (optimized for flights without passengers), coupled with the full-force feedback sensor of the TAGS7, provides superior performance in all conditions, and

  18. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    NASA Astrophysics Data System (ADS)

    Li, Jing; Singh, Chandralekha

    2017-03-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper-pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  19. An Airborne Infrared Spectrometer for Solar Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Samra, Jenna; DeLuca, Edward E.; Golub, Leon; Cheimets, Peter; Philip, Judge

    2016-05-01

    The airborne infrared spectrometer (AIR-Spec) is an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). AIR-Spec will image five infrared coronal emission lines to determine whether they may be useful probes of coronal magnetism.The solar magnetic field provides the free energy that controls coronal heating, structure, and dynamics. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections and ultimately drives space weather. Therefore, direct coronal field measurements have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind.While current instruments routinely observe only the photospheric and chromospheric magnetic fields, AIR-Spec will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. During the total solar eclipse of 2017, AIR-Spec will observe five magnetically sensitive coronal emission lines between 1.4 and 4 µm from the HIAPER Gulfstream V at an altitude above 14.9 km. The instrument will measure emission line intensity, width, and Doppler shift, map the spatial distribution of infrared emitting plasma, and search for waves in the emission line velocities.AIR-Spec consists of an optical system (feed telescope, grating spectrometer, and infrared detector) and an image stabilization system, which uses a fast steering mirror to correct the line-of-sight for platform perturbations. To ensure that the instrument meets its research goals, both systems are undergoing extensive performance modeling and testing. These results are shown with reference to the science requirements.

  20. Airborne electromagnetic bathymetry investigations in Port Lincoln, South Australia - comparison with an equivalent floating transient electromagnetic system

    NASA Astrophysics Data System (ADS)

    Vrbancich, Julian

    2011-09-01

    Helicopter time-domain airborne electromagnetic (AEM) methodology is being investigated as a reconnaissance technique for bathymetric mapping in shallow coastal waters, especially in areas affected by water turbidity where light detection and ranging (LIDAR) and hyperspectral techniques may be limited. Previous studies in Port Lincoln, South Australia, used a floating AEM time-domain system to provide an upper limit to the expected bathymetric accuracy based on current technology for AEM systems. The survey lines traced by the towed floating system were also flown with an airborne system using the same transmitter and receiver electronic instrumentation, on two separate occasions. On the second occasion, significant improvements had been made to the instrumentation to reduce the system self-response at early times. A comparison of the interpreted water depths obtained from the airborne and floating systems is presented, showing the degradation in bathymetric accuracy obtained from the airborne data. An empirical data correction method based on modelled and observed EM responses over deep seawater (i.e. a quasi half-space response) at varying survey altitudes, combined with known seawater conductivity measured during the survey, can lead to significant improvements in interpreted water depths and serves as a useful method for checking system calibration. Another empirical data correction method based on observed and modelled EM responses in shallow water was shown to lead to similar improvements in interpreted water depths; however, this procedure is notably inferior to the quasi half-space response because more parameters need to be assumed in order to compute the modelled EM response. A comparison between the results of the two airborne surveys in Port Lincoln shows that uncorrected data obtained from the second airborne survey gives good agreement with known water depths without the need to apply any empirical corrections to the data. This result significantly

  1. South China Sea Tectonics and Magnetics: Constraints from IODP Expedition 349 and Deep-tow Magnetic Surveys

    NASA Astrophysics Data System (ADS)

    Lin, J.; Li, C. F.; Kulhanek, D. K.; Zhao, X.; Liu, Q.; Xu, X.; Sun, Z.; Zhu, J.

    2014-12-01

    The South China Sea (SCS) is the largest low-latitude marginal sea in the world. Its formation and evolution are linked to the complex continental-oceanic tectonic interaction of the Eurasian, Pacific, and Indo-Australian plates. Despite its relatively small size and short history, the SCS has undergone nearly a complete Wilson cycle from continental break-up to seafloor spreading to subduction. In January-March 2014, Expedition 349 of the International Ocean Discovery Program (IODP) drilled five sites in the deep basin of the SCS. Three sites (U1431, U1433, and U1434) cored into oceanic basement near the fossil spreading center on the East and Southwest Subbasins, whereas Sites U1432 and U1435 are located near the northern continent/ocean boundary of the East Subbasin. Shipboard biostratigraphy based on microfossils preserved in sediment directly above or within basement suggests that the preliminary cessation age of spreading in both the East and Southwest Subbasins is around early Miocene (16-20 Ma); however, post-cruise radiometric dating is being conducted to directly date the basement basalt in these subbasins. Prior to the IODP drilling, high-resolution near-seafloor magnetic surveys were conducted in 2012 and 2013 in the SCS with survey lines passing near the five IODP drilling sites. The deep-tow surveys revealed detailed patterns of the SCS magnetic anomalies with amplitude and spatial resolutions several times better than that of traditional sea surface measurements. Preliminary results reveal several episodes of magnetic reversal events that were not recognized by sea surface measurements. Together the IODP drilling and deep-tow magnetic surveys provide critical constraints for investigating the processes of seafloor spreading in the SCS and evolution of a mid-ocean ridge from active spreading to termination.

  2. A BCool survey of the magnetic fields of planet-hosting solar-type stars

    NASA Astrophysics Data System (ADS)

    Mengel, M. W.; Marsden, S. C.; Carter, B. D.; Horner, J.; King, R.; Fares, R.; Jeffers, S. V.; Petit, P.; Vidotto, A. A.; Morin, J.; BCool Collaboration

    2017-03-01

    We present a spectropolarimetric snapshot survey of solar-type planet-hosting stars. In addition to 14 planet-hosting stars observed as part of the BCool magnetic snapshot survey, we obtained magnetic observations of a further 19 planet-hosting solar-type stars in order to see if the presence of close-in planets had an effect on the measured surface magnetic field (|Bℓ|). Our results indicate that the magnetic activity of this sample is congruent with that of the overall BCool sample. The effects of the planetary systems on the magnetic activity of the parent star, if any, are too subtle to detect compared to the intrinsic dispersion and correlations with rotation, age and stellar activity proxies in our sample. Four of the 19 newly observed stars, two of which are subgiants, have unambiguously detected magnetic fields and are future targets for Zeeman-Doppler mapping.

  3. Airborne laser scanning for high-resolution mapping of Antarctica

    NASA Astrophysics Data System (ADS)

    Csatho, Bea; Schenk, Toni; Krabill, William; Wilson, Terry; Lyons, William; McKenzie, Garry; Hallam, Cheryl; Manizade, Serdar; Paulsen, Timothy

    In order to evaluate the potential of airborne laser scanning for topographic mapping in Antarctica and to establish calibration/validation sites for NASA's Ice, Cloud and land Elevation Satellite (ICESat) altimeter mission, NASA, the U.S. National Science Foundation (NSF), and the U.S. Geological Survey (USGS) joined forces to collect high-resolution airborne laser scanning data.In a two-week campaign during the 2001-2002 austral summer, NASA's Airborne Topographic Mapper (ATM) system was used to collect data over several sites in the McMurdo Sound area of Antarctica (Figure 1a). From the recorded signals, NASA computed laser points and The Ohio State University (OSU) completed the elaborate computation/verification of high-resolution Digital Elevation Models (DEMs) in 2003. This article reports about the DEM generation and some exemplary results from scientists using the geomorphologic information from the DEMs during the 2003-2004 field season.

  4. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  5. Evaluation of airborne topographic lidar for quantifying beach changes

    USGS Publications Warehouse

    2003-01-01

    A scanning airborne topographic lidar was evaluated for its ability to quantify beach topography and changes during the Sandy Duck experiment in 1997 along the North Carolina coast. Elevation estimates, acquired with NASA's Airborne Topographic Mapper (ATM), were compared to elevations measured with three types of ground-based mea- surements-1) differential GPS equipped all-terrain vehicle (ATV) that surveyed a 3-km reach of beach from the shoreline to the dune, 2) GPS antenna mounted on a stadia rod used to intensely survey a different 100 m reach of beach, and 3) a second GPS-equipped ATV that surveyed a 70-km-long transect along the coast. Over 40,000 individual intercomparisons between ATM and ground surveys were calculated. RMS vertical differences associated with the ATM when compared to ground measurements ranged from 13 to 19 cm. Considering all of the intercomparisons together, RMS ≃15 cm. This RMS error represents a total error for individual elevation estimates including uncertainties associated with random and mean errors. The latter was the largest source of error and was attributed to drift in differential GPS. The ≃15cm vertical accuracy of the ATM is adequate to resolve beach-change signals typical of the impact of storms. For example, ATM surveys of Assateague Island (spanning the border of MD and VA) prior to and immediately following a severe northeaster showed vertical beach changes in places greater than 2 m, much greater than expected errors associated with the ATM. A major asset of airborne lidar is the high spatial data density. Measurements of elevation are acquired every few m2 over regional scales of hundreds of kilometers. Hence, many scales of beach morphology and change can be resolved, from beach cusps tens of meters in wavelength to entire coastal cells com- prising tens to hundreds of kilometers of coast. Topographic lidars similar to the ATM are becoming increasingly available from commercial vendors and should, in the future

  6. Changes at an activated sludge sewage treatment plant alter the numbers of airborne aerobic microorganisms.

    PubMed

    Fernando, Nadeesha L; Fedorak, Phillip M

    2005-11-01

    In 1976, the activated sludge sewage treatment plant in Edmonton, Canada, was surveyed to determine the numbers of culturable airborne microorganisms. Many changes have been made at the plant to reduce odors and improve treatment efficiency, so in 2004 another survey was done to determine if these changes had reduced the bioaerosols. Covering the grit tanks and primary settling tanks greatly reduced the numbers of airborne microbes. Changing the design and operation of indoor automated sampling taps and sinks also reduced bioaerosols. The secondary was expanded and converted from a conventional activated sludge process using coarse bubble aeration to a biological nutrient removal system using fine bubble aeration. Although the surface area of the secondary more than doubled, the average number of airborne microorganisms in this part of the plant in 2004 was about 1% of that in 1976.

  7. Water depth measurement using an airborne pulsed neon laser system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Frederick, E. B.

    1980-01-01

    The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.

  8. Role Stratospheric Balloon Magnetic Surveys in Development of Analytical Global Models of the Geomagnetic Field

    NASA Astrophysics Data System (ADS)

    Brekhov, O. M.; Tsvetkov, Yu. P.; Ivanov, V. V.; Filippov, S. V.; Tsvetkova, N. M.

    2015-09-01

    The results of stratospheric balloon gradient geomagnetic surveys at an altitude of ‘-~3O km with the use of the long (6 km) measuring base oriented along the vertical line are considered. The purposes of these surveys are the study of the magnetic field formed by deep sources, and the estimation of errors in modern analytical models of the geomagnetic field. The independent method of determination of errors in global analytical models of the normal magnetic field of the Earth (MFE) is substantiated. The new technique of identification of magnetic anomalies from surveys on long routes is considered. The analysis of gradient magnetic surveys on board the balloon, revealed the previously unknown features of the geomagnetic field. Using the balloon data, the EMM/720 model of the geomagnetic field (http://www.ngdc.noaa.gov/geomag/EMM) is investigated, and it is shown that this model unsatisfactorily represents the anomalous MFE, at least, at an altitude of 30 km, in the area our surveys. The unsatisfactory quality of aeromagnetic (ground-based) data is also revealed by the method of wavelet analysis of the ground-based and balloon magnetic profiles. It is shown, that the ground-based profiles do not contain inhomogeneities more than 1 30 km in size, whereas the balloon profiles (1000 km in the strike extent) contain inhomogeneities up to 600 km in size an the location of the latte coincides with the location of the satellite magnetic anomaly. On the basis of balloon data is shown, it that low-altitude aeromagnetic surveys, due to fundamental reasons, incorrectly reproduce the magnetic field of deep sources. This prevents the reliable conversion of ground-based magnetic anomalies upward from the surface of the Earth. It is shown, that an adequate global model of magnetic anomalies in the circumterrestrial space, developed up to 720 spherical harmonics, must be constructed only in accordance with the data obtained at satellite and stratospheric altitudes. Such a model

  9. Accuracy estimates for some global analytical models of the Earth's main magnetic field on the basis of data on gradient magnetic surveys at stratospheric balloons

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Yu. P.; Brekhov, O. M.; Bondar, T. N.; Filippov, S. V.; Petrov, V. G.; Tsvetkova, N. M.; Frunze, A. Kh.

    2014-03-01

    Two global analytical models of the main magnetic field of the Earth (MFE) have been used to determine their potential in deriving an anomalous MFE from balloon magnetic surveys conducted at altitudes of ˜30 km. The daily mean spherical harmonic model (DMSHM) constructed from satellite data on the day of balloon magnetic surveys was analyzed. This model for the day of magnetic surveys was shown to be almost free of errors associated with secular variations and can be recommended for deriving an anomalous MFE. The error of the enhanced magnetic model (EMM) was estimated depending on the number of harmonics used in the model. The model limited by the first 13 harmonics was shown to be able to lead to errors in the main MFE of around 15 nT. The EMM developed to n = m = 720 and constructed on the basis of satellite and ground-based magnetic data fails to adequately simulate the anomalous MFE at altitudes of 30 km. To construct a representative model developed to m = n = 720, ground-based magnetic data should be replaced by data of balloon magnetic surveys for altitudes of ˜30 km. The results of investigations were confirmed by a balloon experiment conducted by Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences and the Moscow Aviation Institute.

  10. Airborne hyperspectral and LiDAR data integration for weed detection

    NASA Astrophysics Data System (ADS)

    Tamás, János; Lehoczky, Éva; Fehér, János; Fórián, Tünde; Nagy, Attila; Bozsik, Éva; Gálya, Bernadett; Riczu, Péter

    2014-05-01

    Agriculture uses 70% of global available fresh water. However, ca. 50-70% of water used by cultivated plants, the rest of water transpirated by the weeds. Thus, to define the distribution of weeds is very important in precision agriculture and horticulture as well. To survey weeds on larger fields by traditional methods is often time consuming. Remote sensing instruments are useful to detect weeds in larger area. In our investigation a 3D airborne laser scanner (RIEGL LMS-Q680i) was used in agricultural field near Sopron to scouting weeds. Beside the airborne LiDAR, hyperspectral imaging system (AISA DUAL) and air photos helped to investigate weed coverage. The LiDAR survey was carried out at early April, 2012, before sprouting of cultivated plants. Thus, there could be detected emerging of weeds and direction of cultivation. However airborne LiDAR system was ideal to detect weeds, identification of weeds at species level was infeasible. Higher point density LiDAR - Terrestrial laser scanning - systems are appropriate to distinguish weed species. Based on the results, laser scanner is an effective tool to scouting of weeds. Appropriate weed detection and mapping systems could contribute to elaborate water and herbicide saving management technique. This publication was supported by the OTKA project K 105789.

  11. A magnetic survey of AP stars in young clusters - Preliminary results

    NASA Astrophysics Data System (ADS)

    Brown, D. N.; Landstreet, J. D.; Thompson, I.

    Photoelectric polarimetry of Ap stars was undertaken in order to investigate the role of magnetic fields in the evolution of atmospheric chemical peculiarities and the braking of stellar rotation. The stars are grouped by cluster or association and listed by HD number, and each star's spectral type, reference for classification, number of magnetic observations, and root mean square of the equivalent magnetic field measurements obtained from an expression are shown. The data obtained to date include several new magnetic identifications and display the character of the survey, but are not yet sufficient to support any firm evolutionary conclusions.

  12. Generating Continuous Surface Probability Maps from Airborne Video Using Two Sampling Intensities Along the Video Transect

    Treesearch

    Dennis M. Jacobs; William H. Cooke

    2000-01-01

    Airborne videography can be an effective tool for assessing the effects of catastrophic events on forest conditions. However, there is some question about the appropriate sampling intensity to use, especially when trying to develop correlations with probabilistic data sets such as are assembled through the Forest Inventory and Analysis (FIA) surveys. We used airborne...

  13. The historical development of the magnetic method in exploration

    USGS Publications Warehouse

    Nabighian, M.N.; Grauch, V.J.S.; Hansen, R.O.; LaFehr, T.R.; Li, Y.; Peirce, J.W.; Phillips, J.D.; Ruder, M.E.

    2005-01-01

    The magnetic method, perhaps the oldest of geophysical exploration techniques, blossomed after the advent of airborne surveys in World War II. With improvements in instrumentation, navigation, and platform compensation, it is now possible to map the entire crustal section at a variety of scales, from strongly magnetic basement at regional scale to weakly magnetic sedimentary contacts at local scale. Methods of data filtering, display, and interpretation have also advanced, especially with the availability of low-cost, high-performance personal computers and color raster graphics. The magnetic method is the primary exploration tool in the search for minerals. In other arenas, the magnetic method has evolved from its sole use for mapping basement structure to include a wide range of new applications, such as locating intrasedimentary faults, defining subtle lithologic contacts, mapping salt domes in weakly magnetic sediments, and better defining targets through 3D inversion. These new applications have increased the method's utility in all realms of exploration - in the search for minerals, oil and gas, geothermal resources, and groundwater, and for a variety of other purposes such as natural hazards assessment, mapping impact structures, and engineering and environmental studies. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  14. Assessment of NASA Airborne Laser Altimetry Data Using Ground-Based GPS Data near Summit Station, Greenland

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-01-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airbornelaser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface elevation biases for these altimeters over the flat, ice-sheet interior are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  15. Aeromagnetic Survey in Afghanistan: A Website for Distribution of Data

    USGS Publications Warehouse

    Abraham, Jared D.; Anderson, Eric D.; Drenth, Benjamin J.; Finn, Carol A.; Kucks, Robert P.; Lindsay, Charles R.; Phillips, Jeffrey D.; Sweeney, Ronald E.

    2007-01-01

    Afghanistan's geologic setting indicates significant natural resource potential While important mineral deposits and petroleum resources have been identified, much of the country's potential remains unknown. Airborne geophysical surveys are a well accepted and cost effective method for obtaining information of the geological setting of an area without the need to be physically located on the ground. Due to the security situation and the large areas of the country of Afghanistan that has not been covered with geophysical exploration methods a regional airborne geophysical survey was proposed. Acting upon the request of the Islamic Republic of Afghanistan Ministry of Mines, the U.S. Geological Survey contracted with the Naval Research Laboratory to jointly conduct an airborne geophysical and remote sensing survey of Afghanistan.

  16. Modelling of Surface Fault Structures Based on Ground Magnetic Survey

    NASA Astrophysics Data System (ADS)

    Michels, A.; McEnroe, S. A.

    2017-12-01

    The island of Leka confines the exposure of the Leka Ophiolite Complex (LOC) which contains mantle and crustal rocks and provides a rare opportunity to study the magnetic properties and response of these formations. The LOC is comprised of five rock units: (1) harzburgite that is strongly deformed, shifting into an increasingly olivine-rich dunite (2) ultramafic cumulates with layers of olivine, chromite, clinopyroxene and orthopyroxene. These cumulates are overlain by (3) metagabbros, which are cut by (4) metabasaltic dykes and (5) pillow lavas (Furnes et al. 1988). Over the course of three field seasons a detailed ground-magnetic survey was made over the island covering all units of the LOC and collecting samples from 109 sites for magnetic measurements. NRM, susceptibility, density and hysteresis properties were measured. In total 66% of samples with a Q value > 1, suggests that the magnetic anomalies should include both induced and remanent components in the model.This Ophiolite originated from a suprasubduction zone near the coast of Laurentia (497±2 Ma), was obducted onto Laurentia (≈460 Ma) and then transferred to Baltica during the Caledonide Orogeny (≈430 Ma). The LOC was faulted, deformed and serpentinized during these events. The gabbro and ultramafic rocks are separated by a normal fault. The dominant magnetic anomaly that crosses the island correlates with this normal fault. There are a series of smaller scale faults that are parallel to this and some correspond to local highs that can be highlighted by a tilt derivative of the magnetic data. These fault boundaries which are well delineated by the distinct magnetic anomalies in both ground and aeromagnetic survey data are likely caused by increased amount of serpentinization of the ultramafic rocks in the fault areas.

  17. Airborne gravimetry for geoid, geopotential models and GOCE - Himalaya and Antarctica cases (Invited)

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Olesen, A. V.

    2013-12-01

    DTU-Space has since many years carried out large area airborne surveys over both polar, tropical and temperate regions, especially for geoid determination and global geopotential models. Recently we have started flying two gravimeters (LCR and Chekan-AM) side by side for increased reliability and redundancy. Typical gravity results are at the 2 mGal rms level, translating into 5-10 cm accuracy in geoid. However, in rough mountainous areas results can be more noisy, mainly due to long-period mountain waves and turbulence. In the paper we outline results of recent challenging campaigns in Nepal (2010) and Antarctica (Antarctic Peninsula and East Antarctica, 2010-13). The latest Antarctic campaign 2012/13, carried out in cooperation with the British Antarctic Survey, Norwegian Polar Institute, and the Argentine Antarctic Institute, involved air drops of fuel to a remote field camp in the Recovery Lakes region, one of the least explored region of deep interior Antarctica. The airborne data collected are validated by cross-over comparisons and comparisons to independent data (IceBridge), and serve at the same time as an independent validation of GOCE satellite gravity data, confirming the satellite data to contain information at half-wavelengths down to 80 km. With no bias between the airborne data and GOCE, airborne gravimetry is perfectly suited to cover the GOCE data gap south of 83 S. We recommend an international, coordinated airborne gravity effort should be carried out over the south polar gap as soon as possible, to ensure a uniform global accuracy of GOCE heritage future geopotential models.

  18. Laboratory analysis and airborne detection of materials stimulated to luminesce by the sun

    USGS Publications Warehouse

    Hemphill, W.R.; Theisen, A.F.; Tyson, R.M.

    1984-01-01

    The Fraunhofer line discriminator (FLD) is an airborne electro-optical device used to image materials which have been stimulated to luminesce by the Sun. Such materials include uranium-bearing sandstone, sedimentary phosphate rock, marine oil seeps, and stressed vegetation. Prior to conducting an airborne survey, a fluorescence spectrometer may be used in the laboratory to determine the spectral region where samples of the target material exhibit maximum luminescence, and to select the optimum Fraunhofer line. ?? 1984.

  19. Aerial gamma ray and magnetic survey, Mississippi and Florida airborne survey: Baton Rouge quadrangle, Louisiana and Mississippi. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    The Baton Rouge quadrangle covers 8250 square miles in the Mississippi River delta area. The area overlies thick sections of the Gulf of Mexico Basin. Surficial exposures are dominated by Recent and Pleistocene sediment. A search of available literature revealed no known uranium deposits. A total of 87 uranium anomalies were detected and are discussed briefly in this report. None were considered significant and all appear to relate to cultural features. Magnetic data appears to be in agreement with existing structural interpretations of the area.

  20. Geophysical survey within the Mesozoic magnetic anomaly sequence south of Bermuda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purdy, G.M.; Rohr, K.

    1979-09-10

    This geophysical survey of an approximate 1/sup 0/ square covers Mesozoic magnetic anomalies M0, M2, and M4 south of Bermuda. Bathymetry, magnetics seismic reflection profiling, and seismic refraction data are presented. The isochron trend within the survey area at magnetic anomaly M4 times is 025/sup 0/. Two left lateral fracture zones exist: the southern fracture zone has an offset of <10 km at M4 time and 33 km at M0 time. The northern fracture zone has an offset of 37 km at M4 time and 26 km at M0 time. These changes in ofsett are accounted for by asymmetric spreading,more » an 11/sup 0/ change in trend of anomaly M0 relative to M4, and by M0 time, growth of a small right lateral fracture zone. Seismic refraction data provide poor control on the shallow crustal structure but suggest the presence of significant lateral inhomogeneities with layer 2.« less

  1. Calculation and Analysis of Magnetic Gradient Tensor Components of Global Magnetic Models

    NASA Astrophysics Data System (ADS)

    Schiffler, M.; Queitsch, M.; Schneider, M.; Goepel, A.; Stolz, R.; Krech, W.; Meyer, H. G.; Kukowski, N.

    2014-12-01

    Global Earth's magnetic field models like the International Geomagnetic Reference Field (IGRF), the World Magnetic Model (WMM) or the High Definition Geomagnetic Model (HDGM) are harmonic analysis regressions to available magnetic observations stored as spherical harmonic coefficients. Input data combine recordings from magnetic observatories, airborne magnetic surveys and satellite data. The advance of recent magnetic satellite missions like SWARM and its predecessors like CHAMP offer high resolution measurements while providing a full global coverage. This deserves expansion of the theoretical framework of harmonic synthesis to magnetic gradient tensor components. Measurement setups for Full Tensor Magnetic Gradiometry equipped with high sensitive gradiometers like the JeSSY STAR system can directly measure the gradient tensor components, which requires precise knowledge about the background regional gradients which can be calculated with this extension. In this study we develop the theoretical framework for calculation of the magnetic gradient tensor components from the harmonic series expansion and apply our approach to the IGRF and HDGM. The gradient tensor component maps for entire Earth's surface produced for the IGRF show low gradients reflecting the variation from the dipolar character, whereas maps for the HDGM (up to degree N=729) reveal new information about crustal structure, especially across the oceans, and deeply situated ore bodies. From the gradient tensor components, the rotational invariants, the Eigenvalues, and the normalized source strength (NSS) are calculated. The NSS focuses on shallower and stronger anomalies. Euler deconvolution using either the tensor components or the NSS applied to the HDGM reveals an estimate of the average source depth for the entire magnetic crust as well as individual plutons and ore bodies. The NSS reveals the boundaries between the anomalies of major continental provinces like southern Africa or the Eastern

  2. Strapdown Airborne Gravimetry Quality Assessment Method Based on Single Survey Line Data: A Study by SGA-WZ02 Gravimeter

    PubMed Central

    Wu, Meiping; Cao, Juliang; Zhang, Kaidong; Cai, Shaokun; Yu, Ruihang

    2018-01-01

    Quality assessment is an important part in the strapdown airborne gravimetry. Root mean square error (RMSE) evaluation method is a classical way to evaluate the gravimetry quality, but classical evaluation methods are preconditioned by extra flight or reference data. Thus, a method, which is able to largely conquer the premises of classical quality assessment methods and can be used in single survey line, has been developed in this paper. According to theoretical analysis, the method chooses the stability of two horizontal attitude angles, horizontal specific force and vertical specific force as the determinants of quality assessment method. The actual data, collected by SGA-WZ02 from 13 flights 21 lines in certain survey, was used to build the model and elaborate the method. To substantiate the performance of the quality assessment model, the model is applied in extra repeat line flights from two surveys. Compared with internal RMSE, standard deviation of assessment residuals are 0.23 mGal and 0.16 mGal in two surveys, which shows that the quality assessment method is reliable and stricter. The extra flights are not necessary by specially arranging the route of flights. The method, summarized from SGA-WZ02, is a feasible approach to assess gravimetry quality using single line data and is also suitable for other strapdown gravimeters. PMID:29373535

  3. Novel views of the lithospheric magnetic field for hazard mitigation, tectonics, and geology

    NASA Astrophysics Data System (ADS)

    Purucker, M. E.; Blakely, R. J.; Nelson, J. B.; Bracken, R.; White, T.

    2016-12-01

    The altitude of magnetic field observations is critical for high-resolution mapping. We advocate two views of the lithospheric magnetic field, at altitudes of 20 and 90 km. Magnetic surveys are most sensitive to sources with wavelengths comparable to the altitude of the survey. Thus, low-altitude satellite surveys emphasize wavelengths greater than 300 km, such as subduction zones and the continent-ocean contrast. Magnetic sources elongated along satellite tracks are subdued, however, and lithospheric features are obscured in the auroral ovals around the magnetic poles. Near-surface surveys (0.1 to 5 km altitudes) are sensitive to tectonic and upper-crustal geologic sources. There are many under-explored regions, even in this near-surface realm, notably the Antarctic and the southern oceans. Few magnetic surveys are available between airborne ( 5 km) and orbital altitudes ( 300 km), and this lack of information reduces knowledge of geologic and tectonic features in this spectral band; e.g., sources associated with the lower crust or that encompass the whole crust are strongly suppressed because the average thickness of continental crust is 30 km. Technologies are being developed to acquire magnetic field information at suborbital altitudes with UAVs at altitudes of 20 km, and with a laser guide star technique for remote sensing at an altitude averaging 90 km. Use of the laser guide star technique on a polar-orbiting satellite with in-situ magnetometers would greatly facilitate separating ionospheric from lithospheric fields. Laser guide stars can be produced in Na-rich layers where micro-meteorite breakup occurs in a planetary or satellite system, and they are ubiquitous in the Solar System. The ideal observation platform at 20 km has small and well-characterized EM fields, can execute maneuvers that permit flying of tie lines, and can fly for long periods so as to survey large areas. A main limitation of surveying remote areas concerns the need for a local base

  4. Magnetization distribution of hydrothermal deposits from three component magnetometer survey using ROV in the Lau Basin, the southwestern Pacific

    NASA Astrophysics Data System (ADS)

    Kim, C.; Choi, S.; Park, C.

    2013-12-01

    Deep sea three component magnetic surveys, using ROV (Remotely Operated Vehicle), were conducted at Apr., 2011 and Jan., 2012 in TA25 and TA26 seamounts, the Lau Basin, the southwestern Pacific. At 2011, the survey area was only the western slope of the caldera of TA25 using IBRV(Ice Breaker Research Vessel) ARAON of KIOST (Korea Institute of Ocean Science & Technology) and ROV of Oceaneering Co. And, at Jan. 2012, the magnetic survey was conducted in the western (site A) and eastern (site B) slopes of the caldera of TA25 and the summit area of TA26 using German R/V SONNE and ROV of ROPOS Co. The 2011 and 2012 three component magnetic survey lines were the 13 N-S lines and the 29 N-S lines (TA25-East : 12 lines, TA25-West : 11 lines, TA26 : 6 lines) with about 100 m spacing, respectively. Also, we conducted the 8 figure circle rotation survey of ROV for magnetic calibration at 2011 and 2012. For the magnetic survey, the magnetometer sensor was attached with the line frame of ROV and the data logger and motion sensor in ROV. The three component magnetometer measure the X (North), Y (East) and Z (Vertical) vector components of a magnetic field. A motion sensor (Octans) provided us the data of pitch, roll, yaw for the correction of the magnetic data to the motion of ROV. In the survey, ROV followed the tracks of the plan at 50 m above seafloor. The data of the magnetometer and motion sensors and the USBL(Ultra Short Base Line) data of the position of ROV were recorded on a notebook through the optical cable of ROV. Hydrothermal fluids over Curie temperature can quickly alter or replace the iron-rich magnetic minerals, reducing the magnetic remanence of the crustal rocks, in some cases to near 0 A/m magnetization. Low magnetization zones occur in the south-western and northern parts of TA25 site A and the south-south-western, north-western and central parts of TA25 site B. TA26 has low magnetization zones in the central part. The low magnetization zones of the survey

  5. AIDA - from Airborne Data Inversion to In-Depth Analysis

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Goetze, H.; Schroeder, M.; Boerner, R.; Tezkan, B.; Winsemann, J.; Siemon, B.; Alvers, M.; Stoll, J. B.

    2011-12-01

    The rising competition in land use especially between water economy, agriculture, forestry, building material economy and other industries often leads to irreversible deterioration in the water and soil system (as salinization and degradation) which results in a long term damage of natural resources. A sustainable exploitation of the near subsurface by industry, economy and private households is a fundamental demand of a modern society. To fulfill this demand, a sound and comprehensive knowledge on structures and processes of the near subsurface is an important prerequisite. A spatial survey of the usable underground by aerogeophysical means and a subsequent ground geophysics survey targeted at special locations will deliver essential contributions within short time that make it possible to gain the needed additional knowledge. The complementary use of airborne and ground geophysics as well as the validation, assimilation and improvement of current findings by geological and hydrogeological investigations and plausibility tests leads to the following key questions: a) Which new and/or improved automatic algorithms (joint inversion, data assimilation and such) are useful to describe the structural setting of the usable subsurface by user specific characteristics as i.e. water volume, layer thicknesses, porosities etc.? b) What are the physical relations of the measured parameters (as electrical conductivities, magnetic susceptibilities, densities, etc.)? c) How can we deduce characteristics or parameters from the observations which describe near subsurface structures as ground water systems, their charge, discharge and recharge, vulnerabilities and other quantities? d) How plausible and realistic are the numerically obtained results in relation to user specific questions and parameters? e) Is it possible to compile material flux balances that describe spatial and time dependent impacts of environmental changes on aquifers and soils by repeated airborne surveys? In

  6. Aeromagnetic surveys in Afghanistan: An updated website for distribution of data

    USGS Publications Warehouse

    Shenwary, Ghulam Sakhi; Kohistany, Abdul Hakim; Hussain, Sardar; Ashan, Said; Mutty, Abdul Salam; Daud, Mohammad Ahmad; Wussow, Michael D.; Sweeney, Ronald E.; Phillips, Jeffrey D.; Lindsay, Charles R.; Kucks, Robert P.; Finn, Carol A.; Drenth, Benjamin J.; Anderson, Eric D.; Abraham, Jared D.; Liang, Robert T.; Jarvis, James L.; Gardner, Joan M.; Childers, Vicki A.; Ball, David C.; Brozena, John M.

    2011-01-01

    Because of its geologic setting, Afghanistan has the potential to contain substantial natural resources. Although valuable mineral deposits and petroleum resources have been identified, much of the country's potential remains unknown. Airborne geophysical surveys are a well accepted and cost effective method for obtaining information about the geological setting of an area without the need to be physically located on the ground. Owing to the current security situation and the large areas of the country that have not been evaluated by geophysical exploration methods, a regional airborne geophysical survey was proposed. Acting upon the request of the Islamic Republic of Afghanistan Ministry of Mines, the U.S. Geological Survey contracted with the Naval Research Laboratory to jointly conduct an airborne geophysical and remote sensing survey of Afghanistan.

  7. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring

    PubMed Central

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-01-01

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413

  8. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring.

    PubMed

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-09-30

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge.

  9. Michigan experimental multispectral mapping system: A description of the M7 airborne sensor and its performance

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.

    1974-01-01

    The development and characteristics of a multispectral band scanner for an airborne mapping system are discussed. The sensor operates in the ultraviolet, visual, and infrared frequencies. Any twelve of the bands may be selected for simultaneous, optically registered recording on a 14-track analog tape recorder. Multispectral imagery recorded on magnetic tape in the aircraft can be laboratory reproduced on film strips for visual analysis or optionally machine processed in analog and/or digital computers before display. The airborne system performance is analyzed.

  10. Absolute Magnetization Distribution on Back-arc Spreading Axis Hosting Hydrothermal Vents; Insight from Shinkai 6500 Magnetic Survey

    NASA Astrophysics Data System (ADS)

    Fujii, M.; Okino, K.; Honsho, C.; Mochizuki, N.; Szitkar, F.; Dyment, J.

    2013-12-01

    Near-bottom magnetic profiling using submersible, deep-tow, Remotely Operated Vehicle (ROV) and Autonomous Underwater Vehicle (AUV) make possible to conduct high-resolution surveys and depict detailed magnetic features reflecting, for instance, the presence of fresh lavas or hydrothermal alteration, or geomagnetic paleo-intensity variations. We conducted near-bottom three component magnetic measurements onboard submersible Shinkai 6500 in the Southern Mariana Trough, where five active hydrothermal vent fields (Snail, Yamanaka, Archean, Pica, and Urashima sites) have been found in both on- and off-axis areas of the active back-arc spreading center, to detect signals from hydrothermally altered rock and to distinguish old and new submarine lava flows. Fourteen dives were carried out at an altitude of 1-40 m during the R/V Yokosuka YK10-10 and YK10-11 cruises in 2010. We carefully corrected the effect of the induced and permanent magnetizations of the submersible by applying the correction method for the shipboard three-component magnetometer measurement modified for deep-sea measurement, and subtracted the IGRF values from the corrected data to obtain geomagnetic vector anomalies along the dive tracks. We then calculated the synthetic magnetic vector field produced by seafloor, assumed to be uniformly magnetized, using three dimensional forward modeling. Finally, values of the absolute magnetizations were estimated by using a linear transfer function in the Fourier domain from the observed and synthetic magnetic anomalies. The distribution of estimated absolute magnetization generally shows low values around the five hydrothermal vent sites. This result is consistent with the equivalent magnetization distribution obtained from previous AUV survey data. The areas of low magnetization are also consistent with hydrothermal deposits identified in video records. These results suggest that low magnetic signals are due to hydrothermal alteration zones where host rocks are

  11. Novel semi-airborne CSEM system for the exploration of mineral resources

    NASA Astrophysics Data System (ADS)

    Nittinger, Christian; Cherevatova, Maria; Becken, Michael; Rochlitz, Raphael; Günther, Thomas; Martin, Tina; Matzander, Ulrich

    2017-04-01

    Within the DESMEX project (Deep Electromagnetic Sounding for Mineral Exploration), a semi-airborne CSEM system for mineral exploration is developed which aims to achieve a penetration depth of 1 km with a large areal coverage. Harmonically Time-varying electrical currents are injected with a grounded transmitter in order to measure the electric field on the ground and induced magnetic fields with highly sensitive magnetic sensors in the air. To measure the magnetic field and its variations, three-axis induction coils (MFS-11e by Metronix) and fluxgate sensors (Bartington FGS-03) are mounted on the platform towed by a helicopter. In addition, there is a SQUID based magnetometer, developed by IPHT and Supracon AG, available for future measurements. We deploy the different magnetometer sensors to cover a broad frequency range of 1-10000Hz. During the flight, the sensors encounter a broad variety of motion/vibration which produces noise in the magnetic field sensors. Therefore, a high accuracy motion tracking system is installed within the bird and a low vibrating system design needs to be considered in the airborne sensor platform. We conducted several flights with different source positions in a test area in Germany, which is already covered by ground based measurements. Based on the data, we discuss possible calibration schemes which are needed to overcome orthogonality and scaling errors in the fluxgate data as well as orientation errors. We apply noise correction schemes to the data and calculate transfer functions between the magnetic field and the source current. First 1-D inversion models based on the estimated transfer functions are calculated and compared to existing conductivity models from DC geoelectrics and helicopter electromagnetic (HEM) measurements.

  12. Ground-Truthing of Airborne LiDAR Using RTK-GPS Surveyed Data in Coastal Louisiana's Wetlands

    NASA Astrophysics Data System (ADS)

    Lauve, R. M.; Alizad, K.; Hagen, S. C.

    2017-12-01

    Airborne LiDAR (Light Detection and Ranging) data are used by engineers and scientists to create bare earth digital elevation models (DEM), which are essential to modeling complex coastal, ecological, and hydrological systems. However, acquiring accurate bare earth elevations in coastal wetlands is difficult due to the density of marsh grasses that prevent the sensors reflection off the true ground surface. Previous work by Medeiros et al. [2015] developed a technique to assess LiDAR error and adjust elevations according to marsh vegetation density and index. The aim of this study is the collection of ground truth points and the investigation on the range of potential errors found in existing LiDAR datasets within coastal Louisiana's wetlands. Survey grids were mapped out in an area dominated by Spartina alterniflora and a survey-grade Trimble Real Time Kinematic (RTK) GPS device was employed to measure bare earth ground elevations in the marsh system adjacent to Terrebonne Bay, LA. Elevations were obtained for 20 meter-spaced surveyed grid points and were used to generate a DEM. The comparison between LiDAR derived and surveyed data DEMs yield an average difference of 23 cm with a maximum difference of 68 cm. Considering the local tidal range of 45 cm, these differences can introduce substantial error when the DEM is used for ecological modeling [Alizad et al., 2016]. Results from this study will be further analyzed and implemented in order to adjust LiDAR-derived DEMs closer to their true elevation across Louisiana's coastal wetlands. ReferencesAlizad, K., S. C. Hagen, J. T. Morris, S. C. Medeiros, M. V. Bilskie, and J. F. Weishampel (2016), Coastal wetland response to sea-level rise in a fluvial estuarine system, Earth's Future, 4(11), 483-497, 10.1002/2016EF000385. Medeiros, S., S. Hagen, J. Weishampel, and J. Angelo (2015), Adjusting Lidar-Derived Digital Terrain Models in Coastal Marshes Based on Estimated Aboveground Biomass Density, Remote Sensing, 7

  13. Overview of the magnetic properties experiments on the Mars Exploration Rovers

    NASA Astrophysics Data System (ADS)

    Madsen, M. B.; Goetz, W.; Bertelsen, P.; Binau, C. S.; Folkmann, F.; Gunnlaugsson, H. P.; Hjøllum, J.; Hviid, S. F.; Jensen, J.; Kinch, K. M.; Leer, K.; Madsen, D. E.; Merrison, J.; Olsen, M.; Arneson, H. M.; Bell, J. F.; Gellert, R.; Herkenhoff, K. E.; Johnson, J. R.; Johnson, M. J.; Klingelhöfer, G.; McCartney, E.; Ming, D. W.; Morris, R. V.; Proton, J. B.; Rodionov, D.; Sims, M.; Squyres, S. W.; Wdowiak, T.; Yen, A. S.

    2009-06-01

    The Mars Exploration Rovers have accumulated airborne dust on different types of permanent magnets. Images of these magnets document the dynamics of dust capture and removal over time. The strongly magnetic subset of airborne dust appears dark brown to black in Panoramic Camera (Pancam) images, while the weakly magnetic one is bright red. Images returned by the Microscopic Imager reveal the formation of magnetic chains diagnostic of magnetite-rich grains with substantial magnetization (>8 Am2 kg-1). On the basis of Mössbauer spectra the dust contains magnetite, olivine, pyroxene, and nanophase oxides in varying proportions, depending on wind regime and landing site. The dust contains a larger amount of ferric iron (Fe3+/Fetot ˜ 0.6) than rocks in the Gusev plains (˜0.1-0.2) or average Gusev soil (˜0.3). Alpha Particle X-Ray Spectrometer data of the dust show that some of the iron in magnetite is substituted by titanium and chromium. The good correlation of the amount of calcium and sulfur in the dust may be caused by the presence of a calcium sulfate related phase. The overall mineralogical composition points to a basaltic origin of the airborne dust, although some alteration has taken place as indicated by the large degree of oxidation.

  14. Feasibility of surveying pesticide coverage with airborne fluorometer

    NASA Technical Reports Server (NTRS)

    Stoertz, G. E.; Hemphill, W. R.

    1970-01-01

    Response of a Fraunhofer line discriminator (FLD) to varying distributions of granulated corncobs stained with varying concentrations of Rhodamine WT dye was tested on the ground and from an H-19 helicopter. The granules are used as a vehicle for airborne emplacement of poison to control fire ants in the eastern and southeastern United States. Test results showed that the granules are detectable by FLD but that the concentration must be too great to be practical with the present apparatus. Possible methods for enhancement of response may include: (1) increasing dye concentration; (2) incorporating with the poisoned granules a second material to carry the dye alone; (3) use of a more strongly fluorescent substance (at 5890 A); (4) modifying the time interval after dyeing, or modifying the method of dyeing; (5) modifying the FLD for greater efficiency, increased field of view or larger optics; or (6) experimenting with laser-stimulated fluorescence.

  15. Airborne imaging spectrometers developed in China

    NASA Astrophysics Data System (ADS)

    Wang, Jianyu; Xue, Yongqi

    1998-08-01

    Airborne imaging spectral technology, principle means in airborne remote sensing, has been developed rapidly both in the world and in China recently. This paper describes Modular Airborne Imaging Spectrometer (MAIS), Operational Modular Airborne Imaging Spectrometer (OMAIS) and Pushbroom Hyperspectral Imagery (PHI) that have been developed or are being developed in Airborne Remote Sensing Lab of Shanghai Institute of Technical Physics, CAS.

  16. Airborne Tactical Crossload Planner

    DTIC Science & Technology

    2017-12-01

    set out in the Airborne Standard Operating Procedure (ASOP). 14. SUBJECT TERMS crossload, airborne, optimization, integer linear programming ...they land to their respective sub-mission locations. In this thesis, we formulate and implement an integer linear program called the Tactical...to meet any desired crossload objectives. xiv We demonstrate TCP with two real-world tactical problems from recent airborne operations: one by the

  17. Shipborne Magnetic Survey of San Pablo Bay and Implications on the Hayward-Rodgers Creek Fault Junction

    NASA Astrophysics Data System (ADS)

    Ponce, D. A.; Athens, N. D.; Denton, K.

    2012-12-01

    A shipborne magnetic survey of San Pablo Bay reveals a steep magnetic gradient as well as several prominent magnetic anomalies along the offshore extension of the Hayward Fault. The Hayward Fault enters San Pablo Bay at Pinole Point and potentially extends beneath San Pablo Bay for 15 km. About 1,000 line-km of shipborne magnetometer data were collected in San Pablo Bay along approximately north-east and north-west trending traverses. Shiptrack lines were spaced 200-m apart in a N55oE direction and tie-lines were spaced 500- and 1,000-m apart in a N145oE direction. Magnetometer and Geographic Positioning System (GPS) data were collected simultaneously at one-second intervals using a Geometrics G858 cesium vapor magnetometer with the sensor attached to a nonmagnetic pole extended about 2 m over the bow. Diurnal variations of the Earth's magnetic field were recorded at a ground magnetic base station and shipborne data were corrected for diurnal variations, International Geomagnetic Reference Field, cultural noise, heading errors, and leveling errors. The heading correction applied to the shipborne magnetic data accounts for a systematic shift in the magnetic readings due to the magnetic field produced by the boat and the orientation of the boat. The heading correction was determined by traversing several shiptrack lines in various azimuths in opposite directions. Magnetic measurements off the main survey lines (e.g., turns) were removed from the survey. After applying the heading correction, crossing values or the difference in values where two survey lines intersect were compared and the survey was leveled. Shipborne magnetic data reveal a prominent magnetic anomaly immediately offshore of Point Pinole that probably reflects ultramafic rocks (e.g. serpentinite), similar to those exposed in the northern part of the onshore Hayward Fault. Further to the northwest, shipborne magnetic data enhance two prominent aeromagnetic anomalies along the Hayward Fault in the

  18. On the magnetic characterization and quantification of the superparamagnetic fraction of traffic-related urban airborne PM in Rome, Italy

    NASA Astrophysics Data System (ADS)

    Sagnotti, Leonardo; Winkler, Aldo

    2012-11-01

    The magnetic properties of traffic-related airborne particulate matter (PM) in the city of Rome, Italy, have been previously analyzed and interpreted as suitable proxies to discriminate between different vehicular sources. In this study, we carried out a new set of measurements and analyses specifically devoted to the identification and evaluation of the contribution of ultrafine superparamagnetic (SP) particles to the overall magnetic assemblage of traffic-related PM in Rome. In particular, the presence and the concentration of SP particles have been estimated on powders collected from disk brakes and gasoline exhaust pipes of circulating vehicles and from Quercus ilex leaves grown along high-traffic roads, measuring their hysteresis parameters in a range of temperatures from 293 K to 10 K and measuring the time decay of their saturation remanent magnetization (MRS) at room temperature. The SP fraction contributes for the 10-15% to the overall room temperature MRS and causes the observed changes in the hysteresis properties measured upon cooling down to 10 K. In all the analyzed samples the SP fraction is associated to a generally prevailing population of larger ferrimagnetic multidomain (MD) particles and we suppose that in traffic-related PM the SP fraction mainly occurs as coating of MD particles and originated by localized stress in the oxidized outer shell surrounding the unoxidized core of magnetite-like grains. Under this hypothesis, the estimate of SP content in traffic-related PM cannot be considered a robust proxy to estimate the overall concentration of nanometric particles.

  19. Iron speciation of airborne subway particles by the combined use of energy dispersive electron probe X-ray microanalysis and Raman microspectrometry.

    PubMed

    Eom, Hyo-Jin; Jung, Hae-Jin; Sobanska, Sophie; Chung, Sang-Gwi; Son, Youn-Suk; Kim, Jo-Chun; Sunwoo, Young; Ro, Chul-Un

    2013-11-05

    Quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), known as low-Z particle EPMA, and Raman microspectrometry (RMS) were applied in combination for an analysis of the iron species in airborne PM10 particles collected in underground subway tunnels. Iron species have been reported to be a major chemical species in underground subway particles generated mainly from mechanical wear and friction processes. In particular, iron-containing particles in subway tunnels are expected to be generated with minimal outdoor influence on the particle composition. Because iron-containing particles have different toxicity and magnetic properties depending on their oxidation states, it is important to determine the iron species of underground subway particles in the context of both indoor public health and control measures. A recently developed analytical methodology, i.e., the combined use of low-Z particle EPMA and RMS, was used to identify the chemical species of the same individual subway particles on a single particle basis, and the bulk iron compositions of airborne subway particles were also analyzed by X-ray diffraction. The majority of airborne subway particles collected in the underground tunnels were found to be magnetite, hematite, and iron metal. All the particles collected in the tunnels of underground subway stations were attracted to permanent magnets due mainly to the almost ubiquitous ferrimagnetic magnetite, indicating that airborne subway particles can be removed using magnets as a control measure.

  20. Advances and Best Practices in Airborne Gravimetry from the U.S. GRAV-D Project

    NASA Astrophysics Data System (ADS)

    Diehl, Theresa; Childers, Vicki; Preaux, Sandra; Holmes, Simon; Weil, Carly

    2013-04-01

    The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project, an official policy of the U.S. National Geodetic Survey as of 2007, is working to survey the entire U.S. and its holdings with high-altitude airborne gravimetry. The goal of the project is to provide a consistent, high-quality gravity dataset that will become the cornerstone of a new gravimetric geoid and national vertical datum in 2022. Over the last five years, the GRAV-D project has surveyed more than 25% of the country, accomplishing almost 500 flights on six different aircraft platforms and producing more than 3.7 Million square km of data thus far. This wealth of experience has led to advances in the collection, processing, and evaluation of high-altitude (20,000 - 35,000 ft) airborne gravity data. This presentation will highlight the most important practical and theoretical advances of the GRAV-D project, giving an introduction to each. Examples of innovation include: 1. Use of navigation grade inertial measurement unit data and precise lever arm measurements for positioning; 2. New quality control tests and software for near real-time analysis of data in the field; 3. Increased accuracy of gravity post-processing by reexamining assumptions and simplifications that were inconsistent with a goal of 1 mGal precision; and 4. Better final data evaluation through crossovers, additional statistics, and inclusion of airborne data into harmonic models that use EGM08 as a base model. The increases in data quality that resulted from implementation of the above advances (and others) will be shown with a case study of the GRAV-D 2008 southern Alaska survey near Anchorage, over Cook Inlet. The case study's statistics and comparisons to global models illustrate the impact that these advances have had on the final airborne gravity data quality. Finally, the presentation will summarize the best practices identified by the project from its last five years of experience.

  1. Volumetric evolution of Surtsey, Iceland, from topographic maps and scanning airborne laser altimetry

    USGS Publications Warehouse

    Garvin, J.B.; Williams, R.S.; Frawley, J.J.; Krabill, W.B.

    2000-01-01

    The volumetric evolution of Surtsey has been estimated on the basis of digital elevation models derived from NASA scanning airborne laser altimeter surveys (20 July 1998), as well as digitized 1:5,000-scale topographic maps produced by the National Land Survey of Iceland and by Norrman. Subaerial volumes have been computed from co-registered digital elevation models (DEM's) from 6 July 1968, 11 July 1975, 16 July 1993, and 20 July 1998 (scanning airborne laser altimetry), as well as true surface area (above mean sea level). Our analysis suggests that the subaerial volume of Surtsey has been reduced from nearly 0.100 km3 on 6 July 1968 to 0.075 km3 on 20 July 1998. Linear regression analysis of the temporal evolution of Surtsey's subaerial volume indicates that most of its subaerial surface will be at or below mean sea-level by approximately 2100. This assumes a conservative estimate of continuation of the current pace of marine erosion and mass-wasting on the island, including the indurated core of the conduits of the Surtur I and Surtur II eruptive vents. If the conduits are relatively resistant to marine erosion they will become sea stacks after the rest of the island has become a submarine shoal, and some portions of the island could survive for centuries. The 20 July 1998 scanning laser altimeter surveys further indicate rapid enlargement of erosional canyons in the northeastern portion of the partial tephra ring associated with Surtur I. Continued airborne and eventually spaceborne topographic surveys of Surtsey are planned to refine the inter-annual change of its subaerial volume.

  2. Mismatch in aeroallergens and airborne grass pollen concentrations

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Hernández-Ceballos, M. A.; Galán, C.

    2016-11-01

    An accurate estimation of the allergen concentration in the atmosphere is essential for allergy sufferers. The major cause of pollinosis all over Europe is due to grass pollen and Phl p 5 has the highest rates of sensitization (>50%) in patients with grass pollen-induced allergy. However, recent research has shown that airborne pollen does not always offer a clear indicator of exposure to aeroallergens. This study aims to evaluate relations between airborne grass pollen and Phl p 5 concentrations in Córdoba (southern Spain) and to study how meteorological parameters influence these atmospheric records. Monitoring was carried out from 2012 to 2014. Hirst-type volumetric spore trap was used for pollen collection, following the protocol recommended by the Spanish Aerobiology Network (REA). Aeroallergen sampling was performed using a low-volume cyclone sampler, and allergenic particles were quantified by ELISA assay. Besides, the influence of main meteorological factors on local airborne pollen and allergen concentrations was surveyed. A significant correlation was observed between grass pollen and Phl p 5 allergen concentrations during the pollen season, but with some sporadic discrepancy episodes. The cumulative annual Pollen Index also varied considerably. A significant correlation has been obtained between airborne pollen and minimum temperature, relative humidity and precipitation, during the three studied years. However, there is no clear relationship between allergens and weather variables. Our findings suggest that the correlation between grass pollen and aeroallergen Phl p 5 concentrations varies from year-to-year probably related to a complex interplay of meteorological variables.

  3. An Airborne Millimeter-Wave FM-CW Radar for Thickness Profiling of Freshwater Ice

    DTIC Science & Technology

    1992-11-01

    commercial and recreational application, including safety and trafficability surveys. A proto- type broadband millimeter wave (26.5 to 40 GHz) Frequency...and utility for ice safety and traffica- appropriate antenna for transmission. Morey (1974) bility studies. Other important applications include...resolution and a 2.7- which can provide reliable safety survey profiling for GHz center frequency, that is capable of airborne pro- the entire practical

  4. Marine magnetic survey between Cabo da Roca and Cabo Espichel (near Lisbon, Portugal): first results

    NASA Astrophysics Data System (ADS)

    Neres, Marta; Terrinha, Pedro; Calado, António; Miranda, Miguel; Madureira, Pedro

    2016-04-01

    We present a magnetic survey conducted in the offshore region between Cabo da Roca and Sesimbra (mouth of Tagus River, Portugal). Strong magnetic anomalies are recognized in this area since a first marine survey in 1958 (Allan, 1965) and by further aeromagnetic survey (c.f. Silva et al, 2000). The anomalies have been linked to Cretaceous magmatic events related to the Upper Cretaceous Sintra magmatic complex and Lisbon volcanic complex, but their geometry and extension has yet not been resolved. The aim of the present survey was to unravel the location, geometry and type of the magnetic sources, thus contributing for the characterization of the main magmatic and tectonic features in the region. The survey was conducted in two legs (October 2014 and June 2015), consisting of 27 lines and 6 tielines, extending up to 40 km from the coast. The line spacing was 1 mile for the main lines and 5-6 miles for the tielines. The bathymetry of the surveyed area varies from very shallow (about 10 m) to near 3000 m. Total field was measured with a G-882 Cesium marine magnetometer of Geometrics (self-oscillating split-beam Cesium vapor), with frequency of acquisition of 10 Hz. Layback was real-time corrected using the acquisition software. Noise was removed by despike in Magpick software (Geometrics), and further processing was done using Oasis montaj (Geosoft) software. Data were subtracted of IGRF values and levelled by tielines to retrieve the final map of anomalies. Several punctual and linear anomalies with varying amplitude and wavenumber were identified, which cannot be explained by bathymetric variation; therefore they must then be due to the presence of higher susceptibility, likely volcanic rocks, and to structural inheritance associated with rifting and Alpine orogeny. The highest anomaly corresponds to the Cabo Raso positive magnetic anomaly, with maximum and minimum of 2800 nT and -1350 nT, respectively. This anomaly, already surveyed in 1958, has been compared to a

  5. Overview of the magnetic properties experiments on the Mars Exploration Rovers

    USGS Publications Warehouse

    Madsen, M.B.; Goetz, W.; Bertelsen, P.; Binau, C.S.; Folkmann, F.; Gunnlaugsson, H.P.; Hjollum, J.I.; Hviid, S.F.; Jensen, J.; Kinch, K.M.; Leer, K.; Madsen, D.E.; Merrison, J.; Olsen, M.; Arneson, H.M.; Bell, J.F.; Gellert, Ralf; Herkenhoff, K. E.; Johnson, J. R.; Johnson, M.J.; Klingelhofer, G.; McCartney, E.; Ming, D. W.; Morris, R.V.; Proton, J.B.; Rodionov, D.; Sims, M.; Squyres, S. W.; Wdowiak, T.; Yen, A. S.

    2009-01-01

    The Mars Exploration Rovers have accumulated airborne dust on different types of permanent magnets. Images of these magnets document the dynamics of dust capture and removal over time. The strongly magnetic subset of airborne dust appears dark brown to black in Panoramic Camera (Pancam) images, while the weakly magnetic one is bright red. Images returned by the Microscopic Imager reveal the formation of magnetic chains diagnostic of magnetite-rich grains with substantial magnetization (>8 Am2 kg-1). On the basis of M??ssbauer spectra the dust contains magnetite, olivine, pyroxene, and nanophase oxides in varying proportions, depending on wind regime and landing site. The dust contains a larger amount of ferric iron (Fe3+/Fe tot ??? 0.6) than rocks in the Gusev plains (???0.1-0.2) or average Gusev soil (???0.3). Alpha Particle X-Ray Spectrometer data of the dust show that some of the iron in magnetite is substituted by titanium and chromium. The good correlation of the amount of calcium and sulfur in the dust may be caused by the presence of a calcium sulfate related phase. The overall mineralogical composition points to a basaltic origin of the airborne dust, although some alteration has taken place as indicated by the large degree of oxidation. Copyright 2009 by the American Geophysical Union.

  6. Airborne detection of diffuse carbon dioxide emissions at Mammoth Mountain, California

    USGS Publications Warehouse

    Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.

    1999-01-01

    We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at ~2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at ~3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels ~1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of ~250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at approximately 2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at approximately 3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels approximately 1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of approximately 250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.

  7. Airborne Hydromapping - How high-resolution bathymetric surveys will change the research and work focused on waterbody-related topics

    NASA Astrophysics Data System (ADS)

    Steinbacher, Frank; Baran, Ramona; Dobler, Wolfgang; Aufleger, Markus

    2013-04-01

    Repetitive surveying of inshore waters and coastal zones is becoming more and more essential in order to evaluate water-level dynamics, structural and zonal variations of rivers and riparian areas, river degradation, water flow, reservoir sedimentation, delta growth, as well as coastal processes. This can only be achieved in an effective manner by employing hydrographic airborne laser scanning (hydromapping). A new laser scanner is introduced, which has been specifically designed for the acquisition of high-resolution hydrographic data in order to survey and monitor inland waters and shallow coastal zones. Recently, this scanner has been developed within the framework of an Austrian research cooperation between Riegl LMS and the Unit of Hydraulic Engineering at the University of Innsbruck. We present exemplary measurement results obtained with the compact airborne laser-scanning system during our project work. Along the Baltic Sea coast northeast of Kiel city, northern Germany, we obtained measurement depths up to 8 m under clear-water conditions. Moreover, we detect underwater dune-structures and the accumulation of sediment within groin structures. In contrast, under turbid water conditions we obtained depths of approximately 3 m along the Rhine River at Rheinfelden, German-Swiss border east of Basel city. Nevertheless, we were able to map small-scale and complex morphologic features within a fish ramp or bedrock cliffs. The laser data had been combined with sonar measurements displaying the bathymetry at depths of ca. 2-25 m in order to document comprehensively the actual hydrographic setting after the new construction of the hydropower plant Rheinfelden. In summary, a high-resolution spatial view on the ground of various waterbodies is now possible for the first time with point densities in the usual range of approximately 10-20 points/m². However, the combination of these data with high-resolution aerial (approximately < 5 cm/pixel) or spectral images offers

  8. Publications - IC 51 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey Photography; Aeromagnetic; Aeromagnetic Data; Aeromagnetic Survey; Airborne Geophysical Survey; Alaska Data; Apparent Resistivity Map; Apparent Resistivity Survey; Arctic Deposit; Arsenic; Arsenopyrite

  9. Levels of airborne dust in furniture making factories in the High Wycombe area

    PubMed Central

    Hounam, R. F.; Williams, J.

    1974-01-01

    Hounam, R. F. and Williams, J. (1974).British Journal of Industrial Medicine,31, 1-9. Levels of airborne dust in furniture making factories in the High Wycombe area. A dust survey was carried out in five furniture making factories in, or in the vicinity of, High Wycombe. The results, which are among the first to be reported for the United Kingdom, have provided information on the concentrations and size distributions of airborne dust to which wood machinists are currently exposed. Although measured concentrations covered a wide range, the average concentration was similar to the threshold limit value of 5 mg m-3 provisionally recommended by the American Conference of Governmental Industrial Hygienists. A high proportion by mass of the airborne dust was of a size which will be deposited in the nasal passages on inhalation. Images PMID:4821408

  10. Aerial Magnetic, Electromagnetic, and Gamma-ray Survey, Berrien County, Michigan

    USGS Publications Warehouse

    Duval, Joseph S.; Pierce, Herbert A.; Daniels, David L.; Mars, John L.; Webring, Michael W.; Hildenbrand, Thomas G.

    2002-01-01

    This publication includes maps, grids, and flightline databases of a detailed aerial survey and maps and grids of satellite data in Berrien County, Michigan. The purpose of the survey was to map aquifers in glacial terrains. This was accomplished by using a DIGHEMVRES mufti-coil, mufti-frequency electromagnetic system supplemented by a high sensitivity cesium magnetometer and 256-channel spectrometer. The information from these sensors was processed to produce maps, which display the conductive, magnetic and radioactive properties of the survey area. A GPS electronic navigation system ensured accurate positioning of the geophysical data. This report also includes data from the advanced spaceborne thermal emission and reflection (ASTER) radiometer. ASTER measures thermal emission and reflection data for 14 bands of the spectrum.

  11. Publications - IC 52 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey ; Aerial Photography; Aeromagnetic; Aeromagnetic Data; Aeromagnetic Survey; Airborne Geophysical Survey Resistivity Data; Apparent Resistivity Map; Apparent Resistivity Survey; Arctic Deposit; Arsenic; Arsenopyrite

  12. Publications - SR 61 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey K) Keywords Admiralty Island; Aeromagnetic Data; Aeromagnetic Survey; Airborne Geophysical Survey Dome; Conductivity Survey; Construction Materials; Copper; Core Drilling; Council; Crushed Gravel

  13. Publications - IC 46 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey ; Aeromagnetic; Aeromagnetic Survey; Airborne Geophysical Survey; Antimony; Arsenic; Arsenopyrite; Base Metals ; Electromagnetic Data; Electromagnetic Survey; Exploration; Fairbanks Mining District; Fort Knox Mine; Fortymile

  14. Airborne Laser/GPS Mapping of Assateague National Seashore Beach

    NASA Technical Reports Server (NTRS)

    Kradill, W. B.; Wright, C. W.; Brock, John C.; Swift, R. N.; Frederick, E. B.; Manizade, S. S.; Yungel, J. K.; Martin, C. F.; Sonntag, J. G.; Duffy, Mark; hide

    1997-01-01

    Results are presented from topographic surveys of the Assateague Island National Seashore using recently developed Airborne Topographic Mapper (ATM) and kinematic Global Positioning System (GPS) technology. In November, 1995, and again in May, 1996, the NASA Arctic Ice Mapping (AIM) group from the Goddard Space Flight Center's Wallops Flight Facility conducted the topographic surveys as a part of technology enhancement activities prior to conducting missions to measure the elevation of extensive sections of the Greenland Ice Sheet as part of NASA's Global Climate Change program. Differences between overlapping portions of both surveys are compared for quality control. An independent assessment of the accuracy of the ATM survey is provided by comparison to surface surveys which were conducted using standard techniques. The goal of these projects is to mdke these measurements to an accuracy of +/- 10 cm. Differences between the fall 1995 and 1996 surveys provides an assessment of net changes in the beach morphology over an annual cycle.

  15. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  16. Webinar: Airborne Data Discovery and Analysis with Toolsets for Airborne Data (TAD)

    Atmospheric Science Data Center

    2016-10-18

    Webinar: Airborne Data Discovery and Analysis with Toolsets for Airborne Data (TAD) Wednesday, October 26, 2016 Join us on ... and flight data ranges are available. Registration is now open.  Access the full announcement   For TAD Information, ...

  17. Consequences of flight height and line spacing on airborne (helicopter) gravity gradient resolution in the Great Sand Dunes National Park and Preserve, Colorado

    USGS Publications Warehouse

    Kass, M. Andy

    2013-01-01

    Line spacing and flight height are critical parameters in airborne gravity gradient surveys; the optimal trade-off between survey costs and desired resolution, however, is different for every situation. This article investigates the additional benefit of reducing the flight height and line spacing though a study of a survey conducted over the Great Sand Dunes National Park and Preserve, which is the highest-resolution public-domain airborne gravity gradient data set available, with overlapping high- and lower-resolution surveys. By using Fourier analysis and matched filtering, it is shown that while the lower-resolution survey delineates the target body, reducing the flight height from 80 m to 40 m and the line spacing from 100 m to 50 m improves the recoverable resolution even at basement depths.

  18. Estimating Antarctic Near-Surface Magnetic Anomalies from Oersted and CHAMP Satellite Magnetometer Observations

    NASA Technical Reports Server (NTRS)

    vonFrese, Ralph R. B.; Kim, Hyung Rae; Gaya-Pique, Luis R.; Taylor, Patrick T.; Golynsky, Alexander V.; Kim, Jeong Woo

    2004-01-01

    Significant improvement in predicting near-surface magnetic anomalies can result from the highly accurate magnetic observations of the CHAMP satellite that is orbiting at about 400 km altitude. In general, regional magnetic signals of the crust are strongly masked by the core field and its secular variations due to wavelength coupling in the spherical harmonic representation and thus are difficult to isolate in the satellite measurements. However, efforts to isolate the regional lithospheric from core field components can exploit the correlations between the CHAMP magnetic anomalies and the pseudo magnetic effects inferred from gravity-derived crustal thickness variations. In addition, we can use spectral correlation theory to filter the static lithospheric field components from the dynamic external field effects. Employing these procedures, we processed the CHAMP magnetic conservations for an improved magnetic anomaly map of the Antarctic crust. Relative to the much higher altitude Oersted and noisier Magsat observations, CHAMP magnetic anomalies at 400 km altitude reveal new details on the effects of intra-crustal magnetic features and crustal thickness variations of the Antarctic. Moreover, these results greatly facilitate predicting magnetic anomalies in the regional coverage gaps of the ADMAP compilation of Antarctic magnetic anomalies from shipborne, airborne and ground surveys. Our analysis suggests that considerable new insights on the magnetic properties of the lithosphere may be revealed by a further order-of-magnitude improvement in the accuracy of the magnetometer.

  19. Publications - SR 60 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey ; Aeromagnetic Survey; Airborne Geophysical Survey; Alaska Highway Corridor; Alaska Peninsula; Alaska, State of ; Bismuth; Chalcopyrite; Chandalar Mining District; Cleary Summit; Coal; Conductivity Survey; Construction

  20. Airborne Grid Sea-Ice Surveys for Comparison with CryoSat-2

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Hagen, R. A.; Ball, D.

    2014-12-01

    The U.S. Naval Research Laboratory is engaged in a study of the changing Arctic with a particular focus on ice thickness and distribution variability. The purpose is to optimize computer models used to predict sea ice changes. An important part of our study is to calibrate/validate CryoSat-2 ice thickness data prior to its incorporation into new ice forecast models. The large footprint of the CryoSat-2 altimeter over sea-ice is a significant issue in any attempt to ground-truth the data. Along-track footprints are reduced to ~ 300 m by SAR processing of the returns. However, the cross-track footprint is determined by the topography of the surface. Further, the actual return is the sum of the returns from individual reflectors within the footprint making it difficult to interpret the return, and optimize the waveform tracker. We therefore collected a series of grids of airborne scanning lidar and nadir pointing radar on sub-satellite tracks over sea-ice that would extend far enough cross-track to capture the illuminated area. One difficulty in the collection of grids comprised of adjacent overlapping tracks is that the ice moves as much as 300 m over the duration of a single track (~ 10 min). With a typical lidar swath width of 500m we needed to adjust the survey tracks in near real-time for the ice motion. This was accomplished by a photogrammetric method of ice velocity determination (RTIME) reported in another presentation. Post-processing refinements resulted in typical track-to-track miss-ties of ~ 1-2 m, much of which could be attributed to ice deformation over the period of the survey. An important factor is that we were able to reconstruct the ice configuration at the time of the satellite overflight, resulting in an accurate representation of the surface illuminated by CryoSat-2. Our intention is to develop a model of the ice surface using the lidar grid which includes both snow and ice using radar profiles to determine snow thickness. In 2013 a set of 6

  1. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery.

    PubMed

    Miller, Arthur; Drake, Pamela L; Hintz, Patrick; Habjan, Matt

    2010-07-01

    An air quality survey was conducted at a precious metals refinery in order to evaluate worker exposures to airborne metals and to provide detailed characterization of the aerosols. Two areas within the refinery were characterized: a furnace room and an electro-refining area. In line with standard survey practices, both personal and area air filter samples were collected on 37-mm filters and analyzed for metals by inductively coupled plasma-atomic emission spectroscopy. In addition to the standard sampling, measurements were conducted using other tools, designed to provide enhanced characterization of the workplace aerosols. The number concentration and number-weighted particle size distribution of airborne particles were measured with a fast mobility particle sizer (FMPS). Custom-designed software was used to correlate particle concentration data with spatial location data to generate contour maps of particle number concentrations in the work areas. Short-term samples were collected in areas of localized high concentrations and analyzed using transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) to determine particle morphology and elemental chemistry. Analysis of filter samples indicated that all of the workers were exposed to levels of silver above the Occupational Safety and Health Administration permissible exposure limit of 0.01 mg m(-3) even though the localized ventilation was functioning. Measurements with the FMPS indicated that particle number concentrations near the furnace increased up to 1000-fold above the baseline during the pouring of molten metal. Spatial mapping revealed localized elevated particle concentrations near the furnaces and plumes of particles rising into the stairwells and traveling to the upper work areas. Results of TEM/EDS analyses confirmed the high number of nanoparticles measured by the FMPS and indicated the aerosols were rich in metals including silver, lead, antimony, selenium, and zinc. Results of

  2. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  3. Quantifying the In-Flight Yaw, Pitch, and Roll of a Semi-Rigidly Mounted Potassium Vapour Magnetometer Suspended Under a Heavy-Lift Multi-Rotor UAV and its Impact on Data Quality

    NASA Astrophysics Data System (ADS)

    Walter, C. A.; Braun, A.; Fotopoulos, G.

    2017-12-01

    Research is being conducted to develop an Unmanned Aerial System (UAS) that is capable of reliably and efficiently collecting high resolution, industry standard magnetic data (magnetic data with a fourth difference of +/- 0.05 nT) via an optically pumped vapour magnetometer. The benefits of developing a UAS with these capabilities include improvements in the resolution of localized airborne surveys (2.5 km by 2.5 km) and the ability to conduct 3D magnetic gradiometry surveys in the observation gap evident between traditional terrestrial and manned airborne magnetic surveys (surface elevation up to 120 m). Quantifying the extent of an optically pumped vapour magnetometer's 3D orientation variations, while in-flight and suspended under a UAS, is a significant advancement to existing knowledge as optically pumped magnetometers have an orientation-dependent (to the primary magnetic field vector) process for measuring the magnetic field. This study investigates the orientation characteristics of a GEM Systems potassium vapour magnetometer, GSMP-35U, while semi-rigidly suspended 3 m under a DJI S900, heavy-lift multi-rotor UAV (Unmanned Aerial Vehicle) during an airborne surveying campaign conducted Northeast of Thunder Bay, Ontario, Canada. A nine degrees of freedom IMU (Inertial Measurement Unit), the Adafruit GY-80, was used to quantify the 3D orientation variations (yaw, pitch and roll) of the magnetic sensor during flight. The orientation and magnetic datasets were indexed and linked with a date and time stamp (within 1 ms) via a Raspberry Pi 2, acting as an on-board computer and data storage system. Analysing the two datasets allowed for the in-flight orientation variations of the potassium vapour magnetometer to be directly compared with the gathered magnetic and signal quality data of the magnetometer. The in-flight orientation characteristics of the magnetometer were also quantified for a range of air-speeds and flight maneuvers throughout the survey. Overall

  4. Integrating a High Resolution Optically Pumped Magnetometer with a Multi-Rotor UAV towards 3-D Magnetic Gradiometry

    NASA Astrophysics Data System (ADS)

    Braun, A.; Walter, C. A.; Parvar, K.

    2016-12-01

    The current platforms for collecting magnetic data include dense coverage, but low resolution traditional airborne surveys, and high resolution, but low coverage terrestrial surveys. Both platforms leave a critical observation gap between the ground surface and approximately 100m above ground elevation, which can be navigated efficiently by new technologies, such as Unmanned Aerial Vehicles (UAVs). Specifically, multi rotor UAV platforms provide the ability to sense the magnetic field in a full 3-D tensor, which increases the quality of data collected over other current platform types. Payload requirements and target requirements must be balanced to fully exploit the 3-D magnetic tensor. This study outlines the integration of a GEM Systems Cesium Vapour UAV Magnetometer, a Lightware SF-11 Laser Altimeter and a uBlox EVK-7P GPS module with a DJI s900 Multi Rotor UAV. The Cesium Magnetometer is suspended beneath the UAV platform by a cable of varying length. A set of surveys was carried out to optimize the sensor orientation, sensor cable length beneath the UAV and data collection methods of the GEM Systems Cesium Vapour UAV Magnetometer when mounted on the DJI s900. The target for these surveys is a 12 inch steam pipeline located approximately 2 feet below the ground surface. A systematic variation of cable length, sensor orientation and inclination was conducted. The data collected from the UAV magnetometer was compared to a terrestrial survey conducted with the GEM GST-19 Proton Procession Magnetometer at the same elevation, which also served a reference station. This allowed for a cross examination between the UAV system and a proven industry standard for magnetic field data collection. The surveys resulted in optimizing the above parameters based on minimizing instrument error and ensuring reliable data acquisition. The results demonstrate that optimizing the UAV magnetometer survey can yield to industry standard measurements.

  5. Airborne Polarimeter Intercomparison for the NASA Aerosols-Clouds-Ecosystems (ACE) Mission

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, Kirk; Redemann, Jens

    2014-01-01

    The Aerosols-Clouds-Ecosystems (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeters, including the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.

  6. The forward modelling and analysis of magnetic field on the East Asia area using tesseroids

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Meng, X.; Xu, G.

    2017-12-01

    As the progress of airborne and satellite magnetic survey, high-resolution magnetic data could be measured at different scale. In order to test and improve the accuracy of the existing crustal model, the forward modeling method is usually used to simulate the magnetic field of the lithosphere. Traditional models to forward modelling the magnetic field are based on the Cartesian coordinate system, and are always used to calculate the magnetic field of the local and small area. However, the Cartesian coordinate system is not an ideal choice for calculating the magnetic field of the global or continental area at the height of the satellite and Earth's curvature cannot be ignored in this situation. The spherical element (called tesseroids) can be used as a model element in the spherical coordinate system to solve this problem. On the basis of studying the principle of this forward method, we focus the selection of data source and the mechanism of adaptive integration. Then we calculate the magnetic anomaly data of East Asia area based on the model Crust1.0. The results presented the crustal susceptibility distribution, which was well consistent with the basic tectonic features in the study area.

  7. Airborne relay-based regional positioning system.

    PubMed

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-05-28

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations.

  8. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  9. Viking magnetic properties investigation: preliminary results.

    PubMed

    Hargraves, R B; Collinson, D W; Spitzer, C R

    1976-10-01

    Three permanent magnet arrays are aboard the Viking lander. By sol 35, one array, fixed on a photometric reference test chart on top of the lander, has clearly attracted magnetic particles from airborne dust; two other magnet arrays, one strong and one weak, incorporated in the backhoe of the surface sampler, have both extracted considerable magnetic mineral from the surface as a result of nine insertions associated with sample acquisition. The loose martian surface material around the landing site is judged to contain 3 to 7 percent highly magnetic mineral which, pending spectrophotometric study, is thought to be mainly magnetite.

  10. Modeling of the Central Magnetic Anomaly at Haughton Impact Structure, Canada

    NASA Astrophysics Data System (ADS)

    Quesnel, Y.; Gattacceca, J.; Osinski, G. R.; Rochette, P.

    2011-12-01

    Located on Devon Island, Nunavut, Canada, the 23-km diameter Haughton impact structure is one of the best-preserved medium-size complex impact structures on Earth. The impact occurred ~39 Ma ago into a target formation composed of an ~2-km thick sequence of Lower Paleozoic sedimentary rocks of the Arctic Platform overlying Precambrian metamorphic basement of the Canadian Shield (Osinski et al., 2005). Clast-rich impact melt rocks line the crater and impact-induced hydrothermal activity took place, but since then no significant geological event has affected the area. In the 1980s, ground magnetic and gravity measurements were carried out within the central part of the crater (Pohl et al., 1988). A significant anomaly was discovered and coarsely modeled by a source body of simple geometry. More recently, an airborne magnetic survey delivered additional data that covered the whole crater but no modeling was done (Glass et al., 2002). Here, we present the results of a new ground magnetic survey accompanied by rock magnetic property measurements made on all samples of the crater. This has provided additional constraints to investigate the origin of this central magnetic anomaly. By conducting modeling, we have been able to reveal the geometry and volume of the source body as well as its magnetization properties. Our results suggest that the necessary magnetization intensity to account for this anomaly is too large to be associated with uplifted pre-impact target rocks. Therefore, we suggest that hydrothermal alteration could have enhanced the magnetization of the central part of this crater. References : Osinski, G. R. et al. 2005. MPS, 40:1759-1776 ; Pohl, J. et al. 1988. Meteoritics, 23:235-238 ; Glass, B. J. et al. 2002, Abstract #2008. 33th LPSC

  11. Proving instruments credible in the early nineteenth century: The British Magnetic Survey and site-specific experimentation

    PubMed Central

    Goodman, Matthew

    2016-01-01

    For several decades now, many histories of science have sought to emphasize the important role of instruments and other material objects in the operation of science. Many, too, have been attentive to ideas of space and place and the different geographies which are visible in the historical practice of science. This paper draws on both traditions in its interpretation of a heretofore neglected aspect of Britain's nineteenth-century geomagnetic story: that of the British Magnetic Survey, 1833–38. Far from being a footnote to the more expansive geomagnetic projects then taking place in mainland Europe or to the later British worldwide magnetic scheme, this paper argues that the British Magnetic Survey represents an important instance in which magnetic instruments, their users and their makers, were tested, developed and ultimately proved credible.

  12. An Update on Results from the Magnetic Properties Experiments on the Mars Exploration Rovers, Spirit and Opportunity

    NASA Technical Reports Server (NTRS)

    Madsen, M. B.; Arneson, H. M.; Bertelsen, P.; Bell, J. F., III; Binau, C. S.; Gellert, R.; Goetz, W.; Gunnlaugsson, H. P.; Herkenhoff, K. E.; Hviid, S. F.

    2005-01-01

    The Magnetic Properties Experiments were designed to investigate the properties of the airborne dust in the Martian atmosphere. A preferred interpretation of previous experiments (Viking and Pathfinder) was that the airborne dust is primarily composed by composite silicate particles containing as a minor constituent the mineral maghemite (gamma-Fe2O3). In this abstract we show how the magnetic properties experiments on Spirit and Opportunity provide information on the distribution of magnetic mineral(s) in the dust on Mars, with emphasis on results from Opportunity.

  13. Moving base Gravity Gradiometer Survey System (GGSS) program

    NASA Astrophysics Data System (ADS)

    Pfohl, Louis; Rusnak, Walter; Jircitano, Albert; Grierson, Andrew

    1988-04-01

    The GGSS program began in early 1983 with the objective of delivering a landmobile and airborne system capable of fast, accurate, and economical gravity gradient surveys of large areas anywhere in the world. The objective included the development and use of post-mission data reduction software to process the survey data into solutions for the gravity disturbance vector components (north, east and vertical). This document describes the GGSS equipment hardware and software, integration and lab test procedures and results, and airborne and land survey procedures and results. Included are discussions on test strategies, post-mission data reduction algorithms, and the data reduction processing experience. Perspectives and conclusions are drawn from the results.

  14. Measurements of airborne methylene diphenyl diisocyanate (MDI) concentration in the U.S. workplace.

    PubMed

    Booth, Karroll; Cummings, Barbara; Karoly, William J; Mullins, Sharon; Robert, William P; Spence, Mark; Lichtenberg, Fran W; Banta, J

    2009-04-01

    This article summarizes a large body of industry air sampling data (8134 samples) in which airborne MDI concentrations were measured in a wide variety of manufacturing processes that use either polymeric MDI (PMDI) or monomeric (pure) MDI. Data were collected during the period 1984 through 1999. A total of 606 surveys were conducted for 251 companies at 317 facilities. The database includes 3583 personal (breathing zone) samples and 4551 area samples. Data demonstrate that workplace airborne MDI concentrations are extremely low in a majority of the manufacturing operations. Most (74.6%) of the airborne MDI concentrations measured in the personal samples were nondetectable, i.e., below the limits of quantification (LOQs). A variety of validated industrial hygiene sampling/analytical methods were used for data collection; most are modifications of OSHA Method 47. The LOQs for these methods ranged from 0.1-0.5 microg/sample. The very low vapor pressures of both monomeric MDI and PMDI largely explain the low airborne concentrations found in most operations. However, processes or applications in which the chemical is sprayed or heated may result in higher airborne concentrations and higher exposure potentials if appropriate control measures are not implemented. Data presented in this article will be a useful reference for employers in helping them to manage their health and safety program as it relates to respiratory protection during MDI/PMDI applications.

  15. 3D inversion and modeling of magnetic and gravimetric data characterizing the geophysical anomaly source in Pratinha I in the southeast of Brazil

    NASA Astrophysics Data System (ADS)

    Louro, Vinicius Hector Abud; Mantovani, Marta Silvia Maria

    2012-05-01

    The Alto do Paranaíba Igneous Province (APIP) is known for its great mineral exploratory interest in phosphates, niobium, titanium, and diamonds, among others. In the years of 2005 and 2006, the Economic Development Company of Minas Gerais (CODEMIG — http://www.comig.com.br/) performed an airborne magnetic survey over the portion of this igneous province which belongs to Minas Gerais state, denominated Area 7. This survey revealed at the coordinates (19°45'S, 46°10'W) a tripolar anomaly here referred as Pratinha I. This anomaly does not present evidences of outcropping or topographic remodeling. So, boreholes or studies over its sources make the geophysical methods the best and less expensive solution for studying the body in its subsurface. Besides, two gravimetric ground surveys were performed in 2009 and 2010, confirming the existence of a density contrast over the region of the magnetic anomaly. Therefore, through the magnetometry and gravimetry processing, 3D modeling and inversions, it was possible to estimate the geometry, density and magnetic susceptibility, which when analyzed with the regional geology, enabled the proposition of an igneous intrusion of probable alkaline or kamafugitic composition to justify the gravimetric and magnetic response in the region.

  16. UAV magnetometry in mineral exploration and infrastructure detection

    NASA Astrophysics Data System (ADS)

    Braun, A.; Parvar, K.; Burns, M.

    2015-12-01

    Magnetic surveys are critical tools in mineral exploration and UAVs have the potential to carry magnetometers. UAV surveys can offer higher spatial resolution than traditional airborne surveys, and higher coverage than terrestrial surveys. However, the main advantage is their ability to sense the magnetic field in 3-D, while most airborne or terrestrial surveys are restricted to 2-D acquisition. This study compares UAV magnetic data from two different UAVs (JIB drone, DJI Phantom 2) and three different magnetometers (GEM GSPM35, Honeywell HMR2300, GEM GST-19). The first UAV survey was conducted using a JIB UAV with a GSPM35 flying at 10-15 m above ground. The survey's goal was to detect intrusive Rhyolite bodies for primary mineral exploration. The survey resulted in a better understanding of the validity/resolution of UAV data and led to improved knowledge about the geological structures in the area. The results further drove the design of a following terrestrial survey. Comparing the UAV data with an available airborne survey (upward continued to 250 m) reveals that the UAV data has superior spatial resolution, but exhibits a higher noise level. The magnetic anomalies related to the Rhyolite intrusions is about 109 nT and translates into an estimated depth of approximately 110 meters. The second survey was conducted using an in-house developed UAV magnetometer system equipped with a DJI Phantom 2 and a Honeywell HMR2300 fluxgate magnetometer. By flying the sensor in different altitudes, the vertical and horizontal gradients can be derived leading to full 3-D magnetic data volumes which can provide improved constraints for source depth/geometry characterization. We demonstrate that a buried steam pipeline was detectable with the UAV magnetometer system and compare the resulting data with a terrestrial survey using a GEM GST-19 Proton Precession Magnetometer.

  17. Airborne SAR systems for infrastructures monitoring

    NASA Astrophysics Data System (ADS)

    Perna, Stefano; Berardino, Paolo; Esposito, Carmen; Natale, Antonio

    2017-04-01

    The present contribution is aimed at showing the capabilities of Synthetic Aperture Radar (SAR) systems mounted onboard airborne platforms for the monitoring of infrastructures. As well known, airborne SAR systems guarantee narrower spatial coverage than satellite sensors [1]. On the other side, airborne SAR products are characterized by geometric resolution typically higher than that achievable in the satellite case, where larger antennas must be necessarily exploited. More important, airborne SAR platforms guarantee operational flexibility significantly higher than that achievable with satellite systems. Indeed, the revisit time between repeated SAR acquisitions in the satellite case cannot be freely decided, whereas in the airborne case it can be kept very short. This renders the airborne platforms of key interest for the monitoring of infrastructures, especially in case of emergencies. However, due to the platform deviations from a rectilinear, reference flight track, the generation of airborne SAR products is not a turn of the crank procedure as in the satellite case. Notwithstanding proper algorithms exist in order to circumvent this kind of limitations. In this work, we show how the exploitation of airborne SAR sensors, coupled to the use of such algorithms, allows obtaining high resolution monitoring of infrastructures in urban areas. [1] G. Franceschetti, and R.Lanari, Synthetic Aperture Radar Processing, CRC PRESS, New York, 1999.

  18. Three dimensional inversion of magnetic survey data collected over kimberlite pipes in presence of remanent magnetization

    NASA Astrophysics Data System (ADS)

    Zhao, Pengzhi

    Magnetic method is a common geophysical technique used to explore kimberlites. The analysis and interpretation of measured magnetic data provides the information of magnetic and geometric properties of potential kimberlite pipes. A crucial parameter of kimberlite magnetic interpretation is the remanent magnetization that dominates the classification of kimberlite. However, the measured magnetic data is the total field affected by the remanent magnetization and the susceptibility. The presence of remanent magnetization can pose severe challenges to the quantitative interpretation of magnetic data by skewing or laterally shifting magnetic anomalies relative to the subsurface source (Haney and Li, 2002). Therefore, identification of remanence effects and determination of remanent magnetization are important in magnetic data interpretation. This project presents a new method to determine the magnetic and geometric properties of kimberlite pipes in the presence of strong remanent magnetization. This method consists of two steps. The first step is to estimate the total magnetization and geometric properties of magnetic anomaly. The second step is to separate the remanent magnetization from the total magnetization. In the first step, a joint parametric inversion of total-field magnetic data and its analytic signal (derived from the survey data by Fourier transform method) is used. The algorithm of the joint inversion is based on the Gauss-Newton method and it is more stable and more accurate than the separate inversion method. It has been tested with synthetic data and applied to interpret the field data from the Lac de Gras, North-West Territories of Canada. The results of the synthetic examples and the field data applications show that joint inversion can recovers the total magnetization and geometric properties of magnetic anomaly with a good data fit and stable convergence. In the second step, the remanent magnetization is separated from the total magnetization by

  19. New Inversion and Interpretation of Public-Domain Electromagnetic Survey Data from Selected Areas in Alaska

    NASA Astrophysics Data System (ADS)

    Smith, B. D.; Kass, A.; Saltus, R. W.; Minsley, B. J.; Deszcz-Pan, M.; Bloss, B. R.; Burns, L. E.

    2013-12-01

    Public-domain airborne geophysical surveys (combined electromagnetics and magnetics), mostly collected for and released by the State of Alaska, Division of Geological and Geophysical Surveys (DGGS), are a unique and valuable resource for both geologic interpretation and geophysical methods development. A new joint effort by the US Geological Survey (USGS) and the DGGS aims to add value to these data through the application of novel advanced inversion methods and through innovative and intuitive display of data: maps, profiles, voxel-based models, and displays of estimated inversion quality and confidence. Our goal is to make these data even more valuable for interpretation of geologic frameworks, geotechnical studies, and cryosphere studies, by producing robust estimates of subsurface resistivity that can be used by non-geophysicists. The available datasets, which are available in the public domain, include 39 frequency-domain electromagnetic datasets collected since 1993, and continue to grow with 5 more data releases pending in 2013. The majority of these datasets were flown for mineral resource purposes, with one survey designed for infrastructure analysis. In addition, several USGS datasets are included in this study. The USGS has recently developed new inversion methodologies for airborne EM data and have begun to apply these and other new techniques to the available datasets. These include a trans-dimensional Markov Chain Monte Carlo technique, laterally-constrained regularized inversions, and deterministic inversions which include calibration factors as a free parameter. Incorporation of the magnetic data as an additional constraining dataset has also improved the inversion results. Processing has been completed in several areas, including Fortymile and the Alaska Highway surveys, and continues in others such as the Styx River and Nome surveys. Utilizing these new techniques, we provide models beyond the apparent resistivity maps supplied by the original

  20. Quantifying Variations in Airborne Gravity Data Quality Due to Aircraft Selection with the Gravity for the Re-Definition of the American Vertical Datum Project

    NASA Astrophysics Data System (ADS)

    Youngman, M.; Weil, C.; Salisbury, T.; Villarreal, C.

    2015-12-01

    The U.S. National Geodetic Survey is collecting airborne gravity with the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project to produce a geoid supporting heights accurate to 2 centimeters, where possible, with a modernized U.S. vertical datum in 2022. Targeting 15.6 million square kilometers, the GRAV-D project is unprecedented in its scope of consistently collected airborne gravity data across the entire U.S. and its holdings. Currently over 42% of data collection has been completed by 42 surveys (field campaigns) covering 34 completed blocks (data collection areas). The large amount of data available offers a unique opportunity to evaluate the causes of data quality variation from survey to survey. Two metrics were chosen to use as a basis for comparing the quality of each survey/block: 1. total crossover error (i.e. difference in gravity recorded at all locations of crossing flight lines) and 2. the statistical difference of the airborne gravity from the EGM2008 global model. We have determined that the aircraft used for surveying contributes significantly to the variation in data quality. This paper will further expand upon that recent work, using statistical analysis to determine the contribution of aircraft selection to data quality taking into account other variables such as differences in survey setup or weather conditions during surveying.

  1. First high-resolution near-seafloor survey of magnetic anomalies of the South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, J.; Xu, X.; Li, C.; Sun, Z.; Zhu, J.; Zhou, Z.; Qiu, N.

    2013-12-01

    We successfully conducted the first high-resolution near-seafloor magnetic survey of the Central, Southwest, and Northern Central Basins of the South China Sea (SCS) during two cruises on board Chinese R/V HaiYangLiuHao in October-November 2012 and March-April 2013, respectively. Measurements of magnetic field were made along four long survey lines, including (1) a NW-SE across-isochron profile transecting the Southwest Basin and covering all ages of the oceanic crust (Line CD); (2) a N-S across-isochron profile transecting the Central Basin (Line AB); and (3) two sub-parallel NE-SW across-isochron profiles transecting the Northern Central Basin of the SCS (Lines D and E). A three-axis magnetometer was mounted on a deep-tow vehicle, flying within 0.6 km above the seafloor. The position of the tow vehicle was provided by an ultra-short baseline navigation system along Lines D and E, while was estimated using shipboard GPS along Lines AB and CD. To investigate crustal magnetization, we first removed the International Geomagnetic Reference Field (IGRF) of 2010 from the measured magnetic data, and then downward continued the resultant magnetic field data to a horizontal plane at a water depth of 4.5 km to correct for variation due to the fishing depth of the deep-tow vehicle. Finally, we calculated magnetic anomalies at various water depths after reduction-to-the-pole corrections. We also constructed polarity reversal block (PRB) models of crustal magnetization by matching peaks and troughs of the observed magnetic field anomaly. Our analysis yielded the following results: (1) The near-bottom magnetic anomaly showed peak-to-trough amplitudes of more than 2,500 nT, which are several times of the anomaly amplitudes at the sea surface, illustrating that deep-tow measurements acquired much higher spatial resolutions. (2) The deep-tow data revealed several distinctive magnetic anomalies with wavelengths of 5-15 km and amplitudes of several hundred nT. These short

  2. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Development

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.

    2002-01-01

    In response to recommendations from the National Aviation Weather Program Council, the National Aeronautics and Space Administration (NASA) is working with industry to develop an electronic pilot reporting capability for small aircraft. This paper describes the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) sensor development effort. NASA is working with industry to develop a sensor capable of measuring temperature, relative humidity, magnetic heading, pressure, icing, and average turbulence energy dissipation. Users of the data include National Centers for Environmental Prediction (NCEP) forecast modelers, air traffic controllers, flight service stations, airline operation centers, and pilots. Preliminary results from flight tests are presented.

  3. The Role of Aircraft Motion in Airborne Gravity Data Quality

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Damiani, T.; Weil, C.; Preaux, S. A.

    2015-12-01

    Many factors contribute to the quality of airborne gravity data measured with LaCoste and Romberg-type sensors, such as the Micro-g LaCoste Turnkey Airborne Gravity System used by the National Geodetic Survey's GRAV-D (Gravity for the Redefinition of the American Vertical Datum) Project. For example, it is well documented that turbulence is a big factor in the overall noise level of the measurement. Turbulence is best controlled by avoidance; thus flights in the GRAV-D Project are only undertaken when the predicted wind speeds at flight level are ≤ 40 kts. Tail winds are known to be particularly problematic. The GRAV-D survey operates on a number of aircraft in a variety of wind conditions and geographic locations, and an obvious conclusion from our work to date is that the aircraft itself plays an enormous role in the quality of the airborne gravity measurement. We have identified a number of features of the various aircraft which can be determined to play a role: the autopilot, the size and speed of the aircraft, inherent motion characteristics of the airframe, tip tanks and other modifications to the airframe to reduce motion, to name the most important. This study evaluates the motion of a number of the GRAV-D aircraft and looks at the correlation between this motion and the noise characteristics of the gravity data. The GRAV-D Project spans 7 years and 42 surveys, so we have a significant body of data for this evaluation. Throughout the project, the sensor suite has included an inertial measurement unit (IMU), first the Applanix POSAv, and then later the Honeywell MicroIRS IMU as a part of a NovAtel SPAN GPS/IMU system. We compare the noise characteristics of the data with measures of aircraft motion (via pitch, roll, and yaw captured by the IMU) using a variety of statistical tools. It is expected that this comparison will support the conclusion that certain aircraft tend to work well with this type of gravity sensor while others tend to be problematic in

  4. Gravity and Magnetic Surveys Over the Santa Rita Fault System, Southeastern Arizona

    USGS Publications Warehouse

    Hegmann, Mary

    2001-01-01

    Gravity and magnetic surveys were performed in the northeast portion of the Santa Rita Experimental Range, in southeastern Arizona, to identify faults and gain a better understanding of the subsurface geology. A total of 234 gravity stations were established, and numerous magnetic data were collected with portable and truck-mounted proton precession magnetometers. In addition, one line of very low frequency electromagnetic data was collected together with magnetic data. Gravity anomalies are used to identify two normal faults that project northward toward a previously identified fault. The gravity data also confirm the location of a second previously interpreted normal fault. Interpretation of magnetic anomaly data indicates the presence of a higher-susceptibility sedimentary unit located beneath lowersusceptibility surficial sediments. Magnetic anomaly data identify a 1-km-wide negative anomaly east of these faults caused by an unknown source and reveal the high variability of susceptibility in the Tertiary intrusive rocks in the area.

  5. High Resolution Airborne Shallow Water Mapping

    NASA Astrophysics Data System (ADS)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  6. Fluxgate vector magnetometers: Compensated multi-sensor devices for ground, UAV and airborne magnetic survey for various application in near surface geophysics

    NASA Astrophysics Data System (ADS)

    Gavazzi, Bruno; Le Maire, Pauline; Munschy, Marc; Dechamp, Aline

    2017-04-01

    Fluxgate 3-components magnetometer is the kind of magnetometer which offers the lightest weight and lowest power consumption for the measurement of the intensity of the magnetic field. Moreover, vector measurements make it the only kind of magnetometer allowing compensation of magnetic perturbations due to the equipment carried with it. Unfortunately, Fluxgate magnetometers are quite uncommon in near surface geophysics due to the difficulty to calibrate them precisely. The recent advances in calibration of the sensors and magnetic compensation of the devices from a simple process on the field led Institut de Physique du Globe de Strasbourg to develop instruments for georeferenced magnetic measurements at different scales - from submetric measurements on the ground to aircraft-conducted acquisition through the wide range offered by unmanned aerial vehicles (UAVs) - with a precision in the order of 1 nT. Such equipment is used for different kind of application: structural geology, pipes and UXO detection, archaeology.

  7. Publications - IC 60 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey (500.0 K) Keywords Admiralty Island; Aeromagnetic Data; Aeromagnetic Map; Aeromagnetic Survey; Airborne Geophysical Survey; Alaska Highway Corridor; Alaska Peninsula; Alaska, State of; Ambler; Ambler Mineral Belt

  8. The MiMeS survey of Magnetism in Massive Stars: magnetic analysis of the O-type stars

    NASA Astrophysics Data System (ADS)

    Grunhut, J. H.; Wade, G. A.; Neiner, C.; Oksala, M. E.; Petit, V.; Alecian, E.; Bohlender, D. A.; Bouret, J.-C.; Henrichs, H. F.; Hussain, G. A. J.; Kochukhov, O.; MiMeS Collaboration

    2017-02-01

    We present the analysis performed on spectropolarimetric data of 97 O-type targets included in the framework of the Magnetism in Massive Stars (MiMeS) Survey. Mean least-squares deconvolved Stokes I and V line profiles were extracted for each observation, from which we measured the radial velocity, rotational and non-rotational broadening velocities, and longitudinal magnetic field Bℓ. The investigation of the Stokes I profiles led to the discovery of two new multiline spectroscopic systems (HD 46106, HD 204827) and confirmed the presence of a suspected companion in HD 37041. We present a modified strategy of the least-squares deconvolution technique aimed at optimizing the detection of magnetic signatures while minimizing the detection of spurious signatures in Stokes V. Using this analysis, we confirm the detection of a magnetic field in six targets previously reported as magnetic by the MiMeS collaboration (HD 108, HD 47129A2, HD 57682, HD 148937, CPD-28 2561, and NGC 1624-2), as well as report the presence of signal in Stokes V in three new magnetic candidates (HD 36486, HD 162978, and HD 199579). Overall, we find a magnetic incidence rate of 7 ± 3 per cent, for 108 individual O stars (including all O-type components part of multiline systems), with a median uncertainty of the Bℓ measurements of about 50 G. An inspection of the data reveals no obvious biases affecting the incidence rate or the preference for detecting magnetic signatures in the magnetic stars. Similar to A- and B-type stars, we find no link between the stars' physical properties (e.g. Teff, mass, and age) and the presence of a magnetic field. However, the Of?p stars represent a distinct class of magnetic O-type stars.

  9. ADMAP-2: The next-generation Antarctic magnetic anomaly map

    NASA Astrophysics Data System (ADS)

    Golynsky, Alexander; Golynsky, Dmitry; Ferraccioli, Fausto; Jordan, Tom; Damaske, Detlef; Blankenship, Don; Holt, Jack; Young, Duncan; Ivanov, Sergey; Kiselev, Alexander; Jokat, Wilfried; Gohl, Karsten; Eagles, Graeme; Bell, Robin; Armadillo, Egidio; Bozzo, Emanuelle; Caneva, Giorgio; Finn, Carol; Forsberg, Rene; Aitken, Alan

    2017-04-01

    The Antarctic Digital Magnetic Anomaly Project compiled the first international magnetic anomaly map of the Antarctic region south of 60°S (ADMAP-1) some six years after its 1995 launch (Golynsky et al., 2001; Golynsky et al., 2007; von Frese et al., 2007). This magnetic anomaly compilation provided new insights into the structure and evolution of Antarctica, including its Proterozoic-Archaean cratons, Proterozoic-Palaeozoic orogens, Palaeozoic-Cenozoic magmatic arc systems, continental rift systems and rifted margins, large igneous provinces and the surrounding oceanic gateways. The international working group produced the ADMAP-1 database from more than 1.5 million line-kilometres of terrestrial, airborne, marine and satellite magnetic observations collected during the IGY 1957-58 through 1999. Since the publication of the first magnetic anomaly map, the international geomagnetic community has acquired more than 1.9 million line-km of new airborne and marine data. This implies that the amount of magnetic anomaly data over the Antarctic continent has more than doubled. These new data provide important constraints on the geology of the enigmatic Gamburtsev Subglacial Mountains and Prince Charles Mountains, Wilkes Land, Dronning Maud Land, and other largely unexplored Antarctic areas (Ferraccioli et al., 2011, Aitken et al., 2014¸ Mieth & Jokat, 2014, Golynsky et al., 2013). The processing of the recently acquired data involved quality assessments by careful statistical analysis of the crossover errors. All magnetic data used in the ADMAP-2 compilation were delivered as profiles, although several of them were in raw form. Some datasets were decimated or upward continued to altitudes of 4 km or higher with the higher frequency geological signals smoothed out. The line data used for the ADMAP-1 compilation were reprocessed for obvious errors and residual corrugations. The new near-surface magnetic data were corrected for the international geomagnetic reference field

  10. Magsat - A new satellite to survey the earth's magnetic field

    NASA Technical Reports Server (NTRS)

    Mobley, F. F.; Eckard, L. D.; Fountain, G. H.; Ousley, G. W.

    1980-01-01

    The Magsat satellite was launched on Oct. 30, 1979 into a sun-synchronous dawn-dusk orbit, of 97 deg inclination, 350 km perigee, and 550 km apogee. It contains a precision vector magnetometer and a cesium-vapor scalar magnetometer at the end of a 6-m long graphite epoxy scissors boom. The magnetometers are accurate to 2 nanotesla. A pair of star cameras are used to define the body orientation to 10 arc sec rms. An 'attitude transfer system' measures the orientation of the magnetometer sensors relative to the star cameras to approximately 5 arc sec rms. The satellite position is determined to 70 meters rms by Doppler tracking. The overall objective is to determine each component of the earth's vector magnetic field to an accuracy of 6 nanotesla rms. The Magsat satellite gathers a complete picture of the earth's magnetic field every 12 hours. The vector components are sampled 16 times per second with a resolution of 0.5 nanotesla. The data will be used by the U.S. Geological Survey to prepare 1980 world magnetic field charts and to detect large-scale magnetic anomalies in the earth's crust for use in planning resource exploration strategy.

  11. Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS)

    NASA Technical Reports Server (NTRS)

    Rhothermel, Jeffry; Jones, W. D.; Dunkin, J. A.; Mccaul, E. W., Jr.

    1993-01-01

    This effort involves development of a calibrated, pulsed coherent CO2 Doppler lidar, followed by a carefully-planned and -executed program of multi-dimensional wind velocity and aerosol backscatter measurements from the NASA DC-8 research aircraft. The lidar, designated as the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS), will be applicable to two research areas. First, MACAWS will enable specialized measurements of atmospheric dynamical processes in the planetary boundary layer and free troposphere in geographic locations and over scales of motion not routinely or easily accessible to conventional sensors. The proposed observations will contribute fundamentally to a greater understanding of the role of the mesoscale, helping to improve predictive capabilities for mesoscale phenomena and to provide insights into improving model parameterizations of sub-grid scale processes within large-scale circulation models. As such, it has the potential to contribute uniquely to major, multi-institutional field programs planned for the mid 1990's. Second, MACAWS measurements can be used to reduce the degree of uncertainty in performance assessments and algorithm development for NASA's prospective Laser Atmospheric Wind Sounder (LAWS), which has no space-based instrument heritage. Ground-based lidar measurements alone are insufficient to address all of the key issues. To minimize costs, MACAWS is being developed cooperatively by the lidar remote sensing groups of the Jet Propulsion Laboratory, NOAA Wave Propagation Laboratory, and MSFC using existing lidar hardware and manpower resources. Several lidar components have already been exercised in previous airborne lidar programs (for example, MSFC Airborne Doppler Lidar System (ADLS) used in 1981,4 Severe Storms Wind Measurement Program; JPL Airborne Backscatter Lidar Experiment (ABLE) used in 1989,90 Global Backscatter Experiment Survey Missions). MSFC has been given responsibility for directing the overall

  12. Mapping methane emissions using the airborne imaging spectrometer AVIRIS-NG

    NASA Astrophysics Data System (ADS)

    Thorpe, A. K.; Frankenberg, C.; Thompson, D. R.; Duren, R. M.; Bue, B. D.; Green, R. O.

    2017-12-01

    The next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) has been used to survey large regions and map methane plumes with unambiguous identification of emission source locations. This capability is aided by real time detection and geolocation of gas plumes, permitting adaptive surveys and communication to ground teams for rapid follow up. We present results from AVIRIS-NG flight campaigns in Colorado, New Mexico, and California. Hundreds of plumes were observed, reflecting emissions from the energy sector that include hydraulic fracturing, gas processing plants, tanks, pumpjacks, and pipeline leaks. In some cases, plumes observed by AVIRIS-NG resulted in mitigation. Additional examples will be shown for methane from dairy lagoons, landfills, natural emissions, as well as carbon dioxide from power plants and refineries. We describe the unique capabilities of airborne imaging spectrometers to augment other measurement techniques by efficiently surveying key regions for methane point sources and supporting timely assessment and mitigation. We summarize the outlook for near- and longer-term monitoring capabilities including future satellite systems. Figure caption. AVIRIS-NG true color image subset with superimposed methane plume showing retrieved gas concentrations. Plume extends 200 m downwind of the southern edge of the well pad. Google Earth imagery with finer spatial resolution is also included (red box), indicating that tanks in the inset scene as the source of emissions. Five wells are located at the center of this well pad and all use horizontal drilling to produce mostly natural gas.

  13. Airborne geophysical mapping as an innovative methodology for landslide investigation: evaluation of results from the Gschliefgraben landslide, Austria

    NASA Astrophysics Data System (ADS)

    Supper, R.; Baroň, I.; Ottowitz, D.; Motschka, K.; Gruber, S.; Winkler, E.; Jochum, B.; Römer, A.

    2013-05-01

    In September 2009, a complex airborne geophysical survey was performed in the large landslide affected area of the Gschliefgraben valley, Upper Austria, in order to evaluate the usability of this method for landslide detection and mapping. An evaluation of the results, including different remote sensing and ground based methods, proved that airborne geophysics, especially the airborne electromagnetic method, has a high potential for landslide investigation. This is due to its sensitivity to fluid and clay content and porosity, which are parameters showing characteristic values in landslide prone structures. Resistivity distributions in different depth levels as well as depth-slices along selected profiles are presented and compared with ground geoelectrical profiles for the test area of Gschliefgraben. Further interesting results can be derived from the radiometric survey, whereas the naturally occurring radioisotopes 40K and 232Th, as well as the man-made nuclide 137Cs have been considered. While the content of potassium and thorium in the shallow subsurface layer is expressively related to the lithological composition, the distribution of caesium is mainly determined by mass wasting processes.

  14. Airborne geophysical mapping as an innovative methodology for landslide investigation: evaluation of results from the Gschliefgraben landslide, Austria

    NASA Astrophysics Data System (ADS)

    Supper, R.; Baroň, I.; Ottowitz, D.; Motschka, K.; Gruber, S.; Winkler, E.; Jochum, B.; Römer, A.

    2013-12-01

    In September 2009, a complex airborne geophysical survey was performed in the large landslide affected area of the Gschliefgraben valley, Upper Austria, in order to evaluate the applicability of this method for landslide detection and mapping. An evaluation of the results, including different remote-sensing and ground-based methods, proved that airborne geophysics, especially the airborne electromagnetic method, has a high potential for landslide investigation. This is due to its sensitivity to fluid and clay content and porosity, which are parameters showing characteristic values in landslide prone structures. Resistivity distributions in different depth levels as well as depth slices along selected profiles are presented and compared with ground geoelectrical profiles for the test area of Gschliefgraben. Further interesting results can be derived from the radiometric survey, whereas the naturally occurring radioisotopes 40K and 232Th, as well as the man-made nuclide 137Cs have been considered. While the content of potassium and thorium in the shallow subsurface layer is expressively related to the lithological composition, the distribution of caesium is mainly determined by mass wasting processes.

  15. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  16. Goaf water detection using the grounded electrical source airborne transient electromagnetic system

    NASA Astrophysics Data System (ADS)

    Li, D.; Ji, Y.; Guan, S.; Wu, Y.; Wang, A.

    2017-12-01

    To detect the geoelectric characteristic of goaf water, the grounded electrical source airborne transient electromagnetic (GREATEM) system (developed by Jilin University, China) is applied to the goaf water detection since its advantages of considerable prospecting depth, lateral resolution and detection efficiency. For the test of GREATEM system in goaf water detection, an experimental survey was conducted at Qinshui coal mine (Shanxi province, China). After data acquisition, noise reduction and inversion, the resistivity profiles of survey area is presented. The results highly agree the investigation information provided by Shanxi Coal Geology Geophysical Surveying Exploration Institute (China), conforming that the GREATEM system is an effective technique for resistivity detection of goaf water.

  17. Global and local magnetic mapping using CrowdMag data

    NASA Astrophysics Data System (ADS)

    Saltus, R.; Nair, M. C.

    2016-12-01

    NOAA's National Centers for Environmental Information (NCEI), in partnership with the University of Colorado's CIRES develop magnetic field models to aid navigation, resource exploration and scientific research. We use observatories, satellites and ship/airborne surveys to map and model the Earth's magnetic field. However, the available measurements leave gaps in coverage, particularly for short-wavelength anomalies associated with man-made infrastructure ("urban noise"). In 2014, we started a project to address these gaps through the collection of vector magnetic data from digital magnetometers in smartphones. In October 2014, we released the "CrowdMag" Android and iOS apps for harvesting data from phones. Currently, the CrowdMag project has more than 10,000 enthusiastic users contributing more than 12 million magnetic data measurements from around the world. We present the first analysis results from the crowdsourced magnetic data. A global magnetic model derived solely from CrowdMag data is consistent to degree and order 4 with satellite-derived models such as World Magnetic Model. A unique contribution of CrowdMag project is the collection of ground level magnetic data in densely populated regions with an unprecedented spatial resolution. To demonstrate, we generated a magnetic map (by binning the data collected in 200x200m cells) of central Boulder, Colorado using 170,000 data points collected by about 60 devices over the duration October 2014- January 2016. The median value is consistent with the expected magnitude of the Earth's background magnetic field. The standard deviation of the CrowdMag total field (F) values is much higher than the expected natural (i.e., diurnal and geologic) magnetic field variation. However, the phone's magnetometer is sensitive enough to capture the larger magnitude magnetic signature from the urban magnetic sources. We discuss the potential reliability of crowdsourced magnetic maps and their applications to navigation and other

  18. [Distribution of airborne fungi, particulate matter and carbon dioxide in Seoul metropolitan subway stations].

    PubMed

    Kim, Ki Youn; Park, Jae Beom; Kim, Chi Nyon; Lee, Kyung Jong

    2006-07-01

    The aims of this study were to examine the level of airborne fungi and environmental factors in Seoul metropolitan subway stations and to provide fundamental data to protect the health of subway workers and passengers. The field survey was performed from November in 2004 to February in 2005. A total 22 subway stations located at Seoul subway lines 1-4 were randomly selected. The measurement points were subway workers' activity areas (station office, bedroom, ticket office and driver's seat) and the passengers' activity areas (station precincts, inside train and platform). Air sampling for collecting airborne fungi was carried out using a one-stage cascade impactor. The PM and CO2 were measured using an electronic direct recorder and detecting tube, respectively. In the activity areas of the subway workers and passengers, the mean concentrations of airborne fungi were relatively higher in the workers' bedroom and station precinct whereas the concentration of particulate matter, PM10 and PM2.5, were relatively higher in the platform, inside the train and driver's seat than in the other activity areas. There was no significant difference in the concentration of airborne fungi between the underground and ground activity areas of the subway. The mean PM10 and PM2.5 concentration in the platform located at underground was significantly higher than that of the ground (p<0.05). The levels of airborne fungi in the Seoul subway line 1-4 were not serious enough to cause respiratory disease in subway workers and passengers. This indicates that there is little correlation between airborne fungi and particulate matter.

  19. High-resolution AUV-based near bottom magnetic surveys at Palinuro volcanic complex (Southern Tyrrhenian Sea)

    NASA Astrophysics Data System (ADS)

    Cocchi, L.; Plunkett, S.; Augustin, N.; Petersen, S.

    2013-12-01

    In this paper we present the preliminary results of new near bottom magnetic datasets collected during the recent POS442 cruise using the autonomous underwater vehicle (AUV) Abyss. The Southern Tyrrhenian basin is characterized by deep seafloor interspersed with huge volcanic seamounts (e.g Vavilov and Marsili and those associated to the Aeolian volcanic arc), which were formed during eastward roll back of the Apennine subduction system. These submarine edifices often are affected by significant hydrothermal activity and associated mineral deposits such as those observed at Marsili, Palinuro and Panarea. The western part of the Palinuro volcanic complex is characterized by a half rim of a caldera-like structure and hosts hydrothermal barite-pyrite deposits. Until recently, the full extent of the hydrothermal system remained poorly defined, as exploration has been limited to a few specific sites. In November 2012, a set of high resolution near seafloor geophysical surveys were carried out using GEOMAR's AUV Abyss to attempt to better define the hydrothermal mineralization at Palinuro. Five AUV dives were performed, mapping a total area of 3.7 km2 over the western part of Palinuro. Geomar's Abyss AUV (a Remus6000 class vehicle) was equipped with an Applied Physics Systems flux gate magnetometer, writing to a stand alone data logger, powered by the AUV's main batteries. The 5 dives were performed within the same area but with different primary geophysical sensors (multibeam, sidescan sonar, subbottom profiler), survey altitudes above seafloor (100m, 40m) and line spacing (150m, 100m, 20m). Magnetic data was collect on all five dives. At the beginning of each dive, the AUV performed a set of calibration manoeuvres, involving a 360 degree heading variation, a set of three upwards/downwards pitches, and three port and starboard yaws. This magnetic data reveals the magnetization features of the seafloor in unprecedented detail, highlighting a complex pattern mostly due to

  20. Using airborne thermal infrared imagery and helicopter EM conductivity to locate mine pools and discharges in the Kettle Creek watershed, north-central Pennsylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, E.; Hammack, R.W.; Harbert, W.P.

    2005-11-01

    The Kettle Creek watershed contains 50–100-year-old surface and underground coal mines that are a continuing source of acid mine drainage (AMD). To characterize the mining-altered hydrology of this watershed, an airborne reconnaissance was conducted in 2002 using airborne thermal infrared imagery (TIR) and helicopter-mounted electromagnetic (HEM) surveys. TIR uses the temperature differential between surface water and groundwater to locate areas where groundwater emerges at the surface. TIR anomalies located in the survey included seeps and springs, as well as mine discharges. In a follow-up ground investigation, hand-held GPS units were used to locate 103 of the TIR anomalies. Of themore » sites investigated, 26 correlated with known mine discharges, whereas 27 were previously unknown. Seven known mine discharges previously obscured from TIR imagery were documented. HEM surveys were used to delineate the groundwater table and also to locate mine pools, mine discharges, and groundwater recharge zones. These surveys located 12 source regions and flow paths for acidic, metal-containing (conductive) mine drainage; areas containing acid-generating mine spoil; and areas of groundwater recharge and discharge, as well as identifying potential mine discharges previously obscured from TIR imagery by nondeciduous vegetation. Follow-up ground-based electromagnetic surveys verified the results of the HEM survey. Our study suggests that airborne reconnaissance can make the remediation of large watersheds more efficient by focusing expensive ground surveys on small target areas.« less

  1. Using airborne thermal infrared imagery and helicopter EM conductivity to locate mine pools and discharges in the Kettle Creek watershed, north-central Pennsylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, E.; Hammack, R.; Harbert, W.

    2005-12-01

    The Kettle Creek watershed contains 50-100-year-old surface and underground coal mines that are a continuing source of acid mine drainage (AMD). To characterize the mining-altered hydrology of this watershed, an airborne reconnaissance was conducted in 2002 using airborne thermal infrared imagery (TIR) and helicopter-mounted electromagnetic (HEM) surveys. TIR uses the temperature differential between surface water and groundwater to locate areas where groundwater emerges at the surface. TIR anomalies located in the survey included seeps and springs, as well as mine discharges. In a follow-up ground investigation, hand-held GPS units were used to locate 103 of the TIR anomalies. Of themore » sites investigated, 26 correlated with known mine discharges, whereas 27 were previously unknown. Seven known mine discharges previously obscured from TIR imagery were documented. HEM surveys were used to delineate the groundwater table and also to locate mine pools, mine discharges, and groundwater recharge zones. These surveys located 12 source regions and flow paths for acidic, metal-containing (conductive) mine drainage; areas containing acid-generating mine spoil; and areas of groundwater recharge and discharge, as well as identifying potential mine discharges previously obscured from TIR imagery by nondeciduous vegetation. Follow-up ground-based electromagnetic surveys verified the results of the HEM survey. Our study suggests that airborne reconnaissance can make the remediation of large watersheds more efficient by focusing expensive ground surveys on small target areas.« less

  2. Integrated Airborne and In-Situ Measurements over Land-Fast Ice near Barrow, AK.

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.; Claffey, K. J.; Abelev, A.; Hebert, D. A.; Jones, K.

    2014-12-01

    During March of 2014, the Naval Research Laboratory and the Cold Regions Research and Engineering Laboratory collected an integrated set of airborne and in-situ measurements over two areas of floating, but land-fast ice near the coast of Barrow, AK. The near-shore site was just north of Point Barrow, and the "offshore" site was ~ 20 km east of Point Barrow. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439) and a snow radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects at both sites consisting of a 2 km long profile of snow depth and ice thickness measurements with periodic boreholes. A 60 m x 400 m swath of snow depth measurements was centered on this profile. Airborne data were collected on five overflights of the two transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The radar measured snow thickness. The freeboard and snow thickness measurements are used to estimate ice thickness via isostasy and density estimates. The central swath of in situ snow depth data allows examination of the effects of cross-track variations considering the relatively large footprint of the snow radar. Assuming a smooth, flat surface the radar range resolution in air is < 4 cm, but the along-track sampling distance is ~ 3 m after unfocussed SAR processing. The width of the footprint varies from ~ 9 m up to about 40 m (beam-limited) for uneven surfaces. However, the radar could not resolve snow thickness

  3. Using Radial Basis Functions in Airborne Gravimetry for Local Geoid Improvement

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng

    2017-04-01

    software is tested for the GSVS14 (Geoid Slope Validation Survey 2014) area as well as for the area around Puerto Rico and the U.S. Virgin Islands by using the real airborne gravity data from the Gravity for the Redefinition of the American Vertical Datum (GRAV-D, Smith 2007) project. The newly acquired cm-level accurate GPS/Leveling bench marks prove the RBF airborne enhanced geoid models are not inferior to other models computed by conventional approaches. By fully utilizing the three dimensional correlation information among the flight tracks, the RBF can also be used as a data editing tool for airborne data adjustment and cleaning.

  4. Use of a new high-speed digital data acquisition system in airborne ice-sounding

    USGS Publications Warehouse

    Wright, David L.; Bradley, Jerry A.; Hodge, Steven M.

    1989-01-01

    A high-speed digital data acquisition and signal averaging system for borehole, surface, and airborne radio-frequency geophysical measurements was designed and built by the US Geological Survey. The system permits signal averaging at rates high enough to achieve significant signal-to-noise enhancement in profiling, even in airborne applications. The first field use of the system took place in Greenland in 1987 for recording data on a 150 by 150-km grid centered on the summit of the Greenland ice sheet. About 6000-line km were flown and recorded using the new system. The data can be used to aid in siting a proposed scientific corehole through the ice sheet.

  5. LAN MAP: An Innovative Airborne Light at Night Mapping Project

    NASA Astrophysics Data System (ADS)

    Craine, Eric R.; Craine, B. L.; Craine, E. M.; Craine, P. R.

    2013-01-01

    Widespread installation of inefficient and misdirected artificial light at night (LAN) has led to increasing concerns about light pollution and its impact, not only on astronomical facilities but larger communities as well. Light pollution impacts scientific research, environmental ecosystems, human health, and quality of life. In recent years, the public policy response to light pollution has included formulation of government codes to regulate lighting design and installation. Various environmental groups now include light pollution among their rallying themes to protest both specific and general developments. The latter efforts are often conducted in the absence of any quantitative data and are frequently charged by emotion rather than reason. To bring some scientific objectivity, and quantitative data, to these discussions, we have developed a suite of tools for simultaneous photometric measurements and temporal monitoring of both local communities and the sky overhead. We have also developed novel protocols for the use of these tools, including a triad of airborne, ground mobile, and ground static photometric surveys. We present a summary of these tools and protocols, with special emphasis on the airborne systems, and discuss baseline and follow-up measurements of LAN environments in the vicinity of numerous observatories in Arizona, the home of the initial LAN MAP surveys.

  6. Magnetic mapping for structural geology and geothermal exploration in Guadeloupe, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Mercier de Lépinay, jeanne; munschy, marc; geraud, yves; diraison, marc; navelot, vivien; verati, christelle; corsini, michel; lardeaux, jean marc; favier, alexiane

    2017-04-01

    This work is implemented through the GEOTREF program which benefits from the support of both the ADEME and the French public funds "Investments for the future". The program focuses on the exploration for geothermal resources in Guadeloupe, Lesser Antilles, where a geothermal power plant is in production since 1986 (Bouillante, Basse Terre). In Les Saintes archipelago, in the south of Guadeloupe, the outcrop analysis of Terre-de-Haut Island allows to point out an exhumed geothermal paleo-system that is thought to be an analogue of the Bouillante active geothermal system. We show that a detailed marine magnetic survey with a quantitative interpretation can bring information about the offshore structures around Les Saintes archipelago in order to extend the geological limits and structural elements. A similar survey and workflow is also conducted offshore Basse-Terre where more geophysical data is already available. In order to correctly link the offshore and onshore structures, the magnetic survey must be close enough to the shoreline and sufficiently detailed to correctly outline the tectonic structures. An appropriate solution for such a survey is to use a three component magnetometer aboard a speedboat. Such a boat allows more navigation flexibility than a classic oceanic vessel towing a magnetometer; it can sail at higher speed on calm seas and closer to the shoreline. This kind of magnetic acquisition is only viable because the magnetic effect of the ship can be compensated using the same algorithms than those used for airborne magnetometry. The use of potential field transforms allows a large variety of structures to be highlighted, providing insights to build a general understanding of the nature and distribution of the magnetic sources. In particular, we use the tilt angle operator to better identify the magnetic lineaments offshore in order to compare them to the faults identified onshore during the outcrop analysis. All the major faults and fractures

  7. Airborne Surveys Conducted by SOAR for Geologic Studies in Antarctica, 1998-2001

    NASA Astrophysics Data System (ADS)

    Holt, J. W.

    2001-05-01

    During the three austral summers that occurred in the period October, 1998 to February, 2001, the Support Office for Aerogeophysical Research (SOAR) of the University of Texas Institute for Geophysics (UTIG) conducted aerogeophysical campaigns for eight separate projects in both East and West Antarctica. Measurements were made of magnetic and gravitational fields, surface elevation and sub-glacial bed elevation. Surveys were accomplished with a modified deHavilland Twin Otter aircraft equipped with a towed magnetometer, gyro-stabilized gravity meter, laser altimeter, ice-penetrating radar, and carrier-phase GPS receivers. Diurnal variations of the geomagnetic field were measured at nearby base stations where static GPS data were collected for differential aircraft positioning. Four of the experiments performed were designed to address fundamental geologic questions when combined with ground-based studies and/or geophysical modeling in studies by multiple investigators at several institutions. In western Marie Byrd Land (MBL), a 330 x 440 km survey (line spacing ranged from 5.3 x 5.3 km to 10.6 x 10.6 km) was flown in order to understand the tectonic and geologic devolpment of the boundary between the Ross Sea Rift and the MBL volcanic province. A series of corridors were flown across the Transantarctic Mountains (TAM) in order to study extreme and variable rift flank uplift. These consist of a 100 x 810 km corridor extending from Ice Stream B across the Watson Escarpment and into central East Antarctica beyond South Pole, a 100 x 1170 km corridor from Ross Island to Dome C, and a single line across the TAM near Robb Glacier (line spacing for corridors was 10 km with 30 km tie-lines). Three parallel lines, 1300 km long and separated by 5 km, were flown from near Taylor Dome to AGO4, complementing a passive seismic array planned in order to investigate the crust and upper mantle structure beneath the East-West Antarctic boundary. Another survey was performed in order

  8. Experimental investigations on airborne gravimetry based on compressed sensing.

    PubMed

    Yang, Yapeng; Wu, Meiping; Wang, Jinling; Zhang, Kaidong; Cao, Juliang; Cai, Shaokun

    2014-03-18

    Gravity surveys are an important research topic in geophysics and geodynamics. This paper investigates a method for high accuracy large scale gravity anomaly data reconstruction. Based on the airborne gravimetry technology, a flight test was carried out in China with the strap-down airborne gravimeter (SGA-WZ) developed by the Laboratory of Inertial Technology of the National University of Defense Technology. Taking into account the sparsity of airborne gravimetry by the discrete Fourier transform (DFT), this paper proposes a method for gravity anomaly data reconstruction using the theory of compressed sensing (CS). The gravity anomaly data reconstruction is an ill-posed inverse problem, which can be transformed into a sparse optimization problem. This paper uses the zero-norm as the objective function and presents a greedy algorithm called Orthogonal Matching Pursuit (OMP) to solve the corresponding minimization problem. The test results have revealed that the compressed sampling rate is approximately 14%, the standard deviation of the reconstruction error by OMP is 0.03 mGal and the signal-to-noise ratio (SNR) is 56.48 dB. In contrast, the standard deviation of the reconstruction error by the existing nearest-interpolation method (NIPM) is 0.15 mGal and the SNR is 42.29 dB. These results have shown that the OMP algorithm can reconstruct the gravity anomaly data with higher accuracy and fewer measurements.

  9. Experimental Investigations on Airborne Gravimetry Based on Compressed Sensing

    PubMed Central

    Yang, Yapeng; Wu, Meiping; Wang, Jinling; Zhang, Kaidong; Cao, Juliang; Cai, Shaokun

    2014-01-01

    Gravity surveys are an important research topic in geophysics and geodynamics. This paper investigates a method for high accuracy large scale gravity anomaly data reconstruction. Based on the airborne gravimetry technology, a flight test was carried out in China with the strap-down airborne gravimeter (SGA-WZ) developed by the Laboratory of Inertial Technology of the National University of Defense Technology. Taking into account the sparsity of airborne gravimetry by the discrete Fourier transform (DFT), this paper proposes a method for gravity anomaly data reconstruction using the theory of compressed sensing (CS). The gravity anomaly data reconstruction is an ill-posed inverse problem, which can be transformed into a sparse optimization problem. This paper uses the zero-norm as the objective function and presents a greedy algorithm called Orthogonal Matching Pursuit (OMP) to solve the corresponding minimization problem. The test results have revealed that the compressed sampling rate is approximately 14%, the standard deviation of the reconstruction error by OMP is 0.03 mGal and the signal-to-noise ratio (SNR) is 56.48 dB. In contrast, the standard deviation of the reconstruction error by the existing nearest-interpolation method (NIPM) is 0.15 mGal and the SNR is 42.29 dB. These results have shown that the OMP algorithm can reconstruct the gravity anomaly data with higher accuracy and fewer measurements. PMID:24647125

  10. Airborne Sea-Surface Topography in an Absolute Reference Frame

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Childers, V. A.; Jacobs, G.; Blaha, J.

    2003-12-01

    Highly dynamic coastal ocean processes occur at temporal and spatial scales that cannot be captured by the present generation of satellite altimeters. Space-borne gravity missions such as GRACE also provide time-varying gravity and a geoidal msl reference surface at resolution that is too coarse for many coastal applications. The Naval Research Laboratory and the Naval Oceanographic Office have been testing the application of airborne measurement techniques, gravity and altimetry, to determine sea-surface height and height anomaly at the short scales required for littoral regions. We have developed a precise local gravimetric geoid over a test region in the northern Gulf of Mexico from historical gravity data and recent airborne gravity surveys. The local geoid provides a msl reference surface with a resolution of about 10-15 km and provides a means to connect airborne, satellite and tide-gage observations in an absolute (WGS-84) framework. A series of altimetry reflights over the region with time scales of 1 day to 1 year reveal a highly dynamic environment with coherent and rapidly varying sea-surface height anomalies. AXBT data collected at the same time show apparent correlation with wave-like temperature anomalies propagating up the continental slope of the Desoto Canyon. We present animations of the temporal evolution of the surface topography and water column temperature structure down to the 800 m depth of the AXBT sensors.

  11. Rapid topographic and bathymetric reconnaissance using airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Axelsson, Andreas

    2010-10-01

    Today airborne LiDAR (Light Detection And Ranging) systems has gained acceptance as a powerful tool to rapidly collect invaluable information to assess the impact from either natural disasters, such as hurricanes, earthquakes and flooding, or human inflicted disasters such as terrorist/enemy activities. Where satellite based imagery provides an excellent tool to remotely detect changes in the environment, the LiDAR systems, being active remote sensors, provide an unsurpassed method to quantify these changes. The strength of the active laser based systems is especially evident in areas covered by occluding vegetation or in the shallow coastal zone as the laser can penetrate the vegetation or water body to unveil what is below. The purpose of this paper is to address the task to survey complex areas with help of the state-of-the-art airborne LiDAR systems and also discuss scenarios where the method is used today and where it may be used tomorrow. Regardless if it is a post-hurricane survey or a preparation stage for a landing operation in unchartered waters, it is today possible to collect, process and present a dense 3D model of the area of interest within just a few hours from deployment. By utilizing the advancement in processing power and wireless network capabilities real-time presentation would be feasible.

  12. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  13. Prospects for Studying Interstellar Magnetic Fields with a Far-Infrared Polarimeter for SAFIR

    NASA Technical Reports Server (NTRS)

    Dowell, C. Darren; Chuss, D. T.; Dotson, J. L.

    2008-01-01

    Polarimetry at mid-infrared through millimeter wavelengths using airborne and ground-based telescopes has revealed magnetic structures in dense molecular clouds in the interstellar medium, primarily in regions of star formation. Furthermore, spectropolarimetry has offered clues about the composition of the dust grains and the mechanism by which they are aligned with respect to the local magnetic field. The sensitivity of the observations to date has been limited by the emission from the atmosphere and warm telescopes. A factor of 1000 in sensitivity can be gained by using instead a cold space telescope. With 5 arcminute resolution, Planck will make the first submillimeter polarization survey of the full Galaxy early in the next decade. We discuss the science case for and basic design of a far-infrared polarimeter on the SAFIR space telescope, which offers resolution in the few arcsecond range and wavelength selection of cold and warm dust components. Key science themes include the formation and evolution of molecular clouds in nearby spiral galaxies, the magnetic structure of the Galactic center, and interstellar turbulence.

  14. Preliminary Gravity and Ground Magnetic Data in the Arbuckle Uplift near Sulphur, Oklahoma

    USGS Publications Warehouse

    Scheirer, Daniel S.; Aboud, Essam

    2008-01-01

    Improving knowledge of the geology and geophysics of the Arbuckle Uplift in south-central Oklahoma is a goal of the Framework Geology of Mid-Continent Carbonate Aquifers project sponsored by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program (NCGMP). In May 2007, we collected ground magnetic and gravity observations in the Hunton Anticline region of the Arbuckle Uplift, near Sulphur, Oklahoma. These observations complement prior gravity data collected for a project sponsored by the National Park Service and helicopter electromagnetic (HEM) and aeromagnetic data collected in March 2007 for the NCGMP project. This report describes the instrumentation and processing that was utilized in the May 2007 geophysical fieldwork, and it presents preliminary results as gravity anomaly maps and magnetic anomaly profiles. Digital tables of gravity and magnetic observations are provided as a supplement to this report. Future work will generate interpretive models of these anomalies and will involve joint analysis of these ground geophysical measurements with airborne and other geophysical and geological observations, with the goal of understanding the geological structures influencing the hydrologic properties of the Arbuckle-Simpson aquifer.

  15. Electromagnetic, magnetic, and gravimetric surveys at the Bi'r Jarbuah gold prospect, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Miller, C.H.; Showail, A.A.; Bazzari, M.A.; Khoja, J.A.; Hajour, M.O.

    1990-01-01

    A detailed search for gold and associated minerals was begun in the Bi'r Jarbuah area in 1988. Crone electromagnetic (CEM), magnetic, and gravimetric surveys were run in the areas of greatest interest. Anomalous areas are most interesting in the southern part of the area where linear magnetic and gravity anomalies trend east-northeast and overlap in large part. They are most prominent at or near the south end of a diorite pluton where some quartz veins mined by the ancients also trend northeast. A second area, at the extreme southern end of the survey, contains a large CEM anomaly that coincides with northeast-trending magnetic and gravity anomalies. Although this second area is largely overlain by alluvium, a major quartz vein strikes to the northeast in the adjacent bedrock.

  16. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry.

    PubMed

    Šálek, Ondřej; Matolín, Milan; Gryc, Lubomír

    2018-02-01

    Localization of size-limited gamma-ray anomalies plays a fundamental role in uranium prospecting and environmental studies. Possibilities of a newly developed mini-airborne gamma-ray spectrometric equipment were tested on a uranium anomaly near the village of Třebsko, Czech Republic. The measurement equipment was based on a scintillation gamma-ray spectrometer specially developed for unmanned aerial vehicles (UAV) mounted on powerful hexacopter. The gamma-ray spectrometer has two 103 cm 3 BGO scintillation detectors of relatively high sensitivity. The tested anomaly, which is 80 m by 40 m in size, was investigated by ground gamma-ray spectrometric measurement in a detail rectangular measurement grid. Average uranium concentration is 25 mg/kg eU attaining 700 mg/kg eU locally. The mini-airborne measurement across the anomaly was carried out on three 100 m long parallel profiles at eight flight altitudes from 5 to 40 m above the ground. The resulting 1 s 1024 channel gamma-ray spectra, recorded in counts per second (cps), were processed to concentration units of K, U and Th, while total count (TC) was reported in cps. Increased gamma ray intensity of the anomaly was indicated by mini-airborne measurement at all profiles and altitudes, including the highest altitude of 40 m, at which the recorded intensity is close to the natural radiation background. The reported instrument is able to record data with comparable quality as standard airborne survey, due to relative sensitive detector, lower flight altitude and relatively low flight speed of 1 m/s. The presented experiment brings new experience with using unmanned semi-autonomous aerial vehicles and the latest mini-airborne radiometric instrument. The experiment has demonstrated the instrument's ability to localize size-limited uranium anomalies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A survey of natural terrestrial and airborne radionuclides in moss samples from the peninsular Thailand.

    PubMed

    Wattanavatee, Komrit; Krmar, Miodrag; Bhongsuwan, Tripob

    2017-10-01

    The aim of this study was to determine the activity concentrations of natural terrestrial radionuclides ( 238 U, 226 Ra, 232 Th and 40 K) and airborne radionuclides ( 210 Pb, 210 Pb ex and 7 Be) in natural terrestrial mosses. The collected moss samples (46) representing 17 species were collected from 17 sampling localities in the National Parks and Wildlife Sanctuaries of Thailand, situated in the mountainous areas between the northern and the southern ends of peninsular Thailand (∼7-12 °N, 99-102 °E). Activity concentrations of radionuclides in the samples were measured using a low background gamma spectrometer. The results revealed non-uniform spatial distributions of all the radionuclides in the study area. Principal component analysis and cluster analysis revealed two distinct origins for the studied radionuclides, and furthermore, the Pearson correlations were strong within 226 Ra, 232 Th, 238 U and 40 K as well as within 210 Pb and 210 Pb ex , but there was no significant correlation between these two groups. Also 7 Be was uncorrelated to the others, as expected due to different origins of the airborne and terrestrial radionuclides. The radionuclide activities of moss samples varied by moss species, topography, geology, and meteorology of each sampling area. The observed abnormally high concentrations of some radionuclides probably indicate that the concentrations of airborne and terrestrial radionuclides in moss samples were directly related to local geological features of the sampling site, or that high levels of 7 Be were most probably linked with topography and regional NE monsoonal winds from mainland China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Demonstration and Validation of an Improved Airborne Electromagnetic System for UXO Detection and Mapping

    DTIC Science & Technology

    2010-05-01

    William E. Doll Battelle 105 Mitchell Road Suite 103 Oak Ridge, TN 37830 865-483-2548 865-599-6165 dollw@battelle.org Airborne Survey...Manager David T. Bell Battelle 105 Mitchell Road Suite 103 Oak Ridge, TN 37830 865-483-2547 865-250-0578 belldt@battelle.org Battelle-Oak Ridge

  19. Data Analysis of Airborne Electromagnetic Bathymetry.

    DTIC Science & Technology

    1985-04-01

    7 AD-R 58 889 DATA ANALYSIS OF AIRBORNE ELECTROMAGNETIC BRTHYMETRY i/i (U) NAVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL STRTION MS R ZOLLINGER...Naval Ocean Research and Development Activity NSTL, Mississippi 39529 NORDA Report 93 April 1985 AD-A158 809 - Data Analysis of Airborne Electromagnetic ...8217 - Foreword CI Airborne electromagnetic (AEM) systems have traditionally been used for detecting anomalous conductors in the

  20. Second International Airborne Remote Sensing Conference and Exhibition

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The conference provided four days of displays and scientific presentations on applications, technology, a science of sub-orbital data gathering and analysis. The twelve displayed aircraft equipped with sophisticated instrumentation represented a wide range of environmental and reconnaissance missions,including marine pollution control, fire detection, Open Skies Treaty verification, thermal mapping, hydrographical measurements, military research, ecological and agricultural observations, geophysical research, atmospheric and meterological observations, and aerial photography. The U.S. Air Force and the On-Site Inspection Agency displayed the new Open Skies Treaty verification Boeing OC 135B that promotes international monitoring of military forces and activities. SRl's Jetstream uses foliage and ground penetrating SAR for forest inventories, toxic waste delineation, and concealed target and buried unexploded ordnance detection. Earth Search Sciences's Gulfstream 1 with prototype miniaturized airborne hyperspectral imaging equipment specializes in accurate mineral differentiation, low-cost hydrocarbon exploration, and nonproliferation applications. John E. Chance and the U.S. Army Corps of Engineers displayed the Bell 2 helicopter with SHOALS that performs hydrographic surveying of navigation projects, coastal environment assessment, and nautical charting surveys. Bechtel Nevada and U.S. DOE displayed both the Beech King AIR B-200 platform equipped to provide first response to nuclear accidents and routine environmental surveillance, and the MBB BO-105 helicopter used in spectral analysis for environmental assessment and military appraisal. NASA Ames Research Center's high-altitude Lockheed ER-2 assists in earth resources monitoring research in atmospheric chemistry, oceanography, and electronic sensors; ozone and greenhouse studies and satellite calibration and data validation. Ames also showcased the Learjet 24 Airborne Observatory that completed missions in Venus

  1. Making Carbon Emissions Remotely Sensible: Flux Observations of Carbon from an Airborne Laboratory (FOCAL), its Near-Surface Survey of Carbon Gases and Isotopologues on Alaska's North Slope

    NASA Astrophysics Data System (ADS)

    Dobosy, R.; Dumas, E. J.; Sayres, D. S.; Healy, C. E.; Munster, J. B.; Baker, B.; Anderson, J. G.

    2014-12-01

    Detailed process-oriented study of the mechanisms of conversion in the Arctic of fossil carbon to atmospheric gas is progressing, but necessarily limited to a few point locations and requiring detailed subsurface measurements inaccessible to remote sensing. Airborne measurements of concentration, transport and flux of these carbon gases at sufficiently low altitude to reflect surface variations can tie such local measurements to remotely observable features of the landscape. Carbon dioxide and water vapor have been observable for over 20 years from low-altitude small aircraft in the Arctic and elsewhere. Methane has been more difficult, requiring large powerful aircraft or limited flask samples. Recent developments in spectroscopy, however, have reduced the power and weight required to measure methane at rates suitable for eddy-covariance flux estimates. The Flux Observations of Carbon from an Airborne Laboratory (FOCAL) takes advantage of Integrated Cavity-Output Spectroscopy (ICOS) to measure CH4, CO2, and water vapor in a new airborne system. The system, moreover, measures these gases' stable isotopologues every two seconds or faster helping to separate thermogenic from biogenic emissions. Paired with the Best Airborne Turbulence (BAT) probe developed for small aircraft by NOAA's Air Resources Laboratory and a light twin-engine aircraft adapted by Aurora Flight Sciences Inc., the FOCAL measures at 6 m spacing, covering 100 km in less than 30 minutes. It flies between 10 m and 50 m above ground interspersed with profiles to the top of the boundary layer and beyond. This presentation gives an overview of the magnitude and variation in fluxes and concentrations of CH4, CO2, and H2O with space, time, and time of day in a spatially extensive survey, more than 7500 km total in 15 flights over roughly a 100 km square during the month of August 2013. An extensive data set such as this at low altitude with high-rate sampling addresses features that repeat on 1 km scale

  2. Airborne hyperspectral remote sensing in Italy

    NASA Astrophysics Data System (ADS)

    Bianchi, Remo; Marino, Carlo M.; Pignatti, Stefano

    1994-12-01

    The Italian National Research Council (CNR) in the framework of its `Strategic Project for Climate and Environment in Southern Italy' established a new laboratory for airborne hyperspectral imaging devoted to environmental problems. Since the end of June 1994, the LARA (Laboratorio Aereo per Ricerche Ambientali -- Airborne Laboratory for Environmental Studies) Project is fully operative to provide hyperspectral data to the national and international scientific community by means of deployments of its CASA-212 aircraft carrying the Daedalus AA5000 MIVIS (multispectral infrared and visible imaging spectrometer) system. MIVIS is a modular instrument consisting of 102 spectral channels that use independent optical sensors simultaneously sampled and recorded onto a compact computer compatible magnetic tape medium with a data capacity of 10.2 Gbytes. To support the preprocessing and production pipeline of the large hyperspectral data sets CNR housed in Pomezia, a town close to Rome, a ground based computer system with a software designed to handle MIVIS data. The software (MIDAS-Multispectral Interactive Data Analysis System), besides the data production management, gives to users a powerful and highly extensible hyperspectral analysis system. The Pomezia's ground station is designed to maintain and check the MIVIS instrument performance through the evaluation of data quality (like spectral accuracy, signal to noise performance, signal variations, etc.), and to produce, archive, and diffuse MIVIS data in the form of geometrically and radiometrically corrected data sets on low cost and easy access CC media.

  3. Airborne precursor missions in support of SIR-C/X-SAR

    NASA Technical Reports Server (NTRS)

    Evans, D.; Oettl, H.; Pampaloni, P.

    1991-01-01

    The NASA DC-8 and DLR E-SAR airborne imaging radars have been deployed over several sites in Europe and the U.S. in support of SIR-C/X-SAR (Shuttle Imaging Radar-C/X-Synthetic Aperture Radar) science team investigations. To date, data have been acquired in support of studies of alpine glaciers, forests, geology, oceanography, and calibration. An experimental campaign with airborne sensors will take place in Europe in June to July 1991 which will allow multitemporal surveys of several Europeans sites. Current plans are for calibration and ecology experiments to be undertaken in Germany, the Netherlands, Italy, France, and the United Kingdom. Coordinated multitemporal aircraft and ground campaigns are planned in support of hydrology experiments in Italy, the United Kingdom, and Austria. Data will also be acquired in support of oceanogrqhy in the Gulf of Genova, North Atlantic, Straits of Messina and the North Sea. Geology sites will include Campi Flegrei and Vesuvio, Italy.

  4. High Resolution Magnetic surveys across the Emeelt and Hustaï faults near Ulaanbaatar, Mongolia

    NASA Astrophysics Data System (ADS)

    Fleury, S.; Munschy, M.; Schlupp, A.; Ferry, M.; Munkhuu, U.

    2012-04-01

    During the 20th century, Mongolia was one of the most seismic active intra-continental areas in the world. Some recent observations raise strong concern on still unidentified structures around Ulaanbaatar (1.5 M inhabitants). Near the city, instrumental seismicity shows continuous activity with five M 4+ events since 1974 and a M 5.4. Since 2005, the number of earthquake in the shallow crust (above 10-20 km) has significantly increased on the Emeelt fault area, west of Ulaanbaatar. A multi-disciplinary study - including GPR profiling, magnetic mapping, DGPS microtopography, morphotectonic observations and paleoseismic trenching - was carried out in the fault areas to assess their seismogenic potential. We present preliminary results of high resolution magnetic surveys using three axis fluxgate magnetic sensors. In Emeelt and Hustaï area, about 4 km2 were prospected with survey line spacing of 5 m to investigate the subsurface characteristic of the active faults. The main faults are clearly detected as well as secondary branches that affect buried paleo-channels. The combined approach of morphotectonic observations and magnetic measurements was used to select the location of paleoseismic trenches. The fluxgate equipment, being an easy, non-invasive and high-resolution way of mapping was used inside trenches to map exposures. Micro magnetic surveys were conducted on the walls of the trenches along 30 m, with a vertical extent of 2 m and a spacing of 0.1 m between each line. These measurements are used to define different units of sediments with a very high level of detail particularly where the stratigraphic interfaces are poorly visible. Magnetic mapping reveals a fault zone in recent units that consists of intense deformational patterns. Simultaneous use of horizontal and vertical maps may yield a 3D interpretation of the distribution of sedimentary layers. Faulted units related to recent depositional process attest for the ongoing activity of the Emeelt and Husta

  5. A Magnetic Survey Of The MTJ(Mangatolu Triple Junction) Caldera On Lau Basin

    NASA Astrophysics Data System (ADS)

    Kwak, J.; Won, J.; Park, C.; Ko, Y.; Kim, C.; Jeong, E.; Yu, S.

    2006-12-01

    We have performed a magnetic survey to understand magnetic distribution and characteristics of the MTJ(Mangatolu Triple Junction) caldera. MTJ caldera(15°25'S, 174°00'W) is located between MTJ northeast extending branch which connects to the northeast Tonga trench[Wright et al, 2000] and the main line of Tofua volcanic arc. The caldera results from coupling between the crust of the Tonga microplate and the subducting Pacific plate[Macleod, 1996]. The MTJ is characterized severe deformation and neovolcanism[Parson and Tiffin, 1993], and has been reoriented during the Brunhes Chron[Zellmer et al, 2001]. Generally, low magnetization at crust is highly correlated with active hydrothermal vent field. The acidic and corrosive fluids that constitute marine hydrothermal vent systems can quickly alter or replace the iron-rich magnetic minerals, which reduce the magnetic remanence of the crustal rocks, in some cases to zero. Magnetic field data were observed by using high sensitivity proton magnetometer which is towed 300m behind the ship(R/V Onnuri). The data were first merged with the ship navigation. Then magnetic field was inverted for crustal magnetization using Parker[1974] inversion approach, which takes bathymetry into account assuming a constant layer thickness and then sufficient annihilator is added to magnetization solution to balance the positive and reverse polarity amplitudes. In this study, all inversions are calculated assuming a 500m source thickness.

  6. Aerospace applications of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-01-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  7. Aerospace applications of magnetic bearings

    NASA Astrophysics Data System (ADS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-05-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  8. Using NASA`s Airborne Topographic Mapper IV to Quantify Geomorphic Change in Arid Southwestern Stream Systems

    NASA Astrophysics Data System (ADS)

    Finnegan, D. C.; Krabill, W.; Lichvar, R. W.; Ericsson, M. P.; Frederick, E.; Manizade, S.; Yungel, J.; Sonntag, J.; Swift, R.

    2005-12-01

    Understanding how arid stream systems respond to individual climatic events is often difficult given the dynamic and `flashy' nature of most watersheds and the unpredictable nature of individual storm events. Until recently conventional methods for quantifying change dictated the use of stream gauge measurements coupled with periodic cross-section measurements to quantify changes in large-scale channel geometry. Using this approach to quantify change across large areas often proves to be impractical and unattainable given the laborious nature of most surveying techniques including modern GPS systems. Alternately, airborne laser technologies such as NASA's Airborne Topographic Mapper (ATM) are capable of quantifying small-scale changes (~5-10cm) across large-scale terrain rapidly and accurately. The ATM was developed at the NASA-GSFC Wallops Flight Facility. Its current version, ATM-4, measures topography 5,000 times per second across a 45-degree swath below the aircraft by transmitting a 532nm (green) laser pulse and receiving the backscattered signal in a high-speed waveform digitizer. The laser range measurements are combined with aircraft location from GPS and attitude from an inertial navigation system (INS) to provide a precise XYZ coordinate for each (~1-meter diameter) laser footprint on the ground. Our work focuses on the use of airborne laser altimetry to quantify the nature of individual surfaces and the geomorphic change that occurs within small arid stream systems during significant storm events. In September of 2003 and 2005 acquisition surveys using NASA's ATM-IV were flown over Mission Creek, a small arid stream system in Southern California's Mojave Desert with a relatively long gauging history (>40yrs), allowing us to quantify the geomorphic change occurring within the channel as a result of the record storm events during the winter of 2004-2005. Preliminary results associated with our work are encouraging and lead us to believe that when compared

  9. Imaging Hidden Water in Three Dimensions Using an Active Airborne Electromagnetic System

    NASA Astrophysics Data System (ADS)

    Wynn, J.

    2001-05-01

    maximum depth of about 400 meters in areas with little or no cultural interference. An interesting 3-D representation of these data can be accomplished by using a fence-diagram showing the inversion of every 10th flight-line superimposed on the topographic map. In a few areas the EM-derived depths-to-water disagree with the mapped water-table-- an apparent artifact of a confined vs. an unconfined aquifer. The resulting maps show a very complex aquifer in some places completely disconnected from the San Pedro river. Along with the airborne EM survey, a magnetic component was acquired and has been used, via Euler deconvolution, to map in considerable detail the crystalline basement underlying the water-bearing sediments. This shows a complex basement topography with Basin-and-Range faulting, complicated by Miocene-to-recent volcanic flows interspersed within the sedimentary stack.

  10. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  11. A comparison of the performance of two types of inertial systems for strapdown airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Deurloo, R. A.; Martin, J.; Bastos, M. L.; Becker, M. H.

    2012-12-01

    Over the past two decades so-called strapdown airborne gravimetry systems have proven to have the potential to compete with more traditional measurement systems such as modified spring gravimeters (e.g. LaCoste & Romberg Air-Sea gravimeters). Strapdown gravimetry systems rely on the integration of high-accuracy data from a GNSS (Global Navigation Satellite System) receiver and from a strapdown IMU (Inertial Measurement Unit). These GNSS/IMU integrated systems have the advantage of being less expensive and more compact, while being easier to use and install than spring gravimeters, which tend to be bulky and require specialized human resources for its operation. In the scope of a research project developed through the collaboration of the University of Porto and the Portuguese Air Force (PAF), an airborne survey was recently performed over the middle and southern area of Continental Portugal using a CASA C212 aircraft. The goal of this survey was to acquire data to assess the performance of different GNSS/IMU systems and associated processing approaches to determine the gravity field and evaluate their potential and effectiveness for airborne gravimetry using different types of airborne platforms, including UAVs (Unmanned Airborne Vehicles). Among the systems on board were a medium-quality (tactical grade) IMU with fiber-optic gyros (FOG), a Litton LN-200, and a high-quality (navigation grade) IMU with ring-laser gyros (RLG), an iMAR RHQ-1003, which are the focus of the present comparison. The advantage of using a strapdown airborne gravimetry system with high-quality inertial sensor is that it allows the complete gravity vector to be determined from the triads of accelerometers and gyros in the IMU (vector gravimetry). On the other hand a medium-quality inertial system is limited to determining only the magnitude of the gravity vector (scalar gravimetry). The limited quality of the gyros of the medium-quality inertial systems does not allow the horizontal

  12. Airborne geoid mapping of land and sea areas of East Malaysia

    NASA Astrophysics Data System (ADS)

    Jamil, H.; Kadir, M.; Forsberg, R.; Olesen, A.; Isa, M. N.; Rasidi, S.; Mohamed, A.; Chihat, Z.; Nielsen, E.; Majid, F.; Talib, K.; Aman, S.

    2017-02-01

    This paper describes the development of a new geoid-based vertical datum from airborne gravity data, by the Department of Survey and Mapping Malaysia, on land and in the South China Sea out of the coast of East Malaysia region, covering an area of about 610,000 square kilometres. More than 107,000 km flight line of airborne gravity data over land and marine areas of East Malaysia has been combined to provide a seamless land-to-sea gravity field coverage; with an estimated accuracy of better than 2.0 mGal. The iMAR-IMU processed gravity anomaly data has been used during a 2014-2016 airborne survey to extend a composite gravity solution across a number of minor gaps on selected lines, using a draping technique. The geoid computations were all done with the GRAVSOFT suite of programs from DTU-Space. EGM2008 augmented with GOCE spherical harmonic model has been used to spherical harmonic degree N = 720. The gravimetric geoid first was tied at one tide-gauge (in Kota Kinabalu, KK2019) to produce a fitted geoid, my_geoid2017_fit_kk. The fitted geoid was offset from the gravimetric geoid by +0.852 m, based on the comparison at the tide-gauge benchmark KK2019. Consequently, orthometric height at the six other tide gauge stations was computed from HGPS Lev = hGPS - Nmy_geoid2017_.t_kk. Comparison of the conventional (HLev) and GPS-levelling heights (HGPS Lev) at the six tide gauge locations indicate RMS height difference of 2.6 cm. The final gravimetric geoidwas fitted to the seven tide gauge stations and is known as my_geoid2017_fit_east. The accuracy of the gravimetric geoid is estimated to be better than 5 cm across most of East Malaysia land and marine areas

  13. Progress in Airborne Polarimeter Inter Comparison for the NASA Aerosols-Clouds-Ecosystems (ACE) Mission

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, Kirk; Redemann, Jens

    2014-01-01

    The Aerosols-Clouds-Ecosystems (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeters, including the Airborne Multiangle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.

  14. Aerial gamma ray and magnetic survey: Nebraska/Texas Project, the Tyler, Texarkana, and Waco quadrangles of Texas, Oklahoma, Arkansas, and Louisiana. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    During the months of September and October, 1979, EG and G geoMetrics collected 8866 line miles of high sensitivity airborne radiometric and magnetic data. Data were gathered primarily within the state of Texas, in three 1 x 2 degree NTMS quadrangles. This project is part of the Department of Energy's National Uranium Resource Evaluation Program. All radiometric and magnetic data were fully corrected and interpreted by geoMetrics and are presented as four Volumes (one Volume I and three Volume II's). The quadrangles are dominated by Cretaceous and Tertiary marine sediments. The cretaceous rocks are largely shallow marine sediments of biogenicmore » origin, whereas the Tertiary sequence represents transgressing shelf and slope deposits. No uranium deposits are known in this area (Schnabel, 1955).« less

  15. Airborne laser-diode-array illuminator assessment for the night vision's airborne mine-detection arid test

    NASA Astrophysics Data System (ADS)

    Stetson, Suzanne; Weber, Hadley; Crosby, Frank J.; Tinsley, Kenneth; Kloess, Edmund; Nevis, Andrew J.; Holloway, John H., Jr.; Witherspoon, Ned H.

    2004-09-01

    The Airborne Littoral Reconnaissance Technologies (ALRT) project has developed and tested a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). The Coastal System Station"s ALRT project, under funding from the Office of Naval Research (ONR), has been designing, developing, integrating, and testing commercial arrays using a Cessna airborne platform over the last several years. This has led to the development of the Airborne Laser Diode Array Illuminator wide field-of-view (ALDAI-W) imaging test bed system. The ALRT project tested ALDAI-W at the Army"s Night Vision Lab"s Airborne Mine Detection Arid Test. By participating in Night Vision"s test, ALRT was able to collect initial prototype nighttime operational data using ALDAI-W, showing impressive results and pioneering the way for final test bed demonstration conducted in September 2003. This paper describes the ALDAI-W Arid Test and results, along with processing steps used to generate imagery.

  16. Preliminary interpretation of regional gravity and magnetic data over southwest Afghanistan

    NASA Astrophysics Data System (ADS)

    Drenth, B. J.; Finn, C. A.

    2008-12-01

    The U.S. Geological Survey, U.S. Naval Research Laboratory, and Islamic Republic of Afghanistan Ministry of Mines and Industries conducted a regional airborne geophysical survey over much of Afghanistan during the summer of 2006. These data were merged with higher resolution existing data. The resulting gravity and magnetic data provide new clues to the subsurface geology of southwest Afghanistan that can be used to aid resource and hazard assessments of the country, as well as help unravel its tectonic history. The gravity data can be used to map basins critical for petroleum and hydrologic studies. The magnetic data can be used to infer accreted arc terranes, Precambrian crystalline basement, and regional magmatic trends of interest to mineral resource studies. The most striking observation in the gravity data is the lack of an expected large gravity low over the Helmand basin. Instead there are a few 30-60 km diameter, 10-30 mGal isostatic residual gravity lows that may be interpreted as small basins or as a southwestern extension of the large Arghandab batholith. This suggests that the oil and gas potential could be lower than previously thought. Instead, shallow crystalline basement indicated by the magnetic data suggests the possibility of a continuation of arc volcanic rocks associated with carbonatites in the central Helmand basin and copper deposits across the southern border with Pakistan. Most of Afghanistan, with the exception of Northern Afghanistan, which is part of the Eurasian plate, is composed of accreted Gondwanan terranes. The pseudo- gravity map complements the long-wavelength component of the magnetic data and appears to show these tectonic domains.

  17. Sea Ice Thickness Estimates from Data Collected Using Airborne Sensors and Coincident In Situ Data

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Abelev, A.; Hagen, R. A.; Liang, R.; Ball, D.

    2016-12-01

    The Naval Research Laboratory collected data using Airborne sensors and coincident in-situ measurements over multiple sites of floating, but land-fast ice north of Barrow, AK. The in-situ data provide ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439), a low-frequency SAR (P-band in 2014 and P and L bands in 2015 and 2016) and a snow/Ku radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The CReSIS radar was updated in 2015 to integrate the snow and Ku radars into a single continuous chirp, thus improving resolution. The objective of the surveys was to aid our understanding of the accuracy of ice thickness estimation via the freeboard method using the airborne sensor suite. Airborne data were collected on multiple overflights of the transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The SAR imaged the ice beneath the snow and the snow/Ku radar measured snow thickness. The freeboard measurements and snow thickness are used to estimate ice thickness via isostasy and density estimates. Comparisons and processing methodology will be shown using data from three field seasons (2014-2016). The results of this ground-truth experiment will inform our analysis of grids of airborne data collected over areas of sea-ice illuminated by Cryosat-2.

  18. Airborne radionuclides in the proglacial environment as indicators of sources and transfers of soil material.

    PubMed

    Łokas, Edyta; Wachniew, Przemysław; Jodłowski, Paweł; Gąsiorek, Michał

    2017-11-01

    A survey of artificial ( 137 Cs, 238 Pu, 239+240 Pu, 241 Am) and natural ( 226 Ra, 232 Th, 40 K, 210 Pb) radioactive isotopes in proglacial soils of an Arctic glacier have revealed high spatial variability of activity concentrations and inventories of the airborne radionuclides. Soil column 137 Cs inventories range from below the detection limit to nearly 120 kBq m -2 , this value significantly exceeding direct atmospheric deposition. This variability may result from the mixing of materials characterised by different contents of airborne radionuclides. The highest activity concentrations observed in the proglacial soils may result from the deposition of cryoconites, which have been shown to accumulate airborne radionuclides on the surface of glaciers. The role of cryoconites in radionuclide accumulation is supported by the concordant enrichment of the naturally occurring airborne 210 Pb in proglacial soil cores showing elevated levels of artificial radionuclides. The lithogenic radionuclides show less variability than the airborne radionuclides because their activity concentrations are controlled only by the mixing of material derived from the weathering of different parent rocks. Soil properties vary little within and between the profiles and there is no unequivocal relationship between them and the radionuclide contents. The inventories reflect the pathways and time variable inputs of soil material to particular sites of the proglacial zone. Lack of the airborne radionuclides reflects no deposition of material exposed to the atmosphere after the 1950s or its removal by erosion. Inventories above the direct atmospheric deposition indicate secondary deposition of radionuclide-bearing material. Very high inventories indicate sites where transport pathways of cryoconite material terminated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Environmental radioactivity in the UK: the airborne geophysical view of dose rate estimates.

    PubMed

    Beamish, David

    2014-12-01

    This study considers UK airborne gamma-ray data obtained through a series of high spatial resolution, low altitude surveys over the past decade. The ground concentrations of the naturally occurring radionuclides Potassium, Thorium and Uranium are converted to air absorbed dose rates and these are used to assess terrestrial exposure levels from both natural and technologically enhanced sources. The high resolution airborne information is also assessed alongside existing knowledge from soil sampling and ground-based measurements of exposure levels. The surveys have sampled an extensive number of the UK lithological bedrock formations and the statistical information provides examples of low dose rate lithologies (the formations that characterise much of southern England) to the highest sustained values associated with granitic terrains. The maximum dose rates (e.g. >300 nGy h(-1)) encountered across the sampled granitic terrains are found to vary by a factor of 2. Excluding granitic terrains, the most spatially extensive dose rates (>50 nGy h(-1)) are found in association with the Mercia Mudstone Group (Triassic argillaceous mudstones) of eastern England. Geological associations between high dose rate and high radon values are also noted. Recent studies of the datasets have revealed the extent of source rock (i.e. bedrock) flux attenuation by soil moisture in conjunction with the density and porosity of the temperate latitude soils found in the UK. The presence or absence of soil cover (and associated presence or absence of attenuation) appears to account for a range of localised variations in the exposure levels encountered. The hypothesis is supported by a study of an extensive combined data set of dose rates obtained from soil sampling and by airborne geophysical survey. With no attenuation factors applied, except those intrinsic to the airborne estimates, a bias to high values of between 10 and 15 nGy h(-1) is observed in the soil data. A wide range of

  20. An update on airborne contact dermatitis.

    PubMed

    Huygens, S; Goossens, A

    2001-01-01

    This review is an update of 2 previously published articles on airborne contact dermatoses. Because reports in the literature often omit the term 'airborne', 18 volumes of Contact Dermatitis (April 1991-June 2000), 8 volumes of the American Journal of Contact Dermatitis (1992 1999) and 4 volumes of La Lettre du Gerda (1996-1999) were screened, and the cases cited were classified as to history, lesion locations, sensitization sources, and other factors. Reports on airborne dermatitis are increasingly being published, sometimes in relation to specific occupational areas.

  1. New Collaborative Aerogeophysical Survey Targets the Stability of the East Antarctic Ice sheet and its Geological Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Ferraccioli, F.; Corr, H.; Jordan, T.; Bozzo, E.; Armadillo, E.; Caneva, G.; Frearson, N.; Robinson, C.; Smellie, J.

    2006-12-01

    At the eve of the IPY large aerogeophysical survey data gaps still remain over the East Antarctic Ice Sheet (EAIS). This is due to the logistic and environmental challenges involved in exploration over these areas. During the 2005/06 Antarctic field season the British Antarctic Survey (BAS) collaborated with the University of Genoa to accomplish an extensive airborne geophysical survey over the EAIS. We explored the enigmatic Wilkes Subglacial Basin (WSB) and the adjacent Transantarctic Mountains (TAM). Over 60,000-line km of new data were collected during 70 survey flights. 270 hours of dedicated science flying and 45 hours of positioning and calibration flying were performed. The Italian Antarctic Programme provided the logistic support and aviation fuel at Mario Zucchelli Station, Mid-Point, and at two remote field camps, Talos Dome and Sitry. Additional support and fuel was provided at Dome C, as part of a separate trilateral UK/Italian and French agreement to survey some of the subglacial lakes, which characterise this region. The airborne survey platform was a BAS Twin Otter, equipped with airborne radar, aeromagnetic and airborne gravity sensors. We present key new datasets on ice surface, ice thickness, bedrock configurations, airborne gravity and aeromagnetic anomalies. These new data will assist in addressing four major open questions: 1) Are there Cenozoic marine sediments in the WSB, linked to controversial deglaciation over this part of the EAIS?; 2) What is the tectonic origin and deep structure of the WSB and TAM?; 3) Is there major segmentation of the TAM?, 4) what forcings and feedbacks were involved for the EAIS and for climate evolution?.

  2. Sub-surface structure of La Soufrière of Guadeloupe lava dome deduced from a ground-based magnetic survey

    NASA Astrophysics Data System (ADS)

    Bouligand, Claire; Coutant, Olivier; Glen, Jonathan M. G.

    2016-07-01

    In this study, we present the analysis and interpretation of a new ground magnetic survey acquired at the Soufrière volcano on Guadeloupe Island. Observed short-wavelength magnetic anomalies are compared to those predicted assuming a constant magnetization within the sub-surface. The good correlation between modeled and observed data over the summit of the dome indicates that the shallow sub-surface displays relatively constant and high magnetization intensity. In contrast, the poor correlation at the base of the dome suggests that the underlying material is non- to weakly-magnetic, consistent with what is expected for a talus comprised of randomly oriented and highly altered and weathered boulders. The new survey also reveals a dipole anomaly that is not accounted for by a constant magnetization in the sub-surface and suggests the existence of material with decreased magnetization beneath the Soufrière lava dome. We construct simple models to constrain its dimensions and propose that this body corresponds to hydrothermally altered material within and below the dome. The very large inferred volume for such material may have implications on the stability of the dome.

  3. NCALM: NSF Supported Center for Airborne Laser Mapping

    NASA Astrophysics Data System (ADS)

    Shrestha, R. L.; Carter, W. E.; Dietrich, W. E.

    2003-12-01

    The National Science Foundation (NSF) recently awarded a grant to create a research center to support the use of airborne laser mapping technology in the scientific community. The NSF supported Center for Airborne Laser Mapping (NCALM) will be operated jointly by the Department of Civil & Coastal Engineering, College of Engineering, University of Florida (UF) and the Department of Earth and Planetary Science, University of California-Berkeley (UCB). NCALM will use the Airborne Laser Swath Mapping (ALSM) system jointly owned by UF and Florida International University (FIU), based at the UF Geosensing Engineering and Mapping (GEM) Research Center. The state-of-the-art laser surveying instrumentation, GPS systems, which are installed in a Cessna 337 Skymaster aircraft, will collect research grade data in areas selected through the competitive NSF grant review process. The ALSM observations will be analyzed both at UF and UCB, and made available to the PI through an archiving and distribution center at UCB-building upon the Berkeley Seismological Laboratory (BSL) Northern California Earthquake Data Center system. The purpose of NCALM is to provide research grade data from ALSM technology to NSF supported research studies in geosciences. The Center will also contribute to software development that will increase the processing speed and data accuracy. This presentation will discuss NCALM operation and the process of submitting proposals to NSF. In addition, it will outline the process to request available NCALM seed project funds to help jump-start small scientific research studies. Funds are also available for travel by academic researchers and students for hands-on knowledge and experience in ALSM technology at UF and UCB.

  4. Quick response airborne command post communications

    NASA Astrophysics Data System (ADS)

    Blaisdell, Randy L.

    1988-08-01

    National emergencies and strategic crises come in all forms and sizes ranging from natural disasters at one end of the scale up to and including global nuclear warfare at the other. Since the early 1960s the U.S. Government has spent billions of dollars fielding airborne command posts to ensure continuity of government and the command and control function during times of theater conventional, theater nuclear, and global nuclear warfare. Unfortunately, cost has prevented the extension of the airborne command post technology developed for these relatively unlikely events to the lower level, though much more likely to occur, crises such as natural disasters, terrorist acts, political insurgencies, etc. This thesis proposes the implementation of an economical airborne command post concept to address the wide variety of crises ignored by existing military airborne command posts. The system is known as the Quick Response Airborne Command Post (QRAC Post) and is based on the exclusive use of commercially owned and operated aircraft, and commercially available automated data processing and communications resources. The thesis addresses the QRAC Post concept at a systems level and is primarily intended to demonstrate how current technology can be exploited to economically achieve a national objective.

  5. Integrated Airborne and In-Situ Measurements Over Land-Fast Ice Near Barrow, AK.

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Richter-Menge, J.; Abelev, A.; Liang, R.; Ball, D.; Claffey, K. J.; Hebert, D. A.; Jones, K.

    2015-12-01

    The Naval Research Laboratory has collected two field seasons of integrated airborne and in-situ measurements over multiple sites of floating, but land-fast ice north of Barrow, AK. During the first season in March of 2014 the Cold Regions Research and Engineering Laboratory led the on-ice group including NRL personnel and Naval Academy midshipmen. The second season (March 2015) included only NRL scientists and midshipmen. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439), a low-frequency SAR (P-band in 2014 and P and L bands in 2015) and a snow/Ku radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The CReSIS radar was updated in 2015 to integrate the snow and Ku radars into a single continuous chirp, thus improving resolution. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects a sites generally consisting of a 2 km long profile of Magnaprobe and EM31 measurements with periodic boreholes. A 60 m x 400 m swath of Magnaprobe measurements was centered on this profile. Airborne data were collected on multiple overflights of the transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The SAR imaged the ice beneath the snow and the snow/Ku radar measured snow thickness. The freeboard measurements and snow thickness are used to estimate ice thickness via isostasy and density estimates. Comparisons and processing methodology will be shown. The results of this ground-truth experiment will inform our analysis of grids of airborne data collected

  6. GRAV-D Part II : Examining Airborne Gravity Processing Assumptions With an Aim Towards Producing a Better Gravimetric Geoid

    NASA Astrophysics Data System (ADS)

    Theresa, D. M.; Vicki, C.; Dan, R.; Dru, S.

    2008-12-01

    The primary objective of the GRAV-D (Gravity for the Redefinition of the American Vertical Datum) project is to redefine the American vertical datum by using an improved gravimetric geoid. This will be partially accomplished through an extensive airborne gravity measurement campaign, focusing first on the land/water interface (and later on interior areas) of the US and its holdings. This airborne campaign is designed specifically to capture intermediate wavelength gravity information by flying at high altitudes (35,000 ft, ~10 km) with a 10 km line spacing. The intermediate wavelengths captured by airborne gravity data are complementary to ground and satellite gravity data. Combining the GRAV-D airborne gravity data with the Gravity Recovery and Climate Experiment (GRACE) satellite gravity field will allow existing terrestrial data sets to be corrected for bias and trend problems. Ultimately, all three types of data can then be merged into a single accurate representation of the gravity field. Typically, the airborne gravity data reduction process is used to produce free-air anomalies for geological/geophysical applications that require more limited accuracy and precision than do geodetic applications. Thus we re-examine long-standing data reduction simplifications and assumptions with an aim toward improving both the accuracy and precision of airborne gravity data before their inclusion into a gravimetric geoid. The data reduction process is tested on a 400 km x 500 km airborne gravity survey in southern Alaska (in the vicinity of Anchorage) collected in the summer of 2008 as part of the GRAV-D project. Potential improvements in processing come from examining the impacts of various GPS processing schemes on free-air gravity results and re-considering all assumptions in standard airborne gravity processing methods, especially those that might introduce bias into absolute gravity levels.

  7. Rationale and operational plan for a U.S. high-altitude magnetic survey

    USGS Publications Warehouse

    Hildenbrand, Thomas G.; Acuna, Mario; Bracken, Robert E.; Hardwick, Doug; Hinze, William J.; Keller, Gordon R.; Phillips, Jeff; Roest, Walter

    2002-01-01

    On August 8, 2002, twenty-one scientists from the federal, private and academic sectors met at a workshop in Denver, Co., to discuss the feasibility of collecting magnetic anomaly data on a Canberra aircraft (Figure 1). The need for this 1-day workshop arose because of an exciting and cost-effective opportunity to collect invaluable magnetic anomaly data during a Canberra mission over the U.S. in 2003 and 2004. High Altitude Mapping Missions (HAMM) is currently planning a mission to collect Interferometric Synthetic Aperture Radar (IFSAR) imagery at an altitude of about 15 km and with a flight-line spacing of about 18 km over the conterminous U.S. and Alaska. The additional collection of total and vector magnetic field data would represent a secondary mission objective (i.e., a "piggy-back" magnetometer system). Because HAMM would fund the main flight costs of the mission, the geomagnetic community would obtain invaluable magnetic data at a nominal cost. These unique data would provide new insights on fundamental tectonic and thermal processes and give a new view of the structural and lithologic framework of the crust and possibly the upper mantle. This document highlights: (1) the reasons to conduct this national survey and (2) a preliminary operational plan to collect high-altitude magnetic data of a desired quality and for the expected resources. Although some operational plan issues remain to be resolved, the important conclusions of the workshop are that the Canberra is a very suitable platform to measure the magnetic field and that the planned mission will result in quality high-altitude magnetic data to greatly expand the utility of our national magnetic database.

  8. Calibration and Validation of Airborne LiDAR at McMurdo Station, Antarctica for Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Sonntag, J. G.

    2014-12-01

    Airborne LiDAR flight operations based at McMurdo Station, Antarctica, present unusual challenges for calibrating and validating the sensor measurements at the level of a few centimeters. NASA's Airborne Topographic Mapper (ATM) team prefers to perform regular, near-daily calibrations of range and angular biases of our sensor for the lengthy field deployments typical for Operation IceBridge (OIB). For the fall 2013 OIB deployment to McMurdo, we had to adapt our usual technique of regular overflights of an independently-surveyed airport parking ramp to deal with the fact that the McMurdo airfield was located on tidally-influenced sea ice, and that very few nearby durable surfaces were free of variable-depth snow during the OIB deployment. We detail our approach for dealing with these challenges, which included multiple GPS/vehicle surveys of the sea ice runway to quantify surface changes due to grooming operations, combined with GPS tide-gauge measurements of the runway's tidal motion. We also conducted a remote GPS/vehicle survey of a mostly snow-free road on Black Island, and included both sites during near-daily overflights with the ATM. We discuss the quantitative results of these surveys and the associated ATM overflights, and present conclusions for future deployments. Finally we discuss a related validation effort in which we compare ATM results from overflights of snow-free areas in the Dry Valleys with ATM surveys of the same area from a 2001 effort there.

  9. The Role of Airborne Proteins in Atopic Dermatitis

    PubMed Central

    Hostetler, Sarah Grim; Kaffenberger, Benjamin; Hostetler, Todd

    2010-01-01

    Atopic dermatitis is a common, chronic skin condition. A subpopulation of patients may have cutaneous exposure to common airborne proteins exacerbating their disease through direct proteolytic activity, direct activation of proteinase-activated receptor-2 itch receptors, and immunoglobulin E binding. The most common airborne proteins significant in atopic dermatitis include house dust mites, cockroach, pet dander, and multiple pollens. The literature on atopy patch testing, skin-prick testing, and specific IgE is mixed, with greater support for the use of atopy patch test. Patients with airborne proteins contributing to their disease typically have lesions predominately on air-exposed skin surfaces including the face, neck, and arms; a history of exacerbations after exposure to airborne proteins; severe disease resistant to conventional therapies; and concurrent asthma. Treatment strategies include airborne protein avoidance, removal of airborne proteins from the skin, and barrier repair. Further research is needed to establish the benefit of allergen-specific immunotherapy. PMID:20725535

  10. Monitoring of airborne bacteria and aerosols in different wards of hospitals - Particle counting usefulness in investigation of airborne bacteria.

    PubMed

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmd, Hossein; Hatamzadeh, Maryam; Hassanzadeh, Akbar

    2015-01-01

    The presence of airborne bacteria in hospital environments is of great concern because of their potential role as a source of hospital-acquired infections (HAI). The aim of this study was the determination and comparison of the concentration of airborne bacteria in different wards of four educational hospitals, and evaluation of whether particle counting could be predictive of airborne bacterial concentration in different wards of a hospital. The study was performed in an operating theatre (OT), intensive care unit (ICU), surgery ward (SW) and internal medicine (IM) ward of four educational hospitals in Isfahan, Iran. A total of 80 samples were analyzed for the presence of airborne bacteria and particle levels. The average level of bacteria ranged from 75-1194 CFU/m (3) . Mean particle levels were higher than class 100,000 cleanrooms in all wards. A significant correlation was observed between the numbers of 1-5 µm particles and levels of airborne bacteria in operating theatres and ICUs. The results showed that factors which may influence the airborne bacterial level in hospital environments should be properly managed to minimize the risk of HAIs especially in operating theaters. Microbial air contamination of hospital settings should be performed by the monitoring of airborne bacteria, but particle counting could be considered as a good operative method for the continuous monitoring of air quality in operating theaters and ICUs where higher risks of infection are suspected.

  11. The DESIRE Airborne gravity project in the Dead Sea Basin and 3D numerical gravity modeling

    NASA Astrophysics Data System (ADS)

    Choi, Sungchan; Götze, Hans-Jürgen; Meyer, Uwe; Desire-Group

    2010-05-01

    This geo-scientific research focuses on the geological setting of the Dead Sea Transform (DST) and the Dead Sea Basin (DSB) and its resulting pull-apart basins. Since the late 1970s, crustal scale geophysical experiments have been carried out in this region. However, the nature of the crust underlying the eastern and western shoulders of the DSB and underneath the DST itself is still a hotly debated topic among researchers. To address one of the central questions of plate tectonics - How do large transform systems work and what are their typical features? - An international geoscientific Dead Sea Integrated Research project (DESIRE) is being conducted by colleagues from Germany, Israel, Palestine, and Jordan. In order to provide a high resolution gravity database that support 3D numerical modeling and hence a more comprehensive understanding of the nature and segmentation of the DST, an airborne gravity survey as a part of the DESIRE project has been carried out from February to March 2007. The airborne gravity survey covered the DST from Elat/Aqaba in the South to the northern rim of the Dead Sea. The low speed and terrain-following helicopter gravity flights were performed to acquire the highest possible data quality. In total, 32 north-south profiles and 16 west-east profiles crossing the DST have been measured. Most of the profiles concentrated in areas that lacked terrestrial gravity data coverage, e. g. over the shoulders of the DSB. The airborne gravity data are merged with existing conventional (terrestrial) data sets to provide a seamless gravity map of the area of interest. The results of the 3D gravity modelling based the GPS analysis, magnetic field characters, seismic researches and analysis of earthquake data allow us to propose that (1) the DSB is divided into two tectonic blocks by the region between the Lisan peninsula and the southern margin of the northern DSB and (2) the tectonic system in the DSB is defined as a counter-clockwise rotating pull

  12. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  13. Eclipse Science Results from the Airborne Infrared Spectrometer (AIR-Spec)

    NASA Astrophysics Data System (ADS)

    Samra, J.; Cheimets, P.; DeLuca, E.; Golub, L.; Judge, P. G.; Lussier, L.; Madsen, C. A.; Marquez, V.; Tomczyk, S.; Vira, A.

    2017-12-01

    We present the first science results from the commissioning flight of the Airborne Infrared Spectrometer (AIR-Spec), an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). During the eclipse, AIR-Spec will image five magnetically sensitive coronal emission lines between 1.4 and 4 microns to determine whether they may be useful probes of coronal magnetism. The instrument will measure emission line intensity, FWHM, and Doppler shift from an altitude of over 14 km, above local weather and most of the absorbing water vapor. Instrumentation includes an image stabilization system, feed telescope, grating spectrometer, infrared camera, and visible slit-jaw imager. Results from the 2017 eclipse are presented in the context of the mission's science goals. AIR-Spec will identify line strengths as a function of position in the solar corona and search for the high frequency waves that are candidates for heating and acceleration of the solar wind. The instrument will also identify large scale flows in the corona, particularly in polar coronal holes. Three of the five lines are expected to be strong in coronal hole plasmas because they are excited in part by scattered photospheric light. Line profile analysis will probe the origins of the fast and slow solar wind. Finally, the AIR-Spec measurements will complement ground based eclipse observations to provide detailed plasma diagnostics throughout the corona. AIR-Spec will measure infrared emission of ions observed in the visible from the ground, giving insight into plasma heating and acceleration at radial distances inaccessible to existing or planned spectrometers.

  14. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  15. Airborne Lidar Surface Topography (LIST) Simulator

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis; Winkert, Tom; Plants, Michael; hide

    2011-01-01

    In this paper we will discuss our development effort of an airborne instrument as a pathfinder for the Lidar Surface Technology (LIST) mission. This paper will discuss the system approach, enabling technologies, instrument concept and performance of the Airborne LIST Simulator (A-LISTS).

  16. Seamless geoids across coastal zones - a comparison of satellite-derived gravity to airborne gravity across the seven continents

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Olesen, A. V.; Barnes, D.; Ingalls, S. E.; Minter, C. F.; Presicci, M. R.

    2017-12-01

    An accurate coastal geoid model is important for determination of near-shore ocean dynamic topography and currents, as well as for land GPS surveys and global geopotential models. Since many coastal regions across the globe are regions of intense development and coastal protection projects, precise geoid models at cm-level accuracy are essential. The only way to secure cm-geoid accuracies across coastal regions is to acquire more marine gravity data; here airborne gravity is the obvious method of choice due to the uniform accuracy, and the ability to provide a seamless geoid accuracy across the coastline. Current practice for gravity and geoid models, such as EGM2008 and many national projects, is to complement land gravity data with satellite radar altimetry at sea, a procedure which can give large errors in regions close to the coast. To quantify the coastal errors in satellite gravity, we compare results of a large set of recent airborne gravity surveys, acquired across a range of coastal zones globally from polar to equatorial regions, and quantify the errors as a function of distance from the coast line for a number of different global altimetry gravity solutions. We find that accuracy in satellite altimetry solutions depend very much on the availability of gravity data along the coast-near land regions in the underlying reference fields (e.g., EGM2008), with satellite gravity accuracy in the near-shore zone ranging from anywhere between 5 to 20 mGal r.m.s., with occasional large outliers; we also show how these errors may typically propagate into coastal geoid errors of 5-10 cm r.m.s. or more. This highlight the need for airborne (land) gravity surveys to be extended at least 20-30 km offshore, especially for regions of insufficient marine gravity coverage; we give examples of a few such recent surveys and associated marine geoid impacts.

  17. Synoptic channel morphodynamics with topo-bathymetric airborne lidar: promises, pitfalls and research needs

    NASA Astrophysics Data System (ADS)

    Lague, D.; Launeau, P.; Gouraud, E.

    2017-12-01

    Topo-bathymetric airborne lidar sensors using a green laser penetrating water and suitable for hydrography are now sold by major manufacturers. In the context of channel morphodynamics, repeat surveys could offer synoptic high resolution measurement of topo-bathymetric change, a key data that is currently missing. Yet, beyond the technological promise, what can we really achieve with these sensors in terms of depth penetration and bathymetric accuracy ? Can all rivers be surveyed ? How easy it is to process this new type of data to get the data needed by geomorphologists ? Here we report on the use of the Optech Titan dual wavelength (1064 nm & 532 nm) operated by the universities of Rennes and Nantes (France) and deployed over several rivers and lakes in France, including repeat surveys. We will illustrate cases where the topo-bathymetric survey is complete, reaching up to 6 m in rivers and offers unprecedented data for channel morphology analysis over tens of kilometres. We will also present challenging cases for which the technology will never work, or for which new algorithms to process full waveform are required. We will illustrate new developments for automated processing of large datasets, including the critical step of water surface detection and refraction correction. In suitable rivers, airborne topo-bathymetric surveys offer unprecedented synoptic 3D data at very high resolution (> 15 pts/m² in bathy) and precision (better than 10 cm for the bathy) down to 5-6 meters depth, with a perfectly continuous topography to bathymetry transition. This presentation will illustrate how this new type of data, when combined with 2D hydraulics modelling offers news insights into the spatial variations of friction in relation to channel bedforms, and the connectivity between rivers and floodplains.

  18. Challenges and Opportunities of Airborne Metagenomics

    PubMed Central

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  19. Magnetic profiling of the San Andreas Fault using a dual magnetometer UAV aerial survey system.

    NASA Astrophysics Data System (ADS)

    Abbate, J. A.; Angelopoulos, V.; Masongsong, E. V.; Yang, J.; Medina, H. R.; Moon, S.; Davis, P. M.

    2017-12-01

    Aeromagnetic survey methods using planes are more time-effective than hand-held methods, but can be far more expensive per unit area unless large areas are covered. The availability of low cost UAVs and low cost, lightweight fluxgate magnetometers (FGMs) allows, with proper offset determination and stray fields correction, for low-cost magnetic surveys. Towards that end, we have developed a custom multicopter UAV for magnetic mapping using a dual 3-axis fluxgate magnetometer system: the GEOphysical Drone Enhanced Survey Instrument (GEODESI). A high precision sensor measures the UAV's position and attitude (roll, pitch, and yaw) and is recorded using a custom Arduino data processing system. The two FGMs (in-board and out-board) are placed on two ends of a vertical 1m boom attached to the base of the UAV. The in-board FGM is most sensitive to stray fields from the UAV and its signal is used, after scaling, to clean the signal of the out-board FGM from the vehicle noise. The FGMs record three orthogonal components of the magnetic field in the UAV body coordinates which are then transformed into a north-east-down coordinate system using a rotation matrix determined from the roll-pitch-yaw attitude data. This ensures knowledge of the direction of all three field components enabling us to perform inverse modeling of magnetic anomalies with greater accuracy than total or vertical field measurements used in the past. Field tests were performed at Dragon's Back Pressure Ridge in the Carrizo Plain of California, where there is a known crossing of the San Andreas Fault. Our data and models were compared to previously acquired LiDAR and hand-held magnetometer measurements. Further tests will be carried out to solidify our results and streamline our processing for educational use in the classroom and student field training.

  20. Marine Geoid Undulation Assessment Over South China Sea Using Global Geopotential Models and Airborne Gravity Data

    NASA Astrophysics Data System (ADS)

    Yazid, N. M.; Din, A. H. M.; Omar, K. M.; Som, Z. A. M.; Omar, A. H.; Yahaya, N. A. Z.; Tugi, A.

    2016-09-01

    Global geopotential models (GGMs) are vital in computing global geoid undulations heights. Based on the ellipsoidal height by Global Navigation Satellite System (GNSS) observations, the accurate orthometric height can be calculated by adding precise and accurate geoid undulations model information. However, GGMs also provide data from the satellite gravity missions such as GRACE, GOCE and CHAMP. Thus, this will assist to enhance the global geoid undulations data. A statistical assessment has been made between geoid undulations derived from 4 GGMs and the airborne gravity data provided by Department of Survey and Mapping Malaysia (DSMM). The goal of this study is the selection of the best possible GGM that best matches statistically with the geoid undulations of airborne gravity data under the Marine Geodetic Infrastructures in Malaysian Waters (MAGIC) Project over marine areas in Sabah. The correlation coefficients and the RMS value for the geoid undulations of GGM and airborne gravity data were computed. The correlation coefficients between EGM 2008 and airborne gravity data is 1 while RMS value is 0.1499.In this study, the RMS value of EGM 2008 is the lowest among the others. Regarding to the statistical analysis, it clearly represents that EGM 2008 is the best fit for marine geoid undulations throughout South China Sea.

  1. Airborne asbestos in public buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesson, J.; Hatfield, J.; Schultz, B.

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest.more » However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.« less

  2. Airborne remote sensing of forest biomes

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  3. Surveying the IR corona during the 2017 solar eclipse

    NASA Astrophysics Data System (ADS)

    Bryans, P.; Hannigan, J. W.; Sewell, S. D.; Judge, P. G.

    2017-12-01

    The spectral emission of the infrared solar corona is the most promising direct diagnostic of the coronal magnetic field, and yet remains poorly measured. During the 2017 total solar eclipse, we will perform the first spectral survey of the IR corona using the NCAR Airborne Interferometer. This Fourier Transform Infrared Spectrometer is configured to observe the coronal spectrum from 1.5 to 5.5 microns at R 10,000 from a ground-based site. The location is atop Casper Mountain, Wyoming (42.73ºN, 106.32ºW, 2400 masl), 8 km from the center-line of totality. In this presentation, we will outline the need for such measurements, describe the instrument design and adaptation for the eclipse measurement, observation scheme, and present preliminary results. We will also discuss implications for observing infrared coronal lines from the ground, for example with the upcoming DKIST facility.

  4. Recognition of fiducial surfaces in lidar surveys of coastal topography

    USGS Publications Warehouse

    Brock, J.C.; Sallenger, A.H.; Krabill, W.B.; Swift, R.N.; Wright, C.W.

    2001-01-01

    A new method for the recognition and mapping of surfaces in coastal landscapes that provide accurate and low variability topographic measurements with respect to airborne lidar surveys is described and demonstrated in this paper. Such surfaces are herein termed "fiducial" because they can represent reference baseline morphology in Studies of coastal change due to natural or anthropogenic causes. Non-fiducial surfaces may also be identified in each separate lidar survey to be used in a given geomorphic change analysis. Sites that are non-fiducial in either or both lidar surveys that bracket the time period under investigation may be excluded from consideration in subsequent calculations of survey-to-survey elevation differences to eliminate spurious indications of landscape change. This new analysis method, or lidar fiducial surface recognition (LFSR) algorithm, is intended to more fully enable the non-ambiguous Use of topographic lidar in a range of coastal investigations. The LFSR algorithm may be widely applied, because it is based solely on the information inherent in the USGS/NASA/NOAA airborne topographic lidar coverage that exists for most of the contiguous U.S. coastline.

  5. Airborne transmission of respiratory diseases.

    PubMed

    Baker, S A

    1995-01-01

    In surveys during the past decade, CEs and BMETs have reported an increasing frequency of respiratory illnesses they believed to be acquired as a result of their occupation. These illnesses varied from mild to severe in terms of long-term prognosis. With the increasing numbers of cases of drug-resistant organisms, respiratory infections are a growing concern for healthcare workers, employers, and government officials. Armed with a better knowledge base about symptoms, transmission and prevention, CEs and BMETs will be more aware of potential biohazardous situations and the necessary personal protective measures to be employed. Both the Occupational Safety and Health Administration (OSHA) and the Centers for Disease Control and Prevention (CDCP) have issued guidelines for preventing airborne transmission of infectious diseases. This paper addresses the respiratory illnesses reported by CEs and BMETs as occupational concerns, as well as briefly discussing potential epidemic pulmonary conditions.

  6. The Effects of Lever Arm (Instrument Offset) Error on GRAV-D Airborne Gravity Data

    NASA Astrophysics Data System (ADS)

    Johnson, J. A.; Youngman, M.; Damiani, T.

    2017-12-01

    High quality airborne gravity collection with a 2-axis, stabilized platform gravity instrument, such as with a Micro-g LaCoste Turnkey Airborne Gravity System (TAGS), is dependent on the aircraft's ability to maintain "straight and level" flight. However, during flight there is constant rotation about the aircraft's center of gravity. Standard practice is to install the scientific equipment close to the aircraft's estimated center of gravity to minimize the relative rotations with aircraft motion. However, there remain small offsets between the instruments. These distance offsets, the lever arm, are used to define the rigid-body, spatial relationship between the IMU, GPS antenna, and airborne gravimeter within the aircraft body frame. The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project, which is collecting airborne gravity data across the U.S., uses a commercial software package for coupled IMU-GNSS aircraft positioning. This software incorporates a lever arm correction to calculate a precise position for the airborne gravimeter. The positioning software must do a coordinate transformation to relate each epoch of the coupled GNSS-IMU derived position to the position of the gravimeter within the constantly-rotating aircraft. This transformation requires three inputs: accurate IMU-measured aircraft rotations, GNSS positions, and lever arm distances between instruments. Previous studies show that correcting for the lever arm distances improves gravity results, but no sensitivity tests have been done to investigate how error in the lever arm distances affects the final airborne gravity products. This research investigates the effects of lever arm measurement error on airborne gravity data. GRAV-D lever arms are nominally measured to the cm-level using surveying equipment. "Truth" data sets will be created by processing GRAV-D flight lines with both relatively small lever arms and large lever arms. Then negative and positive incremental

  7. Toward standardized test methods to determine the effectiveness of filtration media against airborne nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Tronville, Paolo

    2014-06-01

    The filtration of airborne nanoparticles is an important control technique as the environmental, health, and safety impacts of nanomaterials grow. A review of the literature shows that significant progress has been made on airborne nanoparticle filtration in the academic field in the recent years. We summarize the filtration mechanisms of fibrous and membrane filters; the air flow resistance and filter media figure of merit are discussed. Our review focuses on the air filtration test methods and instrumentation necessary to implement them; recent experimental studies are summarized accordingly. Two methods using monodisperse and polydisperse challenging aerosols, respectively, are discussed in detail. Our survey shows that the commercial instruments are already available for generating a large amount of nanoparticles, sizing, and quantifying them accurately. The commercial self-contained filter test systems provide the possibility of measurement for particles down to 15 nm. Current international standards dealing with efficiency test for filters and filter media focus on measurement of the minimum efficiency at the most penetrating particle size. The available knowledge and instruments provide a solid base for development of test methods to determine the effectiveness of filtration media against airborne nanoparticles down to single-digit nanometer range.

  8. Airborne EM, Lithology and in-situ Data Used for Quantizing Groundwater Salinity in Zeeland (NL)

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Siemon, B.; van Baaren, E.; Dabekaussen, W.; Delsman, J. R.; Karaoulis, M.; Gunnink, J.; Pauw, P.; Vermaas, T.

    2017-12-01

    In a setting of predominantly saline surface waters in Zeeland, the Netherlands, the only available shallow fresh groundwater is present in the form of freshwater lenses floating on top of the saline groundwater. This fresh water is vital for agricultural, industrial, ecological, water conservation and drinking water functions. An essential first step for managing the usable water properly is to know the present spatial fresh-brackish-saline groundwater distribution. As traditional salinity monitoring is labor-intensive, airborne electromagnetics, which is fast and can cover large areas in short time, is an efficient alternative. A consortium of BGR, Deltares and TNO conducted FRESHEM Zeeland (FREsh Salt groundwater distribution by Helicopter ElectroMagnetic survey in the Province of Zeeland) in 2014-17. An area of more than 2000 square km was surveyed using BGR's helicopter-borne geophysical system totaling to about 9,600 line-km. The HEM data, after inversion to 2.5 Million resistivity-depth models for each of the three 1D inversion procedures applied (Marquardt single site, smooth and sharp laterally constrained inversion), served as base-line information for further interpretation. A probabilistic Monte Carlo approach combines HEM resistivities, 3D lithology model data (GeoTOP), laboratory results (formation factor and surface conductivity) and local in-situ groundwater measurements for the translation of resistivity to Chloride concentration. The resulting 3D voxel model enables stakeholders to implement spatial Chloride concentration in their groundwater models.

  9. Monitoring individual tree-based change with airborne lidar.

    PubMed

    Duncanson, Laura; Dubayah, Ralph

    2018-05-01

    Understanding the carbon flux of forests is critical for constraining the global carbon cycle and managing forests to mitigate climate change. Monitoring forest growth and mortality rates is critical to this effort, but has been limited in the past, with estimates relying primarily on field surveys. Advances in remote sensing enable the potential to monitor tree growth and mortality across landscapes. This work presents an approach to measure tree growth and loss using multidate lidar campaigns in a high-biomass forest in California, USA. Individual tree crowns were delineated in 2008 and again in 2013 using a 3D crown segmentation algorithm, with derived heights and crown radii extracted and used to estimate individual tree aboveground biomass. Tree growth, loss, and aboveground biomass were analyzed with respect to tree height and crown radius. Both tree growth and loss rates decrease with increasing tree height, following the expectation that trees slow in growth rate as they age. Additionally, our aboveground biomass analysis suggests that, while the system is a net source of aboveground carbon, these carbon dynamics are governed by size class with the largest sources coming from the loss of a relatively small number of large individuals. This study demonstrates that monitoring individual tree-based growth and loss can be conducted with multidate airborne lidar, but these methods remain relatively immature. Disparities between lidar acquisitions were particularly difficult to overcome and decreased the sample of trees analyzed for growth rate in this study to 21% of the full number of delineated crowns. However, this study illuminates the potential of airborne remote sensing for ecologically meaningful forest monitoring at an individual tree level. As methods continue to improve, airborne multidate lidar will enable a richer understanding of the drivers of tree growth, loss, and aboveground carbon flux.

  10. Integrated inversion of airborne geophysics over a structural geological unit: A case study for delineation of a porphyry copper zone in Iran

    NASA Astrophysics Data System (ADS)

    Abedi, Maysam; Fournier, Dominique; Devriese, Sarah G. R.; Oldenburg, Douglas W.

    2018-05-01

    This work presents the application of an integrated geophysical survey of magnetometry and frequency-domain electromagetic data (FDEM) to image a geological unit located in the Kalat-e-Reshm prospect area in Iran which has good potential for ore mineralization. The aim of this study is to concentrate on a 3D arc-shaped andesite unit, where it has been concealed by a sedimentary cover. This unit consists of two segments; the top one is a porphyritic andesite having potential for ore mineralization, especially copper, whereas the lower segment corresponds to an unaltered andesite rock. Airborne electromagnetic data were used to delineate the top segment as a resistive unit embedded in a sediment column of alluvial fan, while the lower andesite unit was detected by magnetic field data. In our research, the FDEM data were first inverted by a laterally-constrained 1D program to provide three pieces of information that facilitate full 3D inversion of EM data: (1) noise levels associated with the FDEM observations, (2) an estimate of the general conductivity structure in the prospect area, and (3) the location of the sought target. Then EM data inversion was extended to 3D using a parallelized OcTree-based code to better determine the boundaries of the porphyry unit, where a transition exists from surface sediment to the upper segment. Moreover, a mixed-norm inversion approach was taken into account for magnetic data to construct a compact and sharp susceptible andesite unit at depth, beneath the top resistive and non-susceptible segment. The blind geological unit was eventually interpreted based on a combined model of conductivity and magnetic susceptibility acquired from individually inverting these geophysical surveys, which were collected simultaneously.

  11. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Geophysical Surveying of Shallow Magnetic Anomalies Using the iPhone Magnetometer

    NASA Astrophysics Data System (ADS)

    Opdyke, P.; Dudley, C.; Louie, J. N.

    2012-12-01

    This investigation examined whether the 3-axis Hall-effect magnetometer in the Apple iPhone 3GS can function as an effective shallow magnetic survey instrument. The xSensor Pro app from Crossbow Systems allows recoding of all three sensor components along with the GPS location, at a frequency of 1.0, 4.0, 16.0, and 32.0 Hz. If the iPhone proves successful in collecting useful magnetic data, then geophysicists and especially educators would have a new tool for high-density geophysical mapping. No-contract iPhones that can connect with WiFi can be obtained for about $400, allowing deployment of large numbers of instruments. iPhones with the xSensor Pro app surveyed in parallel with an Overhauser GEM system magnetometer (1 nT sensitivity) to test this idea. Anderson Bay, located on the Pyramid Lake Paiute Reservation, provided a rural survey location free from cultural interference. xSensor Pro, logged each component's intensity and the GPS location at a frequency of four measurements per second. Two Overhauser units functioned as a base unit and a roving unit. The roving unit collected total field at set points located with a handheld GPS. Comparing the total field computed from the iPhone components against that collected by the Overhauser establishes the level of anomalies that the iPhone can detect. iPhone total-field measurements commonly vary by 200 nT from point to point, so a spatial-temporal average over 25 seconds produces a smoothed signal for comparison. Preliminary analysis of the iPhone results show that the data do not accurately correlate to the total field collected by the Overhauser for any anomaly of less than 200 nT.

  13. Refining the effects of aircraft motion on an airborne beam-type gravimeter

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Weil, C.

    2016-12-01

    A challenge of modern airborne gravimetry is identifying an aircraft/autopilot combination that will allow for high quality data collection. The natural motion of the aircraft coupled with the autopilot's reaction to changing winds and turbulence can result in a successful data collection effort when the motion is benign or in total failure when the motion is at its worst. Aircraft motion plays such an important role in airborne gravimetry for several reasons, but most importantly to this study it affects the behavior of the gravimeter's gyro-stabilized platform. The gyro-stabilized platform keeps the sensor aligned with a time-averaged local vertical to produce a scalar measurement along the plumb direction. However, turbulence can cause the sensor to align temporarily with aircraft horizontal accelerations that can both decrease the measured gravity (because the sensor is no longer aligned with the gravity field) and increase the measured gravity (because horizontal accelerations are coupling into the measurement). NOAA's Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project has collected airborne gravity data using a Micro-g LaCoste TAGS (Turnkey Airborne Gravity System) beam-type meter on a variety of mostly turboprop aircraft with a wide range of outcomes, some different than one would predict. Some aircraft that seem the smoothest to the operator in flight do not produce as high quality a measurement as one would expect. Alternatively, some aircraft that have significant motion produce very high quality data. Due to the extensive nature of the GRAV-D survey, significant quantities of data exist on our various successful aircraft. In addition, we have numerous flights, although fewer, that were not successful for a number of reasons. In this study, we use spectral analysis to evaluate the aircraft motion for our various successful aircraft and compare with the problem flights in our effort to identify the signature motions indicative of

  14. Airborne geophysics for mesoscale observations of polar sea ice in a changing climate

    NASA Astrophysics Data System (ADS)

    Hendricks, S.; Haas, C.; Krumpen, T.; Eicken, H.; Mahoney, A. R.

    2016-12-01

    Sea ice thickness is an important geophysical parameter with a significant impact on various processes of the polar energy balance. It is classified as Essential Climate Variable (ECV), however the direct observations of the large ice-covered oceans are limited due to the harsh environmental conditions and logistical constraints. Sea-ice thickness retrieval by the means of satellite remote sensing is an active field of research, but current observational capabilities are not able to capture the small scale variability of sea ice thickness and its evolution in the presence of surface melt. We present an airborne observation system based on a towed electromagnetic induction sensor that delivers long range measurements of sea ice thickness for a wide range of sea ice conditions. The purpose-built sensor equipment can be utilized from helicopters and polar research aircraft in multi-role science missions. While airborne EM induction sounding is used in sea ice research for decades, the future challenge is the development of unmanned aerial vehicle (UAV) platform that meet the requirements for low-level EM sea ice surveys in terms of range and altitude of operations. The use of UAV's could enable repeated sea ice surveys during the the polar night, when manned operations are too dangerous and the observational data base is presently very sparse.

  15. Airborne Particles.

    ERIC Educational Resources Information Center

    Ojala, Carl F.; Ojala, Eric J.

    1987-01-01

    Describes an activity in which students collect airborne particles using a common vacuum cleaner. Suggests ways for the students to convert their data into information related to air pollution and human health. Urges consideration of weather patterns when analyzing the results of the investigation. (TW)

  16. Accuracy of Flight Altitude Measured with Low-Cost GNSS, Radar and Barometer Sensors: Implications for Airborne Radiometric Surveys.

    PubMed

    Albéri, Matteo; Baldoncini, Marica; Bottardi, Carlo; Chiarelli, Enrico; Fiorentini, Giovanni; Raptis, Kassandra Giulia Cristina; Realini, Eugenio; Reguzzoni, Mirko; Rossi, Lorenzo; Sampietro, Daniele; Strati, Virginia; Mantovani, Fabio

    2017-08-16

    Flight height is a fundamental parameter for correcting the gamma signal produced by terrestrial radionuclides measured during airborne surveys. The frontiers of radiometric measurements with UAV require light and accurate altimeters flying at some 10 m from the ground. We equipped an aircraft with seven altimetric sensors (three low-cost GNSS receivers, one inertial measurement unit, one radar altimeter and two barometers) and analyzed ~3 h of data collected over the sea in the (35-2194) m altitude range. At low altitudes (H < 70 m) radar and barometric altimeters provide the best performances, while GNSS data are used only for barometer calibration as they are affected by a large noise due to the multipath from the sea. The ~1 m median standard deviation at 50 m altitude affects the estimation of the ground radioisotope abundances with an uncertainty less than 1.3%. The GNSS double-difference post-processing enhanced significantly the data quality for H > 80 m in terms of both altitude median standard deviation and agreement between the reconstructed and measured GPS antennas distances. Flying at 100 m the estimated uncertainty on the ground total activity due to the uncertainty on the flight height is of the order of 2%.

  17. Accuracy of Flight Altitude Measured with Low-Cost GNSS, Radar and Barometer Sensors: Implications for Airborne Radiometric Surveys

    PubMed Central

    Baldoncini, Marica; Chiarelli, Enrico; Fiorentini, Giovanni; Raptis, Kassandra Giulia Cristina; Realini, Eugenio; Reguzzoni, Mirko; Rossi, Lorenzo; Sampietro, Daniele; Strati, Virginia

    2017-01-01

    Flight height is a fundamental parameter for correcting the gamma signal produced by terrestrial radionuclides measured during airborne surveys. The frontiers of radiometric measurements with UAV require light and accurate altimeters flying at some 10 m from the ground. We equipped an aircraft with seven altimetric sensors (three low-cost GNSS receivers, one inertial measurement unit, one radar altimeter and two barometers) and analyzed ~3 h of data collected over the sea in the (35–2194) m altitude range. At low altitudes (H < 70 m) radar and barometric altimeters provide the best performances, while GNSS data are used only for barometer calibration as they are affected by a large noise due to the multipath from the sea. The ~1 m median standard deviation at 50 m altitude affects the estimation of the ground radioisotope abundances with an uncertainty less than 1.3%. The GNSS double-difference post-processing enhanced significantly the data quality for H > 80 m in terms of both altitude median standard deviation and agreement between the reconstructed and measured GPS antennas distances. Flying at 100 m the estimated uncertainty on the ground total activity due to the uncertainty on the flight height is of the order of 2%. PMID:28813023

  18. Abandoned underground storage tank location using fluxgate magnetic surveying: A case study

    USGS Publications Warehouse

    Van Biersel, T. P.; Bristoll, B.C.; Taylor, R.W.; Rose, J.

    2002-01-01

    In 1993, during the removal of a diesel and a gasoline underground storage tank at the municipal garage of the Village of Kohler, Sheboygan County, Wisconsin, soil testing revealed environmental contamination at the site. A site investigation revealed the possibility of a second on-site source of petroleum contamination. Limited historical data and the present usage of structures within the suspected source area precluded the use of most invasive sampling methods and most geophysical techniques. A fluxgate magnetometer survey, followed by confirmatory excavation, was conducted at the site. The fluxgate magnetometer survey identified nine possible magnetic anomalies within the 18 ?? 25 m area. The subsequent excavation near the anomalies revealed the presence of five paired and two individual 2000 L underground storage tanks. The fluxgate magnetometer survey, although affected by the proximity of buildings, was able to detect the buried tanks within 3 m of the brick structures, using a 1.5 ?? 1.5 m sampling array.

  19. Predictors of Airborne Endotoxin Concentrations in Inner City Homes

    PubMed Central

    Mazique, D; Diette, GB; Breysse, PN; Matsui, EC; McCormack, MC; Curtin-Brosnan, J; Williams, D; Peng, RD; Hansel, NN

    2011-01-01

    Few studies have assessed in-home factors which contribute to airborne endotoxin concentrations. In 85 inner-city Baltimore homes, we found no significant correlation between settled dust and airborne endotoxin concentrations. Certain household activities and characteristics, including frequency of dusting, air conditioner use and type of flooring, explained 36–42% of the variability of airborne concentrations. Measurements of both airborne and settled dust endotoxin concentrations may be needed to fully characterize domestic exposure in epidemiologic investigations. PMID:21429483

  20. Enhanced Army Airborne Forces: A New Joint Operational Capability

    DTIC Science & Technology

    2014-01-01

    that are trained to carry out airborne operations, including the 75th Ranger Regiment and Army special forces. Today’s airborne forces lack protected...Operation Just Cause Airborne units were used extensively in Panama, and the 82nd Air- borne’s 1st Brigade and the 75th Ranger Regiment were both...carry out airborne operations, including the 75th Ranger Regiment and Army special forces. The changes made to transition the Army into a force

  1. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  2. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  3. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  4. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  5. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  6. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  7. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use.

  8. Asbestos-containing materials and airborne asbestos levels in industrial buildings in Korea.

    PubMed

    Choi, Sangjun; Suk, Mee-Hee; Paik, Nam Won

    2010-03-01

    Recently in Korea, the treatment of asbestos-containing materials (ACM) in building has emerged as one of the most important environmental health issues. This study was conducted to identify the distribution and characteristics of ACM and airborne asbestos concentrations in industrial buildings in Korea. A total of 1285 presumed asbestos-containing material (PACM) samples were collected from 80 workplaces across the nation, and 40% of the PACMs contained more than 1% of asbestos. Overall, 94% of the surveyed workplaces contained ACM. The distribution of ACM did not show a significant difference by region, employment size, or industry. The total ACM area in the buildings surveyed was 436,710 m2. Ceiling tile ACM accounted for 61% (267,093 m2) of the total ACM area, followed by roof ACM (32%), surfacing ACM (6.1%), and thermal system insulation (TSI). In terms of asbestos type, 98% of total ACM was chrysotile, while crocidolite was not detected. A comparison of building material types showed that the material with the highest priority for regular management is ceiling tile, followed by roof, TSI, and surfacing material. The average airborne concentration of asbestos sampled without disturbing in-place ACM was 0.0028 fibers/cc by PCM, with all measurements below the standard of recommendation for indoor air quality in Korea (0.01 fibers/cc).

  9. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  10. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  11. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  12. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  13. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  14. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  15. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  16. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  17. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  18. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  19. Airborne Detection of Cosmic-Ray Albedo Neutrons for Regional-Scale Surveys of Root-Zone Soil Water on Earth

    NASA Astrophysics Data System (ADS)

    Schrön, M.; Bannehr, L.; Köhli, M.; Zreda, M. G.; Weimar, J.; Zacharias, S.; Oswald, S. E.; Bumberger, J.; Samaniego, L. E.; Schmidt, U.; Zieger, P.; Dietrich, P.

    2017-12-01

    While the detection of albedo neutrons from cosmic rays became a standard method in planetary space science, airborne neutron sensing has never been conceived for hydrological research on Earth. We assessed the applicability of atmospheric neutrons to sense root-zone soil moisture averaged over tens of hectares using neutron detectors on an airborne vehicle. Large-scale quantification of near-surface water content is an urgent challenge in hydrology. Information about soil and plant water is crucial to accurately assess the risks for floods and droughts, to adjust regional weather forecasts, and to calibrate and validate the corresponding models. However, there is a lack of data at scales relevant for these applications. Most conventional ground-based geophysical instruments provide root-zone soil moisture only within a few tens of m2, while electromagnetic signals from conventional remote-sensing instruments can only penetrate the first few centimeters below surface, though at larger spatial areas.In the last couple of years, stationary and roving neutron detectors have been used to sense the albedo component of cosmic-ray neutrons, which represents the average water content within 10—15 hectares and 10—50 cm depth. However, the application of these instruments is limited by inaccessible terrain and interfering local effects from roads. To overcome these limitations, we have pioneered first simulations and experiments of such sensors in the field of airborne geophysics. Theoretical investigations have shown that the footprint increases substantially with height above ground, while local effects smooth out throughout the whole area. Campaigns with neutron detectors mounted on a lightweight gyrocopter have been conducted over areas of various landuse types including agricultural fields, urban areas, forests, flood plains, and lakes. The neutron signal showed influence of soil moisture patterns in heights of up to 180 m above ground. We found correlation with

  20. NASA Program of Airborne Optical Observations.

    PubMed

    Bader, M; Wagoner, C B

    1970-02-01

    NASA's Ames Research Center currently operates a Convair 990 four-engine jet transport as a National Facility for airborne scientific research (astronomy, aurora, airglow, meteorology, earth resources). This aircraft can carry about twelve experiments to 12 km for several hours. A second aircraft, a twin-engine Lear Jet, has been used on a limited basis for airborne science and can carry one experiment to 15 km for 1 h. Mobility and altitude are the principal advantages over ground sites, while large payload and personnel carrying capabilities, combined with ease of operations and relatively low cost, are the main advantages compared to balloons, rockets, or satellites. Typical airborne instrumentation and scientific results are presented.

  1. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  2. Helicopter electromagnetic and magnetic geophysical survey data, Hunton anticline, south-central Oklahoma

    USGS Publications Warehouse

    Smith, Bruce D.; Smith, David V.; Deszcz-Pan, Maryla; Blome, Charles D.; Hill, Patricia

    2011-01-01

    This report is a digital data release for multiple geophysical surveys conducted in the Hunton anticline area of south-central Oklahoma. The helicopter electromagnetic and magnetic surveys were flown on March 16–17, 2007, in four areas of the Hunton anticline in south-central Oklahoma. The objective of this project is to improve the understanding of the geohydrologic framework of the Arbuckle-Simpson aquifer. The electromagnetic sensor for the helicopter electromagnetic survey consisted of six different transmitter-receiver orientations that measured the earth's electrical response at six distinct frequencies from approximately 500 Hertz to approximately 115,000 Hertz. The electromagnetic measurements were converted to electrical resistivity values, which were gridded and plotted on georeferenced maps. The map from each frequency represents a different depth of investigation for each area. The range of subsurface investigation is comparable to the depth of shallow groundwater. The four areas selected for the helicopter electromagnetic study, blocks A–D, have different geologic and hydrologic settings. Geophysical and hydrologic information from U.S. Geological Survey studies are being used by modelers and resource managers to develop groundwater resource plans for the Arbuckle-Simpson aquifer.

  3. First Observations of the Magnetic Field inside the Pillars of Creation: Results from the BISTRO Survey

    NASA Astrophysics Data System (ADS)

    Pattle, Kate; Ward-Thompson, Derek; Hasegawa, Tetsuo; Bastien, Pierre; Kwon, Woojin; Lai, Shih-Ping; Qiu, Keping; Furuya, Ray; Berry, David; JCMT BISTRO Survey Team

    2018-06-01

    We present the first high-resolution, submillimeter-wavelength polarimetric observations of—and thus direct observations of the magnetic field morphology within—the dense gas of the Pillars of Creation in M16. These 850 μm observations, taken as part of the B-Fields in Star-forming Region Observations Survey (BISTRO) using the POL-2 polarimeter on the Submillimeter Common-User Bolometer Array 2 (SCUBA-2) camera on the James Clerk Maxwell Telescope (JCMT), show that the magnetic field runs along the length of the Pillars, perpendicular to and decoupled from the field in the surrounding photoionized cloud. Using the Chandrasekhar–Fermi method we estimate a plane-of-sky magnetic field strength of 170–320 μG in the Pillars, consistent with their having been formed through the compression of gas with initially weak magnetization. The observed magnetic field strength and morphology suggests that the magnetic field may be slowing the Pillars’ evolution into cometary globules. We thus hypothesize that the evolution and lifetime of the Pillars may be strongly influenced by the strength of the coupling of their magnetic field to that of their parent photoionized cloud—i.e., that the Pillars’ longevity results from magnetic support.

  4. Airborne lidar detection and mapping of invasive lake trout in Yellowstone Lake.

    PubMed

    Roddewig, Michael R; Churnside, James H; Hauer, F Richard; Williams, Jacob; Bigelow, Patricia E; Koel, Todd M; Shaw, Joseph A

    2018-05-20

    The use of airborne lidar to survey fisheries has not yet been extensively applied in freshwater environments. In this study, we investigated the applicability of this technology to identify invasive lake trout (Salvelinus namaycush) in Yellowstone Lake, Yellowstone National Park, USA. Results of experimental trials conducted in 2004 and in 2015-16 provided lidar data that identified groups of fish coherent with current knowledge and models of lake trout spawning sites, and one identified site was later confirmed to have lake trout.

  5. Application of Airborne Hydrographic Laser Scanning for Mapping Shallow Water Riverine Environments in the Pacific Northwest, United States

    NASA Astrophysics Data System (ADS)

    Cooper, C.; Nayegandhi, A.; Faux, R.

    2013-12-01

    Small-footprint, green wavelength airborne LiDAR systems can provide seamless topography across the land-water interface at very high spatial resolution. These data have the potential to improve floodplain modeling, fisheries habitat assessments, stream restoration efforts, and other applications by continuously mapping shallow water depths that are difficult or impossible to measure using traditional ground-based or water-borne survey techniques. WSI (Corvallis, Oregon) in collaboration with Dewberry, (Tampa, Florida) and Riegl (Orlando, Florida), deployed the Riegl VQ-820-G hydrographic airborne laser scanner to map riverine and lacustrine environments from Oregon to Minnesota. Discussion will focus on the ability to accurately map depth and underwater structure, as well as riparian vegetation and terrain under different conditions. Results indicate that depth penetration varies with both water (i.e. clarity and surface conditions) and bottom conditions (i.e. substrate, depth, and landform). Depth penetration was typically limited to 1 Secchi depth or less across selected project areas. As an example, the green LiDAR system effectively mapped 83% of a shallow water river system, the Sandy River, with typical depths ranging from 0-2.5 meters. WSI will show quantitative comparisons of Green LiDAR surveys against more traditional methods such as rod or sonar surveys. WSI will also discuss advantages and limitations of Green LiDAR surveys for bathymetric modeling including survey accuracy, density, and efficiency along with data processing challenges not inherent with traditional NIR LiDAR processing.

  6. An overview of Airborne Data for Assessing Models (ADAM): a web development effort to effectively disseminate airborne data products

    NASA Astrophysics Data System (ADS)

    Mangosing, D. C.; Chen, G.; Kusterer, J.; Rinsland, P.; Perez, J.; Sorlie, S.; Parker, L.

    2011-12-01

    One of the objectives of the NASA Langley Research Center's MEaSURES project, "Creating a Unified Airborne Database for Model Assessment", is the development of airborne Earth System Data Records (ESDR) for the regional and global model assessment and validation activities performed by the tropospheric chemistry and climate modeling communities. The ongoing development of ADAM, a web site designed to access a unified, standardized and relational ESDR database, meets this objective. The ESDR database is derived from publically available data sets, from NASA airborne field studies to airborne and in-situ studies sponsored by NOAA, NSF, and numerous international partners. The ADAM web development activities provide an opportunity to highlight a growing synergy between the Airborne Science Data for Atmospheric Composition (ASD-AC) group at NASA Langley and the NASA Langley's Atmospheric Sciences Data Center (ASDC). These teams will collaborate on the ADAM web application by leveraging the state-of-the-art service and message-oriented data distribution architecture developed and implemented by ASDC and using a web-based tool provided by the ASD-AC group whose user interface accommodates the nuanced perspective of science users in the atmospheric chemistry and composition and climate modeling communities.

  7. Evaluation and Comparison of the Processing Methods of Airborne Gravimetry Concerning the Errors Effects on Downward Continuation Results: Case Studies in Louisiana (USA) and the Tibetan Plateau (China).

    PubMed

    Zhao, Qilong; Strykowski, Gabriel; Li, Jiancheng; Pan, Xiong; Xu, Xinyu

    2017-05-25

    Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3-5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The

  8. Evaluation and Comparison of the Processing Methods of Airborne Gravimetry Concerning the Errors Effects on Downward Continuation Results: Case Studies in Louisiana (USA) and the Tibetan Plateau (China)

    NASA Astrophysics Data System (ADS)

    Zhao, Q.

    2017-12-01

    Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3-5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The

  9. Evaluation and Comparison of the Processing Methods of Airborne Gravimetry Concerning the Errors Effects on Downward Continuation Results: Case Studies in Louisiana (USA) and the Tibetan Plateau (China)

    PubMed Central

    Zhao, Qilong; Strykowski, Gabriel; Li, Jiancheng; Pan, Xiong; Xu, Xinyu

    2017-01-01

    Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3–5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The

  10. The CrowdMag App - turning your smartphone into a travelling magnetic observatory

    NASA Astrophysics Data System (ADS)

    Saltus, Richard; Nair, Manoj

    2017-04-01

    In 2014, we started the "CrowdMag" Project to collect vector magnetic data from digital magnetometers in smartphones. In October 2014, we released our first-generation Android and iOS apps. Currently, the CrowdMag Project has more than 15,000 enthusiastic users contributing more than 12 million magnetic data points from around the world. NOAA's National Centers for Environmental Information (NCEI), in partnership with the University of Colorado's Cooperative Institute for Research in the Environmental Sciences (CIRES) develops magnetic field models to aid navigation, resource exploration and scientific research. We use observatories, satellites and ship/airborne surveys to measure the magnetic data. However, the measurements leave gaps in coverage, particularly for short-wavelength urban noise. Our ultimate goal is to use data from the CrowdMag Project to improve global magnetic data coverage. Here we present some early results from the analysis of the crowdsourced magnetic data. A global magnetic model derived solely based on CrowdMag data is generally consistent with satellite-derived models such as World Magnetic Model. A unique contribution of the CrowdMag Project is the collection of ground level magnetic data in densely populated regions with an unprecedented spatial resolution. For example, we show a magnetic map (by binning the data collected into 100x100m cells) of central Boulder using 170,000 data points collected by about 60 devices over the duration October 2014- January 2016. The median magnetic field value is consistent with the expected magnitude of the Earth's background magnetic field. The standard deviation of the CrowdMag total field (F) values is much higher than the expected natural (i.e., diurnal and geologic) magnetic field variation. However, the phone's magnetometer is sensitive enough to capture the larger magnitude magnetic signature from the urban magnetic sources. We discuss the reliability of crowdsourced magnetic maps and their

  11. An update on airborne contact dermatitis: 2001-2006.

    PubMed

    Santos, Raquel; Goossens, An

    2007-12-01

    Reports on airborne dermatoses are mainly published in the context of occupational settings. Hence, in recent years, dermatologists and also occupational physicians have become increasingly aware of the airborne source of contact dermatitis, resulting mainly from exposure to irritants or allergens. However, their occurrence is still underestimated, because reports often omit the term 'airborne' in relation to dust or volatile allergens. For the present update, we screened the journals 'Contact Dermatitis' (July 2000 to December 2006); 'Dermatitis', formerly named 'American Journal of Contact Dermatitis'; 'La Lettre du Gerda' (January 2000 to December 2006); and also included relevant articles from other journals published during the same period. This resulted in an updated list of airborne dermatitis causes.

  12. Retrospective exposure assessment to airborne asbestos among power industry workers

    PubMed Central

    2010-01-01

    Background A method of individually assessing former exposure to asbestos fibres is a precondition of risk-differentiated health surveillance. The main aims of our study were to assess former levels of airborne asbestos exposure in the power industry in Germany and to propose a basic strategy for health surveillance and the early detection of asbestos related diseases. Methods Between March 2002 and the end of 2006, we conducted a retrospective questionnaire based survey of occupational tasks and exposures with airborne asbestos fibres in a cohort of 8632 formerly asbestos exposed power industry workers. The data on exposure and occupation were entered into a specially designed computer programme, based on ambient monitoring of airborne asbestos fibre concentrations. The cumulative asbestos exposure was expressed as the product of the eight-hour time weighted average and the total duration of exposure in fibre years (fibres/cubic centimetre-years). Results Data of 7775 (90% of the total) participants working in installations for power generation, power distribution or gas supply could be evaluated. The power generation group (n = 5284) had a mean age of 56 years, were exposed for 20 years and had an average cumulative asbestos exposure of 42 fibre years. The occupational group of "metalworkers" (n = 1600) had the highest mean value of 79 fibre years. The corresponding results for the power distribution group (n = 2491) were a mean age of 45 years, a mean exposure duration of 12 years and an average cumulative asbestos exposure of only 2.5 fibre years. The gas supply workers (n = 512) had a mean age of 54 years and a mean duration of exposure of 15 years. Conclusions While the surveyed cohort as a whole was heavily exposed to asbestos dust, the power distribution group had a mean cumulative exposure of only 6% of that found in the power generation group. Based on the presented data, risk-differentiated disease surveillance focusing on metalworkers and electricians

  13. Statistical survey on the magnetic structure in magnetotail current sheets

    NASA Astrophysics Data System (ADS)

    Rong, Z. J.; Wan, W. X.; Shen, C.; Li, X.; Dunlop, M. W.; Petrukovich, A. A.; Zhang, T. L.; Lucek, E.

    2011-09-01

    On the basis of the multipoint magnetic observations of Cluster in the region 15-19 RE downtail, the magnetic field structure in magnetotail current sheet (CS) center is statistically surveyed. It is found that the By component (in GSM coordinates) is distributed mainly within ∣By∣ < 5nT, while the Bz component is mostly positive and distributes mainly within 1˜10 nT. The plane of the magnetic field lines (MFLs) is mostly vertical to the equatorial plane, with the radius of curvature (Rc) of the MFLs being directed earthward and the binormal (perpendicular to the curvature and magnetic field direction) being directed azimuthally westward. The curvature radius of MFLs reaches a minimum, Rc,min, at the CS center and is larger than the corresponding local half thickness of the neutral sheet, h. Statistically, it is found that the overall surface of the CS, with the normal pointing basically along the south-north direction, can be approximated to be a plane parallel to equatorial plane, although the local CS may be flapping and is frequently tilted to the equatorial plane. The tilted CS (normal inclined to the equatorial plane) is apt to be observed near both flanks and is mainly associated with the slippage of magnetic flux tubes. It is statistically verified that the minimum curvature radius, Rc,min, half thickness of neutral sheet, h, and the slipping angle of MFLs, δ, in the CS satisfies h = Rc,min cosδ. The current density, with a mean strength of 4-8 nA/m2, basically flows azimuthally and tangentially to the surface of the CS, from dawn side to the dusk side. There is an obvious dawn-dusk asymmetry of CS, however. For magnetic local times (MLT) ˜21:00-˜01:00, the CS is relatively thinner; the minimum curvature radius of MFLs, Rc,min (0.6-1 RE) and the half-thickness of neutral sheet, h (0.2-0.4 RE), are relatively smaller, and Bz (3-5 nT) and the minimum magnetic field, Bmin (5-7 nT), are weaker. It is also found that negative Bz has a higher probability

  14. The Effect of Pitch, Roll, and Yaw on Airborne Gravity Observations of the NOAA GRAV-D Project

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Kanney, J.; Youngman, M.

    2017-12-01

    Aircraft turbulence can wreak havoc on the gravity measurementby beam-style gravimeters. Prior studies have confirmed the correlation of poor quality airborne gravity data collection to amplified aircraft motion. Motion in the aircraft is the combined effect of the airframe design, the autopilot and its performance, and the weather/wind regime. NOAA's National Geodetic Survey has launched the Gravity for the Redefinition of the American Vertical Datum project (GRAV-D) to provide the foundation for a new national vertical datum by 2022. This project requires collecting airborne gravity data covering the entire country and its holdings. The motion of the aircraft employed in this project is of prime importance because we use a beam-style gravimeter mounted on a gyro-stabilized platform to align the sensor to a time-averaged local vertical. Aircraft turbulence will tend to drive the platform off-level, allowing horizontal forces to map into the vertical gravity measurement. Recently, the GRAV-D project has experimented with two new factors in airborne gravity data collection. The first aspect is the use of the Aurora optionally piloted Centaur aircraft. This aircraft can be flown either with or without a pilot, but the autopilot is specifically designed to be very accurate. Incorporated into the much smaller frame of this aircraft is a new gravimeter developed by Micro-g LaCoste, called the Turnkey Airborne Gravimeter System 7 (TAGS7). This smaller, lighter instrument also has a new design whereby the beam is held fixed in an electromagnetic force field. The result of this new configuration is notably improved data quality in wind conditions higher than can be tolerated by our current system. So, which caused the improvement, the aircraft motion or the new meter? This study will start to tease apart these two effects with recently collected survey data. Specifically, we will compare the motion profile of the Centaur aircraft with other aircraft in the GRAV-D portfolio

  15. Integrated geophysical characterisation of Sunyani municipal solid waste disposal site using magnetic gradiometry, magnetic susceptibility survey and electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Appiah, Isaac; Wemegah, David Dotse; Asare, Van-Dycke Sarpong; Danuor, Sylvester K.; Forson, Eric Dominic

    2018-06-01

    Non-invasive geophysical investigation using magnetic gradiometry, magnetic susceptibility survey and electrical resistivity tomography (ERT) was carried out on the Sunyani Municipal Assembly (SMA) solid waste disposal (SWD) site. The study was aimed at delineating the physical boundaries and the area extent of the waste deposit, mapping the distribution of the waste at the site, detecting and delineating zones of leachate contamination and its preferential migration pathways beneath the waste deposit and its surroundings. The results of both magnetic susceptibility and gradiometric methods displayed in anomaly maps clearly delineated the physical boundaries of the waste deposit with an approximate area extent of 82,650 m2 that are characterised by high magnetic susceptibilities between 426 × 10-5 SI and 9890 × 10-5 SI. They also revealed high magnetic anomalies erratically distributed within the waste deposit attributable to its heterogeneous and uncontrolled nature. The high magnetic anomalies outside the designated waste boundaries were also attributed to indiscriminate deposition of the waste. Similarly, the ERT sections delineated and characterised zones of leachate contamination beneath the waste body and its close surroundings as well as pathways for leachate migration with low resistivity signatures up to 43.9 Ωm. In spite of the successes reported herein using the ERT, this research also revealed that the ERT is less effective in estimating the thickness of the waste deposit in unlined SWD sites due to leachate infiltration into the ground beneath it that masks the resistivities of the top level ground and makes it indistinguishable from the waste body.

  16. Operation REDWING. Project 2.64. Fallout Location and Delineation by Aerial Surveys.

    DTIC Science & Technology

    Fallout, *Gamma rays, *Radioactive contamination, Ocean environments, Nuclear explosion testing, Surveys, Sampling, Airborne, Surface burst, Sea water, Dose rate, Ocean surface, Coral reefs, Marshall Islands

  17. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  18. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  19. Airborne Nicotine, Secondhand Smoke, and Precursors to Adolescent Smoking.

    PubMed

    McGrath, Jennifer J; Racicot, Simon; Okoli, Chizimuzo T C; Hammond, S Katharine; O'Loughlin, Jennifer

    2018-01-01

    Secondhand smoke (SHS) directly increases exposure to airborne nicotine, tobacco's main psychoactive substance. When exposed to SHS, nonsmokers inhale 60% to 80% of airborne nicotine, absorb concentrations similar to those absorbed by smokers, and display high levels of nicotine biomarkers. Social modeling, or observing other smokers, is a well-established predictor of smoking during adolescence. Observing smokers also leads to increased pharmacological exposure to airborne nicotine via SHS. The objective of this study is to investigate whether greater exposure to airborne nicotine via SHS increases the risk for smoking initiation precursors among never-smoking adolescents. Secondary students ( N = 406; never-smokers: n = 338, 53% girls, mean age = 12.9, SD = 0.4) participated in the AdoQuest II longitudinal cohort. They answered questionnaires about social exposure to smoking (parents, siblings, peers) and known smoking precursors (eg, expected benefits and/or costs, SHS aversion, smoking susceptibility, and nicotine dependence symptoms). Saliva and hair samples were collected to derive biomarkers of cotinine and nicotine. Adolescents wore a passive monitor for 1 week to measure airborne nicotine. Higher airborne nicotine was significantly associated with greater expected benefits ( R 2 = 0.024) and lower expected costs ( R 2 = 0.014). Higher social exposure was significantly associated with more temptation to try smoking ( R 2 = 0.025), lower aversion to SHS ( R 2 = 0.038), and greater smoking susceptibility ( R 2 = 0.071). Greater social exposure was significantly associated with more nicotine dependence symptoms; this relation worsened with higher nicotine exposure (cotinine R 2 = 0.096; airborne nicotine R 2 = 0.088). Airborne nicotine exposure via SHS is a plausible risk factor for smoking initiation during adolescence. Public health implications include limiting airborne nicotine through smoking bans in homes and cars, in addition to stringent restrictions

  20. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  1. Airborne electromagnetic data levelling using principal component analysis based on flight line difference

    NASA Astrophysics Data System (ADS)

    Zhang, Qiong; Peng, Cong; Lu, Yiming; Wang, Hao; Zhu, Kaiguang

    2018-04-01

    A novel technique is developed to level airborne geophysical data using principal component analysis based on flight line difference. In the paper, flight line difference is introduced to enhance the features of levelling error for airborne electromagnetic (AEM) data and improve the correlation between pseudo tie lines. Thus we conduct levelling to the flight line difference data instead of to the original AEM data directly. Pseudo tie lines are selected distributively cross profile direction, avoiding the anomalous regions. Since the levelling errors of selective pseudo tie lines show high correlations, principal component analysis is applied to extract the local levelling errors by low-order principal components reconstruction. Furthermore, we can obtain the levelling errors of original AEM data through inverse difference after spatial interpolation. This levelling method does not need to fly tie lines and design the levelling fitting function. The effectiveness of this method is demonstrated by the levelling results of survey data, comparing with the results from tie-line levelling and flight-line correlation levelling.

  2. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  3. [Phylogenetic diversity of airborne microbes in Qingdao downtown in autumn].

    PubMed

    Wang, Lin; Song, Zhi-wen; Xu, Ai-ling; Wu, Deng-deng; Xia, Yan

    2015-04-01

    To determine the community structure of airborne microbes in Qingdao downtown in autumn, the airborne bacteria and fungi were collected by the KC-6120 air sampler and analyzed using the 16S/18S rDNA gene clone library method. Phylogenetic analysis of airborne bacteria showed that they belonged to six major phylogenetic groups: Proteobacteria (78. 8%), Firmicutes (14.6%), Actinobacteria (4.0%), Planctomycetes (1.3%), Cyanobacteria (0.7%), and Deinococcus-Thermus (0.7%). The dominant genera of airborne bacteria included Acinetobacter (39.7%), Staphylococcus (11.3%), Sphingomonas (8.6%), Paracoccus (6.0%) and Massilia (5.3%). The main types of airborne fungi were Ascomycota (97.5%) and Basidiomycota (2.5%). Dominant genera of airborne fungi included Pyrenophora (76.5%), Xylaria (13.6%) and Exophiala (2.5%). The pathogens or conditioned pathogens, such as Acinetobacter, Staphylococcus, or Sphingomonas were detected in the airborne bacteria, whereas certain kinds of fungi, such as P. graminea, X. hypoxylon and Zasmidium angulare that could cause a variety of crop diseases were also detected.

  4. Magnetic, gravity, radiometric, LiDAR, and seismic data to characterize the region of the M5.8 August 23, 2011 earthquake near Mineral, Virginia

    NASA Astrophysics Data System (ADS)

    Shah, A. K.; McNamara, D. E.; Odum, J. K.; Stephenson, W. J.; Kayen, R. E.; Emmett, P. F.; Herrmann, R. B.; Snyder, S. L.; Horton, J. W.; Williams, R. A.

    2012-12-01

    In response to the M5.8 August 23, 2011 Mineral, VA earthquake, the U.S. Geological Survey and partner organizations acquired or sponsored collection of several geophysical datasets to assist characterization of the earthquake region. Goals include the mapping of the main shock causative and aftershock faults as well as associated geologic features which may be buried or difficult to access, estimates of regional ground motion attenuation, and measurements describing local amplification of seismic energy. The deployment of 46 portable seismic stations by several organizations within days following the earthquake, along with public availability of the resulting data, has greatly aided site characterization efforts. The aftershock data recorded by these stations have allowed delineation of the probable causative fault and other faults that were active afterwards. Using the portable seismograph network and regional permanent stations, S and Lg waves were analyzed to estimate crustal attenuation characteristics. Active- and passive-source seismic experiments were also conducted at many of the portable and permanent stations to characterize site conditions and constrain local response models via estimates of Vs30 and bedrock depth. In March 2012, a LiDAR survey with 8pt/m2 resolution was flown over a ~20x35 km area covering the epicenters of the earthquake and most aftershocks. In July 2012, a high-resolution airborne magnetic, gravity, and radiometric survey was flown over a similar but slightly smaller area. Supplementary ground gravity data have been collected inside and outside of the airborne survey areas. The gravity and magnetic data reflect subsurface features in a region where outcropping rocks are sparse, while LiDAR and radiometric data, respectively, delineate subtle features at the land surface and upper few centimeters. Each of these datasets reflects the regional NE-SW striking fabric. Seismic wave analyses show preferential attenuation in a NW

  5. Enumerating Spore-Forming Bacteria Airborne with Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Barengoltz, Jack

    2006-01-01

    A laboratory method has been conceived to enable the enumeration of (1) Cultivable bacteria and bacterial spores that are, variously, airborne by themselves or carried by, parts of, or otherwise associated with, other airborne particles; and (2) Spore-forming bacteria among all of the aforementioned cultivable microbes.

  6. Use of airborne gamma-ray spectrometry for kaolin exploration

    NASA Astrophysics Data System (ADS)

    Tourlière, B.; Perrin, J.; Le Berre, P.; Pasquet, J. F.

    2003-08-01

    Airborne gamma-ray spectrometry was used to define targets with kaolin potential in the Armorican Massif of Brittany, France. This exploration method is based on the principle that kaolinite, an aluminosilicate clay mineral constituting kaolin, is formed by the hydrolysis of potash feldspar with the elimination of potassium. Therefore, potassium contrast between favourable host-rock such as a leucogranite and kaolin occurrence is likely a significant pathfinder. As the relationship between the potassium-40 recorded by an airborne gamma-ray spectrometer and total potassium is constant, such data provide us a direct measurement of the potassium content of the ground flown over. Our study tested this by calculating, for each geological unit, the difference between the measured and average potassium content calculated for a given geological formation. The study was based on (i) a recent (1998) high-definition airborne geophysical survey over the Armorican Massif undertaken on behalf of the French Government, and (ii) new geological compilation maps covering the same region. Depleted zones, where the measured potassium is less than the average potassium content calculated target areas with high potential of containing kaolin, provided that the unit was originally rich in potash feldspar. By applying this method to the entire Armorican Massif, it was possible to identify 150 potassium-depleted zones, including 115 that were subjected to rapid field checks and 36 that contained kaolin (21 new discoveries). This method, which is both safe for the environment and easy to use, is therefore a good tool for rapidly defining targets with kaolin potential at a regional scale. The method may also have possibilities in exploring for other types of deposit characterised by an enrichment or depletion in U, K and/or Th.

  7. Use of airborne and terrestrial lidar to detect ground displacement hazards to water systems

    USGS Publications Warehouse

    Stewart, J.P.; Hu, Jiawen; Kayen, R.E.; Lembo, A.J.; Collins, B.D.; Davis, C.A.; O'Rourke, T. D.

    2009-01-01

    We investigate the use of multiepoch airborne and terrestrial lidar to detect and measure ground displacements of sufficient magnitude to damage buried pipelines and other water system facilities that might result, for example, from earthquake or rainfall-induced landslides. Lidar scans are performed at three sites with coincident measurements by total station surveying. Relative horizontal accuracy is evaluated by measurements of lateral dimensions of well defined objects such as buildings and tanks; we find misfits ranging from approximately 5 to 12 cm, which is consistent with previous work. The bias and dispersion of lidar elevation measurements, relative to total station surveying, is assessed at two sites: (1) a power plant site (PP2) with vegetated steeply sloping terrain; and (2) a relatively flat and unvegetated site before and after trenching operations were performed. At PP2, airborne lidar showed minimal elevation bias and a standard deviation of approximately 70 cm, whereas terrestrial lidar did not produce useful results due to beam divergence issues and inadequate sampling of the study region. At the trench site, airborne lidar showed minimal elevation bias and reduced standard deviation relative to PP2 (6-20 cm), whereas terrestrial lidar was nearly unbiased with very low dispersion (4-6 cm). Pre- and posttrench bias-adjusted normalized residuals showed minimal to negligible correlation, but elevation change was affected by relative bias between epochs. The mean of elevation change bias essentially matches the difference in means of pre- and posttrench elevation bias, whereas elevation change standard deviation is sensitive to the dispersion of individual epoch elevations and their correlation coefficient. The observed lidar bias and standard deviations enable reliable detection of damaging ground displacements for some pipelines types (e.g., welded steel) but not all (e.g., concrete with unwelded, mortared joints). ?? ASCE 2009.

  8. Testing the Dependence of Airborne Gravity Results on Three Variables in Kinematic GPS Processing

    NASA Astrophysics Data System (ADS)

    Weil, C.; Diehl, T. M.

    2011-12-01

    The National Geodetic Survey's Gravity for the Redefinition of the American Vertical Datum (GRAV-D) program plans to collect airborne gravity data across the entire U.S. and its holdings over the next decade. The goal is to build a geoid accurate to 1-2 cm, for which the airborne gravity data is key. The first phase is underway, with > 13% of data collection completed in: parts of Alaska, parts of California, most of the Gulf Coast, Puerto Rico, and the Virgin Islands. Obtaining accurate airborne gravity survey results depends on the quality of the GPS/IMU position solution used in the processing. There are many factors that could have an influence on the positioning results. First, we will investigate how an increased data sampling rate for the GPS/IMU affects the position solution and accelerations derived from those positions. Second we will test the hypothesis that, for differential kinematic processing a better solution is obtained using both a base and a rover GPS unit that contain an additional rubidium clock that is reported to sync better with GPS time. Finally, we will look at a few different GPS+IMU processing methods available in commercial software. This includes comparing GPS-only solutions with loosely coupled GPS/IMU solutions from the Applanix POSAV-510 system and tightly coupled solutions with our newly-acquired NovAtel SPAN system (micro-IRS IMU). Differential solutions are compared with PPP (Precise Point Positioning) solutions along with multi-pass and advanced tropospheric corrections available with the NovAtel Inertial Explorer software. Based on preliminary research, we expect that the tightly-coupled solutions with either better troposphere and/or multi-pass solutions will provide superior position (and gravity) results.

  9. Salinity surveys using an airborne microwave radiometer

    NASA Technical Reports Server (NTRS)

    Paris, J. F.; Droppleman, J. D.; Evans, D. E.

    1972-01-01

    The Barnes PRT-5 infrared radiometer and L-band channel of the multifrequency microwave radiometer are used to survey the distribution of surface water temperature and salinity. These remote sensors were flown repetitively in November 1971 over the outflow of the Mississippi River into the Gulf of Mexico. Data reduction parameters were determined through the use of flight data obtained over a known water area. With these parameters, the measured infrared and microwave radiances were analyzed in terms of the surface temperature and salinity.

  10. Calculations of lightning return stroke electric and magnetic fields above ground

    NASA Technical Reports Server (NTRS)

    Master, M. J.; Uman, M. A.; Ling, Y. T.; Standler, R. B.

    1981-01-01

    Lin et al., (1980) presented a lightning return stroke model with which return stroke electric and magnetic fields measured at ground level could be reproduced. This model and a modified version of it, in which the initial current peak decays with height above ground, are used to compute waveforms for altitudes from 0-10 km and at ranges of 20 m to 10 km. Both the original and modified models gave accurate predictions of measured ground-based fields. The use of the calculated fields in calibrating airborne field measurements from simultaneous ground and airborne data is discussed.

  11. Detecting subtle environmental change: a multi-temporal airborne imaging spectroscopy approach

    NASA Astrophysics Data System (ADS)

    Yule, Ian J.; Pullanagari, Reddy R.; Kereszturi, G.

    2016-10-01

    Airborne and satellite hyperspectral remote sensing is a key technology to observe finite change in ecosystems and environments. The role of such sensors will improve our ability to monitor and mitigate natural and agricultural environments on a much larger spatial scale than can be achieved using field measurements such as soil coring or proximal sensors to estimate the chemistry of vegetation. Hyperspectral sensors for commentarial and scientific activities are increasingly available and cost effective, providing a great opportunity to measure and detect changes in the environment and ecosystem. This can be used to extract critical information to develop more advanced management practices. In this research, we provide an overview of the data acquisition, processing and analysis of airborne, full-spectrum hyperspectral imagery from a small-scale aerial mapping project in hill-country farms in New Zealand, using an AISA Fenix sensor (Specim, Finland). The imagery has been radiometrically and atmospherically corrected, georectified and mosaicked. The hyperspectral data cube was then spectrally and spatially smoothed using Savitzky-Golay and median filter, respectively. The mosaicked imagery used to calculate bio-chemical properties of surface vegetation, such as pasture. Ground samples (n = 200) were collected a few days after the over-flight are used to develop a calibration model using partial least squares regression method. In-leaf nitrogen, potassium and phosphorous concentration were calculated using the reflectance values from the airborne hyperspectral imagery. In total, three surveys of an example property have been acquired that show changes in the pattern of availability of a major element in vegetation canopy, in this case nitrogen.

  12. 76 FR 76333 - Notification for Airborne Wind Energy Systems (AWES)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ...-1279; Notice No. 11-07] Notification for Airborne Wind Energy Systems (AWES) AGENCY: Federal Aviation... CFR) part 77, ``Safe, Efficient Use and Preservation of the Navigable Airspace,'' to airborne wind energy systems (AWES). In addition, this notice requests information from airborne wind energy system...

  13. Alaska and Yukon magnetic compilation, residual total magnetic field

    USGS Publications Warehouse

    Miles, W.; Saltus, Richard W.; Hayward, N.; Oneschuk, D.

    2017-01-01

    This map is a compilation of aeromagnetic surveys over Yukon and eastern Alaska. Aeromagnetic surveys measure the total intensity of the earth's magnetic field. The field was measured by a magnetometer aboard an aircraft flown in parallel lines spaced at 200 m to 10000 m across the map area. The magnetic field reflects magnetic properties of bedrock and provides qualitative and quantitative information used in geological mapping. Understanding the geology will help geologists map the area, assist mineral/hydrocarbon exploration activities, and provide useful information necessary for communities, aboriginal associations, and government to make land use decisions. This survey was flown to improve our knowledge of the area. It will support ongoing geological mapping and resource assessment.

  14. New Nurses' Perceptions of Hostility and Job Satisfaction: Magnet® Versus Non-Magnet.

    PubMed

    Hickson, Josiane

    2015-10-01

    This study investigated the perceptions of nursing hostility and job satisfaction of new RNs, comparing the working settings of MagnetA and non-Magnet hospitals. An online survey of new graduate RNs wasconducted using theNegative Acts QuestionnaireY Revised, the McCloskey/Mueller Satisfaction Survey, the Casey-Fink Graduate Nurse Experience Survey, and a demographic questionnaire. Findings indicated that RNs of Magnet and non-Magnet facilities experienced similar hostility and job satisfaction results. Magnet nurses (n = 226) perceived nursing hostility significantly different than non-Magnet nurses (n = 939); however, both groups reported a global perception of nursing hostility as new RNs. Based on this study’s findings, greater consideration should be placed on orientation/residency programs, collaborative partnerships between academia and service, zero tolerance for behaviors undermining culture safety, and addressing nursing hostility.

  15. FRESHEM - Fresh-saline groundwater distribution in Zeeland (NL) derived from airborne EM

    NASA Astrophysics Data System (ADS)

    Siemon, Bernhard; van Baaren, Esther; Dabekaussen, Willem; Delsman, Joost; Gunnik, Jan; Karaoulis, Marios; de Louw, Perry; Oude Essink, Gualbert; Pauw, Pieter; Steuer, Annika; Meyer, Uwe

    2017-04-01

    In a setting of predominantly saline surface waters, the availability of fresh water for agricultural purposes is not obvious in Zeeland, The Netherlands. Canals and ditches are mainly brackish to saline due to saline seepage, which originates from old marine deposits and salt-water transgressions during historical times. The only available fresh groundwater is present in the form of freshwater lenses floating on top of the saline groundwater. This fresh groundwater is vital for agricultural, industrial, ecological, water conservation and drinking water functions. An essential first step for managing this fresh groundwater properly is to know the present spatial fresh-brackish-saline groundwater distribution. As traditional salinity monitoring is labour-intensive, airborne electromagnetics (AEM), which is fast and can cover large areas in short time, is an efficient alternative. A consortium of BGR, Deltares and TNO started FRESHEM Zeeland (FREsh Salt groundwater distribution by Helicopter ElectroMagnetic survey in the Province of Zeeland) in October 2014. Within 3x2 weeks of the first project year, the entire area of about 2000 km2 was surveyed using BGR's helicopter-borne geophysical system totalling to about 10,000 line-km. The HEM datasets of 17 subareas were carefully processed using advanced BGR in-house software and inverted to 2.5 Million resistivity-depth models. Ground truthing demonstrated that the large-scale HEM results fit very well with small-scale ground EM data (ECPT). Based on this spatial resistivity distribution, a 3D voxel model for Chloride concentration was derived for the entire province taking into account geological model data (GeoTOP) for the lithology correction and local in-situ groundwater measurements for the translation of water conductivity to Chloride concentration. The 3D voxel model enables stakeholders to implement spatial Chloride concentration in their groundwater models.

  16. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  17. Compact Highly Sensitive Multi-species Airborne Mid-IR Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Dirk; Weibring, P.; Walega, J.

    2015-02-01

    We report on the development and airborne field deployment of a mid-IR laser based spectrometer. The instrument was configured for the simultaneous in-situ detection of formaldehyde (CH2O) and ethane (C2H6). Numerous mechanical, optical, electronic, and software improvements over a previous instrument design resulted in reliable highly sensitive airborne operation with long stability times yielding 90% airborne measurement coverage during the recent air quality study over the Colorado front range, FRAPPÉ 2014. Airborne detection sensitivities of ~ 15 pptv (C2H6) and ~40 pptv (CH2O) were generally obtained for 1 s of averaging for simultaneous detection.

  18. Exposure to airborne asbestos in buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, R.J.; Van Orden, D.R.; Corn, M.

    The concentration of airborne asbestos in buildings and its implication for the health of building occupants is a major public health issue. A total of 2892 air samples from 315 public, commercial, residential, school, and university buildings has been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result of exposure to the presence of asbestos containing materials (ACM). The average concentration of all asbestos structures was 0.02 structures/ml (s/ml) and the average concentration of asbestos greatermore » than or equal to 5 microns long was 0.00013 fibers/ml (f/ml). The concentration of asbestos was higher in schools than in other buildings. In 48% of indoor samples and 75% of outdoor samples, no asbestos fibers were detected. The observed airborne concentration in 74% of the indoor samples and 96% of the outdoor samples is below the Asbestos Hazard Emergency Response Act clearance level of 0.01 s/ml. Finally, using those fibers which could be seen optically, all indoor samples and all outdoor samples are below the Occupational Safety and Health Administration permissible exposure level of 0.1 f/ml for fibers greater than or equal to 5 microns in length. These results provide substantive verification of the findings of the U.S. Environmental Protection Agency public building study which found very low ambient concentrations of asbestos fibers in buildings with ACM, irrespective of the condition of the material in the buildings.« less

  19. 30 CFR 57.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Control of exposure to airborne contaminants... Underground § 57.5005 Control of exposure to airborne contaminants. Control of employee exposure to harmful airborne contaminants shall be, insofar as feasible, by prevention of contamination, removal by exhaust...

  20. Appendix : airborne incidents : an econometric analysis of severity

    DOT National Transportation Integrated Search

    2014-12-19

    This is the Appendix for Airborne Incidents: An Econometric Analysis of Severity Report. : Airborne loss of separation incidents occur when an aircraft breaches the defined separation limit (vertical and/or horizontal) with another aircraft or terrai...

  1. Airborne Lidar-Based Estimates of Tropical Forest Structure in Complex Terrain: Opportunities and Trade-Offs for REDD+

    NASA Technical Reports Server (NTRS)

    Leitold, Veronika; Keller, Michael; Morton, Douglas C.; Cook, Bruce D.; Shimabukuro, Yosio E.

    2015-01-01

    Background: Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography present a challenge for lidar remote sensing. Results: We compared digital terrain models (DTM) derived from airborne lidar data from a mountainous region of the Atlantic Forest in Brazil to 35 ground control points measured with survey grade GNSS receivers. The terrain model generated from full-density (approx. 20 returns/sq m) data was highly accurate (mean signed error of 0.19 +/-0.97 m), while those derived from reduced-density datasets (8/sq m, 4/sq m, 2/sq m and 1/sq m) were increasingly less accurate. Canopy heights calculated from reduced-density lidar data declined as data density decreased due to the inability to accurately model the terrain surface. For lidar return densities below 4/sq m, the bias in height estimates translated into errors of 80-125 Mg/ha in predicted aboveground biomass. Conclusions: Given the growing emphasis on the use of airborne lidar for forest management, carbon monitoring, and conservation efforts, the results of this study highlight the importance of careful survey planning and consistent sampling for accurate quantification of aboveground biomass stocks and dynamics. Approaches that rely primarily on canopy height to estimate aboveground biomass are sensitive to DTM errors from variability in lidar sampling density.

  2. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+

    PubMed

    Leitold, Veronika; Keller, Michael; Morton, Douglas C; Cook, Bruce D; Shimabukuro, Yosio E

    2015-12-01

    Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography present a challenge for lidar remote sensing. We compared digital terrain models (DTM) derived from airborne lidar data from a mountainous region of the Atlantic Forest in Brazil to 35 ground control points measured with survey grade GNSS receivers. The terrain model generated from full-density (~20 returns m -2 ) data was highly accurate (mean signed error of 0.19 ± 0.97 m), while those derived from reduced-density datasets (8 m -2 , 4 m -2 , 2 m -2 and 1 m -2 ) were increasingly less accurate. Canopy heights calculated from reduced-density lidar data declined as data density decreased due to the inability to accurately model the terrain surface. For lidar return densities below 4 m -2 , the bias in height estimates translated into errors of 80-125 Mg ha -1 in predicted aboveground biomass. Given the growing emphasis on the use of airborne lidar for forest management, carbon monitoring, and conservation efforts, the results of this study highlight the importance of careful survey planning and consistent sampling for accurate quantification of aboveground biomass stocks and dynamics. Approaches that rely primarily on canopy height to estimate aboveground biomass are sensitive to DTM errors from variability in lidar sampling density.

  3. Networked Airborne Communications Using Adaptive Multi Beam Directional Links

    DTIC Science & Technology

    2016-03-05

    Networked Airborne Communications Using Adaptive Multi-Beam Directional Links R. Bruce MacLeod Member, IEEE, and Adam Margetts Member, IEEE MIT...provide new techniques for increasing throughput in airborne adaptive directional net- works. By adaptive directional linking, we mean systems that can...techniques can dramatically increase the capacity in airborne networks. Advances in digital array technology are beginning to put these gains within reach

  4. Scratched: World War II Airborne Operations That Never Happened

    DTIC Science & Technology

    2014-05-22

    Approved for Public Release; Distribution is Unlimited SCRATCHED: WORLD WAR II AIRBORNE OPERATIONS THAT NEVER HAPPENED A Monograph by...2. REPORT TYPE Master’s Thesis 3. DATES COVERED (From - To) JUN 2013-MAY 2014 4. TITLE AND SUBTITLE Scratched: World War II Airborne...Maastricht gap, to get Allied troops through the West Wall. For numerous reasons, the overall Allied airborne effort of World War II provided mixed

  5. The JCMT BISTRO Survey: The Magnetic Field Strength in the Orion A Filament

    NASA Astrophysics Data System (ADS)

    Pattle, Kate; Ward-Thompson, Derek; Berry, David; Hatchell, Jennifer; Chen, Huei-Ru; Pon, Andy; Koch, Patrick M.; Kwon, Woojin; Kim, Jongsoo; Bastien, Pierre; Cho, Jungyeon; Coudé, Simon; Di Francesco, James; Fuller, Gary; Furuya, Ray S.; Graves, Sarah F.; Johnstone, Doug; Kirk, Jason; Kwon, Jungmi; Lee, Chang Won; Matthews, Brenda C.; Mottram, Joseph C.; Parsons, Harriet; Sadavoy, Sarah; Shinnaga, Hiroko; Soam, Archana; Hasegawa, Tetsuo; Lai, Shih-Ping; Qiu, Keping; Friberg, Per

    2017-09-01

    We determine the magnetic field strength in the OMC 1 region of the Orion A filament via a new implementation of the Chandrasekhar-Fermi method using observations performed as part of the James Clerk Maxwell Telescope (JCMT) B-Fields In Star-forming Region Observations (BISTRO) survey with the POL-2 instrument. We combine BISTRO data with archival SCUBA-2 and HARP observations to find a plane-of-sky magnetic field strength in OMC 1 of {B}{pos}=6.6+/- 4.7 mG, where δ {B}{pos}=4.7 mG represents a predominantly systematic uncertainty. We develop a new method for measuring angular dispersion, analogous to unsharp masking. We find a magnetic energy density of ˜ 1.7× {10}-7 J m-3 in OMC 1, comparable both to the gravitational potential energy density of OMC 1 (˜10-7 J m-3) and to the energy density in the Orion BN/KL outflow (˜10-7 J m-3). We find that neither the Alfvén velocity in OMC 1 nor the velocity of the super-Alfvénic outflow ejecta is sufficiently large for the BN/KL outflow to have caused large-scale distortion of the local magnetic field in the ˜500 yr lifetime of the outflow. Hence, we propose that the hourglass field morphology in OMC 1 is caused by the distortion of a primordial cylindrically symmetric magnetic field by the gravitational fragmentation of the filament and/or the gravitational interaction of the BN/KL and S clumps. We find that OMC 1 is currently in or near magnetically supported equilibrium, and that the current large-scale morphology of the BN/KL outflow is regulated by the geometry of the magnetic field in OMC 1, and not vice versa.

  6. 30 CFR 56.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Control of exposure to airborne contaminants... Air Quality and Physical Agents Air Quality § 56.5005 Control of exposure to airborne contaminants. Control of employee exposure to harmful airborne contaminants shall be, insofar as feasible, by prevention...

  7. 41 CFR 50-204.22 - Exposure to airborne radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Exposure to airborne... FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.22 Exposure to airborne radioactive material. (a) No..., within a restricted area, to be exposed to airborne radioactive material in an average concentration in...

  8. Warriors from the Sky: US Army Airborne Operational Art in Normandy

    DTIC Science & Technology

    2017-05-25

    capabilities required for conducting a cross- Channel joint forcible entry operation. This included the identification of specific missions for the airborne...cross- Channel joint forcible entry operation. This included the identification of specific missions for the airborne forces. As a result, the airborne...Operation Market Garden, Holland 1944 (HQ, 82 Airborne Division: Feb 1946), 4. Market Garden, following the invasion in Normandy, was the first

  9. A new airborne geophysical platform and its application in the Princess Elizabeth Land during CHINARE 32 and 33 in East Antarctica

    NASA Astrophysics Data System (ADS)

    Cui, Xiangbin; Sun, Bo; Guo, Jingxue; Tang, Xueyuan; Greenbaum, Jamin; Lindzey, Laura; Habbal, Feras; Young, Duncan

    2017-04-01

    The ice thickness, subglacial topography and bedrock conditions of Princess Elizabeth Land (PEL) in central East Antarctic Ice Sheet (EAIS) are still unknown due to lack of direct geophysical measurements. This prevents our understanding of the ice sheet dynamics, subglacial morphology and climate evolution in the region. According to recent results from remote sensing results, it's very likely that there's a large, previously undiscovered subglacial lake and subglacial drainage networks existing beneath the ice sheet in PEL with possible subglacial canyons extend over a distance of 1100 km from inland to coast. But there's no direct measurements to identify them yet. China deployed its first fixed-wing airplane named Snow Eagle 601 and implemented airborne geophysical investigation in PEL during the 32nd and 33rd Chinese National Antarctic Research Expeditions (CHINARE 32 and 33, 2015/16 and 2016/17). The HiCARS deep ice-penetrating radar system and other instruments including GT-2A gravimeter, CS-3 magnetometer, laser altimeter, GPS and camera, were installed in the airplane to measure the ice sheet and subglacial conditions, as well as bedrock geology and tectonic. The field campaign was built beside Russian airfield (ZGN) near Zhongshan Station. During CHINARE 32, the airborne surveying grid was designed as radial lines from ZGN so as to investigate the region as large as possible, and total flight lines are 32 000 km. During the CHINARE 33, airborne survey will pay attention to the subglacial lake and subglacal canyons. Here, we introduce the Snow Eagle airborne geophysical platform firstly. Then, we present some preliminary results from CHINARE 32 and CHINARE 33.

  10. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  11. Inter-agency Working Group for Airborne Data and Telemetry Systems (IWGADTS)

    NASA Technical Reports Server (NTRS)

    Webster, Chris; Freudinger, Lawrence; Sorenson, Carl; Myers, Jeff; Sullivan, Don; Oolman, Larry

    2009-01-01

    The Interagency Coordinating Committee for Airborne Geosciences Research and Applications (ICCAGRA) was established to improve cooperation and communication among agencies sponsoring airborne platforms and instruments for research and applications, and to serve as a resource for senior level management on airborne geosciences issues. The Interagency Working Group for Airborne Data and Telecommunications Systems (IWGADTS) is a subgroup to ICCAGRA for the purpose of developing recommendations leading to increased interoperability among airborne platforms and instrument payloads, producing increased synergy among research programs with similar goals, and enabling the suborbital layer of the Global Earth Observing System of Systems.

  12. Cavity detection and delineation research. Part 1: Microgravimetric and magnetic surveys: Medford Cave Site, Florida

    NASA Astrophysics Data System (ADS)

    Butler, D. K.

    1982-03-01

    This report reviews the scope of a research effort initiated in 1974 at the U.S. Army Engineer Waterways Experiment Station with the objectives of (a) assessing the state of the art in geophysical cavity detection and delineation methodology and (b) developing new methods and improving or adapting old methods for application to cavity detection and delineation. Two field test sites were selected: (a) the Medford Cave site with a relatively shallow (10- to 50-ft-deep) air-filled cavity system and (b) the Manatee Springs site with a deeper (approximately 100-ft-deep) water-filled cavity system. Results of field studies at the Medford Cave site are presented in this report: (a) the site geology, (b) the site topographic survey, (c) the site drilling program (boreholes for geophysical tests, for determination of a detailed geological cross section, and for verification of geophysical anomalies), (d) details of magnetic and microgravimetric surveys, and (e) correlation of geophysical results with known site geology. Qualitative interpretation guidelines using complementary geophysical techniques for site investigations in karst regions are presented. Including the results of electrical resistivity surveys conducted at the Medford Cave site, the qualitative guidelines are applied to four profile lines, and drilling locations are indicated on the profile plots of gravity, magnetic, and electrical resistivity data. Borehole logs are then presented for comparison with the predictions of the qualitative interpretation guidelines.

  13. Aeromagnetic data in the UK: a study of the information content of baseline and modern surveys across Anglesey, North Wales

    NASA Astrophysics Data System (ADS)

    Beamish, David; White, James C.

    2011-01-01

    A number of modern, multiparameter, high resolution airborne geophysical surveys (termed HiRES) have been conducted over the past decade across onshore UK. These were undertaken, in part, as a response to the limited resolution of the existing UK national baseline magnetic survey data set acquired in the late 1950s and early 1960s. Modern magnetic survey data, obtained with higher precision and reduced line spacing and elevation, provide an improved data set; however the distinctions between the two available resources, existing and new, are rarely quantified. In this contribution we demonstrate and quantify the improvements that can be anticipated using the new data. The information content of the data sets is examined using a series of modern processing and modelling procedures that provide a full assessment of their resolution capabilities. The framework for the study involves two components. The first relates to the definition of the shallow magnetic structure in relation to an ongoing 1:10 k and 1:50 k geological map revision. The second component relates to the performance of the datasets in defining maps of magnetic basement and assisting with larger scale geological and structural interpretation. One of the smaller HiRES survey areas, the island of Anglesey (Ynys Môn), off the coast of NW Wales is used to provide a series of comparative studies. The geological setting here is both complex and debated and cultural interference is prevalent in the low altitude modern survey data. It is demonstrated that successful processing and interpretation can be carried out on data that have not been systematically corrected (decultured) for non-geological perturbations. Across the survey area a wide number of near-surface magnetic features are evident and are dominated by a reversely magnetized Palaeogene dyke swarm that extends offshore. The average depth to the upper surfaces of the dykes is found to be 44 m. The existing baseline data are necessarily limited in

  14. The exposure assessment of airborne particulates matter (PM10 & PM2.5) towards building occupants: A case study at KL Sentral, Kuala Lumpur, Malaysia

    NASA Astrophysics Data System (ADS)

    Mohddin, S. A.; Aminuddin, N. M.

    2014-02-01

    Airborne particulates have been recognized as a crucial pollutant of indoor air. These pollutants can contribute towards poor indoor air quality (IAQ), which may affect human health in immediate or long term. This study aims to determine the level of IAQ and the effects of particulate towards occupants of office buildings (the office buildings selected for the case study are SSM, KTMB and MRCB at KL Sentral). The objectives of study are (i) to measure the level of airborne particulates that contribute to the IAQ during working hours, (ii) to compare the level of airborne particulates with the existing guidelines and standards of IAQ in Malaysia and other Asian countries and (iii) to assess the symptoms associated with airborne particulates among the building occupants, which were achieved through primary data collection (case study or site survey, structured interview and questionnaire survey) and supported by literature reviews. The results showed that the mass concentration level of airborne particulates within the areas has exceeded the allowable limit of 0.15mg/m3 by IAQ Code of Practice, 2005 of the Department of Safety and Health (DOSH), Malaysia and 0.05mg/m3 by the Department of Environmental (DOE) (outdoor) of 8 hours continuous sampling. Based on the findings, the highest mass concentration values measured is 2.581 mg/m3 at lobby of SSM building which is the highest recorded 17 times higher from the maximum limit recommended by DOSH than the others. This is due to the nearby construction works and the high numbers of particulates are generated from various types of vehicles for transportation surrounding KL Sentral. Therefore, the development of Malaysian Ambient Air Quality Guidelines on PM2.5 as one of the crucial parameters is highly recommended.

  15. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  16. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  17. OPTIMIZING THE PAKS METHOD FOR MEASURING AIRBORNE ACROLEIN

    EPA Science Inventory

    Airborne acrolein is produced from the combustion of fuel and tobacco and is of concern due to its potential for respiratory tract irritation and other adverse health effects. Active sampling with DNPH-coated solid sorbents has been widely used for sampling airborne carbonyls; ...

  18. OPTIMIZING THE PAKS METHOD FOR MEASURING AIRBORNE ACROLEIN

    EPA Science Inventory

    Airborne acrolein is produced from the combustion of fuel and tobacco and is of concern due to its potential for respiratory tract irritation and other adverse health effects. DNPH active-sampling is a method widely used for sampling airborne aldehydes and ketones (carbonyls); ...

  19. Airborne bacteria and fungi associated with waste-handling work.

    PubMed

    Park, Donguk; Ryu, Seunghun; Kim, Shinbum; Byun, Hyaejeong; Yoon, Chungsik; Lee, Kyeongmin

    2013-01-01

    Municipal workers handling household waste are potentially exposed to a variety of toxic and pathogenic substances, in particular airborne bacteria, gram-negative bacteria (GNB), and fungi. However, relatively little is known about the conditions under which exposure is facilitated. This study assessed levels of airborne bacteria, GNB, and fungi, and examined these in relation to the type of waste-handling activity (collection, transfer, transport, and sorting at the waste preprocessing plant), as well as a variety of other environmental and occupational factors. Airborne microorganisms were sampled using an Andersen single-stage sampler equipped with agar plates containing the appropriate nutritional medium and then cultured to determine airborne levels. Samples were taken during collection, transfer, transport, and sorting of household waste. Multiple regression analysis was used to identify environmental and occupational factors that significantly affect airborne microorganism levels during waste-handling activities. The "type of waste-handling activity" was the only factor that significantly affected airborne levels of bacteria and GNB, accounting for 38% (P = 0.029) and 50% (P = 0.0002) of the variation observed in bacteria and GNB levels, respectively. In terms of fungi, the type of waste-handling activity (R2 = 0.76) and whether collection had also occurred on the day prior to sampling (P < 0.0001, R2 = 0.78) explained most of the observed variation. Given that the type of waste-handling activity was significantly correlated with levels of bacteria, GNB, and fungi, we suggest that various engineering, administrative, and regulatory measures should be considered to reduce the occupational exposure to airborne microorganisms in the waste-handling industry.

  20. Airborne radar surveys of snow depth over Antarctic sea ice during Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Panzer, B.; Gomez-Garcia, D.; Leuschen, C.; Paden, J. D.; Gogineni, P. S.

    2012-12-01

    comparison of snow depths with two weeks elapsed between passes. [1] Farrell, S.L., et al., "A First Assessment of IceBridge Snow and Ice Thickness Data Over Arctic Sea Ice," IEEE Tran. Geoscience and Remote Sensing, Vol. 50, No. 6, pp. 2098-2111, June 2012. [2] Kwok, R., and G. F. Cunningham, "ICESat over Arctic sea ice: Estimation of snow depth and ice thickness," J. Geophys. Res., 113, C08010, 2008. [3] Kwok, R., et al., "Airborne surveys of snow depth over Arctic sea ice," J. Geophys. Res., 116, C11018, 2011. [4] Panzer, B., et al., "An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn," Submitted to J. Glaciology, July 23, 2012. [5] Wingham, D.J., et al., "CryoSat: A Mission to Determine the Fluctuations in Earth's Land and Marine Ice Fields," Advances in Space Research, Vol. 37, No. 4, pp. 841-871, 2006. [6] Zwally, H. J., et al., "ICESat's laser measurements of polar ice, atmosphere, ocean, and land," J. Geodynamics, Vol. 34, No. 3-4, pp. 405-445, Oct-Nov 2002. [7] Zwally, H. J., et al., "ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea," J. Geophys. Res., 113, C02S15, 2008.

  1. The magnetic field structure in high-mass star formation regions

    NASA Technical Reports Server (NTRS)

    Davidson, Jacqueline A.; Schleuning, D.; Dotson, J. L.; Dowell, C. Darren; Hildebrand, Roger H.

    1995-01-01

    We present a preliminary analysis of far-IR polarimetric observations, which were made to study the magnetic field structure in the high-mass star formation regions of M42, NGC2024, and W3. These observations were made from the Kuiper Airborne Observatory (KAO), using the University of Chicago far-IR polarimeter, Stokes.

  2. Operation of U.S. Geological Survey unmanned digital magnetic observatories

    USGS Publications Warehouse

    Wilson, L.R.

    1990-01-01

    The precision and continuity of data recorded by unmanned digital magnetic observatories depend on the type of data acquisition equipment used and operating procedures employed. Three generations of observatory systems used by the U.S. Geological Survey are described. A table listing the frequency of component failures in the current observatory system has been compiled for a 54-month period of operation. The cause of component failure was generally mechanical or due to lightning. The average percentage data loss per month for 13 observatories operating a combined total of 637 months was 9%. Frequency distributions of data loss intervals show the highest frequency of occurrence to be intervals of less than 1 h. Installation of the third generation system will begin in 1988. The configuration of the third generation observatory system will eliminate most of the mechanical problems, and its components should be less susceptible to lightning. A quasi-absolute coil-proton system will be added to obtain baseline control for component variation data twice daily. Observatory data, diagnostics, and magnetic activity indices will be collected at 12-min intervals via satellite at Golden, Colorado. An improvement in the quality and continuity of data obtained with the new system is expected. ?? 1990.

  3. Study on analysis from sources of error for Airborne LIDAR

    NASA Astrophysics Data System (ADS)

    Ren, H. C.; Yan, Q.; Liu, Z. J.; Zuo, Z. Q.; Xu, Q. Q.; Li, F. F.; Song, C.

    2016-11-01

    With the advancement of Aerial Photogrammetry, it appears that to obtain geo-spatial information of high spatial and temporal resolution provides a new technical means for Airborne LIDAR measurement techniques, with unique advantages and broad application prospects. Airborne LIDAR is increasingly becoming a new kind of space for earth observation technology, which is mounted by launching platform for aviation, accepting laser pulses to get high-precision, high-density three-dimensional coordinate point cloud data and intensity information. In this paper, we briefly demonstrates Airborne laser radar systems, and that some errors about Airborne LIDAR data sources are analyzed in detail, so the corresponding methods is put forwarded to avoid or eliminate it. Taking into account the practical application of engineering, some recommendations were developed for these designs, which has crucial theoretical and practical significance in Airborne LIDAR data processing fields.

  4. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Airborne Radar Altimeter Equipment... Technical Standard Order (TSO)-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For...

  5. New geological and tectonic map of Paleoproterozoic basement in western Burkina Faso: integrated interpretation of airborne geophysical and field data

    NASA Astrophysics Data System (ADS)

    Metelka, Vaclav; Baratoux, Lenka; Jessell, Mark; Naba, Seta

    2010-05-01

    The recent acquisition of regional scale airborne datasets over most of the West African craton sparked off a number of studies concentrating on their litho-tectonic interpretation. In such polydeformed terrains, where outcrop is very sparse or virtually nonexistent due to the presence of thick lateritic cover, geophysics and specifically geomagnetic surveying provide a wealth of information that facilitates the deciphering of regional litho-structural hierarchies. A revised geological and tectonic map of the Houndé and Boromo greenstone belts was derived by interpretation of aeromagnetic and gamma-ray spectrometric data constrained by field observations where available. Medium resolution geophysical data gridded at 250 meters acquired during the SYSMIN project served as a basis for the interpretation. This dataset was integrated with the SRTM digital elevation model and over 600 field observations. Furthermore, the BRGM/BUMIGEB SYSMIN project outcrops database (Castaing et al., 2003) as well as older outcrop maps, maintained by BUMIGEB, were used. Locally, outcrop maps and high resolution geophysics provided by mining companies (Orezone, SEMAFO, Volta Resources, Wega Mining) were employed. 2-D geophysical inversion modeling in GM-sys software using the ground gravity and airborne magnetic data was applied to three selected E-W profiles. Principal component analysis (PCA) of magnetic and radiometric data was a powerful tool for distinguishing different lithological units, in particular tholeiitic suites of basalts and gabbros and various volcano-sedimentary units. Some of the granite pluton limits can be traced as well using the PCA; however thick lateritic cover substantially hinders precise mapping. Magnetic data used on its own gave better results not only for granite limits but also for determining internal structures such as shear zones and concentric compositional zoning. Several major N-S to NNE-SSW oriented shear zones, representing most probably deep

  6. Reconstructing 3D coastal cliffs from airborne oblique photographs without ground control points

    NASA Astrophysics Data System (ADS)

    Dewez, T. J. B.

    2014-05-01

    Coastal cliff collapse hazard assessment requires measuring cliff face topography at regular intervals. Terrestrial laser scanner techniques have proven useful so far but are expensive to use either through purchasing the equipment or through survey subcontracting. In addition, terrestrial laser surveys take time which is sometimes incompatible with the time during with the beach is accessible at low-tide. By comparison, structure from motion techniques (SFM) are much less costly to implement, and if airborne, acquisition of several kilometers of coastline can be done in a matter of minutes. In this paper, the potential of GPS-tagged oblique airborne photographs and SFM techniques is examined to reconstruct chalk cliff dense 3D point clouds without Ground Control Points (GCP). The focus is put on comparing the relative 3D point of views reconstructed by Visual SFM with their synchronous Solmeta Geotagger Pro2 GPS locations using robust estimators. With a set of 568 oblique photos, shot from the open door of an airplane with a triplet of synchronized Nikon D7000, GPS and SFM-determined view point coordinates converge to X: ±31.5 m; Y: ±39.7 m; Z: ±13.0 m (LE66). Uncertainty in GPS position affects the model scale, angular attitude of the reference frame (the shoreline ends up tilted by 2°) and absolute positioning. Ground Control Points cannot be avoided to orient such models.

  7. SGA-WZ: A New Strapdown Airborne Gravimeter

    PubMed Central

    Huang, Yangming; Olesen, Arne Vestergaard; Wu, Meiping; Zhang, Kaidong

    2012-01-01

    Inertial navigation systems and gravimeters are now routinely used to map the regional gravitational quantities from an aircraft with mGal accuracy and a spatial resolution of a few kilometers. However, airborne gravimeter of this kind is limited by the inaccuracy of the inertial sensor performance, the integrated navigation technique and the kinematic acceleration determination. As the GPS technique developed, the vehicle acceleration determination is no longer the limiting factor in airborne gravity due to the cancellation of the common mode acceleration in differential mode. A new airborne gravimeter taking full advantage of the inertial navigation system is described with improved mechanical design, high precision time synchronization, better thermal control and optimized sensor modeling. Apart from the general usage, the Global Positioning System (GPS) after differentiation is integrated to the inertial navigation system which provides not only more precise altitude information along with the navigation aiding, but also an effective way to calculate the vehicle acceleration. Design description and test results on the performance of the gyroscopes and accelerations will be emphasized. Analysis and discussion of the airborne field test results are also given. PMID:23012545

  8. Characterization of airborne bacteria at an underground subway station.

    PubMed

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per; Blatny, Janet Martha

    2012-03-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization-time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers.

  9. Characterization of Airborne Bacteria at an Underground Subway Station

    PubMed Central

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per

    2012-01-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization–time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers. PMID:22247150

  10. Airborne Microalgae: Insights, Opportunities, and Challenges

    PubMed Central

    Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-01-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  11. Airborne microorganisms associated with grain handling.

    PubMed

    Swan, J R; Crook, B

    1998-01-01

    There is substantial evidence that workers handling grain develop allergic respiratory symptoms. Microbiological contaminants are likely to be a significant contributing factor. Worker's exposure to microorganisms contaminating grain dust in the UK was therefore examined. Aerobiological studies were made when grain was being handled on farms and also during bulk handling of grain in dockside terminals. A quantitative and qualitative microbiological examination of the airborne grain dust was carried out. Samples of airborne grain dust were collected and viable bacteria, fungi and actinomycetes were grown, isolated and identified. It was found that workers handling grain or working close to grain at farms and docks were frequently exposed to more than 1 million bacteria and fungi per m3 air, and that airborne bacteria and fungi exceeded 10(4) per m3 air in all areas sampled. The qualitative examination of the samples showed that the predominant microorganisms present differed between freshly harvested grain and stored grain, but not between different types of grain.

  12. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  13. Inactivation of an enterovirus by airborne disinfectants

    PubMed Central

    2013-01-01

    Background The activity of airborne disinfectants on bacteria, fungi and spores has been reported. However, the issue of the virucidal effect of disinfectants spread by fogging has not been studied thoroughly. Methods A procedure has been developed to determine the virucidal activity of peracetic acid-based airborne disinfectants on a resistant non-enveloped virus poliovirus type 1. This virus was laid on a stainless carrier. The products were spread into the room by hot fogging at 55°C for 30 minutes at a concentration of 7.5 mL.m-3. Poliovirus inoculum, supplemented with 5%, heat inactivated non fat dry organic milk, were applied into the middle of the stainless steel disc and were dried under the air flow of a class II biological safety cabinet at room temperature. The Viral preparations were recovered by using flocked swabs and were titered on Vero cells using the classical Spearman-Kärber CPE reading method, the results were expressed as TCID50.ml-1. Results The infectious titer of dried poliovirus inocula was kept at 105 TCID50.mL-1 up to 150 minutes at room temperature. Dried inocula exposed to airborne peracetic acid containing disinfectants were recovered at 60 and 120 minutes post-exposition and suspended in culture medium again. The cytotoxicity of disinfectant containing medium was eliminated through gel filtration columns. A 4 log reduction of infectious titer of dried poliovirus inocula exposed to peracetic-based airborne disinfectant was obtained. Conclusion This study demonstrates that the virucidal activity of airborne disinfectants can be tested on dried poliovirus. PMID:23587047

  14. The Western Airborne Contaminant Assessment Project (WACAP): An interdisciplinary evaluation of the impacts of airborne contaminants in Western U.S. National Parks

    EPA Science Inventory

    The Western Airborne Contaminants Assessment Project (WACAP) was initiated in 2002 by the National Park Service to determine if airborne contaminants were having an impact on remote western ecosystems. Multiple sample media (snow, water, sediment, fish and terrestrial vegetation...

  15. Geronimo: Planning Considerations for Employing Airborne Forces

    DTIC Science & Technology

    2017-05-25

    Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that... operation , a planner must adhere to joint planning considerations and understand the Air Force and Army requirements. Today the Army maintains only...one brigade and two battalions of deployable conventional airborne combat power. The special operations community also is airborne capable, and the

  16. Airborne Network Optimization with Dynamic Network Update

    DTIC Science & Technology

    2015-03-26

    Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University...Member Dr. Barry E. Mullins Member AFIT-ENG-MS-15-M-030 Abstract Modern networks employ congestion and routing management algorithms that can perform...airborne networks. Intelligent agents can make use of Kalman filter predictions to make informed decisions to manage communication in airborne networks. The

  17. [Development of a microenvironment test chamber for airborne microbe research].

    PubMed

    Zhan, Ningbo; Chen, Feng; Du, Yaohua; Cheng, Zhi; Li, Chenyu; Wu, Jinlong; Wu, Taihu

    2017-10-01

    One of the most important environmental cleanliness indicators is airborne microbe. However, the particularity of clean operating environment and controlled experimental environment often leads to the limitation of the airborne microbe research. This paper designed and implemented a microenvironment test chamber for airborne microbe research in normal test conditions. Numerical simulation by Fluent showed that airborne microbes were evenly dispersed in the upper part of test chamber, and had a bottom-up concentration growth distribution. According to the simulation results, the verification experiment was carried out by selecting 5 sampling points in different space positions in the test chamber. Experimental results showed that average particle concentrations of all sampling points reached 10 7 counts/m 3 after 5 minutes' distributing of Staphylococcus aureus , and all sampling points showed the accordant mapping of concentration distribution. The concentration of airborne microbe in the upper chamber was slightly higher than that in the middle chamber, and that was also slightly higher than that in the bottom chamber. It is consistent with the results of numerical simulation, and it proves that the system can be well used for airborne microbe research.

  18. 47 CFR 22.925 - Prohibition on airborne operation of cellular telephones.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Prohibition on airborne operation of cellular... CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.925 Prohibition on airborne... any other type of aircraft must not be operated while such aircraft are airborne (not touching the...

  19. Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J. (Inventor); Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.

  20. Urban greenness influences airborne bacterial community composition.

    PubMed

    Mhuireach, Gwynne; Johnson, Bart R; Altrichter, Adam E; Ladau, Joshua; Meadow, James F; Pollard, Katherine S; Green, Jessica L

    2016-11-15

    Urban green space provides health benefits for city dwellers, and new evidence suggests that microorganisms associated with soil and vegetation could play a role. While airborne microorganisms are ubiquitous in urban areas, the influence of nearby vegetation on airborne microbial communities remains poorly understood. We examined airborne microbial communities in parks and parking lots in Eugene, Oregon, using high-throughput sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq platform to identify bacterial taxa, and GIS to measure vegetation cover in buffer zones of different diameters. Our goal was to explore variation among highly vegetated (parks) versus non-vegetated (parking lots) urban environments. A secondary objective was to evaluate passive versus active collection methods for outdoor airborne microbial sampling. Airborne bacterial communities from five parks were different from those of five parking lots (p=0.023), although alpha diversity was similar. Direct gradient analysis showed that the proportion of vegetated area within a 50m radius of the sampling station explained 15% of the variation in bacterial community composition. A number of key taxa, including several Acidobacteriaceae were substantially more abundant in parks, while parking lots had higher relative abundance of Acetobacteraceae. Parks had greater beta diversity than parking lots, i.e. individual parks were characterized by unique bacterial signatures, whereas parking lot communities tended to be similar to each other. Although parks and parking lots were selected to form pairs of nearby sites, spatial proximity did not appear to affect compositional similarity. Our results also showed that passive and active collection methods gave comparable results, indicating the "settling dish" method is effective for outdoor airborne sampling. This work sets a foundation for understanding how urban vegetation may impact microbial communities, with potential implications for designing

  1. A survey of natural aggregate properties and characteristics important in remote sensing and airborne geophysics

    USGS Publications Warehouse

    Knepper, D.H.; Langer, W.H.; Miller, S.

    1995-01-01

    Natural aggregate is vital to the construction industry. Although natural aggregate is a high volume/low value commodity that is abundant, new sources are becoming increasingly difficult to find and develop because of rigid industry specifications, political considerations, development and transportation costs, and environmental concerns. There are two primary sources of natural aggregate: (1) exposed or near-surface bedrock that can be crushed, and (2) deposits of sand and gravel. Remote sensing and airborne geophysics detect surface and near-surface phenomena, and may be useful for detecting and mapping potential aggregate sources; however, before a methodology for applying these techniques can be developed, it is necessary to understand the type, distribution, physical properties, and characteristics of natural aggregate deposits. The distribution of potential aggregate sources is closely tied to local geologic history. Conventional exploration for natural aggregate deposits has been largely a ground-based operation, although aerial photographs and topographic maps have been extensively used to target possible deposits. Today, the exploration process also considers factors such as the availability of the land, space and water supply for processing, political and environmental factors, and distance from the market; exploration and planning cannot be separated. There are many physical properties and characteristics by which to judge aggregate material for specific applications; most of these properties and characteristics pertain only to individual aggregate particles. The application of remote sensing and airborne geophysical measurements to detecting and mapping potential aggregate sources, however, is based on intrinsic bulk physical properties and extrinsic characteristics of the deposits that can be directly measured, mathematically derived from measurement, or interpreted with remote sensing and geophysical data. ?? 1995 Oxford UniversityPress.

  2. A resonance-free nano-film airborne ultrasound emitter

    NASA Astrophysics Data System (ADS)

    Daschewski, Maxim; Harrer, Andrea; Prager, Jens; Kreutzbruck, Marc; Beck, Uwe; Lange, Thorid; Weise, Matthias

    2013-01-01

    In this contribution we present a novel thermo-acoustic approach for the generation of broad band airborne ultrasound and investigate the applicability of resonance-free thermo-acoustic emitters for very short high pressure airborne ultrasound pulses. We report on measurements of thermo-acoustic emitter consisting of a 30 nm thin metallic film on a usual soda-lime glass substrate, generating sound pressure values of more than 140 dB at 60 mm distance from the transducer and compare the results with conventional piezoelectric airborne ultrasound transducers. Our experimental investigations show that such thermo-acoustic devices can be used as broad band emitters using pulse excitation.

  3. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  4. Integrated Airborne and In-Situ Measurements over Land-Fast Ice near Barrow, AK

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Vermillion, M.; Ball, D.; Stoudt, C. A.; Geiger, C. A.; Woods, J. E.; Samluk, J.; Deliberty, T. L.

    2013-12-01

    During March of 2013, the Naval Research Laboratory, the University of Delaware and the US Naval Academy collected an integrated set of measurements over the largely floating, but land-fast ice near the coast of Barrow, AK. The purpose of the collection was to compare airborne remote sensing methods of collection to in-situ ground-truth measurements. Airborne measurements include scanning LiDAR (Riegl Q 680i), digital photogrammetry (Applanix DSS-439) and a short-pulse (~ 1 nsec) 10 GHz radar altimeter. The LiDAR measures total freeboard (ice + snow) referenced to leads in the ice. The radar measures approximate ice freeboard with the difference with the LiDAR providing an estimate of snow thickness. The freeboard measurements are aimed at estimating ice thickness via estimates of densities and isostasy. The photogrammetry was used to measure ice motion over free-floating sea-ice, but provided only a velocity calibration and general situational awareness over the land-fast ice. Ground measurements were collected along a transect, and included boreholes, snow-thickness (Magnaprobe), and ice thickness (EM31). Airborne data were collected on six overflights of this transect over a three week period. LiDAR swath widths ranged from 200-300m (depending on altitude) and encompassed three grounded ridges which remained essentially stationary over the collection period, that together with the shoreline, provided fixed reference points to compare the heights of the floating ice that varied with the tide (and to some extent the snow conditions). Sampling size or 'footprint' plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Boreholes are point measurements and are difficult enough to obtain, that only a limited number are practical during a survey period. EM31 and Magnaprobe instrumentation allows collection of snow and ice thickness along one-dimensional profiles, and several adjacent profiles can be collected to

  5. [Studies on the size distribution of airborne microbes at home in Beijing].

    PubMed

    Fang, Zhi-Guo; Sun, Ping; Ouyang, Zhi-Yun; Liu, Peng; Sun, Li; Wang, Xiao-Yong

    2013-07-01

    The effect of airborne microbes on human health not only depends on their compositions (genera and species), but also on their concentrations and sizes. Moreover, there are different mechanisms of airborne microbes of different sizes with different effects on human health. The size distributions and median diameters were investigated in detail with imitated six-stage Andersen sampler in 31 selected family homes with children in Beijing. Results showed that there was similar distribution characteristics of airborne microbes in different home environment, different season, different child's sex, and different apartment's architecture, but different distribution characteristics between airborne bacteria and fungi were observed in family homes in Beijing. In general, although airborne bacteria and fungi were plotted with normal logarithmic distribution, the particle percentage of airborne bacteria increased gradually from stage 1 (> 8.2 microm) to stage 5 (1.0-2.0 microm), and then decreased dramatically in stage 6 (< 1.0 microm), the percentage of airborne fungi increased gradually from stage 1 to stage 4 (2.0-3.5 microm), and then decreased dramatically from stage 4 to stage 6. The size distributions of dominant fungi were different in different fungal genera. Cladosporium, Penicillium and Aspergillus were recorded with normal logarithmic distribution, with the highest percentage detected in stage 4, and Alternaria were observed with skew distribution, with the highest percentage detected in stage 2 (5.0-10.4 microm). Finally, the median diameters of airborne bacteria were larger than those of airborne fungi, and the lowest median diameter of airborne bacteria and fungi was found in winter, while there were no significant variations of airborne bacterial and fungal median diameters in spring, summer and autumn in a year in this study.

  6. NASA Langley Airborne High Spectral Resolution Lidar Instrument Description

    NASA Technical Reports Server (NTRS)

    Harper, David B.; Cook, Anthony; Hostetler, Chris; Hair, John W.; Mack, Terry L.

    2006-01-01

    NASA Langley Research Center (LaRC) recently developed the LaRC Airborne High Spectral Resolution Lidar (HSRL) to make measurements of aerosol and cloud distribution and optical properties. The Airborne HSRL has undergone as series of test flights and was successfully deployed on the Megacity Initiative: Local and Global Research Observations (MILAGRO) field mission in March 2006 (see Hair et al. in these proceedings). This paper provides an overview of the design of the Airborne HSRL and descriptions of some key subsystems unique to this instrument.

  7. A Decade of High-Resolution Arctic Sea Ice Measurements from Airborne Altimetry

    NASA Astrophysics Data System (ADS)

    Duncan, K.; Farrell, S. L.; Connor, L. N.; Jackson, C.; Richter-Menge, J.

    2017-12-01

    Satellite altimeters carried on board ERS-1,-2, EnviSat, ICESat, CryoSat-2, AltiKa and Sentinel-3 have transformed our ability to map the thickness and volume of the polar sea ice cover, on seasonal and decadal time-scales. The era of polar satellite altimetry has coincided with a rapid decline of the Arctic ice cover, which has thinned, and transitioned from a predominantly multi-year to first-year ice cover. In conjunction with basin-scale satellite altimeter observations, airborne surveys of the Arctic Ocean at the end of winter are now routine. These surveys have been targeted to monitor regions of rapid change, and are designed to obtain the full snow and ice thickness distribution, across a range of ice types. Sensors routinely deployed as part of NASA's Operation IceBridge (OIB) campaigns include the Airborne Topographic Mapper (ATM) laser altimeter, the frequency-modulated continuous-wave snow radar, and the Digital Mapping System (DMS). Airborne measurements yield high-resolution data products and thus present a unique opportunity to assess the quality and characteristics of the satellite observations. We present a suite of sea ice data products that describe the snow depth and thickness of the Arctic ice cover during the last decade. Fields were derived from OIB measurements collected between 2009-2017, and from reprocessed data collected during ad-hoc sea ice campaigns prior to OIB. Our bespoke algorithms are designed to accommodate the heterogeneous sea ice surface topography, that varies at short spatial scales. We assess regional and inter-annual variability in the sea ice thickness distribution. Results are compared to satellite-derived ice thickness fields to highlight the sensitivities of satellite footprints to the tails of the thickness distribution. We also show changes in the dynamic forcing shaping the ice pack over the last eight years through an analysis of pressure-ridge sail-height distributions and surface roughness conditions

  8. The Milky Way Magnetic Field Mapping Mission: M4

    NASA Astrophysics Data System (ADS)

    Clemens, D. P.; Bookbinder, J.; Goodman, A.; Kristen, H.; Myers, P.; Padoan, P.; Wood, K.; Heyer, M. H.; Heiles, C.; Jones, T. J.; Dickey, J.; Young, E.; Rieke, G.; Dow, K.; Dowell, C. D.; Draine, B.; Greaves, J.; Klaas, U.; Laureijs, R.; Lazarian, A.; Shulz, B.; Zweibel, E.

    2000-05-01

    M4 has been proposed this year as a potential new SMEX mission. The central goal of the mission is to measure magnetic field orientations in the interstellar medium of the Milky Way Galaxy to assess the importance of the field in star formation and other physical processes. The measurement technique is far-infrared imaging linear polarimetry, which has been extensively proven from both the Kuiper Airborne Observatory and the recent Infrared Space Observatory. M4 will conduct the first extensive surveys of magnetic field orientations, spanning 1400 square degrees of the dense interstellar medium of the inner Milky Way, 300 square degrees of nearby star-forming dark molecular clouds, and 330 square degrees away from the Galactic plane, chosen to cover regions with infrared cirrus. The M4 instrument consists of a 20 cm cooled telescope, far-infrared light polarization analysis optics, and two 32x32 focal plane array detectors operating around 100 microns wavelength. The M4 spacecraft is a 3-axis stablized pointing platform. The nominal launch date is 1 March 2004. The Pegasus XL is the baseline launch vehicle. The flight portion will span 3-4 months, in a 500 km, Sun-sync orbit. Data will be released in two stages: 6 months and 12 months after the end of the flight portion of the project.

  9. Characteristics of airborne bacteria in Mumbai urban environment.

    PubMed

    Gangamma, S

    2014-08-01

    Components of biological origin constitute small but a significant proportion of the ambient airborne particulate matter (PM). However, their diversity and role in proinflammatory responses of PM are not well understood. The present study characterizes airborne bacterial species diversity in Mumbai City and elucidates the role of bacterial endotoxin in PM induced proinflammatory response in ex vivo. Airborne bacteria and endotoxin samples were collected during April-May 2010 in Mumbai using six stage microbial impactor and biosampler. The culturable bacterial species concentration was measured and factors influencing the composition were identified by principal component analysis (PCA). The biosampler samples were used to stimulate immune cells in whole blood assay. A total of 28 species belonging to 17 genera were identified. Gram positive and spore forming groups of bacteria dominated the airborne culturable bacterial concentration. The study indicated the dominance of spore forming and human or animal flora derived pathogenic/opportunistic bacteria in the ambient air environment. Pathogenic and opportunistic species of bacteria were also present in the samples. TNF-α induction by PM was reduced (35%) by polymyxin B pretreatment and this result was corroborated with the results of blocking endotoxin receptor cluster differentiation (CD14). The study highlights the importance of airborne biological particles and suggests need of further studies on biological characterization of ambient PM. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Resolving bathymetry from airborne gravity along Greenland fjords

    USGS Publications Warehouse

    Boghosian, Alexandra; Tinto, Kirsty; Cochran, James R.; Porter, David; Elieff, Stefan; Burton, Bethany L.; Bell, Robin E.

    2015-01-01

    Recent glacier mass loss in Greenland has been attributed to encroaching warming waters, but knowledge of fjord bathymetry is required to investigate this mechanism. The bathymetry in many Greenland fjords is unmapped and difficult to measure. From 2010 to 2012, National Aeronautics and Space Administration's Operation IceBridge collected a unique set of airborne gravity, magnetic, radar, and lidar data along the major outlet glaciers and fjords in Greenland. We applied a consistent technique using the IceBridge gravity data to create 90 bathymetric profiles along 54 Greenland fjords. We also used this technique to recover subice topography where warm or crevassed ice prevents the radar system from imaging the bed. Here we discuss our methodology, basic assumptions and error analysis. We present the new bathymetry data and discuss observations in six major regions of Greenland covered by IceBridge. The gravity models provide a total of 1950 line kilometers of bathymetry, 875 line kilometers of subice topography, and 12 new grounding line depths.

  11. Deep-tow magnetic survey above large exhumed mantle domains of the eastern Southwest Indian ridge

    NASA Astrophysics Data System (ADS)

    Bronner, A.; Munschy, M.; Carlut, J. H.; Searle, R. C.; Sauter, D.; Cannat, M.

    2011-12-01

    The recent discovery of a new type of seafloor, the "smooth seafloor", formed with no or very little volcanic activity along the ultra-slow spreading Southwest Indian ridge (SWIR) shows an unexpected complexity in processes of generation of the oceanic lithosphere. There, detachment faulting is thought to be a mechanism for efficient exhumation of deep-seated mantle rocks. We present here a deep-tow geological-geophysical survey over smooth seafloor at the eastern SWIR (62-64°N) combining magnetic data, geology mapping from side-scan sonar images and results from dredge sampling. We introduce a new type of calibration approach for deep-tow fluxgate magnetometer. We show that magnetic data can be corrected from the magnetic effect of the vehicle with no recourse to its attitude (pitch, roll and heading) but only using the 3 components recorded by the magnetometer and an approximation of the scalar intensity of the Earth magnetic field. The collected dredge samples as well as the side-scan images confirm the presence of large areas of exhumed mantle-derived peridodites surrounded by a few volcanic constructions. This allows us to hypothesis that magnetic anomalies are caused by serpentinized peridotites or magmatic intrusions. We show that the magnetic signature of the smooth seafloor is clearly weaker than the surrounding volcanic areas. Moreover, the calculated magnetization of a source layer as well as the comparison between deep-tow and sea-surface magnetic data argue for strong East-West variability in the distribution of the magnetized sources. This variability may results from fluid-rocks interaction along the detachment faults as well as from the repartition of the volcanic material and thus questions the seafloor spreading origin of the corresponding magnetic anomalies. Finally, we provide magnetic arguments, as calculation of block rotation or spreading asymmetry in order to better constrain tectonic mechanisms that occur during the formation of this

  12. [Carbon sources metabolic characteristics of airborne microbial communities in constructed wetlands].

    PubMed

    Song, Zhi-Wen; Wang, Lin; Xu, Ai-Ling; Wu, Deng-Deng; Xia, Yan

    2015-02-01

    Using BIOLOG-GN plates, this article describes the carbon sources metabolic characteristics of airborne microbial communities in a free surface-flow constructed wetland in different seasons and clarify the correlation between airborne microbial metabolic functions and environmental factors. The average well color development (AWCD), carbon metabolic profiles and McIntosh values of airborne microbial communities in different seasons were quite different. Analysis of the variations showed that AWCD in spring and summer differed significantly from that in autumn and winter (P < 0.01). In the same season, the degree of utilization of different types of carbon by airborne microbes was different. Summer had a significant difference from other seasons (P < 0.05). Dominant communities of airborne microbes in four seasons were carboxylic acids metabolic community, carbohydrates metabolic community, polymers metabolic community and carboxylic acids metabolic community respectively. Principal component analysis showed that the carbon metabolic characteristics of airborne microbial community in autumn were similar to those in winter but different from those in spring and summer. The characteristics of carbon metabolism revealed differences between summer and spring, autumn, or winter. These differences were mainly caused by amines or amides while the differences between spring and autumn or winter were mainly caused by carboxylic acids. Environmental factors, including changes in wind speed, temperature, and humidity acted to influence the carbon sources metabolic properties of airborne microbial community. The dominant environmental factors that acted to influence the carbon sources metabolic properties of airborne microbial community varied between different seasons.

  13. Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes

    USGS Publications Warehouse

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.; Takekawa, John Y.

    2016-01-01

    Airborne light detection and ranging (lidar) is a valuable tool for collecting large amounts of elevation data across large areas; however, the limited ability to penetrate dense vegetation with lidar hinders its usefulness for measuring tidal marsh platforms. Methods to correct lidar elevation data are available, but a reliable method that requires limited field work and maintains spatial resolution is lacking. We present a novel method, the Lidar Elevation Adjustment with NDVI (LEAN), to correct lidar digital elevation models (DEMs) with vegetation indices from readily available multispectral airborne imagery (NAIP) and RTK-GPS surveys. Using 17 study sites along the Pacific coast of the U.S., we achieved an average root mean squared error (RMSE) of 0.072 m, with a 40–75% improvement in accuracy from the lidar bare earth DEM. Results from our method compared favorably with results from three other methods (minimum-bin gridding, mean error correction, and vegetation correction factors), and a power analysis applying our extensive RTK-GPS dataset showed that on average 118 points were necessary to calibrate a site-specific correction model for tidal marshes along the Pacific coast. By using available imagery and with minimal field surveys, we showed that lidar-derived DEMs can be adjusted for greater accuracy while maintaining high (1 m) resolution.

  14. An approach to evaluating reactive airborne wind shear systems

    NASA Technical Reports Server (NTRS)

    Gibson, Joseph P., Jr.

    1992-01-01

    An approach to evaluating reactive airborne windshear detection systems was developed to support a deployment study for future FAA ground-based windshear detection systems. The deployment study methodology assesses potential future safety enhancements beyond planned capabilities. The reactive airborne systems will be an integral part of planned windshear safety enhancements. The approach to evaluating reactive airborne systems involves separate analyses for both landing and take-off scenario. The analysis estimates the probability of effective warning considering several factors including NASA energy height loss characteristics, reactive alert timing, and a probability distribution for microburst strength.

  15. Shipboard surveys track magnetic sources in marine sediments--geophysical studies of the Stono and North Edisto Inlets near Charleston, South Carolina

    USGS Publications Warehouse

    Shah, Anjana K.; Harris, M. Scott

    2012-01-01

    Magnetic field data are traditionally used to analyze igneous and metamorphic rocks, but recent efforts have shown that magnetic sources within sediments may be detectable, suggesting new applications for high-resolution magnetic field surveys. Candidates for sedimentary sources include heavy mineral sand concentrations rich in magnetite or hematite, alteration-induced glauconite, or biogenic magnetite. Magnetic field surveys can be used to map the distributions of such sources with much denser and more widespread coverage than possible by sampling. These data can then provide constraints on the composition history of local sediments. Mapping such sediments requires the sensor to be relatively close to the source, and filtering approaches may be needed to distinguish signals from both system noise and deeper basement features. Marine geophysical surveys conducted in July, 2010, over the Stono and North Edisto River inlets and their riverine inputs south of Charleston, South Carolina, showed 10- to 40-m-wide, 1- to 6-nT magnetic anomalies associated with shallow, sand-covered seabed. These anomalies are distinct from system noise but are too narrow to represent basement features. The anomalies are present mostly in shallow areas where river sediments originating from upland areas enter the inlets. Surface grab samples from the North Edisto River contain trace amounts of heavy mineral sediments including hematite, maghemite, ilmenite, and magnetite, as well as garnet, epidote, zircon, and rutile. Previous stream sediment analyses show enhanced titanium over much of the Atlantic Coastal Plain. The combined data suggest that the anomalies are generated by titanium- and iron-rich heavy mineral sands ultimately originating from the Piedmont and Blue Ridge provinces, which are then reworked and concentrated by tidal currents.

  16. Airborne sound transmission loss characteristics of woodframe construction

    Treesearch

    Fred F. Rudder

    1985-01-01

    This report summarizes the available data on the airborne sound transmission loss properties of wood-frame construction and evaluates the methods for predicting the airborne sound transmission loss. The first part of the report comprises a summary of sound transmission loss data for wood-frame interior walls and floor-ceiling construction. Data bases describing the...

  17. Airborne particles released by crushing CNT composites

    NASA Astrophysics Data System (ADS)

    Ogura, I.; Okayama, C.; Kotake, M.; Ata, S.; Matsui, Y.; Gotoh, K.

    2017-06-01

    We investigated airborne particles released as a result of crushing carbon nanotube (CNT) composites using a laboratory scale crusher with rotor blades. For each crushing test, five pellets (approximately 0.1 g) of a polymer (polystyrene, polyamide, or polycarbonate) containing multiwall CNTs (Nanocyl NC7000 or CNano Flotube9000) or no CNTs were placed in the container of the crusher. The airborne particles released by the crushing of the samples were measured. The real-time aerosol measurements showed increases in the concentration of nanometer- and micrometer-sized particles, regardless of the sample type, even when CNT-free polymers were crushed. The masses of the airborne particles collected on filters were below the detection limit, which indicated that the mass ratios of the airborne particles to the crushed pellets were lower than 0.02%. In the electron microscopic analysis, particles with protruding CNTs were observed. However, free-standing CNTs were not found, except for a poorly dispersed CNT-polystyrene composite. This study demonstrated that the crushing test using a laboratory scale crusher is capable of evaluating the potential release of CNTs as a result of crushing CNT composites. The advantage of this method is that only a small amount of sample (several pieces of pellets) is required.

  18. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  19. Flying Fast and High: Operational Flight Planning for Maximum Data Return for Airborne Snow Observatory Mountain Surveys

    NASA Astrophysics Data System (ADS)

    Berisford, D. F.; Painter, T. H.; Richardson, M.; Wallach, A.; Deems, J. S.; Bormann, K. J.

    2017-12-01

    The Airborne Snow Observatory (ASO - http://aso.jpl.nasa.gov) uses an airborne laser scanner to map snow depth, and imaging spectroscopy to map snow albedo in order to estimate snow water equivalent and melt rate over mountainous, hydrologic basin-scale areas. Optimization of planned flight lines requires the balancing of many competing factors, including flying altitude and speed, bank angle limitation, laser pulse rate and power level, flightline orientation relative to terrain, surface optical properties, and data output requirements. These variables generally distill down to cost vs. higher resolution data. The large terrain elevation variation encountered in mountainous terrain introduces the challenge of narrow swath widths over the ridgetops, which drive tight flightline spacing and possible dropouts over the valleys due to maximum laser range. Many of the basins flown by ASO exceed 3,000m of elevation relief, exacerbating this problem. Additionally, sun angle may drive flightline orientations for higher-quality spectrometer data, which may change depending on time of day. Here we present data from several ASO missions, both operational and experimental, showing the lidar performance and accuracy limitations for a variety of operating parameters. We also discuss flightline planning strategies to maximize data density return per dollar, and a brief analysis on the effect of short turn times/steep bank angles on GPS position accuracy.

  20. Airborne remote sensing for geology and the environment; present and future

    USGS Publications Warehouse

    Watson, Ken; Knepper, Daniel H.

    1994-01-01

    In 1988, a group of leading experts from government, academia, and industry attended a workshop on airborne remote sensing sponsored by the U.S. Geological Survey (USGS) and hosted by the Branch of Geophysics. The purpose of the workshop was to examine the scientific rationale for airborne remote sensing in support of government earth science in the next decade. This report has arranged the six resulting working-group reports under two main headings: (1) Geologic Remote Sensing, for the reports on geologic mapping, mineral resources, and fossil fuels and geothermal resources; and (2) Environmental Remote Sensing, for the reports on environmental geology, geologic hazards, and water resources. The intent of the workshop was to provide an evaluation of demonstrated capabilities, their direct extensions, and possible future applications, and this was the organizational format used for the geologic remote sensing reports. The working groups in environmental remote sensing chose to present their reports in a somewhat modified version of this format. A final section examines future advances and limitations in the field. There is a large, complex, and often bewildering array of remote sensing data available. Early remote sensing studies were based on data collected from airborne platforms. Much of that technology was later extended to satellites. The original 80-m-resolution Landsat Multispectral Scanner System (MSS) has now been largely superseded by the 30-m-resolution Thematic Mapper (TM) system that has additional spectral channels. The French satellite SPOT provides higher spatial resolution for channels equivalent to MSS. Low-resolution (1 km) data are available from the National Oceanographic and Atmospheric Administration's AVHRR system, which acquires reflectance and day and night thermal data daily. Several experimental satellites have acquired limited data, and there are extensive plans for future satellites including those of Japan (JERS), Europe (ESA), Canada

  1. UAVSAR: An Airborne Window on Earth Surface Deformation

    NASA Technical Reports Server (NTRS)

    Hensley, Scott

    2011-01-01

    This study demonstrates that UAVSAR's precision autopilot and electronic steering have allowed for the reliable collection of airborne repeat pass radar interferometric data for deformation mapping. Deformation maps from temporal scales ranging from hours to months over a variety of signals of geophysical interest illustrate the utility of UAVSAR airborne repeat pass interferometry to these studies.

  2. Aerial gamma ray and magnetic survey: Powder River R and D Project. Portions of the: Forsyth and Hardin, Montana, and the Sheridan, Arminto, Newcastle, and Gillette, Wyoming Quadrangles. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-05-01

    During the months of August through September, 1978, geoMetrics, Inc. flew approximately 1520 line miles of high sensitivity airborne radiometric and magnetic data in Wyoming and southern Montana within four 1/sup 0/ x 2/sup 0/ NTMS quadrangles (Arminto, Sheridan, Hardin and Forsyth), and 1390 lines miles in the detail area in eastern Wyoming, as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as three volumes (one Volume I and two Volume II's) in this report. The survey area lies largely within themore » northern Great Plains Physiographic Province. The deep Powder River Basin is the dominant structure in the area. Portions of the Casper Arch, Big Horn Uplift, and Porcupine Dome fall within the western limits of the area. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Epigenetic uranium deposits lie primarily in the Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 62 groups of statistical values for the R and D area and 127 for the Arminto Detail in the uranium window meet the criteria for valid anomalies and are discussed in their respective interpretation sections. Most anomalies lie in the Tertiary sediments of the Powder River Basin. Some of the anomalies in the Arminto Detail are clearly related to mines or prospects.« less

  3. Comparisons of Airborne HSRL and Modeled Aerosol Profiles

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Ismail, S.; Rogers, R. R.; Notari, A.; Berkoff, T.; Butler, C. F.; Collins, J. E., Jr.; Fenn, M. A.; Scarino, A. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Fast, J. D.; Berg, L. K.; Randles, C. A.; Colarco, P. R.; daSilva, A.

    2014-12-01

    Aerosol profiles derived from a regional and a global model are compared with aerosol profiles acquired by NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidars (HSRLs) during recent field missions. We compare simulated aerosol profiles obtained from the WRF-Chem regional model with those measured by the airborne HSRL-2 instrument over the Atlantic Ocean east of Cape Cod in July 2012 during the Department of Energy Two-Column Aerosol Project (TCAP). While deployed on the LaRC King Air during TCAP, HSRL-2 acquired profiles of aerosol extinction at 355 and 532 nm, as well as aerosol backscatter and depolarization at 355, 532, and 1064 nm. Additional HSRL-2 data products include profiles of aerosol type, mixed layer depth, and aerosol microphysical parameters (e.g. effective radius, concentration). The HSRL-2 and WRF-Chem aerosol profiles are compared along the aircraft flight tracks. HSRL-2 profiles acquired during the NASA Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission over Houston during September 2013 are compared with the NASA Goddard Earth Observing System global model, version 5 (GEOS-5) profiles. In addition to comparing backscatter and extinction profiles, the fraction of aerosol extinction and optical thickness from various aerosol species from GEOS-5 are compared with aerosol extinction and optical thickness contributed by aerosol types derived from HSRL-2 data. We also compare aerosol profiles modeled by GEOS-5 with those measured by the airborne LaRC DIAL/HSRL instrument during August and September 2013 when it was deployed on the NASA DC-8 for the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) mission. DIAL/HSRL measured extinction (532 nm), backscatter (532 and 1064 nm), and depolarization profiles (532 and 1064 nm) in both nadir and zenith directions during long transects over the

  4. Evaluation of Instruction Using the Conceptual Survey of Electricity and Magnetism in Mexico

    NASA Astrophysics Data System (ADS)

    Zavala, Genaro; Alarcon, Hugo

    2008-10-01

    A modified version of the Conceptual Survey of Electricity and Magnetism (CSEM) is regularly administered to students at the beginning of the semester as a pretest and at the end of the semester as a post-test in a large private university in Mexico. About 500 students each semester, from different engineering majors, take electricity and magnetism in the introductory level, divided into sections of 30-40 students so there are several different instructors, both full-time and part-time. We report on the analysis of the CSEM data using concentration analysis for the purpose of evaluation of instruction. The results showed that students' learning varies with respect to instructor and to CSEM concept area. Students have large learning gains in some concept areas but small learning gains in others. Deeper analysis of a concept area showed that some instructors may tend to strengthen some misconceptions that students have. The analysis can be used to give feedback to instructors for the purpose of improving instruction.

  5. Forest tree species clssification based on airborne hyper-spectral imagery

    NASA Astrophysics Data System (ADS)

    Dian, Yuanyong; Li, Zengyuan; Pang, Yong

    2013-10-01

    Forest precision classification products were the basic data for surveying of forest resource, updating forest subplot information, logging and design of forest. However, due to the diversity of stand structure, complexity of the forest growth environment, it's difficult to discriminate forest tree species using multi-spectral image. The airborne hyperspectral images can achieve the high spatial and spectral resolution imagery of forest canopy, so it will good for tree species level classification. The aim of this paper was to test the effective of combining spatial and spectral features in airborne hyper-spectral image classification. The CASI hyper spectral image data were acquired from Liangshui natural reserves area. Firstly, we use the MNF (minimum noise fraction) transform method for to reduce the hyperspectral image dimensionality and highlighting variation. And secondly, we use the grey level co-occurrence matrix (GLCM) to extract the texture features of forest tree canopy from the hyper-spectral image, and thirdly we fused the texture and the spectral features of forest canopy to classify the trees species using support vector machine (SVM) with different kernel functions. The results showed that when using the SVM classifier, MNF and texture-based features combined with linear kernel function can achieve the best overall accuracy which was 85.92%. It was also confirm that combine the spatial and spectral information can improve the accuracy of tree species classification.

  6. MEDUSA: an airborne multispectral oil spill detection and characterization system

    NASA Astrophysics Data System (ADS)

    Wagner, Peter; Hengstermann, Theo; Zielinski, Oliver

    2000-12-01

    MEDUSA is a sensor network, consisting of and effectively combining a variety of different remote sensing instruments. Installed in 1998 it is operationally used in a maritime surveillance aircraft maintained by the German Ministry of Transport, Building and Housing. On one hand routine oil pollution monitoring with remote sensing equipment like Side Looking Airborne Radar (SLAR), Infrared/Ultraviolet Line Scanner (IR/UV line scanner), Microwave Radiometer (MWR), Imaging Airborne Laserfluorosensor (IALFS) and Forward Looking Infrared (FLIR) requires a complex network and communication structure to be operated by a single operator. On the other hand the operation of such a variety of sensors on board of one aircraft provides an excellent opportunity to establish new concepts of integrated sensor fusion and data evaluation. In this work a general survey of the German surveillance aircraft instrumentation is given and major features of the sensor package as well as advantages of the design and architecture are presented. Results from routine operation over North and Baltic Sea are shown to illustrate the successful application of MEDUSA in maritime patrol of oil slicks and polluters. Recently the combination of the different sensor results towards one multispectral information has met with increasing interest. Thus new application fields and parameter sets could be derived, like oceanography or river flood management. The basic concepts and first results in the fusion of sensoric information will conclude the paper.

  7. Airborne Next: Rethinking Airborne Organization and Applying New Concepts

    DTIC Science & Technology

    2015-06-01

    9 Kenneth Macksey, Guderian: Panzer General-revised EDITION (South Yorkshire, England: Greenhill Books, 2003), 1–20. 10 Dr. John Arquilla...Airborne Operations: Field Manual 90=26, 1–5. 14 The 1st Special Forces Regiment has five active Special Forces Groups (1st, 3rd, 5th , 7th, 10th...Oxford University Press, 1981). Headrick, in his book, describes the interplay between technology and imperialism. For the purposes of this research

  8. Detection of hidden mineral deposits by airborne spectral analysis of forest canopies. [Spirit Lake, Washington; Catheart Mountain, Maine; Blacktail Mountain, Montana; and Cotter Basin, Montana

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1984-01-01

    Data from field surveys and biogeochemical tests conducted in Maine, Montana, and Washington strongly correlate with results obtained using high resolution airborne spectroradiometer which detects an anomalous spectral waveform that appears definitely associated with sulfide mineralization. The spectral region most affected by mineral stress is between 550 nm and 750 nm. Spectral variations observed in the field occur on the wings of the red chlorophyll band centered at about 690 nm. The metal-stress-induced variations on the absorption band wing are most successfully resolved in the high spectral resolution field data using a waveform analysis technique. The development of chlorophyll pigments was retarded in greenhouse plants doped with copper and zinc in the laboratory. The lowered chlorophyll production resulted in changes on the wings of the chlorophyll bands of reflectance spectra of the plants. The airborne spectroradiometer system and waveform analysis remains the most sensitive technique for biogeochemical surveys.

  9. EUFAR training opportunities to advance European airborne research

    NASA Astrophysics Data System (ADS)

    Reusen, I.; Brenguier, J.-L.; Brown, P.; Wendish, M.

    2009-04-01

    EUFAR, EUropean Facilities for Airborne Research, is an FP7 project (http://www.eufar.net) funded by the European Commission with 33 partners that aims at providing and improving the access to European airborne facilities (i.e. aircraft, airborne instruments, data processing centres) for researchers in environmental and geo-sciences through Networking Activities, Transnational Access and Joint Research Activities. This paper reports on the training opportunities within EUFAR for European researchers. In EUFAR three types of training opportunities are offered: 1) Participate in training courses (ET-TC) 2) Join an existing field campaign (ET-EC) 3) Participate in the design of a new field campaign (ET-TA), in the frame of EUFAR Transnational Access and tutored by more experienced researchers. During the 4-year EUFAR project (2008-2012), 4 training courses covering the complete chain fro