Science.gov

Sample records for airborne mapper mamap

  1. Initial results of detected methane emissions from landfills in the Los Angeles Basin during the COMEX campaign by the Methane Airborne MAPper (MAMAP) instrument and a greenhouse gas in-situ analyser

    NASA Astrophysics Data System (ADS)

    Krautwurst, Sven; Gerilowski, Konstantin; Kolyer, Richard; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Vigil, Sam; Buchwitz, Michael; Schüttemeyer, Dirk; Fladeland, Matthew M.; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    Methane (CH4) is the second most important anthropogenic greenhouse gas beside carbon dioxide (CO2). Significant contributors to the global methane budget are fugitive emissions from landfills. Due to the growing world population, it is expected that the amount of waste and, therefore, waste disposal sites will increase in number and size in parts of the world, often adjacent growing megacities. Besides bottom-up modelling, a variety of ground based methods (e.g., flux chambers, trace gases, radial plume mapping, etc.) have been used to estimate (top-down) these fugitive emissions. Because landfills usually are large, sometimes with significant topographic relief, vary temporally, and leak/emit heterogeneously across their surface area, assessing total emission strength by ground-based techniques is often difficult. In this work, we show how airborne based remote sensing measurements of the column-averaged dry air mole fraction of CH4 can be utilized to estimate fugitive emissions from landfills in an urban environment by a mass balance approach. Subsequently, these emission rates are compared to airborne in-situ horizontal cross section measurements of CH4 taken within the planetary boundary layer (PBL) upwind and downwind of the landfill at different altitudes immediately after the remote sensing measurements were finished. Additional necessary parameters (e.g., wind direction, wind speed, aerosols, dew point temperature, etc.) for the data inversion are provided by a standard instrumentation suite for atmospheric measurements aboard the aircraft, and nearby ground-based weather stations. These measurements were part of the CO2 and Methane EXperiment (COMEX), which was executed during the summer 2014 in California and was co-funded by the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). The remote sensing measurements were taken by the Methane Airborne MAPper (MAMAP) developed and operated by the University of Bremen and

  2. Remote Sensing Observations of Greenhouse Gases from space based and airborne platforms: from SCIAMACHY and MaMap to CarbonSat

    NASA Astrophysics Data System (ADS)

    Burrows, John P.; Schneising, Oliver; Buchwitz, Michael; Bovensmann, Heinrich; Heymann, Jens; Gerilowski, Konstantin; Krings, Thomas; Krautwurst, Sven; Dickerson, Russ

    2015-04-01

    Methane, CH4, e and carbon dioxide, CO2, play an important role in the earth carbon cycle. They are the two most important long lived greenhouse gases produced by anthropogenic fossil fuel combustion. In order to assess accurately the surface fluxes of CH4 or CO2. The Scanning Imaging Absorption Spectrometer for Atmospheric ChartographY, SCIAMACHY, was a national contribution to the ESA Envisat platform: the latter being launched on the 28th February 2002 and operating successfully until April 2012. The SCIAMACHY measurements of the up-welling radiation have been used to retrieve the dry mole fraction of XCH4 and XCO2, providing a unique 10 year record at the spatial resolution of 60 kmx30 km. This data has been used to observe the changing CH4 abundance in the atmosphere and identify anthropogenic such as Fracking and natural sources such as wetlands. The Methane and carbon dioxide Mapper, MaMap, was developed as an aircraft demonstration instrument for our CarbonSat and CarbonSat Constellation concepts. CarbonSat is in Phase A B1 studies as one of two candidate missions for ESA's Earth Explorer 8 Mission. Selected results from SCIAMACHY and Mamap will be presented with a focus on methane and the perspective for CarbonSat.

  3. Airborne Topographic Mapper Calibration Procedures and Accuracy Assessment

    NASA Technical Reports Server (NTRS)

    Martin, Chreston F.; Krabill, William B.; Manizade, Serdar S.; Russell, Rob L.; Sonntag, John G.; Swift, Robert N.; Yungel, James K.

    2012-01-01

    Description of NASA Airborn Topographic Mapper (ATM) lidar calibration procedures including analysis of the accuracy and consistancy of various ATM instrument parameters and the resulting influence on topographic elevation measurements. The ATM elevations measurements from a nominal operating altitude 500 to 750 m above the ice surface was found to be: Horizontal Accuracy 74 cm, Horizontal Precision 14 cm, Vertical Accuracy 6.6 cm, Vertical Precision 3 cm.

  4. Basis and methods of NASA airborne topographic mapper lidar surveys for coastal studies

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Sallenger, Asbury H.; Krabill, William B.; Swift, Robert N.

    2002-01-01

    This paper provides an overview of the basic principles of airborne laser altimetry for surveys of coastal topography, and describes the methods used in the acquisition and processing of NASA Airborne Topographic Mapper (ATM) surveys that cover much of the conterminous US coastline. This form of remote sensing, also known as "topographic lidar", has undergone extremely rapid development during the last two decades, and has the potential to contribute within a wide range of coastal scientific investigations. Various airborne laser surveying (ALS) applications that are relevant to coastal studies are being pursued by researchers in a range of Earth science disciplines. Examples include the mapping of "bald earth" land surfaces below even moderately dense vegetation in studies of geologic framework and hydrology, and determination of the vegetation canopy structure, a key variable in mapping wildlife habitats. ALS has also proven to be an excellent method for the regional mapping of geomorphic change along barrier island beaches and other sandy coasts due to storms or long-term sedimentary processes. Coastal scientists are adopting ALS as a basic method in the study of an array of additional coastal topics. ALS can provide useful information in the analysis of shoreline change, the prediction and assessment of landslides along seacliffs and headlands, examination of subsidence causing coastal land loss, and in predicting storm surge and tsunami inundation.

  5. Cloud-shadow suppression technique for enhancement of Airborne Thematic Mapper imagery

    SciTech Connect

    Guo, L.J.; Moore, J.M. )

    1993-08-01

    Airborne Thematic Mapper (ATM) data are often degraded by the shadows from clouds above the aircraft during the flight. The spectral information in cloud-shadowed areas is reduced but not totally lost because the reflected energy of diffuse illumination (sky light) reaches the sensors from the shadowed ground despite obstruction of direct solar radiation. The thermal band image is almost unaffected by the temporary change of radiation caused by clouds. An enhancement technique for cloud-shadow suppression has been developed based on differencing, RGB-HSI-RGB transformation, and thermal band modulation. The method suppresses cloud shadows with topographic shading retained; spectral information is retrieved and enhanced. The result is a nearly normal color composite with full topographic expression but without cloud shadows. Such a color composite is easy to interpret for geological structures and lithologies. 6 refs.

  6. MAMAP - a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: instrument description and performance assessment

    NASA Astrophysics Data System (ADS)

    Gerilowski, K.; Tretner, A.; Krings, T.; Buchwitz, M.; Bertagnolio, P. P.; Belemezov, F.; Erzinger, J.; Burrows, J. P.; Bovensmann, H.

    2010-08-01

    Carbon dioxide (CO2) and Methane (CH4) are the two most important anthropogenic greenhouse gases. CH4 is furthermore one of the most potent present and future contributors to global warming because of its large global warming potential (GWP). Our knowledge of CH4 sources and sinks is based primarily on sparse in-situ local point measurements from micro sites and surface networks and more recently on low spatial resolution satellite observations. There is a need for measurements of the dry columns of CO2 and CH4 having high spatial resolution and spatial coverage. In order to fill this gap a new passive airborne 2-channel grating spectrometer instrument for remote sensing of small scale and mesoscale column-averaged CH4 and CO2 observations has been developed. This Methane Airborne MAPper (MAMAP) instrument measures reflected and scattered solar radiation in the short wave infrared (SWIR) and near-infrared (NIR) parts of the electro-magnetic spectrum at moderate spectral resolution. The SWIR channel yields measurements of atmospheric absorption bands of CH4 and CO2 in the spectral range between 1.59 and 1.69 μm at a spectral resolution of 0.82 nm. The NIR channel around 0.76 μm measures the atmospheric O2-A-band absorption with a resolution of 0.46 nm. MAMAP has been designed for flexible operation aboard a variety of airborne platforms. The instrument design and performance, together with some results from on-ground and in-flight engineering tests are presented. The instrument performance has been analyzed using a retrieval algorithm applied to the SWIR channel nadir measured spectra. The signal-to-noise ratio (SNR) of the SWIR channel is approximately 1000 for integration times (tint) in the range of 0.6-0.8 s for scenes with surface spectral reflectances of around 0.18. At these integration times the ground scene size is about 23×33 m2 for an aircraft altitude of 1 km and a ground speed of 200 km/h. For these scenes the CH4 and CO2 column retrieval precisions

  7. MAMAP - a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: instrument description and performance analysis

    NASA Astrophysics Data System (ADS)

    Gerilowski, K.; Tretner, A.; Krings, T.; Buchwitz, M.; Bertagnolio, P. P.; Belemezov, F.; Erzinger, J.; Burrows, J. P.; Bovensmann, H.

    2011-02-01

    Carbon dioxide (CO2) and Methane (CH4) are the two most important anthropogenic greenhouse gases. CH4 is furthermore one of the most potent present and future contributors to global warming because of its large global warming potential (GWP). Our knowledge of CH4 and CO2 source strengths is based primarily on bottom-up scaling of sparse in-situ local point measurements of emissions and up-scaling of emission factor estimates or top-down modeling incorporating data from surface networks and more recently also by incorporating data from low spatial resolution satellite observations for CH4. There is a need to measure and retrieve the dry columns of CO2 and CH4 having high spatial resolution and spatial coverage. In order to fill this gap a new passive airborne 2-channel grating spectrometer instrument for remote sensing of small scale and mesoscale column-averaged CH4 and CO2 observations has been developed. This Methane Airborne MAPper (MAMAP) instrument measures reflected and scattered solar radiation in the short wave infrared (SWIR) and near-infrared (NIR) parts of the electro-magnetic spectrum at moderate spectral resolution. The SWIR channel yields measurements of atmospheric absorption bands of CH4 and CO2 in the spectral range between 1.59 and 1.69 μm at a spectral resolution of 0.82 nm. The NIR channel around 0.76 μm measures the atmospheric O2-A-band absorption with a resolution of 0.46 nm. MAMAP has been designed for flexible operation aboard a variety of airborne platforms. The instrument design and the performance of the SWIR channel, together with some results from on-ground and in-flight engineering tests are presented. The SWIR channel performance has been analyzed using a retrieval algorithm applied to the nadir measured spectra. Dry air column-averaged mole fractions are obtained from SWIR data only by dividing the retrieved CH4 columns by the simultaneously retrieved CO2 columns for dry air column CH4 (XCH4) and vice versa for dry air column CO2

  8. A geobotanical investigation based on linear discriminant and profile analyses of airborne Thematic Mapper Simulator data

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew R.

    1987-01-01

    This paper discusses the application of linear discriminant and profile analyses to detailed investigation of an airborne Thematic Mapper Simulator (TMS) image collected over a geobotanical test site. The test site was located on the Keweenaw Peninsula of Michigan's Upper Peninsula, and remote sensing data collection coincided with the onset of leaf senescence in the regional deciduous flora. Linear discriminant analysis revealed that sites overlying soil geochemical anomalies were distinguishable from background sites by the reflectance and thermal emittance of the tree canopy imaged in the airborne TMS data. The correlation of individual bands with the linear discriminant function suggested that the TMS thermal Channel 7 (10.32-12.33 microns) contributed most, while TMS Bands 2 (0.53-0.60 microns), 3 (0.63-0.69 microns), and 5 (1.53-1.73 microns) contributed somewhat more modestly to the separation of anomalous and background sites imaged by the TMS. The observed changes in canopy reflectance and thermal emittance of the deciduous flora overlying geochemically anomalous areas are consistent with the biophysical changes which are known or presumed to occur as a result of injury induced in metal-stressed vegetation.

  9. Identification of landslides in clay terrains using Airborne Thematic Mapper (ATM) multispectral imagery

    NASA Astrophysics Data System (ADS)

    Whitworth, Malcolm; Giles, David; Murphy, William

    2002-01-01

    The slopes of the Cotswolds Escarpment in the United Kingdom are mantled by extensive landslide deposits, including both relict and active features. These landslides pose a significant threat to engineering projects and have been the focus of research into the use of airborne remote sensing data sets for landslide mapping. Due to the availability of extensive ground investigation data, a test site was chosen on the slopes of the Cotswolds Escarpment above the village of Broadway, Worcestershire, United Kingdom. Daedalus Airborne Thematic Mapper (ATM) imagery was subsequently acquired by the UK Natural Environment Research Council (NERC) to provide high-resolution multispectral imagery of the Broadway site. This paper assesses the textural enhancement of ATM imagery as an image processing technique for landslide mapping at the Broadway site. Results of three kernel based textural measures, variance, mean euclidean distance (MEUC) and grey level co-occurrence matrix (GLCM) entropy are presented. Problems encountered during textural analysis, associated with the presence of dense woodland within the project area, are discussed and a solution using Principal Component Analysis (PCA) is described. Landslide features in clay dominated terrains can be identified through textural enhancement of airborne multispectral imagery. The kernel based textural measures tested in the current study were all able to enhance areas of slope instability within ATM imagery. Additionally, results from supervised classification of the combined texture-principal component dataset show that texture based image classification can accurately classify landslide regions and that by including a Principal Component image, woodland and landslide classes can be differentiated successfully during the classification process.

  10. Recent Changes in the Periphery of the Greenland Ice Sheet from NASA's Airborne Topographic Mapper

    NASA Astrophysics Data System (ADS)

    Sonntag, J. G.; Krabill, W. B.

    2009-12-01

    In the early spring of 2009, NASA's Airborne Topographic Mapper, or ATM, deployed to conduct its most extensive study to date of the peripheral parts of the Greenland Ice Sheet. Accompanied by several other remote sensing instruments and supported by a new NASA initiative known as Operation Ice Bridge, we flew longitudinal surveys of 47 glaciers located all around the Greenland coast. We paid particular attention to the active southeastern and northwestern coasts, with nine of the glaciers targeted on the southeast coast and 15 on the upper Baffin Bay coastline between Rinks Glacier and Thule Air Base. We also investigated two ice lobes with minimal or no connection to the main ice sheet. Here, we explain our methodology for selecting and designing the flight lines to maximize their science potential, and present our initial assessment of the rate of thinning/thickening (dh/dt) of the large subset of these flight lines which have been flown previously. Finally we summarize regional-scale patterns we observe in the dh/dt results.

  11. Passive remote sensing of large-scale methane emissions from Oil Fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Thompson, David R.; Thorpe, Andrew K.; Kolyer, Richard W.; Jonsson, Haflidi; Krings, Thomas; Frankenberg, Christian; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Fladeland, Matthew; Schüttemeyer, Dirk; Burrows, John P.; Bovensmann, Heinrich

    2016-04-01

    The CO2 and MEthane EXperiment (COMEX) was a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities. As a part of this effort, seven flights were performed between June 3 and September 4, 2014 with the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) over the Kern River, Kern Front, and Poso Creek Oil Fields located in California's San Joaquin Valley. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with: a Picarro fast in-situ greenhouse gas (GHG) analyzer operated by the NASA Ames Research Center, ARC; a 5-hole turbulence probe; and an atmospheric measurement package operated by CIRPAS measuring aerosols, temperature, dew-point, and other atmospheric parameters. Three of the flights were accompanied by the Next Generation Airborne Visual InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft. Large-scale, high-concentration CH4 plumes were detected by the MAMAP instrument over the fields and tracked over several kilometers. The spatial distribution of the MAMAP observed plumes was compared to high spatial resolution CH4 anomaly maps derived by AVIRIS-NG imaging spectroscopy data. Remote sensing data collected by MAMAP was used to infer CH4 emission rates and their distributions over the three fields. Aggregated emission estimates for the three fields were compared to aggregated emissions inferred by subsequent airborne in-situ validation measurements collected by the Picarro instrument. Comparison of remote sensing and in-situ flux estimates will be presented, demonstrating the ability of airborne remote sensing data to provide accurate emission estimates for concentrations above the

  12. Leveraging Realtime Data in Airborne Campaigns: From COMEX to Disaster Response

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Thompson, D. R.; Bovensmann, H.; Eastwood, M. L.; Fladeland, M. M.; Gerilowski, K.; Green, R. O.; Krautwurst, S.; Krings, T.; Luna, B.; Di Benedetto, J.; Morey, M.

    2015-12-01

    The COMEX (CO2 and Methane eXperiment) campaign leveraged real-time remote sensing and in situ data spanning multiple airborne and surface mobile platforms and interplatform communications to improve dramatically science outcomes. COMEX realtime remote sensing of strong methane plumes released from a producing oil field in Southern California by the non-imaging spectrometer MAMAP (Methane Airborne MAPper) were used to shift the survey strategy of the AVIRIS NG (Airborne Visual InfraRed Imaging Spectrometer-Next Generation) instrument on a separate airplane from an area of few plumes to an area of high activity. Concurrently, a ground team was re-directed to collect mobile surface validation data by the AMOG (AutoMObile gas) Surveyor in the new area. On all platforms, realtime analysis were used to adapt the survey patterns such as making tactical decisions to repeat certain swaths or flight lines by AVIRIS NG and by MAMAP and to adapt surface survey patterns. The AVIRIS-NG realtime algorithms were developed for methane; however, oil exhibits spectral features that are similar, enabling their testing on AVIRIS-NG data acquired during the Santa Barbara Oil Spill. The effort determined that realtime oil mapping currently is feasible. For oil spill disaster response as well as other disaster response applications, the tactical advantages of realtime remote sensing for time-critical data collections will facilitate greater roles played by remote sensing in future disaster response.

  13. Preliminary assessment of airborne imaging spectrometer and airborne thematic mapper data acquired for forest decline areas in the Federal Republic of Germany

    NASA Technical Reports Server (NTRS)

    Herrmann, Karin; Ammer, Ulrich; Rock, Barrett; Paley, Helen N.

    1988-01-01

    This study evaluated the utility of data collected by the high-spectral resolution airborne imaging spectrometer (AIS-2, tree mode, spectral range 0.8-2.2 microns) and the broad-band Daedalus airborne thematic mapper (ATM, spectral range 0.42-13.0 micron) in assessing forest decline damage at a predominantly Scotch pine forest in the FRG. Analysis of spectral radiance values from the ATM and raw digital number values from AIS-2 showed that higher reflectance in the near infrared was characteristic of high damage (heavy chlorosis, limited needle loss) in Scotch pine canopies. A classification image of a portion of the AIS-2 flight line agreed very well with a damage assessment map produced by standard aerial photointerpretation techniques.

  14. Application of combined Landsat thematic mapper and airborne thermal infrared multispectral scanner data to lithologic mapping in Nevada

    USGS Publications Warehouse

    Podwysocki, M.H.; Ehmann, W.J.; Brickey, D.W.

    1987-01-01

    Future Landsat satellites are to include the Thematic Mapper (TM) and also may incorporate additional multispectral scanners. One such scanner being considered for geologic and other applications is a four-channel thermal-infrared multispectral scanner having 60-m spatial resolution. This paper discusses the results of studies using combined Landsat TM and airborne Thermal Infrared Multispectral Scanner (TIMS) digital data for lithologic discrimination, identification, and geologic mapping in two areas within the Basin and Range province of Nevada. Field and laboratory reflectance spectra in the visible and reflective-infrared and laboratory spectra in the thermal-infrared parts of the spectrum were used to verify distinctions made between rock types in the image data sets.

  15. Airborne passive remote sensing of large-scale methane emissions from oil fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Initial results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Kolyer, Richard W.; Thompson, David R.; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Schüttemeyer, Dirk; Fladeland, Matthew; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    On several flights performed over the Kern River, Kern Front, and Poso Creek Oil Fields in California between June 3 and September 4, 2014, in the framework of the CO2 and MEthane Experiment (COMEX) - a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities - the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) detected large-scale, high-concentration, methane plumes. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with a Picarro fast in-situ greenhouse gas (GHG) analyzer (operated by the NASA Ames Research Center, ARC), a 5-hole turbulence probe and an atmospheric measurement package (operated by CIRPAS), measuring aerosols, temperature, dew-point, and other atmospheric parameters. Some of the flights were accompanied by the next generation of the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft (operated by Twin Otter International). Data collected with the in-situ GHG analyzer were used for validation of the MAMAP and AVIRIS-NG remotely sensed data. The in-situ measurements were acquired in vertical cross sections of the discovered plumes at fixed distances downwind of the sources. Emission rates are estimated from both the remote and in-situ data using wind information from the turbulence probe together with ground-based wind data from the nearby airport. Remote sensing and in-situ data as well as initial flux estimates for selected flights will be presented.

  16. Patos Lagoon Outflow Within the Rio de la Plata Plume Using an Airborne Salinity Mapper

    NASA Astrophysics Data System (ADS)

    Burrage, D.; Wesson, J.; Martinez, C.; Perez, T.; Moller, O., Jr.; Piola, A.

    2005-05-01

    Major river systems discharging into continental shelf waters frequently form buoyant coastal currents that propagate along the continental shelf in a direction corresponding to that of coastal trapped wave propagation (with the coast on the right/left, in the northern/southern hemisphere). The combined flow of the Uruguay and Parana Rivers, which discharges freshwater into the Rio de La Plata estuary (Latitude ~36 S), frequently gives rise to a buoyant coastal current (the 'La Plata plume') that extends northward along the continental shelf off Uruguay and Southern Brazil. Depending upon the prevailing rainfall, wind and tidal conditions, the Patos/Mirim Lagoon complex (Latitude ~ 32 S) also produces a freshwater outflow plume that expands across the inner continental shelf. Under these circumstances the Patos outflow plume may be embedded in temperature, salinity and current fields that are strongly influenced by the larger Plata plume. The purpose of this paper is to present observations of such an embedded plume structure and to determine the implications for the dynamics of the smaller Patos plume. We describe the results of an airborne remote sensing and shipboard in situ study of the salinity distribution and extent of the La Plata and Patos/Mirim Lagoon plumes conducted under contrasting winter (2003) and summer (2004) conditions. The survey was conducted using an aircraft carrying NRL's Salinity, Temperature and Roughness Remote Scanner (STARRS). A series of broad-scale flights was conducted over the continental shelf off Argentina, Uruguay and Brazil, and a detailed mapping flight was undertaken over the Patos/Mirim outflow region. Their purpose was to determine the distribution and behavior of the Plata and Patos Lagoon plumes on the continental shelf under representative winter and summer conditions. The resulting airborne and shipboard hydrographic data are compared with dynamical model parameter estimates to address the following questions: What is

  17. Comparison of Land Cover Information from LANDSAT Multispectral Scanner (MSS) and Airborne Thematic Mapper Simulator (TMS) Data for Hydrologic Applications

    NASA Technical Reports Server (NTRS)

    Gervin, J. C.; Lu, Y. C.; Marcell, R. F.

    1984-01-01

    Detailed land cover classifications were performed on the Thematic Mapper Simulator (TMS) and MSS data of the Clinton River Basin (acquired on August 19, 1981, and June 28, 1980, respectively) using supervised classification techniques. Differences in interclass separability were compared to select several promising TMS band combinations, selected from the 27 covering the Clinton River Basin. The TMS data produced a more accurate and spatially contiguous classification than MSS for this study site. While the accuracy of the 4-band TM data set was as good as the 7-band, the 3-band TMS data sets were also better than the MSS. These results indicate that both the increased spectral discrimination and spatial resolution contribute to improved classification accuracy. The possibility of reducing the data analysis burden associated with large TM data volumes through effective band selection therefore appears promising. The implications of the improved classification accuracy of TMS data are important for hydrologic and economic modeling. In particular, the higher accuracies for the developed categories (residential and commercial) should improve the predictions of runoff in flood forecasting models and of flood damage for damage calculation models appreciably.

  18. Land cover/use classification of Cairns, Queensland, Australia: A remote sensing study involving the conjunctive use of the airborne imaging spectrometer, the large format camera and the thematic mapper simulator

    NASA Technical Reports Server (NTRS)

    Heric, Matthew; Cox, William; Gordon, Daniel K.

    1987-01-01

    In an attempt to improve the land cover/use classification accuracy obtainable from remotely sensed multispectral imagery, Airborne Imaging Spectrometer-1 (AIS-1) images were analyzed in conjunction with Thematic Mapper Simulator (NS001) Large Format Camera color infrared photography and black and white aerial photography. Specific portions of the combined data set were registered and used for classification. Following this procedure, the resulting derived data was tested using an overall accuracy assessment method. Precise photogrammetric 2D-3D-2D geometric modeling techniques is not the basis for this study. Instead, the discussion exposes resultant spectral findings from the image-to-image registrations. Problems associated with the AIS-1 TMS integration are considered, and useful applications of the imagery combination are presented. More advanced methodologies for imagery integration are needed if multisystem data sets are to be utilized fully. Nevertheless, research, described herein, provides a formulation for future Earth Observation Station related multisensor studies.

  19. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  20. Comparison of Land Cover Information from LANDSAT Multispectral Scanner (MSS) and Airborne Thematic Mapper Simulator (TMS) Data for Hydrologic Applications. [Clinton River Basin, Michigan

    NASA Technical Reports Server (NTRS)

    Gervin, J. C.; Lu, Y. C.; Marcell, R. F.

    1985-01-01

    Thematic mapper simulator (TMS) data produced a more accurate and spatially contiguous classification than MSS for the Clinton River Basin in Michigan. While the accuracy of the 4-band TMS data set was as good as the 7-band, the 3-band TMS data sets were also better than the MSS. The combination of bands selected based on the transformed divergence technique provided one band in each of the major regions of the spectrum: visible (band 3), near IR (band 4), middle IR (band 5) and thermal IR (band 7). These results should be viewed with some caution, since the data are from a TMS rather than the actual TM and the MSS data were obtained in early summer while the TMS was flown in late summer. The higher accuracies for the developed categories (residential and commercial) should improve the predictions of runoff in flood forecasting models and of flood damage for damage calculation models appreciably.

  1. Patos Lagoon outflow within the Río de la Plata plume using an airborne salinity mapper: Observing an embedded plume

    NASA Astrophysics Data System (ADS)

    Burrage, Derek; Wesson, Joel; Martinez, Carlos; Pérez, Tabare; Möller, Osmar, Jr.; Piola, Alberto

    2008-07-01

    Major river systems discharging into continental shelf waters frequently form buoyant coastal currents that propagate along the continental shelf in the direction of coastal trapped wave propagation (with the coast on the right/left, in the northern/southern hemisphere). The combined flow of the Uruguay and Paraná Rivers, which discharges freshwater into the Río de la Plata estuary (Lat. ˜36°S), often gives rise to a buoyant coastal current (the 'Plata plume') that extends northward along the continental shelf off Uruguay and Southern Brazil. Depending upon the prevailing rainfall, wind and tidal conditions, the Patos/Mirim Lagoon complex (Lat. ˜32°S) may also produce a freshwater outflow plume that expands across the inner continental shelf. Under these circumstances the Patos outflow plume can be embedded in temperature, salinity and current fields that are strongly influenced by the larger Plata plume. The purpose of this paper is to present observations of such an embedded plume structure and to determine the dynamical characteristics of the ambient and embedded plumes. We describe selected results of coincident airborne remote sensing and shipboard in-situ surveys of the salinity distribution and extent of the Plata and Patos/Mirim Lagoon plumes conducted under contrasting winter (2003) and summer (2004) conditions. The surveys were carried out in the context of a comprehensive multi-disciplinary study of the Plata plume and its response to prevailing seasonal weather conditions. The objective was to map the surface salinity distribution of the Plata plume at synoptic scales under representative winter and summer conditions. Additionally, the airborne survey included finer-scale mapping of specific features including the Río de Plata estuarine front and the Patos Lagoon plume, with the objective of determining the distribution and behavior of the plumes in the estuaries and on the continental shelf. The airborne survey was conducted with an aircraft

  2. Internet protocol network mapper

    DOEpatents

    Youd, David W.; Colon III, Domingo R.; Seidl, Edward T.

    2016-02-23

    A network mapper for performing tasks on targets is provided. The mapper generates a map of a network that specifies the overall configuration of the network. The mapper inputs a procedure that defines how the network is to be mapped. The procedure specifies what, when, and in what order the tasks are to be performed. Each task specifies processing that is to be performed for a target to produce results. The procedure may also specify input parameters for a task. The mapper inputs initial targets that specify a range of network addresses to be mapped. The mapper maps the network by, for each target, executing the procedure to perform the tasks on the target. The results of the tasks represent the mapping of the network defined by the initial targets.

  3. Magnetic field mapper

    NASA Technical Reports Server (NTRS)

    Masters, R. M.; Stenger, F. J.

    1969-01-01

    Magnetic field mapper locates imperfections in cadmium sulphide solar cells by detecting and displaying the variations of the normal component of the magnetic field resulting from current density variations. It can also inspect for nonuniformities in other electrically conductive materials.

  4. The effect of spatial, spectral and radiometric factors on classification accuracy using thematic mapper data

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Acevedo, W.; Alexander, D.; Buis, J.; Card, D.

    1984-01-01

    An experiment of a factorial design was conducted to test the effects on classification accuracy of land cover types due to the improved spatial, spectral and radiometric characteristics of the Thematic Mapper (TM) in comparison to the Multispectral Scanner (MSS). High altitude aircraft scanner data from the Airborne Thematic Mapper instrument was acquired over central California in August, 1983 and used to simulate Thematic Mapper data as well as all combinations of the three characteristics for eight data sets in all. Results for the training sites (field center pixels) showed better classification accuracies for MSS spatial resolution, TM spectral bands and TM radiometry in order of importance.

  5. SkyMapper and Supernovae

    NASA Astrophysics Data System (ADS)

    Scalzo, R.

    The SkyMapper Southern Sky Survey will be a wide-area digital survey of the southern sky, run from the robotic 1.3-m SkyMapper telescope at Siding Spring Observatory near Coonabarabran, NSW, Australia. The survey will include a supernova search run during poor seeing time, run as a rolling search to produce high-quality light curves for Hubble diagram cosmology. The search is currently taking data in science verification mode. I will briefly describe SkyMapper and then give an overview of su- pernova search activities, including pipeline design, operations, and interaction with the community.

  6. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  7. The Venus Emissivity Mapper

    NASA Astrophysics Data System (ADS)

    Helbert, Joern; Marcq, Emmanuel; Widemann, Thomas; Mueller, Nils; Kappel, David; Tsang, Constantine; Maturilli, Alessandro; Ferrari, Sabrina; D'Amore, Mario; Dyar, Melinda; Smrekar, Suzanne

    2016-10-01

    The permanent cloud cover of Venus prohibits observations of the surface with traditional imaging techniques over the entire visible spectral range. Fortunately, Venus' atmospheric gases are largely transparent in narrow spectral windows near 1 mm. Ground observers were the first to successfully use these windows, followed by spacecraft observations during the flyby of the Galileo mission on its way to Jupiter and most recently from Venus orbit by ESA's Venus Express with the VMC and VIRTIS instruments. Analyses of VIRTIS measurements have successfully demonstrated that surface information can be extracted from these windows, but the design of the instrument limited its use for more in-depth surface investigations.Based on experience gained from using VIRTIS to observe the surface of Venus and new high temperature laboratory experiments currently performed at the Planetary Spectroscopy Laboratory of DLR, we have designed the multi-spectral Venus Emissivity Mapper (VEM). Observations from VIRTIS have revealed surface emissivity variations correlated with geological features, but existing data sets contain only three spectral channels. VEM is optimized to map the surface composition and texture, and to search for active volcanism using the narrow atmospheric windows, building on lessons from prior instrumentation and methodology. It offers an opportunity to gain important information about surface mineralogy and texture by virtue of having six different channels for surface mapping.VEM is focused mainly on observing the surface, mapping in all near-IR atmospheric windows using filters with spectral characteristics optimized for the wavelengths and widths of those windows. It also observes bands necessary for correcting atmospheric effects; these bands also provide valuable scientific data on composition as well as altitude and size distribution of the cloud particles, and on H2O vapor abundance variations in the lowest 15 km of the atmosphere.In combination with a

  8. Copernicus: Lunar surface mapper

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.; Anderson, Shaun D.

    1992-01-01

    The Utah State University (USU) 1991-92 Space Systems Design Team has designed a Lunar Surface Mapper (LSM) to parallel the development of the NASA Office of Exploration lunar initiatives. USU students named the LSM 'Copernicus' after the 16th century Polish astronomer, for whom the large lunar crater on the face of the moon was also named. The top level requirements for the Copernicus LSM are to produce a digital map of the lunar surface with an overall resolution of 12 meters (39.4 ft). It will also identify specified local surface features/areas to be mapped at higher resolutions by follow-on missions. The mapping operation will be conducted from a 300 km (186 mi) lunar-polar orbit. Although the entire surface should be mapped within six months, the spacecraft design lifetime will exceed one year with sufficient propellant planned for orbit maintenance in the anomalous lunar gravity field. The Copernicus LSM is a small satellite capable of reaching lunar orbit following launch on a Conestoga launch vehicle which is capable of placing 410 kg (900 lb) into translunar orbit. Upon orbital insertion, the spacecraft will weigh approximately 233 kg (513 lb). This rather severe mass constraint has insured attention to component/subsystem size and mass, and prevented 'requirements creep.' Transmission of data will be via line-of-sight to an earth-based receiving system.

  9. Scannerless terrain mapper

    SciTech Connect

    Sackos, J.; Bradley, B.; Diegert, C.; Ma, P.; Gary, C.

    1996-09-01

    NASA-Ames Research Center, in collaboration with Sandia National Laboratories, is developing a Scannerless Terrain Mapper (STM) for autonomous vehicle guidance through the use of virtual reality. The STM sensor is based on an innovative imaging optical radar technology that is being developed by Sandia National Laboratories. The sensor uses active flood-light scene illumination and an image intensified CCD camera receiver to rapidly produce and record very high quality range imagery of observed scenes. The STM is an all solid-state device (containing no moving parts) and offers significant size, performance, reliability, simplicity, and affordability advantages over other types of 3-D sensor technologies, such as scanned laser radar, stereo vision, and structured lighting. The sensor is based on low cost, commercially available hardware, and is very well suited for affordable application to a wide variety of military and commercial uses, including: munition guidance, target recognition, robotic vision, automated inspection, driver enhanced vision, collision avoidance, site security and monitoring, and facility surveying. This paper reviews the sensor technology, discusses NASA`s terrain mapping applications, and presents results from the initial testing of the sensor at NASA`s planetary landscape simulator.

  10. Lightning mapper sensor design study

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Poon, C. W.; Shelton, J. C.; Laverty, N. P.; Cook, R. D.

    1983-01-01

    World-wide continuous measurement of lightning location, intensity, and time during both day and night is to be provided by the Lightning Mapper (LITMAP) instrument. A technology assessment to determine if the LITMAP requirements can be met using existing sensor and electronic technologies is presented. The baseline concept discussed in this report is a compromise among a number of opposing requirements (e.g., ground resolution versus array size; large field of view versus narrow bandpass filter). The concept provides coverage for more than 80 percent of the lightning events as based on recent above-cloud NASA/U2 lightning measurements.

  11. MAPPER: A personal computer map projection tool

    NASA Technical Reports Server (NTRS)

    Bailey, Steven A.

    1993-01-01

    MAPPER is a set of software tools designed to let users create and manipulate map projections on a personal computer (PC). The capability exists to generate five popular map projections. These include azimuthal, cylindrical, mercator, lambert, and sinusoidal projections. Data for projections are contained in five coordinate databases at various resolutions. MAPPER is managed by a system of pull-down windows. This interface allows the user to intuitively create, view and export maps to other platforms.

  12. SkyMapper Early Data Release

    NASA Astrophysics Data System (ADS)

    Wolf, Christian; Onken, Christopher; Schmidt, Brian; Bessell, Michael; Da Costa, Gary; Luvaul, Lance; Mackey, Dougal; Murphy, Simon; White, Marc; SkyMapper Team

    2016-05-01

    The SkyMapper Early Data Release (EDR) is the initial data release from the SkyMapper Southern Survey, which aims to create a deep, multi-epoch, multi-band photometric data set for the entire southern sky. EDR covers approximately 6700 sq. deg. (one-third) of the southern sky as obtained by the Short Survey component of the project. All included fields have at least two visits in good conditions in all six SkyMapper filters (uvgriz). Object catalogues are complete to magnitude 17-18, depending on filter. IVOA-complaint table access protocol (TAP), cone search and simple image access protocol (SIAP) services are available from the SkyMapper website (http://skymapper.anu.edu.au/), as well as through tools such as TOPCAT. Data are restricted to Australian astronomers and their collaborators for twelve months from the release date. Further details on the reduction of SkyMapper data, along with data quality improvements, will be released in late 2016 as part of SkyMapper Data Release 1 (DR1).

  13. Land use mapping using edge density texture measures on Thematic Mapper simulator data

    NASA Technical Reports Server (NTRS)

    Hlavka, C. A.

    1985-01-01

    Texture analysis was performed as part of an investigation of the information content of Thematic Mapper (TM) imagery. High altitude aircraft scanner imagery from the Airborne Thematic Mapper (ATM) instrument was acquired over central California and used to simulate TM data. Edge density texture images were constructed by computation of proportions of edge pixels in a 31 x 31 moving window on a near infrared ATM band. A training technique was employed to select computational parameters to maximize the difference between edge density measurements in urban and in rural areas. The results of classification of the texture images showed that urban and rural areas could be distinguished with texture alone, indicating that inclusion of texture in automated classification procedures could significantly improve their accuracy.

  14. AN ACCURACY ASSESSMENT OF 1997 LANDSAT THEMATIC MAPPER DERIVED LAND COVER FOR THE UPPER SAN PEDRO WATERSHED (U.S./MEXICO)

    EPA Science Inventory

    High-Resolution airborne color video data were used to evaluate the accuracy of a land cover map of the upper San Pedro River watershed, derived from June 1997 Landsat Thematic Mapper data. The land cover map was interpreted and generated by Instituto del Medio Ambiente y el Bes...

  15. Thematic Mapper data for forest resource allocation

    NASA Technical Reports Server (NTRS)

    Zeff, Ilene S.; Merry, Carolyn J.

    1993-01-01

    A technique for classifying a Landsat Thematic Mapper image was demonstrated on the Wayne National Forest of southeastern Ohio. The classified image was integrated into a geographic information system database, and prescriptive forest land use allocation models were developed using the techniques of cartographic modeling. Timber harvest sites and accompanying haul roads were allocated.

  16. Absolute Radiometric Calibration Of The Thematic Mapper

    NASA Astrophysics Data System (ADS)

    Slater, P. N.; Biggar, S. F.; Holm, R. G.; Jackson, R. D.; Mao, Y.; Moran, M. S.; Palmer, J. M.; Yuan, B.

    1986-11-01

    The results are presented of five in-flight absolute radiometric calibrations, made in the period July 1984 to November 1985, at White Sands, New Mexico, of the solar reflective bands of the Landsat-5 Thematic Mapper (TM) . The 23 bandcalibrations made on the five dates show a ± 2.8% RMS variation from the mean as a percentage of the mean.

  17. Lynx Mobile Mapper for Surveying City Centers and Highways

    NASA Astrophysics Data System (ADS)

    Conforti, D.; Zampa, F.

    2011-09-01

    In the last two years the Lynx Mobile Mapper has become the new lidar solution developed for surveying large areas that are impractical with static lidar sensors and require an accuracy and resolution that exceed airborne technologies. The system allows the scanning at a speed up to 100 km/h, obtaining accuracy better than 5 cm with an up to 7 mm resolution. Therefore, this solution proves to be an excellent tool for surveying city centers, highways, railways, thanks also to a very fast, safe and accurate data collection. This paper will present two applications: 1- The survey of the entire ancient city center of Brescia (Italy) with it medieval castle, the narrows streets and the main squares. It also has been run a test to survey with the Lynx the tunnel that go underneath the castle and compare the result with a static laser scanner survey, 2- The survey of the Calatrava Bridge on the A1 highway. The central bridge, which crosses over the high-speed rail line and the A1 motorway is composed as a single symmetrical arch, placed longitudinally, which rises to a height of 46m. During the survey the two A1 motorway carriageways have been scanned and the upper part of the bridge for a complete 3D model of this structure.

  18. THEMATIC MAPPER: DETAILED RADIOMETRIC AND GEOMETRIC CHARACTERISTICS.

    USGS Publications Warehouse

    Kieffer, Hugh

    1983-01-01

    The paper is in abstract form. It discusses those radiometric characteristics of the Landsat 4 Thematic Mapper (TM) that can be established without absolute calibration or spectral data. Subscenes of radiometrically raw data (B-data) were examined on an individual detector basis; areas of uniform radiance were used to characterize subtle radiometric differences and noise problems. The effective resolution in radiance is degraded by about a factor of two by irregular width of the digital levels. Several detectors have a change of gain with a period of several scans, the largest effect is about 4%. The geometric fidelity of the GSFC filmwriter used for Thematic Mapper (TM) images was assessed by measurement with accuracy better than three micrometers of a test grid.

  19. Evaluation of corn/soybeans separability using Thematic Mapper and Thematic Mapper Simulator data

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Badhwar, G. D.; Thompson, D. R.; Henderson, K. E.; Shen, S. S.; Sorensen, C. T.; Carnes, J. G.

    1984-01-01

    Multitemporal Thematic Mapper, Thematic Mapper Simulator, and detailed ground truth data were collected for a 9- by 11-km sample segment in Webster County, IA, in the summer of 1982. Three dates were acquired each with Thematic Mapper Simulator (June 7, June 23, and July 31) and Thematic Mapper (August 2, September 3, and October 21). The Thematic Mapper Simulator data were converted to equivalent TM count values using TM and TMS calibration data and model based estimates of atmospheric effects. The July 31, TMS image was compared to the August 2, TM image to verify the conversion process. A quantitative measure of proportion estimation variance (Fisher information) was used to evaluate the corn/soybeans separability for each TM band as a function of time during the growing season. The additional bands in the middle infrared allowed corn and soybeans to be separated much earlier than was possible with the visible and near-infrared bands alone. Using the TM and TMS data, temporal profiles of the TM principal components were developed. The greenness and brightness exhibited behavior similar to MSS greenness and brightness for corn and soybeans.

  20. Thematic Mapper: Design through flight evaluation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    LANDSAT 4 and 5, launched in 1982 and 1984, not only carried the Thematic Mapper, but were redesigned to handle the increased data rates associated with it, and to communicate that data to Earth via geosynchronous orbiting Tracking and Data Relay Satellites (TDRS). The TM development program is summarized. A brief historical perspective is presented of the evolution of design requirements and hardware development. The basic performance parameters that serve as sensor design guidelines are presented.

  1. Underflight Calibration Of The Landsat Thematic Mapper

    NASA Astrophysics Data System (ADS)

    Schott, John R.

    1985-07-01

    An approach for evaluation of the Radiometric Quality of Landsat 4/5 Thematic Mapper Band 6 data is presented. The approach involves comparison of measured surface temperatures with surface temperatures predicted from observed satellite radiances propagated to the ground using the LOWTRAN 5A model. The atmospheric propagation data and surface temperatures are also compared with atmospheric propagation measurements and surface temperatures measured during an aircraft undertlight of the satellite.

  2. Husbandry Trace Gas Emissions from a Dairy Complex By Mobile in Situ and Airborne and Spaceborne Remote Sensing: A Comex Campaign Focus

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Tratt, D. M.; Bovensmann, H.; Buckland, K. N.; Burrows, J. P.; Frash, J.; Gerilowski, K.; Iraci, L. T.; Johnson, P. D.; Kolyer, R.; Krautwurst, S.; Krings, T.; Leen, J. B.; Hu, C.; Melton, C.; Vigil, S. A.; Yates, E. L.; Zhang, M.

    2014-12-01

    Recent field study reviews on the greenhouse gas methane (CH4) found significant underestimation from fossil fuel industry and husbandry. The 2014 COMEX campaign seeks to develop methods to derive CH4 and carbon dioxide (CO2) from remote sensing data by combining hyperspectral imaging (HSI) and non-imaging spectroscopy (NIS) with in situ airborne and surface data. COMEX leverages synergies between high spatial resolution HSI column abundance maps and moderate spectral/spatial resolution NIS. Airborne husbandry data were collected for the Chino dairy complex (East Los Angeles Basin) by NIS-MAMAP, HSI-Mako thermal-infrared (TIR); AVIRIS NG shortwave IR (SWIR), with in situ surface mobile-AMOG Surveyor (AutoMObile greenhouse Gas)-and airborne in situ from a Twin Otter and the AlphaJet. AMOG Surveyor uses in situ Integrated Cavity Off Axis Spectroscopy (OA-ICOS) to measure CH4, CO2, H2O, H2S and NH3 at 5-10 Hz, 2D winds, and thermal anomaly in an adapted commuter car. OA-ICOS provides high precision and accuracy with excellent stability. NH3 and CH4 emissions were correlated at dairy size-scales but not sub-dairy scales in surface and Mako data, showing fine-scale structure and large variations between the numerous dairies in the complex (herd ~200,000-250,000) embedded in an urban setting. Emissions hotspots were consistent between surface and airborne surveys. In June, surface and MAMAP data showed a weak overall plume, while surface and Mako data showed a stronger plume in late (hotter) July. Multiple surface plume transects using NH3 fingerprinting showed East and then NE advection out of the LA Basin consistent with airborne data. Long-term trends were investigated in satellite data. This study shows the value of synergistically combined NH3 and CH4 remote sensing data to the task of CH4 source attribution using airborne and space-based remote sensing (IASI for NH3) and top of atmosphere sensitivity calculations for Sentinel V and Carbon Sat (CH4).

  3. Thematic mapper studies of Andean volcanoes

    NASA Technical Reports Server (NTRS)

    Francis, P. W.

    1986-01-01

    The primary objective was to identify all the active volcanoes in the Andean region of Bolivia. Morphological features of the Tata Sabaya volcano, Bolivia, were studied with the thematic mapper. Details include marginal levees on lava and pyroclastic flows, and summit crater structure. Valley glacier moraine deposits, not easily identified on the multispectral band scanner, were also unambiguous, and provide useful marker horizons on large volcanic edifices which were built up in preglacial times but which were active subsequently. With such high resolution imagery, it is not only possible to identify potentially active volcanoes, but also to use standard photogeological interpretation to outline the history of individual volcanoes.

  4. Visualizing Airborne and Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Bierwirth, Victoria A.

    2011-01-01

    Remote sensing is a process able to provide information about Earth to better understand Earth's processes and assist in monitoring Earth's resources. The Cloud Absorption Radiometer (CAR) is one remote sensing instrument dedicated to the cause of collecting data on anthropogenic influences on Earth as well as assisting scientists in understanding land-surface and atmospheric interactions. Landsat is a satellite program dedicated to collecting repetitive coverage of the continental Earth surfaces in seven regions of the electromagnetic spectrum. Combining these two aircraft and satellite remote sensing instruments will provide a detailed and comprehensive data collection able to provide influential information and improve predictions of changes in the future. This project acquired, interpreted, and created composite images from satellite data acquired from Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+). Landsat images were processed for areas covered by CAR during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCT AS), Cloud and Land Surface Interaction Campaign (CLASIC), Intercontinental Chemical Transport Experiment-Phase B (INTEXB), and Southern African Regional Science Initiative (SAFARI) 2000 missions. The acquisition of Landsat data will provide supplemental information to assist in visualizing and interpreting airborne and satellite imagery.

  5. Airborne GLM Simulator (FEGS)

    NASA Astrophysics Data System (ADS)

    Quick, M.; Blakeslee, R. J.; Christian, H. J., Jr.; Stewart, M. F.; Podgorny, S.; Corredor, D.

    2015-12-01

    Real time lightning observations have proven to be useful for advanced warning and now-casting of severe weather events. In anticipation of the launch of the Geostationary Lightning Mapper (GLM) onboard GOES-R that will provide continuous real time observations of total (both cloud and ground) lightning, the Fly's Eye GLM Simulator (FEGS) is in production. FEGS is an airborne instrument designed to provide cal/val measurements for GLM from high altitude aircraft. It consists of a 5 x 5 array of telescopes each with a narrow passband filter to isolate the 777.4 nm neutral oxygen emission triplet radiated by lightning. The telescopes will measure the optical radiance emitted by lightning that is transmitted through the cloud top with a temporal resolution of 10 μs. When integrated on the NASA ER-2 aircraft, the FEGS array with its 90° field-of-view will observe a cloud top area nearly equal to a single GLM pixel. This design will allow FEGS to determine the temporal and spatial variation of light that contributes to a GLM event detection. In addition to the primary telescope array, the instrument includes 5 supplementary optical channels that observe alternate spectral emission features and will enable the use of FEGS for interesting lightning physics applications. Here we present an up-to-date summary of the project and a description of its scientific applications.

  6. Hyperspectral Soil Mapper (HYSOMA) software interface: Review and future plans

    NASA Astrophysics Data System (ADS)

    Chabrillat, Sabine; Guillaso, Stephane; Eisele, Andreas; Rogass, Christian

    2014-05-01

    With the upcoming launch of the next generation of hyperspectral satellites that will routinely deliver high spectral resolution images for the entire globe (e.g. EnMAP, HISUI, HyspIRI, HypXIM, PRISMA), an increasing demand for the availability/accessibility of hyperspectral soil products is coming from the geoscience community. Indeed, many robust methods for the prediction of soil properties based on imaging spectroscopy already exist and have been successfully used for a wide range of soil mapping airborne applications. Nevertheless, these methods require expert know-how and fine-tuning, which makes them used sparingly. More developments are needed toward easy-to-access soil toolboxes as a major step toward the operational use of hyperspectral soil products for Earth's surface processes monitoring and modelling, to allow non-experienced users to obtain new information based on non-expensive software packages where repeatability of the results is an important prerequisite. In this frame, based on the EU-FP7 EUFAR (European Facility for Airborne Research) project and EnMAP satellite science program, higher performing soil algorithms were developed at the GFZ German Research Center for Geosciences as demonstrators for end-to-end processing chains with harmonized quality measures. The algorithms were built-in into the HYSOMA (Hyperspectral SOil MApper) software interface, providing an experimental platform for soil mapping applications of hyperspectral imagery that gives the choice of multiple algorithms for each soil parameter. The software interface focuses on fully automatic generation of semi-quantitative soil maps such as soil moisture, soil organic matter, iron oxide, clay content, and carbonate content. Additionally, a field calibration option calculates fully quantitative soil maps provided ground truth soil data are available. Implemented soil algorithms have been tested and validated using extensive in-situ ground truth data sets. The source of the HYSOMA

  7. Prelaunch performance of the Landsat 7 Enhanced Thematic Mapper Plus

    NASA Astrophysics Data System (ADS)

    Markham, Brian L.; Barker, John L.; Pedelty, Jeffrey A.; Gorin, Inna; Kaita, Ed

    1998-10-01

    Landsat-7 will carry the enhanced thematic mapper plus (ETM+) as its payload. This instrument is a derivative of the Thematic Mapper (TM) instruments flown on the Landsat 4 and 5 spacecraft. Key changes to the instrument include a new 15 meter panchromatic band, a higher spatial resolution thermal band and two new solar calibrators to improve the radiometric calibration of the reflective bands.

  8. Landsat 4 Thematic Mapper Calibration Update

    NASA Technical Reports Server (NTRS)

    Helder, Dennis; Malla. Rimy; Mettler, Cory; Markham, Brian; Micijevic, Esad

    2011-01-01

    The Landsat-4 Thematic Mapper collected imagery of the Earth's surface from 1982 to 1993. Although largely overshadowed by Landsat 5, which was launched in 1984, Landsat 4 TM imagery extends the Thematic Mapper-based record of the Earth back to 1982 and also substantially supplements the image archive collected by Landsat 5. To provide a consistent calibration record for the TM instruments, Landsat 4 TM was cross-calibrated to Landsat 5 using nearly simultaneous overpass imagery of pseudo-invariant calibration sites (PICS) in the time period of 1988 through 1990. To determine if the radiometric gain of Landsat 4 had changed over its lifetime, time series from two PICS locations, a Saharan site known as Libya 4 and a site in southwest North America, commonly referred to as the Sonoran Desert PICS, were developed. Results indicated that Landsat 4 had been very stable over its lifetime with no discernible degradation in sensor performance in all the reflective bands except band 1. In contrast, band 1 exhibited a 12% decay in responsivity over the lifetime of the instrument. Results from this work have been implemented at USGS EROS, which enables users of Landsat TM data sets to obtain consistently calibrated data from Landsat 4 and 5 TM as well as Landsat 7 ETM+ instruments.

  9. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  10. Thematic mapper: detailed radiometric and geometric characteristics

    USGS Publications Warehouse

    Kieffer, Hugh

    1983-01-01

    Those radiometric characteristics of the Landsat 4 Thematic Mapper (TM) that can be established without absolute calibration of spectral data have been examined. Subscenes of radiometric all raw data (B-data) were examined on an individual detector basis: areas of uniform radiance were used to characterize subtle radiometric differences and noise problems. A variety of anomalies have been discovered with magnitude of a few digital levels or less: the only problem not addressable by ground processing is irregular width of the digital levels. Essentially all of this non-ideal performance is incorporated in the fully processed (P-type) images, but disguised by the geometric resampling procedure. The overall performance of the Thematic Mapper is a great improvement over previous Landsat scanners. The effective resolution in radiance is degraded by about a factor of two by irregular width of the digital levels. Several detectors have a change of gain with a period of several scans, the largest effect is about 4%. These detectors appear to switch between two response levels during scan direction reversal; there is no apparent periodicity to these changes. This can cause small apparent difference between forward and reverse scans for portions of an image. The high-frequency noise level of each detector was characterized by the standard deviation of the first derivative in the sample direction across a flat field. Coherent sinusoidal noise patterns were determined using one-dimensional Fourier transforms. A "stitching" pattern in Band 1 has a period of 13.8 samples with a peak-to-peak amplitude ranging from 1 to 5 DN. Noise with a period of 3.24 samples is pronounced for most detectors in band 1, to a lesser extent in bands 2, 3, and 4, and below background noise levels in bands 5, 6, and 7. The geometric fidelity of the GSFC film writer used for Thematic Mapper (TM) images was assessed by measurement with accuracy bette than three micrometers of a test grid. A set of 55

  11. Thematic mapper studies of central Andean volcanoes

    NASA Technical Reports Server (NTRS)

    Francis, Peter W.

    1987-01-01

    A series of false color composite images covering the volcanic cordillera was written. Each image is 45 km (1536 x 1536 pixels) and was constructed using bands 7, 4, and 2 of the Thematic Mapper (TM) data. Approximately 100 images were prepared to date. A set of LANDSAT Multispectral Scanner (MSS) images was used in conjunction with the TM hardcopy to compile a computer data base of all volcanic structure in the Central Andean province. Over 500 individual structures were identified. About 75 major volcanoes were identified as active, or potentially active. A pilot study was begun combining Shuttle Imaging Radar (SIR) data with TM for a test area in north Chile and Bolivia.

  12. Thematic mapper study of Alaskan ophiolites

    NASA Technical Reports Server (NTRS)

    Bird, John M.

    1987-01-01

    LANDSAT Thematic Mapper (TM) images were used to produce improved geologic maps of the ophiolites of the Brooks Range, and to recognize regional-scale structures that might affect the spatial distribution of the ophiolites. From the TM data, significant information was obtained concerning the distribution of rock types and structures that could not easily be acquired with conventional geologic studies. The information obtained from the TM data, in combination with other geologic data, is being used to further the understanding of the tectonic evolution of the Brooks Range. Results of the work in the Maiyumerak Mountains area are used to illustrate the information being obtained with the LANDSAT TM data, and the way that the information is being integrated with other geologic data.

  13. Thematic Mapper image quality: Preliminary results

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Card, D. H.; Hlavka, C. A.; Likens, W. C.; Mertz, F. C.; Hall, J. R.

    1983-01-01

    Based on images analyzed so far, the band to band registration accuracy of the thematic mapper is very good. For bands within the same focal plane, the mean misregistrations are well within the specification, 0.2 pixels. For bands between the cooled and uncooled focal planes, there is a consistent mean misregistration of 0.5 pixels along-scan and 0.2-0.3 pixels across-scan. It exceeds the permitted 0.3 pixels for registration of bands between focal planes. If the mean misregistrations were removed by the data processing software, an analysis of the standard deviation of the misregistration indicates all band combinations would meet the registration specifications except for those including the thermal band. Analysis of the periodic noise in one image indicates a noise component in band 1 with a spatial frequency equivalent to 3.2 pixels in the along-scan direction.

  14. Landsat-5 Thematic Mapper outgassing effects

    USGS Publications Warehouse

    Helder, D.L.; Micijevic, E.

    2004-01-01

    A periodic 3% to 5% variation in detector response affecting both image and internal calibrator (IC) data has been observed in bands 5 and 7 of the Landsat-5 Thematic Mapper. The source for this variation is thought to be an interference effect due to buildup of an ice-like contaminant film on a ZnSe window, covered with an antireflective coating (ARC), of the cooled dewar containing these detectors. Periodic warming of the dewar is required in order to remove the contaminant and restore detector response to an uncontaminated level. These effects in the IC data have been characterized over four individual outgassing cycles using thin-film models to estimate transmittance of the window/ARC and ARC/contaminant film stack throughout the instrument lifetime. Based on the results obtained from this modeling, a lookup table procedure has been implemented that provides correction factors to improve the calibration accuracy of bands 5 and 7 by approximately 5%.

  15. Venus radar mapper attitude reference quaternion

    NASA Technical Reports Server (NTRS)

    Lyons, D. T.

    1986-01-01

    Polynomial functions of time are used to specify the components of the quaternion which represents the nominal attitude of the Venus Radar mapper spacecraft during mapping. The following constraints must be satisfied in order to obtain acceptable synthetic array radar data: the nominal attitude function must have a large dynamic range, the sensor orientation must be known very accurately, the attitude reference function must use as little memory as possible, and the spacecraft must operate autonomously. Fitting polynomials to the components of the desired quaternion function is a straightforward method for providing a very dynamic nominal attitude using a minimum amount of on-board computer resources. Although the attitude from the polynomials may not be exactly the one requested by the radar designers, the polynomial coefficients are known, so they do not contribute to the attitude uncertainty. Frequent coefficient updates are not required, so the spacecraft can operate autonomously.

  16. Thematic Mapper research in the earth sciences

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.; Stuart, Locke

    1989-01-01

    This paper's studies were initiated under the NASA program for the purpose of conducting the earth sciences research using the Landsat Thematic Mapper. The goals of the program include studies of the factors influencing the growth, health, condition, and distribution of vegetation on the earth; the processes controlling the evolution of the earth's crust; the earth's water budget and the hydrologic processes that operate at local, regional, and global scales; the physical and chemical interaction between different types of surficial materials; and the interaction between the earth's surface and its atmosphere. Twenty-seven domestic and five foreign investigations were initiated in 1985, with the results from most of them already published (one study was terminated due to the delay in the TDRSS). Twelve of the studies addressed hydrology, snow and ice, coastal processes, and near-shore oceanographic phenomena; seven addressed vegetation, soils, or animal habitat; and twelve addressed geologic subjects.

  17. Development of image mappers for hyperspectral biomedical imaging applications

    PubMed Central

    Kester, Robert T.; Gao, Liang; Tkaczyk, Tomasz S.

    2010-01-01

    A new design and fabrication method is presented for creating large-format (>100 mirror facets) image mappers for a snapshot hyperspectral biomedical imaging system called an image mapping spectrometer (IMS). To verify this approach a 250 facet image mapper with 25 multiple-tilt angles is designed for a compact IMS that groups the 25 subpupils in a 5 × 5 matrix residing within a single collecting objective's pupil. The image mapper is fabricated by precision diamond raster fly cutting using surface-shaped tools. The individual mirror facets have minimal edge eating, tilt errors of <1 mrad, and an average roughness of 5.4 nm. PMID:20357875

  18. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  19. Scrounge data processing film products for the thematic mapper

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Information on the format of the film product and type of film used for the LANDSAT-4 scrounge processed thematic mapper data is presented. Image gray scale, annotation field, and general layout are described.

  20. Thematic Mapper. Volume 1: Calibration report flight model, LANDSAT 5

    NASA Technical Reports Server (NTRS)

    Cooley, R. C.; Lansing, J. C.

    1984-01-01

    The calibration of the Flight 1 Model Thematic Mapper is discussed. Spectral response, scan profile, coherent noise, line spread profiles and white light leaks, square wave response, radiometric calibration, and commands and telemetry are specifically addressed.

  1. Landsat 4 Thematic Mapper calibration update

    USGS Publications Warehouse

    Helder, Dennis L.; Malla, Rimy; Mettler, Cory J.; Markham, Brian L.; Micijevic, Esad

    2012-01-01

    The Landsat 4 Thematic Mapper (TM) collected imagery of the Earth's surface from 1982 to 1993. Although largely overshadowed by Landsat 5 which was launched in 1984, Landsat 4 TM imagery extends the TM-based record of the Earth back to 1982 and also substantially supplements the image archive collected by Landsat 5. To provide a consistent calibration record for the TM instruments, Landsat 4 TM was cross-calibrated to Landsat 5 using nearly simultaneous overpass imagery of pseudo-invariant calibration sites (PICS) in the time period of 1988-1990. To determine if the radiometric gain of Landsat 4 had changed over its lifetime, time series from two PICS locations (a Saharan site known as Libya 4 and a site in southwest North America, commonly referred to as the Sonoran Desert site) were developed. The results indicated that Landsat 4 had been very stable over its lifetime, with no discernible degradation in sensor performance in all reflective bands except band 1. In contrast, band 1 exhibited a 12% decay in responsivity over the lifetime of the instrument. Results from this paper have been implemented at USGS EROS, which enables users of Landsat TM data sets to obtain consistently calibrated data from Landsat 4 and 5 TM as well as Landsat 7 ETM+ instruments.

  2. The Landsat thematic mapper World Data Base

    NASA Technical Reports Server (NTRS)

    Ludwig, R. W.; Masuoka, P. M.; Stuart, L.

    1985-01-01

    A World Data Base of potential thematic mapper (TM) scenes was developed to aid in acquisition planning. The World Data Base contains geopolitical, geographic and economic regions along with a format that enables users to find the satellite day, sun angle and cloud cover probability for any month of the year. Scenes that have been acquired by TM and have an average cloud cover of 30 percent of less from July 1982 when TM was launched until the Landsat system was taken over by NOAA in September 1984 are also in the World Data Base. Processed data are referenced in maps and data bases at EROS Data Center; however, a large number of acquistions have never been processed and therefore are not accessible. The World Data Base enables the rapid location of scenes and areas with the least effort making it invaluable in TM scheduling. Users of TM data can use the World Data Base to determine if scenes of interest have been acquired, the acquisition date, and if scenes have been processed to computer-compatible tape (CCT). These uses of the World Data Base make it a valuable tool in the acquisition and location of TM scenes.

  3. Revised landsat-5 thematic mapper radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Markham, B.L.; Barsi, J.A.

    2007-01-01

    Effective April 2, 2007, the radiometric calibration of Landsat-5 (L5) Thematic Mapper (TM) data that are processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) will be updated. The lifetime gain model that was implemented on May 5, 2003, for the reflective bands (1-5, 7) will be replaced by a new lifetime radiometric-calibration curve that is derived from the instrument's response to pseudoinvariant desert sites and from cross calibration with the Landsat-7 (L7) Enhanced TM Plus (ETM+). Although this calibration update applies to all archived and future L5 TM data, the principal improvements in the calibration are for the data acquired during the first eight years of the mission (1984-1991), where the changes in the instrument-gain values are as much as 15%. The radiometric scaling coefficients for bands 1 and 2 for approximately the first eight years of the mission have also been changed. Users will need to apply these new coefficients to convert the calibrated data product digital numbers to radiance. The scaling coefficients for the other bands have not changed. ?? 2007 IEEE.

  4. Thematic mapper study of Alaskan ophiolites

    NASA Technical Reports Server (NTRS)

    Bird, J. M.

    1986-01-01

    The combinations of Thematic Mapper (TM) bands that best distinguish basalts of the Brooks Range ophiolites were determined. Geochemical analyses, including major, trace, and rare earth elements (REE), are being done in order to study the significance of TM spectral variations that were observed within some of the sampled rock units. An image of the topography of the western Brooks Range and Colville Basin was constructed. Elevation data for the rest of Northern Alaska are being acquired to expand the area covered by the topography image. Two balanced cross sections (one along the eastern margin, the other along the western margin of the Brooks Range) are being constructed, using the techniques of fault-bend and fault-propagation folding. These are being used to obtain regional shortening estimates for the Brooks Range in an attempt to constrain tectonic models for the evolution of Northern Alaska. The TM data are being used to confirm reconnaissance maps and to obtain structural data where no maps exist. Along with the TM data, digital topography, seismic reflection profiles, and magnetic and gravity surveys are examined to better understand the evolution of the Colville Basin, north of the Brooks Range.

  5. Thematic mapper study of Alaskan ophiolites

    NASA Technical Reports Server (NTRS)

    Bird, John M.

    1988-01-01

    The two principle objectives of the project Thematic Mapper Study of Alaskan Ophiolites were to further develop techniques for producing geologic maps, and to study the tectonics of the ophiolite terrains of the Brooks Range and Ruby Geanticline of northern Alaska. Ophiolites, sections of oceanic lithosphere emplaced along island arcs and continental margins, are important to the understanding of mountain belt evolution. Ophiolites also provide an opportunity to study the structural, lithologic, and geochemical characteristics of ocean lithosphere, yielding a better understanding of the processes forming lithosphere. The first part of the report is a description of the methods and results of the TM mapping and gravity modeling. The second part includes papers being prepared for publication. These papers are the following: (1) an analysis of basalt spectral variations; (2) a study of basalt geochemical variations; (3) an examination of the cooling history of the ophiolites using radiometric data; (4) an analysis of shortening produced by thrusting during the Brooks Range orogeny; and (5) a study of an ophiolite using digital aeromagnetic and topographic data. Additional papers are in preparation.

  6. Landsat-4 thematic mapper and thematic mapper simulator data for a porphyry copper deposit

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.

    1984-01-01

    Aircraft thematic mapper (TM) data were analyzed to evaluate the potential utility of the Landsat-4 thematic mapper for geologic mapping and detection of hydrothermal alteration zones in the Silver Bell porphyry copper deposit in southern Arizona. The data allow a comparison between aircraft TV simulator data and the Landsat-4 TM satellite data which possess similar spectral bands. A color rationcomposite of 30-m pixels was resampled, in order to clearly define a number of hydroxyl bearing minerals, (kaolinite, sericite, white mica), pyrite and iron oxide/hydroxide minerals. The iron oxide minerals have diagnostic absorption bands in the 0.45 and 0.85 micron regions of the spectrum, and the hydrous minerals are characterized by an absorption in the 2.2 micron region. The position of the spectral bands allow the TM to identify regions of hydrothermal alteration without resorting to a data processing algorithm. The comparison of the aircraft and Landsat-4 TM data showed considerable agreement, and confirmed the utility of TM data for identifying hydrothermal alteration zones. Samples of some color TM images are provided.

  7. Preliminary evaluation of thematic mapper sensor characteristics relative to land cover/land use discrimination

    NASA Technical Reports Server (NTRS)

    Williams, D. L.; Irons, J. R.; Markham, B. L.; Nelson, R. F.; Toll, D. L.; Latty, R. S.; Stauffer, M. L.

    1983-01-01

    Preliminary experimental results of airborne thematic mapper (TM) data taken to quantify the effect of three major TM sensor parameters, spectral, spatial, and radiometric resolution, six months after launch of Landsat-4 are reported. The flight took place on Nov. 2, 1982 over Washington, D.C., and data gathered were compared with ground reference data from color airborne photography on a 1:40,000 scale. Analyses proceeded by deleting one band from each of four data sets, thus making the data equivalent to MSS data. Attention was directed to land cover/use classes in a quick-look format. A per-pixel maximum likelihood scheme was found to increase the recognition and dicrimination categorization capabilities. Finer spatial resolution, however, impeded classification due to increased within-class variability of the field-center pixels, which also incresed class overlap in the spectral data base. Improved data analyses techniques are therefore needed to exploit the available higher spatial resolution of the TM.

  8. Landsat Thematic Mapper Image Mosaic of Colorado

    USGS Publications Warehouse

    Cole, Christopher J.; Noble, Suzanne M.; Blauer, Steven L.; Friesen, Beverly A.; Bauer, Mark A.

    2010-01-01

    The U.S. Geological Survey (USGS) Rocky Mountain Geographic Science Center (RMGSC) produced a seamless, cloud-minimized remotely-sensed image spanning the State of Colorado. Multiple orthorectified Landsat 5 Thematic Mapper (TM) scenes collected during 2006-2008 were spectrally normalized via reflectance transformation and linear regression based upon pseudo-invariant features (PIFS) following the removal of clouds. Individual Landsat scenes were then mosaicked to form a six-band image composite spanning the visible to shortwave infrared spectrum. This image mosaic, presented here, will also be used to create a conifer health classification for Colorado in Scientific Investigations Map 3103. An archive of past and current Landsat imagery exists and is available to the scientific community (http://glovis.usgs.gov/), but significant pre-processing was required to produce a statewide mosaic from this information. Much of the data contained perennial cloud cover that complicated analysis and classification efforts. Existing Landsat mosaic products, typically three band image composites, did not include the full suite of multispectral information necessary to produce this assessment, and were derived using data collected in 2001 or earlier. A six-band image mosaic covering Colorado was produced. This mosaic includes blue (band 1), green (band 2), red (band 3), near infrared (band 4), and shortwave infrared information (bands 5 and 7). The image composite shown here displays three of the Landsat bands (7, 4, and 2), which are sensitive to the shortwave infrared, near infrared, and green ranges of the electromagnetic spectrum. Vegetation appears green in this image, while water looks black, and unforested areas appear pink. The lines that may be visible in the on-screen version of the PDF are an artifact of the export methods used to create this file. The file should be viewed at 150 percent zoom or greater for optimum viewing.

  9. Radiometric calibration of Landsat Thematic Mapper

    SciTech Connect

    Wukelic, G.E.; Gibbons, D.E.; Martucci, L.M.; Foote, H.P.

    1988-08-01

    Absolute calibration of satellite-acquired data is essential for quantification of scientific studies and a variety of image- processing applications. This paper describes a multiyear, on-orbit radiometric calibration of the Landsat Thematic Mapper (TM). Primary emphasis was placed on TM band 6 (thermal) calibration, but selected reflectance-band calibration measurements were also made. Twenty-five Landsat TM coverages were acquired, and included day, night, and seasonal scenes at several geographical locations. Concurrent with Landsat overpasses, thermal and reflectance field and local meteorological (surface and radiosonde) measurements were collected. At-satellite (uncorrected) radiances and temperatures for water and non-water land cover were compared to ground truth (GT) measurements after making adjustments for atmospheric (using LOWTRAN), mixed-pixel, and emissivity effects. Results indicate that for well-characterized water features, TM band 6 average corrected temperature determinations using local radiosonde data for atmospheric adjustments are within less than or equal to0.6/degree/C of GT temperature determinations. For non-water features, TM band 6 derived temperatures are within 1/degree/C of GT temperature determinations, if appropriate emissivity adjustments are made. Corrections using non-local radiosonde data resulted in errors as large as 12/degree/C. Corrections using the US Standard atmosphere gave temperature values within 1 to 2/degree/C of GT. The average uncertainty for field instruments was +-0.2/degree/C; average uncertainty for Landsat TM corrected temperature determinations was +-0.4/degree/C. A cross-calibration of TM band 6 and the Advanced Very High Resolution Radiometer (AVHRR) for a Landsat overpass gave similar temperature results. 15 refs., 3 figs., 5 tabs.

  10. Airborne laser scanning for high-resolution mapping of Antarctica

    NASA Astrophysics Data System (ADS)

    Csatho, Bea; Schenk, Toni; Krabill, William; Wilson, Terry; Lyons, William; McKenzie, Garry; Hallam, Cheryl; Manizade, Serdar; Paulsen, Timothy

    In order to evaluate the potential of airborne laser scanning for topographic mapping in Antarctica and to establish calibration/validation sites for NASA's Ice, Cloud and land Elevation Satellite (ICESat) altimeter mission, NASA, the U.S. National Science Foundation (NSF), and the U.S. Geological Survey (USGS) joined forces to collect high-resolution airborne laser scanning data.In a two-week campaign during the 2001-2002 austral summer, NASA's Airborne Topographic Mapper (ATM) system was used to collect data over several sites in the McMurdo Sound area of Antarctica (Figure 1a). From the recorded signals, NASA computed laser points and The Ohio State University (OSU) completed the elaborate computation/verification of high-resolution Digital Elevation Models (DEMs) in 2003. This article reports about the DEM generation and some exemplary results from scientists using the geomorphologic information from the DEMs during the 2003-2004 field season.

  11. An evaluation of simulated Thematic Mapper data and Landsat MSS data for discriminating suburban and regional land use and land cover

    NASA Technical Reports Server (NTRS)

    Toll, D. L.

    1984-01-01

    An airborne multispectral scanner, operating in the same spectral channels as the Landsat Thematic Mapper (TM), was used in a region east of Denver, CO, for a simulation test performed in the framework of using TM to discriminate the level I and level II classes. It is noted that at the 30-m spatial resolution of the Thematic Mapper Simulator (TMS) the overall discrimination for such classes as commercial/industrial land, rangeland, irrigated sod, irrigated alfalfa, and irrigated pasture was superior to that of the Landsat Multispectral Scanner, primarily due to four added spectral bands. For residential and other spectrally heterogeneous classes, however, the higher resolution of TMS resulted in increased variability within the class and a larger spectral overlap.

  12. An overview of the thematic mapper geometric correction system

    NASA Technical Reports Server (NTRS)

    Beyer, E. P.

    1983-01-01

    Geometric accuracy specifications for LANDSAT 4 are reviewed and the processing concepts which form the basis of NASA's thematic mapper geometric correction system are summarized for both the flight and ground segments. The flight segment includes the thematic mapper instrument, attitude measurement devices, attitude control, and ephemeris processing. For geometric correction the ground segment uses mirror scan correction data, payload correction data, and control point information to determine where TM detector samples fall on output map projection systems. Then the raw imagery is reformatted and resampled to produce image samples on a selected output projection grid system.

  13. Data delivery system for MAPPER using image compression

    NASA Astrophysics Data System (ADS)

    Yang, Jeehong; Savari, Serap A.

    2013-03-01

    The data delivery throughput of electron beam lithography systems can be improved by applying lossless image compression to the layout image and using an electron beam writer that can decode the compressed image on-the-fly. In earlier research we introduced the lossless layout image compression algorithm Corner2, which assumes a somewhat idealized writing strategy, namely row-by-row with a raster order. The MAPPER system has electron beam writers positioned in a lattice formation and each electron beam writer writes a designated block in a zig-zag order. We introduce Corner2-MEB, which redesigns Corner2 for MAPPER systems.

  14. Intraband radiometric performance of the Landsat Thematic Mappers.

    USGS Publications Warehouse

    Kieffer, H.H.; Cook, D.A.; Eliason, E.M.; Eliason, P.T.

    1985-01-01

    Radiometric characteristics have been examined of the Landsat-4 and Landsat-5 Thematic Mappers (TMs) that can be established without absolute calibration of spectral data. This analysis is based on radiometrically and geometrically raw (B-type) data of both uniform (flat-field) and high-contrast scenes. Subscenes selected for uniform radiance were used to characterized subtle radiometric differences and noise problems. Although the general performance of the Thematic Mappers is excellent, various anomalies that have a magnitude of a few digital levels (DN) or less are quantified. -from Authors

  15. Nitrogen Source and Loading Data for EPA Estuary Data Mapper

    EPA Science Inventory

    Nitrogen source and loading data have been compiled and aggregated at the scale of estuaries and associated watersheds of the conterminous United States, using the spatial framework in EPA's Estuary Data Mapper (EDM) to provide system boundaries. Original sources of data include...

  16. Lunar Resource Mapper/Lunar Geodetic Scout program status

    NASA Technical Reports Server (NTRS)

    Conley, Mike

    1992-01-01

    Information is given in viewgraph form on the Lunar Resource Mapper/Lunar Geodetic Scout (LRM/LGS) program status. Topics covered include the LEXWG Lunar Observer science measurement priorities, space exploration initiative priorities, the question of why a lunar orbiting mission is attractive to the Space Exploration Initiative (SEI), instrument selection, major milestones, and the organization of the LRM/LGS Program Office.

  17. Spectroradiometric calibration of the Thematic Mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Palmer, J. (Principal Investigator); Slater, P.

    1984-01-01

    Results of an analysis that relates TM saturation level to ground reflectance, calendar date, latitude, and atmospheric conditions are reported. The determination of the spectral reflectance at the entrance pupil of the LANDSAT 4 pupil of the thematic mapper is described.

  18. Spectroradiometric calibration of the thematic mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Palmer, J. M.; Slater, P. N.

    1983-01-01

    The results of an analysis that relates thematic mapper (TM) saturation level to ground reflectance, calendar date, latitude, and atmospheric condition is provided. A revised version of the preprint included with the last quarterly report is also provided for publication in the IEEE Transactions on Geoscience and Remote Sensing.

  19. Thematic Mapper. Volume 2: Flight model preshipment review

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The various systems of the Thematic Mapper are reviewed and a comparison of measured and specified performance is given. Test methodologies are described. The specific instrument systems discussed include the power supply assembly, scan mirror, electronics module, focal plane assembly, radiometer, and radiation cooler.

  20. Data and Information Exchange System for the "Reindeer Mapper" Project

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy; Yurchak, Boris

    2005-01-01

    During this past year, the Reindeer Mapper Intranet system has been set up on the NASA system, 8 team members have been established, a Reindeer Mapper reference list containing 696 items has been entered, 6 power point presentations have been put on line for review among team members, 304 satellite images have been catalogued (including 16 Landsat images, 288 NDVI 10-day composited images and an anomaly series- May 1998 to December 2002, and 56 SAR CEOS S A R format files), schedules and meeting dates are being shared, students at the Nordic Sami Institute are experimenting with the system for reindeer herder indigenous knowledge sharing, and an "address book" is being developed. Several documents and presentations have been translated and made available in Russian for our Russian colleagues. This has enabled our Russian partners to utilize documents and presentations for use in their research (e.g., SAR imagery comparisons with Russian GIS of specific study areas) and discussion with local colleagues.

  1. Geometric correction of Landsat 4 and 5 Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Beyer, E. P.; Brooks, J.; Salomonson, V. V.

    1985-01-01

    Landsat-4 was launched on July 16, 1982, while the launch of Landsat-5 took place on March 1, 1984. The earth-observing instruments employed were the Multispectral Scanner (MSS), which has flown since 1972 on Landsat satellites, and the Thematic Mapper (TM). The TM provides improved spatial radiance and spectral resolution. The improved capabilities of the TM, the use of different scanning mechanisms relative to the MSS, and the use of a new spacecraft with different mechanical operating characteristics led to a significant challenge in processing the TM and MSS data. The current paper has mainly the objective to present recent results which can provide information regarding the quality of processing as measured against specifications. The results obtained so far for the Thematic Mapper Image Processing System (TIPS), though limited, are found to be quite encouraging as far as the geometric processing of the TM is concerned.

  2. Thematic Mapper radiometric correction research and development results and performance

    NASA Technical Reports Server (NTRS)

    Singh, A.

    1985-01-01

    The present paper has the objective to discuss three modifications made to the Thematic Mapper Image Processing System (TIPS) radiometric correction process during the R&D period, before turnover of the Landsat Ground Segment to the National Oceanic and Atmospheric Administration. The R&D period was to enhance the correction performance of the ground processing of Thematic Mapper (TM) data, taking into account the correction of sensor anomalies. In the context of a brief review of the major steps in TM radiometric correction, a description is provided of the approaches employed to overcome the effects of the Landsat-5 light leak and the saturated calibration lamp states. Attention is also given to scene content correction limitations, and a performance bench mark.

  3. Thematic Mapper radiometric correction research and development results and performance

    NASA Astrophysics Data System (ADS)

    Singh, A.

    1985-09-01

    The present paper has the objective to discuss three modifications made to the Thematic Mapper Image Processing System (TIPS) radiometric correction process during the R&D period, before turnover of the Landsat Ground Segment to the National Oceanic and Atmospheric Administration. The R&D period was to enhance the correction performance of the ground processing of Thematic Mapper (TM) data, taking into account the correction of sensor anomalies. In the context of a brief review of the major steps in TM radiometric correction, a description is provided of the approaches employed to overcome the effects of the Landsat-5 light leak and the saturated calibration lamp states. Attention is also given to scene content correction limitations, and a performance bench mark.

  4. LANDSAT D to test thematic mapper, inaugurate operational system

    NASA Technical Reports Server (NTRS)

    1982-01-01

    NASA will launch the Landsat D spacecraft on July 9, 1982 aboard a new, up-rated Delta 3920 expendable launch vehicle. LANDSAT D will incorporate two highly sophisticated sensors; the flight proven multispectral scanner; and a new instrument expected to advance considerably the remote sensing capabilities of Earth resources satellites. The new sensor, the thematic mapper, provides data in seven spectral (light) bands with greatly improved spectral, spatial and radiometric resolution.

  5. High-intensity flux mapper for concentrating solar collectors

    SciTech Connect

    Cannon, T.W.; Gaul, H.W.

    1982-02-01

    The flux mapper consists of a ceramic scatter plate, video camera with silicon diode array image tube (vidicon), 75 mm focal-length lens with appropriate filters, video frame store, television monitors, disk drive, magnetic tape drive and minicomputer. The camera and scatter plate are installed on a parabolic solar collector at SERI's Advanced Component Research Facility. Calibration was made by focussing the sun directly onto the vidicon target. Light intensity calibration is estimated to be accurate to about 7%. (LEW)

  6. The eNanoMapper database for nanomaterial safety information

    PubMed Central

    Chomenidis, Charalampos; Doganis, Philip; Fadeel, Bengt; Grafström, Roland; Hardy, Barry; Hastings, Janna; Hegi, Markus; Jeliazkov, Vedrin; Kochev, Nikolay; Kohonen, Pekka; Munteanu, Cristian R; Sarimveis, Haralambos; Smeets, Bart; Sopasakis, Pantelis; Tsiliki, Georgia; Vorgrimmler, David; Willighagen, Egon

    2015-01-01

    Summary Background: The NanoSafety Cluster, a cluster of projects funded by the European Commision, identified the need for a computational infrastructure for toxicological data management of engineered nanomaterials (ENMs). Ontologies, open standards, and interoperable designs were envisioned to empower a harmonized approach to European research in nanotechnology. This setting provides a number of opportunities and challenges in the representation of nanomaterials data and the integration of ENM information originating from diverse systems. Within this cluster, eNanoMapper works towards supporting the collaborative safety assessment for ENMs by creating a modular and extensible infrastructure for data sharing, data analysis, and building computational toxicology models for ENMs. Results: The eNanoMapper database solution builds on the previous experience of the consortium partners in supporting diverse data through flexible data storage, open source components and web services. We have recently described the design of the eNanoMapper prototype database along with a summary of challenges in the representation of ENM data and an extensive review of existing nano-related data models, databases, and nanomaterials-related entries in chemical and toxicogenomic databases. This paper continues with a focus on the database functionality exposed through its application programming interface (API), and its use in visualisation and modelling. Considering the preferred community practice of using spreadsheet templates, we developed a configurable spreadsheet parser facilitating user friendly data preparation and data upload. We further present a web application able to retrieve the experimental data via the API and analyze it with multiple data preprocessing and machine learning algorithms. Conclusion: We demonstrate how the eNanoMapper database is used to import and publish online ENM and assay data from several data sources, how the “representational state transfer

  7. INTRABAND RADIOMETRIC PERFORMANCE OF THE LANDSAT 4 THEMATIC MAPPER.

    USGS Publications Warehouse

    Kieffer, Hugh H.; Eliason, Eric M.; Chavez, Pat S.; ,

    1985-01-01

    This preliminary report examines those radiometric characteristics of the Landsat 4 Thematic Mapper (TM) that can be established without absolute calibration of spectral data. Analysis is based largely on radiometrically raw (B type) data of three daytime and two nighttime scenes; in most scenes, a set of 512 lines were examined on an individual-detector basis. Subscenes selected for uniform-radiance were used to characterize subtle radiometric differences and noise problems.

  8. Nano Mapper: an Internet knowledge mapping system for nanotechnology development.

    PubMed

    Li, Xin; Hu, Daning; Dang, Yan; Chen, Hsinchun; Roco, Mihail C; Larson, Catherine A; Chan, Joyce

    2009-04-01

    Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (http://nanomapper.eller.arizona.edu), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976-2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005-2006 identified through the Nano Mapper system.

  9. Nano Mapper: an Internet knowledge mapping system for nanotechnology development

    PubMed Central

    Hu, Daning; Dang, Yan; Chen, Hsinchun; Roco, Mihail C.; Larson, Catherine A.; Chan, Joyce

    2008-01-01

    Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (http://nanomapper.eller.arizona.edu), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976–2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005–2006 identified through the Nano Mapper system. PMID:21170121

  10. Low voltage resist processes developed for MAPPER tool first exposures

    NASA Astrophysics Data System (ADS)

    Rio, D.; Constancias, C.; van Nieuwstadt, J.; Vijverberg, J.; Derrough, S.; Icard, B.; Pain, L.

    2010-05-01

    The FP7 European project MAGIC [1] aims at designing a multi electron beam machine. In the frame of this project, LETI evaluates a multibeam tool from MAPPER lithography [2]. Each beam has an acceleration voltage of 5kV. A tool has been installed in LETI premises in July 2009. In order to prepare its evaluation, preliminary work was performed on Gaussian beam tools down to 5kV. It aimed at the determination of a stable and robust resist process allowing high resolution at 5kV. Then those results were used to characterize MAPPER tool performances. Meeting the requirements of high resolution and low roughness at low voltage, Dow Corningmolecular glass HSQ (hydrogen silsesquioxane) and MicroChem PMMA (polymethylmethacrylate) were used to test MAPPER tool as negative and positive tone resist references. We did exposures at beam acceleration voltages from 5 kV up to 100 kV. Different post application bake (PAB) temperatures were applied to resist. Several developer concentrations were also tested. The impact of those three parameters on contrast and resolution was checked. Resists chemical characterization was performed with FTIR (Fourier transform infra red) spectroscopy in order to understand the mechanisms leading to the observed variations of contrast and exposure dose as process parameters are changed. The main purpose of this work was to show that high resolution can be achieved at 5kV. First exposures performed with MAPER tool confirmed those results.

  11. COMET: a planned airborne mission to simultaneously measure CO2 and CH4 columns using airborne remote sensing and in-situ techniques

    NASA Astrophysics Data System (ADS)

    Fix, A.; Amediek, A.; Büdenbender, C.; Ehret, G.; Wirth, M.; Quatrevalet, M.; Rapp, M.; Gerilowski, K.; Bovensmann, H.; Gerbig, C.; Pfeilsticker, K.; Zöger, M.; Giez, A.

    2013-12-01

    To better predict future trends in the cycles of the most important anthropogenic greenhouse gases, CO2 and CH4, there is a need to measure and understand their distribution and variation on various scales. To address these requirements it is envisaged to deploy a suite of state-of-the-art airborne instruments that will be capable to simultaneously measure the column averaged dry-air mixing ratios (XGHG) of both greenhouse gases along the flight path. As the measurement platform serves the research aircraft HALO, a modified Gulfstream G550, operated by DLR. This activity is dubbed CoMet (CO2 and Methane Mission). The instrument package of CoMet will consist of active and passive remote sensors as well as in-situ instruments to complement the column measurements by highly-resolved profile information. As an active remote sensing instrument CHARM-F, the integrated-path differential absorption lidar currently under development at DLR, will provide both, XCO2 and XCH4, below flight altitude. The lidar instrument will be complemented by MAMAP which is a NIR/SWIR absorption spectrometer developed by University of Bremen and which is also capable to derive XCH4 and XCO2. As an additional passive instrument, mini-DOAS operated by University of Heidelberg will contribute with additional context information about the investigated air masses. In order to compare the remote sensing instruments with integrated profile information, in-situ instrumentation is indispensable. The in-situ package will therefore comprise wavelength-scanned Cavity-Ring-Down Spectroscopy (CRDS) for the detection of CO2, CH4, CO and H2O and a flask sampler for collection of atmospheric samples and subsequent laboratory analysis. Furthermore, the BAsic HALO Measurement And Sensor System (BAHAMAS) will provide an accurate set of meteorological and aircraft state parameters for each scientific flight. Within the frame of the first CoMet mission scheduled for the 2015 timeframe it is planned to concentrate

  12. Landsat Thematic Mapper monitoring of turbid inland water quality

    SciTech Connect

    Lathrop, R.G., JR. )

    1992-04-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions. 17 refs.

  13. Registering Thematic Mapper imagery to digital elevation models

    NASA Technical Reports Server (NTRS)

    Frew, J.

    1984-01-01

    The problems encountered when attempting to register Landsat Thematic Mapper (TM) data to U.S. geological survey digital elevation models (DEMs) are examined. It is shown that TM and DEM data are not available in the same map projection, necessitating geometric transformation of one of the data type, that the TM data are not accurately located in their nominal projection, and that TM data have higher resolution than most DEM data, but oversampling the DEM data to TM resolution introduces systematic noise. Further work needed in this area is discussed.

  14. Radiometric calibration of Landsat Thematic Mapper multispectral images

    USGS Publications Warehouse

    Chavez, P.S.

    1989-01-01

    A main problem encountered in radiometric calibration of satellite image data is correcting for atmospheric effects. Without this correction, an image digital number (DN) cannot be converted to a surface reflectance value. In this paper the accuracy of a calibration procedure, which includes a correction for atmospheric scattering, is tested. Two simple methods, a stand-alone and an in situ sky radiance measurement technique, were used to derive the HAZE DN values for each of the six reflectance Thematic Mapper (TM) bands. The DNs of two Landsat TM images of Phoenix, Arizona were converted to surface reflectances. -from Author

  15. Landsat Thematic Mapper monitoring of turbid inland water quality

    NASA Technical Reports Server (NTRS)

    Lathrop, Richard G., Jr.

    1992-01-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions.

  16. Moon Mineralogy Mapper: Unlocking the Mysteries of the Moon

    NASA Technical Reports Server (NTRS)

    Runyon, Cassandra

    2006-01-01

    Moon Mineralogy Mapper (M3) is a state-of-the-art high spectral resolution imaging spectrometer that will characterize and map the mineral composition of the Moon. The M3 instrument will be flown on Chandrayaan-I, the Indian Space Research Organization (ISRO) mission to be launched in March 2008. The Moon is a cornerstone to understanding early solar system processes. M3 high-resolution compositional maps will dramatically improve our understanding about the early evolution of the terrestrial planets and will provide an assessment of lunar resources at high spatial resolution.

  17. Spectral characterization of the LANDSAT Thematic Mapper sensors

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Barker, J. L.

    1984-01-01

    The spectral coverage characteristics of the two thematic mapper instruments were determined by analyses of spectral measurements of the optics, filters, and detectors. The following results are presented: (1) band 2 and 3 flatness was slightly below specification, and band 7 flatness was below specification; (2) band 5 upper-band edge was higher than specifications; (3) band 2 band edges were shifted upward about 9 nm relative to nominal; and (4) band 4, 5, and 7 lower band edges were 16 to 18 nm higher then nominal.

  18. A prospectus for Thematic Mapper research in the Earth sciences

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Earth science applications of Thematic Mapper (TM) imagery are discussed. Prospective research themes are defined in a general sense in relation to the technical measurement capabilities of the TM and the various types of Earth information that can potentially be derived from multispectral TM imagery. An overview of the system developed to acquire and reduce TM data is presented. The technical capabilities of this system are presented in detail. The orbital performance of the TM sensor is described, based upon the analysis of LANDSAT 4 and 5 TM data collected to date.

  19. A comparative study of the thematic mapper and Landsat spectral bands from field measurement data

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Henderson, K. E.

    1982-01-01

    Principal component and factor analysis techniques were applied to the spectral data collected over 27 field plots of various crops under varying agronomic conditions. The spectral data was integrated over the proposed thematic mapper bands and Landsat MSS spectral bands. The results were examined to compare the discrimination power of the thematic mapper. Previously announced in STAR as N81-33549

  20. Thematic Mapper Image Processing System - Geometric correction performance for Landsat-5

    NASA Technical Reports Server (NTRS)

    Brooks, J.

    1985-01-01

    Geometric correction performance data are presented for the Landsat-5 Thematic Mapper and the Thematic Mapper Image Processing System. Temporal registration and geodetic rectification results are displayed in the form of 90 percent errors. Both error estimation and direct measurements demonstrate that the instrument and system meet performance requirements.

  1. Advanced mesospheric temperature mapper for high-latitude airglow studies.

    PubMed

    Pautet, P-D; Taylor, M J; Pendleton, W R; Zhao, Y; Yuan, T; Esplin, R; McLain, D

    2014-09-10

    Over the past 60 years, ground-based remote sensing measurements of the Earth's mesospheric temperature have been performed using the nighttime hydroxyl (OH) emission, which originates at an altitude of ∼87  km. Several types of instruments have been employed to date: spectrometers, Fabry-Perot or Michelson interferometers, scanning-radiometers, and more recently temperature mappers. Most of them measure the mesospheric temperature in a few sample directions and/or with a limited temporal resolution, restricting their research capabilities to the investigation of larger-scale perturbations such as inertial waves, tides, or planetary waves. The Advanced Mesospheric Temperature Mapper (AMTM) is a novel infrared digital imaging system that measures selected emission lines in the mesospheric OH (3,1) band (at ∼1.5  μm) to create intensity and temperature maps of the mesosphere around 87 km. The data are obtained with an unprecedented spatial (∼0.5  km) and temporal (typically 30″) resolution over a large 120° field of view, allowing detailed measurements of wave propagation and dissipation at the ∼87  km level, even in the presence of strong aurora or under full moon conditions. This paper describes the AMTM characteristics, compares measured temperatures with values obtained by a collocated Na lidar instrument, and presents several examples of temperature maps and nightly keogram representations to illustrate the excellent capabilities of this new instrument. PMID:25321674

  2. Thematic Mapper Image Production in the Engineering Checkout Phase

    NASA Technical Reports Server (NTRS)

    Fischel, D.; Lyon, J. C.

    1984-01-01

    Thematic Mapper data processing during LANDSAT 4's first year was performed on an engineering evaluation basis. Fully corrected products were created for some 282 scenes during this period using software and systems based upon the intended full production systems to become operational following the evaluation period. The engineering systems included substantial software and procedures for assessing spacecraft, instrument and ground processing algorithmic behavior. The data systems are described in terms of performance objectives, processing organization and data flow, quality assurance measurements and achievement of goals. The a priori implementation of TM radiometric and geometric corrections is described. Changes to processing suggested by or implemented on the basis of on-orbit data analysis are discussed. Spacecraft, instrument and algorithmic performance are evaluated.

  3. Analysis of forest structure using thematic mapper simulator data

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.; Westman, W. E.; Brass, J. A.; Stephenson, N. J.; Ambrosia, V. G.; Spanner, M. A.

    1986-01-01

    The potential of Thematic Mapper Simulator (TMS) data for sensing forest structure information has been explored by principal components and feature selection techniques. In a survey of forest structural properties conducted for 123 field sites of the Sequoia National Park, the canopy closure could be well estimated (r = 0.62 to 0.69) by a variety of channel bands and band ratios, without reference to the forest type. Estimation of the basal area was less successful (r = 0.51 or less) on the average, but could be improved for certain forest types when data were stratified by floristic composition. To achieve such a stratification, individual sites were ordinated by a detrended correspondence analysis based on the canopy of dominant species. The analysis of forest structure in the Sequoia data suggests that total basal area can be best predicted in stands of lower density, and in younger even-aged managed stands.

  4. Spectroradiometric calibration of the Thematic Mapper and Multispectral Scanner system

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Palmer, J. M. (Principal Investigator)

    1984-01-01

    Radiometric measurements were taken on the morning of the LANDSAT 5 Thematic Mapper overpass. The sky was cloud free and the sites were dry. Barnes multiband radiometer data were collected for a 4 x 4 pixel area and two fractional pixel areas of slightly higher and lower reflectances than the larger area. Helicopter color photography was obtained of all the ground areas. This photography will allow a detailed reflectance map of the 4 x 4 pixel are to be made and registered to the TM imagery to an accuracy of better than half a pixel. Spectropolarimeter data were also collected of the 4 x 4 pixel area from the helicopter. In addition, ground based solar radiometer data were collected to provide spectral extinction optical thickness valves. The radiative transfer theory used in the development of the Herman code which was used in predicting the TM entrance pupil spectral radiances from the ground based measurements is described.

  5. Spectral characterization of the LANDSAT thematic mapper sensors

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Barker, J. L.

    1983-01-01

    Data collected on the spectral characteristics of the LANDSAT-4 and LANDSAT-4 backup thematic mapper instruments, the protoflight (TM/PF) and flight (TM/F) models, respectively, are presented and analyzed. Tests were conducted on the instruments and their components to determine compliance with two sets of spectral specifications: band-by-band spectral coverage and channel-by-channel within-band spectral matching. Spectral coverage specifications were placed on: (1) band edges--points at 50% of peak response, (2) band edge slopes--steepness of rise and fall-off of response, (3) spectral flatness--evenness of response between edges, and (4) spurious system response--ratio of out-of-band response to in-band response. Compliance with the spectral coverage specifications was determined by analysis of spectral measurements on the individual components contributing to the overall spectral response: filters, detectors, and optical surfaces.

  6. In-flight Absolute Radiometric Calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, D.; Savage, R. K.

    1984-01-01

    The Thematic Mapper (TM) multispectral scanner system was placed into Earth orbit on July 16, 1982, as part of NASA's LANDSAT 4 payload. To determine temporal changes of the absolute radiometric calibration of the entire system in flight, spectroradiometric measurements of the ground and the atmosphere are made simultaneously with TM image acquisitions over the White Sands, New Mexico area. By entering the measured values into an atmospheric radiative transfer program, the radiance levels at the entrance pupil of the TM in four of the TM spectral bands are determined. These levels are compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors. By reference to an adjacent, larger uniform area, the calibration is extended to all 16 detectors in each of the three bands.

  7. Analysis of conifer forest regeneration using Landsat Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Fiorella, Maria; Ripple, William J.

    1995-01-01

    Landsat Thematic Mapper (TM) data were used to evaluate young conifer stands in the western Cascade Mountains of Oregon. Regression and correlation analyses were used to describe the relationships between TM band values and age of young Douglas-fir stands (2 to 35 years old). Spectral data from well regenerated Douglas-fir stands were compared to those of poorly regenerated conifer stands. TM bands 1, 2, 3, 5, 6, and 7 were inversely correlated with the age (r greater than or equal to -0.80) of well regenerated Douglas-fir stands. Overall, the 'structural index' (TM 4/5 ratio) had the highest correlation to age of Douglas-fir stands (r = 0.96). Poorly regenerated stands were spectrally distinct from well regenerated Douglas-fir stands after the stands reached an age of approximately 15 years.

  8. The Moon mineralogy mapper (M3) on Chandrayaan-1

    USGS Publications Warehouse

    Pieters, C.M.; Boardman, J.; Buratti, B.; Chatterjee, A.; Clark, R.; Glavich, T.; Green, R.; Head, J.; Isaacson, P.; Malaret, E.; McCord, T.; Mustard, J.; Petro, N.; Runyon, C.; Staid, M.; Sunshine, J.; Taylor, L.; Tompkins, S.; Varanasi, P.; White, M.

    2009-01-01

    The Moon Mineralogy Mapper (M3) is a NASA-supported guest instrument on ISRO's remote sensing mission to Moon, Chandrayaan-1. The M3 is an imaging spectrometer that operates from the visible into the near-infrared (0.42-3.0 ??m) where highly diagnostic mineral absorption bands occur. Over the course of the mission M3 will provide low resolution spectroscopic data for the entire lunar surface at 140 m/pixel (86 spectral channels) to be used as a base-map and high spectral resolution science data (80 m/pixel; 260 spectral channels) for 25-50% of the surface. The detailed mineral assessment of different lunar terrains provided by M3 is principal information needed for understanding the geologic evolution of the lunar crust and lays the foundation for focused future in-depth exploration of the Moon.

  9. Spectroradiometric calibration of the thematic mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Slater, Philip N.; Palmer, James M.

    1986-01-01

    A list of personnel who have contributed to the program is provided. Sixteen publications and presentations are also listed. A preprint summarizing five in-flight absolute radiometric calibrations of the solar reflective bands of the LANDSAT-5 Thematic Mapper is presented. The 23 band calibrations made on the five dates show a 2.5% RMS variation from the mean as a percentage of the mean. A preprint is also presented that discusses the reflectance-based results of the above preprint. It proceeds to analyze and present results of a second, independent calibration method based on radiance measurements from a helicopter. Radiative transfer through the atmosphere, model atmospheres, the calibration methodology used at White Sands and the results of a sensitivity analysis of the reflectance-based approach is also discussed.

  10. The Lightning Mapper Sensor for GOES-NEXT

    NASA Astrophysics Data System (ADS)

    Manlief, S. K.

    1992-03-01

    This paper presents a design overview of the Lightning Mapper Sensor (LMS). The LMS is an instrument designed to be flown on a GOES-NEXT satellite. Its function is to detect total lightning activity within a 8 x 10 degree FOV with a 90 percent detection efficiency and with a spatial resolution of 10 km (a scale typical of convective storm cells). From the GOES 75-deg W location, the LMS will provide coverage of the continental United States and the northern portion of South America to 10-deg S latitude. It will provide data on the distribution and variability of lightning activity, and increase understanding of the underlying and interrelated phenomena (including atmospheric convection, lightning/precipitation relationships, lightning/trace-gas interactions, and the global electric circuit). The LMS will be a valuable 'nowcasting' tool providing severe storm warning and tracking information to population centers, aircraft, shipping, launch sites and forest-fire fighters.

  11. Contribution of LANDSAT-4 thematic mapper data to geologic exploration

    NASA Technical Reports Server (NTRS)

    Everett, J. R.; Dykstra, J. D.; Sheffield, C. A.

    1983-01-01

    The increased number of carefully selected narrow spectral bands and the increased spatial resolution of thematic mapper data over previously available satellite data contribute greatly to geologic exploration, both by providing spectral information that permits lithologic differentiation and recognition of alteration and spatial information that reveals structure. As vegetation and soil cover increase, the value of spectral components of TM data decreases relative to the value of the spatial component of the data. However, even in vegetated areas, the greater spectral breadth and discrimination of TM data permits improved recognition and mapping of spatial elements of the terrain. As our understanding of the spectral manifestations of the responses of soils and vegetation to unusual chemical environments increases, the value of spectral components of TM data to exploration will greatly improve in covered areas.

  12. Classification of corn and soybeans using multitemporal Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.

    1984-01-01

    The multitemporal classification approach based on the greenness profile derived from Landsat Multispectral Scanner (MSS) spectral bands has proved successful in effectively separating and identifying corn, soybean, and other ground cover classes. Features derived from these profiles have been shown to carry virtually all the information contained in the original data and, in addition, have been shown to be stable over a large geographic area of the United States. The objective of this investigation was to determine if the same features derived from multitemporal Thematic Mapper (TM) data would also prove effective in separating these two crop types, and, in fact, if algorithms developed for MSS could be directly applied to TM. It is shown that this is indeed the case. In addition, because of greater spatial and spectral resolution, the accuracy of TM classifications is better than in MSS.

  13. Thematic mapper - An overview of spectral band registration

    NASA Technical Reports Server (NTRS)

    Freudenstein, W. H.

    1981-01-01

    The Thematic Mapper (TM) is a high-resolution radiometer designed for earth resources classification and mapping. The TM employs multispectral scanning in a near polar orbit to sweep a 185-km swath. Data are obtained through a combination of spacecraft motion and the sweeping action of the scan mirror. These data are transmitted either directly to ground stations around the world or through a relay to the central data processing facility at White Sands, NM. Seven spectral passbands are employed, and applications include coastal water mapping, soil vegetation differentiation, biomass surveys, water body delineation, vegetation moisture measurement, plant heat stress management, and hydrothermal mapping. Attention is given to the scan mirror assembly, scan nonlinearities, the characterization and compensation of scan profiles, experimental performance, and a procedure for midscan correction.

  14. Thematic Mapper simulator research for forest resource mapping in the Clearwater National Forest, Idaho

    NASA Technical Reports Server (NTRS)

    Brass, J. A.; Peterson, D. L.; Spanner, M. A.; Ambrosia, V. G.; Ulliman, J. J.; Brockhaus, J.

    1984-01-01

    Per-pixel maximum likelihood digital classification and photo interpretation of Thematic Mapper Simulator (TMS) composited images for a managed conifer forest were used to evaluate both land cover and forest structure characteristics. TMS channels 4, 7, 5 and 3, which were found to be optimal for forest vegetation analysis, used the full range of the Thematic Mapper's spectral capability. Photo interpretation results indicate that a false color composite from TMS channels 4, 7, and 2 provided the highest accuracies; the combination of improved spatial, spectral and radiometric resolution of the Thematic Mapper yielded greater sensitivity to forest structural characteristics.

  15. Postlaunch corrections for Thematic Mapper 5 (TM-5) radiometry in the Thematic Mapper Image Processing System (TIPS)

    NASA Technical Reports Server (NTRS)

    Singh, A.

    1985-01-01

    The paper discusses postlaunch corrections made to the calibration lamp radiance values for band 3 of TM-5 (Thematic Mapper instrument on Landsat-5). It is hypothesized that the low in-orbit temperatures have caused the shutter arm to contract slightly, causing the detectors to view the lamps through different parts of the lens system. Owing to unevenness in the lenses this is introducing an odd-even channel discrepancy in the computed gains, resulting in striped imagery. The process used to compute the new values is presented along with supporting data and the old and new radiance numbers. The new values solve the relative radiometric correction problem of striping. However, the effect on the absolute radiometric correction performance is not quantitatively known.

  16. Postlaunch corrections for Thematic Mapper 5 (TM-5) radiometry in the Thematic Mapper Image Processing System (TIPS)

    NASA Astrophysics Data System (ADS)

    Singh, A.

    1985-09-01

    The paper discusses postlaunch corrections made to the calibration lamp radiance values for band 3 of TM-5 (Thematic Mapper instrument on Landsat-5). It is hypothesized that the low in-orbit temperatures have caused the shutter arm to contract slightly, causing the detectors to view the lamps through different parts of the lens system. Owing to unevenness in the lenses this is introducing an odd-even channel discrepancy in the computed gains, resulting in striped imagery. The process used to compute the new values is presented along with supporting data and the old and new radiance numbers. The new values solve the relative radiometric correction problem of striping. However, the effect on the absolute radiometric correction performance is not quantitatively known.

  17. Airborne Laser/GPS Mapping of Assateague National Seashore Beach

    NASA Technical Reports Server (NTRS)

    Kradill, W. B.; Wright, C. W.; Brock, John C.; Swift, R. N.; Frederick, E. B.; Manizade, S. S.; Yungel, J. K.; Martin, C. F.; Sonntag, J. G.; Duffy, Mark; Hulslander, William

    1997-01-01

    Results are presented from topographic surveys of the Assateague Island National Seashore using recently developed Airborne Topographic Mapper (ATM) and kinematic Global Positioning System (GPS) technology. In November, 1995, and again in May, 1996, the NASA Arctic Ice Mapping (AIM) group from the Goddard Space Flight Center's Wallops Flight Facility conducted the topographic surveys as a part of technology enhancement activities prior to conducting missions to measure the elevation of extensive sections of the Greenland Ice Sheet as part of NASA's Global Climate Change program. Differences between overlapping portions of both surveys are compared for quality control. An independent assessment of the accuracy of the ATM survey is provided by comparison to surface surveys which were conducted using standard techniques. The goal of these projects is to mdke these measurements to an accuracy of +/- 10 cm. Differences between the fall 1995 and 1996 surveys provides an assessment of net changes in the beach morphology over an annual cycle.

  18. Mars Airborne Prospecting Spectrometer

    NASA Astrophysics Data System (ADS)

    Steinkraus, J. M.; Wright, M. W.; Rheingans, B. E.; Steinkraus, D. E.; George, W. P.; Aljabri, A.; Hall, J. L.; Scott, D. C.

    2012-06-01

    One novel approach towards addressing the need for innovative instrumentation and investigation approaches is the integration of a suite of four spectrometer systems to form the Mars Airborne Prospecting Spectrometers (MAPS) for prospecting on Mars.

  19. LANDSAT-4 Science Characterization Early Results. Volume 3, Part 2: Thematic Mapper (TM)

    NASA Technical Reports Server (NTRS)

    Barker, J. L. (Editor)

    1985-01-01

    The calibration of the LANDSAT 4 thematic mapper is discussed as well as the atmospheric, radiometric, and geometric accuracy and correction of data obtained with this sensor. Methods are given for assessing TM band to band registration.

  20. Thematic mapper flight model preshipment review data package. Volume 4: Appendix. Part G: Miscellaneous system data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Functional and design data from various thematic mapper subsystems are presented. Coarse focus, modulation transfer function, and shim requirements are addressed along with spectral matching and spatial coverage tests.

  1. Thematic mapper flight model preshipment review data package. Volume 2, part C: Subsystem data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Reference lists are provided to acceptance data for each of the major subsystems of the thematic mapper. Configuration reports, lists and copies of all failure reports, and requests for deviation/waiver are included.

  2. Landsat Thematic Mapper (TM) Images of the Andes as a Classroom Tool.

    ERIC Educational Resources Information Center

    Bloom, Arthur L.; Fox, Andrew N.

    1990-01-01

    Described is the use of Thematic Mapper images in undergraduate geology instruction. The work of the Andes Project at Cornell University is discussed. Digitally enhanced illustrations of landforms in the Andes mountains of South America are provided. (CW)

  3. INPE LANDSAT-D thematic mapper computer compatible tape format specification

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Desouza, R. C. M.

    1982-01-01

    The format of the computer compatible tapes (CCT) which contain Thematic Mapper (TM) imagery data acquired from the LANDSAT D and D Prime satellites by the INSTITUTO DE PERSQUISAS ESPACIALS (CNPq-INPE/BRAZIL) is defined.

  4. Resource and environmental surveys from space with the thematic mapper in the 1980's

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The selection of observation of vegetation is the primary optimization objective of the thematic mapper. The following are aspects of plans for the thematic mapper: (1) to include an appropriately modified first generation MSS in the thematic mapper mission; (2) to provide assured coverage for a minimum of six years to give agencies and other users an opportunity to justify the necessary commitment of resources for the transition into a completely valid operational phase; (3) to provide for global, direct data read-out, without the necessity for on-board data storage or dependence on foreign receiving stations; (4) to recognize the operational character of the thematic mapper after successful completion of its experimental evaluation; and (5) to combine future experimental packages with compatible orbits as part of the operational LANDSAT follow-on payloads.

  5. The GOES-R GeoStationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms (environmental data records), cal/val performance monitoring tools, and new applications using GLM alone, in combination with the ABI, merged with ground-based sensors, and decision aids augmented by numerical weather prediction model forecasts. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. An international field campaign planned for 2011-2012 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning

  6. Analysis of Micro-Rearrangements in 25 Eukaryotic Species Pairs by SyntenyMapper

    PubMed Central

    Kaufmann, Stefanie; Frishman, Dmitrij

    2014-01-01

    High-quality mapping of genomic regions and genes between two organisms is an indispensable prerequisite for evolutionary analyses and comparative genomics. Existing approaches to this problem focus on either delineating orthologs or finding extended sequence regions of common evolutionary origin (syntenic blocks). We propose SyntenyMapper, a novel tool for refining predefined syntenic regions. SyntenyMapper creates a set of blocks with conserved gene order between two genomes and finds all minor rearrangements that occurred since the evolutionary split of the two species considered. We also present TrackMapper, a SyntenyMapper-based tool that allows users to directly compare genome features, such as histone modifications, between two organisms, and identify genes with highly conserved features. We demonstrate SyntenyMapper's advantages by conducting a large-scale analysis of micro-rearrangements within syntenic regions of 25 eukaryotic species. Unsurprisingly, the number and length of syntenic regions is correlated with evolutionary distance, while the number of micro-rearrangements depends only on the size of the harboring region. On the other hand, the size of rearranged regions remains relatively constant regardless of the evolutionary distance between the organisms, implying a length constraint in the rearrangement process. SyntenyMapper is a useful software tool for both large-scale and gene-centric genome comparisons. PMID:25375783

  7. HGDP and HapMap Analysis by Ancestry Mapper Reveals Local and Global Population Relationships

    PubMed Central

    Magalhães, Tiago R.; Casey, Jillian P.; Conroy, Judith; Regan, Regina; Fitzpatrick, Darren J.; Shah, Naisha; Sobral, João; Ennis, Sean

    2012-01-01

    Knowledge of human origins, migrations, and expansions is greatly enhanced by the availability of large datasets of genetic information from different populations and by the development of bioinformatic tools used to analyze the data. We present Ancestry Mapper, which we believe improves on existing methods, for the assignment of genetic ancestry to an individual and to study the relationships between local and global populations. The principle function of the method, named Ancestry Mapper, is to give each individual analyzed a genetic identifier, made up of just 51 genetic coordinates, that corresponds to its relationship to the HGDP reference population. As a consequence, the Ancestry Mapper Id (AMid) has intrinsic biological meaning and provides a tool to measure similarity between world populations. We applied Ancestry Mapper to a dataset comprised of the HGDP and HapMap data. The results show distinctions at the continental level, while simultaneously giving details at the population level. We clustered AMids of HGDP/HapMap and observe a recapitulation of human migrations: for a small number of clusters, individuals are grouped according to continental origins; for a larger number of clusters, regional and population distinctions are evident. Calculating distances between AMids allows us to infer ancestry. The number of coordinates is expandable, increasing the power of Ancestry Mapper. An R package called Ancestry Mapper is available to apply this method to any high density genomic data set. PMID:23189146

  8. HGDP and HapMap analysis by Ancestry Mapper reveals local and global population relationships.

    PubMed

    Magalhães, Tiago R; Casey, Jillian P; Conroy, Judith; Regan, Regina; Fitzpatrick, Darren J; Shah, Naisha; Sobral, João; Ennis, Sean

    2012-01-01

    Knowledge of human origins, migrations, and expansions is greatly enhanced by the availability of large datasets of genetic information from different populations and by the development of bioinformatic tools used to analyze the data. We present Ancestry Mapper, which we believe improves on existing methods, for the assignment of genetic ancestry to an individual and to study the relationships between local and global populations. The principle function of the method, named Ancestry Mapper, is to give each individual analyzed a genetic identifier, made up of just 51 genetic coordinates, that corresponds to its relationship to the HGDP reference population. As a consequence, the Ancestry Mapper Id (AMid) has intrinsic biological meaning and provides a tool to measure similarity between world populations. We applied Ancestry Mapper to a dataset comprised of the HGDP and HapMap data. The results show distinctions at the continental level, while simultaneously giving details at the population level. We clustered AMids of HGDP/HapMap and observe a recapitulation of human migrations: for a small number of clusters, individuals are grouped according to continental origins; for a larger number of clusters, regional and population distinctions are evident. Calculating distances between AMids allows us to infer ancestry. The number of coordinates is expandable, increasing the power of Ancestry Mapper. An R package called Ancestry Mapper is available to apply this method to any high density genomic data set.

  9. PlasMapper: a web server for drawing and auto-annotating plasmid maps.

    PubMed

    Dong, Xiaoli; Stothard, Paul; Forsythe, Ian J; Wishart, David S

    2004-07-01

    PlasMapper is a comprehensive web server that automatically generates and annotates high-quality circular plasmid maps. Taking only the plasmid/vector DNA sequence as input, PlasMapper uses sequence pattern matching and BLAST alignment to automatically identify and label common promoters, terminators, cloning sites, restriction sites, reporter genes, affinity tags, selectable marker genes, replication origins and open reading frames. PlasMapper then presents the identified features in textual form and as high-resolution, multicolored graphical output. The appearance and contents of the output can be customized in numerous ways using several supplied options. Further, PlasMapper images can be rendered in both rasterized (PNG and JPG) and vector graphics (SVG) formats to accommodate a variety of user needs or preferences. The images and textual output are of sufficient quality that they may be used directly in publications or presentations. The PlasMapper web server is freely accessible at http://wishart.biology.ualberta.ca/PlasMapper.

  10. The GOES-R Series Geostationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas M.

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), which will have just completed Critical Design Review and move forward into the construction phase of instrument development. The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (an engineering development unit and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms

  11. Lead Optimization Mapper: Automating free energy calculations for lead optimization

    PubMed Central

    Liu, Shuai; Wu, Yujie; Lin, Teng; Abel, Robert; Redmann, Jonathan P.; Summa, Christopher M.; Jaber, Vivian R.; Lim, Nathan M.; Mobley, David L.

    2013-01-01

    Alchemical free energy calculations hold increasing promise as an aid to drug discovery efforts. However, applications of these techniques in discovery projects have been relatively few, partly because of the difficulty of planning and setting up calculations. Here, we introduce Lead Optimization Mapper, LOMAP, an automated algorithm to plan efficient relative free energy calculations between potential ligands within a substantial library of perhaps hundreds of compounds. In this approach, ligands are first grouped by structural similarity primarily based on the size of a (loosely defined) maximal common substructure, and then calculations are planned within and between sets of structurally related compounds. An emphasis is placed on ensuring that relative free energies can be obtained between any pair of compounds without combining the results of too many different relative free energy calculations (to avoid accumulation of error) and by providing some redundancy to allow for the possibility of error and consistency checking and provide some insight into when results can be expected to be unreliable. The algorithm is discussed in detail and a Python implementation, based on both Schrödinger's and OpenEye's APIs, has been made available freely under the BSD license. PMID:24072356

  12. Accuracy verification of the Lynx Mobile Mapper system

    NASA Astrophysics Data System (ADS)

    Puente, I.; González-Jorge, H.; Riveiro, B.; Arias, P.

    2013-02-01

    LiDAR technology is one of the most effective and reliable means of data collection. Given the increasing use of LiDAR data for close range metrology applications such as deformation monitoring and infrastructure inspection, it becomes necessary to test the relative accuracy, boresight calibration of both LiDAR sensors and performance of navigation solution (or absolute accuracy) of any mobile laser scanning system employed for this purpose. Therefore, the paper's primary contribution is a set of tests for the characterization and evaluation of any mobile laser scanning system based on two LiDAR sensors. We present experimental results of the Lynx Mobile Mapper system from Optech Inc. Employing a low-cost calibration standard, we demonstrated sub-cm accuracy of targets at distances up to 10 m. Also, we introduce boresighting results derived from the Lynx system. Moreover, the global system's accuracy is tested with a series of rigorous experiments operated at a maximum scan frequency of 200 Hz, pulse repetition frequency of 500 kHz per sensor and a 360° scanning field of view. Assuring good GPS conditions, we proved a good global performance of the system, which makes it suitable for very accurate applications.

  13. Spectroradiometric calibration of the Thematic Mapper and Multispectral Scanner system

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Palmer, J. M. (Principal Investigator)

    1985-01-01

    The results of analyses of Thematic Mapper (TM) images acquired on July 8 and October 28, 1984, and of a check of the calibration of the 1.22-m integrating sphere at Santa Barbara Research Center (SBRC) are described. The results obtained from the in-flight calibration attempts disagree with the pre-flight calibrations for bands 2 and 4. Considerable effort was expended in an attempt to explain the disagreement. The difficult point to explain is that the difference between the radiances predicted by the radiative transfer code (the code radiances) and the radiances predicted by the preflight calibration (the pre-flight radiances) fluctuate with spectral band. Because the spectral quantities measured at White Sands show little change with spectral band, these fluctuations are not anticipated. Analyses of other targets at White Sands such as clouds, cloud shadows, and water surfaces tend to support the pre-flight and internal calibrator calibrations. The source of the disagreement has not been identified. It could be due to: (1) a computational error in the data reduction; (2) an incorrect assumption in the input to the radiative transfer code; or (3) incorrect operation of the field equipment.

  14. Venus Radar Mapper (VRM): Multimode radar system design

    NASA Technical Reports Server (NTRS)

    Johnson, William T. K.; Edgerton, Alvin T.

    1986-01-01

    The surface of Venus has remained a relative mystery because of the very dense atmosphere that is opaque to visible radiation and, thus, normal photographic techniques used to explore the other terrestrial objects in the solar system are useless. The atmosphere is, however, almost transparent to radar waves and images of the surface have been produced via Earth-based and orbital radars. The technique of obtaining radar images of a surface is variously called side looking radar, imaging radar, or synthetic aperture radar (SAR). The radar requires a moving platform in which the antenna is side looking. High resolution is obtained in the cross-track or range direction by conventional radar pulse encoding. In the along-track or azimuth direction, the resolution would normally be the antenna beam width, but for the SAR case, a much longer antenna (or much sharper beam) is obtained by moving past a surface target as shown, and then combining the echoes from many pulses, by using the Doppler data, to obtain the images. The radar design of the Venus Radar Mapper (VRM) is discussed. It will acquire global radar imagery and altimetry data of the surface of Venus.

  15. Torus mapper: a code for dynamical models of galaxies

    NASA Astrophysics Data System (ADS)

    Binney, James; McMillan, Paul J.

    2016-02-01

    We present a freely downloadable software package for modelling the dynamics of galaxies, which we call the Torus Mapper (TM). The package is based around `torus mapping', which is a non-perturbative technique for creating orbital tori for specified values of the action integrals. Given an orbital torus and a star's position at a reference time, one can compute its position at any other time, no matter how remote. One can also compute the velocities with which the star will pass through any given point and the contribution it will make to the time-averaged density there. A system of angle-action coordinates for the given potential can be created by foliating phase space with orbital tori. Such a foliation is facilitated by the ability of TM to create tori by interpolating on a grid of tori. We summarize the advantages of using TM rather than a standard time-stepper to create orbits, and give segments of code that illustrate applications of TM in several contexts, including setting up initial conditions for an N-body simulation. We examine the precision of the orbital tori created by TM and the behaviour of the code when orbits become trapped by a resonance.

  16. Systematic and random variations in digital Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Duggin, M. J. (Principal Investigator); Sakhavat, H.

    1985-01-01

    Radiance recorded by any remote sensing instrument will contain noise which will consist of both systematic and random variations. Systematic variations may be due to sun-target-sensor geometry, atmospheric conditions, and the interaction of the spectral characteristics of the sensor with those of upwelling radiance. Random variations in the data may be caused by variations in the nature and in the heterogeneity of the ground cover, by variations in atmospheric transmission, and by the interaction of these variations with the sensing device. It is important to be aware of the extent of random and systematic errors in recorded radiance data across ostensibly uniform ground areas in order to assess the impact on quantative image analysis procedures for both the single date and the multidate cases. It is the intention here to examine the systematic and the random variations in digital radiance data recorded in each band by the thematic mapper over crop areas which are ostensibly uniform and which are free from visible cloud.

  17. Radiometrie recalibration procedure for landsat-5 thematic mapper data

    USGS Publications Warehouse

    Chander, G.; Micijevic, E.; Hayes, R.W.; Barsi, J.A.

    2008-01-01

    The Landsat-5 (L5) satellite was launched on March 01, 1984, with a design life of three years. Incredibly, the L5 Thematic Mapper (TM) has collected data for 23 years. Over this time, the detectors have aged, and its radiometric characteristics have changed since launch. The calibration procedures and parameters have also changed with time. Revised radiometric calibrations have improved the radiometric accuracy of recently processed data; however, users with data that were processed prior to the calibration update do not benefit from the revisions. A procedure has been developed to give users the ability to recalibrate their existing Level 1 (L1) products without having to purchase reprocessed data from the U.S. Geological Survey (USGS). The accuracy of the recalibration is dependent on the knowledge of the prior calibration applied to the data. The ""Work Order" file, included with standard National Land Archive Production System (NLAFS) data products, gives parameters that define the applied calibration. These are the Internal Calibrator (IC) calibration parameters or the default prelaunch calibration, if there were problems with the IC calibration. This paper details the recalibration procedure for data processed using IC, in which users have the Work Order file. ?? 2001 IEEE.

  18. Juno's Earth flyby: the Jovian infrared Auroral Mapper preliminary results

    NASA Astrophysics Data System (ADS)

    Adriani, A.; Moriconi, M. L.; Mura, A.; Tosi, F.; Sindoni, G.; Noschese, R.; Cicchetti, A.; Filacchione, G.

    2016-08-01

    The Jovian InfraRed Auroral Mapper, JIRAM, is an image-spectrometer onboard the NASA Juno spacecraft flying to Jupiter. The instrument has been designed to study the aurora and the atmosphere of the planet in the spectral range 2-5 μm. The very first scientific observation taken with the instrument was at the Moon just before Juno's Earth fly-by occurred on October 9, 2013. The purpose was to check the instrument regular operation modes and to optimize the instrumental performances. The testing activity will be completed with pointing and a radiometric/spectral calibrations shortly after Jupiter Orbit Insertion. Then the reconstruction of some Moon infrared images, together with co-located spectra used to retrieve the lunar surface temperature, is a fundamental step in the instrument operation tuning. The main scope of this article is to serve as a reference to future users of the JIRAM datasets after public release with the NASA Planetary Data System.

  19. Thematic Mapper, band 6, radiometric calibration and assessment

    NASA Astrophysics Data System (ADS)

    Schott, John R.

    1988-01-01

    A technique is presented for absolute radiometric calibration of longwave infrared satellite systems. The technique involves a combination underflight technique and radiometric models to estimate the radiance field reaching a satellite sensor. The radiance field can then be compared to the radiance observed at the satellite to evaluate the sensor's post launch calibration. The technique was applied to the Thematic Mapper band 6 sensor on board Landsat 5. Results are presented for three underflight dates. These results indicate that the TM band 6 sensor can be calibrated to yield an expected error (1 standard deviation) in surface temperature of 0.9K. The radiometric propagation models used to achieve these results are presented along with estimates of potential sensor calibration errors. The final radiometric propagation models developed can be applied independent of underflight requirements and represent a general approach to computation of kinetic surface temperatures. The parameters included in the analysis encompass internal calibration, sensor spectral response, atmospheric transmission, upwelled radiance, downwelled radiance, and sample emissivity.

  20. Stability of Landsat-4 thematic mapper outgassing models

    NASA Astrophysics Data System (ADS)

    Micijevic, Esad; Chander, Gyanesh

    2006-08-01

    Oscillations in radiometric gains of the short wave infrared (SWIR) bands in Landsat-4 (L4) and Landsat-5 (L5) Thematic Mappers (TMs) are observed through an analysis of detector responses to the Internal Calibrator (IC) pulses. The oscillations are believed to be caused by an interference effect due to a contaminant film buildup on the window of the cryogenically cooled dewar that houses these detectors. This process of contamination, referred to as outgassing effects, has been well characterized using an optical thin-film model that relates detector responses to the accumulated film thickness and its growth rate. The current models for L4 TM are based on average detector responses to the second brightest IC lamp and have been derived from three data sets acquired during different times throughout the instrument's lifetime. Unlike in L5 TM outgassing characterization, it was found that the L4 TM responses to all three IC lamps can be used to provide accurate characterization and correction for outgassing effects. The analysis of single detector responses revealed an up to five percent difference in the estimated oscillating periods and also indicated a gradual variation of contaminant growth rate over the focal plane.

  1. A Preliminary Analysis of LANDSAT-4 Thematic Mapper Radiometric Performance

    NASA Technical Reports Server (NTRS)

    Justice, C.; Fusco, L.; Mehl, W.

    1984-01-01

    Analysis was performed to characterize the radiometry of three Thematic Mapper (TM) digital products of a scene of Arkansas. The three digital products examined were the NASA raw (BT) product, the radiometrically corrected (AT) product and the radiometrically and geometrically corrected (PT) product. The frequency distribution of the digital data; the statistical correlation between the bands; and the variability between the detectors within a band were examined on a series of image subsets from the full scene. The results are presented from one 1024 x 1024 pixel subset of Realfoot Lake, Tennessee which displayed a representative range of ground conditions and cover types occurring within the full frame image. Bands 1, 2 and 5 of the sample area are presented. The subsets were extracted from the three digital data products to cover the same geographic area. This analysis provides the first step towards a full appraisal of the TM radiometry being performed as part of the ESA/CEC contribution to the NASA/LIDQA program.

  2. New dust opacity mapping from Viking Infrared Thermal Mapper data

    NASA Astrophysics Data System (ADS)

    Martin, T. Z.; Richardson, M. I.

    1993-06-01

    Global dust opacity mapping for Mars has been carried forward using the approach described by Martin (1986) for Viking IR Thermal Mapper data. New maps are presented for the period from the beginning of Viking observations, until Ls 210 deg in 1979 (1.36 Mars years). This range includes the second and more extensive planet-encircling dust storm observed by Viking, known as storm 1977b. Improvements in approach result in greater time resolution and smaller noise than in the earlier work. A strong local storm event filled the Hellas basin at Ls 170 deg, prior to the 1977a storm. Dust is retained in equatorial regions following the 1977b storm far longer than in mid-latitudes. Minor dust events appear to raise the opacity in northern high latitudes during northern spring. Additional mapping with high time resolution has been done for the periods of time near the major storm origins in order to search for clues to the mechanism of storm initiation. The first evidence of the start of the 1977b storm is pushed back to Ls 274.2 deg, preceding signs of the storm in images by about 15 hours.

  3. Improved outgassing models for the Landsat-5 thematic mapper

    USGS Publications Warehouse

    Micijevic, E.; Chander, G.; Hayes, R.W.

    2008-01-01

    The Landsat-5 (L5) Thematic Mapper (TM) detectors of the short wave infrared (SWIR) bands 5 and 7 are maintained on cryogenic temperatures to minimize thermal noise and allow adequate detection of scene energy. Over the instrument's lifetime, gain oscillations are observed in these bands that are caused by an ice-like contaminant that gradually builds up on the window of a dewar that houses these bands' detectors. This process of icing, an effect of material outgassing in space, is detected and characterized through observations of Internal Calibrator (IC) data. Analyses of IC data indicated three to five percent uncertainty in absolute gain estimates due to this icing phenomenon. The thin-film interference lifetime models implemented in the image product generation systems at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) successfully remove up to 80 percent of the icing effects for the image acquisition period from the satellite's launch in 1984 until 2001; however, their correction ability was found to be much lower for the time thereafter. This study concentrates on improving the estimates of the contaminant film growth rate and the associated change in the period of gain oscillations. The goal is to provide model parameters with the potential to correct 70 to 80 percent of gain uncertainties caused by outgassing effects in L5 TM bands 5 and 7 over the instrument's entire lifetime. ?? 2007 IEEE.

  4. Improved outgassing models for the Landsat-5 thematic mapper

    USGS Publications Warehouse

    Micijevic, E.; Chander, G.; Hayes, R.W.

    2007-01-01

    The Landsat-5 (L5) Thematic Mapper (TM) detectors of the short wave infrared (SWIR) bands 5 and 7 are maintained on cryogenic temperatures to minimize thermal noise and allow adequate detection of scene energy. Over the instrument's lifetime, gain oscillations are observed in these bands that are caused by an ice-like contaminant that gradually builds up on the window of a dewar that houses these bands' detectors. This process of icing, an effect of material outgassing in space, is detected and characterized through observations of Internal Calibrator (IC) data. Analyses of IC data indicated three to five percent uncertainty in absolute gain estimates due to this icing phenomenon. The thin-film interference lifetime models implemented in the image product generation systems at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) successfully remove up to 80 percent of the icing effects for the image acquisition period from the satellite's launch in 1984 until 2001; however, their correction ability was found to be much lower for the time thereafter. This study concentrates on improving the estimates of the contaminant film growth rate and the associated change in the period of gain oscillations. The goal is to provide model parameters with the potential to correct 70 to 80 percent of gain uncertainties caused by outgassing effects in L5 TM bands 5 and 7 over the instrument's entire lifetime. ?? 2007 IEEE.

  5. Stability of landsat-4 thematic mapper outgassing models

    USGS Publications Warehouse

    Micijevic, E.; Chander, G.

    2006-01-01

    Oscillations in radiometric gains of the short wave infrared (SWIR) bands in Landsat-4 (L4) and Landsat-5 (L5) Thematic Mappers (TMs) are observed through an analysis of detector responses to the Internal Calibrator (IC) pulses. The oscillations are believed to be caused by an interference effect due to a contaminant film buildup on the window of the cryogenically cooled dewar that houses these detectors. This process of contamination, referred to as outgassing effects, has been well characterized using an optical thin-film model that relates detector responses to the accumulated film thickness and its growth rate. The current models for L4 TM are based on average detector responses to the second brightest IC lamp and have been derived from three data sets acquired during different times throughout the instrument's lifetime. Unlike in L5 TM outgassing characterization, it was found that the L4 TM responses to all three IC lamps can be used to provide accurate characterization and correction for outgassing effects. The analysis of single detector responses revealed an up to five percent difference in the estimated oscillating periods and also indicated a gradual variation of contaminant growth rate over the focal plane.

  6. Radiometric calibration of Landsat Thematic Mapper Thermal Band

    NASA Technical Reports Server (NTRS)

    Wukelic, G. E.; Gibbons, D. E.; Martucci, L. M.; Foote, H. P.

    1989-01-01

    Radiometric calibration of satellite-acquired data is essential for quantitative scientific studies, as well as for a variety of image-processing applications. This paper describes a multiyear, on-orbit radiometric calibration of the Landsat Thematic Mapper (TM) Band 6 conducted at DOE's Pacific Northwest Laboratory. Numerous Landsat TM scenes acquired and analyzed included day and night coverages at several geographical locations over several seasons. Concurrent with Landsat overpasses, thermal field and local meteorological (surface and radiosonde) measurements were collected. At-satellite (uncorrected) radiances and temperatures for water and nonwater land cover were compared to ground truth (GT) measurements after making adjustments for atmospheric (using LOWTRAN), mixed-pixel, and emissivity effects. Results indicate that, for both water and nonwater features, TM Band 6 average corrected temperature determinations using local radiosonde data to adjust for atmospheric effects, and using appropriate emissivities, are within 1.0 C of GT temperature values. Temperatures of water pixels derived from uncorrected TM Band 6 data varied roughly between 1 and 3 C of ground truth values for water temperatures ranging between 4 and 24 C. Moreover, corrections using nonlocal and noncoincident radiosonde data resulted in errors as large as 12 C. Corrections using the U.S. Standard Atmosphere gave temperature values within 1 to 2 C of GT. The average uncertainty for field instruments was + or - 0.2 C; average uncertainty for Landsat TM corrected temperature determinations was + or - 0.4 C.

  7. Airborne data acquisition techniques

    SciTech Connect

    Arro, A.A.

    1980-01-01

    The introduction of standards on acceptable procedures for assessing building heat loss has created a dilemma for the contractor performing airborne thermographic surveys. These standards impose specifications on instrumentation, data acquisition, recording, interpretation, and presentation. Under the standard, the contractor has both the obligation of compliance and the requirement of offering his services at a reasonable price. This paper discusses the various aspects of data acquisition for airborne thermographic surveys and various techniques to reduce the costs of this operation. These techniques include the calculation of flight parameters for economical data acquisition, the selection and use of maps for mission planning, and the use of meteorological forecasts for flight scheduling and the actual execution of the mission. The proper consideration of these factors will result in a cost effective data acquisition and will place the contractor in a very competitive position in offering airborne thermographic survey services.

  8. CheS-Mapper 2.0 for visual validation of (Q)SAR models

    PubMed Central

    2014-01-01

    Background Sound statistical validation is important to evaluate and compare the overall performance of (Q)SAR models. However, classical validation does not support the user in better understanding the properties of the model or the underlying data. Even though, a number of visualization tools for analyzing (Q)SAR information in small molecule datasets exist, integrated visualization methods that allow the investigation of model validation results are still lacking. Results We propose visual validation, as an approach for the graphical inspection of (Q)SAR model validation results. The approach applies the 3D viewer CheS-Mapper, an open-source application for the exploration of small molecules in virtual 3D space. The present work describes the new functionalities in CheS-Mapper 2.0, that facilitate the analysis of (Q)SAR information and allows the visual validation of (Q)SAR models. The tool enables the comparison of model predictions to the actual activity in feature space. The approach is generic: It is model-independent and can handle physico-chemical and structural input features as well as quantitative and qualitative endpoints. Conclusions Visual validation with CheS-Mapper enables analyzing (Q)SAR information in the data and indicates how this information is employed by the (Q)SAR model. It reveals, if the endpoint is modeled too specific or too generic and highlights common properties of misclassified compounds. Moreover, the researcher can use CheS-Mapper to inspect how the (Q)SAR model predicts activity cliffs. The CheS-Mapper software is freely available at http://ches-mapper.org. Graphical abstract Comparing actual and predicted activity values with CheS-Mapper.

  9. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  10. Airborne rain mapping radar

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Parks, G. S.; Li, F. K.; Im, K. E.; Howard, R. J.

    1988-01-01

    An airborne scanning radar system for remote rain mapping is described. The airborne rain mapping radar is composed of two radar frequency channels at 13.8 and 24.1 GHz. The radar is proposed to scan its antenna beam over + or - 20 deg from the antenna boresight; have a swath width of 7 km; a horizontal spatial resolution at nadir of about 500 m; and a range resolution of 120 m. The radar is designed to be applicable for retrieving rainfall rates from 0.1-60 mm/hr at the earth's surface, and for measuring linear polarization signatures and raindrop's fall velocity.

  11. Floodplain land cover mapping using Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Kerber, A. G.; Gervin, J. C.; Lu, Y.-C.; Marcell, R.; Edwardo, H. A.

    1986-01-01

    The accuracy of land-cover classifications based on Landsat-4 TM and MSS images (obtained in August 1982) and airborne TMS images (obtained in September 1981) of the New Martinsville, West Virginia area is evaluated by comparison with ground-truth data. TM, TMS, and MSS are found to have overall mapping accuracies 80.1, 78.5, and 75.6 percent; agriculture/grass accuracies 62.0, 29.7, and 46.6 percent; and developed-area accuracies 67.2, 77.8, and 59.4 percent, respectively.

  12. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  13. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  14. Evaluation of thematic mapper data for natural resource assessment

    USGS Publications Warehouse

    Haas, R.H.; Waltz, F.A.

    1983-01-01

    The U.S. Geological Survey EROS Data Center evaluated the utility of Landsat Thematic Mapper (TM) date for natural resource assessment, emphasizing manual interpretation and digital classification of the data for U.S. Department of the Interior applications. Substantially more information was derived from TM data than from Landsat Multispectral Scanner (MSS) data. Greater resolution of TM data aided in locating roads, small stock ponds, and many other land features that could be used as landmarks. The improved spatial resolution of TM data also permitted more efficient visual interpretations of land use, better identification of resource types, and improved assessment of ecological status of natural vegetation. TM data also provided a new source of spectral information that was useful for natural resource assessment. New mid-infrared spectral bands, TM band 5 and band 7, aided in distinguishing water resources, wetland vegetation resources, and other important terrain features. The added information was useful for both manual interpretation and digital data classification of vegetation resources and land features. Results from the analyses of both TM and TM simulator (TMS) spectral data suggest that the coefficient of variation for major land cover types is generally less for TM data than for MSS data taken from the same area. This reduction in variance should contribute to an improved multispectral analysis, contributing new information about vegetation in natural ecosystems. Although the amount of new information in TM bands 5 and 7 is mall, it is unique in that the same information cannot be derived from four-band Landsat MSS spectral data.

  15. GOES-R Geostationary Lightning Mapper Performance Specifications and Algorithms

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Petersen, William A.; Boldi, Robert A.; Carey, Lawrence D.; Bateman, Monte G.; Buchler, Dennis E.; McCaul, E. William, Jr.

    2008-01-01

    The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series will carry a GLM that will provide continuous day and night observations of lightning. The mission objectives for the GLM are to: (1) Provide continuous, full-disk lightning measurements for storm warning and nowcasting, (2) Provide early warning of tornadic activity, and (2) Accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997- present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. The science data will consist of lightning "events", "groups", and "flashes". The algorithm is being designed to be an efficient user of the computational resources. This may include parallelization of the code and the concept of sub-dividing the GLM FOV into regions to be processed in parallel. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama, Oklahoma, Central Florida, and the Washington DC Metropolitan area) are being used to develop the prelaunch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution.

  16. The Wisconsin H-Alpha Mapper Sky Survey

    NASA Astrophysics Data System (ADS)

    Haffner, L. Matthew; Reynolds, Ronald J.; Babler, Brian L.; Madsen, Gregory J.; Hill, Alex S.; Barger, Kathleen; Jaehnig, Kurt P.; Mierkiewicz, Edwin J.; Percival, Jeffrey W.; Chopra, Nitish; Pingel, Nickolas; Reese, Daniel T.; Gostisha, Martin; Wunderlin, Jennifer

    2016-01-01

    We present the first all-sky, kinematic survey of Hα from the Milky Way, combining survey observations taken with the Wisconsin H-Alpha Mapper (WHAM) from Kitt Peak (1997-2007) and Cerro Tololo (2009-present). The WHAM Sky Survey (WHAM-SS) reaches sensitivity levels of about 0.1 R (EM ~ 0.2 pc cm^-6) with emission detected toward every direction in the sky. Each pointing of the survey comprises a spatially integrated spectrum from a one-degree beam on the sky covering at least 200 km/s around the Local Standard of Rest with 12 km/s spectral resolution. WHAM was designed primarily to study the pervasive warm ionized medium (WIM) component of the interstellar medium (ISM) but also reveals many large-scale, locally-ionized regions throughout the Galaxy. The WIM is a diffuse but thick component of the ISM that extends several kiloparsecs into the Galactic halo with a kinematic signature that traces the gaseous spiral arms of the Galaxy. In addition to this fairly smooth global emission, the Hα sky contains many individual H II regions and supernova remnants, a few revealed in the WHAM-SS for the first time. Some locations are dominated by complex filamentary network of diffuse ionized gas where the ISM has been shaped by past winds and supernovae and is now powered by a new wave of star formation. At high latitudes, faint emission from intermediate-velocity clouds is also regularly present. The success of WHAM as a fully remote observing facility for nearly two decades is due in no small part to the excellent and responsive support staff at KPNO in Arizona and CTIO in Chile. WHAM has been designed, built, and operated primarily through support of the National Science Foundation. The current research presented here is funded by award AST-1108911.

  17. ExoExoZodi Mapper: a starshade probe mission

    NASA Astrophysics Data System (ADS)

    Glassman, Tiffany; Lo, Amy

    2012-09-01

    Direct detection and imaging of Exo-Earths is a prime candidate for the next Astrophysics flagship mission. Much effort is focused on developing the mission concept and technology to enable the direct imaging of an Exo-Earth. However, several key astronomical unknowns stand in the way of a fully optimized Exo-Earth imaging mission, the primary of which is the uncertainty in the Exo-Zodi brightness. By analogy to our own Zodiacal dust, Exo-Zodiacal dust is predicted to exist in the habitable zones of other stars, exactly in the locations where Exo-Earths would reside. Reflected light from this dust could be a primary background contribution to measurements of the Exo-Earth. We propose a mission concept called the Exo-Zodi Mapper (EZM) to obtain definitive measurements of the brightness of the Exo-Zodi dust around target stars which are the prime targets for a future mission aimed at the direct detection of Exo-Earths. Our mission concept uses a medium sized starshade that works with the James Webb Space Telescope to image and characterize the brightness and distribution of Exo-Zodiacal dust around ~40 primary target stars. This measurement would provide more precise requirements for the eventual Exo-Earth flagship mission, which may translate into significant savings. In addition, EZM can provide a host of ancillary science information on these important targets, including detailed maps of their dust distribution, studies of outer, giant planets, and exploration of the overall architecture of these planetary systems. The EZM starshade can also be used to enable high-contrast imaging of other targets of value to the astronomical community such as debris disks around young stars. We present an overview of the science that motivated the mission concept, the driving requirements, and the top level mission architecture.

  18. Airborne laser mapping of Assateague National Seashore Beach

    USGS Publications Warehouse

    Krabill, W.B.; Wright, C.W.; Swift, R.N.; Frederick, E.B.; Manizade, S.S.; Yungel, J.K.; Martin, C.F.; Sonntag, J.G.; Duffy, Mark; Hulslander, William; Brock, John C.

    2000-01-01

    Results are presented from topographic surveys of the Assateague Island National Seashore using an airborne scanning laser altimeter and kinematic Global Positioning System (GPS) technology. The instrument used was the Airborne Topographic Mapper (ATM), developed by the NASA Arctic Ice Mapping (AIM) group from the Goddard Space Flight Center's Wallops Flight Facility. In November, 1995, and again in May, 1996, these topographic surveys were flown as a functionality check prior to conducting missions to measure the elevation of extensive sections of the Greenland Ice Sheet as part of NASA's Global Climate Change program. Differences between overlapping portions of both surveys are compared for quality control. An independent assessment of the accuracy of the ATM survey is provided by comparison to surface surveys which were conducted using standard techniques. The goal of these projects is to make these measurements to an accuracy of ± 10 cm. Differences between the fall 1995 and 1996 surveys provides an assessment of net changes in the beach morphology over an annual cycle.

  19. HomozygosityMapper2012--bridging the gap between homozygosity mapping and deep sequencing.

    PubMed

    Seelow, Dominik; Schuelke, Markus

    2012-07-01

    Homozygosity mapping is a common method to map recessive traits in consanguineous families. To facilitate these analyses, we have developed HomozygosityMapper, a web-based approach to homozygosity mapping. HomozygosityMapper allows researchers to directly upload the genotype files produced by the major genotyping platforms as well as deep sequencing data. It detects stretches of homozygosity shared by the affected individuals and displays them graphically. Users can interactively inspect the underlying genotypes, manually refine these regions and eventually submit them to our candidate gene search engine GeneDistiller to identify the most promising candidate genes. Here, we present the new version of HomozygosityMapper. The most striking new feature is the support of Next Generation Sequencing *.vcf files as input. Upon users' requests, we have implemented the analysis of common experimental rodents as well as of important farm animals. Furthermore, we have extended the options for single families and loss of heterozygosity studies. Another new feature is the export of *.bed files for targeted enrichment of the potential disease regions for deep sequencing strategies. HomozygosityMapper also generates files for conventional linkage analyses which are already restricted to the possible disease regions, hence superseding CPU-intensive genome-wide analyses. HomozygosityMapper is freely available at http://www.homozygositymapper.org/.

  20. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  1. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  2. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  3. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  4. Integration of airborne Thematic Mapper Simulator (TMS) data and digitized aerial photography via an ISH transformation. [Intensity Saturation Hue

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Myers, Jeffrey S.; Ekstrand, Robert E.; Fitzgerald, Michael T.

    1991-01-01

    A simple method for enhancing the spatial and spectral resolution of disparate data sets is presented. Two data sets, digitized aerial photography at a nominal spatial resolution 3,7 meters and TMS digital data at 24.6 meters, were coregistered through a bilinear interpolation to solve the problem of blocky pixel groups resulting from rectification expansion. The two data sets were then subjected to intensity-saturation-hue (ISH) transformations in order to 'blend' the high-spatial-resolution (3.7 m) digitized RC-10 photography with the high spectral (12-bands) and lower spatial (24.6 m) resolution TMS digital data. The resultant merged products make it possible to perform large-scale mapping, ease photointerpretation, and can be derived for any of the 12 available TMS spectral bands.

  5. Remote detection of geobotanical anomalies associated with hydrocarbon microseepage using thematic mapper simulator (TMS) and airborne imaging spectrometer (AIS) data

    NASA Technical Reports Server (NTRS)

    Rock, B. N.

    1984-01-01

    An interpretation of TMS and AIS data sets collected from Lost River, West Virginia, are presented, along with a brief review of the supervised vegetation classification approach to vegetation mapping used at Lost River. A preliminary study of AIS data suggests that contiguous high-spectral resolution data from a very limited portion of the spectrum (1.2-1.5 micron) provide a greater discriminatory capability than do broad-band sensors such as the TMS covering of wider spectral range (0.45-2.35 microns).

  6. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  7. Comparison of outgassing models for the landsat thematic mapper sensors

    USGS Publications Warehouse

    Micijevic, E.; Chander, G.

    2007-01-01

    The Thematic Mapper (TM) is a multi-spectral electro-optical sensor featured onboard both the Landsat 4 (L4) and Landsat 5 (L5) satellites. TM sensors have seven spectral bands with center wavelengths of approximately 0.49, 0.56, 0.66, 0.83, 1.65, 11.5 and 2.21 ??m, respectively. The visible near-infrared (VNIR) bands are located on the primary focal plane (PFP), and two short-wave infrared (SWIR) bands and the thermal infrared (TIR) band are located on the cold focal plane (CFP). The CFP bands are maintained at cryogenic temperatures of about 91 K, to reduce thermal noise effects. Due to the cold temperature, an ice film accumulates on the CFP dewar window, which introduces oscillations in SWIR and an exponential decay in TIR band responses. This process is usually monitored and characterized by the detector responses to the internal calibrator (IC) lamps and the blackbody. The ice contamination on the dewar window is an effect of the sensor outgassing in a vacuum of the space environment. Outgassing models have been developed, which are based on the thin-film optical interference phenomenon. They provide the coefficients for correction for outgassing effects for the entire mission's lifetime. While the L4 TM ceased imaging in August 1993, the L5 TM continues to operate even after more than 23 years in orbit. The process of outgassing in L5 TM is still occurring, though at a much lower rate than during early years of mission. Although the L4 and L5 TM sensors are essentially identical, they exhibit slightly different responses to the outgassing effects. The work presented in the paper summarizes the results of modeling outgassing effects in each of the sensors and provides a detailed analysis of differences among the estimated modeling parameters. For both sensors, water ice was confirmed as a reasonable candidate for contaminant material, the contaminant growth rate was found to be gradually decreasing with the time since launch, and the indications exist that

  8. The BHVI-EyeMapper: Peripheral Refraction and Aberration Profiles

    PubMed Central

    Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Bakaraju, Ravi C.; Holden, Brien A.

    2014-01-01

    ABSTRACT Purpose The aim of this article was to present the optical design of a new instrument (BHVI-EyeMapper, EM), which is dedicated to rapid peripheral wavefront measurements across the visual field for distance and near, and to compare the peripheral refraction and higher-order aberration profiles obtained in myopic eyes with and without accommodation. Methods Central and peripheral refractive errors (M, J180, and J45) and higher-order aberrations (C[3, 1], C[3, 3], and C[4, 0]) were measured in 26 myopic participants (mean [±SD] age, 20.9 [±2.0] years; mean [±SD] spherical equivalent, −3.00 [±0.90] diopters [D]) corrected for distance. Measurements were performed along the horizontal visual field with (−2.00 to −5.00 D) and without (+1.00 D fogging) accommodation. Changes as a function of accommodation were compared using tilt and curvature coefficients of peripheral refraction and aberration profiles. Results As accommodation increased, the relative peripheral refraction profiles of M and J180 became significantly (p < 0.05) more negative and the profile of M became significantly (p < 0.05) more asymmetric. No significant differences were found for the J45 profiles (p > 0.05). The peripheral aberration profiles of C[3, 1], C[3, 3], and C[4, 0] became significantly (p < 0.05) less asymmetric as accommodation increased, but no differences were found in the curvature. Conclusions The current study showed that significant changes in peripheral refraction and higher-order aberration profiles occurred during accommodation in myopic eyes. With its extended measurement capabilities, that is, permitting rapid peripheral refraction and higher-order aberration measurements up to visual field angles of ±50 degrees for distance and near (up to −5.00 D), the EM is a new advanced instrument that may provide additional insights in the ongoing quest to understand and monitor myopia development. PMID:25105690

  9. The GOES-R Geostationary Lightning Mapper (GLM)

    NASA Astrophysics Data System (ADS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas; Bailey, Jeffrey; Buechler, Dennis; Carey, Larry; Schultz, Chris; Bateman, Monte; McCaul, Eugene; Stano, Geoffrey

    2013-05-01

    The Geostationary Operational Environmental Satellite R-series (GOES-R) is the next block of four satellites to follow the existing GOES constellation currently operating over the Western Hemisphere. Advanced spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved cloud and moisture imagery with the 16-channel Advanced Baseline Imager (ABI). The GLM will map total lightning activity continuously day and night with near-uniform storm-scale spatial resolution of 8 km with a product refresh rate of less than 20 s over the Americas and adjacent oceanic regions in the western hemisphere. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, an Algorithm Working Group (AWG) Lightning Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 lightning event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low Earth orbit, and from ground-based lightning networks and intensive prelaunch field campaigns. The GLM will produce the same or similar lightning flash attributes provided by the LIS and OTD, and thus extend their combined climatology over the western hemisphere into the coming decades. Science and application development along with preoperational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and

  10. The GOES-R Geostationary Lightning Mapper (GLM)

    NASA Astrophysics Data System (ADS)

    Goodman, S. J.; Blakeslee, R. J.; Koshak, W. J.; Mach, D. M.; Bailey, J. C.; Buechler, D. E.; Carey, L. D.; Schultz, C. J.; Bateman, M. G.; McCaul, E., Jr.; Stano, G. T.

    2012-12-01

    The Geostationary Operational Environmental Satellite (GOES-R) series provides the continuity for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning activity (in-cloud and cloud-to-ground lightning flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development, an Algorithm Working Group (AWG) Lightning Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 lightning event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low earth orbit, and from ground-based lightning networks and intensive pre-launch field campaigns. GLM will produce the same or similar lightning flash attributes provided by the LIS and OTD, and thus extends their combined climatology over the western hemisphere into the coming decades. Science and application development along with pre-operational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after

  11. Evaluation of airborne topographic lidar for quantifying beach changes

    USGS Publications Warehouse

    Sallenger, A.H.; Krabill, W.B.; Swift, R.N.; Brock, J.; List, J.; Hansen, M.; Holman, R.A.; Manizade, S.; Sontag, J.; Meredith, A.; Morgan, K.; Yunkel, J.K.; Frederick, E.B.; Stockdon, H.

    2003-01-01

    A scanning airborne topographic lidar was evaluated for its ability to quantify beach topography and changes during the Sandy Duck experiment in 1997 along the North Carolina coast. Elevation estimates, acquired with NASA's Airborne Topographic Mapper (ATM), were compared to elevations measured with three types of ground-based measurements - 1) differential GPS equipped all-terrain vehicle (ATV) that surveyed a 3-km reach of beach from the shoreline to the dune, 2) GPS antenna mounted on a stadia rod used to intensely survey a different 100 m reach of beach, and 3) a second GPS-equipped ATV that surveyed a 70-km-long transect along the coast. Over 40,000 individual intercomparisons between ATM and ground surveys were calculated. RMS vertical differences associated with the ATM when compared to ground measurements ranged from 13 to 19 cm. Considering all of the intercomparisons together, RMS ??? 15 cm. This RMS error represents a total error for individual elevation estimates including uncertainties associated with random and mean errors. The latter was the largest source of error and was attributed to drift in differential GPS. The ??? 15 cm vertical accuracy of the ATM is adequate to resolve beach-change signals typical of the impact of storms. For example, ATM surveys of Assateague Island (spanning the border of MD and VA) prior to and immediately following a severe northeaster showed vertical beach changes in places greater than 2 m, much greater than expected errors associated with the ATM. A major asset of airborne lidar is the high spatial data density. Measurements of elevation are acquired every few m2 over regional scales of hundreds of kilometers. Hence, many scales of beach morphology and change can be resolved, from beach cusps tens of meters in wavelength to entire coastal cells comprising tens to hundreds of kilometers of coast. Topographic lidars similar to the ATM are becoming increasingly available from commercial vendors and should, in the future

  12. Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies

    NASA Technical Reports Server (NTRS)

    Klemas, V.; Ackleson, S. G.; Hardisky, M. A.

    1985-01-01

    On 31 March 1983, the University of Delaware's Center for Remote Sensing initiated a study to evaluate the spatial, radiometric and spectral performance of the LANDSAT Thematic Mapper for coastal and estuarine studies. The investigation was supported by Contract NAS5-27580 from the NASA Goddard Space Flight Center. The research was divided into three major subprojects: (1) a comparison of LANDSAT TM to MSS imagery for detecting submerged aquatic vegetation in Chesapeake Bay; (2) remote sensing of submerged aquatic vegetation - a radiative transfer approach; and (3) remote sensing of coastal wetland biomass using Thematic Mapper wavebands.

  13. Multispectral scanner data applications evaluation. Volume 2: Sensor system study. [thematic mapper for earth resources application

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The optimization of a thematic mapper for earth resources application is discussed in terms of cost versus performance. Performance tradeoffs and the cost impact are analyzed. The instrument design and radiometric performance are also described. The feasibility of a radiative cooler design for a scanning spectral radiometer is evaluated along with the charge coupled multiplex operation. Criteria for balancing the cost and complexity of data acquisition instruments against the requirements of the user, and a pushbroom scanner version of the thematic mapper are presented.

  14. Multiattribute probabilistic prostate elastic registration (MAPPER): Application to fusion of ultrasound and magnetic resonance imaging

    SciTech Connect

    Sparks, Rachel Barratt, Dean; Nicolas Bloch, B.; Feleppa, Ernest; Moses, Daniel; Ponsky, Lee; Madabhushi, Anant

    2015-03-15

    Purpose: Transrectal ultrasound (TRUS)-guided needle biopsy is the current gold standard for prostate cancer diagnosis. However, up to 40% of prostate cancer lesions appears isoechoic on TRUS. Hence, TRUS-guided biopsy has a high false negative rate for prostate cancer diagnosis. Magnetic resonance imaging (MRI) is better able to distinguish prostate cancer from benign tissue. However, MRI-guided biopsy requires special equipment and training and a longer procedure time. MRI-TRUS fusion, where MRI is acquired preoperatively and then aligned to TRUS, allows for advantages of both modalities to be leveraged during biopsy. MRI-TRUS-guided biopsy increases the yield of cancer positive biopsies. In this work, the authors present multiattribute probabilistic postate elastic registration (MAPPER) to align prostate MRI and TRUS imagery. Methods: MAPPER involves (1) segmenting the prostate on MRI, (2) calculating a multiattribute probabilistic map of prostate location on TRUS, and (3) maximizing overlap between the prostate segmentation on MRI and the multiattribute probabilistic map on TRUS, thereby driving registration of MRI onto TRUS. MAPPER represents a significant advancement over the current state-of-the-art as it requires no user interaction during the biopsy procedure by leveraging texture and spatial information to determine the prostate location on TRUS. Although MAPPER requires manual interaction to segment the prostate on MRI, this step is performed prior to biopsy and will not substantially increase biopsy procedure time. Results: MAPPER was evaluated on 13 patient studies from two independent datasets—Dataset 1 has 6 studies acquired with a side-firing TRUS probe and a 1.5 T pelvic phased-array coil MRI; Dataset 2 has 7 studies acquired with a volumetric end-firing TRUS probe and a 3.0 T endorectal coil MRI. MAPPER has a root-mean-square error (RMSE) for expert selected fiducials of 3.36 ± 1.10 mm for Dataset 1 and 3.14 ± 0.75 mm for Dataset 2. State

  15. Use of TMS/TM data for mapping of forest decline damage in the northeastern United States. [Thematic Mapper Simulator (TMS) Thematic Mapper (TM)

    NASA Technical Reports Server (NTRS)

    Rock, B. N.; Vogelmann, J. E.

    1986-01-01

    Remote sensing systems were used to monitor forest decline damage suspected of being due to air pollution. Field activities and aircraft overflights were centered on montane spruce/fir forest sites. Using aircraft data acquired with the Thematic Mapper Simulator (TMS) and LANDSAT Thematic Mapper (TM) during the growing season, extensive areas of forest decline damage were accurately mapped. Seven levels of decline damage are discrininated and mapped and the levels of discriminated damage agree well (rsq-0.94) with visual assessment conducted on the ground. New areas of high damage were discovered. A band ratio (TM5/TM4) is most useful in discriminating and quantifying the various levels of forest decline damage.

  16. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  17. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  18. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  19. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles.

  20. Mammalian airborne allergens.

    PubMed

    Aalberse, Rob C

    2014-01-01

    Historically, horse dandruff was a favorite allergen source material. Today, however, allergic symptoms due to airborne mammalian allergens are mostly a result of indoor exposure, be it at home, at work or even at school. The relevance of mammalian allergens in relation to the allergenic activity of house dust extract is briefly discussed in the historical context of two other proposed sources of house dust allergenic activity: mites and Maillard-type lysine-sugar conjugates. Mammalian proteins involved in allergic reactions to airborne dust are largely found in only 2 protein families: lipocalins and secretoglobins (Fel d 1-like proteins), with a relatively minor contribution of serum albumins, cystatins and latherins. Both the lipocalin and the secretoglobin family are very complex. In some instances this results in a blurred separation between important and less important allergenic family members. The past 50 years have provided us with much detailed information on the genomic organization and protein structure of many of these allergens. However, the complex family relations, combined with the wide range of post-translational enzymatic and non-enzymatic modifications, make a proper qualitative and quantitative description of the important mammalian indoor airborne allergens still a significant proteomic challenge. PMID:24925404

  1. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  2. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  3. Airborne atmospheric electricity experiments

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.

    1985-01-01

    During the 1984 U2 spring flight program, lightning spectra were measured in the wavelengths from 380 nm to 900 nm with a temporal resolution of 5 ms. With this capability, researchers simultaneously acquired both visible near-infrared lightning spectra on a pulse to pulse basis, so that the spectral variability within a flash, as well as flash to flash variations, can be studied. Preliminary results suggest that important variations do occur, particularly in the strengths of the hydrogen and singly ionized nitrogen emission lines. Also, the results have revealed significant differences in the integrated energy distributions between the lightning spectra measured above clouds and the spectral measurements of cloud-to-ground lightning made at the ground. In particular, the ratio of the energy in the near-IR to that in the visible is around 1 to 2 for cloud top spectra versus about 1/3 for surface observations. Detailed analyses of the 1984 lightning spectral data is being conducted. This data should provide improved understanding about the optical transmission properties of thunderclouds and the physics of the lightning discharge process. Efforts continue on developing and testing background signal removal algorithms using U2 spectometer and optical array sensor day-flight data sets. The goal of this research is to develop an algorithm satisfying Lightning Mapper Sensor requirements.

  4. Cassini atmospheric chemistry mapper. Volume 1. Investigation and technical plan

    NASA Technical Reports Server (NTRS)

    Smith, William Hayden; Baines, Kevin Hays; Drossart, Pierre; Fegley, Bruce; Orton, Glenn; Noll, Keith; Reitsema, Harold; Bjoraker, Gordon L.

    1990-01-01

    The Cassini Atmospheric Chemistry Mapper (ACM) enables a broad range of atmospheric science investigations for Saturn and Titan by providing high spectral and spatial resolution mapping and occultation capabilities at 3 and 5 microns. ACM can directly address the major atmospheric science objectives for Saturn and for Titan, as defined by the Announcement of Opportunity, with pivotal diagnostic measurements not accessible to any other proposed Cassini instrument. ACM determines mixing ratios for atmospheric molecules from spectral line profiles for an important and extensive volume of the atmosphere of Saturn (and Jupiter). Spatial and vertical profiles of disequilibrium species abundances define Saturn's deep atmosphere, its chemistry, and its vertical transport phenomena. ACM spectral maps provide a unique means to interpret atmospheric conditions in the deep (approximately 1000 bar) atmosphere of Saturn. Deep chemistry and vertical transport is inferred from the vertical and horizontal distribution of a series of disequilibrium species. Solar occultations provide a method to bridge the altitude range in Saturn's (and Titan's) atmosphere that is not accessible to radio science, thermal infrared, and UV spectroscopy with temperature measurements to plus or minus 2K from the analysis of molecular line ratios and to attain an high sensitivity for low-abundance chemical species in the very large column densities that may be achieved during occultations for Saturn. For Titan, ACM solar occultations yield very well resolved (1/6 scale height) vertical mixing ratios column abundances for atmospheric molecular constituents. Occultations also provide for detecting abundant species very high in the upper atmosphere, while at greater depths, detecting the isotopes of C and O, constraining the production mechanisms, and/or sources for the above species. ACM measures the vertical and horizontal distribution of aerosols via their opacity at 3 microns and, particularly, at 5

  5. Software used with the flux mapper at the solar parabolic dish test site

    NASA Technical Reports Server (NTRS)

    Miyazono, C.

    1984-01-01

    Software for data archiving and data display was developed for use on a Digital Equipment Corporation (DEC) PDP-11/34A minicomputer for use with the JPL-designed flux mapper. The flux mapper is a two-dimensional, high radiant energy scanning device designed to measure radiant flux energies expected at the focal point of solar parabolic dish concentrators. Interfacing to the DEC equipment was accomplished by standard RS-232C serial lines. The design of the software was dicated by design constraints of the flux-mapper controller. Early attemps at data acquisition from the flux-mapper controller were not without difficulty. Time and personnel limitations result in an alternative method of data recording at the test site with subsequent analysis accomplished at a data evaluation location at some later time. Software for plotting was also written to better visualize the flux patterns. Recommendations for future alternative development are discussed. A listing of the programs used in the anaysis is included in an appendix.

  6. Thematic mapper flight model preshipment review data package. Volume 3, part B: System data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Procedures and results are presented for performance and systems integration tests of flight model-1 thematic mapper. Aspects considered cover electronic module integration, radiometric calibration, spectral matching, spatial coverage, radiometric calibration of the calibrator, coherent noise, dynamic square wave response, band to band registration, geometric accuracy, and self induced vibration. Thermal vacuum tests, EMI/EMS, and mass properties are included. Liens are summarized.

  7. Thematic mapper flight model preshipment review data package. Volume 4: Appendix. Part E: Electronics module data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Tests to verify the as-designed performance of all circuits within the thematic mapper electronics module unit are described. Specifically, the tests involved the evaluation of the scan line corrector driver, shutter drivers function, cal lamp controller function, post amplifier function, command decoder verification unit, and the temperature and actuator controllers function.

  8. Information content of data from the LANDSAT 4 Thematic Mapper (TM) and multispectral scanner (MSS)

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1983-01-01

    Simultaneous data acquisition by the LANDSAT 4 thematic mapper and the multispectral scanner permits the comparison of the two types of image data with respect to engineering performance and data applications. Progress in the evaluation of information content of matching scenes in agricultural areas is briefly reported.

  9. PrimerMapper: high throughput primer design and graphical assembly for PCR and SNP detection

    PubMed Central

    O’Halloran, Damien M.

    2016-01-01

    Primer design represents a widely employed gambit in diverse molecular applications including PCR, sequencing, and probe hybridization. Variations of PCR, including primer walking, allele-specific PCR, and nested PCR provide specialized validation and detection protocols for molecular analyses that often require screening large numbers of DNA fragments. In these cases, automated sequence retrieval and processing become important features, and furthermore, a graphic that provides the user with a visual guide to the distribution of designed primers across targets is most helpful in quickly ascertaining primer coverage. To this end, I describe here, PrimerMapper, which provides a comprehensive graphical user interface that designs robust primers from any number of inputted sequences while providing the user with both, graphical maps of primer distribution for each inputted sequence, and also a global assembled map of all inputted sequences with designed primers. PrimerMapper also enables the visualization of graphical maps within a browser and allows the user to draw new primers directly onto the webpage. Other features of PrimerMapper include allele-specific design features for SNP genotyping, a remote BLAST window to NCBI databases, and remote sequence retrieval from GenBank and dbSNP. PrimerMapper is hosted at GitHub and freely available without restriction. PMID:26853558

  10. Thematic mapper flight model preshipment review data package. Volume 3, part C: System data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Failure reports for flight model-1 of the thematic mapper are summarized showing the symptom and cause of failure as well as the corrective action taken. Each report is keyed to the major subsystem against which the failure occurred. Requests for deviation/waiver are listed by number, description, and current status. Copies of engineering proposals are included.

  11. Thematic mapper flight model preshipment review data package. Volume 2, part B: Subsystem data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Summarized performance data are presented for the following major subsystems of the thematic mapper: the focal plane assembly, the radiative cooler, the radiative cooler door assembly, the top optical assembly, and the telescope assembly. Reference lists of the configurations status and of nonconforming material reports, failure reports, and requests for deviation/waiver are included.

  12. Estuary Data Mapper: A virtual portal to coastal data informing environmental management decisions

    EPA Science Inventory

    The Estuary Data Mapper (EDM) is a free, interactive graphical application under development at the US EPA that allows environmental researchers and managers to quickly and easily retrieve, view and save subsets of online US coastal estuary-related data. Accessible data include ...

  13. LAND COVER MAPPING IN AN AGRICULTURAL SETTING USING MULTISEASONAL THEMATIC MAPPER DATA

    EPA Science Inventory

    A multiseasonal Landsat Thematic Mapper (TM) data set consisting of five image dates from a single year was used to characterize agricultural and related land cover in the Willamette River Basin (WRB) of western Oregon. Image registration was accomplished using an automated grou...

  14. Spectral Angle Mapper Classification of Fluorescence Hyperspectral Image for Aflatoxin Contaminated Corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxin contamination in corn is a serious problem for both producers and consumers. The present study applied the Spectral Angle Mapper classification technique to classify single corn kernels into contaminated and healthy groups. Fluorescence hyperspectral images were used in the classification....

  15. PrimerMapper: high throughput primer design and graphical assembly for PCR and SNP detection.

    PubMed

    O'Halloran, Damien M

    2016-01-01

    Primer design represents a widely employed gambit in diverse molecular applications including PCR, sequencing, and probe hybridization. Variations of PCR, including primer walking, allele-specific PCR, and nested PCR provide specialized validation and detection protocols for molecular analyses that often require screening large numbers of DNA fragments. In these cases, automated sequence retrieval and processing become important features, and furthermore, a graphic that provides the user with a visual guide to the distribution of designed primers across targets is most helpful in quickly ascertaining primer coverage. To this end, I describe here, PrimerMapper, which provides a comprehensive graphical user interface that designs robust primers from any number of inputted sequences while providing the user with both, graphical maps of primer distribution for each inputted sequence, and also a global assembled map of all inputted sequences with designed primers. PrimerMapper also enables the visualization of graphical maps within a browser and allows the user to draw new primers directly onto the webpage. Other features of PrimerMapper include allele-specific design features for SNP genotyping, a remote BLAST window to NCBI databases, and remote sequence retrieval from GenBank and dbSNP. PrimerMapper is hosted at GitHub and freely available without restriction. PMID:26853558

  16. Thematic mapper flight model preshipment review data package. Volume 4: Appendix. Part C: Power supply data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The acceptance test data package for the thematic mapper flight model power supply was reviewed and the data compared to the relevant specification. The power supply was found to be within specification. Final test data for outut voltage regulation and ripple, efficiency, over and undervoltage protection, telemetry, impedances, turn-on requirements, and input current limits are presented.

  17. Thematic mapper flight model preshipment review data package. Volume 3, part A: System data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Results of vibration, acoustical noise, and thermal vacuum are described as well as tests studies of EMI/EMC and mass properties conducted for thematic mapper systems integration. Liens are summarized and the engineering change proposal status is presented. Requests for deviation/waiver are included along with failure and nonforming material reports.

  18. Lightning Mapper Sensor Lens Assembly S.O. 5459: Project Management Plan

    NASA Technical Reports Server (NTRS)

    Zeidler, Janet

    1999-01-01

    Kaiser Electro-Optics, Inc. (KEO) has developed this Project Management Plan for the Lightning Mapper Sensor (LMS) program. KEO has integrated a team of experts in a structured program management organization to meet the needs of the LMS program. The project plan discusses KEO's approach to critical program elements including Program Management, Quality Assurance, Configuration Management, and Schedule.

  19. PrimerMapper: high throughput primer design and graphical assembly for PCR and SNP detection.

    PubMed

    O'Halloran, Damien M

    2016-01-01

    Primer design represents a widely employed gambit in diverse molecular applications including PCR, sequencing, and probe hybridization. Variations of PCR, including primer walking, allele-specific PCR, and nested PCR provide specialized validation and detection protocols for molecular analyses that often require screening large numbers of DNA fragments. In these cases, automated sequence retrieval and processing become important features, and furthermore, a graphic that provides the user with a visual guide to the distribution of designed primers across targets is most helpful in quickly ascertaining primer coverage. To this end, I describe here, PrimerMapper, which provides a comprehensive graphical user interface that designs robust primers from any number of inputted sequences while providing the user with both, graphical maps of primer distribution for each inputted sequence, and also a global assembled map of all inputted sequences with designed primers. PrimerMapper also enables the visualization of graphical maps within a browser and allows the user to draw new primers directly onto the webpage. Other features of PrimerMapper include allele-specific design features for SNP genotyping, a remote BLAST window to NCBI databases, and remote sequence retrieval from GenBank and dbSNP. PrimerMapper is hosted at GitHub and freely available without restriction.

  20. [Spectral Uncertainty of Terrestrial Objects and the Applicability of Spectral Angle Mapper Algorithm].

    PubMed

    Cen, Yi; Zhang, Gen-zhong; Zhang, Li-fu; Lu, Xu-hui; Zhang, Fei-zhou

    2015-10-01

    The spectral uncertainty of terrestrial objects causes a certain degree of spectral differences among feature spectra, which affects the accuracy of object recognition and also impacts the object recognition of spectral angle mapper algorithm (SAM). The spectral angle mapper algorithm is based on the overall similarity of the spectral curves, which was widely used in the classification of hyperspectral remotely sensed information. The spectral angle mapper algorithm does not take the spectral uncertainty of terrestrial objects into account while calculating the spectral angle between the spectral curves, and therefore does not tend to correctly identify the target objects. The applicability of the spectral angle mapper algorithm is studied for the spectral uncertainty of terrestrial objects and a modified SAM is proposed in this paper. In order to overcome the influence of the spectral uncertainty, the basic idea is to set a spectral difference value for the test spectra and the reference spectra and to calculate the spectral difference value based on derivation method according to the principle of minimum angle between the test spectra and the reference spectra. By considering the impact of the spectral uncertainty of terrestrial objects, this paper uses five kaolinite mineral spectra of USGS to calculate the spectral angle between the five kalinite mineral spectra by using local band combination and all bands to verify the improved algorithm. The calculation results and the applicability of the spectral angle mapper algorithm were analyzed. The results obtained from the experiments based on USGS mineral spectral data indicate that the modified SAM is not only helpful in characterizing and overcoming the impact of the spectral uncertainty but it can also improve the accuracy of object recognition to certain extent especially for selecting local band combination and has better applicability for the spectral uncertainty of terrestrial objects. PMID:26904829

  1. [Spectral Uncertainty of Terrestrial Objects and the Applicability of Spectral Angle Mapper Algorithm].

    PubMed

    Cen, Yi; Zhang, Gen-zhong; Zhang, Li-fu; Lu, Xu-hui; Zhang, Fei-zhou

    2015-10-01

    The spectral uncertainty of terrestrial objects causes a certain degree of spectral differences among feature spectra, which affects the accuracy of object recognition and also impacts the object recognition of spectral angle mapper algorithm (SAM). The spectral angle mapper algorithm is based on the overall similarity of the spectral curves, which was widely used in the classification of hyperspectral remotely sensed information. The spectral angle mapper algorithm does not take the spectral uncertainty of terrestrial objects into account while calculating the spectral angle between the spectral curves, and therefore does not tend to correctly identify the target objects. The applicability of the spectral angle mapper algorithm is studied for the spectral uncertainty of terrestrial objects and a modified SAM is proposed in this paper. In order to overcome the influence of the spectral uncertainty, the basic idea is to set a spectral difference value for the test spectra and the reference spectra and to calculate the spectral difference value based on derivation method according to the principle of minimum angle between the test spectra and the reference spectra. By considering the impact of the spectral uncertainty of terrestrial objects, this paper uses five kaolinite mineral spectra of USGS to calculate the spectral angle between the five kalinite mineral spectra by using local band combination and all bands to verify the improved algorithm. The calculation results and the applicability of the spectral angle mapper algorithm were analyzed. The results obtained from the experiments based on USGS mineral spectral data indicate that the modified SAM is not only helpful in characterizing and overcoming the impact of the spectral uncertainty but it can also improve the accuracy of object recognition to certain extent especially for selecting local band combination and has better applicability for the spectral uncertainty of terrestrial objects.

  2. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  3. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  4. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  5. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  6. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  7. Monitoring Global Precipitation through UCI CHRS's RainMapper App on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Nguyen, P.; Huynh, P.; Braithwaite, D.; Hsu, K. L.; Sorooshian, S.

    2014-12-01

    The Water and Development Information for Arid Lands-a Global Network (G-WADI) Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks—Cloud Classification System (PERSIANN-CCS) GeoServer has been developed through a collaboration between the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine (UCI) and the UNESCO's International Hydrological Program (IHP). G-WADI PERSIANN-CCS GeoServer provides near real-time high resolution (0.04o, approx 4km) global (60oN - 60oS) satellite precipitation estimated by the PERSIANN-CCS algorithm developed by the scientists at CHRS. The G-WADI PERSIANN-CCS GeoServer utilizes the open-source MapServer software from the University of Minnesota to provide a user-friendly web-based mapping and visualization of satellite precipitation data. Recent efforts have been made by the scientists at CHRS to provide free on-the-go access to the PERSIANN-CCS precipitation data through an application named RainMapper for mobile devices. RainMapper provides visualization of global satellite precipitation of the most recent 3, 6, 12, 24, 48 and 72-hour periods overlaid with various basemaps. RainMapper uses the Google maps application programing interface (API) and embedded global positioning system (GPS) access to better monitor the global precipitation data on mobile devices. Functionalities include using geographical searching with voice recognition technologies make it easy for the user to explore near real-time precipitation in a certain location. RainMapper also allows for conveniently sharing the precipitation information and visualizations with the public through social networks such as Facebook and Twitter. RainMapper is available for iOS and Android devices and can be downloaded (free) from the App Store and Google Play. The usefulness of RainMapper was demonstrated through an application in tracking the evolution of the recent Rammasun Typhoon over the

  8. Abstracts of the annual meeting of Planetary Geologic Mappers: June 21-22, 2002, Tempe, Arizona

    USGS Publications Warehouse

    Gregg, Tracy K. P.; Tanaka, Kenneth L.; Senske, David A.

    2002-01-01

    The annual meeting of planetary geologic mappers allows mappers the opportunity to exchange ideas, experiences, victories, and problems. In addition, presentations are reviewed by the Geologic Mapping Subcommittee (GEMS) to provide input to the Planetary Geology and Geophysics Mapping Program review panel’s consideration of new proposals and progress reports that include mapping tasks. Funded mappers bring both oral presentation materials (slides or viewgraphs) and map products to post for review by GEMS and fellow mappers. Additionally, the annual meetings typically feature optional field trips that offer Earth analogs and parallels to planetary mapping problems or workshops that provide information and status of current missions. The 2002 meeting of planetary geologic mappers was held June 21-22 at the Mars Flight Facility, Arizona State University, Tempe, Arizona. Dr. Phil Christensen graciously offered the use of the newly renovated facility, and Ms. Kelly Bender not only proved to be a courteous hostess, but also arranged a short workshop on June 23 regarding TES and THEMIS data. Approximately 30 people attended each day of the 2-day meeting, although not the same 30—some attended only on Thursday and others only on Friday. On Thursday, eight mappers gave oral presentations of Mars mapping, and an additional two presentations were presented as posters only. Eight oral presentations on Venus mapping were given on Friday, and an additional four presentations were posters only. Twelve people attended the TES/THEMIS workshop. Presentations of Ganymede mapping and Europa mapping (the latter not yet financially sponsored by PG&G mapping program) were also given on Friday. Aside from the regular presentations of maps-in-progress, there were some additional talks. Lisa Gaddis (USGS) presented a proposal seeking support for a new lunar mapping program in light of all the new data available; she made a good case that the GEMS panel discussed. Jim Skinner (USGS) gave

  9. Modeling for Airborne Contamination

    SciTech Connect

    F.R. Faillace; Y. Yuan

    2000-08-31

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift

  10. Thematic mapper protoflight model preshipment review data package. Volume 4: Appendix. Part A: Multiplexer data, book 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Data from the final performance tests of the thematic mapper flight model multiplexer at ambient temperature are presented. Results cover the power supply, the input buffer, and the A/D threshold for bands 1 through 4.

  11. Thematic mapper flight model preshipment review data package. Volume 4: Appendix. Part D: Focal plane assembly data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The data obtained for the Band 1 thematic mapper flight full band assembly (P/N 50797) are summarized. The data were collected from half band, post amplifier, and full band acceptance test data records.

  12. Monitoring land use and degradation using satellite and airborne data

    NASA Technical Reports Server (NTRS)

    Ray, Terrill W.; Farr, Thomas G.; Blom, Ronald G.; Crippen, Robert E.

    1993-01-01

    In July 1990 AVIRIS and AIRSAR data were collected over the Manix Basin Area of the Mojave Desert to study land degradation in an arid area where centerpivot irrigation had been in use. The Manix Basin is located NE of Barstow, California, along Interstate-15 at 34 deg 57 min N 116 deg 35 min W. This region was covered by a series of lakes during the Late Pleistocence and Early Holocene. Beginning in the 1960's, areas were cleared of the native creosote bush-dominated plant community to be used for agricultural purposes. Starting in 1972 fields have been abandoned due to the increased cost of electricity needed to pump the irrigation water, with some fields abandoned as recently as 1988 and 1992. These circumstances provide a time series of abandoned fields which provide the possibility of studying the processes which act on agricultural fields in arid regions when they are abandoned. Ray et al. reported that polarimetric SAR (AIRSAR) could detect that the concentric circular planting furrows plowed on these fields persists for a few years after abandonment and then disappear over time and that wind ripples which form on these fields over time due to wind erosion can be detected with polarimetric radar. Ray et al. used Landsat Thematic Mapper (TM) bandpasses to generate NDVI images of the Manix Basin which showed that the fields abandoned for only a few years had higher NDVI's than the undisturbed desert while the fields abandoned for a longer time had NDVI levels lower than that of the undisturbed desert. The purpose of this study is to use a fusion of a time series of satellite data with airborne data to provide a context for the airborne data. The satellite data time series will additionally help to validate the observation and analysis of time-dependent processes observed in the single AVIRIS image of fields abandoned for different periods of time.

  13. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  14. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  15. Analysis of thematic mapper simulator data collected over eastern North Dakota

    NASA Technical Reports Server (NTRS)

    Anderson, J. E. (Principal Investigator)

    1982-01-01

    The results of the analysis of aircraft-acquired thematic mapper simulator (TMS) data, collected to investigate the utility of thematic mapper data in crop area and land cover estimates, are discussed. Results of the analysis indicate that the seven-channel TMS data are capable of delineating the 13 crop types included in the study to an overall pixel classification accuracy of 80.97% correct, with relative efficiencies for four crop types examined between 1.62 and 26.61. Both supervised and unsupervised spectral signature development techniques were evaluated. The unsupervised methods proved to be inferior (based on analysis of variance) for the majority of crop types considered. Given the ground truth data set used for spectral signature development as well as evaluation of performance, it is possible to demonstrate which signature development technique would produce the highest percent correct classification for each crop type.

  16. Detecting air pollution stress in southern California vegetation using Landsat Thematic Mapper band data

    SciTech Connect

    Westman, W.E.; Price, C.V.

    1988-09-01

    Landsat Thematic Mapper (TM) and aircraft-borne Thematic Mapper simulator (TMS) data were collected over two areas of natural vegetation in southern California exposed to gradients of pollutant dose, particularly in photochemical oxidants: the coastal sage scrub of the Santa Monica Mountains in the Los Angeles basin, and the yellow pine forests in the southern Sierra Nevada. In both situations, natural variations in canopy closure, with subsequent exposure of understory elements (e.g.,rock or soil, chaparral, grasses, and herbs), were sufficient to cause changes in spectral variation that could obscure differences due to visible foliar injury symptoms observed in the field. TM or TMS data are therefore more likely to be successful in distinguishing pollution injury from background variation when homogeneous communities with closed canopies are subjected to more severe pollution-induced structural and/or compositional change. The present study helps to define the threshold level of vegetative injury detectable by TM data. 26 references.

  17. Table Rock Lake Water-Clarity Assessment Using Landsat Thematic Mapper Satellite Data

    USGS Publications Warehouse

    Krizanich, Gary; Finn, Michael P.

    2009-01-01

    Water quality of Table Rock Lake in southwestern Missouri is assessed using Landsat Thematic Mapper satellite data. A pilot study uses multidate satellite image scenes in conjunction with physical measurements of secchi disk transparency collected by the Lakes of Missouri Volunteer Program to construct a regression model used to estimate water clarity. The natural log of secchi disk transparency is the dependent variable in the regression and the independent variables are Thematic Mapper band 1 (blue) reflectance and a ratio of the band 1 and band 3 (red) reflectance. The regression model can be used to reliably predict water clarity anywhere within the lake. A pixel-level lake map of predicted water clarity or computed trophic state can be produced from the model output. Information derived from this model can be used by water-resource managers to assess water quality and evaluate effects of changes in the watershed on water quality.

  18. LANDSAT-4 MSS and Thematic Mapper data quality and information content analysis

    NASA Technical Reports Server (NTRS)

    Anuta, P.; Bartolucci, L.; Dean, E.; Lozano, F.; Malaret, E.; Mcgillem, C. D.; Valdes, J.; Valenzuela, C.

    1984-01-01

    LANDSAT-4 thematic mapper (TM) and multispectral scanner (MSS) data were analyzed to obtain information on data quality and information content. Geometric evaluations were performed to test band-to-band registration accuracy. Thematic mapper overall system resolution was evaluated using scene objects which demonstrated sharp high contrast edge responses. Radiometric evaluation included detector relative calibration, effects of resampling, and coherent noise effects. Information content evaluation was carried out using clustering, principal components, transformed divergence separability measure, and supervised classifiers on test data. A detailed spectral class analysis (multispectral classification) was carried out to compare the information content of the MSS and TM for a large number of scene classes. A temperature-mapping experiment was carried out for a cooling pond to test the quality of thermal-band calibration. Overall TM data quality is very good. The MSS data are noisier than previous LANDSAT results.

  19. Landsat-4 MSS and Thematic Mapper data quality and information content analysis

    NASA Technical Reports Server (NTRS)

    Anuta, P. E.; Bartolucci, L. A.; Dean, M. E.; Lozano, D. F.; Malaret, E.; Mcgillem, C. D.; Valdes, J. A.; Valenzuela, C. R.

    1984-01-01

    Landsat-4 Thematic Mapper and Multispectral Scanner data were analyzed to obtain information on data quality and information content. Geometric evaluations were performed to test band-to-band registration accuracy. Thematic Mapper overall system resolution was evaluated using scene objects which demonstrated sharp high contrast edge responses. Radiometric evaluation included detector relative calibration, effects of resampling, and coherent noise effects. Information content evaluation was carried out using clustering, principal components, transformed divergence separability measure, and numerous supervised classifiers on data from Iowa and Illinois. A detailed spectral class analysis (multispectral classification) was carried out on data from the Des Moines, IA area to compare the information content of the MSS and TM for a large number of scene classes.

  20. Detecting air pollution stress in southern California vegetation using Landsat Thematic Mapper band data

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.; Price, Curtis V.

    1988-01-01

    Landsat Thematic Mapper (TM) and aircraft-borne Thematic Mapper simulator (TMS) data were collected over two areas of natural vegetation in southern California exposed to gradients of pollutant dose, particularly in photochemical oxidants: the coastal sage scrub of the Santa Monica Mountains in the Los Angeles basin, and the yellow pine forests in the southern Sierra Nevada. In both situations, natural variations in canopy closure, with subsequent exposure of understory elements (e.g.,rock or soil, chaparral, grasses, and herbs), were sufficient to cause changes in spectral variation that could obscure differences due to visible foliar injury symptoms observed in the field. TM or TMS data are therefore more likely to be successful in distinguishing pollution injury from background variation when homogeneous communities with closed canopies are subjected to more severe pollution-induced structural and/or compositional change. The present study helps to define the threshold level of vegetative injury detectable by TM data.

  1. Tectonic evaluation of the Nubian shield of Northeastern Sudan using thematic mapper imagery

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Bechtel is nearing completion of a one-year program that uses digitally enhanced LANDSAT Thematic Mapper (TM) data to compile the first comprehensive regional tectonic map of the Proterozoic Nubian Shield exposed in the northern Red Sea Hills of northeastern Sudan. The status of significant objectives of this study are given. Pertinent published and unpublished geologic literature and maps of the northern Red Sea Hills to establish the geologic framework of the region were reviewed. Thematic mapper imagery for optimal base-map enhancements was processed. Photo mosaics of enhanced images to serve as base maps for compilation of geologic information were completed. Interpretation of TM imagery to define and delineate structural and lithogologic provinces was completed. Geologic information (petrologic, and radiometric data) was compiled from the literature review onto base-map overlays. Evaluation of the tectonic evolution of the Nubian Shield based on the image interpretation and the compiled tectonic maps is continuing.

  2. Abstracts of the annual Planetary Geologic Mappers Meeting, June 18-19, 2001, Albuquerque, New Mexico

    USGS Publications Warehouse

    Parker, Timothy J.; Tanaka, Kenneth L.; Senske, David A.

    2002-01-01

    The annual Planetary Geologic Mappers Meeting serves two purposes. In addition to giving mappers the opportunity to exchange ideas, experiences, victories, and problems with others, presentations are reviewed by the Geologic Mapping Subcommittee (GeMS) to provide input to the Planetary Geology and Geophysics Mapping Program review panel’s consideration of new proposals and progress reports that include mapping tasks. Funded mappers bring both oral presentation materials (slides or viewgraphs) and map products to post for review by GeMS and fellow mappers. Additionally, the annual meetings typically feature optional field trips offering earth analogs and parallels to planetary mapping problems. The 2001 Mappers Meeting, June 18-19, was convened by Tim Parker, Dave Senske, and Ken Tanaka and was hosted by Larry Crumpler and Jayne Aubele of the New Mexico Museum of Natural History and Science in Albuquerque, New Mexico. Oral presentations were given in the Museum’s Honeywell Auditorium, and maps were posted in the Sandia Room. In addition to active mappers, guests included local science teachers who had successfully competed for the right to attend and listen to the reports. It was a unique pleasure for mappers to have the opportunity to interact with and provide information to teachers responding so enthusiastically to the meeting presentation. On Sunday, June 17, Larry and Jayne conducted an optional pre-meeting field trip. The flanks of Rio Grande Rift, east and west of Albuquerque and Valles Caldera north of town presented tectonic, volcanic, and sedimentary examples of the Rift and adjoining areas analogous to observed features on Mars and Venus. The arid but volcanically and tectonically active environment of New Mexico’s rift valley enables focus on features that appear morphologically young and spectacular in satellite images and digital relief models. The theme of the trip was to see what, at orbiter resolution, "obvious" geologic features look like at

  3. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  4. Comparison of Land Cover Information from LANDSAT MSS and Airborne TMS for Hydrological Applications: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Gervin, J. C.; Lu, Y. C.; Hallada, W. A.; Marcell, R. F.

    1982-01-01

    Land cover information for the Clinton River Basin (Michigan) derived from LANDSAT multispectral scanner (MSS) data was compared with that from airborne thematic mapper simulator (TMS) to investigate the probable capabilities of the thematic mapper (TM) launched aboard LANDSAT-4 in July 1982. The preliminary findings for one 7.5 minute topographic map, Mt. Clemens West, are reported. Significant improvements in land cover classification accuracy were obtained using TMS data as compared with MSS data. Overall mapping accuracy increased from 49 to 61 percent with an improvement from 71 to 84 percent in the residential category. A combination of four bands with one band in each major region of the spectrum (visible, near IR, middle IR and thermal IR) provided as good a discrimination of land cover as all seven TM bands. Based on the improved land cover classification accuracy of TM, TM data has the potential to provide more useful and effective input to US Army Corps of Engineers flood forecasting and flood damage prediction/assessment models.

  5. In-orbit measurements of Landsat-4 Thematic Mapper dynamic disturbances

    NASA Technical Reports Server (NTRS)

    Sudey, J., Jr.; Schulman, J. R.

    1984-01-01

    This paper describes Landsat-4 sensors, spacecraft disturbances, and the methodology used to correct Thematic Mapper (TM) images. The discussion includes system requirements, mathematical modeling, in-orbit angular motion measurement, Fast Fourier Transformer (FFT) data analysis, and scan system correction. Emphasis is given to the cause and effect of the electromechanical disturbances beginning with the scan mirror and its interaction and sensitivity to externally and self-generated disturbances. Ground-testing results are compared with those obtained in orbit.

  6. In-flight radiometric calibration of Landsat-5 Thematic Mapper from 1984 to the present

    NASA Astrophysics Data System (ADS)

    Thome, Kurtis J.; Gellman, David I.; Parada, Robert J., Jr.; Biggar, Stuart F.; Slater, Philip N.; Moran, M. Susan

    1993-11-01

    The reflectance-based method is used to determine an absolute radiometric calibration of Landsat-5 Thematic Mapper for the solar reflective portion of the spectrum. Results are given for data collected at White Sands Missile Range in New Mexico on 1992-08-15. These results are compared to those obtained from applying a similar processing approach to data collected in 1984, 1985, 1987, and 1988.

  7. GEODETIC ACCURACY OF LANDSAT 4 MULTISPECTRAL SCANNER AND THEMATIC MAPPER DATA.

    USGS Publications Warehouse

    Thormodsgard, June M.; DeVries, D.J.; ,

    1985-01-01

    EROS Data Center is evaluating the geodetic accuracy of Landsat-4 data from both the Multispectral Scanner (MSS) and Thematic Mapper (TM) processing systems. Geodetic accuracy is a measure of the precision of Landsat data registration to the Earth's figure. This paper describes a geodetic accuracy assessment of several MSS and TM scenes, based on the geodetic referencing information supplied on a standard Landsat 4 computer compatible tape.

  8. Study of Spectral/Radiometric Characteristics of the Thematic Mapper for Land Use Applications

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Metzler, M. D. (Principal Investigator)

    1985-01-01

    An investigation conducted in support of the LANDSAT 4/5 Image Data Quality Analysis (LIDQA) Program is discussed. Results of engineering analyses of radiometric, spatial, spectral, and geometric properties of the Thematic Mapper systems are summarized; major emphasis is placed on the radiometric analysis. Details of the analyses are presented in appendices, which contain three of the eight technical papers produced during this investigation; these three, together, describe the major activities and results of the investigation.

  9. VirusMapper: open-source nanoscale mapping of viral architecture through super-resolution microscopy.

    PubMed

    Gray, Robert D M; Beerli, Corina; Pereira, Pedro Matos; Scherer, Kathrin Maria; Samolej, Jerzy; Bleck, Christopher Karl Ernst; Mercer, Jason; Henriques, Ricardo

    2016-01-01

    The nanoscale molecular assembly of mammalian viruses during their infectious life cycle remains poorly understood. Their small dimensions, generally bellow the 300nm diffraction limit of light microscopes, has limited most imaging studies to electron microscopy. The recent development of super-resolution (SR) light microscopy now allows the visualisation of viral structures at resolutions of tens of nanometers. In addition, these techniques provide the added benefit of molecular specific labelling and the capacity to investigate viral structural dynamics using live-cell microscopy. However, there is a lack of robust analytical tools that allow for precise mapping of viral structure within the setting of infection. Here we present an open-source analytical framework that combines super-resolution imaging and naïve single-particle analysis to generate unbiased molecular models. This tool, VirusMapper, is a high-throughput, user-friendly, ImageJ-based software package allowing for automatic statistical mapping of conserved multi-molecular structures, such as viral substructures or intact viruses. We demonstrate the usability of VirusMapper by applying it to SIM and STED images of vaccinia virus in isolation and when engaged with host cells. VirusMapper allows for the generation of accurate, high-content, molecular specific virion models and detection of nanoscale changes in viral architecture. PMID:27374400

  10. VirusMapper: open-source nanoscale mapping of viral architecture through super-resolution microscopy

    PubMed Central

    Gray, Robert D. M.; Beerli, Corina; Pereira, Pedro Matos; Scherer, Kathrin Maria; Samolej, Jerzy; Bleck, Christopher Karl Ernst; Mercer, Jason; Henriques, Ricardo

    2016-01-01

    The nanoscale molecular assembly of mammalian viruses during their infectious life cycle remains poorly understood. Their small dimensions, generally bellow the 300nm diffraction limit of light microscopes, has limited most imaging studies to electron microscopy. The recent development of super-resolution (SR) light microscopy now allows the visualisation of viral structures at resolutions of tens of nanometers. In addition, these techniques provide the added benefit of molecular specific labelling and the capacity to investigate viral structural dynamics using live-cell microscopy. However, there is a lack of robust analytical tools that allow for precise mapping of viral structure within the setting of infection. Here we present an open-source analytical framework that combines super-resolution imaging and naïve single-particle analysis to generate unbiased molecular models. This tool, VirusMapper, is a high-throughput, user-friendly, ImageJ-based software package allowing for automatic statistical mapping of conserved multi-molecular structures, such as viral substructures or intact viruses. We demonstrate the usability of VirusMapper by applying it to SIM and STED images of vaccinia virus in isolation and when engaged with host cells. VirusMapper allows for the generation of accurate, high-content, molecular specific virion models and detection of nanoscale changes in viral architecture. PMID:27374400

  11. PepMapper: a collaborative web tool for mapping epitopes from affinity-selected peptides.

    PubMed

    Chen, Wenhan; Guo, William W; Huang, Yanxin; Ma, Zhiqiang

    2012-01-01

    Epitope mapping from affinity-selected peptides has become popular in epitope prediction, and correspondingly many Web-based tools have been developed in recent years. However, the performance of these tools varies in different circumstances. To address this problem, we employed an ensemble approach to incorporate two popular Web tools, MimoPro and Pep-3D-Search, together for taking advantages offered by both methods so as to give users more options for their specific purposes of epitope-peptide mapping. The combined operation of Union finds as many associated peptides as possible from both methods, which increases sensitivity in finding potential epitopic regions on a given antigen surface. The combined operation of Intersection achieves to some extent the mutual verification by the two methods and hence increases the likelihood of locating the genuine epitopic region on a given antigen in relation to the interacting peptides. The Consistency between Intersection and Union is an indirect sufficient condition to assess the likelihood of successful peptide-epitope mapping. On average from 27 tests, the combined operations of PepMapper outperformed either MimoPro or Pep-3D-Search alone. Therefore, PepMapper is another multipurpose mapping tool for epitope prediction from affinity-selected peptides. The Web server can be freely accessed at: http://informatics.nenu.edu.cn/PepMapper/

  12. eNanoMapper: harnessing ontologies to enable data integration for nanomaterial risk assessment.

    PubMed

    Hastings, Janna; Jeliazkova, Nina; Owen, Gareth; Tsiliki, Georgia; Munteanu, Cristian R; Steinbeck, Christoph; Willighagen, Egon

    2015-01-01

    Engineered nanomaterials (ENMs) are being developed to meet specific application needs in diverse domains across the engineering and biomedical sciences (e.g. drug delivery). However, accompanying the exciting proliferation of novel nanomaterials is a challenging race to understand and predict their possibly detrimental effects on human health and the environment. The eNanoMapper project (www.enanomapper.net) is creating a pan-European computational infrastructure for toxicological data management for ENMs, based on semantic web standards and ontologies. Here, we describe the development of the eNanoMapper ontology based on adopting and extending existing ontologies of relevance for the nanosafety domain. The resulting eNanoMapper ontology is available at http://purl.enanomapper.net/onto/enanomapper.owl. We aim to make the re-use of external ontology content seamless and thus we have developed a library to automate the extraction of subsets of ontology content and the assembly of the subsets into an integrated whole. The library is available (open source) at http://github.com/enanomapper/slimmer/. Finally, we give a comprehensive survey of the domain content and identify gap areas. ENM safety is at the boundary between engineering and the life sciences, and at the boundary between molecular granularity and bulk granularity. This creates challenges for the definition of key entities in the domain, which we also discuss. PMID:25815161

  13. CheS-Mapper - Chemical Space Mapping and Visualization in 3D

    PubMed Central

    2012-01-01

    Analyzing chemical datasets is a challenging task for scientific researchers in the field of chemoinformatics. It is important, yet difficult to understand the relationship between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects. To that respect, visualization tools can help to better comprehend the underlying correlations. Our recently developed 3D molecular viewer CheS-Mapper (Chemical Space Mapper) divides large datasets into clusters of similar compounds and consequently arranges them in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kind of features, like structural fragments as well as quantitative chemical descriptors. These features can be highlighted within CheS-Mapper, which aids the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. As a final function, the tool can also be used to select and export specific subsets of a given dataset for further analysis. PMID:22424447

  14. eNanoMapper: harnessing ontologies to enable data integration for nanomaterial risk assessment.

    PubMed

    Hastings, Janna; Jeliazkova, Nina; Owen, Gareth; Tsiliki, Georgia; Munteanu, Cristian R; Steinbeck, Christoph; Willighagen, Egon

    2015-01-01

    Engineered nanomaterials (ENMs) are being developed to meet specific application needs in diverse domains across the engineering and biomedical sciences (e.g. drug delivery). However, accompanying the exciting proliferation of novel nanomaterials is a challenging race to understand and predict their possibly detrimental effects on human health and the environment. The eNanoMapper project (www.enanomapper.net) is creating a pan-European computational infrastructure for toxicological data management for ENMs, based on semantic web standards and ontologies. Here, we describe the development of the eNanoMapper ontology based on adopting and extending existing ontologies of relevance for the nanosafety domain. The resulting eNanoMapper ontology is available at http://purl.enanomapper.net/onto/enanomapper.owl. We aim to make the re-use of external ontology content seamless and thus we have developed a library to automate the extraction of subsets of ontology content and the assembly of the subsets into an integrated whole. The library is available (open source) at http://github.com/enanomapper/slimmer/. Finally, we give a comprehensive survey of the domain content and identify gap areas. ENM safety is at the boundary between engineering and the life sciences, and at the boundary between molecular granularity and bulk granularity. This creates challenges for the definition of key entities in the domain, which we also discuss.

  15. Demonstrating the impact of flood adaptation using an online dynamic flood mapper

    NASA Astrophysics Data System (ADS)

    Orton, P. M.; MacManus, K.; Doxsey-Whitfield, E.; Yetman, G.; Fisher, K.; Sanderson, E. W.; Giampieri, M.; Blumberg, A. F.

    2015-12-01

    Municipalities across the nation are weighing the value of coastal natural and nature-based features (NNBF) for flood risk reduction and the many ecosystem services they provide, yet there is limited quantitative information available to help make these decisions. Here, we describe a new "dynamic" flood mapping web-tool that demonstrates the modeled effects of NNBF on flood hazard zones for the highly populated areas surrounding Jamaica Bay, New York City. The tool also provides information on damages from flooding as well as cost-benefit analyses for NNBF adaptations for the bay. The project researchers are involved with development of a Jamaica Bay Coastal Master Plan, and the mapper will play an important role for increasing the public understanding of adaptation options. More broadly, dynamic flood mappers have many more possibilities than "static" mappers that simply add sea level rise onto pre-defined flood levels and bathtub them over flood plains. Dynamic modeling can enable inclusion of the response of coastal systems, imposed human adaptation, as well as flooding by surge, tide and precipitation.

  16. Discriminating semiarid vegetation using airborne imaging spectrometer data - A preliminary assessment

    NASA Technical Reports Server (NTRS)

    Thomas, Randall W.; Ustin, Susan L.

    1987-01-01

    A preliminary assessment was made of Airborne Imaging Spectrometer (AIS) data for discriminating and characterizing vegetation in a semiarid environment. May and October AIS data sets were acquired over a large alluvial fan in eastern California, on which were found Great Basin desert shrub communities. Maximum likelihood classification of a principal components representation of the May AIS data enabled discrimination of subtle spatial detail in images relating to vegetation and soil characteristics. The spatial patterns in the May AIS classification were, however, too detailed for complete interpretation with existing ground data. A similar analysis of the October AIS data yielded poor results. Comparison of AIS results with a similar analysis of May Landsat Thematic Mapper data showed that the May AIS data contained approximately three to four times as much spectrally coherent information. When only two shortwave infrared TM bands were used, results were similar to those from AIS data acquired in October.

  17. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  18. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  19. Atmospheric modeling related to Thematic Mapper scan geometry. [atmospheric effects on satellite-borne photography of LANDSAT D

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Gleason, J. M.; Cicone, R. C.

    1976-01-01

    A simulation study was carried out to characterize atmospheric effects in LANDSAT-D Thematic Mapper data. In particular, the objective was to determine if any differences would result from using a linear vs. a conical scanning geometry. Insight also was gained about the overall effect of the atmosphere on Thematic Mapper signals, together with the effects of time of day. An added analysis was made of the geometric potential for direct specular reflections (sun glint). The ERIM multispectral system simulation model was used to compute inband Thematic Mapper radiances, taking into account sensor, atmospheric, and surface characteristics. Separate analyses were carried out for the thermal band and seven bands defined in the reflective spectral region. Reflective-region radiances were computed for 40 deg N, 0 deg, and 40 deg S latitudes; June, Mar., and Dec. days; and 9:30 and 11:00 AM solar times for both linear and conical scan modes. Also, accurate simulations of solar and viewing geometries throughout Thematic Mapper orbits were made. It is shown that the atmosphere plays an important role in determining Thematic Mapper radiances, with atmospheric path radiance being the major component of total radiances for short wavelengths and decreasing in importance as wavelength increases. Path radiance is shown to depend heavily on the direct radiation scattering angle and on haze content. Scan-angle-dependent variations were shown to be substantial, especially for the short-wavelength bands.

  20. Cross-calibration of the Landsat-4 and Landsat-5 thematic mappers

    NASA Astrophysics Data System (ADS)

    Mettler, Cory; Helder, Dennis

    2005-08-01

    The Landsat Thematic Mappers have obtained imagery of the Earth's surface since 1982 with the launch of Landsat 4. However, the absolute calibration of this first instrument, as well as it's cross-calibration to the other two thematic mappers on Landsat 5 and 7, remains in question. The objective for this work was to provide an absolute radiometric calibration of the Landsat 4 instrument. Landsat 4's internal calibrator, while still useful, does not provide an absolute calibration; it does provide a relative calibration of the instrument's responsivity over the lifetime of the mission. The same is true for the Landsat 5 internal calibrator; however, Landsat 5 has been cross-calibrated to Landsat 7's Enhanced Thematic Mapper Plus, which is believed to be absolutely calibrated to within 5%. Therefore, by cross-calibrating Landsat 4 to Landsat 7 through Landsat 5, an absolute calibration for Landsat 4 can be determined. This study provides only the Landsat 4 and 5 cross-calibration models. To determine these models, Landsat 4/Landsat 5 scene pairs were studied. Within each pair, 8 400x400-pixel sub-regions were selected from the image. The exact geo-located sub-region was located from both instruments and an assumption was made that the ground and the atmosphere did not change between image dates. Therefore, any difference between the images may be attributed to the difference in the instruments. Results of this cross-calibration using multiple dates were consistent to within 2%. Once the cross-calibration points were determined, they were used to correct the relative lifetime-calibration model from the internal calibrator, hence producing an absolute lifetime-calibration model.

  1. Airborne laser topographic mapping results

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Link, L. E.; Swift, R. N.; Butler, M. L.

    1984-01-01

    The results of terrain mapping experiments utilizing the National Aeronautics and Space Administration (NASA) Airborne Oceanographic Lidar (AOL) over forested areas are presented. The flight tests were conducted as part of a joint NASA/U.S. Army Corps of Engineers (CE) investigation aimed at evaluating the potential of an airborne laser ranging system to provide cross-sectional topographic data on flood plains that are difficult and expensive to survey using conventional techniques. The data described in this paper were obtained in the Wolf River Basin located near Memphis, TN. Results from surveys conducted under winter 'leaves off' and summer 'leaves on' conditions, aspects of day and night operation, and data obtained from decidous and coniferous tree types are compared. Data processing techniques are reviewed. Conclusions relative to accuracy and present limitations of the AOL, and airborne lidar systems in general, to terrain mapping over forested areas are discussed.

  2. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  3. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  4. Feature selection and information content of thematic mapper simulator data for a forested environment

    NASA Technical Reports Server (NTRS)

    Spanner, M. A.; Brass, J. A.; Peterson, D. L.

    1983-01-01

    Feature selection and the information content of Thematic Mapper Simulator (TMS) data are investigated for a forested region in northern Idaho. The optimal TMS channels for forest structural characteristics are determined, and the capability of TMS data to describe the structural variability within a forest stand is evaluated. The comparative performance of TMS and MSS data to discriminate forest structural factors using per-pixel maximum likelihood classification is examined, and four optimal TMS channels are classified in order to ascertain if the full complement of TM channels provide higher accuracies than the four optimal ones.

  5. PRELIMINARY EVALUATION OF LANDSAT-4 THEMATIC MAPPER DATA FOR THEIR GEOMETRIC AND RADIOMETRIC ACCURACIES.

    USGS Publications Warehouse

    Podwysoki, M.H.; Falcone, N.; Bender, L.U.; Jones, O.D.; ,

    1985-01-01

    This report describes results of some preliminary analyses of Landsat-4 Thematic Mapper data for the NASA Landsat Image Quality Analysis program. The work is being done under interagency agreement S-12407-C between the U. S. Geological Survey and NASA-Goddard Space Flight Center. Landsat-4 TM scenes for Washington, D. C. Macon, Georgia (40050-15333, September 4, 1982) and Cape Canaveral, Florida have been examined to determine their geometric and radiometric accuracy. In addition, parts of these scenes are also being analyzed to determine the ability to identify specific rock types with the added near-infrared TM bands.

  6. Study of spectral/radiometric characteristics of the Thematic Mapper for land use applications

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Metzler, M. D.

    1984-01-01

    Progress during the Environmental Research Institute of Michigan-ERIM's and 5 image data quality assessment program for the thematic mapper is described. Analyses of LANDSAT 5 TM radiometric characteristics were performed. Effects which had earlier been found in LANDSAT 4 TM data were found to be present in LANDSAT 5 data as well, including: (1) scan direction related signal droop; (2) scan correlated level shifts; and (3) low frequency coherent noise. Coincident LANDSAT 4 and 5 raw TM data were analyzed, and band by band relationships between the two sensors were derived. Earlier efforts which developed an information theoretic measure of multispectral information content were continued, comparing TM and MSS information content.

  7. Geologic results of the TMS survey over Mt. Emmons, Colorado. [Thematic Mapper Simulator

    NASA Technical Reports Server (NTRS)

    Rickman, D. L.; Sadowski, R. M.

    1985-01-01

    In 1981, NASA conducted with an American company a cooperative study, involving the use of Thematic Mapper Simulator (TMS) data. The study was concerned with an area near Crested Butte, Colorado, which contains a known, but unmined, major molybdenum deposit. Detailed ground observations in the Mt. Emmons area demonstrated that the imagery was extremely effective for detection of geologically significant features. The imagery specifically delineated areas of ferric iron staining, seritization, and hornfelized rock. Attention is given to data acquisition and data processing, field work in 1982 and in 1983, the integration of gravity data, and costs.

  8. Feature selection and the information content of Thematic Mapper simulator data for forest structural assessment

    NASA Technical Reports Server (NTRS)

    Spanner, M. A.; Brass, J. A.; Peterson, D. L.

    1984-01-01

    An assessment is made of the information content of Thematic Mapper Simulator (TMS) data for the case of a forested region, in order to determine the sensitivity of such data to forest crown closure and tree size class. Principal components analysis and Monte Carlo simulation indicated that channels 4, 7, 5 and 3 were optimal for four-channel forest structure analysis. As the number of channels supplied to the Monte Carlo feature selection routine increased, classification accuracy increased. The greatest sensitivity to the forest structural parameters, which included succession within clearcuts as well as crown closure and size class, was obtained from the 7-channel TMS data.

  9. Titan Radar Mapper observations from Cassini's T3 fly-by

    USGS Publications Warehouse

    Elachi, C.; Wall, S.; Janssen, M.; Stofan, E.; Lopes, R.; Kirk, R.; Lorenz, R.; Lunine, J.; Paganelli, F.; Soderblom, L.; Wood, C.; Wye, L.; Zebker, H.; Anderson, Y.; Ostro, S.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.

    2006-01-01

    Cassini's Titan Radar Mapper imaged the surface of Saturn's moon Titan on its February 2005 fly-by (denoted T3), collecting high-resolution synthetic-aperture radar and larger-scale radiometry and scatterometry data. These data provide the first definitive identification of impact craters on the surface of Titan, networks of fluvial channels and surficial dark streaks that may be longitudinal dunes. Here we describe this great diversity of landforms. We conclude that much of the surface thus far imaged by radar of the haze-shrouded Titan is very young, with persistent geologic activity. ?? 2006 Nature Publishing Group.

  10. High temperature, high intensity solar array. [for Venus Radar Mapper mission

    NASA Technical Reports Server (NTRS)

    Smith, B. S.; Brooks, G. R.; Pinkerton, R.

    1985-01-01

    The solar array for the Venus Radar Mapper mission will operate in the high temperature, high intensity conditions of a low Venus orbit environment. To fulfill the performance requirements in this environment at minimum cost and mass while maximizing power density and packing factor on the panel surface, several features were introduced into the design. These features included the use of optical surface reflectors (OSR's) to reduce the operating temperature; new adhesives for conductive bonding of OSR's to avoid electrostatic discharges; custom-designed large area cells and novel shunt diode circuit and panel power harness configurations.

  11. Comparison of existing digital image analysis systems for the analysis of Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Likens, W. C.; Wrigley, R. C.

    1984-01-01

    Most existing image analysis systems were designed with the Landsat Multi-Spectral Scanner in mind, leaving open the question of whether or not these systems could adequately process Thematic Mapper data. In this report, both hardware and software systems have been evaluated for compatibility with TM data. Lack of spectral analysis capability was not found to be a problem, though techniques for spatial filtering and texture varied. Computer processing speed and data storage of currently existing mini-computer based systems may be less than adequate. Upgrading to more powerful hardware may be required for many TM applications.

  12. Lithologic mixing in a modern foreland basin: Evidence from Landsat thematic mapper images

    SciTech Connect

    Damanti, J.F. )

    1990-09-01

    Reflectance spectra of synorogenic sediments accumulating in a modern foreland basin indicate that alluvial-fan sediment changes composition as drainage networks expand through tilted strata. The spectral signatures of several sediment mixtures can be used to identify zones of lithologic mixing and to infer erosional unroofing sequences and drainage development in a modern foreland region. A practical graphic analysis of sediment mixing was developed for digital Landsat thematic mapper data. This technique determines the relative proportions of end-member compositions in a binary sediment mixture. Vegetation effects on the spectral response of rock and sediment can also be evaluated.

  13. Study on spectral/radiometric characteristics of the Thematic Mapper for land use applications

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Metzler, M. D.

    1984-01-01

    Progress under the LANDSAT-4 and 5 Image Data Quality Assessment program for the Thematic Mapper is described. An initial screening of LANDSAT-5 data is performed. Tools are developed to allow access to TIPS-format data. Analysis of scan direction related signal droop is resumed with detailed analysis of nighttime data. A new mathematical model is developed to describe the effect. Coherent noise of a lower frequency than previously reported is discovered and analyzed. Coincident LANDSAT-4 TM and MSS data are analyzed to improve understanding of radiometric relationships between similar wavebands in the two sensors.

  14. Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator)

    1984-01-01

    The effect different wetland plant canopies have upon observed reflectance in Thematic Mapper bands is examined. The three major vegetation canopy types (broadleaf, gramineous and leafless) produce unique spectral responses for a similar quantity of live biomass. Biomass estimates computed from spectral data were most similar to biomass estimates determined from harvest data when models developed for a specific canopy were used. Precise determination of regression coefficients for each canopy type and modeling changes in the coefficients with various combinations of canopy types are being tested. The multispectral band scanner vegetation index estimates are very similar to the vegetation index estimates.

  15. Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator)

    1984-01-01

    The effect different wetland plant canopies have upon observed reflectance in Thematic Mapper bands is studied. The three major vegetation canopy types (broadleaf, gramineous and leafless) produce unique spectral responses for a similar quantity of live biomass. The spectral biomass estimate of a broadleaf canopy is most similar to the harvest biomass estimate when a broadleaf canopy radiance model is used. All major wetland vegetation species can be identified through TM imagery. Simple regression models are developed equating the vegetation index and the infrared index with biomass. The spectral radiance index largely agreed with harvest biomass estimates.

  16. Spectral signature of alpine snow cover from the Landsat Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff

    1989-01-01

    In rugged terrain, snow in the shadows can appear darker than soil or vegetation in the sunlight, making it difficult to interpret satellite data images of rugged terrains. This paper discusses methods for using Thematic Mapper (TM) and SPOT data for automatic analyses of alpine snow cover. Typical spectral signatures of the Landsat TM are analyzed for a range of snow types, atmospheric profiles, and topographic illumination conditions. A number of TM images of Sierra Nevada are analyzed to distinguish several classes of snow from other surface covers.

  17. Airborne Transmission of Bordetella pertussis

    PubMed Central

    Warfel, Jason M.; Beren, Joel; Merkel, Tod J.

    2012-01-01

    Pertussis is a contagious, acute respiratory illness caused by the bacterial pathogen Bordetella pertussis. Although it is widely believed that transmission of B. pertussis occurs via aerosolized respiratory droplets, no controlled study has ever documented airborne transmission of pertussis. We set out to determine if airborne transmission occurs between infected and naive animals, utilizing the baboon model of pertussis. Our results showed that 100% of exposed naive animals became infected even when physical contact was prevented, demonstrating that pertussis transmission occurs via aerosolized respiratory droplets. PMID:22807521

  18. Moon Mineral Mapper (M3): A High Uniformity and High Precision Science Imaging Spectrometer in the Solar Reflected Spectrum

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Pieters, Carle; Mouroulis, Pantazis

    2006-01-01

    The Moon Mineralogy Mapper was selected as a NASA Discovery Mission of Opportunity in February 2005. At the core of this mission is an imaging spectrometer instrument with high spectral-spatial uniformity and high signal-to-noise ratio for the expected illumination conditions. The spectral range of the Moon Mineralogy Mapper is from 430 to 3000 nm with 10 nm spectral sampling. The radiometric range is from 0 to maximum expected radiance with 14 bit sampling. The spatial swath is nominally 40 Ian with 70 m spatial sampling. The Moon Mineralogy Mapper has both a global and target mode of data acquisition. In global spectral and spatial resolution full coverage of the Moon will be acquired. Target mode will be used to examine selected areas a full spectral and spatial resolution. The science objectives and mission and instrument characteristics are presented.

  19. NASA Airborne Lidar 1982-1984 Flights

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar 1982-1984 Flights Data from the 1982 NASA Langley Airborne Lidar flights following the eruption of El Chichon ... continuing to January 1984. Transcribed from the following NASA Tech Reports: McCormick, M. P., and M. T. Osborn, Airborne lidar ...

  20. NASA IceBridge: Airborne surveys of the polar sea ice covers

    NASA Astrophysics Data System (ADS)

    Richter-Menge, J.; Farrell, S. L.

    2014-12-01

    The NASA Operation IceBridge (OIB) airborne sea ice surveys are designed to continue a valuable series of sea ice thickness measurements by bridging the gap between NASA's Ice, Cloud and Land Elevation Satellite (ICESat), which operated from 2003 to 2009, and ICESat-2, which is scheduled for launch in 2017. Initiated in 2009, OIB has conducted campaigns over the western Arctic Ocean (March/April) and Southern Oceans (October/November) on an annual basis. Primary OIB sensors being used for sea ice observations include the Airborne Topographic Mapper laser altimeter, the Digital Mapping System digital camera, a Ku-band radar altimeter, a frequency-modulated continuous-wave (FMCW) snow radar, and a KT-19 infrared radiation pyrometer. Data from the campaigns are available to the research community at: http://nsidc.org/data/icebridge/. This presentation will summarize the spatial and temporal extent of the campaigns and highlight key scientific accomplishments, which include: • Documented changes in the Arctic marine cryosphere since the dramatic sea ice loss of 2007 • Novel snow depth measurements over sea ice in the Arctic • Improved skill of April-to-September sea ice predictions via numerical ice/ocean models • Validation of satellite altimetry measurements (ICESat, CryoSat-2, and IceSat-2/MABEL)

  1. NASA IceBridge: Scientific Insights from Airborne Surveys of the Polar Sea Ice Covers

    NASA Astrophysics Data System (ADS)

    Richter-Menge, J.; Farrell, S. L.

    2015-12-01

    The NASA Operation IceBridge (OIB) airborne sea ice surveys are designed to continue a valuable series of sea ice thickness measurements by bridging the gap between NASA's Ice, Cloud and Land Elevation Satellite (ICESat), which operated from 2003 to 2009, and ICESat-2, which is scheduled for launch in 2017. Initiated in 2009, OIB has conducted campaigns over the western Arctic Ocean (March/April) and Southern Oceans (October/November) on an annual basis when the thickness of sea ice cover is nearing its maximum. More recently, a series of Arctic surveys have also collected observations in the late summer, at the end of the melt season. The Airborne Topographic Mapper (ATM) laser altimeter is one of OIB's primary sensors, in combination with the Digital Mapping System digital camera, a Ku-band radar altimeter, a frequency-modulated continuous-wave (FMCW) snow radar, and a KT-19 infrared radiation pyrometer. Data from the campaigns are available to the research community at: http://nsidc.org/data/icebridge/. This presentation will summarize the spatial and temporal extent of the OIB campaigns and their complementary role in linking in situ and satellite measurements, advancing observations of sea ice processes across all length scales. Key scientific insights gained on the state of the sea ice cover will be highlighted, including snow depth, ice thickness, surface roughness and morphology, and melt pond evolution.

  2. Landsat thematic mapper (TM) soil variability analysis over Webster County, Iowa

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Henderson, K. E.; Pitts, D. E.

    1984-01-01

    Thematic mapper simulator (TMS) data acquired June 7, June 23, and July 31, 1982, and Landsat thematic mapper (TM) data acquired August 2, September 3, and October 21, 1982, over Webster County, Iowa, were examined for within-field soil effects on corn and soybean spectral signatures. It was found that patterns displayed on various computer-generated map products were in close agreement with the detailed soil survey of the area. The difference in spectral values appears to be due to a combination of subtle soil properties and crop growth patterns resulting from the different soil properties. Bands 4 (0.76-.90 micron), 5 (1.55-1.75 micron), and 7 (2.08-2.35 micron) were found to be responding to the within-field soil variability even with increasing ground cover. While these results are preliminary, they do indicate that the soil influence on the vegetation is being detected by TM and should provide improved information relating to crop and soil properties.

  3. Outgassing models for Landsat-4 thematic mapper short wave infrared bands

    USGS Publications Warehouse

    Micijevic, E.; Helder, D.L.; ,

    2005-01-01

    Detector responses to the Internal Calibrator (IC) pulses in the Landsat-4 Thematic Mapper (TM) have been observed to follow an oscillatory behavior. This phenomenon is present only in the Short Wave Infrared (SWIR) bands and has been observed throughout the lifetime of the instrument, which was launched in July 1982 and imaged the Earth's surface until late 1993. These periodic changes in amplitude, which can be as large as 7.5 percent, are known as outgassing effects and are believed to be due to optical interference caused by a gradual buildup of an ice-like material on the window of the cryogenically cooled dewar containing the SWIR detectors. Similar outgassing effects in the Landsat-5 TM have been characterized using an optical thin-film model that relates detector behavior to the ice film growth rate, which was found to gradually decrease with time. A similar approach, which takes into consideration the different operational history of the instrument, has been applied in this study to three closely sampled data sets acquired throughout the lifetime of the Landsat-4 TM. Although Landsat-4 and Landsat-5 Thematic Mappers are essentially identical instruments, data generated from analyses of outgassing effects indicate subtle, but important, differences between the two. The estimated lifetime model could improve radiometric accuracy by as much as five percent.

  4. Crowdsourcing as citizen-empowered tool for natural hazards. The MAppERS project.

    NASA Astrophysics Data System (ADS)

    Bossi, Giulia; Mantovani, Matteo; Frigerio, Simone; Møller Janniche, Amalie; Bianchizza, Chiara; Del Bianco, Daniele

    2016-04-01

    MAppERS is a co-financed project by European Commission and it is focused on natural hazards risk prevention and emergency response, through the development of a smartphone application. The idea relies on the role of citizens and volunteers as 'territorial mappers' and the information they can provide to civil protection operators through the use of their smartphones. The strategy is to promote the active participation of citizens and volunteers in disaster risk reduction promoting responsibility and preparedness. The application embraces tools for crowdsourcing data collection, for preparedness, prevention and alert warnings. The pilot activity conducted in order to assess its usability and performance is presented. One activity presented took place in Denmark, by Frederikssund Halsnæs Fire & Rescue Service, where 12 voluntary citizens were enrolled. The age ranged between young and elderly people with different educational level. Two separated groups were defined; one followed an introductory course on the application usage and were supervised during the test, while the other was untrained and without support. The usability of the app was assessed through the filling in of a form. Results showed that volunteers were extremely interested in the app and were seeing the advantage of using it. The app was considered user-friendly even to elderly people. The differences in comprehension of several aspects of the application by the two groups allowed to highlight the weak points in terms of approachability. These were then addressed in the following release of the app.

  5. Landsat-D thematic mapper simulation using aircraft multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Clark, J.; Bryant, N. A.

    1977-01-01

    A simulation of imagery from the upcoming Landsat-D Thematic Mapper was accomplished by using selected channels of aircraft 24-channel multispectral scanner data. The purpose was to simulate Thematic Mapper 30-meter resolution imagery, to compare its spectral quality with the original aircraft MSS data, and to determine changes in thematic classification accuracy for the simulated imagery. The original resolution of approximately 7.5 meters IFOV and simulated resolution of 15, 30, and 60 meters were used to indicate the trend of spectral quality and classification accuracy. The study was based in a 6.5 square kilometer area of urban Los Angeles having a diversity of land use. The original imagery was reduced in resolution by two related methods: pixel matrix averaging, and matrix smoothing with a unity box filter, followed by matrix averaging. Thematic land use classification using training sites and a Bayesian maximum-likelihood algorithm was performed at three levels of standard deviation - 1.0, 2.0, and 3.0 sigma. Plots of relative standard deviation showed that for larger training sites with a normal distribution of data, as the resolution decreased, the distribution range of density values decreased. Also, the classification accuracies for three levels of standard deviation increased as resolution decreased. However, the indication is that a point of diminishing returns had been reached, and 30 meters IFOV should be the best for multispectral classification of urban scenes.

  6. Feasibility test for a V-slit star mapper for pioneer spacecraft terminal navigation

    NASA Technical Reports Server (NTRS)

    Gates, R. F.; Flannery, J. V.; Cragin, J. T.

    1973-01-01

    A laboratory demonstration of the feasibility of using a V-slit star mapper to meet the sensitivity and accuracy of on-board navigational requirements for future Pioneer Missions to the outer planets was conducted by the Control and Sensors Laboratory of TRW. The breadboard was extremely simple in configuration, consisting of an end-on photomultiplier tube and a V-slit reticle located at the focal plane of the objective lens. In addition, a plano-convex lens was used between the reticle and the PMT in a Fabry-Perot configuration. The analytical effort indicated that the sensor should easily meet the requirements. The Pioneer SRA test set was examined to determine its basic accuracy and modify it where necessary to bring its accuracy into the 1-3 arc second range. The test results show that it is feasible to use this type of star mapper in the 10 arc second accuracy range. The test equipment accuracy (approximately 5 arc Sec) was sufficient to bound the sensor errors at less than 10 arc seconds.

  7. Status of the Landsat thematic mapper and multispectral scanner archive conversion system

    USGS Publications Warehouse

    Werner, Darla J.

    1993-01-01

    The U.S. Geological Survey's EROS Data Center (EDC) manages the National Satellite Land Remote Sensing Data Archive. This archive includes Landsat thematic mapper (TM) multispectral scanner (MSS) data acquired since 1972. The Landsat archive is an important resource to global change research. To ensure long-term availability of Landsat data from the archive, the EDC specified requirements for a Thematic Mapper and Multispectral Scanner Archive Conversion System (TMACS) that would preserve the data by transcribing it to a more durable medium. In addition to media conversion, hardware and software was installed at EDC in July 1992. In December 1992, the EDC began converting Landsat MSS data from high-density, open reel instrumentation tapes to digital cassette tapes. Almost 320,000 MSS images acquired since 1979 and more than 200,000 TM images acquired since 1982 will be converted to the new medium during the next 3 years. During the media conversion process, several high-density tapes have exhibited severe binder degradation. Even though these tapes have been stored in environmentally controlled conditions, hydrolysis has occurred, resulting in "sticky oxide shed". Using a thermostatically controlled oven built at EDC, tape "baking" has been 100 percent successful and actually improves the quality of some images.

  8. Outgassing models for Landsat-4 thematic mapper short wave infrared bands

    NASA Astrophysics Data System (ADS)

    Micijevic, Esad; Helder, Dennis L.

    2005-08-01

    Detector responses to the Internal Calibrator (IC) pulses in the Landsat-4 Thematic Mapper (TM) have been observed to follow an oscillatory behavior. This phenomenon is present only in the Short Wave Infrared (SWIR) bands and has been observed throughout the lifetime of the instrument, which was launched in July 1982 and imaged the Earth's surface until late 1993. These periodic changes in amplitude, which can be as large as 7.5 percent, are known as outgassing effects and are believed to be due to optical interference caused by a gradual buildup of an ice-like material on the window of the cryogenically cooled dewar containing the SWIR detectors. Similar outgassing effects in the Landsat-5 TM have been characterized using an optical thin-film model that relates detector behavior to the ice film growth rate, which was found to gradually decrease with time. A similar approach, which takes into consideration the different operational history of the instrument, has been applied in this study to three closely sampled data sets acquired throughout the lifetime of the Landsat-4 TM. Although Landsat-4 and Landsat-5 Thematic Mappers are essentially identical instruments, data generated from analyses of outgassing effects indicate subtle, but important, differences between the two. The estimated lifetime model could improve radiometric accuracy by as much as five percent.

  9. Assessing the accuracy of Landsat Thematic Mapper classification using double sampling

    USGS Publications Warehouse

    Kalkhan, M.A.; Reich, R.M.; Stohlgren, T.J.

    1998-01-01

    Double sampling was used to provide a cost efficient estimate of the accuracy of a Landsat Thematic Mapper (TM) classification map of a scene located in the Rocky Moutnain National Park, Colorado. In the first phase, 200 sample points were randomly selected to assess the accuracy between Landsat TM data and aerial photography. The overall accuracy and Kappa statistic were 49.5% and 32.5%, respectively. In the second phase, 25 sample points identified in the first phase were selected using stratified random sampling and located in the field. This information was used to correct for misclassification errors associated with the first phase samples. The overall accuracy and Kappa statistic increased to 59.6% and 45.6%, respectively.Double sampling was used to provide a cost efficient estimate of the accuracy of a Landsat Thematic Mapper (TM) classification map of a scene located in the Rocky Mountain National Park, Colorado. In the first phase, 200 sample points were randomly selected to assess the accuracy between Landsat TM data and aerial photography. The overall accuracy and Kappa statistic were 49.5 per cent and 32.5 per cent, respectively. In the second phase, 25 sample points identified in the first phase were selected using stratified random sampling and located in the field. This information was used to correct for misclassification errors associated with the first phase samples. The overall accuracy and Kappa statistic increased to 59.6 per cent and 45.6 per cent, respectively.

  10. Landsat D Thematic Mapper image dimensionality reduction and geometric correction accuracy

    NASA Technical Reports Server (NTRS)

    Ford, G. E.

    1986-01-01

    To characterize and quantify the performance of the Landsat thematic mapper (TM), techniques for dimensionality reduction by linear transformation have been studied and evaluated and the accuracy of the correction of geometric errors in TM images analyzed. Theoretical evaluations and comparisons for existing methods for the design of linear transformation for dimensionality reduction are presented. These methods include the discrete Karhunen Loeve (KL) expansion, Multiple Discriminant Analysis (MDA), Thematic Mapper (TM)-Tasseled Cap Linear Transformation and Singular Value Decomposition (SVD). A unified approach to these design problems is presented in which each method involves optimizing an objective function with respect to the linear transformation matrix. From these studies, four modified methods are proposed. They are referred to as the Space Variant Linear Transformation, the KL Transform-MDA hybrid method, and the First and Second Version of the Weighted MDA method. The modifications involve the assignment of weights to classes to achieve improvements in the class conditional probability of error for classes with high weights. Experimental evaluations of the existing and proposed methods have been performed using the six reflective bands of the TM data. It is shown that in terms of probability of classification error and the percentage of the cumulative eigenvalues, the six reflective bands of the TM data require only a three dimensional feature space. It is shown experimentally as well that for the proposed methods, the classes with high weights have improvements in class conditional probability of error estimates as expected.

  11. Detection of soil erosion with Thematic Mapper (TM) satellite data within Pinyon-Juniper woodlands

    NASA Technical Reports Server (NTRS)

    Price, Kevin Paul

    1987-01-01

    Pinyon-Juniper woodlands dominate approximately 24.3 million hectares (60 million acres) in the western United States. The overall objective was to test the sensitivity of the LANDSAT Thematic Mapper (TM) spectral data for detecting varying degrees of soil erosion within the Pinyon-Juniper woodlands. A second objective was to assess the potential of the spectral data for assigning the Universal Soil Loss Equation (USLE) crop management (C) factor values to varying cover types within the woodland. Thematic Mapper digital data for June 2, 1984 on channels 2, 3, 4, and 5 were used. Digital data analysis was performed using the ELAS software package. Best results were achieved using CLUS, an unsupervised clustering algorithm. Fifteen of the 40 Pinyon-Juniper signatures were identified as being relatively pure Pinyon-Juniper woodland. Final analysis resulted in the grouping of the 15 signatures into three major groups. Ten study sites were selected from each of the three groups and located on the ground. At each site the following field measurements were taken: percent tree canopy and percent understory cover, soil texture, total soil loss, and soil erosion rate estimates. A technique for measuring soil erosion within Pinyon-Juniper woodlands was developed. A theoretical model of site degradation after Pinyon-Juniper invasion is presented.

  12. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  13. Airborne fungi--a resurvey

    SciTech Connect

    Meyer, G.H.; Prince, H.E.; Raymer, W.J.

    1983-07-01

    A 15-month survey of airborne fungi at 14 geographical stations was conducted to determine the incidence of different fungal genera. Five of these stations were surveyed 25 years earlier. A comparison between previous studies and present surveys revealed similar organisms at each station with slight shifts in frequency of dominant genera.

  14. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  15. Airborne chemicals and forest health

    SciTech Connect

    Woodman, J.N.; Cowling, E.B.

    1987-02-01

    Over the past few years the possible contribution of acid rain to the problem of forest decline has been a cause of increasing public concern. Research has begun to determine whether airborne chemicals are causing or contributing to visible damage and mortality in eastern spruce-fir and sugar maple forests and to changes in tree growth, usually without visible symptoms, in other parts of North America. This paper describes some of the complex biological relationships that determine health and productivity of forests and that make it difficult to distinguish effects of airborne chemicals from effects of natural stress. It describes four major research approaches for assessment of the effects of airborne chemicals on forests, and it summarizes current understanding of the known and possible effects of airborne chemicals on forest trees in North America and Europe. It also briefly describes the major air quality and forest health research programs in North America, and it assesses how ell these programs are likely to meet information needs during the coming decade. 69 references, 2 figures, 1 table.

  16. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  17. Effects of Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper plus radiometric and geometric calibrations and corrections on landscape characterization

    USGS Publications Warehouse

    Vogelmann, James E.; Helder, Dennis; Morfitt, Ron; Choate, Michael J.; Merchant, James W.; Bulley, Henry

    2001-01-01

    The Thematic Mapper (TM) instruments onboard Landsats 4 and 5 provide high-quality imagery appropriate for many different applications, including land cover mapping, landscape ecology, and change detection. Precise calibration was considered to be critical to the success of the Landsat 7 mission and, thus, issues of calibration were given high priority during the development of the Enhanced Thematic Mapper Plus (ETM+). Data sets from the Landsat 5 TM are not routinely corrected for a number of radiometric and geometric artifacts, including memory effect, gain/bias, and interfocal plane misalignment. In the current investigation, the effects of correcting vs. not correcting these factors were investigated for several applications. Gain/bias calibrations were found to have a greater impact on most applications than did memory effect calibrations. Correcting interfocal plane offsets was found to have a moderate effect on applications. On June 2, 1999, Landsats 5 and 7 data were acquired nearly simultaneously over a study site in the Niobrara, NE area. Field radiometer data acquired at that site were used to facilitate crosscalibrations of Landsats 5 and 7 data. Current findings and results from previous investigations indicate that the internal calibrator of Landsat 5 TM tracked instrument gain well until 1988. After this, the internal calibrator diverged from the data derived from vicarious calibrations. Results from this study also indicate very good agreement between prelaunch measurements and vicarious calibration data for all Landsat 7 reflective bands except Band 4. Values are within about 3.5% of each other, except for Band 4, which differs by 10%. Coefficient of variation (CV) values derived from selected targets in the imagery were also analyzed. The Niobrara Landsat 7 imagery was found to have lower CV values than Landsat 5 data, implying that lower levels of noise characterize Landsat 7 data than current Landsat 5 data. It was also found that following

  18. The Dawn Mission & Asteroid Mappers: The Impact of Crowd-Sourced Crater Counting

    NASA Astrophysics Data System (ADS)

    Schmidt, B. E.; Scully, J. E.; Hart, R.; Russell, C. T.; Wise, J.; Cobb, W. H.; Ristvey, J.; Counley, J.; Hess, N.

    2012-12-01

    While the driving principle for a science investigation may be the pursuit of knowledge, the process of acquiring that knowledge that matters as much as the result. This process is known to many as the scientific method, a concept regularly taught in schools but that remains in many cases poorly tied to science outreach. But with the growth of the Citizen Science movement, we have entered a new era for both science and science outreach marked by the accessibility of tools that allow the public to experience science first hand in a manner previously unimagined. Gone are the days when a launch and a landing are all that are seen of a mission. Now, it's time to let the public in on the fun, and of course, all the work. In a time of large data returns and dwindling science budgets, citizen science may help scientists and educators with two fundamental problems: (1) increasing awareness and (2) accomplishing the key science investigations. The Dawn Mission has long been on the path towards involving the public in the process of science, and with the advent of the new Asteroid Mappers project, joint with CosmoQuest, the long-term goal of presenting the data to the public in a meaningful manner will be achieved. And in the long run, the public may also prove key to accomplishing mission science. Vesta is a unique body in the solar system, a likely a witness to the earliest stages of solar system formation and the environment within the main asteroid belt. Its impact history will be critical not only to understanding the initial population of the asteroid belt and thus impact hazards on the early Earth, but also the production of Vesta's impact family and the samples of Vesta, the HED meteorites, we have on Earth. Thus determining the impact crater population and distribution is a critical mission goal. Because craters are easily recognized and relatively straightforward to measure, a careful member of the public may be able to perform the same basic tasks as a scientist

  19. Abstracts of the Annual Meeting of Planetary Geologic Mappers, Tucson, AZ 2007

    USGS Publications Warehouse

    Gregg, Tracy K.P.; Tanaka, Kenneth L.; Saunders, R. Stephen; Bleamaster, Leslie F.

    2007-01-01

    Introduction Report of the Annual Mappers Meeting Planetary Science Institute Tucson, Arizona June 28 and 29, 2007 Approximately 22 people attended this year's mappers meeting, and many more submitted abstracts and maps in absentia. The 2007 meeting was convened by Tracy Gregg, Les Bleamaster, Steve Saunders, and Ken Tanaka and was hosted by David Crown and Les Bleamaster of the Planetary Science Institute (PSI) in Tucson, Arizona. Oral presentations and poster discussions took place on Thursday, June 28 and Friday, June 29. This year's meeting also included a unique opportunity to visit the operations centers of two active Mars missions; field trips to the University of Arizona took place on Thursday and Friday afternoons. Outgoing Geologic Mapping Subcommittee (GEMS) chairperson, Tracy Gregg, commenced the meeting with an introduction and David Crown followed with a discussion of logistics and the PSI facility; Steve Saunders (Planetary Geology and Geophysics Discipline Scientist) then provided a brief program update. Science presentations kicked off with Venus mapper Vicki Hansen and graduate students Eric Tharalson and Bhairavi Shankar of the University of Minnesota, Duluth, showing a 3-D animation of the global distribution of tesserae and discussing the implications, a progress report for V-45 quadrangle mapping, and a brief discussion of circular lows. Les Bleamaster (PSI) followed with a progress report on mapping of the V-50 quadrangle and the 1:10M Helen Planitia quadrangle. David Crown (PSI) concluded the Venus presentations with a discussion of progress made on the V-30 quadrangle. The remainder of Thursday's presentations jumped around the Solar System including Mars, Io, and Earth. Ken Tanaka of the U.S. Geological Survey (USGS) began the afternoon with a general discussion of the status of the planetary mapping program at USGS. Buck Janes (University of Arizona) provided background information about the Mars Odyssey Gamma Ray Spectrometer (GRS) and

  20. Use of airborne remote sensing to detect riverside Brassica rapa to aid in risk assessment of transgenic crops

    NASA Astrophysics Data System (ADS)

    Elliott, Luisa M.; Mason, David C.; Allainguillaume, Joel; Wilkinson, Mike J.

    2009-11-01

    High resolution descriptions of plant distribution have utility for many ecological applications but are especially useful for predictive modeling of gene flow from transgenic crops. Difficulty lies in the extrapolation errors that occur when limited ground survey data are scaled up to the landscape or national level. This problem is epitomized by the wide confidence limits generated in a previous attempt to describe the national abundance of riverside Brassica rapa (a wild relative of cultivated rapeseed) across the United Kingdom. Here, we assess the value of airborne remote sensing to locate B. rapa over large areas and so reduce the need for extrapolation. We describe results from flights over the river Nene in England acquired using Airborne Thematic Mapper (ATM) and Compact Airborne Spectrographic Imager (CASI) imagery, together with ground truth data. It proved possible to detect 97% of flowering B. rapa on the basis of spectral profiles. This included all stands of plants that occupied >2m square (>5 plants), which were detected using single-pixel classification. It also included very small populations (<5 flowering plants, 1-2m square) that generated mixed pixels, which were detected using spectral unmixing. The high detection accuracy for flowering B. rapa was coupled with a rather large false positive rate (43%). The latter could be reduced by using the image detections to target fieldwork to confirm species identity, or by acquiring additional remote sensing data such as laser altimetry or multitemporal imagery.

  1. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  2. Thematic mapper research in the Earth sciences: Tectonic evaluation of the Nubian Shield of northeastern Sudan/southeastern Egypt using thematic mapper imagery

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The tectonic evaluation of the Nubian Shield using the Thematic Mapper (TM) imagery is progressing well and shows great promise. The TM tapes for the six LANDSAT 5 scenes covering the northern portion of the Red Sea hills were received, and preliminary maps and interpretations were made for most of the area. It is apparent that faulting and shearing associated with the major suture zones such as the Sol Hamed are clearly visible and that considerable detail can be seen. An entire quadrant of scene 173,45 was examined in detail using all seven bands, and every band combination was evaluated to best display the geology. A comparison was done with color ratio combinations and color combinations of the eigen vector bands to verify if band combinations of 7-red, 4-green, and 2-blue were indeed superior. There is no single optimum enhancement which provides the greatest detail for every image and no single combination of spectral bands for all cases, although bands 7, 4, and 2 do provide the best overall display. The color combination of the eigen vector bands proved useful in distinguishing fine detailed features.

  3. Use of high spectral resolution airborne visible/infrared imaging spectrometer data for geologic mapping: An overview

    NASA Technical Reports Server (NTRS)

    Carrere, Veronique

    1991-01-01

    Specific examples of the use of AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) high spectral resolution data for mapping, alteration related to ore deposition and to hydrocarbon seepage, and alluvial fans are presented. Correction for atmospheric effects was performed using flat field correction, log residuals, and radiative transfer modeling. Minerals of interest (alunite, kaolinite, gypsum, carbonate iron oxides, etc.) were mapped based upon the wavelength position, depth and width of characteristic absorption features. Results were checked by comparing to existing maps, results from other sensors (Thematic Mapper (TM) and TIMS (Thermal Infrared Multispectral Scanner)), and laboratory spectra of samples collected in the field. Alteration minerals were identified and mapped. The signal to noise ratio of acquired AVIRIS data, long to 2.0 microns, was insufficient to map minerals of interest.

  4. Thematic mapper flight model preshipment review data package. Volume 4: Appendix. Part B: Scan mirror assembly data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Data from the thematic mapper scan mirror assembly (SMA) acceptance test are presented. Documentation includes: (1) a list of the acceptance test discrepancies; (2) flight 1 SMA test data book; (3) flight 1 SMA environmental report; (4) the configuration verification index; (5) the flight 1 SMA test failure reports; (6) the flight 1 data tapes log; and (7) the requests for deviation/waivers.

  5. Thematic mapper protoflight model preshipment review data package. Volume 4: Appendix. Part A: Multiplexer data book 2

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Final performance test data for the thematic mapper flight model multiplexer are presented in tables. Aspects covered include A/D thresholds for bands 5, 6, and 7; cross talk; the thermistor; bilevel commands signal parameters; A/D threshold ambient, voltage margin low bus; serial data and bit clock parameters; and the wire check. Tests were conducted at ambient temperature.

  6. Modeling energy flow and nutrient cycling in natural semiarid grassland ecosystems with the aid of thematic mapper data

    NASA Technical Reports Server (NTRS)

    Lewis, James K.

    1987-01-01

    Energy flow and nutrient cycling were modeled as affected by herbivory on selected intensive sites along gradients of precipitation and soils, validating the model output by monitoring selected parameters with data derived from the Thematic Mapper (TM). Herbivore production was modeled along the gradient of soils and herbivory, and validated with data derived from TM in a spatial data base.

  7. Landsat-7 Enhanced Thematic Mapper Plus: radiometric calibration and prelaunch performance

    NASA Astrophysics Data System (ADS)

    Markham, Brian L.; Barker, John L.; Kaita, Ed; Gorin, Inna

    1997-12-01

    Landsat-7 will carry the enhanced thematic mapper plus (ETM+) as its payload. This instrument is a derivative of the thematic mapper (TM) instruments flown on the Landsat 4 and 5 spacecraft. Key changes to the instrument include a new 15 meter panchromatic band, an increased spatial resolution 60 meter thermal band and two new solar calibrators to improve the radiometric calibration of the reflective bands. The ETM+ is currently going through a series of radiometric performance tests to evaluate spectral responsivity, noise performance, linearity, radiometric stability, and absolute radiometric calibration in ambient and vacuum. To date, spectral responsivity, dynamic range, noise performance and absolute calibration tests have been conducted in ambient conditions for the reflective channels. System spectral responsivity, based on component level measurements, is similar to previous TM instruments. One notable difference is in band 5, where the ETM+ response cuts off near the nominal value of 1.75 micrometer versus the 1.78 micrometer of Landsat 4 and 5 TM's, providing a bandpass freer of atmospheric absorption. The gain setting on the reflective channels provided within-specification values of dynamic range and variations of less than 2% between detectors in a band for bands 1 - 5, and less than 4% for bands 7 and 8. Generally within-specification noise performance is observed on the instrument, with signal-to-noise ratios in the range of 150 - 300 at the upper end of the dynamic range. The current notable exception is the panchromatic band which shows significant coherent noise. In orbit, the ETM+ has three on board devices available for performing radiometric calibration: the internal calibrator (IC), the partial aperture solar calibrator (PASC) and the full aperture solar calibrator (FASC). The IC, which is similar to the internal calibrator on the thematic mappers, consists of two lamps, a blackbody and a shutter flag which transmits the light from the lamps

  8. Large aperture scanning airborne lidar

    NASA Technical Reports Server (NTRS)

    Smith, J.; Bindschadler, R.; Boers, R.; Bufton, J. L.; Clem, D.; Garvin, J.; Melfi, S. H.

    1988-01-01

    A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc.

  9. Magnetic airborne survey - geophysical flight

    NASA Astrophysics Data System (ADS)

    de Barros Camara, Erick; Nei Pereira Guimarães, Suze

    2016-06-01

    This paper provides a technical review process in the area of airborne acquisition of geophysical data, with emphasis for magnetometry. In summary, it addresses the calibration processes of geophysical equipment as well as the aircraft to minimize possible errors in measurements. The corrections used in data processing and filtering are demonstrated with the same results as well as the evolution of these techniques in Brazil and worldwide.

  10. Evaluation of Thematic Mapper data for mapping forest, agricultural and soil resources

    NASA Technical Reports Server (NTRS)

    Degloria, S.; Benson, A.; Dummer, K.; Fakhoury, E.

    1985-01-01

    Color composite TM film products which include TM5, TM4, and a visible band (TM1, TM2, or TM3) are superior to composites which exclude TM4 for discriminating most forest and agricultural cover types and estimating area proportions for inventory and sampling purposes. Clustering a subset of TM data results in a spectral class map which groups diverse forest cover types into spectrally and ecologically similar areas suitable for use as a stratification base in traditional forest inventory practices. Analysis of simulated Thematic Mapper data indicate that the location and number of TM spectral bands are suitable for detecting differences in major soil properties and characterizing soil spectral curve form and magnitude.

  11. Preliminary spectral and geologic analysis of Landsat-4 Thematic Mapper data, Wind River Basin area, Wyoming

    NASA Technical Reports Server (NTRS)

    Conel, J. E.; Lang, H. R.; Paylor, E. D.; Alley, R. E.

    1985-01-01

    A Landsat-4 Thematic Mapper (TM) image of the Wind River Basin area in Wyoming is currently under analysis for stratigraphic and structural mapping and for assessment of spectral and spatial characteristics using visible, near infrared, and short wavelength infrared bands. To estimate the equivalent Lambertian surface reflectance, TM radiance data were calibrated to remove atmospheric and instrumental effects. Reflectance measurements for homogeneous natural and cultural targets were acquired about one year after data acquisition. Calibration data obtained during the analysis were used to calculate new gains and offsets to improve scanner response for earth science applications. It is shown that the principal component images calculated from the TM data were the result of linear transformations of ground reflectance. In images prepared from this transform, the separation of spectral classes was independent of systematic atmospheric and instrumental factors. Several examples of the processed images are provided.

  12. Thematic Mapper Data Quality and Performance Assessment in Renewable Resources/agriculture/remote Sensing

    NASA Technical Reports Server (NTRS)

    Bizzell, R. M.; Prior, H. L.

    1985-01-01

    Analysis of the early thematic mapper (TM) data indicate the TM sensor and associated ground processing are performing equal to the high expectations and within advertised specifications. The overall TM system with improved resolution, together with additional and more optimumly placed spectral bands shows much promise for benefits in future analysis activities. By selecting man-made features of known dimensions (e.g., highways, airfields, buildings, and isolated water bodies), an assessment was made of the TM performance relative to the specified 30-meter (98-foot) resolution. The increase of spatial resolution of TM (30 m) over MSS (80 M) appears to be significant not only in resolving spectrally distinct classes that were previously undefinable but also in distinguishing within-field variability. An Important result of the early TM evaluation and pre-TM analyses was the development of an integrated system to receive LANDSAT-4 TM (as well as MSS) data and analyze the data via various approaches.

  13. Washington D.C. Lightning Mapping Array Demonstration Project Risk Reduction for GOES Lightning Mapper Data

    NASA Technical Reports Server (NTRS)

    Smith, Stephan B.; Goodman, Steven; Krehbiel, Paul

    2007-01-01

    A 10-site, ground-based total lightning mapping array (LMA) has been installed in the Washington D.C. metropolitan area in 2006. The total lightning data from DC LMA are being processed in real-time and derived products are being provided to the forecasters of the National Weather Service (NWS) forecast office in Sterling, Virginia. The NWS forecasters are using the products to monitor convective activity along with conventional radar and satellite products. Operational experience with these products is intended to inform decision making in how to best utilize in NWS operations similar data available from the GOES Lightning Mapper. The paper will discuss specifics of the LMA as well as proposed research into use of total lightning data in predicting and warning for cloud-to-ground lightning.

  14. Digital to Analog Conversion and Visual Evaluation of Thematic Mapper Data

    USGS Publications Warehouse

    McCord, James R.; Binnie, Douglas R.; Seevers, Paul M.

    1985-01-01

    As a part of the National Aeronautics and Space Administration Landsat D Image Data Quality Analysis Program, the Earth Resources Observation Systems Data Center (EDC) developed procedures to optimize the visual information content of Thematic Mapper data and evaluate the resulting photographic products by visual interpretation. A digital-to-analog transfer function was developed which would properly place the digital values on the most useable portion of a film response curve. Individual black-and-white transparencies generated using the resulting look-up tables were utilized in the production of color-composite images with varying band combinations. Four experienced photointerpreters ranked 2-cm-diameter (0. 75 inch) chips of selected image features of each band combination for ease of interpretability. A nonparametric rank-order test determined the significance of interpreter preference for the band combinations.

  15. Digital to analog conversion and visual evaluation of Thematic Mapper data

    USGS Publications Warehouse

    McCord, James R.; Binnie, Douglas R.; Seevers, Paul M.

    1985-01-01

    As a part of the National Aeronautics and Space Administration Landsat D Image Data Quality Analysis Program, the Earth Resources Observation Systems Data Center (EDC) developed procedures to optimize the visual information content of Thematic Mapper data and evaluate the resulting photographic products by visual interpretation. A digital-to-analog transfer function was developed which would properly place the digital values on the most useable portion of a film response curve. Individual black-and-white transparencies generated using the resulting look-up tables were utilized in the production of color-composite images with varying band combinations. Four experienced photointerpreters ranked 2-cm-diameter (0. 75 inch) chips of selected image features of each band combination for ease of interpretability. A nonparametric rank-order test determined the significance of interpreter preference for the band combinations.

  16. Improved classification of small-scale urban watersheds using thematic mapper simulator data

    NASA Technical Reports Server (NTRS)

    Owe, M.; Ormsby, J. P.

    1984-01-01

    The utility of Landsat MSS classification methods in the case of small, highly urbanized hydrological basins containing complex land-use patterns is limited, and is plagued by misclassifications due to the spectral response similarity of many dissimilar surfaces. Landsat MSS data for the Conley Creek basin near Atlanta, Georgia, have been compared to thematic mapper simulator (TMS) data obtained on the same day by aircraft. The TMS data were able to alleviate many of the recurring patterns associated with MSS data, through bandwidth optimization, an increase of the number of spectral bands to seven, and an improvement of ground resolution to 30 m. The TMS is thereby able to detect small water bodies, powerline rights-of-way, and even individual buildings.

  17. Comparison of Wyoming land cover types derived from the Landsat Thematic Mapper satellite with climate variables

    SciTech Connect

    Driese, K.L.; Reiners, W.A.

    1995-06-01

    As part of the Gap Analysis Program (National Biological survey) the land cover of Wyoming was mapped into 46 classes using the Landsat Thematic Mapper Satellite. This map was subsequently analyzed using a geographic information system (GIS) to calculate the amount of each type present in the state and to characterize each of the 46 types in terms of annual precipitation, minimum and maximum mean monthly temperature, growing degree days and elevation. Simple GCM-based climate change scenarios (changes in temperature and precipitation) were examined in relation to these characterizations. Results indicate that Wyoming types occupy overlapping climatic {open_quotes}envelopes{close_quotes} and possible climate change resulting from increased greenhouse gasses could result in significant changes in the Wyoming landscape.

  18. Neuro-classification of multi-type Landsat Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Zhuang, Xin; Engel, Bernard A.; Fernandez, R. N.; Johannsen, Chris J.

    1991-01-01

    Neural networks have been successful in image classification and have shown potential for classifying remotely sensed data. This paper presents classifications of multitype Landsat Thematic Mapper (TM) data using neural networks. The Landsat TM Image for March 23, 1987 with accompanying ground observation data for a study area In Miami County, Indiana, U.S.A. was utilized to assess recognition of crop residues. Principal components and spectral ratio transformations were performed on the TM data. In addition, a layer of the geographic information system (GIS) for the study site was incorporated to generate GIS-enhanced TM data. This paper discusses (1) the performance of neuro-classification on each type of data, (2) how neural networks recognized each type of data as a new image and (3) comparisons of the results for each type of data obtained using neural networks, maximum likelihood, and minimum distance classifiers.

  19. Radiometric calibration and processing procedure for reflective bands on LANDSAT-4 protoflight Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Abrams, R. B.; Ball, D. L.; Leung, K. C.

    1984-01-01

    The radiometric subsystem of NASA's LANDSAT-4 Thematic Mapper (TM) sensor is described. Special emphasis is placed on the internal calibrator (IC) pulse shapes and timing cycle. The procedures for the absolute radiometric calibration of the TM channels with a 122-centimeter integrating sphere and the transfer of radiometric calibration from the channels to the IC are reviewed. The use of the IC to calibrate TM data in the ground processing system consists of pulse integration, pulse averaging, IC state identification, linear regression analysis, and histogram equalization. An overview of the SCROUNGE-era (before August 1983) method is presented. Procedural differences between SCROUNGE and the TIPS-era (after July 1983) and the implications of these differences are discussed.

  20. Estimating biogeochemical fluxes across sagebrush-steppe landscapes with Thematic Mapper imagery

    NASA Technical Reports Server (NTRS)

    Reiners, W. A.; Strong, L. L.; Matson, P. A.; Burke, I. C.; Ojima, D. S.

    1989-01-01

    Thematic Mapper (TM) satellite data were coupled to an ecosystem simulation model to simulate variation in nitrogen mineralization over time and space in a sagebrush steppe. This system of data inputs and calculations provides estimates of ecosystem properties including rates of biogeochemical processes over extensive and complex landscapes, and under changing management and climatic conditions. The landscape surface was divided into three sagebrush ecosystem types plus one other class consisting of nonsagebrush vegetation. This classification presented a complex mosaic of ecosystem types that shifted markedly in composition from one end of the 933-sq km study area to the other. Annual N-mineralization rates ranged from 5 to 25 kg N/ha among the three sagebrush types. The most active type comprised 42 percent of the entire area but contributed 60 percent to the nitrogen mineralization throughout the landscape.

  1. Application of thematic mapper-type data over a porphyry-molybdenum deposit in Colorado

    NASA Technical Reports Server (NTRS)

    Rickman, D. L.; Sadowski, R. M.

    1983-01-01

    The objective of the study was to evaluate the utility of thematic mapper data as a source of geologically useful information for mountainous areas of varying vegetation density. Much of the processing was done in an a priori manner without prior ground-based information. This approach resulted in a successfull mapping of the alteration associated with the Mt. Emmons molybdenum ore body as well as several other hydrothermal systems. Supervised classification produced a vegetation map at least as accurate as the mapping done for the environmental impact statement. Principal components were used to map zones of general, subtle alteration and to separate hematitically stained rock from staining associated with hydrothermal activity. Decorrelation color composites were found to be useful field mapping aids, easily delineating many lithologies and vegetation classes of interest. The factors restricting the interpretability and computer manipulation of the data are examined.

  2. Mapping surface energy balance components by combining landsat thematic mapper and ground-based meteorological data

    USGS Publications Warehouse

    Moran, M.S.; Jackson, R. D.; Raymond, L.H.; Gay, L.W.; Slater, P.N.

    1989-01-01

    Surface energy balance components were evaluated by combining satellite-based spectral data with on-site measurements of solar irradiance, air temperature, wind speed, and vapor pressure. Maps of latent heat flux density (??E) and net radiant flux density (Rn) were produced using Landsat Thematic Mapper (TM) data for three dates: 23 July 1985, 5 April 1986, and 24 June 1986. On each date, a Bowen-ratio apparatus, located in a vegetated field, was used to measure ??E and Rn at a point within the field. Estimates of ??E and Rn were also obtained using radiometers aboard an aircraft flown at 150 m above ground level. The TM-based estimates differed from the Bowen-ratio and aircraft-based estimates by less than 12 % over mature fields of cotton, wheat, and alfalfa, where ??E and Rn ranged from 400 to 700 Wm-2. ?? 1989.

  3. Development of the JSC Thematic Mapper quick-look preprocessing capability

    NASA Technical Reports Server (NTRS)

    Gilbert, J. R.

    1983-01-01

    The development of a preprocessing unit for Landsat Thematic Mapper (TM) data for the Earth Observations Data Laboratory at Johnson Space Center is reported. The background of the project is sketched, including the greatly increased data-handling requirements compared to MSS, the influence of the JPL VICAR system on the system design, and the completeness of the GSFC SCROUNGE (LASLIB) TM data tapes. The design approach and realization are discussed, and the performance and transportability of the preprocessor programs (totaling about 2000 lines of source code in FORTRAN and IBM Assembly languages) are indicated. The system is able to read the TM image tapes, extract areas of interest to particular studies, and register the extracted imagery to suitable references. Ancillary programs include image enhancement, rotation, filtering and pixel-size modification.

  4. Landsat Thematic Mapper observations of debris avalanche deposits in the Central Andes

    NASA Technical Reports Server (NTRS)

    Francis, P. W.; Wells, G. L.

    1988-01-01

    Remote sensing with the Landsat Thematic Mapper of debris avalanche deposits in the Central Andes between 18 and 27 deg S revealed, for the first time, the presence of 28 breached volcanic cones and 11 major volcanic debris avalanche deposits, several of which cover areas in excess of 100 sq km. It is concluded that such avalanche deposits are normal products of the evolution of large composite volcanoes, comparable with lava and pyroclastic flow deposits. A statistical survey of 578 composite volcanoes in the same area indicated that a majority of cones which achieve edifice heights between 2000 and 3000 m may undergo sector collapse. The paper describes morphological criteria for identifying breached composite cones and volcanic debris avalanches using orbital images.

  5. Characterization and comparison of Landsat-4 and Landsat-5 Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Metzler, M. D.; Malila, W. A.

    1985-01-01

    Engineering analyses of Thematic Mapper (TM) image data have been conducted, giving particular attention to the radiometric characterization of the sensor. While the data in general were found to be excellent, anomalies do exist in the data from both Landsat-4 and Landsat-5 TM. A summary is provided of the Landsat-4 TM image data. The present paper concentrates, however, on recent analyses of Landsat-5 TM data and comparisons of the radiometry of the two sensors. One of the specific topics covered is within-line droop, a phenomenon whereby the signal levels of the sensor change systematically during the active scan. Attention is also given to scan-correlated level shifts, an effect which raises or lowers the signal level of all pixels in a scan line or set of scan lines. A comparison of Landsat-4 and Landsat-5 radiometric corrections is also discussed.

  6. Analyst variability in labeling of unsupervised classifications. [test sites for Landsat 5 Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Mcgwire, Kenneth C.

    1992-01-01

    Analyst variability in the labeling of unsupervised classifications is tested for Landsat 5 Thematic Mapper image products covering two test sites in southern California. The accuracy of results are tested using samples from a photo interpreted base map of the area. The significance of differences between analysts is indicated by comparing Kappa statistics derived from error matrices. Analyst variability is found to be statistically significant in most cases. Certain analysts provided consistently better results for a given study area or degree of training. This work demonstrates the potential influence of analyst bias on what would otherwise seem to be a fairly objective method and suggests that controls for this subjectivity should be factored into experimental designs.

  7. Study of spectral/radiometric characteristics of the thematic mapper for land use applications

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Metzler, M. D.

    1984-01-01

    The previous characterization of scan-related low-frequency noise was confirmed and extended through analysis of reflective-band data from another nighttime acquisition. Amplitude and phase relationships of the level shifts were determined for each detector in each of free full frames. Analysis of scan-direction-related signal droop effects in nighttime data from the reflective bands was begun with encouraging initial observations. Also, an effort to characterize high-frequency noise in the reflective bands through Fourier analysis of nighttime data was initiated. Recommendations are made relative to the choice of radiometric calibration constants in the thematic mapper image processing system for the routine processing of TM data. Non-linear (piece-wise linear) calibration curves are recommended.

  8. Land cover map of Great Britain. An automated classification of Landsat Thematic Mapper data

    SciTech Connect

    Fuller, R.M.; Groom, G.B.; Jones, A.R.

    1994-05-01

    The Land Cover Map of Great Britain was produced using supervised maximum-likelihood classifications of Landsat Thematic Mapper data. By combining summer and winter data, classification accuracies were substantially improved over single-data analyses. The map, bosed on a 25-m grid, records 25 cover types, consisting of sea and inland water, beaches and bare ground, developed and arable land, and 18 types of semi-natural vegetation. General cover is recorded at a field-by-field scale, while key landscape features, with strong spectral signatures, show patterns down to a minimum mappable unit of 0.125 ha. Comparisons with independent ground reference data showed correspondences which varied between 67 percent and 89 percent depending on the level of detail at which comparisons were made.

  9. Characterization and Comparison of LANDSAT-4 and LANDSAT-5 Thematic Mapper Data

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Metzler, M. D.

    1985-01-01

    Engineering analyses of Thematic Mapper (TM) image data have been conducted, giving particular attention to the radiometric characterization of the sensor. While the data in general were found to be excellent, anomalies do exist in the data from both LANDSAT-4 and LANDSAT-5 TM. A summary is provided of the LANDSAT-5 TM image data. Recent analyses of LANDSAT-5 TM data and comparisons of the radiometry of the two sensors are emphasized. One of the specific topics covered is within-line droop, a phenomenon whereby the signal levels of the sensor change systematically during the active scan. Attention is also given to scan-correlated level shifts, an effect which raises or lowers the signal level of all pixels in a scan line or set of scan lines. A comparison of LANDSAT-4 and LANDSAT-5 radiometric corrections is also discussed.

  10. Calibration comparison for the Landsat 4 and 5 multispectral scanners and thematic mappers.

    PubMed

    Price, J C

    1989-02-01

    On 15 Mar. 1984, during the initial orbital corrections of Landsat 5, data were acquired virtually simultaneously by multispectral scanners (MSSs) and thematic mappers (TMs) on Landsats 4 and 5. A formulation is developed for comparing the calibration of matched instruments (MSS4, MSS5 and TM4, TM5), and spectral interpolation is used to compare the calibration of the nearly equivalent shortwave channels of all four instruments. The MSS instruments are more closely matched in gain with a difference of 6-10% vs -2-14% for the TMs, while radiance comparisons show that the MSSs and TM4 agree reasonably well for a dark surface (water), while TM5 indicates generally lower radiance values in the shortwave channels.

  11. Geodetic Accuracy of LANDSAT 4 Multispectral Scanner and Thematic Mapper Data

    NASA Technical Reports Server (NTRS)

    Thormodsgard, J. M.; Devries, D. J.

    1985-01-01

    Conclusive statements concerning the geodetic accuracy of LANDSAT 4 data, based on such a small sampling of scenes, is impossible. However, the results provide a few interesting observations. For example, LANDSAT 4 multispectral band scanner (MSS) system corrected errors were larger than were expected based on the knowledge of the geometric accuracy of the data from LANDSAT 2 and 3. Also, the thematic mapper (TM) system corrected scenes were more accurate than the MSS scenes by a factor of three. As the spacecraft platform for these two sensors is the same, this result cannot be explained, but a comparison of concurrently acquired MSS and TM data might clarify this situation. Finally, the single MSS ground control point (GCP) corrected product evaluated had good geodetic accuracy considering the poor distribution of the two GCP's applied in the registration.

  12. The connectome mapper: an open-source processing pipeline to map connectomes with MRI.

    PubMed

    Daducci, Alessandro; Gerhard, Stephan; Griffa, Alessandra; Lemkaddem, Alia; Cammoun, Leila; Gigandet, Xavier; Meuli, Reto; Hagmann, Patric; Thiran, Jean-Philippe

    2012-01-01

    Researchers working in the field of global connectivity analysis using diffusion magnetic resonance imaging (MRI) can count on a wide selection of software packages for processing their data, with methods ranging from the reconstruction of the local intra-voxel axonal structure to the estimation of the trajectories of the underlying fibre tracts. However, each package is generally task-specific and uses its own conventions and file formats. In this article we present the Connectome Mapper, a software pipeline aimed at helping researchers through the tedious process of organising, processing and analysing diffusion MRI data to perform global brain connectivity analyses. Our pipeline is written in Python and is freely available as open-source at www.cmtk.org.

  13. Using Landsat thematic mapper data for structural analysis of Slick Hills area, southwest Oklahoma

    SciTech Connect

    Wilhelm, S.J.; Morgan, K.M. )

    1987-02-01

    In this study, the authors used Landsat Thematic Mapper (TM) data to identify structural lineaments in the high deformed Slick Hills area of southwestern Oklahoma. These low-lying hills represent a sequence of Cambrian-Ordovician rocks (primarily carbonates) that were intensely folded and faulted during the Pennsylvanian and Early Permian. Their analysis of landsat TM computer-generated images (scale, 1:70,000) revealed two major lineament orientations from rose diagram plots. One set of lineaments trends N30{degree}-60{degree}W and is associated with left-lateral, thrust, and high-angle reverse faults. These faults, as well as fold axes and fracture patterns, dominate the study area and are well documented in the literature.

  14. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  15. NASA Student Airborne Research Program

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Shetter, R. E.

    2012-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for advanced undergraduates and early graduate students majoring in the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2012, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA P-3B aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. We will discuss the results and effectiveness of the program from the first four summers and discuss plans for the future.

  16. The Goes-R Geostationary Lightning Mapper (GLM): Algorithm and Instrument Status

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas

    2010-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. A joint field campaign with Brazilian researchers in 2010-2011 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and

  17. MAppERS experience: natural processes and preparedness in the societal context

    NASA Astrophysics Data System (ADS)

    Frigerio, Simone; Schenato, Luca; Bossi, Giulia; Mantovani, Matteo; Marcato, Gianluca; Pasuto, Alessandro

    2016-04-01

    Within natural processes responsibilities from central authorities to local levels as first actors of civil protection is a changing pattern. Prevention and preparedness in natural hazards are long-term goals based on capacities of professional volunteers, and improving the awareness of the citizens as local inhabitants. Local people have impacts on their lives but training and involvement towards specific techniques change their role within risk communication and emergency preparedness. A collaborative user environment is useful for emergency response and support in the wake of disasters, feeding updated information on the ground directly to on-site responders. MAppERS (Mobile Application for Emergency Response and Support) is a funded project (2013-2015 Humanitarian Aid and Civil Protection, ECHO A5) based on human role as "crowd-sourced mappers" through smart phone application able to share GPS-localised and detailed parameters. The feedback from testing and the training courses aim to raising public awareness and participation in a networked disaster response. The project implies design and test of smart phone linked with a real-time dashboard platform for rescue services citizens and volunteers of civil protection. Two pilot sites, including trainings on modules functioning control usability and quality of the product. The synchronized platform offers the activity of cloud data collection with a central data dashboard. Information is collected in a context of floods processes, with crowdsourcing action from local population, for proper awareness with own personal flood plan and long-term preparedness. A second context tested pre-emergency actions on field with rescue team, collecting state-of-art and condition of hazards.

  18. Geophex airborne unmanned survey system

    SciTech Connect

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  19. Airborne wavemeter validation and calibration

    NASA Technical Reports Server (NTRS)

    Goad, Joseph H., Jr.; Rinsland, Pamela L.; Kist, Edward H., Jr.; Geier, Erika B.; Banziger, Curtis G.

    1992-01-01

    This manuscript outlines a continuing effort to validate and verify the performance of an airborne autonomous wavemeter for tuning solid state lasers to a desired wavelength. The application is measuring the vertical profiles of atmospheric water vapor using a differential absorption lidar (DIAL) technique. Improved wavemeter performance data for varying ambient temperatures are presented. This resulted when the electronic grounding and shielding were improved. The results with short pulse duration lasers are also included. These lasers show that similar performance could be obtained with lasers operating in the continuous and the pulsed domains.

  20. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.J.; Keiswetter, D.

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  1. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  2. Cyberinfrastructure for Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  3. Requirements for airborne vector gravimetry

    NASA Technical Reports Server (NTRS)

    Schwarz, K. P.; Colombo, O.; Hein, G.; Knickmeyer, E. T.

    1992-01-01

    The objective of airborne vector gravimetry is the determination of the full gravity disturbance vector along the aircraft trajectory. The paper briefly outlines the concept of this method using a combination of inertial and GPS-satellite data. The accuracy requirements for users in geodesy and solid earth geophysics, oceanography and exploration geophysics are then specified. Using these requirements, accuracy specifications for the GPS subsystem and the INS subsystem are developed. The integration of the subsystems and the problems connected with it are briefly discussed and operational methods are indicated that might reduce some of the stringent accuracy requirements.

  4. Biological monitoring of airborne pollution

    SciTech Connect

    Ditz, D.W. )

    1990-01-01

    Common plants such as grasses, mosses, and even goldenrod may turn out to have a new high-tech role as monitors of airborne pollution from solid waste incinerators. Certain plants that respond to specific pollutants can provide continuous surveillance of air quality over long periods of time: they are bio-indicators. Other species accumulate pollutants and can serve as sensitive indicators of pollutants and of food-chain contamination: they are bio-accumulators. Through creative use of these properties, biological monitoring can provide information that cannot be obtained by current methods such as stack testing.

  5. Toolsets for Airborne Data - URS and New Documentation

    Atmospheric Science Data Center

    2015-03-23

    ... airborne field missions, documentation, and EOSDIS User Registration System (URS) authentication. This web application features an intuitive user interface for variable selection across different airborne field studies and ...

  6. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  7. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  8. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  9. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  10. The Continuous wavelet in airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liu, L.

    2013-12-01

    Airborne gravimetry is an efficient method to recover medium and high frequency band of earth gravity over any region, especially inaccessible areas, which can measure gravity data with high accuracy,high resolution and broad range in a rapidly and economical way, and It will play an important role for geoid and geophysical exploration. Filtering methods for reducing high-frequency errors is critical to the success of airborne gravimetry due to Aircraft acceleration determination based on GPS.Tradiontal filters used in airborne gravimetry are FIR,IIR filer and so on. This study recommends an improved continuous wavelet to process airborne gravity data. Here we focus on how to construct the continuous wavelet filters and show their working principle. Particularly the technical parameters (window width parameter and scale parameter) of the filters are tested. Then the raw airborne gravity data from the first Chinese airborne gravimetry campaign are filtered using FIR-low pass filter and continuous wavelet filters to remove the noise. The comparison to reference data is performed to determinate external accuracy, which shows that continuous wavelet filters applied to airborne gravity in this thesis have good performances. The advantages of the continuous wavelet filters over digital filters are also introduced. The effectiveness of the continuous wavelet filters for airborne gravimetry is demonstrated through real data computation.

  11. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  12. The GSFC Mark-2 three band hand-held radiometer. [thematic mapper for ground truth data collection

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Jones, W. H.; Kley, W. A.; Sundstrom, G. J.

    1980-01-01

    A self-contained, portable, hand-radiometer designed for field usage was constructed and tested. The device, consisting of a hand-held probe containing three sensors and a strap supported electronic module, weighs 4 1/2 kilograms. It is powered by flashlight and transistor radio batteries, utilizes two silicon and one lead sulfide detectors, has three liquid crystal displays, sample and hold radiometric sampling, and its spectral configuration corresponds to LANDSAT-D's thematic mapper bands. The device was designed to support thematic mapper ground-truth data collection efforts and to facilitate 'in situ' ground-based remote sensing studies of natural materials. Prototype instruments were extensively tested under laboratory and field conditions with excellent results.

  13. Assessment of the Pseudo Geostationary Lightning Mapper Products at the Spring Program and Summer Experiment

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Calhoun, Kristin K.; Terborg, Amanda M.

    2014-01-01

    Since 2010, the de facto Geostationary Lightning Mapper (GLM) demonstration product has been the Pseudo-Geostationary Lightning Mapper (PGLM) product suite. Originally prepared for the Hazardous Weather Testbed's Spring Program (specifically the Experimental Warning Program) when only four ground-based lightning mapping arrays were available, the effort now spans collaborations with several institutions and eight collaborative networks. For 2013, NASA's Short-term Prediction Research and Transition (SPoRT) Center and NOAA's National Severe Storms Laboratory have worked to collaborate with each network to obtain data in real-time. This has gone into producing the SPoRT variant of the PGLM that was demonstrated in AWIPS II for the 2013 Spring Program. Alongside the PGLM products, the SPoRT / Meteorological Development Laboratory's total lightning tracking tool also was evaluated to assess not just another visualization of future GLM data but how to best extract more information while in the operational environment. Specifically, this tool addressed the leading request by forecasters during evaluations; provide a time series trend of total lightning in real-time. In addition to the Spring Program, SPoRT is providing the PGLM "mosaic" to the Aviation Weather Center (AWC) and Storm Prediction Center. This is the same as what is used at the Hazardous Weather Testbed, but combines all available networks into one display for use at the national centers. This year, the mosaic was evaluated during the AWC's Summer Experiment. An important distinction between this and the Spring Program is that the Summer Experiment focuses on the national center perspective and not at the local forecast office level. Specifically, the Summer Experiment focuses on aviation needs and concerns and brings together operational forecaster, developers, and FAA representatives. This presentation will focus on the evaluation of SPoRT's pseudo-GLM products in these separate test beds. The emphasis

  14. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  15. Airborne cw Doppler lidar (ADOLAR)

    NASA Astrophysics Data System (ADS)

    Rahm, Stefan; Werner, Christian; Nagel, E.; Herrmann, H.; Klier, M.; Knott, H. P.; Haering, R.; Wildgruber, J.

    1994-12-01

    During the last 10 years the DLR container LDA (Laser Doppler Anemometer) was used for many wind related measurements in the atmospheric boundary layer. The experience out of this were used to construct an airborne Doppler lidar ADOLAR. Based on the available Doppler lidars it is now proposed to perform a campaign to demonstrate the concept of the spaceborne sensor ALADIN, and to answer some questions concerning the signal quality from clouds, water and land. For the continuous wave CO2 laser, the energy is focused by the telescope into the region of investigation. Some of the radiation is back scattered by small aerosol particles drifting with the wind speed through the sensing volume. The back scattered radiation is collected by the telescope and detected by coherent technique. With the laser Doppler method one gets the radial wind component. To determine the magnitude and direction of the horizontal wind, some form of scanning in azimuth and elevation is required. To keep the airborne system compact, the transceiver optics is directly coupled to a wedge scanner which provides the conical scan with the axis in Nadir direction from the aircraft. The system ADOLAR was tested in 1994. Results of the flight over the lake Ammersee are presented and are compared with the data of the inertial reference system of the aircraft.

  16. Airborne thermography applications in Argentina

    NASA Astrophysics Data System (ADS)

    Castro, Eduardo H.; Selles, Eduardo J.; Costanzo, Marcelo; Franco, Oscar; Diaz, Jose

    2002-03-01

    Forest fires in summer and sheep buried under the snow in winter have become important problems in the south of our country, in the region named Patagonia. We are studying to find a solution by means of an airborne imaging system whose construction we have just finished. It is a 12 channel multispectral airborne scanner system that can be mounted in a Guarani airplane or in a Learjet; the first is a non- pressurized aircraft for flight at low height and the second is a pressurized one for higher flights. The scanner system is briefly described. Their sensors can detect radiation from the ultra violet to the thermal infrared. The images are visualized in real time in a monitor screen and can be stored in the hard disc of the PC for later processing. The use of this scanner for some applications that include the prevention and fighting of forest fires and the study of the possibility of detection of sheep under snow in the Patagonia is now being accomplished. Theoretical and experimental results in fire detection and a theoretical model for studying the possibility of detection of the buried sheep are presented.

  17. Star sensor/mapper with a self deployable, high-attenuation light shade for SAS-B

    NASA Technical Reports Server (NTRS)

    Schenkel, F. W.; Finkel, A.

    1972-01-01

    A star sensor/mapper to determine positional data for the small astronomy satellites was tested to detect stars of plus 4 visual magnitude. It utilizes two information channels with memory so that it can be used with a low-data-rate telemetry system. One channel yields star amplitude information; the other yields the time of star occurrence as the star passes across an N-slit reticle/photomultiplier detector system. Some of the features of the star sensor/mapper are its low weight of 6.5 pounds, low power consumption of 0.4 watt, bandwidth switching to match the satellite spin rate, optical equalization of sensitivity over the 5-by-10 deg field of view, and self-deployable sunshade. The attitude determination accuracy is 3 arc minutes. This is determined by such parameters as the reticle configuration, optical train, and telemetry readout. The optical and electronic design of the star sensor/mapper, its expansion capabilities, and its features are discussed.

  18. Hyperspectral Image-Based Night-Time Vehicle Light Detection Using Spectral Normalization and Distance Mapper for Intelligent Headlight Control.

    PubMed

    Kim, Heekang; Kwon, Soon; Kim, Sungho

    2016-01-01

    This paper proposes a vehicle light detection method using a hyperspectral camera instead of a Charge-Coupled Device (CCD) or Complementary metal-Oxide-Semiconductor (CMOS) camera for adaptive car headlamp control. To apply Intelligent Headlight Control (IHC), the vehicle headlights need to be detected. Headlights are comprised from a variety of lighting sources, such as Light Emitting Diodes (LEDs), High-intensity discharge (HID), and halogen lamps. In addition, rear lamps are made of LED and halogen lamp. This paper refers to the recent research in IHC. Some problems exist in the detection of headlights, such as erroneous detection of street lights or sign lights and the reflection plate of ego-car from CCD or CMOS images. To solve these problems, this study uses hyperspectral images because they have hundreds of bands and provide more information than a CCD or CMOS camera. Recent methods to detect headlights used the Spectral Angle Mapper (SAM), Spectral Correlation Mapper (SCM), and Euclidean Distance Mapper (EDM). The experimental results highlight the feasibility of the proposed method in three types of lights (LED, HID, and halogen). PMID:27399720

  19. Hyperspectral Image-Based Night-Time Vehicle Light Detection Using Spectral Normalization and Distance Mapper for Intelligent Headlight Control

    PubMed Central

    Kim, Heekang; Kwon, Soon; Kim, Sungho

    2016-01-01

    This paper proposes a vehicle light detection method using a hyperspectral camera instead of a Charge-Coupled Device (CCD) or Complementary metal-Oxide-Semiconductor (CMOS) camera for adaptive car headlamp control. To apply Intelligent Headlight Control (IHC), the vehicle headlights need to be detected. Headlights are comprised from a variety of lighting sources, such as Light Emitting Diodes (LEDs), High-intensity discharge (HID), and halogen lamps. In addition, rear lamps are made of LED and halogen lamp. This paper refers to the recent research in IHC. Some problems exist in the detection of headlights, such as erroneous detection of street lights or sign lights and the reflection plate of ego-car from CCD or CMOS images. To solve these problems, this study uses hyperspectral images because they have hundreds of bands and provide more information than a CCD or CMOS camera. Recent methods to detect headlights used the Spectral Angle Mapper (SAM), Spectral Correlation Mapper (SCM), and Euclidean Distance Mapper (EDM). The experimental results highlight the feasibility of the proposed method in three types of lights (LED, HID, and halogen). PMID:27399720

  20. Calibration and Validation of Airborne LiDAR at McMurdo Station, Antarctica for Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Sonntag, J. G.

    2014-12-01

    Airborne LiDAR flight operations based at McMurdo Station, Antarctica, present unusual challenges for calibrating and validating the sensor measurements at the level of a few centimeters. NASA's Airborne Topographic Mapper (ATM) team prefers to perform regular, near-daily calibrations of range and angular biases of our sensor for the lengthy field deployments typical for Operation IceBridge (OIB). For the fall 2013 OIB deployment to McMurdo, we had to adapt our usual technique of regular overflights of an independently-surveyed airport parking ramp to deal with the fact that the McMurdo airfield was located on tidally-influenced sea ice, and that very few nearby durable surfaces were free of variable-depth snow during the OIB deployment. We detail our approach for dealing with these challenges, which included multiple GPS/vehicle surveys of the sea ice runway to quantify surface changes due to grooming operations, combined with GPS tide-gauge measurements of the runway's tidal motion. We also conducted a remote GPS/vehicle survey of a mostly snow-free road on Black Island, and included both sites during near-daily overflights with the ATM. We discuss the quantitative results of these surveys and the associated ATM overflights, and present conclusions for future deployments. Finally we discuss a related validation effort in which we compare ATM results from overflights of snow-free areas in the Dry Valleys with ATM surveys of the same area from a 2001 effort there.

  1. A stable downward continuation of airborne magnetic data: A case study for mineral prospectivity mapping in Central Iran

    NASA Astrophysics Data System (ADS)

    Abedi, Maysam; Gholami, Ali; Norouzi, Gholam-Hossain

    2013-03-01

    Previous studies have shown that a well-known multi-criteria decision making (MCDM) technique called Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE II) to explore porphyry copper deposits can prioritize the ground-based exploratory evidential layers effectively. In this paper, the PROMETHEE II method is applied to airborne geophysical (potassium radiometry and magnetometry) data, geological layers (fault and host rock zones), and various extracted alteration layers from remote sensing images. The central Iranian volcanic-sedimentary belt is chosen for this study. A stable downward continuation method as an inverse problem in the Fourier domain using Tikhonov and edge-preserving regularizations is proposed to enhance magnetic data. Numerical analysis of synthetic models show that the reconstructed magnetic data at the ground surface exhibits significant enhancement compared to the airborne data. The reduced-to-pole (RTP) and the analytic signal filters are applied to the magnetic data to show better maps of the magnetic anomalies. Four remote sensing evidential layers including argillic, phyllic, propylitic and hydroxyl alterations are extracted from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images in order to map the altered areas associated with porphyry copper deposits. Principal component analysis (PCA) based on six Enhanced Thematic Mapper Plus (ETM+) images is implemented to map iron oxide layer. The final mineral prospectivity map based on desired geo-data set indicates adequately matching of high potential zones with previous working mines and copper deposits.

  2. STOCK: Structure mapper and online coarse-graining kit for molecular simulations

    DOE PAGES

    Bevc, Staš; Junghans, Christoph; Praprotnik, Matej

    2015-03-15

    We present a web toolkit STructure mapper and Online Coarse-graining Kit for setting up coarse-grained molecular simulations. The kit consists of two tools: structure mapping and Boltzmann inversion tools. The aim of the first tool is to define a molecular mapping from high, e.g. all-atom, to low, i.e. coarse-grained, resolution. Using a graphical user interface it generates input files, which are compatible with standard coarse-graining packages, e.g. VOTCA and DL_CGMAP. Our second tool generates effective potentials for coarse-grained simulations preserving the structural properties, e.g. radial distribution functions, of the underlying higher resolution model. The required distribution functions can be providedmore » by any simulation package. Simulations are performed on a local machine and only the distributions are uploaded to the server. The applicability of the toolkit is validated by mapping atomistic pentane and polyalanine molecules to a coarse-grained representation. Effective potentials are derived for systems of TIP3P (transferable intermolecular potential 3 point) water molecules and salt solution. The presented coarse-graining web toolkit is available at http://stock.cmm.ki.si.« less

  3. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper

    USGS Publications Warehouse

    Lopes, R.M.C.; Mitchell, K.L.; Stofan, E.R.; Lunine, J.I.; Lorenz, R.; Paganelli, F.; Kirk, R.L.; Wood, C.A.; Wall, S.D.; Robshaw, L.E.; Fortes, A.D.; Neish, C.D.; Radebaugh, J.; Reffet, E.; Ostro, S.J.; Elachi, C.; Allison, M.D.; Anderson, Y.; Boehmer, R.; Boubin, G.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Janssen, M.A.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.O.; Ori, G.; Orosei, R.; Picardi, G.; Posa, F.; Roth, L.E.; Seu, R.; Shaffer, S.; Soderblom, L.A.; Stiles, B.; Vetrella, S.; West, R.D.; Wye, L.; Zebker, H.A.

    2007-01-01

    The Cassini Titan Radar Mapper obtained Synthetic Aperture Radar images of Titan's surface during four fly-bys during the mission's first year. These images show that Titan's surface is very complex geologically, showing evidence of major planetary geologic processes, including cryovolcanism. This paper discusses the variety of cryovolcanic features identified from SAR images, their possible origin, and their geologic context. The features which we identify as cryovolcanic in origin include a large (180 km diameter) volcanic construct (dome or shield), several extensive flows, and three calderas which appear to be the source of flows. The composition of the cryomagma on Titan is still unknown, but constraints on rheological properties can be estimated using flow thickness. Rheological properties of one flow were estimated and appear inconsistent with ammonia-water slurries, and possibly more consistent with ammonia-water-methanol slurries. The extent of cryovolcanism on Titan is still not known, as only a small fraction of the surface has been imaged at sufficient resolution. Energetic considerations suggest that cryovolcanism may have been a dominant process in the resurfacing of Titan. ?? 2006 Elsevier Inc.

  4. Landsat-4 and Landsat-5 thematic mapper band 6 historical performance and calibration

    USGS Publications Warehouse

    Barsi, J.A.; Chander, G.; Markham, B.L.; Higgs, N.; ,

    2005-01-01

    Launched in 1982 and 1984 respectively, the Landsat-4 and -5 Thematic Mappers (TM) are the backbone of an extensive archive of moderate resolution Earth imagery. However, these sensors and their data products were not subjected to the type of intensive monitoring that has been part of the Landsat-7 system since its launch in 1999. With Landsat-4's 11 year and Landsat-5's 20+ year data record, there is a need to understand the historical behavior of the instruments in order to verify the scientific integrity of the archive and processed products. Performance indicators of the Landsat-4 and -5 thermal bands have recently been extracted from a processing system database allowing for a more complete study of thermal band characteristics and calibration than was previously possible. The database records responses to the internal calibration system, instrument temperatures and applied gains and offsets for each band for every scene processed through the National Landsat Archive Production System (NLAPS). Analysis of this database has allowed for greater understanding of the calibration and improvement in the processing system. This paper will cover the trends in the Landsat-4 and -5 thermal bands, the effect of the changes seen in the trends, and how these trends affect the use of the thermal data.

  5. Compositional diversity and geologic insights of the Aristarchus crater from Moon Mineralogy Mapper data

    USGS Publications Warehouse

    Mustard, J.F.; Pieters, C.M.; Isaacson, P.J.; Head, J.W.; Besse, S.; Clark, R.N.; Klima, R.L.; Petro, N.E.; Staid, M.I.; Sunshine, J.M.; Runyon, C.J.; Tompkins, S.

    2011-01-01

    The Moon Mineralogy Mapper (M3) acquired high spatial and spectral resolution data of the Aristarchus Plateau with 140 m/pixel in 85 spectral bands from 0.43 to 3.0 m. The data were collected as radiance and converted to reflectance using the observational constraints and a solar spectrum scaled to the Moon-Sun distance. Summary spectral parameters for the area of mafic silicate 1 and 2 m bands were calculated from the M3 data and used to map the distribution of key units that were then analyzed in detail with the spectral data. This analysis focuses on five key compositional units in the region. (1) The central peaks are shown to be strongly enriched in feldspar and are likely from the upper plagioclase-rich crust of the Moon. (2) The impact melt is compositionally diverse with clear signatures of feldspathic crust, olivine, and glass. (3) The crater walls and ejecta show a high degree of spatial heterogeneity and evidence for massive breccia blocks. (4) Olivine, strongly concentrated on the rim, wall, and exterior of the southeastern quadrant of the crater, is commonly associated the impact melt. (5) There are at least two types of glass deposits observed: pyroclastic glass and impact glass. Copyright 2011 by the American Geophysical Union.

  6. The use of landsat 7 enhanced thematic mapper plus for mapping leafy spurge

    USGS Publications Warehouse

    Mladinich, C.S.; Bustos, M.R.; Stitt, S.; Root, R.; Brown, K.; Anderson, G.L.; Hager, S.

    2006-01-01

    Euphorbia esula L. (leafy spurge) is an invasive weed that is a major problem in much of the Upper Great Plains region, including parts of Montana, South Dakota, North Dakota, Nebraska, and Wyoming. Infestations in North Dakota alone have had a serious economic impact, estimated at $87 million annually in 1991, to the state's wildlife, tourism, and agricultural economy. Leafy spurge degrades prairie and badland ecosystems by displacing native grasses and forbs. It is a major threat to protected ecosystems in many national parks, national wild lands, and state recreational areas in the region. This study explores the use of Landsat 7 Enhanced Thematic Mapper Plus (Landsat) imagery and derived products as a management tool for mapping leafy spurge in Theodore Roosevelt National Park, in southwestern North Dakota. An unsupervised clustering approach was used to map leafy spurge classes and resulted in overall classification accuracies of approximately 63%. The uses of Landsat imagery did not provide the accuracy required for detailed mapping of small patches of the weed. However, it demonstrated the potential for mapping broad-scale (regional) leafy spurge occurrence. This paper offers recommendations on the suitability of Landsat imagery as a tool for use by resource managers to map and monitor leafy spurge populations over large areas.

  7. Preliminary evaluation of the landsat-4 thematic mapper data for mineral exploration

    USGS Publications Warehouse

    Podwysocki, M.H.; Power, M.S.; Jones, O.D.

    1985-01-01

    Landsat-4 Thematic Mapper (TM) data recorded over an arid terrain were analyzed to determine the applicability of using of TM data for identifying and mapping hydrothermally altered, potentially mineralized rocks. Clays, micas, and other minerals bearing the OH anion in specific crystal lattice positions have absorption bands in the 2.2-??m region (TM channel 7, TM7) and commonly lack features in the 1.6-??m region (TM5). Channel ratios TM5/TM7, TM5/TM4, and TM3/TM1 were combined into a color-ratio-composite (CRC) image and used to distinguish hydrothermally altered rocks, unaltered rocks, and vegetation. These distinctions are made possible by using the TM5 and TM7, channels which are not available in the Landsat multispectral scanner (MSS). Digital masking was used to eliminate ambiguities due to water and shadows. However, some ambiguities in identification resulted between altered volcanic rocks and unaltered sedimentary deposits that contained clays, carbonates, and gypsum, and between altered volcanic rocks and volcanic tuffs diagenetically altered to zeolites. However, compared to MSS data, TM data should greatly improve the ability to map hydrothermally altered rocks in arid terrains. ?? 1985.

  8. Geobotanical information contained in Landsat Thematic Mapper images covering southern Missouri

    NASA Technical Reports Server (NTRS)

    Green, G.; Arvidson, R.; Sultan, M.; Guinness, E.

    1986-01-01

    Landsat Thematic Mapper (TM) data collected in the late summer, fall, and winter of 1982 over forested bedrocks in southeastern Missouri were used in conjunction with forest surveys, field work, aerial photographs, and laboratory analyses to evaluate multispectral and seasonal information from visible and reflected IR data. The forested bedrock included granites, rhyolites, carbonates, and sandstones. High reflectance in band 4 (760-900 nm) in the summer scene corresponds to regions of xeric forest type. The fact that the xeric regions tend to develop flat-topped canopies, as opposed to irregular canopy surfaces of the wetter mesic areas, may partially control the TM response in bands 4, 5 (155-175 nm) and 7 (208-235 nm). The xeric regions correlated with soils having poor water retention capabilities, such as rhyolites and certain carbonate rocks with nonporous residum layers. An opposite relationship between xeric and mesic forest biomass was noted, if the commonly used TM band ratio 4/3 was used as a surrogate biomass measure. The high band 4 response over xeric forests gives anomalously high biomass estimates.

  9. Optical maturity variation in lunar spectra as measured by Moon Mineralogy Mapper data

    USGS Publications Warehouse

    Nettles, J.W.; Staid, M.; Besse, S.; Boardman, J.; Clark, R.N.; Dhingra, D.; Isaacson, P.; Klima, R.; Kramer, G.; Pieters, C.M.; Taylor, L.A.

    2011-01-01

    High spectral and spatial resolution data from the Moon Mineralogy Mapper (M3) instrument on Chandrayaan-1 are used to investigate in detail changes in the optical properties of lunar materials accompanying space weathering. Three spectral parameters were developed and used to quantify spectral effects commonly thought to be associated with increasing optical maturity: an increase in spectral slope ("reddening"), a decrease in albedo ("darkening"), and loss of spectral contrast (decrease in absorption band depth). Small regions of study were defined that sample the ejecta deposits of small fresh craters that contain relatively crystalline (immature) material that grade into local background (mature) soils. Selected craters are small enough that they can be assumed to be of constant composition and thus are useful for evaluating trends in optical maturity. Color composites were also used to identify the most immature material in a region and show that maturity trends can also be identified using regional soil trends. The high resolution M3 data are well suited to quantifying the spectral changes that accompany space weathering and are able to capture subtle spectral variations in maturity trends. However, the spectral changes that occur as a function of maturity were observed to be dependent on local composition. Given the complexity of space weathering processes, this was not unexpected but poses challenges for absolute measures of optical maturity across diverse lunar terrains. Copyright 2011 by the American Geophysical Union.

  10. Detection and mapping vegetation cover based on the Spectral Angle Mapper algorithm using NOAA AVHRR data

    NASA Astrophysics Data System (ADS)

    Yagoub, Houria; Belbachir, Ahmed Hafid; Benabadji, Noureddine

    2014-06-01

    Satellite data, taken from the National Oceanic and Atmospheric Administration (NOAA) have been proposed and used for the detection and the cartography of vegetation cover in North Africa. The data used were acquired at the Analysis and Application of Radiation Laboratory (LAAR) from the Advanced Very High Resolution Radiometer (AVHRR) sensor of 1 km spatial resolution. The Spectral Angle Mapper Algorithm (SAM) is used for the classification of many studies using high resolution satellite data. In the present paper, we propose to apply the SAM algorithm to the moderate resolution of the NOAA AVHRR sensor data for classifying the vegetation cover. This study allows also exploiting other classification methods for the low resolution. First, the normalized difference vegetation index (NDVI) is extracted from two channels 1 and 2 of the AVHRR sensor. In order to obtain an initial density representation of vegetal formation distribution, a methodology, based on the combination between the threshold method and the decision tree, is used. This combination is carried out due to the lack of accurate data related to the thresholds that delimit each class. In a second time, and based on spectral behavior, a vegetation cover map is developed using SAM algorithm. Finally, with the use of low resolution satellite images (NOAA AVHRR) and with only two channels, it is possible to identify the most dominant species in North Africa such as: forests of the Liege oaks, other forests, cereal's cultivation, steppes and bar soil.

  11. New structural and stratigraphic insights for northwestern Pakistan from field and Landsat Thematic Mapper data

    USGS Publications Warehouse

    Robinson, J.; Beck, R.; Gnos, E.; Vincent, R.K.

    2000-01-01

    The remote Waziristan region of northwestern Pakistan includes outcrops of the India-Asia suture zone. The excellent exposure of the Waziristan ophiolite and associated sedimentary lithosomes and their inaccessibility made the use of Landsat Thematic Mapper (TM) data desirable in this study. Landsat TM data were used to create a spectral ratio image of bands 3/4, 5/4, and 7/5, displayed as red, green, and blue, respectively, and a principal component analysis image of bands 4, 5, and 7 (RGB). These images were interpreted in the context of available geologic maps, limited field work, and biostratigraphic, lithostratigraphic, and radiometric data. They were used to create a coherent geologic map of Waziristan and cross section of the area that document five tectonic units in the region and provide a new and more detailed tectonic history for the region. The lowest unit is comprised of Indian shelf sediments that were thrust under the Waziristan ophiolite. The ophiolite has been tectonically shuffled and consists of two separate tectonic units. The top thrust sheet is a nappe comprised of distal Triassic to Lower Cretaceous Neotethyan sediments that were underthrust during the Late Cretaceous by the ophiolite riding on Indian shelf strata. The uppermost unit contains unconformable Tertiary and younger strata. The thrust sheets show that the Waziristan ophiolite was obducted during Late Cretaceous time and imply that the Paleocene and Eocene deformation represents collision of India with the Kabul block and/or Asia.

  12. Radiometric analysis of the longwave infrared channel of the Thematic Mapper on LANDSAT 4 and 5

    NASA Technical Reports Server (NTRS)

    Schott, John R.; Volchok, William J.; Biegel, Joseph D.

    1986-01-01

    The first objective was to evaluate the postlaunch radiometric calibration of the LANDSAT Thematic Mapper (TM) band 6 data. The second objective was to determine to what extent surface temperatures could be computed from the TM and 6 data using atmospheric propagation models. To accomplish this, ground truth data were compared to a single TM-4 band 6 data set. This comparison indicated satisfactory agreement over a narrow temperature range. The atmospheric propagation model (modified LOWTRAN 5A) was used to predict surface temperature values based on the radiance at the spacecraft. The aircraft data were calibrated using a multi-altitude profile calibration technique which had been extensively tested in previous studies. This aircraft calibration permitted measurement of surface temperatures based on the radiance reaching the aircraft. When these temperature values are evaluated, an error in the satellite's ability to predict surface temperatures can be estimated. This study indicated that by carefully accounting for various sensor calibration and atmospheric propagation effects, and expected error (1 standard deviation) in surface temperature would be 0.9 K. This assumes no error in surface emissivity and no sampling error due to target location. These results indicate that the satellite calibration is within nominal limits to within this study's ability to measure error.

  13. The GOES-R Geostationary Lightning Mapper (GLM) and the Global Observing System for Total Lightning

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Buechler, D.; Carey, L.; Chronis, T.; Mach, D.; Bateman, M.; Peterson, H.; McCaul, E. W., Jr.; Stano, G. T.; Bitzer, P. M.; Rudlosky, S. D.; Cummins, K. L.

    2014-01-01

    for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning continuously day and night with near-uniform spatial resolution of 8 km with a product latency of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. The GLM will help address the National Weather Service requirement for total lightning observations globally to support warning decision-making and forecast services. Science and application development along with pre-operational product demonstrations and evaluations at NWS national centers, forecast offices, and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in 2016. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings.

  14. Evaluation of Thematic Mapper for detecting soil properties under grassland vegetation

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Henderson, K. E.

    1984-01-01

    Analysis of Thematic Mapper data acquired November 15, 1982, over a vegetated site located in the East Texas Timberlands and Claypan area of Texas has indicated that montmorillonitic clay textured soils can be separated from soils with different textures. The difference of TM band 4 (0.76-0.90 micron) and band 7 (2.08-2.35 microns) had an agreement of 55.8 percent with the USDA soil survey for upland clay soils. This compared to 55.9-percent agreement when all six bands (excluding the thermal) were used. The disagreement occurred at the boundary lines as defined by the USDA soil survey and the spectral data. This result is considered to be fairly good, considering the difficulty in placement of soil boundaries by the soil scientist in the field. While the exact influence on the vegetation, and thus the spectral response observed by TM, is not understood at this time, it appears that TM band 7 is responding to the type of mineralogy of the soil and that soil properties important to the plant can be detected using TM.

  15. Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis

    USGS Publications Warehouse

    Chavez, P.S., Jr.; Kwarteng, A.Y.

    1989-01-01

    A challenge encountered with Landsat Thematic Mapper (TM) data, which includes data from size reflective spectral bands, is displaying as much information as possible in a three-image set for color compositing or digital analysis. Principal component analysis (PCA) applied to the six TM bands simultaneously is often used to address this problem. However, two problems that can be encountered using the PCA method are that information of interest might be mathematically mapped to one of the unused components and that a color composite can be difficult to interpret. "Selective' PCA can be used to minimize both of these problems. The spectral contrast among several spectral regions was mapped for a northern Arizona site using Landsat TM data. Field investigations determined that most of the spectral contrast seen in this area was due to one of the following: the amount of iron and hematite in the soils and rocks, vegetation differences, standing and running water, or the presence of gypsum, which has a higher moisture retention capability than do the surrounding soils and rocks. -from Authors

  16. Comparison of Landsat multispectral scanner and thematic mapper data from Wind River basin, Wyoming

    SciTech Connect

    Geronsin, R.L.; Merry, M.C.

    1984-07-01

    Landsat Multispectral Scanner (MSS) data are limited by MSS spatial resolution (80 m or 262 ft) and bandwidth selection. Landsat 4 Thematic Mapper (TM) data have greatly enhanced spatial resolution (30 m or 98 ft) and TM operates in spectral bands suited to geologic interpretation. To compare the two systems, three images center over the Wind River basin of Wyoming were obtained. Two were TM images - a false color composite (FCC) and a natural color composite (NCC) - and the third was an MSS image. A systematic analysis of drainage, landforms, geologic structure, gross lithologic characteristics, lineaments, and curvilinears was performed on the three images. Drainage density and landform distinction were greatly enhanced on the TM images. Geologic features such as faults, strike and dip, folds, and lithologic characteristics are often difficult to distinguish on the MSS image but are readily apparent on the TM images. The lineament-curvilinear analysis of the MSS image showed longer but less distinct linear features. In comparison, the TM images allowed interpretation of shorter but more distinct linear elements, providing a more accurate delineation of the actual dimensions of the geologic features which these lineaments are thought to represent. An analysis of the oil production present in the study area showed 75% of the surface productive structures were delineated on the TM images, whereas only the most obvious structures were visible on the MSS image.

  17. Detection of soil erosion within pinyon-juniper woodlands using Thematic Mapper (TM) data

    NASA Technical Reports Server (NTRS)

    Price, Kevin P.

    1993-01-01

    Multispectral measurements collected by Landsat Thematic Mapper (TM) were correlated with field measurements, direct soil loss estimates, and Universal Soil Loss Equation (USLE) estimates to determine the sensitivity of TM data to varying degrees of soil erosion in pinyon-juniper woodland in central Utah. TM data were also evaluated as a predictor of the USLE Crop Management C factor for pinyon-juniper woodlands. TM spectral data were consistently better predictors of soil erosion factors than any combination of field factors. TM data were more sensitive to vegetation variations than the USLE C factor. USLE estimates showed low annual rates of erosion which varied little among the study sites. Direct measurements of rate of soil loss using the SEDIMENT (Soil Erosion DIrect measureMENT) technique, indicated high and varying rates of soil loss among the sites since tree establishment. Erosion estimates from the USLE and SEDIMENT methods suggest that erosion rates have been severe in the past, but because significant amounts of soil have already been eroded, and the surface is now armored by rock debris, present erosion rates are lower. Indicators of accelerated erosion were still present on all sites, however, suggesting that the USLE underestimated erosion within the study area.

  18. Performance evaluation and geologic utility of LANDSAT-4 thematic mapper data

    NASA Technical Reports Server (NTRS)

    Paylor, E. D.; Abrams, M. J.; Conel, J. E.; Kahle, A. B.; Lang, H. R.

    1985-01-01

    The overall objective of the project was to evaluate LANDSAT-4 Thematic Mapper (TM) data in the context of geologic applications. This involved a quantitative assessment of the data quality including the spatial and spectral characteristics realized by the instrument. Three test sites were selected for the study: (1) Silver Bell, Arizona; (2) Death Valley, California; and (3) Wind River/Bighorn Basin area, Wyoming. Conclusions include: (1) Artificial and natural targets can be used to atmospherically calibrate TM data and investigate scanner radiometry, atmospheric parameters, and construction of atmospheric Modulation Transfer Functions (MTF's), (2) No significant radiometric degradation occurs in TM data as a result of SCROUNGE processing; however, the data exhibit narrow digital number (DN) distributiosn suggesting that the configuration of the instrument is not optimal for each science applications, (30 Increased spatial resolution, 1:24,000 enlargement capability, and good geometric fidelity of TM data allow accurate photogeologic/geomorphic mapping, including relative age dating of alluvial fans, measurement of structural and bedding attitudes, and construction of such things as structural cross sections and stratigraphic columns. (4) TM bands 5 and 7 are particularly useful for geologic applications because they span a region of the spectrum not previously sampled by multispectral scanner data and are important for characterizing clay and carbonate materials.

  19. High Impact Weather Forecasts and Warnings with the GOES-R Geostationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William; Mach, Douglas M.

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. A major advancement over the current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM). The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Science Team and Algorithm Working Group Lightning Applications Team have begun to develop cal/val performance monitoring tools and new applications using the GLM alone, in conjunction with other instruments, and merged or blended integrated observing system products combining satellite, radar, in-situ and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms.

  20. Mapping of serpentinites in the Eastern Desert of Egypt by using Landsat thematic mapper data

    SciTech Connect

    Sultan, M.; Arvidson, R.E.; Sturchio, N.C.

    1986-12-01

    Serpentinites in the Eastern Desert of Egypt were mapped from Landsat thematic mapper (TM) data by using procedures that take advantage of the distinctive spectral reflectance of these rocks caused by the abundance of antigorite, lizardite, clinochrysotile, and magnetite. The method employs a threshold classifier based on three reflectance ratios: (1) band 5/7 for estimating the abundance of hydroxyl-bearing phases, (2) band 5/1 for magnetite content, and (3) the calculated value of reflectance for band 4, based on a linear interpolation between bands 3 and 5, divided by the observed band-4 reflectance. The third ratio was used to identify rocks in iron-bearing aluminosilicates and thereby to distinguish mafic rocks containing substantial amounts of magnetite and hydroxyl-bearing phases from serpentinites. The method was first successfully tested over the Meatiq dome and Wadi Ghadir areas, where serpentinites and ophiolitic melanges dominated by serpentinites have been mapped during the course of field work. A TM-based map was then generated; the map covered about 60,000 km/sup 2/ in the Eastern Desert. Results demonstrate that TM data can be used with reliability to distinguish serpentinites from surrounding rocks in arid regions and to generate detailed maps over wide regions by using quantitative, reproducible mapping criteria. Possibilities for locating suture zones over the less well known parts of arid continents are clear.

  1. Application of Landsat Thematic Mapper data for coastal thermal plume analysis at Diablo Canyon

    SciTech Connect

    Gibbons, D.E.; Wukelic, G.E.; Leighton, J.P.; Doyle, M.J.; Pacific Gas and Electric Co., San Ramon, CA )

    1989-06-01

    The possibility of using Landsat Thematic Mapper (TM) thermal data to derive absolute temperature distributions in coastal waters that receive cooling effluent from a power plant is demonstrated. Landsat TM band 6 (thermal) data acquired on June 18, 1986, for the Diablo Canyon power plant in California were compared to ground truth temperatures measured at the same time. Higher-resolution band 5 (reflectance) data were used to locate power plant discharge and intake positions and identify locations of thermal pixels containing only water, no land. Local radiosonde measurements, used in LOWTRAN 6 adjustments for atmospheric effects, produced corrected ocean surface radiances that, when converted to temperatures, gave values within approximately 0.6 C of ground truth. A contour plot was produced that compared power plant plume temperatures with those of the ocean and coastal environment. It is concluded that Landsat can provide good estimates of absolute temperatures of the coastal power plant thermal plume. Moreover, quantitative information on ambient ocean surface temperature conditions (e.g., upwelling) may enhance interpretation of numerical model prediction. 12 refs.

  2. Surface reflectance correction and stereo enhancement of Landsat thematic mapper imagery for structural geologic exploration

    SciTech Connect

    Thiessen, R.L.; Johnson, L.K.; Foote, H.P.; Eliason, J.R.

    1986-11-01

    Structural remote sensing analysis techniques for exploration have focussed on mapping of crustal fracture zones which can provide pathways for mineralization as well as permeability for movement and/or accumulation of oil, gas, and geothermal fluids. These analyses have relied heavily on manual lineament analysis of enhanced imagery. These image products contain shadow effects that preferentially enhance or suppress lineaments. This study was conducted to evaluate a digital technique for surface reflectance correction for shadows and subsequent stereo enhancement to provide shadow corrected stereo models for structural geologic exploration. Image products were produced from digital Landsat Thematic Mapper (TM) data and a digital elevation model (DEM). The Paiute Ridge quadrangle, Nevada, was selected as a test area for the analysis. Landsat TM data were registered to the DEM and processed to reduce topographic shadowing effects. A Minnaert reflectance model was used to approximate the topographic lighting effects. This reflectance model provided quantitative evaluation of each pixel in the image and was directly used to create a shadow image. These reflectance values were utilized to remove shadow effects from the TM data to produce the corrected surface reflectance. The DEM was used to stereo enhance the shadow corrected TM image. Fracture orientations determined from the original TM and shadow images show similar bias resulting from solar illumination. This bias was not present in the results from the shadow corrected and the corrected stereopair images, with the best correlation to the trends observed in the field data given by the latter.

  3. Detection of soil erosion within pinyon-juniper woodlands using Thematic Mapper (TM) data

    SciTech Connect

    Price, K.P. . Dept. of Geography)

    1993-09-01

    Multispectral measurements collected by Landsat Thematic Mapper (TM) were correlated with field measurements, direct soil loss estimates, and Universal Soil Loss Equation (USLE) estimates to determine the sensitivity of TM data to varying degrees of soil erosion in pinyon-juniper woodland in central Utah. TM data were also evaluated as a predictor of the USLE Crop Management C factor for pinyon-juniper woodlands. Correlation analysis showed that TM Band 4 (near infrared) accounted for 78% of the variability in percent trees (r=[minus] 0.88). In multiple regression, percent trees, total soil loss, and percent total nonliving cover together accounted for nearly 70% of the variability in TM Bands 2, 3, 4, and 5. TM spectral data were consistently better predictors of soil erosion factors than any combination of field factors. TM data were more sensitive to vegetation variations than the USLE C factor. USLE estimates showed low annual rates of erosion which varied little among the study sites. A number of hypotheses have been advanced to explain the apparent accelerated rate of pinyon-juniper spread in the western United States. These include removal of natural plant competition by livestock overgrazing, reduction of wildfires, climatic change, and reinvasion of sites cleared of trees by 19th century settlers.

  4. Development of landsat-5 thematic mapper internal calibrator gain and offset table

    USGS Publications Warehouse

    Barsi, J.A.; Chander, G.; Micijevic, E.; Markham, B.L.; Haque, Md. O.

    2008-01-01

    The National Landsat Archive Production System (NLAPS) has been the primary processing system for Landsat data since U.S. Geological Survey (USGS) Earth Resources Observation and Science Center (EROS) started archiving Landsat data. NLAPS converts raw satellite data into radiometrically and geometrically calibrated products. NLAPS has historically used the Internal Calibrator (IC) to calibrate the reflective bands of the Landsat-5 Thematic Mapper (TM), even though the lamps in the IC were less stable than the TM detectors, as evidenced by vicarious calibration results. In 2003, a major effort was made to model the actual TM gain change and to update NLAPS to use this model rather than the unstable IC data for radiometric calibration. The model coefficients were revised in 2007 to reflect greater understanding of the changes in the TM responsivity. While the calibration updates are important to users with recently processed data, the processing system no longer calculates the original IC gain or offset. For specific applications, it is useful to have a record of the gain and offset actually applied to the older data. Thus, the NLAPS calibration database was used to generate estimated daily values for the radiometric gain and offset that might have been applied to TM data. This paper discusses the need for and generation of the NLAPSIC gain and offset tables. A companion paper covers the application of and errors associated with using these tables.

  5. Intraband Radiometric Performance of the LANDSAT 4 Thematic Mapper. [Washington, DC, Arkansas, Massachusetts, Virginia, and Arizona

    NASA Technical Reports Server (NTRS)

    Kieffer, H. H.; Eliason, E. M.; Chavez, P. S., Jr.

    1985-01-01

    Those radiometric characteristics of the LANDSAT 4 thematic mapper (TM) that could be established without absolute calibration of spectral data were examined. Radiometrically raw (B type) data of three daytime and two nighttime scenes were used, including TM scenes from Washington, DC; northeast Arkansas; Cape Cod, MA; Roanoke, VA; Richmond, VA; and Silver Bell, AZ. The effective resolution in radiance is degraded by a factor of about 2 by the irregular width of the digital levels. Underpopulated levels are consistent over all bands and detectors, and are spaced an average of 4 digital numbers (DN) apart. In band 6, level 127 is avoided by a factor 30. Several detectors exhibit a change of gain with a period of several scans; the largest effect is about 4%. At high contrast boundaries, some of the detectors in band 5 commonly overshoot by several DN and require about 30 samples to recover. The high frequency noise level of each detector was characterized by the standard deviation of the first derivative in the sample direction across a flat field. A coherent-sinusoidal-noise pattern is evident in detector 1 of band 3. The correlation between the six reflective bands was determined and used to select three groups of bands whose aggregate first principal components contain the greatest total information. A composite of the first components of bands 1, 2, 3, bands 5 and 7, and band 4, together containing 89% of the information in the reflectance bands, has reduced the effect of noise.

  6. Prelaunch absolute radiometric calibration of the reflective bands on the LANDSAT-4 protoflight Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Ball, D. L.; Leung, K. C.; Walker, J. A.

    1984-01-01

    The results of the absolute radiometric calibration of the LANDSAT 4 thematic mapper, as determined during pre-launch tests with a 122 cm integrating sphere, are presented. Detailed results for the best calibration of the protoflight TM are given, as well as summaries of other tests performed on the sensor. The dynamic range of the TM is within a few per cent of that required in all bands, except bands 1 and 3. Three detectors failed to pass the minimum SNR specified for their respective bands: band 5, channel 3 (dead), band 2, and channels 2 and 4 (noisy or slow response). Estimates of the absolute calibration accuracy for the TM show that the detectors are typically calibrated to 5% absolute error for the reflective bands; 10% full-scale accuracy was specified. Ten tests performed to transfer the detector absolute calibration to the internal calibrator show a 5% range at full scale in the transfer calibration; however, in two cases band 5 showed a 10% and a 7% difference.

  7. Development of Landsat-5 thematic mapper internal calibrator gain and offset table

    NASA Astrophysics Data System (ADS)

    Barsi, Julia A.; Chander, Gyanesh; Micijevic, Esad; Markham, Brian L.; Haque, Md. Obaidul

    2008-08-01

    The National Landsat Archive Production System (NLAPS) has been the primary processing system for Landsat data since U.S. Geological Survey (USGS) Earth Resources Observation and Science Center (EROS) started archiving Landsat data. NLAPS converts raw satellite data into radiometrically and geometrically calibrated products. NLAPS has historically used the Internal Calibrator (IC) to calibrate the reflective bands of the Landsat-5 Thematic Mapper (TM), even though the lamps in the IC were less stable than the TM detectors, as evidenced by vicarious calibration results. In 2003, a major effort was made to model the actual TM gain change and to update NLAPS to use this model rather than the unstable IC data for radiometric calibration. The model coefficients were revised in 2007 to reflect greater understanding of the changes in the TM responsivity. While the calibration updates are important to users with recently processed data, the processing system no longer calculates the original IC gain or offset. For specific applications, it is useful to have a record of the gain and offset actually applied to the older data. Thus, the NLAPS calibration database was used to generate estimated daily values for the radiometric gain and offset that might have been applied to TM data. This paper discusses the need for and generation of the NLAPS IC gain and offset tables. A companion paper covers the application of and errors associated with using these tables.

  8. Thematic mapper data quality and performance assessment in renewable resource/agricultural remote sensing

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Macdonald, R. B. (Principal Investigator)

    1982-01-01

    A "quick look" investigation of the initial LANDSAT-4, thematic mapper (TM) scene received from Goddard Space Flight Center was performed to gain early insight into the characteristics of TM data. The initial scene, containing only the first four bands of the seven bands recorded by the TM, was acquired over the Detroit, Michigan, area on July 20, 1982. It yielded abundant information for scientific investigation. A wide variety of studies were conducted to assess all aspects of TM data. They ranged from manual analyses of image products to detect obvious optical, electronic, or mechanical defects to detailed machine analyses of the digital data content for evaluation of spectral separability of vegetative/nonvegetative classes. These studies were applied to several segments extracted from the full scene. No attempt was made to perform end-to-end statistical evaluations. However, the output of these studies do identify a degree of positive performance from the TM and its potential for advancing state-of-the-art crop inventory and condition assessment technology.

  9. STOCK: Structure mapper and online coarse-graining kit for molecular simulations

    SciTech Connect

    Bevc, Staš; Junghans, Christoph; Praprotnik, Matej

    2015-03-15

    We present a web toolkit STructure mapper and Online Coarse-graining Kit for setting up coarse-grained molecular simulations. The kit consists of two tools: structure mapping and Boltzmann inversion tools. The aim of the first tool is to define a molecular mapping from high, e.g. all-atom, to low, i.e. coarse-grained, resolution. Using a graphical user interface it generates input files, which are compatible with standard coarse-graining packages, e.g. VOTCA and DL_CGMAP. Our second tool generates effective potentials for coarse-grained simulations preserving the structural properties, e.g. radial distribution functions, of the underlying higher resolution model. The required distribution functions can be provided by any simulation package. Simulations are performed on a local machine and only the distributions are uploaded to the server. The applicability of the toolkit is validated by mapping atomistic pentane and polyalanine molecules to a coarse-grained representation. Effective potentials are derived for systems of TIP3P (transferable intermolecular potential 3 point) water molecules and salt solution. The presented coarse-graining web toolkit is available at http://stock.cmm.ki.si.

  10. Goldschmidt crater and the Moon's north polar region: Results from the Moon Mineralogy Mapper (M3)

    USGS Publications Warehouse

    Cheek, L.C.; Pieters, C.M.; Boardman, J.W.; Clark, R.N.; Combe, J.-P.; Head, J.W.; Isaacson, P.J.; McCord, T.B.; Moriarty, D.; Nettles, J.W.; Petro, N.E.; Sunshine, J.M.; Taylor, L.A.

    2011-01-01

    Soils within the impact crater Goldschmidt have been identified as spectrally distinct from the local highland material. High spatial and spectral resolution data from the Moon Mineralogy Mapper (M3) on the Chandrayaan-1 orbiter are used to examine the character of Goldschmidt crater in detail. Spectral parameters applied to a north polar mosaic of M3 data are used to discern large-scale compositional trends at the northern high latitudes, and spectra from three widely separated regions are compared to spectra from Goldschmidt. The results highlight the compositional diversity of the lunar nearside, in particular, where feldspathic soils with a low-Ca pyroxene component are pervasive, but exclusively feldspathic regions and small areas of basaltic composition are also observed. Additionally, we find that the relative strengths of the diagnostic OH/H2O absorption feature near 3000 nm are correlated with the mineralogy of the host material. On both global and local scales, the strongest hydrous absorptions occur on the more feldspathic surfaces. Thus, M3 data suggest that while the feldspathic soils within Goldschmidt crater are enhanced in OH/H2O compared to the relatively mafic nearside polar highlands, their hydration signatures are similar to those observed in the feldspathic highlands on the farside. Copyright 2011 by the American Geophysical Union.

  11. Leaf water stress detection utilizing thematic mapper bands 3, 4 and 5 in soybean plants

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Schutt, J. B.; Mcmurtrey, J., III

    1983-01-01

    The total and diffuse radiance responses of Thematic Mapper bands 3 (0.63-0.69 microns), 4 (0.76-0.90 microns), and 5 (1.55-1.75 microns) to water stress in a soybean canopy are compared. Polarization measurements were used to separate the total from the diffuse reflectance; the reflectances were compared statistically at a variety of look angles at 15 min intervals from about 09.00 until 14.00 hrs EST. The results suggest that remotely sensed data collected in the photographic infrared region (TM4) are sensitive to leaf water stress in a 100 percent canopy cover of soybeans, and that TM3 is less sensitive than TM4 for detection of reversible foliar water stress. The mean values of TM5 reflectance data show similar trends to TM4. The primary implication of this study is that remote sensing of water stress in green plant canopies is possible in TM4 from ground-based observations primarily through the indirect link of leaf geometry.

  12. Application of Thematic Mapper data to corn and soybean development stage estimation

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Henderson, K. E.

    1985-01-01

    A model, utilizing direct relationship between remotely sensed spectral data and the development stage of both corn and soybeans has been proposed and published previously (Badhwar and Henderson, 1981; and Henderson and Badhwar, 1984). This model was developed using data acquired by instruments mounted on trucks over field plots of corn and soybeans as well as satellite data from Landsat. In all cases, the data was analyzed in the spectral bands equivalent to the four bands of Landsat multispectral scanner (MSS). In this study the same model has been applied to corn and soybeans using Landsat-4 Thematic Mapper (TM) data combined with simulated TM data to provide a multitemporal data set in TM band intervals. All data (five total acquisitions) were acquired over a test site in Webster County, Iowa from June to October 1982. The use of TM data for determining development state is as accurate as with Landsat MSS and field plot data in MSS bands. The maximum deviation of 0.6 development stage for corn and 0.8 development stage for soybeans is well within the uncertainty with which a field can be estimated with procedures used by observers on the ground in 1982.

  13. Evaluation and interpretation of Thematic Mapper ratios in equations for estimating corn growth parameters

    NASA Technical Reports Server (NTRS)

    Dardner, B. R.; Blad, B. L.; Thompson, D. R.; Henderson, K. E.

    1985-01-01

    Reflectance and agronomic Thematic Mapper (TM) data were analyzed to determine possible data transformations for evaluating several plant parameters of corn. Three transformation forms were used: the ratio of two TM bands, logarithms of two-band ratios, and normalized differences of two bands. Normalized differences and logarithms of two-band ratios responsed similarly in the equations for estimating the plant growth parameters evaluated in this study. Two-term equations were required to obtain the maximum predictability of percent ground cover, canopy moisture content, and total wet phytomass. Standard error of estimate values were 15-26 percent lower for two-term estimates of these parameters than for one-term estimates. The terms log(TM4/TM2) and (TM4/TM5) produced the maximum predictability for leaf area and dry green leaf weight, respectively. The middle infrared bands TM5 and TM7 are essential for maximizing predictability for all measured plant parameters except leaf area index. The estimating models were evaluated over bare soil to discriminate between equations which are statistically similar. Qualitative interpretations of the resulting prediction equations are consistent with general agronomic and remote sensing theory.

  14. Blocking reduction of Landsat Thematic Mapper JPEG browse images using optimal PSNR estimated spectra adaptive postfiltering

    NASA Technical Reports Server (NTRS)

    Linares, Irving; Mersereau, Russell M.; Smith, Mark J. T.

    1994-01-01

    Two representative sample images of Band 4 of the Landsat Thematic Mapper are compressed with the JPEG algorithm at 8:1, 16:1 and 24:1 Compression Ratios for experimental browsing purposes. We then apply the Optimal PSNR Estimated Spectra Adaptive Postfiltering (ESAP) algorithm to reduce the DCT blocking distortion. ESAP reduces the blocking distortion while preserving most of the image's edge information by adaptively postfiltering the decoded image using the block's spectral information already obtainable from each block's DCT coefficients. The algorithm iteratively applied a one dimensional log-sigmoid weighting function to the separable interpolated local block estimated spectra of the decoded image until it converges to the optimal PSNR with respect to the original using a 2-D steepest ascent search. Convergence is obtained in a few iterations for integer parameters. The optimal logsig parameters are transmitted to the decoder as a negligible byte of overhead data. A unique maxima is guaranteed due to the 2-D asymptotic exponential overshoot shape of the surface generated by the algorithm. ESAP is based on a DFT analysis of the DCT basis functions. It is implemented with pixel-by-pixel spatially adaptive separable FIR postfilters. PSNR objective improvements between 0.4 to 0.8 dB are shown together with their corresponding optimal PSNR adaptive postfiltered images.

  15. Data compression experiments with LANDSAT thematic mapper and Nimbus-7 coastal zone color scanner data

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Ramapriyan, H. K.

    1989-01-01

    A case study is presented where an image segmentation based compression technique is applied to LANDSAT Thematic Mapper (TM) and Nimbus-7 Coastal Zone Color Scanner (CZCS) data. The compression technique, called Spatially Constrained Clustering (SCC), can be regarded as an adaptive vector quantization approach. The SCC can be applied to either single or multiple spectral bands of image data. The segmented image resulting from SCC is encoded in small rectangular blocks, with the codebook varying from block to block. Lossless compression potential (LDP) of sample TM and CZCS images are evaluated. For the TM test image, the LCP is 2.79. For the CZCS test image the LCP is 1.89, even though when only a cloud-free section of the image is considered the LCP increases to 3.48. Examples of compressed images are shown at several compression ratios ranging from 4 to 15. In the case of TM data, the compressed data are classified using the Bayes' classifier. The results show an improvement in the similarity between the classification results and ground truth when compressed data are used, thus showing that compression is, in fact, a useful first step in the analysis.

  16. Fire effects in the northern Chihuahuan Desert derived from Landsat-5 Thematic Mapper spectral indices

    NASA Astrophysics Data System (ADS)

    White, Joseph D.; Swint, Pamela

    2014-01-01

    Fire effects on desert ecosystems may be long-lasting based on ecological impact of fire in these environments which potentially is detected from multispectral sensors. To assess this, we analyzed changes in spectral characteristics from 1986 to 2010 of pixels associated with the location of fires that occurred between 1986 and 1999 in Big Bend National Park, USA, located in the northern Chihuahuan Desert. Using Landsat-5 Thematic Mapper (TM) data, we derived spectral indices including the simple ratio (SR), normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and normalized burn ratio (NBR) from 1989, 1999, and 2010 from the TM data and compared changes in spectral index values for sites with and without observed fire. We found that the NDVI and SAVI had significantly different values over the time for burned sites of different fire sizes. When differences of the spectral indices were calculated from each time period, time since fire was correlated with the SR and NBR indices. These results showed that large fires potentially had a persistent and long-term change in vegetation cover and soil characteristics which were detected by the extraordinary long-data collection period of the Landsat-5 TM sensor.

  17. Abstracts of the Annual Meeting of Planetary Geologic Mappers, Nampa, Idaho 2006

    USGS Publications Warehouse

    Gregg, Tracy K. P.; Tanaka, Kenneth L.; Saunders, R. Stephen

    2006-01-01

    Approximately 18 people attended this year's mappers meeting, and many more submitted abstracts and maps in absentia. The meeting was held on the campus of Northwest Nazarene University (NNU), and was graciously hosted by NNU's School of Health and Science. Planetary mapper Dr. Jim Zimbelman is an alumnus of NNU, and he was pivotal in organizing the meeting at this location. Oral and poster presentations were given on Friday, June 30. Drs. Bill Bonnichsen and Marty Godchaux led field excursions on July 1 and 2. USGS Astrogeology Team Chief Scientist Lisa Gaddis led the meeting with a brief discussion of the status of the planetary mapping program at USGS, and a more detailed description of the Lunar Mapping Program. She indicated that there is now a functioning website (http://astrogeology.usgs.gov/Projects/PlanetaryMapping/Lunar/) which shows which lunar quadrangles are available to be mapped. Like other USGS-published maps, proposals to complete a lunar geologic map must be submitted to the regular Planetary Geology & Geophysics (PGG) program for peer review. Jim Skinner (USGS) later presented the progress of the 1:2.5M-scale map of the lunar Copernicus quadrangle, and demonstrated the wide range of data that are available to support these maps. Gaddis and Skinner encouraged the community to submit proposals for generating lunar geologic maps, and reminded us that, as for all planetary maps, the project must be science-driven. Venus mapper Jim Zimbelman of the Smithsonian Institution (SI) presented the progress for his V-15 and V-16 quadrangles; Vicki Hansen (University of Minnesota Duluth) showed her preliminary work on V-45. Zimbelman addressed an issue that has been plaguing the community: 'delinquent Venus mappers'. In short, there were a number of Venus maps funded in the early 1990s under the Venus Data Analysis Program (VDAP). Unfortunately, funding for this program was cut before many Venus maps could be completed, resulting in about 10 Venus maps that

  18. Geometric accuracy of Landsat-4 and Landsat-5 Thematic Mapper images.

    USGS Publications Warehouse

    Borgeson, W.T.; Batson, R.M.; Kieffer, H.H.

    1985-01-01

    The geometric accuracy of the Landsat Thematic Mappers was assessed by a linear least-square comparison of the positions of conspicuous ground features in digital images with their geographic locations as determined from 1:24 000-scale maps. For a Landsat-5 image, the single-dimension standard deviations of the standard digital product, and of this image with additional linear corrections, are 11.2 and 10.3 m, respectively (0.4 pixel). An F-test showed that skew and affine distortion corrections are not significant. At this level of accuracy, the granularity of the digital image and the probable inaccuracy of the 1:24 000 maps began to affect the precision of the comparison. The tested image, even with a moderate accuracy loss in the digital-to-graphic conversion, meets National Horizontal Map Accuracy standards for scales of 1:100 000 and smaller. Two Landsat-4 images, obtained with the Multispectral Scanner on and off, and processed by an interim software system, contain significant skew and affine distortions. -Authors

  19. Study of spectral/radiometric characteristics of the Thematic Mapper for land use applications

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Metzler, M. D. (Principal Investigator)

    1985-01-01

    Progress during ERIM's tenth quarter of effort under the LANDSAT-4 and 5 Image Data Quality Assessment program for the Thematic Mapper is described. Coincident LANDSAT-4 and 5 fully corrected (CCT-PT) TM data are analyzed in more detail and revised band-by-band relationships between the two sensors derived. An analysis technique employing the matching of cumulative distributions is developed and used and is believed to offer advantages over the histogram matching procedure currently used to produce LANDSAT data. Multiplicative factors ranging from 0.987 to 1.145 and offsets ranging from -2.7 to -6.2 video quantum levels are required to cause LANDSAT-5 data to match LANDSAT-4 data values. Evidence of low level clipping is found in TM Bands 5 and 7 of LANDSAT-5 but not LANDSAT-4. Analysis of the information content of LANDSAT TM and MSS data is continued. Components of information loss are identified and quantified and the effects of coarsened quantization are explored.

  20. Newer views of the Moon: Comparing spectra from Clementine and the Moon Mineralogy Mapper

    USGS Publications Warehouse

    Kramer, G.Y.; Besse, S.; Nettles, J.; Combe, J.-P.; Clark, R.N.; Pieters, C.M.; Staid, M.; Malaret, E.; Boardman, J.; Green, R.O.; Head, J.W.; McCord, T.B.

    2011-01-01

    The Moon Mineralogy Mapper (M3) provided the first global hyperspectral data of the lunar surface in 85 bands from 460 to 2980 nm. The Clementine mission provided the first global multispectral maps the lunar surface in 11 spectral bands across the ultraviolet-visible (UV-VIS) and near-infrared (NIR). In an effort to understand how M3 improves our ability to analyze and interpret lunar data, we compare M3 spectra with those from Clementine's UV-VIS and NIR cameras. The Clementine mission provided the first global multispectral maps the lunar surface in 11 spectral bands across the UV-VIS and NIR. We have found that M3 reflectance values are lower across all wavelengths compared with albedos from both of Clementine's UV-VIS and NIR cameras. M3 spectra show the Moon to be redder, that is, have a steeper continuum slope, than indicated by Clementine. The 1 m absorption band depths may be comparable between the instruments, but Clementine data consistently exhibit shallower 2 m band depths than M 3. Absorption band minimums are difficult to compare due to the significantly different spectral resolutions. Copyright 2011 by the American Geophysical Union.

  1. Application of Landsat Thematic Mapper data for coastal thermal plume analysis at Diablo Canyon

    NASA Technical Reports Server (NTRS)

    Gibbons, D. E.; Wukelic, G. E.; Leighton, J. P.; Doyle, M. J.

    1989-01-01

    The possibility of using Landsat Thematic Mapper (TM) thermal data to derive absolute temperature distributions in coastal waters that receive cooling effluent from a power plant is demonstrated. Landsat TM band 6 (thermal) data acquired on June 18, 1986, for the Diablo Canyon power plant in California were compared to ground truth temperatures measured at the same time. Higher-resolution band 5 (reflectance) data were used to locate power plant discharge and intake positions and identify locations of thermal pixels containing only water, no land. Local radiosonde measurements, used in LOWTRAN 6 adjustments for atmospheric effects, produced corrected ocean surface radiances that, when converted to temperatures, gave values within approximately 0.6 C of ground truth. A contour plot was produced that compared power plant plume temperatures with those of the ocean and coastal environment. It is concluded that Landsat can provide good estimates of absolute temperatures of the coastal power plant thermal plume. Moreover, quantitative information on ambient ocean surface temperature conditions (e.g., upwelling) may enhance interpretation of numerical model prediction.

  2. Minimizing Intra-Campaign Biases in Airborne Laser Altimetry By Thorough Calibration of Lidar System Parameters

    NASA Astrophysics Data System (ADS)

    Sonntag, J. G.; Chibisov, A.; Krabill, K. A.; Linkswiler, M. A.; Swenson, C.; Yungel, J.

    2015-12-01

    Present-day airborne lidar surveys of polar ice, NASA's Operation IceBridge foremost among them, cover large geographical areas. They are often compared with previous surveys over the same flight lines to yield mass balance estimates. Systematic biases in the lidar system, especially those which vary from campaign to campaign, can introduce significant error into these mass balance estimates and must be minimized before the data is released by the instrument team to the larger scientific community. NASA's Airborne Topographic Mapper (ATM) team designed a thorough and novel approach in order to minimize these biases, and here we describe two major aspects of this approach. First, we conduct regular ground vehicle-based surveys of lidar calibration targets, and overfly these targets on a near-daily basis during field campaigns. We discuss our technique for conducting these surveys, in particular the measures we take specifically to minimize systematic height biases in the surveys, since these can in turn bias entire campaigns of lidar data and the mass balance estimates based on them. Second, we calibrate our GPS antennas specifically for each instrument installation in a remote-sensing aircraft. We do this because we recognize that the metallic fuselage of the aircraft can alter the electromagnetic properties of the GPS antenna mounted to it, potentially displacing its phase center by several centimeters and biasing lidar results accordingly. We describe our technique for measuring the phase centers of a GPS antenna installed atop an aircraft, and show results which demonstrate that different installations can indeed alter the phase centers significantly.

  3. Estimation of shoreline position and change using airborne topographic lidar data

    USGS Publications Warehouse

    Stockdon, H.F.; Sallenger, A.H.; List, J.H.; Holman, R.A.

    2002-01-01

    A method has been developed for estimating shoreline position from airborne scanning laser data. This technique allows rapid estimation of objective, GPS-based shoreline positions over hundreds of kilometers of coast, essential for the assessment of large-scale coastal behavior. Shoreline position, defined as the cross-shore position of a vertical shoreline datum, is found by fitting a function to cross-shore profiles of laser altimetry data located in a vertical range around the datum and then evaluating the function at the specified datum. Error bars on horizontal position are directly calculated as the 95% confidence interval on the mean value based on the Student's t distribution of the errors of the regression. The technique was tested using lidar data collected with NASA's Airborne Topographic Mapper (ATM) in September 1997 on the Outer Banks of North Carolina. Estimated lidar-based shoreline position was compared to shoreline position as measured by a ground-based GPS vehicle survey system. The two methods agreed closely with a root mean square difference of 2.9 m. The mean 95% confidence interval for shoreline position was ?? 1.4 m. The technique has been applied to a study of shoreline change on Assateague Island, Maryland/Virginia, where three ATM data sets were used to assess the statistics of large-scale shoreline change caused by a major 'northeaster' winter storm. The accuracy of both the lidar system and the technique described provides measures of shoreline position and change that are ideal for studying storm-scale variability over large spatial scales.

  4. Global deposition of airborne dioxin.

    PubMed

    Booth, Shawn; Hui, Joe; Alojado, Zoraida; Lam, Vicky; Cheung, William; Zeller, Dirk; Steyn, Douw; Pauly, Daniel

    2013-10-15

    We present a global dioxin model that simulates one year of atmospheric emissions, transport processes, and depositions to the earth's terrestrial and marine habitats. We map starting emission levels for each land area, and we also map the resulting deposits to terrestrial and marine environments. This model confirms that 'hot spots' of deposition are likely to be in northern Europe, eastern North America, and in parts of Asia with the highest marine dioxin depositions being the northeast and northwest Atlantic, western Pacific, northern Indian Ocean and the Mediterranean. It also reveals that approximately 40% of airborne dioxin emissions are deposited to marine environments and that many countries in Africa receive more dioxin than they produce, which results in these countries being disproportionately impacted. Since human exposure to dioxin is largely through diet, this work highlights food producing areas that receive higher atmospheric deposits of dioxin than others.

  5. The Sandia Airborne Computer (SANDAC)

    SciTech Connect

    Nava, E.J.

    1992-06-01

    The Sandia Airborne Computer (SANDAC) is a small, modular, high performance, multiprocessor computer originally designed for aerospace applications. It can use a combination of Motorola 68020 and 68040 based processor modules along with AT&T DSP32C based signal processing modules. The system is designed to use up to 15 processors in almost any combination and a complete system can include up to 20 modules. Depending on the mix of processors, total computational throughput can range from 2.5 to greater than 225 Million Instructions Per Second (MIPS). The system is designed so that processors can access all resources in the machine and the inter-processor communication details are completely transparent to the software. In addition to processors, the system includes input/output, memory, and special function modules. Because of its ease of use, small size, durability, and configuration flexibility, SANDAC has been used on applications ranging from missile navigation, guidance, and control systems to medical imaging systems.

  6. Modis-N airborne simulator

    NASA Technical Reports Server (NTRS)

    Cech, Steven D.

    1992-01-01

    All required work associated with the above referenced contract has been successfully completed at this time. The Modis-N Airborne Simulator has been developed from existing AB184 Wildfire spectrometer parts as well as new detector arrays, optical components, and associated mechanical and electrical hardware. The various instrument components have been integrated into an operational system which has undergone extensive laboratory calibration and testing. The instrument has been delivered to NASA Ames where it will be installed on the NASA ER-2. The following paragraphs detail the specific tasks performed during the contract effort, the results obtained during the integration and testing of the instrument, and the conclusions which can be drawn from this effort.

  7. Airborne thermography or infrared remote sensing.

    PubMed

    Goillot, C C

    1975-01-01

    Airborne thermography is part of the more general remote sensing activity. The instruments suitable for image display are infrared line scanners. A great deal of interest has developed during the past 10 years in airborne thermal remote sensing and many applications are in progress. Infrared scanners on board a satellite are used for observation of cloud cover; airborne infrared scanners are used for forest fire detection, heat budget of soils, detecting insect attack, diseases, air pollution damage, water stress, salinity stress on vegetation, only to cite some main applications relevant to agronomy. Using this system it has become possible to get a 'picture' of our thermal environment.

  8. Use of airborne multispectral video data for water quality evaluation in Sandy Hook, New Jersey

    NASA Astrophysics Data System (ADS)

    Bagheri, Sima; Stein, Matt

    1992-05-01

    A local mission of short duration was carried out to investigate the relationship between signals acquired by an airborne multispectral camera (MSC-02) developed by XYbion Corporation and in situ water sampling. The MSC-02 was used to produce video images in six spectral bands in the reflective and near-infrared region of the spectrum from which all below-surface hydrological signals originate. Images of halon-coated panels were obtained in all bands to calculate relative radiometric calibration functions. These functions were applied to corresponding spectral images to calculate relative radiances of both panel and estuarine water targets. These values were then input to regression equations to establish a correlation between water constituents (organic/inorganic) and MSC-02 signals indicating the degree of eutrophication in the estuary. It is hypothesized that if reliable relationships between MSC-02 data with fine spatial resolution and selected water quality parameters are obtained, then it would be possible to calibrate the concurrently acquired Landsat 5 thematic mapper (TM) data with coarser spatial resolution for monitoring of estuarine water quality.

  9. Vegetation Water Content Mapping in a Diverse Agricultural Landscape: National Airborne Field Experiment 2006

    NASA Technical Reports Server (NTRS)

    Cosh, Michael H.; Jing Tao; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2011-01-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE 06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE 06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/sq m. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. Keywords: Vegetation, field experimentation, thematic mapper, NDWI, agriculture.

  10. MAppERS: a peer-produced community for emergency support

    NASA Astrophysics Data System (ADS)

    Frigerio, Simone; Schenato, Luca; Bianchizza, Chiara; Del Bianco, Daniele

    2014-05-01

    A general trend in European governance tends to shift responsibilities in territorial management from national central authorities to local/regional levels and to the citizens as first actors of Civil Protection. Prevention is a long term goal that rests not only on the capacities of professional operators and volunteers, but that has to necessarily imply the involvement and awareness of the citizens over the territory they inhabit. In fact people often do not have chance to interact in the surveillance of the territory and only face risks when they have to bear impacts on their lives. Involvement of population creates more cost-effective and context-specific strategies of territorial surveillance and management. A collaborative user environment is useful for emergency response and support in the wake of disasters, feeding updated information on the ground directly to on-site responders. MAppERS (Mobile Application for Emergency Response and Support) is a EU project (funded under programme 2013-2015 Humanitarian Aid and Civil Protection, ECHO A5) which empowers citizens as "crowd-sourced mappers" through the development of a smart phone application able to collect GPS-localised and detailed parameters, that can then be sent from citizens to civil protection operators in a contest of geospatial response. The process of app design includes feedback from citizens, involving them in training courses on the monitoring of the territory as long term objective of raising public awareness and participation from the citizens, as actors in a networked disaster response community. The project proceeds from the design and testing of the smart phone applications (module MAppERS-V for volunteers, module MAppERS-C for citizens) according to software engineering environment (Android and Iphone SDK). Information exchange and data transfer need clearness and efficiency; thus a previous research is conducted on the cost-effectiveness of already existing practices for territorial

  11. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  12. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  13. SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH

    EPA Science Inventory

    Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....

  14. Post Launch Calibration and Testing of the Geostationary Lightning Mapper on GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Rafal, Marc; Cholvibul, Ruth; Clarke, Jared

    2016-01-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 s) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  15. Post Launch Calibration and Testing of the Geostationary Lightning Mapper on the GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Rafal, Marc D.; Clarke, Jared T.; Cholvibul, Ruth W.

    2016-01-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 microseconds) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  16. Updated radiometric calibration for the Landsat-5 thematic mapper reflective bands

    USGS Publications Warehouse

    Helder, D.L.; Markham, B.L.; Thome, K.J.; Barsi, J.A.; Chander, G.; Malla, R.

    2008-01-01

    The Landsat-5 Thematic Mapper (TM) has been the workhorse of the Landsat system. Launched in 1984, it continues collecting data through the time frame of this paper. Thus, it provides an invaluable link to the past history of the land features of the Earth's surface, and it becomes imperative to provide an accurate radiometric calibration of the reflective bands to the user community. Previous calibration has been based on information obtained from prelaunch, the onboard calibrator, vicarious calibration attempts, and cross-calibration with Landsat-7. Currently, additional data sources are available to improve this calibration. Specifically, improvements in vicarious calibration methods and development of the use of pseudoinvariant sites for trending provide two additional independent calibration sources. The use of these additional estimates has resulted in a consistent calibration approach that ties together all of the available calibration data sources. Results from this analysis indicate a simple exponential, or a constant model may be used for all bands throughout the lifetime of Landsat-5 TM. Where previously time constants for the exponential models were approximately one year, the updated model has significantly longer time constants in bands 1-3. In contrast, bands 4, 5, and 7 are shown to be best modeled by a constant. The models proposed in this paper indicate calibration knowledge of 5% or better early in life, decreasing to nearly 2% later in life. These models have been implemented at the U.S. Geological Survey Earth Resources Observation and Science (EROS) and are the default calibration used for all Landsat TM data now distributed through EROS. ?? 2008 IEEE.

  17. Structural mapping and analysis of a Madagascar Precambrian shear zone using enhanced Landsat Thematic Mapper Data

    SciTech Connect

    Kilmer, D.S.; Duncan, I.J. )

    1990-05-01

    Recently, the west coast of Madagascar has become a frontier region for petroleum exploration. Major structures in the Precambrian shield of Madagascar may have a strong control on the development of sedimentary basins, as has been documented in the Morondava basin. The 2.5-3.0+ Ga shield of Madagascar is an amphibolite- to granulite-grade metamorphic gneiss terrain, intruded by anorthosites and 550-Ma granites and pegmatites. Landsat Thematic Mapper data provides a cost-effective method for regional-scale structural mapping of this poorly known terrain. A five-component linear mixing model has been used to enhance the lithologic information in this six-band data. Lithologic component images thus produced utilize the full geologic spectral range of the data. A preliminary structural geologic map compiled from the component images has greater detail than existing maps at 1:100,000 scale, to which it has been compared. The Ankafotra-Saririaky shear zone has been identified as a north-northeast-trending, 15- to 20-km-wide region of appressed folds, attenuated layering, and subparallel faults on the western side of the shield. Two anorthosite massifs that occur within this shear zone have the structural characteristics of boudins in a ductile matrix. The shear deformed a preexisting terrain of poly-phase folding, characterized by tight folds and complex fold interference structures displayed by basins and domes on a scale of 10 km. Enhanced remote sensing data can be used to characterize the nature and mechanism of shear deformation in such zones.

  18. Lightning Jump Algorithm Development for the GOES·R Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    Schultz. E.; Schultz. C.; Chronis, T.; Stough, S.; Carey, L.; Calhoun, K.; Ortega, K.; Stano, G.; Cecil, D.; Bateman, M.; Goodman, S.

    2014-01-01

    Current work on the lightning jump algorithm to be used in GOES-R Geostationary Lightning Mapper (GLM)'s data stream is multifaceted due to the intricate interplay between the storm tracking, GLM proxy data, and the performance of the lightning jump itself. This work outlines the progress of the last year, where analysis and performance of the lightning jump algorithm with automated storm tracking and GLM proxy data were assessed using over 700 storms from North Alabama. The cases analyzed coincide with previous semi-objective work performed using total lightning mapping array (LMA) measurements in Schultz et al. (2011). Analysis shows that key components of the algorithm (flash rate and sigma thresholds) have the greatest influence on the performance of the algorithm when validating using severe storm reports. Automated objective analysis using the GLM proxy data has shown probability of detection (POD) values around 60% with false alarm rates (FAR) around 73% using similar methodology to Schultz et al. (2011). However, when applying verification methods similar to those employed by the National Weather Service, POD values increase slightly (69%) and FAR values decrease (63%). The relationship between storm tracking and lightning jump has also been tested in a real-time framework at NSSL. This system includes fully automated tracking by radar alone, real-time LMA and radar observations and the lightning jump. Results indicate that the POD is strong at 65%. However, the FAR is significantly higher than in Schultz et al. (2011) (50-80% depending on various tracking/lightning jump parameters) when using storm reports for verification. Given known issues with Storm Data, the performance of the real-time jump algorithm is also being tested with high density radar and surface observations from the NSSL Severe Hazards Analysis & Verification Experiment (SHAVE).

  19. Landsat 4 thematic mapper imagery: improved tool for geologic mapping in eastern overthrust

    SciTech Connect

    Miller, J.E.

    1984-04-01

    The central Appalachians were studied using Landsat 4 thematic mapper (TM) data to evaluate the improved spatial resolution (30 x 30 m, 100 x 100 ft) of TM for mapping capabilities. The TM bands 2, 3, and 4 were contrast stretched and edge enhanced using digital processing techniques. Photogeologic analysis of the 1:125,000-scale TM image examined drainage, landform, lineament, and structural features. The study area comprises the junction of the central and southern Appalachians where fold axes change from N30/sup 0/E to N60/sup 0/E. Southeast-dipping thrust faults trend northeastward across the area. Cambrian through Devonian rocks are involved in and exposed by the thrust faults. Recognition of drainage relationships (density and pattern) are important in identifying lithologies. Landforms reflect structure and lithology through characteristic topographic expression. Improved identification and delineation of drainage and landform characteristics on TM imagery support structural and lithologic interpretations. Lineaments were identified by drainage, tonal, and topographic characteristics. Two major lineaments trending N83/sup 0/E and N56/sup 0/W, at the junction of the southern and central Appalachians, were identified. Identified structural features include fold axes, thrust faults, strike-slip faults, and thrust-faulted folds. Detailed lineament and structural mapping on TM imagery aids in unraveling complex surface geologic patterns in this critical area of the eastern overthrust. Digitally enhanced Landsat 4 TM data proved advantageous for accurate mapping of drainage, landform, lineament, and structural features. Improved accuracy on a regional scale allows reliable geologic mapping and therefore subsurface interpretations, benefiting hydrocarbon exploration.

  20. Landsat 4 thematic mapper imagery: improved tool for geologic mapping in eastern overthrust

    SciTech Connect

    Miller, J.E.

    1984-04-01

    The central Appalachians were studied using Landsat 4 thematic mapper (TM) data to evaluate the improved spatial resolution (30 x 30 m, 100 x 100 ft) of TM for mapping capabilities. The TM bands 2, 3, and 4 were contrast stretched and edge enhanced using digital processing techniques. Photogeologic analysis of the 1:125,000-scale TM image examined drainage, landform, lineament, and structural features. The study area comprises the junction of the central and southern Appalachians where fold axes change from N30/sup 0/E to N60/sup 0/E. Southeast-dipping thrust faults trend northeastward across the area. Cambrian through Devonian rocks are involved in and exposed by the thrust faults. Recognition of drainage relationships (density and pattern) are important in identifying lithologies. Landforms reflect structure and lithology through characteristic topographic expression. Improved identification and delineation of drainage and landform characteristics on TM imagery support structural and lithologic interpretations. Lineaments were identified by drainage, tonal, and topographic characteristics. Two major lineaments trending N83/sup 0/E and N56/sup 0/W, at the junction of the southern and central Appalachians, were identified. Identified structural features include fold axes, thrust faults, strike-slip faults, and thrust-faulted folds. Detailed lineament and structural mapping on TM imagery aids in unraveling complex surface geologic patterns in this critical area of the eastern overthrust. Digitally enhanced Landsat 4 TM data proved advantageous for accurate mapping of drainage, landform, lineament, and structural features. Improved accuracy on a regional scale allows reliable geologic mapping and therefore subsurface interpretations, benefitting hydrocarbon exploration.

  1. Regional land cover characterization using Landsat thematic mapper data and ancillary data sources

    USGS Publications Warehouse

    Vogelmann, J.E.; Sohl, T.L.; Campbell, P.V.; Shaw, D.M.; ,

    1998-01-01

    As part of the activities of the Multi-Resolution Land Characteristics (MRLC) Interagency Consortium, an intermediate-scale land cover data set is being generated for the conterminous United States. This effort is being conducted on a region-by-region basis using U.S. Standard Federal Regions. To date, land cover data sets have been generated for Federal Regions 3 (Pennsylvania, West Virginia, Virginia, Maryland, and Delaware) and 2 (New York and New Jersey). Classification work is currently under way in Federal Region 4 (the southeastern United States), and land cover mapping activities have been started in Federal Regions 5 (the Great Lakes region) and 1 (New England). it is anticipated that a land cover data set for the conterminous United States will be completed by the end of 1999. A standard land cover classification legend is used, which is analogous to and compatible with other classification schemes. The primary MRLC regional classification scheme contains 23 land cover classes. The primary source of data for the project is the Landsat thematic mapper (TM) sensor. For each region, TM scenes representing both leaf-on and leaf-off conditions are acquired, preprocessed, and georeferenced to MRLC specifications. Mosaicked data are clustered using unsupervised classification, and individual clusters are labeled using aerial photographs. Individual clusters that represent more than one land cover unit are split using spatial modeling with multiple ancillary spatial data layers (most notably, digital elevation model, population, land use and land cover, and wetlands information). This approach yields regional land cover information suitable for a wide array of applications, including landscape metric analyses, land management, land cover change studies, and nutrient and pesticide runoff modeling.

  2. Post launch calibration and testing of the Geostationary Lightning Mapper on GOES-R satellite

    NASA Astrophysics Data System (ADS)

    Rafal, Marc; Clarke, Jared T.; Cholvibul, Ruth W.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 μs) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  3. In-Flight Absolute Radiometric Calibration of the Landsat Thematic Mapper

    NASA Astrophysics Data System (ADS)

    Kastner, Carol Jane

    The in-flight absolute radiometric calibration of the Thematic Mapper (TM) is being conducted using the results of field measurements at White Sands, New Mexico. These measurements are made to characterize the ground and atmosphere at the time the TM is acquiring an image of White Sands. The data are used as input to a radiative transfer code that computes the radiance at the entrance pupil of the TM. The calibration is obtained by comparing the digital counts associated with the TM image of the measured ground site with the radiative transfer code result. The calibrations discussed here are for the first four visible and near -infrared bands of the TM. In this dissertation the data reduction for the first calibration attempts on January 3, 1983, and July 8, 1984, is discussed. Included are a review of radiative transfer theory and a discussion of model atmospheric parameters as defined for the White Sands area. These model parameters are used to assess the errors associated with the calibration procedure. Each input parameter to the radiative transfer code is varied from its model value in proportion to the uncertainty with which it can be determined. The effects of these uncertainties on the predicted radiances are determined. It is thought that the optical depth components (tau)(,Ray), (tau)(,Mie), (tau)(,oz), and (tau)(,H(,2)O) can be measured to within 10%, 2%, 10%, and 30%, respectively. For the white gypsum sand, surface reflectance uniformity is on the order of 1.5%, and the overall uncertainty in measured reflectance is about 2%. This is due to an uncertainty in the reflectance factor of the calibration plates. The greatest uncertainty in calibration is attributed to our uncertainty in the aerosol parameters, in particular the imaginary component of refractive index. The cumulative effect of these uncertainties is thought to produce an uncertainty in computed radiance of about 5%.

  4. Satellite Proving Ground for the GOES-R Geostationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Gurka, James; Bruning, E. C.; Blakeslee, J. R.; Rabin, Robert; Buechler, D.

    2009-01-01

    The key mission of the Satellite Proving Ground is to demonstrate new satellite observing data, products and capabilities in the operational environment to be ready on Day 1 to use the GOES-R suite of measurements. Algorithms, tools, and techniques must be tested, validated, and assessed by end users for their utility before they are finalized and incorporated into forecast operations. The GOES-R Proving Ground for the Geostationary Lightning Mapper (GLM) focuses on evaluating how the infusion of the new technology, algorithms, decision aids, or tailored products integrate with other available tools (weather radar and ground strike networks; nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing forecasts and warning products. Additionally, the testing concept fosters operation and development staff interactions which will improve training materials and support documentation development. Real-time proxy total lightning data from regional VHF lightning mapping arrays (LMA) in Northern Alabama, Central Oklahoma, Cape Canaveral Florida, and the Washington, DC Greater Metropolitan Area are the cornerstone for the GLM Proving Ground. The proxy data will simulate the 8 km Event, Group and Flash data that will be generated by GLM. Tailored products such as total flash density at 1-2 minute intervals will be provided for display in AWIPS-2 to select NWS forecast offices and national centers such as the Storm Prediction Center. Additional temporal / spatial combinations are being investigated in coordination with operational needs and case-study proxy data and prototype visualizations may also be generated from the NASA heritage Lightning Imaging Sensor and Optical Transient Detector data. End users will provide feedback on the utility of products in their operational environment, identify use cases and spatial/temporal scales of interest, and provide feedback to the developers for adjusted or

  5. Remote compositional analysis of lunar olivine-rich lithologies with Moon Mineralogy Mapper (M3) spectra

    USGS Publications Warehouse

    Isaacson, P.J.; Pieters, C.M.; Besse, S.; Clark, R.N.; Head, J.W.; Klima, R.L.; Mustard, J.F.; Petro, N.E.; Staid, M.I.; Sunshine, J.M.; Taylor, L.A.; Thaisen, K.G.; Tompkins, S.

    2011-01-01

    A systematic approach for deconvolving remotely sensed lunar olivine-rich visible to near-infrared (VNIR) reflectance spectra with the Modified Gaussian Model (MGM) is evaluated with Chandrayaan-1 Moon Mineralogy Mapper (M 3) spectra. Whereas earlier studies of laboratory reflectance spectra focused only on complications due to chromite inclusions in lunar olivines, we develop a systematic approach for addressing (through continuum removal) the prominent continuum slopes common to remotely sensed reflectance spectra of planetary surfaces. We have validated our continuum removal on a suite of laboratory reflectance spectra. Suites of olivine-dominated reflectance spectra from a small crater near Mare Moscoviense, the Copernicus central peak, Aristarchus, and the crater Marius in the Marius Hills were analyzed. Spectral diversity was detected in visual evaluation of the spectra and was quantified using the MGM. The MGM-derived band positions are used to estimate the olivine's composition in a relative sense. Spectra of olivines from Moscoviense exhibit diversity in their absorption features, and this diversity suggests some variation in olivine Fe/Mg content. Olivines from Copernicus are observed to be spectrally homogeneous and thus are predicted to be more compositionally homogeneous than those at Moscoviense but are of broadly similar composition to the Moscoviense olivines. Olivines from Aristarchus and Marius exhibit clear spectral differences from those at Moscoviense and Copernicus but also exhibit features that suggest contributions from other phases. If the various precautions discussed here are weighed carefully, the methods presented here can be used to make general predictions of absolute olivine composition (Fe/Mg content). Copyright ?? 2011 by the American Geophysical Union.

  6. Results of the gamma-neutron mapper performance test on 55-gallon drums at the RWMC

    SciTech Connect

    Gehrke, R.J.; Lawrence, R.S.; Roybal, L.G.; Svoboda, J.M.; Harker, D.J.; Thompson, D.N.; Carpenter, M.V.; Josten, N.E.

    1995-07-01

    The primary purpose of the gamma-neutron mapper (G@) is to provide accurate and quantitative spatial information of the gamma-ray and neutron radiation fields as a function of position about the excavation of a radioactive waste site. The GNM is designed to operate remotely and can be delivered to any point on an excavation by the robotic gantry crane developed by the dig-face project at the Idaho National Engineering Laboratory (INEL). It can also be easily adapted to other delivery systems. The GNM can be deployed over a waste site at a predetermined scan rate and has sufficient accuracy to identify and quantify radioactive contaminants of importance. The results reported herein are from a performance test conducted at the Transuranic Storage Area, Building 628, of the Radioactive Waste Management Complex located at the INEL. This building is an active interim-storage area for 55-gal drums of transuranic waste from the Department of Energy`s Rocky Flats Plant. The performance test consisted of scanning a stack of drums five high by five wide. Prior to the test, radiation fields were measured by a health physicist at the center of the drums and ranged from 0.5 mR/h to 35 mR/h. Scans of the drums using the GNM were taken at standoff distances from the vertical drum stack of 15 cm, 30 cm, 45 cm, and 90 cm. Data were acquired at scan speeds of 7.5 cm/s and 15 cm/s. The results of these scans and a comparison of these results with the manifests of these drums are compared and discussed.

  7. Integrating remote sensing techniques at Cuprite, Nevada: AVIRIS, Thematic Mapper, and field spectroscopy

    NASA Technical Reports Server (NTRS)

    Hill, Bradley; Nash, Greg; Ridd, Merrill; Hauff, Phoebe L.; Ebel, Phil

    1992-01-01

    The Cuprite mining district in southwestern Nevada has become a test site for remote sensing studies with numerous airborne scanners and ground sensor data sets collected over the past fifteen years. Structurally, the Cuprite region can be divided into two areas with slightly different alteration and mineralogy. These zones lie on either side of a postulated low-angle structural discontinuity that strikes nearly parallel to US Route 95. Hydrothermal alternation at Cuprite was classified into three major zones: silicified, opalized, and argillized. These alteration types form a bulls-eye pattern east of the highway and are more linear on the west side of the highway making a striking contrast from the air and the imagery. Cuprite is therefore an ideal location for remote sensing research as it exhibits easily identified hydrothermal zoning, is relatively devoid of vegetation, and contains a distinctive spectrally diagnostic mineral suite including the ammonium feldspar buddingtonite, several types of alunite, different jarosites, illite, kaolinite, smectite, dickite, and opal. This present study brings a new dimension to these previous remote sensing and ground data sets compiled for Cuprite. The development of a higher resolution field spectrometer now provides the capability to combine extensive in-situ mineralogical data with a new geologic field survey and detailed Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images. The various data collection methods and the refinement of the integrated techniques are discussed.

  8. Downscaling of Airborne Wind Energy Systems

    NASA Astrophysics Data System (ADS)

    Fechner, Uwe; Schmehl, Roland

    2016-09-01

    Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that cannot be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the higher capacity factor and much lower total mass. This paper investigates the scaling effects of airborne wind energy systems. The energy yield of airborne wind energy systems, that work in pumping mode of operation is at least ten times higher than the energy yield of conventional solar systems. For airborne wind energy systems the yield is defined per square meter wing area. In this paper the dependency of the energy yield on the nominal generator power for systems in the range of 1 kW to 1 MW is investigated. For the onshore location Cabauw, The Netherlands, it is shown, that a generator of just 1.4 kW nominal power and a total system mass of less than 30 kg has the theoretical potential to harvest energy at only twice the price per kWh of large scale airborne wind energy systems. This would make airborne wind energy systems a very attractive choice for small scale remote and mobile applications as soon as the remaining challenges for commercialization are solved.

  9. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  10. Challenges and Opportunities of Airborne Metagenomics

    PubMed Central

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  11. High-Resolution Spectroscopic Study of Extremely Metal-Poor Star Candidates from the SkyMapper Survey

    NASA Astrophysics Data System (ADS)

    Jacobson, Heather R.; Keller, Stefan; Frebel, Anna; Casey, Andrew R.; Asplund, Martin; Bessell, Michael S.; Da Costa, Gary S.; Lind, Karin; Marino, Anna F.; Norris, John E.; Peña, José M.; Schmidt, Brian P.; Tisserand, Patrick; Walsh, Jennifer M.; Yong, David; Yu, Qinsi

    2015-07-01

    The SkyMapper Southern Sky Survey is carrying out a search for the most metal-poor stars in the Galaxy. It identifies candidates by way of its unique filter set which allows for estimation of stellar atmospheric parameters. The set includes a narrow filter centered on the Ca ii K 3933 Å line, enabling a robust estimate of stellar metallicity. Promising candidates are then confirmed with spectroscopy. We present the analysis of Magellan Inamori Kyocera Echelle high-resolution spectroscopy of 122 metal-poor stars found by SkyMapper in the first two years of commissioning observations. Forty-one stars have [{Fe}/{{H}}]≤slant -3.0. Nine have [{Fe}/{{H}}]≤slant -3.5, with three at [{Fe}/{{H}}]∼ -4. A 1D LTE abundance analysis of the elements Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, Ba, and Eu shows these stars have [X/Fe] ratios typical of other halo stars. One star with low [X/Fe] values appears to be “Fe-enhanced,” while another star has an extremely large [Sr/Ba] ratio: \\gt 2. Only one other star is known to have a comparable value. Seven stars are “CEMP-no” stars ([{{C}}/{Fe}]\\gt 0.7, [{Ba}/{Fe}]\\lt 0). 21 stars exhibit mild r-process element enhancements (0.3≤slant [{Eu}/{Fe}]\\lt 1.0), while four stars have [{Eu}/{Fe}]≥slant 1.0. These results demonstrate the ability to identify extremely metal-poor stars from SkyMapper photometry, pointing to increased sample sizes and a better characterization of the metal-poor tail of the halo metallicity distribution function in the future. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  12. Airborne remote sensing for geology and the environment; present and future

    USGS Publications Warehouse

    Watson, Ken; Knepper, Daniel H.

    1994-01-01

    In 1988, a group of leading experts from government, academia, and industry attended a workshop on airborne remote sensing sponsored by the U.S. Geological Survey (USGS) and hosted by the Branch of Geophysics. The purpose of the workshop was to examine the scientific rationale for airborne remote sensing in support of government earth science in the next decade. This report has arranged the six resulting working-group reports under two main headings: (1) Geologic Remote Sensing, for the reports on geologic mapping, mineral resources, and fossil fuels and geothermal resources; and (2) Environmental Remote Sensing, for the reports on environmental geology, geologic hazards, and water resources. The intent of the workshop was to provide an evaluation of demonstrated capabilities, their direct extensions, and possible future applications, and this was the organizational format used for the geologic remote sensing reports. The working groups in environmental remote sensing chose to present their reports in a somewhat modified version of this format. A final section examines future advances and limitations in the field. There is a large, complex, and often bewildering array of remote sensing data available. Early remote sensing studies were based on data collected from airborne platforms. Much of that technology was later extended to satellites. The original 80-m-resolution Landsat Multispectral Scanner System (MSS) has now been largely superseded by the 30-m-resolution Thematic Mapper (TM) system that has additional spectral channels. The French satellite SPOT provides higher spatial resolution for channels equivalent to MSS. Low-resolution (1 km) data are available from the National Oceanographic and Atmospheric Administration's AVHRR system, which acquires reflectance and day and night thermal data daily. Several experimental satellites have acquired limited data, and there are extensive plans for future satellites including those of Japan (JERS), Europe (ESA), Canada

  13. EVALUATION OF LOW-SUN ILLUMINATED LANDSAT-4 THEMATIC MAPPER DATA FOR MAPPING HYDROTHERMALLY ALTERED ROCKS IN SOUTHERN NEVADA.

    USGS Publications Warehouse

    Podwysocki, Melvin H.; Power, Marty S.; Salisbury, Jack; Jones, O.D.

    1984-01-01

    Landsat-4 Thematic Mapper (TM) data of southern Nevada collected under conditions of low-angle solar illumination were digitally processed to identify hydroxyl-bearing minerals commonly associated with hydrothermal alteration in volcanic terrains. Digital masking procedures were used to exclude shadow areas and vegetation and thus to produce a CRC image suitable for testing the new TM bands as a means to map hydrothermally altered rocks. Field examination of a masked CRC image revealed that several different types of altered rocks displayed hues associated with spectral characteristics common to hydroxyl-bearing minerals. Several types of unaltered rocks also displayed similar hues.

  14. Use of thematic mapper imagery to assess water quality, trophic state, and macrophyte distributions in Massachusetts lakes

    USGS Publications Warehouse

    Waldron, Marcus C.; Steeves, Peter A.; Finn, John T.

    2001-01-01

    During the spring and summer of 1996, 1997, and 1998, measurements of phytoplankton- chlorophyll concentration, Secchi disk transparency, and color were made at 97 Massachusetts lakes within 24 hours of Landsat Thematic Mapper imaging of the lakes in an effort to assess water quality and trophic state. Spatial distributions of floating, emergent, and submerged macrophytes were mapped in 49 of the lakes at least once during the 3-year period. The maps were digitized and used to assign pixels in the thematic mapper images to one of four vegetation cover classes-open water, 1-50 percent floating-and-emergent-vegetation cover, 51-100 percent floating-and-emergent-vegetation cover, and submerged vegetation at any density. The field data were collected by teams of U.S. Geological Survey and Massachusetts Department of Environmental Management staff and by 76 volunteers. Side-by-side sampling by U.S. Geological Survey and volunteer field teams resulted in statistically similar chlorophyll determinations, Secchi disk readings, and temperature measurements, but concurrent color determinations were not similar, possibly due to contamination of sample bottles issued to the volunteers.Attempts to develop predictive relations between phytoplankton-chlorophyll concentration, Secchi disk transparency, lake color, dissolved organic carbon, and various combinations of thematic mapper bands 1, 2, 3, and 4 digital numbers were unsuccessful, primarily because of the extremely low concentrations of chlorophyll in the lakes studied, and also because of the highly variable dissolved organic carbon concentrations.Predictive relations were developed between Secchi disk transparency and phytoplankton-chlorophyll concentration, and between color and dissolved organic carbon concentration. Phytoplankton-chlorophyll concentration was inversely correlated with Secchi disk transparency during all three sampling periods. The relations were very similar in 1996 and 1997 and indicated that 62 to 67

  15. Change Detection Analysis in Urban and Suburban Areas Using Landsat Thematic Mapper data: Case of Huntsville, Alabama

    NASA Technical Reports Server (NTRS)

    Kuan, Dana; Fahsi, A.; Steinfeld S.; Coleman, T.

    1998-01-01

    Two Landsat Thematic Mapper (TM) images, from July 1984 and July 1992, were used to identify land use/cover changes in the urban and suburban fringe of the city of Huntsville, Alabama. Image difference was the technique used to quantify the change between the two dates. The eight-year period showed a 16% change, mainly from agricultural lands to urban areas generated by the settlement of industrial, commercial, and residential areas. Visual analysis of the change map (i.e., difference image) supported this phenomenon by showing that most changes were occurring in the vicinity of the major roads and highways across the city.

  16. Statistical analysis of Thematic Mapper Simulator data for the geobotanical discrimination of rock types in southwest Oregon

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Weinstock, K. J.; Mouat, D. A.; Card, D. H.

    1984-01-01

    An evaluation of Thematic Mapper Simulator (TMS) data for the geobotanical discrimination of rock types based on vegetative cover characteristics is addressed in this research. A methodology for accomplishing this evaluation utilizing univariate and multivariate techniques is presented. TMS data acquired with a Daedalus DEI-1260 multispectral scanner were integrated with vegetation and geologic information for subsequent statistical analyses, which included a chi-square test, an analysis of variance, stepwise discriminant analysis, and Duncan's multiple range test. Results indicate that ultramafic rock types are spectrally separable from nonultramafics based on vegetative cover through the use of statistical analyses.

  17. Radiometric calibration of the reflective bands of NS001-Thematic Mapper Simulator (TMS) and modular multispectral radiometers (MMR)

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Wood, Frank M., Jr.; Ahmad, Suraiya P.

    1988-01-01

    The NS001 Thematic Mapper Simulator scanner (TMS) and several modular multispectral radiometers (MMRs) are among the primary instruments used in the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE). The NS001 has a continuously variable gain setting. Calibration of the NS001 data is influenced by drift in the dark current level of up to six counts during a mirror scan at typical gain settings. The MMR instruments are being used in their 1 deg FOV configuration on the helicopter and 15 deg FOV on the ground.

  18. Mineralogy of the Lunar Crust in Spatial Context: First Results from the Moon Mineralogy Mapper (M3)

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Boardman, J.; Buratti, B.; Clark, R.; Combe, J-P; Green, R.; Goswami, J. N.; Head, J. W., III; Hicks, M.; Isaacson, P.; Klima, R.; Kramer, G.; Kumar, S.; Lundeen, S.; Malaret, E.; McCord, T. B.; Mustard, J.; Nettles, J.; Petro, N.; Runyon, C.; Staid, M. I.; Sunshine, J.; Taylor, L.; Tompkins, S.; Varanasi, P.

    2009-01-01

    India's Chandrayaan-1 successfully launched October 22, 2008 and went into lunar orbit a few weeks later. Commissioning of instruments began in late November and was near complete by the end of the year. Initial data for NASA's Moon Mineralogy Mapper (M3) were acquired across the Orientale Basin and the science results are discussed here. M 3 image-cube data provide mineralogy of the surface in geologic context. A major new result is that the existence and distribution of massive amounts of anorthosite as a continuous stratigraphic crustal layer is now irrefutable.

  19. A preliminary comparison of Landsat Thematic Mapper and SPOT-1 HRV multispectral data for estimating coniferous forest volume

    NASA Technical Reports Server (NTRS)

    Ripple, William J.; Wang, S.; Isaacson, Dennis L.; Paine, D. P.

    1995-01-01

    Digital Landsat Thematic Mapper (TM) and Satellite Probatoire d'Observation de la Terre (SPOT) High Resolution Visible (HRV) images of coniferous forest canopies were compared in their relationship to forest wood volume using correlation and regression analyses. Significant inverse relationships were found between softwood volume and the spectral bands from both sensors (P less than 0.01). The highest correlations were between the log of softwood volume and the near-infrared bands (HRV band 3, r = -0.89; TM band 4, r = -0.83).

  20. Medicinal smoke reduces airborne bacteria.

    PubMed

    Nautiyal, Chandra Shekhar; Chauhan, Puneet Singh; Nene, Yeshwant Laxman

    2007-12-01

    This study represents a comprehensive analysis and scientific validation of our ancient knowledge about the effect of ethnopharmacological aspects of natural products' smoke for therapy and health care on airborne bacterial composition and dynamics, using the Biolog microplate panels and Microlog database. We have observed that 1h treatment of medicinal smoke emanated by burning wood and a mixture of odoriferous and medicinal herbs (havan sámagri=material used in oblation to fire all over India), on aerial bacterial population caused over 94% reduction of bacterial counts by 60 min and the ability of the smoke to purify or disinfect the air and to make the environment cleaner was maintained up to 24h in the closed room. Absence of pathogenic bacteria Corynebacterium urealyticum, Curtobacterium flaccumfaciens, Enterobacter aerogenes (Klebsiella mobilis), Kocuria rosea, Pseudomonas syringae pv. persicae, Staphylococcus lentus, and Xanthomonas campestris pv. tardicrescens in the open room even after 30 days is indicative of the bactericidal potential of the medicinal smoke treatment. We have demonstrated that using medicinal smoke it is possible to completely eliminate diverse plant and human pathogenic bacteria of the air within confined space. PMID:17913417

  1. Pulsed Doppler lidar airborne scanner

    NASA Technical Reports Server (NTRS)

    Dimarzio, C. A.; Mcvicker, D. B.; Morrow, C. E.; Negus, C. C.

    1985-01-01

    This report covers the work accomplished during the reporting period on Pulsed Doppler Lidar Airborne Scanner and describes plans for the next reporting period. The objectives during the current phase of the contract are divided into four phases. Phase 1 includes ground testing of the system and analysis of data from the 1981 Severe Storms Test Flights. Phase 2 consists of preflight preparation and planning for the 1983 flight series. The flight test itself will be performed during Phase 3, and Phase 4 consists of post-flight analysis and operation of the system after that flight test. The range profile from five samples taken during Flight 10, around 1700 Z is given. The lowest curve is taken from data collected upwind of Mt. Shasta at about 10,000 feet of altitude, in a clear atmosphere, where no signals were observed. It thus is a good representation of the noise level as a function of range. The next curve was taken downwind of the mountain, and shows evidence of atmospheric returns. There is some question as to whether the data are valid at all ranges, or some ranges are contaminated by the others.

  2. Performance Basis for Airborne Separation

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    2008-01-01

    Emerging applications of Airborne Separation Assistance System (ASAS) technologies make possible new and powerful methods in Air Traffic Management (ATM) that may significantly improve the system-level performance of operations in the future ATM system. These applications typically involve the aircraft managing certain components of its Four Dimensional (4D) trajectory within the degrees of freedom defined by a set of operational constraints negotiated with the Air Navigation Service Provider. It is hypothesized that reliable individual performance by many aircraft will translate into higher total system-level performance. To actually realize this improvement, the new capabilities must be attracted to high demand and complexity regions where high ATM performance is critical. Operational approval for use in such environments will require participating aircraft to be certified to rigorous and appropriate performance standards. Currently, no formal basis exists for defining these standards. This paper provides a context for defining the performance basis for 4D-ASAS operations. The trajectory constraints to be met by the aircraft are defined, categorized, and assessed for performance requirements. A proposed extension of the existing Required Navigation Performance (RNP) construct into a dynamic standard (Dynamic RNP) is outlined. Sample data is presented from an ongoing high-fidelity batch simulation series that is characterizing the performance of an advanced 4D-ASAS application. Data of this type will contribute to the evaluation and validation of the proposed performance basis.

  3. Webinar: Airborne Data Discovery and Analysis with Toolsets for Airborne Data (TAD)

    Atmospheric Science Data Center

    2016-10-18

    Webinar: Airborne Data Discovery and Analysis with Toolsets for Airborne Data (TAD) Wednesday, October 26, 2016 Join us on ... based on high-level parameter groups, mission, platform and flight data ranges are available. Registration is now open.  Access the full ...

  4. Overview and Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.

    2015-12-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements spanning a longer interval. The NSF/NCAR GV employed standard flight-level measurements and new airborne lidar and imaging measurements of gravity waves (GWs) from sources at lower altitudes throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-105 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) and two IR "wing" cameras imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar measuring radial winds below the Falcon. DEEPWAVE also included extensive ground-based measurements in New Zealand, Tasmania, and Southern Ocean Islands. DEEPWAVE performed 26 GV flights and 13 Falcon flights, and ground-based measurements occurred whether or not the aircraft were flying. Collectively, many diverse cases of GW forcing, propagation, refraction, and dissipation spanning altitudes of 0-100 km were observed. Examples include strong mountain wave (MW) forcing and breaking in the lower and middle stratosphere, weak MW forcing yielding MW penetration into the MLT having very large amplitudes and momentum fluxes, MW scales at higher altitudes ranging from ~10-250 km, large-scale trailing waves from orography refracting into the polar vortex and extending to high altitudes, GW generation by deep convection, large-scale GWs arising from jet stream sources, and strong MWs in the MLT arising from strong surface flow over a small island. DEEPWAVE yielded a number of surprises, among

  5. NASA's Coastal and Ocean Airborne Science Testbed

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Dungan, J. L.; Edwards, M.; Russell, P. B.; Morrow, J. H.; Hooker, S.; Myers, J.; Kudela, R. M.; Dunagan, S.; Soulage, M.; Ellis, T.; Clinton, N. E.; Lobitz, B.; Martin, K.; Zell, P.; Berthold, R. W.; Smith, C.; Andrew, D.; Gore, W.; Torres, J.

    2011-12-01

    The Coastal and Ocean Airborne Science Testbed (COAST) Project is a NASA Earth-science flight mission that will advance coastal ecosystems research by providing a unique airborne payload optimized for remote sensing in the optically complex coastal zone. Teaming NASA Ames scientists and engineers with Biospherical Instruments, Inc. (San Diego) and UC Santa Cruz, the airborne COAST instrument suite combines a customized imaging spectrometer, sunphotometer system, and a new bio-optical radiometer package to obtain ocean/coastal/atmosphere data simultaneously in flight for the first time. The imaging spectrometer (Headwall) is optimized in the blue region of the spectrum to emphasize remote sensing of marine and freshwater ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data will be accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Based on optical detectors called microradiometers, the NASA Ocean Biology and Biogeochemistry Calibration and Validation (cal/val) Office team has deployed advanced commercial off-the-shelf instrumentation that provides in situ measurements of the apparent optical properties at the land/ocean boundary including optically shallow aquatic ecosystems (e.g., lakes, estuaries, coral reefs). A complimentary microradiometer instrument package (Biospherical Instruments, Inc.), optimized for use above water, will be flown for the first time with the airborne instrument suite. Details of the October 2011 COAST airborne mission over Monterey Bay demonstrating this new airborne instrument suite capability will be presented, with associated preliminary data on coastal ocean color products, coincident spatial and temporal data on aerosol optical depth and water vapor column content, as well as derived exact water-leaving radiances.

  6. Assessing forest decline in coniferous forests of Vermont using NS-001 Thematic Mapper Simulator data

    NASA Technical Reports Server (NTRS)

    Vogelmann, J. E.; Rock, B. N.

    1986-01-01

    This study evaluates the potential of measuring/mapping forest decline in spruce-fir forests using airborne NS-001 TMS data. Using field instruments, it was found that ratios of 1.65/1.23 and 1.65/0.83-micron reflectance discriminated between spruce samples of low and high-damage sites. Using TMS data, band ratios were found to be strongly correlated with ground-based measurements of forest damage. Ratio colo-density slice images using these band ratios, and images using 0.56 and 1.65-micron bands with either of these band ratios in a false-color composite, provide accurate means of detecting, quantifying and mapping levels of forest decline.

  7. Pre-Launch Noise Characterization of the Landsat-7 Enhanced Thematic Mapper Plus (ETM Plus)

    NASA Technical Reports Server (NTRS)

    Pedelty, J. A.; Markham, B. L.; Barker, J. L.; Seiferth, J. C.

    1999-01-01

    A noise characterization of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) instrument was performed as part of a near-real time performance assessment and health monitoring program. Perl'ormance data for the integrated Landsat-7 spacecraft and ETM+ were collected before, during, and after the spacecraft thermal vacuum testing program at the Lockheed Martin Missiles and Space (LMMS) facilities in Valley Forge, PA. The Landsat-7 spacecraft and ETM+ instrument were successfully launched on April 15, 1999. The spacecraft and ETM+ are now nearing the end of the on orbit engineering checkout phase, and Landsat-7 is expected to be declared operational on or about July 15, 1999. A preliminary post-launch noise characterization was performed and compared with the pre-launch characterization. In general the overall noise levels in the ETM+ are at or below the specification levels. Coherent noise is seen in most bands, but is only operationally significant when imaging in (he panchromatic band (band 8). This coherent noise has an amplitude as high as approximately 3 DN (peak-to-peak, high gain) at the Nyquist rate of 104 kHz, and causes the noise levels in panchromatic band images at times to exceed the total noise specification by up to approximately 10%. However, this 104 kHz noise is now much weaker than it was prior to the successful repair of the ETM+ power supplies that was completed in May 1998. Weak and stable coherent noise at approximately 5 kHz is seen in all bands in the prime focal plane (bands 1-4 and 8) with the prime (side A) electronics. Very strong coherent noise at approximately 20 kHz is seen in a few detectors of bands 1 and 8, but this noise is almost entirely in the turn-around region between scans when the ETM+ is not imaging the Earth. Strong coherent noise was seen in 2 detectors of band 5 during some of the pre-launch testing; however, this noise seems to be temperature dependent, and has not been seen in the current on orbit environment. Strong

  8. Matching of beams on the MAPPER MATRIX tool: a simulation study

    NASA Astrophysics Data System (ADS)

    Belledent, J.; Berglund, G. Z. M.; Brandt, P. L.; Bérard-Bergery, S.; Wieland, M. J.; Pain, L.

    2013-03-01

    So far, the CMOS technology roadmap has been consistent with Moore's law, even if manufacturing photolithography tools are now operating beyond their resolution limit. This has been made feasible at the expense of an intensive joint work between designers and process people who have successfully enabled double patterning processes. Tools that can provide photo lithographers with some relief are on their way although not yet in production. Among them, massively parallel mask-less electron beam lithography stands out as a serious candidate since it can achieve the required resolution at the right cost of ownership provided targeted throughput performance is reached. This paper focuses on this latter technique and more precisely, reports on simulation works performed using an emulator of the high volume manufacturing tool being developed by MAPPER Lithography, called MATRIX. In a nutshell, the MATRIX tool will operate using more than 13,000 beams, each one writing a stripe 2μm wide. Each beam itself will be composed of 49 individual sub-beams that can be blanked independently in order to write pixels onto the wafer. The residual placement errors and any current mismatch between the beams will be measured in-situ and corrected through the data path. In order to validate that this concept can actually work, the authors have built an off-line emulator of the data treatment performed down to the information sent to the blanker. It has then been plugged into an electron beam simulator such that the performance on real designs can be tested. In this paper, the methodology used for the corrections is explained as well as the validation process applied. The results of an extensive statistical study are presented showing CD, placement and residual scaling errors simulated on a set of predefined key structures assuming current and misplacement ranges within the MATRIX tool specifications, applying various correction solutions. Based on the collected data, it is shown that CD

  9. TRAM (Transcriptome Mapper): database-driven creation and analysis of transcriptome maps from multiple sources

    PubMed Central

    2011-01-01

    Background Several tools have been developed to perform global gene expression profile data analysis, to search for specific chromosomal regions whose features meet defined criteria as well as to study neighbouring gene expression. However, most of these tools are tailored for a specific use in a particular context (e.g. they are species-specific, or limited to a particular data format) and they typically accept only gene lists as input. Results TRAM (Transcriptome Mapper) is a new general tool that allows the simple generation and analysis of quantitative transcriptome maps, starting from any source listing gene expression values for a given gene set (e.g. expression microarrays), implemented as a relational database. It includes a parser able to assign univocal and updated gene symbols to gene identifiers from different data sources. Moreover, TRAM is able to perform intra-sample and inter-sample data normalization, including an original variant of quantile normalization (scaled quantile), useful to normalize data from platforms with highly different numbers of investigated genes. When in 'Map' mode, the software generates a quantitative representation of the transcriptome of a sample (or of a pool of samples) and identifies if segments of defined lengths are over/under-expressed compared to the desired threshold. When in 'Cluster' mode, the software searches for a set of over/under-expressed consecutive genes. Statistical significance for all results is calculated with respect to genes localized on the same chromosome or to all genome genes. Transcriptome maps, showing differential expression between two sample groups, relative to two different biological conditions, may be easily generated. We present the results of a biological model test, based on a meta-analysis comparison between a sample pool of human CD34+ hematopoietic progenitor cells and a sample pool of megakaryocytic cells. Biologically relevant chromosomal segments and gene clusters with

  10. Pre-Launch GOES-R Risk Reduction Activities for the Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Blakeslee, R. J.; Boccippio, D. J.; Christian, H. J.; Koshak, W. J.; Petersen, W. A.

    2005-01-01

    The GOES-R Geostationary Lightning Mapper (GLM) is a new instrument planned for GOES-R that will greatly improve storm hazard nowcasting and increase warning lead time day and night. Daytime detection of lightning is a particularly significant technological advance given the fact that the solar illuminated cloud-top signal can exceed the intensity of the lightning signal by a factor of one hundred. Our approach is detailed across three broad themes which include: Data Processing Algorithm Readiness, Forecast Applications, and Radiance Data Mining. These themes address how the data will be processed and distributed, and the algorithms and models for developing, producing, and using the data products. These pre-launch risk reduction activities will accelerate the operational and research use of the GLM data once GOES-R begins on-orbit operations. The GLM will provide unprecedented capabilities for tracking thunderstorms and earlier warning of impending severe and hazardous weather threats. By providing direct information on lightning initiation, propagation, extent, and rate, the GLM will also capture the updraft dynamics and life cycle of convective storms, as well as internal ice precipitation processes. The GLM provides information directly from the heart of the thunderstorm as opposed to cloud-top only. Nowcasting applications enabled by the GLM data will expedite the warning and response time of emergency management systems, improve the dispatch of electric power utility repair crews, and improve airline routing around thunderstorms thereby improving safety and efficiency, saving fuel and reducing delays. The use of GLM data will assist the Bureau of Land Management (BLM) and the Forest Service in quickly detecting lightning ground strikes that have a high probability of causing fires. Finally, GLM data will help assess the role of thunderstorms and deep convection in global climate, and will improve regional air quality and global chemistry/climate modeling

  11. Active airborne contamination control using electrophoresis

    SciTech Connect

    Veatch, B.D.

    1994-06-01

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ``cold,`` or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications.

  12. Airborne laser communication technology and flight test

    NASA Astrophysics Data System (ADS)

    Meng, Li-xin; Zhang, Li-zhong; Li, Xiao-ming; Li, Ying-chao; Jiang, Hui-lin

    2015-11-01

    Reconnaissance aircraft is an important node of the space-air-ground integrated information network, on which equipped with a large number of high-resolution surveillance equipment, and need high speed communications equipment to transmit detected information in real time. Currently RF communication methods cannot meet the needs of communication bandwidth. Wireless laser communication has outstanding advantages high speed, high capacity, security, etc., is an important means to solve the high-speed information transmission of airborne platforms. In this paper, detailed analysis of how the system works, the system components, work processes, link power and the key technologies of airborne laser communication were discussed. On this basis, a prototype airborne laser communications was developed, and high-speed, long-distance communications tests were carried out between the two fixed-wing aircraft, and the airborne precision aiming, atmospheric laser communication impacts on laser communication were tested. The experiments ultimately realize that, the communication distance is 144km, the communication rate is 2.5Gbps. The Airborne laser communication experiments provide technical basis for the application of the conversion equipment.

  13. Detailed element abundances of SkyMapper EMP stars: first results of the high-resolution spectroscopic follow up

    NASA Astrophysics Data System (ADS)

    Jacobson, Heather R.; Asplund, Martin; Bessell, Michael S.; Casey, Andrew R.; Da Costa, Gary S.; Frebel, Anna; Keller, Stefan C.; Lind, Karin; Norris, John E.; Schmidt, Brian P.; Tisserand, Patrick; Yong, David

    The multi band photometry of SkyMapper's Southern Sky Survey is designed to search for extremely metal-poor (EMP) stars. The best candidates have been observed with low-resolution spectroscopy to confirm their low metallicities, and then with high-resolution spectroscopy to determine their detailed element abundances. So far, high-resolution Magellan/MIKE spectra have been obtained for over 200 EMP candidates. Here we present the results for the first ˜14 months of this new effort, during which time the photometric candidate selection has been continuously improved. Of the 50 most recently observed EMP candidates, roughly half have [Fe/H] < -3, with 3 stars having [Fe/H] < -3.5. Our analysis shows these metal-poor stars to have typical halo star abundance patterns. These results clearly demonstrate SkyMapper's capability to find large numbers of EMP stars which will vastly improve our understanding of the earliest star formation processes and the onset of chemical evolution.

  14. Evaluation of SLAR and simulated thematic mapper MSS data for forest cover mapping using computer-aided analysis techniques

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.; Dean, M. E.; Knowlton, D. J.; Latty, R. S.

    1982-01-01

    Kershaw County, South Carolina was selected as the study site for analyzing simulated thematic mapper MSS data and dual-polarized X-band synthetic aperture radar (SAR) data. The impact of the improved spatial and spectral characteristics of the LANDSAT D thematic mapper data on computer aided analysis for forest cover type mapping was examined as well as the value of synthetic aperture radar data for differentiating forest and other cover types. The utility of pattern recognition techniques for analyzing SAR data was assessed. Topics covered include: (1) collection and of TMS and reference data; (2) reformatting, geometric and radiometric rectification, and spatial resolution degradation of TMS data; (3) development of training statistics and test data sets; (4) evaluation of different numbers and combinations of wavelength bands on classification performance; (5) comparison among three classification algorithms; and (6) the effectiveness of the principal component transformation in data analysis. The collection, digitization, reformatting, and geometric adjustment of SAR data are also discussed. Image interpretation results and classification results are presented.

  15. Airborne Microalgae: Insights, Opportunities, and Challenges.

    PubMed

    Tesson, Sylvie V M; Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-04-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  16. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  17. Airborne pollen trends in the Iberian Peninsula.

    PubMed

    Galán, C; Alcázar, P; Oteros, J; García-Mozo, H; Aira, M J; Belmonte, J; Diaz de la Guardia, C; Fernández-González, D; Gutierrez-Bustillo, M; Moreno-Grau, S; Pérez-Badía, R; Rodríguez-Rajo, J; Ruiz-Valenzuela, L; Tormo, R; Trigo, M M; Domínguez-Vilches, E

    2016-04-15

    Airborne pollen monitoring is an effective tool for studying the reproductive phenology of anemophilous plants, an important bioindicator of plant behavior. Recent decades have revealed a trend towards rising airborne pollen concentrations in Europe, attributing these trends to an increase in anthropogenic CO2 emissions and temperature. However, the lack of water availability in southern Europe may prompt a trend towards lower flowering intensity, especially in herbaceous plants. Here we show variations in flowering intensity by analyzing the Annual Pollen Index (API) of 12 anemophilous taxa across 12 locations in the Iberian Peninsula, over the last two decades, and detecting the influence of the North Atlantic Oscillation (NAO). Results revealed differences in the distribution and flowering intensity of anemophilous species. A negative correlation was observed between airborne pollen concentrations and winter averages of the NAO index. This study confirms that changes in rainfall in the Mediterranean region, attributed to climate change, have an important impact on the phenology of plants.

  18. Airborne Microalgae: Insights, Opportunities, and Challenges

    PubMed Central

    Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-01-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  19. Urban greenness influences airborne bacterial community composition.

    PubMed

    Mhuireach, Gwynne; Johnson, Bart R; Altrichter, Adam E; Ladau, Joshua; Meadow, James F; Pollard, Katherine S; Green, Jessica L

    2016-11-15

    Urban green space provides health benefits for city dwellers, and new evidence suggests that microorganisms associated with soil and vegetation could play a role. While airborne microorganisms are ubiquitous in urban areas, the influence of nearby vegetation on airborne microbial communities remains poorly understood. We examined airborne microbial communities in parks and parking lots in Eugene, Oregon, using high-throughput sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq platform to identify bacterial taxa, and GIS to measure vegetation cover in buffer zones of different diameters. Our goal was to explore variation among highly vegetated (parks) versus non-vegetated (parking lots) urban environments. A secondary objective was to evaluate passive versus active collection methods for outdoor airborne microbial sampling. Airborne bacterial communities from five parks were different from those of five parking lots (p=0.023), although alpha diversity was similar. Direct gradient analysis showed that the proportion of vegetated area within a 50m radius of the sampling station explained 15% of the variation in bacterial community composition. A number of key taxa, including several Acidobacteriaceae were substantially more abundant in parks, while parking lots had higher relative abundance of Acetobacteraceae. Parks had greater beta diversity than parking lots, i.e. individual parks were characterized by unique bacterial signatures, whereas parking lot communities tended to be similar to each other. Although parks and parking lots were selected to form pairs of nearby sites, spatial proximity did not appear to affect compositional similarity. Our results also showed that passive and active collection methods gave comparable results, indicating the "settling dish" method is effective for outdoor airborne sampling. This work sets a foundation for understanding how urban vegetation may impact microbial communities, with potential implications for designing

  20. Urban greenness influences airborne bacterial community composition.

    PubMed

    Mhuireach, Gwynne; Johnson, Bart R; Altrichter, Adam E; Ladau, Joshua; Meadow, James F; Pollard, Katherine S; Green, Jessica L

    2016-11-15

    Urban green space provides health benefits for city dwellers, and new evidence suggests that microorganisms associated with soil and vegetation could play a role. While airborne microorganisms are ubiquitous in urban areas, the influence of nearby vegetation on airborne microbial communities remains poorly understood. We examined airborne microbial communities in parks and parking lots in Eugene, Oregon, using high-throughput sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq platform to identify bacterial taxa, and GIS to measure vegetation cover in buffer zones of different diameters. Our goal was to explore variation among highly vegetated (parks) versus non-vegetated (parking lots) urban environments. A secondary objective was to evaluate passive versus active collection methods for outdoor airborne microbial sampling. Airborne bacterial communities from five parks were different from those of five parking lots (p=0.023), although alpha diversity was similar. Direct gradient analysis showed that the proportion of vegetated area within a 50m radius of the sampling station explained 15% of the variation in bacterial community composition. A number of key taxa, including several Acidobacteriaceae were substantially more abundant in parks, while parking lots had higher relative abundance of Acetobacteraceae. Parks had greater beta diversity than parking lots, i.e. individual parks were characterized by unique bacterial signatures, whereas parking lot communities tended to be similar to each other. Although parks and parking lots were selected to form pairs of nearby sites, spatial proximity did not appear to affect compositional similarity. Our results also showed that passive and active collection methods gave comparable results, indicating the "settling dish" method is effective for outdoor airborne sampling. This work sets a foundation for understanding how urban vegetation may impact microbial communities, with potential implications for designing

  1. Predictors of airborne endotoxin concentrations in inner city homes.

    PubMed

    Mazique, D; Diette, G B; Breysse, P N; Matsui, E C; McCormack, M C; Curtin-Brosnan, J; Williams, D L; Peng, R D; Hansel, N N

    2011-05-01

    Few studies have assessed in home factors which contribute to airborne endotoxin concentrations. In 85 inner city Baltimore homes, we found no significant correlation between settled dust and airborne endotoxin concentrations. Certain household activities and characteristics, including frequency of dusting, air conditioner use and type of flooring, explained 36-42% of the variability of airborne concentrations. Measurements of both airborne and settled dust endotoxin concentrations may be needed to fully characterize domestic exposure in epidemiologic investigations. PMID:21429483

  2. Sandia Multispectral Airborne Lidar for UAV Deployment

    SciTech Connect

    Daniels, J.W.; Hargis,Jr. P.J.; Henson, T.D.; Jordan, J.D.; Lang, A.R.; Schmitt, R.L.

    1998-10-23

    Sandia National Laboratories has initiated the development of an airborne system for W laser remote sensing measurements. System applications include the detection of effluents associated with the proliferation of weapons of mass destruction and the detection of biological weapon aerosols. This paper discusses the status of the conceptual design development and plans for both the airborne payload (pointing and tracking, laser transmitter, and telescope receiver) and the Altus unmanned aerospace vehicle platform. Hardware design constraints necessary to maintain system weight, power, and volume limitations of the flight platform are identified.

  3. Assessing inhalation exposure from airborne soil contaminants

    SciTech Connect

    Shinn, J.H.

    1998-04-01

    A method of estimation of inhalation exposure to airborne soil contaminants is presented. this method is derived from studies of airborne soil particles with radioactive tags. The concentration of contaminants in air (g/m{sup 3}) can be derived from the product of M, the suspended respirable dust mass concentration (g/m{sup 3}), S, the concentration of contaminant in the soil (g/g), and E{sub f}, an enhancement factor. Typical measurement methods and values of M, and E{sub f} are given along with highlights of experiences with this method.

  4. Detection and enumeration of airborne biocontaminants.

    PubMed

    Stetzenbach, Linda D; Buttner, Mark P; Cruz, Patricia

    2004-06-01

    The sampling and analysis of airborne microorganisms has received attention in recent years owing to concerns with mold contamination in indoor environments and the threat of bioterrorism. Traditionally, the detection and enumeration of airborne microorganisms has been conducted using light microscopy and/or culture-based methods; however, these analyses are time-consuming, laborious, subjective and lack sensitivity and specificity. The use of molecular methods, such as quantitative polymerase chain reaction amplification, can enhance monitoring strategies by increasing sensitivity and specificity, while decreasing the time required for analysis.

  5. National center for airborne laser mapping proposed

    NASA Astrophysics Data System (ADS)

    Carter, Bill; Shrestha, Ramesh L.; Dietrich, Bill

    Researchers from universities, U.S. government agencies, U.S. national laboratories, and private industry met in the spring to learn about the current capabilities of Airborne Laser Swath Mapping (ALSM), share their experiences in using the technology for a wide variety of research applications, outline research that would be made possible by research-grade ALSM data, and discuss the proposed operation and management of the brand new National Center for Airborne Laser Mapping (NCALM).The workshop successfully identified a community of researchers with common interests in the advancement and use of ALSM—a community which strongly supports the immediate establishment of the NCALM.

  6. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  7. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  8. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  9. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  10. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  11. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  12. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  13. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  14. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  15. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  16. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  17. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  18. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  19. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  20. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  1. Mapping contact metamorphic aureoles in Extremadura, Spain, using Landsat thematic mapper images

    USGS Publications Warehouse

    Rowan, L.C.; Anton-Pacheco, C.; Brickey, D.W.; Kingston, M.J.; Payas, A.

    1987-01-01

    In the Extremadura region of western Spain, Ag, Pb, Zn, and Sn deposits occur in the pieces of late Hercynian granitic plutons and near the pluton contacts in late Proterozoic slate and metagraywacke that have been regionally metamorphosed to the green schist facies. The plutons generally are well exposed and have distinctive geomorphological expression and vegetation; poor exposures of the metasedimentary host rocks and extensive cultivation, however, make delineation of the contact aureoles difficult. Landsat Thematic Mapper (TM) images have been used to distinguish soil developed on the contact metamorphic rocks from soil formed on the stratigraphically equivalent slate-metagraywacke sequence. The mineral constituents of these soils are similar, except that muscovite is more common in the contact metamorphic soil; carbonaceous material is common in both soils. Contact metamorphic soil have lower reflectance, especially in the 1.6-micrometers wavelength region (TM 5), and weaker Al-OH, Mg-OH, and Fe3+ absorption features than do spectra of the slate-metagraywacke soil. The low-reflectance and subdued absorption features exhibited by the contact metamorphic soil spectra are attributed to the high absorption coefficient f the carbonaceous material caused by heating during emplacement of the granitic plutons. These spectral differences are evident in a TM 4/3, 4/5, 3/1 color-composite image. Initially, this image was used to outline the contact aureoles, but digital classification of the TM data was necessary for generating internally consistent maps of the distribution of the exposed contact metamorphic soil. In an August 1984, TM scene of the Caceras area, the plowed, vegetation-free fields were identified by their low TM 4/3 values. Then, ranges of TM 4/5 and 3/1 values were determine for selected plower fields within and outside the contact aureoles; TM 5 produced results similar to TM 4/5. Field evaluation, supported by X-ray diffraction and petrographic

  2. Mixing of surface materials investigated by spectral mixture analysis with the Moon Mineralogy Mapper

    NASA Astrophysics Data System (ADS)

    Combe, Jean-Philippe; McCord, Thomas B.; Kramer, Georgiana Y.; Pieters, Carle M.; Taylor, Lawrence A.; Boardman, Joseph W.; Mustard, John F.; M, Sunshine, Jessica; Tompkins, Stephanie; Green, Robert O.

    2010-05-01

    Mapping of surface units on the Moon, as well as identification and quantification of mineralogical components is the main task of the imaging spectrometer Moon Mineralogy Mapper (M3) [1] onboard Chandrayaan-1. In spectral analysis, mixing of surface materials need to be considered because they may have implications for the interpretation of the lithology. Materials that are juxtaposed within the field of view result on linear combinations of reflectance spectra [2]. Lateral contamination by remote components [e.g. 3,4], minerals in a rock [5,6], coatings [e.g. 7-9] and adjacency effects due to scattered light [10], are non-linear processes. In the present study, we perform linear Spectral Mixture Analysis (SMA) [11] using the Multiple-Endmember Linear Spectral-Unmixing Model (MELSUM, [12,13]) that allows limiting the number of components used in a model and guarantees positive mixing coefficients, and the sum of the mixing coefficients constrained to one. We use MELSUM both for spectral endmembers selection and to produce corresponding image fractions. This method is convenient for an initial assessment of large data sets [13] prior to using more quantitative methods for compositional analysis [5,6]. We have used a mosaic of all M3 images that cover ~80% of the surface and 10-20 nm spectral sampling. In order to avoid the effects of thermal emission, the analysis is performed in the range 0.4-2.18 μm (65 channels). A sphere-based Lommel-Seeliger photometric correction has been performed to standardize the effects of the geometry of illumination at large scale [14]. From a global scale, resulting spectral endmembers describe the most abundant components at the surface of the Moon: Anorthosite, high-calcium pyroxene (HCP), low calcium pyroxene (LCP) and olivine. Plagioclase-rich soils (anorthosite) are detected in the highlands, especially in the south hemisphere, with few spots in fresh impact craters (e.g. Copernicus). HCP and olivine are highly correlated with

  3. Estuary Data Mapper: A Stand-Alone Tool for Geospatial Data Access, Visualization and Download for Estuaries and Coastal Watersheds of the United States. (UNH)

    EPA Science Inventory

    The US EPA Estuary Data Mapper (EDM; http://badger.epa.gov/rsig/edm/index.html) has been designed as a free stand-alone tool for geospatial data discovery, visualization, and data download for estuaries and their associated watersheds in the conterminous United States. EDM requi...

  4. Estuary Data Mapper: A Stand-Alone Tool for Geospatial Data Access, Visualization and Download for Estuaries and Coastal Watersheds of the United States

    EPA Science Inventory

    The US EPA Estuary Data Mapper (EDM; http://badger.epa.gov/rsig/edm/index.html) has been designed as a free stand-alone tool for geospatial data discovery, visualization, and data download for estuaries and their associated watersheds in the conterminous United States. EDM requi...

  5. SLaP mapper: a webserver for identifying and quantifying spliced-leader addition and polyadenylation site usage in kinetoplastid genomes.

    PubMed

    Fiebig, Michael; Gluenz, Eva; Carrington, Mark; Kelly, Steven

    2014-09-01

    The Kinetoplastida are a diverse and globally distributed class of free-living and parasitic single-celled eukaryotes that collectively cause a significant burden on human health and welfare. In kinetoplastids individual genes do not have promoters, but rather all genes are arranged downstream of a small number of RNA polymerase II transcription initiation sites and are thus transcribed in polycistronic gene clusters. Production of individual mRNAs from this continuous transcript occurs co-transcriptionally by trans-splicing of a ∼39 nucleotide capped RNA and subsequent polyadenylation of the upstream mRNA. SLaP mapper (Spliced-Leader and Polyadenylation mapper) is a fully automated web-service for identification, quantitation and gene-assignment of both spliced-leader and polyadenylation addition sites in Kinetoplastid genomes. SLaP mapper only requires raw read data from paired-end Illumina RNAseq and performs all read processing, mapping, quality control, quantification, and analysis in a fully automated pipeline. To provide usage examples and estimates of the quantity of sequence data required we use RNAseq obtained from two different library preparations from both Trypanosoma brucei and Leishmania mexicana to show the number of expected reads that are obtained from each preparation type. SLaP mapper is an easy to use, platform independent webserver that is freely available for use at http://www.stevekellylab.com/software/slap. Example files are provided on the website.

  6. Discrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (SAM) algorithm

    NASA Technical Reports Server (NTRS)

    Yuhas, Roberta H.; Goetz, Alexander F. H.; Boardman, Joe W.

    1992-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were acquired during three consecutive seasons of the year (26 Sep. 1989, 22 Mar. 1990, and 7 Aug. 1990) over an area of the High Plains east of Greeley, Colorado. This region contains extensive eolian deposits in the form of stabilized dune complexes (small scale parabolic dunes superimposed on large scale longitudinal and parabolic dunes). Due to the dunes' large scale (2-10 km) and low relief (1-5 m), the scaling relationships that contribute to the evolution of this landscape are nearly impossible to understand without the use of remote sensing. Additionally, climate models indicate that the High Plains could be one of the first areas to experience changes in climate caused by either global warming or cooling. During the past 10,000 years there were at least three periods of extensive sand activity, followed by periods of landscape stability, as shown in the stratigraphic record of this area. Therefore, if the past is an indication of the future, the monitoring of this landscape and its sensitive ecosystem is important for early detection of regional and global climate change.

  7. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  8. Simulation system of airborne FLIR searcher

    NASA Astrophysics Data System (ADS)

    Sun, Kefeng; Li, Yu; Gao, Jiaobo; Wang, Jun; Wang, Jilong; Xie, Junhu; Ding, Na; Sun, Dandan

    2014-11-01

    Airborne Forward looking infra-red (FLIR) searcher simulation system can provide multi-mode simulated test environment that almost actual field environment, and can simulate integrated performance and external interface of airborne FLIR simulation system. Furthermore, the airborne FLIR searcher simulation system can support the algorithm optimization of image processing, and support the test and evaluation of electro-optical system, and also support the line test of software and evaluate the performance of the avionics system. The detailed design structure and information cross-linking relationship of each component are given in this paper. The simulation system is composed of the simulation center, the FLIR actuator, the FLIR emulator, and the display control terminal. The simulation center can generate the simulated target and aircraft flying data in the operation state of the airborne FLIR Searcher. The FLIR actuator can provide simulation scene. It can generate the infrared target and landform based scanning scene, response to the commands from simulation center and the FLIR actuator and operation control unit. The infrared image generated by the FLIR actuator can be processed by the FLIR emulator using PowerPC hardware framework and processing software based on VxWorks system. It can detect multi-target and output the DVI video and the multi-target detection information which corresponds to the working state of the FLIR searcher. Display control terminal can display the multi-target detection information in two-dimension situation format, and realize human-computer interaction function.

  9. Toolsets for Airborne Data Beta Release

    Atmospheric Science Data Center

    2014-09-17

    ... for Airborne Data (TAD), developed at the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center (LaRC) to promote ... and Houston, and DC3 will be added shortly. Early next year we plan to add DISCOVER-AQ Colorado and SEAC4RS to the TAD database. We ...

  10. A Technique for Airborne Aerobiological Sampling

    ERIC Educational Resources Information Center

    Mill, R. A.; And Others

    1972-01-01

    Report of a study of airborne micro-organisms collected over the Oklahoma City Metropolitan area and immediate environments, to investigate the possibility that a cloud of such organisms might account for the prevalence of some respiratory diseases in and around urban areas. (LK)

  11. Airborne Satcom Terminal Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Hoder, Doug; Zakrajsek, Robert

    2002-01-01

    NASA Glenn has constructed an airborne Ku-band satellite terminal, which provides wideband full-duplex ground-aircraft communications. The terminal makes use of novel electronically-steered phased array antennas and provides IP connectivity to and from the ground. The satcom terminal communications equipment may be easily changed whenever a new configuration is required, enhancing the terminal's versatility.

  12. Infrared airborne spectroradiometer survey results in the western Nevada area

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1982-01-01

    The Mark II airborne spectroradiometer system was flown over several geologic test sites in western Nevada. The infrared mineral absorption bands were observed and recorded for the first time using an airborne system with high spectral resolution in the 2.0 to 2.5 micron region. The data show that the hydrothermal alteration zone minerals, carbonates, and other minerals are clearly visible in the airborne survey mode. The finer spectral features that distinguish the various minerals with infrared bands are also clearly visible in the airborne survey data. Using specialized computer pattern recognition methods, it is possible to identify mineralogy and map alteration zones and lithologies by airborne spectroradiometer survey techniques.

  13. CALIOPE airborne CO{sub 2} DIAL (CACDI) system design

    SciTech Connect

    Mietz, D.; Archuleta, B.; Archuleta, J.

    1997-09-01

    Los Alamos National Laboratory is currently developing an airborne CO{sub 2} Differential Absorption Lidar (DIAL) system based on second generation technology demonstrated last summer at NTS. The CALIOPE Airborne CO{sub 2} DIAL (CACDI) system requirements have been compiled based on the mission objectives and SONDIAL model trade studies. Subsystem designs have been developed based on flow down from these system requirements, as well as experience gained from second generation ground tests and N-ABLE (Non-proliferation AirBorne Lidar Experiments) airborne experiments. This paper presents the CACDI mission objectives, system requirements, the current subsystem design, and provides an overview of the airborne experimental plan.

  14. Evaluation of SLAR and thematic mapper MSS data for forest cover mapping using computer-aided analysis techniques. [south carolina

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator)

    1979-01-01

    A literature review on radar and spectral band information was conducted and a NC-130 mission was flown carrying the NS001 scanner system which basically corresponds to the channel configuration of the proposed thematic mapper. Aerial photography and other reference data were obtained for the study site, an area approximately 290 sq miles in north central South Carolina. A cover type map was prepared and methods were devised for reformatting and geometrically correcting MSS CRT data. Arrangements were made to obtain LANDSAT data for dates approximating the NC-130 mission. Because of the waveband employed to obtain SEASAT radar data, it was decided to determine if X-band (2.40 cm to 3.75 cm wavelength) imagery is available.

  15. Evaluation of Thematic Mapper Performance as Applied to Hydrocarbon Exploration. [Ontario, Canada; Cement, Oklahoma; and Death Valley, California

    NASA Technical Reports Server (NTRS)

    Everett, J. R.; Sheffield, C.; Dykstra, J.

    1985-01-01

    The role data from the first three LANDSAT satellites have in geologic exploration and their current level of acceptance is reviewed and the advantages of LANDSAT 4 TM data over MSS data are discussed. Specially enhanced Thematic Mapper imager can make a very significant contribution to the oil and gas and mineral exploration industries. The TM's increased spatial resolution enables the production of larger scale imagery, which greatly increases the amount of geomorphic and structural information interpretable. TM's greater spectral resolution, combined with the smaller, more homogeneous pixels, should enable a far greater confidence in mapping lithologies and detecting geobotanical anomalies from space. The results from its applications to hydrocarbon and mineral exploration promise to bring the majority of the geologic exploration community into that final stage of acceptance and routine application of the satellite data.

  16. An initial analysis of LANDSAT 4 Thematic Mapper data for the classification of agricultural, forested wetland, and urban land covers

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.; Anderson, J. E.; Brannon, D. P.; Hill, C. L.

    1982-01-01

    An initial analysis of LANDSAT 4 thematic mapper (TM) data for the delineation and classification of agricultural, forested wetland, and urban land covers was conducted. A study area in Poinsett County, Arkansas was used to evaluate a classification of agricultural lands derived from multitemporal LANDSAT multispectral scanner (MSS) data in comparison with a classification of TM data for the same area. Data over Reelfoot Lake in northwestern Tennessee were utilized to evaluate the TM for delineating forested wetland species. A classification of the study area was assessed for accuracy in discriminating five forested wetland categories. Finally, the TM data were used to identify urban features within a small city. A computer generated classification of Union City, Tennessee was analyzed for accuracy in delineating urban land covers. An evaluation of digitally enhanced TM data using principal components analysis to facilitate photointerpretation of urban features was also performed.

  17. Identification of a New Spinel-Rich Lunar Rock Type by the Moon Mineralogy Mapper (M (sup 3))

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Boardman, J.; Buratti, B.; Clark, R.; Combe, J. P.; Green, R.; Goswami, J. N.; Head, J. W., III; Hicks, M.; Isaacson, P.; Klima, R.; Kramer, G.; Kumar, K.; Lundeen, S.; Malaret, E.; McCord, T. B.; Mustard, J.; Nettles, J.; Petro, N.; Runyon, C.; Staid, M.; Sunshine, J.; Taylor, L. A.; Thaisen, K.; Tompkins, S.

    2010-01-01

    The canonical characterization of the lunar crust is based principally on available Apollo, Luna, and meteorite samples. The crust is described as an anorthosite-rich cumulate produced by the lunar magma ocean that has been infused with a mix of Mgsuite components. These have been mixed and redistributed during the late heavy bombardment and basin forming events. We report a new rock-type detected on the farside of the Moon by the Moon Mineralogy Mapper (M3) on Chandrayaan-1 that does not easily fit with current crustal evolution models. The rock-type is dominated by Mg-spinel with no detectible pyroxene or olivine present (<5%). It occurs along the western inner ring of Moscoviense Basin as one of several discrete areas that exhibit unusual compositions relative to their surroundings but without morphological evidence for separate processes leading to exposure.

  18. Comparative evaluations of the geodetic accuracy and cartographic potential of Landsat-4 and Landsat-5 Thematic Mapper image data

    NASA Technical Reports Server (NTRS)

    Welch, R.; Jordan, T. R.; Ehlers, M.

    1985-01-01

    A Landsat Image Data Quality Analysis (LIDQA) Program is conducted by NASA. One part of this program forms studies which are being performed with the objective to evaluate the geometric fidelity of Landsat-4 and Landsat-5 Thematic Mapper (TM) data in computer tape (CCT-pt) formats. It is pointed out that the Landsat-4 and Landsat-5 systems provide image data of significantly better geometric fidelity than were obtained from the earlier Landsat missions. Attention is given to the factors which influence the geometric fidelity of the Landsat TM data, the study areas and data sets, the rectification procedures, the rectification of Landsat-4 TM data and comparisons of the Scrounge and the TM Image Processing System (TIPS), the rectification of system and scene corrected Landsat-5 data processed on TIPS, and the cartographic potential of TM data.

  19. DISCRIMINATION OF ALTERED BASALTIC ROCKS IN THE SOUTHWESTERN UNITED STATES BY ANALYSIS OF LANDSAT THEMATIC MAPPER DATA.

    USGS Publications Warehouse

    Davis, Philip A.; Berlin, Graydon L.; Chavez, Pat S.

    1987-01-01

    Landsat Thematic Mapper image data were analyzed to determine their ability to discriminate red cone basalts from gray flow basalts and sedimentary country rocks for three volcanic fields in the southwestern United States. Analyses of all of the possible three-band combinations of the six nonthermal bands indicate that the combination of bands 1, 4, and 5 best discriminates among these materials. The color-composite image of these three bands unambiguously discriminates 89 percent of the mapped red volcanic cones in the three volcanic fields. Mineralogic and chemical analyses of collected samples indicate that discrimination is facilitated by the presence of hematite as a major mineral phase in the red cone basalts (hematite is only a minor mineral phase in the gray flow basalts and red sedimentary rocks).

  20. Evaluation of SLAR and thematic mapper MSS data for forest cover mapping using computer-aided analysis techniques

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator); Knowlton, D. J.; Dean, M. E.

    1981-01-01

    A set of training statistics for the 30 meter resolution simulated thematic mapper MSS data was generated based on land use/land cover classes. In addition to this supervised data set, a nonsupervised multicluster block of training statistics is being defined in order to compare the classification results and evaluate the effect of the different training selection methods on classification performance. Two test data sets, defined using a stratified sampling procedure incorporating a grid system with dimensions of 50 lines by 50 columns, and another set based on an analyst supervised set of test fields were used to evaluate the classifications of the TMS data. The supervised training data set generated training statistics, and a per point Gaussian maximum likelihood classification of the 1979 TMS data was obtained. The August 1980 MSS data was radiometrically adjusted. The SAR data was redigitized and the SAR imagery was qualitatively analyzed.

  1. Regional airborne flux measurements in Europe

    NASA Astrophysics Data System (ADS)

    Gioli, B.; Miglietta, F.; Vaccari, F. P.; Zaldei, A.; Hutjes, R. W. A.

    2003-04-01

    The problem of identifying the spatial and temporal distribution of sources and sinks of atmospheric CO2 is the subject of considerable scientific and political debate. Even if it is now possible to estimate within reasonable accuracy the sink strength of European forests at the local scale, difficulties still exist in determining the partitioning of the sinks at the global and regional scales. The aim of the EU-project RECAB (Regional Assessment of the Carbon Balance in Europe) that is coordinated by Alterra, Wageningen (NL), is to bridge the gap between local scale flux measurements and continental scale inversion models by a generic modelling effort and measurement program, focussing on a limited number of selected regions in Europe for which previous measurements exists. This required the establishment of a European facility for airborne measurement of surface fluxes of CO2 at very low altitude, and a research aircraft capable of performing airborne eddy covariance measurements has been acquired by this project and used on several occasions at the different RECAB sites. The aircraft is the italian Sky Arrows ERA (Environmental Research Aircraft) equipped with the NOAA/ARA Mobile Flux Platform (MFP), and a commercial open-path infrared gas analyser. Airborne eddy covariance measurements were made from June 2001 onwards in Southern Spain near Valencia (June and December 2001), in Central Germany near Jena (July 2001), in Sweden near Uppsala (August 2001), in The Netherlands near Wageningen (January and July 2002) and in Italy near Rome (June 2002). Flux towers were present at each site to provide a validation of airborne eddy covariance measurements. This contribution reports some validation results based on the comparison between airborne and ground based flux measurements and some regional scale results for different locations and different seasons, in a wide range of meteorological and ecological settings.

  2. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  3. A Coordinated Ice-based and Airborne Snow and Ice Thickness Measurement Campaign on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Richter-Menge, J.; Farrell, S.; Elder, B. C.; Gardner, J. M.; Brozena, J. M.

    2011-12-01

    A rare opportunity presented itself in March 2011 when the Naval Research Laboratory (NRL) and NASA IceBridge teamed with scientists from the U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) to coordinate a multi-scale approach to mapping snow depth and sea ice thickness distribution in the Arctic. Ground-truth information for calibration/validation of airborne and CryoSat-2 satellite data were collected near a manned camp deployed in support of the US Navy's Ice Expedition 2011 (ICEX 2011). The ice camp was established at a location approximately 230 km north of Prudhoe Bay, Alaska, at the edge of the perennial ice zone. The suite of measurements was strategically organized around a 9-km-long survey line that covered a wide range of ice types, including refrozen leads, deformed and undeformed first year ice, and multiyear ice. A highly concentrated set of in situ measurements of snow depth and ice thickness were taken along the survey line. Once the survey line was in place, NASA IceBridge flew a dedicated mission along the survey line, collecting data with an instrument suite that included the Airborne Topographic Mapper (ATM), a high precision, airborne scanning laser altimeter; the Digital Mapping System (DMS), nadir-viewing digital camera; and the University of Kansas ultra-wideband Frequency Modulated Continuous Wave (FMCW) snow radar. NRL also flew a dedicated mission over the survey line with complementary airborne radar, laser and photogrammetric sensors (see Brozena et al., this session). These measurements were further leveraged by a series of CryoSat-2 under flights made in the region by the instrumented NRL and NASA planes, as well as US Navy submarine underpasses of the 9-km-long survey line to collect ice draft measurements. This comprehensive suite of data provides the full spectrum of sampling resolutions from satellite, to airborne, to ground-based, to submarine and will allow for a careful determination of

  4. A Comparison of Snow Depth on Sea Ice Retrievals Using Airborne Altimeters and an AMSR-E Simulator

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Marksu, T.; Ivanoff, A.; Miller, J. A.; Brucker, L.; Sturm, M.; Maslanik, J. A.; Heinrichs, J. F.; Gasiewski, A.; Leuschen, C.; Krabill, W.; Sonntag, J.

    2011-01-01

    A comparison of snow depths on sea ice was made using airborne altimeters and an Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) simulator. The data were collected during the March 2006 National Aeronautics and Space Administration (NASA) Arctic field campaign utilizing the NASA P-3B aircraft. The campaign consisted of an initial series of coordinated surface and aircraft measurements over Elson Lagoon, Alaska and adjacent seas followed by a series of large-scale (100 km ? 50 km) coordinated aircraft and AMSR-E snow depth measurements over portions of the Chukchi and Beaufort seas. This paper focuses on the latter part of the campaign. The P-3B aircraft carried the University of Colorado Polarimetric Scanning Radiometer (PSR-A), the NASA Wallops Airborne Topographic Mapper (ATM) lidar altimeter, and the University of Kansas Delay-Doppler (D2P) radar altimeter. The PSR-A was used as an AMSR-E simulator, whereas the ATM and D2P altimeters were used in combination to provide an independent estimate of snow depth. Results of a comparison between the altimeter-derived snow depths and the equivalent AMSR-E snow depths using PSR-A brightness temperatures calibrated relative to AMSR-E are presented. Data collected over a frozen coastal polynya were used to intercalibrate the ATM and D2P altimeters before estimating an altimeter snow depth. Results show that the mean difference between the PSR and altimeter snow depths is -2.4 cm (PSR minus altimeter) with a standard deviation of 7.7 cm. The RMS difference is 8.0 cm. The overall correlation between the two snow depth data sets is 0.59.

  5. Faster with CLEAN: an exploration of the effects of applying a nonlinear deconvolution method to a novel radiation mapper

    NASA Astrophysics Data System (ADS)

    Southgate, Matthew J.; Taylor, Christopher T.; Hutchinson, Simon; Bowring, Nicholas J.

    2014-10-01

    This paper examines the suitability and potential of reducing the acquisition requirements of a novel radiation mapper through the application of the non-linear deconvolution technique, CLEAN. The radiation mapper generates a threshold image of the target scene, at a user defined distance, using a single pixel detector manually scanned across the scene . This paper provides a discussion of the factors involved and merits of incorporating CLEAN into the system. In this paper we describe the modifications to the system for the generation of an intensity map and the relationship between resolution and acquisition time for a target scene. The factors influencing image fidelity for a scene are identified and discussed with the impact on fill-factor of the intensity image, which in turn determines the ability of the operator to accurately identify features of the radiation source within a target scene. The CLEAN algorithm and its variants have been extensively developed by the radio astronomy community to improve the image fidelity of data collected by sparse interferometric arrays. However, the algorithm has demonstrated surprising adaptability including terrestrial imagery, as detailed in Taylor et al. SPIE 9078-19 and Bose et al., IEEE 2002. CLEAN can be applied directly to raw data via a bespoke algorithm. However, this investigation is a proof-of-concept and thus requires a well tested verification method. We have opted to use the public ally available implementation of CLEAN found in the Common Astronomy Software Applications (CASA) package. The use of CASA for this purpose dictates the use of simulated input data and radio astronomy standard parameters. Finally, this paper presents the results of applying CLEAN to our simulated target scene, with a discussion of the potential merits a bespoke implementation would yield.

  6. The TOMS V9 Algorithm for OMPS Nadir Mapper Total Ozone: An Enhanced Design That Ensures Data Continuity

    NASA Astrophysics Data System (ADS)

    Haffner, D. P.; McPeters, R. D.; Bhartia, P. K.; Labow, G. J.

    2015-12-01

    The TOMS V9 total ozone algorithm will be applied to the OMPS Nadir Mapper instrument to supersede the exisiting V8.6 data product in operational processing and re-processing for public release. Becuase the quality of the V8.6 data is already quite high, enchancements in V9 are mainly with information provided by the retrieval and simplifcations to the algorithm. The design of the V9 algorithm has been influenced by improvements both in our knowledge of atmospheric effects, such as those of clouds made possible by studies with OMI, and also limitations in the V8 algorithms applied to both OMI and OMPS. But the namesake instruments of the TOMS algorithm are substantially more limited in their spectral and noise characterisitics, and a requirement of our algorithm is to also apply the algorithm to these discrete band spectrometers which date back to 1978. To achieve continuity for all these instruments, the TOMS V9 algorithm continues to use radiances in discrete bands, but now uses Rodgers optimal estimation to retrieve a coarse profile and provide uncertainties for each retrieval. The algorithm remains capable of achieving high accuracy results with a small number of discrete wavelengths, and in extreme cases, such as unusual profile shapes and high solar zenith angles, the quality of the retrievals is improved. Despite the intended design to use limited wavlenegths, the algorithm can also utilitze additional wavelengths from hyperspectral sensors like OMPS to augment the retreival's error detection and information content; for example SO2 detection and correction of Ring effect on atmospheric radiances. We discuss these and other aspects of the V9 algorithm as it will be applied to OMPS, and will mention potential improvements which aim to take advantage of a synergy with OMPS Limb Profiler and Nadir Mapper to further improve the quality of total ozone from the OMPS instrument.

  7. A definitive calibration record for the Landsat-5 thematic mapper anchored to the Landsat-7 radiometric scale

    USGS Publications Warehouse

    Teillet, P.M.; Helder, D.L.; Ruggles, T.A.; Landry, R.; Ahern, F.J.; Higgs, N.J.; Barsi, J.; Chander, G.; Markham, B.L.; Barker, J.L.; Thome, K.J.; Schott, J.R.; Palluconi, Frank Don

    2004-01-01

    A coordinated effort on the part of several agencies has led to the specification of a definitive radiometric calibration record for the Landsat-5 thematic mapper (TM) for its lifetime since launch in 1984. The time-dependent calibration record for Landsat-5 TM has been placed on the same radiometric scale as the Landsat-7 enhanced thematic mapper plus (ETM+). It has been implemented in the National Landsat Archive Production Systems (NLAPS) in use in North America. This paper documents the results of this collaborative effort and the specifications for the related calibration processing algorithms. The specifications include (i) anchoring of the Landsat-5 TM calibration record to the Landsat-7 ETM+ absolute radiometric calibration, (ii) new time-dependent calibration processing equations and procedures applicable to raw Landsat-5 TM data, and (iii) algorithms for recalibration computations applicable to some of the existing processed datasets in the North American context. The cross-calibration between Landsat-5 TM and Landsat-7 ETM+ was achieved using image pairs from the tandem-orbit configuration period that was programmed early in the Laridsat-7 mission. The time-dependent calibration for Landsat-5 TM is based on a detailed trend analysis of data from the on-board internal calibrator. The new lifetime radiometric calibration record for Landsat-5 will overcome problems with earlier product generation owing to inadequate maintenance and documentation of the calibration over time and will facilitate the quantitative examination of a continuous, near-global dataset at 30-m scale that spans almost two decades.

  8. The Beginnings of Airborne Astronomy, 1920 - 1930: an Historical Narrative

    NASA Technical Reports Server (NTRS)

    Craine, E. R.

    1984-01-01

    The emergence of airborne astronomy in the early twentieth century is recounted. The aerial expedition to observe the solar eclipse on September 10, 1923, is described. Observation of the total solar eclipse of January 24, 1925, is discussed. The Honey Lake aerial expedition to study the solar eclipse of April 28, 1930, is also described. Four major accomplishments in airborne astronomy during the period 1920 to 1930 are listed. Airborne expeditions were undertaken at every logical opportunity, starting a continuous sequence of airborne astronomical expeditions which was to remain unbroken, except by World War II, to the present day. Although the scientific returns of the first ten years were modest, they did exist. Interest in, and support for, airborne astronomy was generated not only among astronomers but also among the public. Albert Stevens, arguably the true father of airborne astronomy, was to become interested in applying his considerable skill and experience to the airborne acquisition of astronomical data.

  9. Use of field reflectance data for crop mapping using airborne hyperspectral image

    NASA Astrophysics Data System (ADS)

    Nidamanuri, Rama Rao; Zbell, Bernd

    2011-09-01

    Recent developments in hyperspectral remote sensing technologies enable acquisition of image with high spectral resolution, which is typical to the laboratory or in situ reflectance measurements. There has been an increasing interest in the utilization of in situ reference reflectance spectra for rapid and repeated mapping of various surface features. Here we examined the prospect of classifying airborne hyperspectral image using field reflectance spectra as the training data for crop mapping. Canopy level field reflectance measurements of some important agricultural crops, i.e. alfalfa, winter barley, winter rape, winter rye, and winter wheat collected during four consecutive growing seasons are used for the classification of a HyMAP image acquired for a separate location by (1) mixture tuned matched filtering (MTMF), (2) spectral feature fitting (SFF), and (3) spectral angle mapper (SAM) methods. In order to answer a general research question "what is the prospect of using independent reference reflectance spectra for image classification", while focussing on the crop classification, the results indicate distinct aspects. On the one hand, field reflectance spectra of winter rape and alfalfa demonstrate excellent crop discrimination and spectral matching with the image across the growing seasons. On the other hand, significant spectral confusion detected among the winter barley, winter rye, and winter wheat rule out the possibility of existence of a meaningful spectral matching between field reflectance spectra and image. While supporting the current notion of "non-existence of characteristic reflectance spectral signatures for vegetation", results indicate that there exist some crops whose spectral signatures are similar to characteristic spectral signatures with possibility of using them in image classification.

  10. Assessment of EOS Aqua AMSR-E Arctic Sea Ice Concentrations using Landsat-7 and Airborne Microwave Imagery

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Markus, Thorsten; Hall, Dorothy K.; Gasiewski, Albin J.; Klein, Marian; Ivanoff, Alvaro

    2006-01-01

    An assessment of Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) sea ice concentrations under winter conditions using ice concentrations derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) imagery obtained during the March 2003 Arctic sea ice validation field campaign is presented. The National Oceanic and Atmospheric Administration Environmental Technology Laboratory's Airborne Polarimetric Scanning Radiometer Measurements, which were made from the National Aeronautics and Space Administration P 3B aircraft during the campaign, were used primarily as a diagnostic tool to understand the comparative results and to suggest improvements to the AMSR-E ice concentration algorithm. Based on the AMSR-E/ETM+ comparisons, a good overall agreement with little bias (approx. 1%) for areas of first year and young sea ice was found. Areas of new ice production result in a negative bias of about 5% in the AMSR-E ice concentration retrievals, with a root mean square error of 8%. Some areas of deep snow also resulted in an underestimate of the ice concentration (approx. 10%). For all ice types combined and for the full range of ice concentrations, the bias ranged from 0% to 3%, and the rms errors ranged from 1% to 7%, depending on the region. The new-ice and deep-snow biases are expected to be reduced through an adjustment of the new-ice and ice-type C algorithm tie points.

  11. Latest Advancement In Airborne Relative Gravity Instrumentation.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2011-12-01

    Airborne gravity surveying has been performed with widely varying degrees of success since early experimentation with the Lacoste and Romberg dynamic meter in the 1950s. There are a number of different survey systems currently in operation including relative gravity meters and gradiometers. Airborne gravity is ideally suited to rapid, wide coverage surveying and is not significantly more expensive in more remote and inhospitable terrain which makes airborne measurements one of the few viable options available for cost effective exploration. As improved instrumentation has become available, scientific applications have also been able to take advantage for use in determining sub surface geologic structures, for example under ice sheets in Antarctica, and more recently direct measurement of the geoid to improve the vertical datum in the United States. In 2004, Lacoste and Romberg (now Micro-g Lacoste) decided to build on their success with the newly developed AirSea II dynamic meter and use that system as the basis for a dedicated airborne gravity instrument. Advances in electronics, timing and positioning technology created the opportunity to refine both the hardware and software, and to develop a truly turnkey system that would work well for users with little or no airborne gravity experience as well as those with more extensive experience. The resulting Turnkey Airborne Gravity System (TAGS) was successfully introduced in 2007 and has since been flown in applications from oil, gas and mineral exploration surveys to regional gravity mapping and geoid mapping. The system has been mounted in a variety of airborne platforms including depending on the application of interest. The development experience with the TAGS enabled Micro-g Lacoste to embark on a new project in 2010 to completely redesign the mechanical and electronic components of the system rather than continuing incremental upgrades. Building on the capabilities of the original TAGS, the objectives for the

  12. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation

    USGS Publications Warehouse

    Green, R.O.; Pieters, C.; Mouroulis, P.; Eastwood, M.; Boardman, J.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Barr, D.; Buratti, B.; Cate, D.; Chatterjee, A.; Clark, R.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, Kenneth; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriquez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.

    2011-01-01

    The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric

  13. Molecular spectroscopy from the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Beckwith, S.

    1985-01-01

    Interstellar and circumstellar molecules are investigated through medium-resolution infrared spectrosocpy of the vibration-rotation and pure rotational transitions. A primary goal was the construction and improvement of instrumentation for the near and middle infrared regions, wavelengths between 2 and 10 microns. The main instrument was a cooled grating spectrometer with an interchangeable detector focal plane which could be used on the Kuiper Airborne Observatory (KAO) for airborne observations, and also at ground-based facilities. Interstellar shock waves were investigated by H2 emission from the Orion Nebula, W51, and the proto-planetary nebulae CRL 2688 and CRL 618. The observations determined the physical conditions in shocked molecular gas near these objects. From these it was possible to characterize the energetic history of mass loss from both pre- and post-main sequence stars in the regions.

  14. Performance metrics for an airborne imaging system

    NASA Astrophysics Data System (ADS)

    Dayton, David C.; Gonglewski, John D.

    2004-11-01

    A series of airborne imaging experiments have been conducted on the island of Maui and at North Oscura Peak in New Mexico. Two platform altitudes were considered 3000 meters and 600 meters, both with a slant range to the target up to 10000 meters. The airborne imaging platform was a Twin Otter aircraft, which circled ground target sites. The second was a fixed platform on a mountain peak overlooking a valley 600 meters below. The experiments were performed during the day using solar illuminated target buildings. Imaging system performance predictions were calculated using standard atmospheric turbulence models, and aircraft boundary layer models. Several different measurement approaches were then used to estimate the actual system performance, and make comparisons with the calculations.

  15. Airborne Infrared Spectroscopy of 1994 Western Wildfires

    NASA Technical Reports Server (NTRS)

    Worden, Helen; Beer, Reinhard; Rinsland, Curtis P.

    1997-01-01

    In the summer of 1994 the 0.07/ cm resolution infrared Airborne Emission Spectrometer (AES) acquired spectral data over two wildfires, one in central Oregon on August 3 and the other near San Luis Obispo, California, on August 15. The spectrometer was on board a NASA DC-8 research aircraft, flying at an altitude of 12 km. The spectra from both fires clearly show features due to water vapor, carbon dioxide, carbon monoxide, ammonia, methanol, formic acid, and ethylene at significantly higher abundance and temperature than observed in downlooking spectra of normal atmospheric and ground conditions. Column densities are derived for several species, and molar ratios are compared with previous biomass fire measurements. We believe that this is the first time such data have been acquired by airborne spectral remote sensing.

  16. Analyzing Options for Airborne Emergency Wireless Communications

    SciTech Connect

    Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry

    2008-03-01

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.

  17. BOREAS RSS-12 Airborne Tracking Sunphotometer Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Lobitz, Brad; Spanner, Michael; Wrigley, Robert

    2000-01-01

    The BOREAS RSS-12 team collected both ground and airborne sunphotometer measurements for use in characterizing the aerosol optical properties of the atmosphere during the BOREAS data collection activities. These measurements are to be used to: 1) measure the magnitude and variability of the aerosol optical depth in both time and space; 2) determine the optical properties of the boreal aerosols; and 3) atmospherically correct remotely sensed data acquired during BOREAS. This data set contains airborne tracking sunphotometer data that were acquired from the C-130 aircraft during its flights over the BOREAS study areas. The data cover selected days and times from May to September 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  18. The Callaway Plant's airborne tritium sampling cart

    SciTech Connect

    Graham, C.C.; Roselius, R.R. )

    1986-07-01

    The water vapor condensation method for sampling airborne tritium offers significant advantages over other methods, including minimal sample preparation, high sensitivity, and independence from collection efficiency and sample flow rate. However, it does have disadvantages that must be overcome in the design of a sampler. This article describes a cart-mounted, portable airborne tritium sampler used at the Callaway Nuclear Plant that incorporates the advantages of the condensation technique while minimizing its shortcomings. The key elements in the design of the sampler are the use of a refrigerated bath to cool a series of three water vapor collection traps and the use of an optical condensation dew point hygrometer to measure the moisture content of the sample. Design considerations for the proper operation of dew point hygrometers are presented, and the method used to convert due point readings to water vapor content is described.

  19. Airborne Microwave Imaging of River Velocities

    NASA Technical Reports Server (NTRS)

    Plant, William J.

    2002-01-01

    The objective of this project was to determine whether airborne microwave remote sensing systems can measure river surface currents with sufficient accuracy to make them prospective instruments with which to monitor river flow from space. The approach was to fly a coherent airborne microwave Doppler radar, developed by APL/UW, on a light airplane along several rivers in western Washington state over an extended period of time. The fundamental quantity obtained by this system to measure river currents is the mean offset of the Doppler spectrum. Since this scatter can be obtained from interferometric synthetic aperture radars (INSARs), which can be flown in space, this project provided a cost effective means for determining the suitability of spaceborne INSAR for measuring river flow.

  20. ARMAR: An airborne rain-mapping radar

    NASA Technical Reports Server (NTRS)

    Durden, S. L.; Im, E.; Li, F. K.; Ricketts, W.; Tanner, A.; Wilson, W.

    1994-01-01

    A new airborne rain-mapping radar (ARMAR) has been developed by NASA and the Jet Propulsion Laboratory for operation on the NASA Ames DC-8 aircraft. The radar operates at 13.8 GHz, the frequency to be used by the radar on the Tropical Rainfall Measuring Mission (TRMM). ARMAR simulates the TRMM radar geometry by looking downward and scanning its antenna in the cross-track direction. This basic compatibility between ARMAR and TRMM allows ARMAR to provide information useful for the TRMM radar design, for rain retrieval algorithm development, and for postlaunch calibration. ARMAR has additional capabilities, including multiple polarization, Doppler velocity measurement, and a radiometer channel for brightness temperature measurement. The system has been tested in both ground-based and airborne configurations. This paper describes the design of the system and shows results of field tests.