Science.gov

Sample records for airborne measurement campaign

  1. The Airborne Measurements of Methane Fluxes (AIRMETH) Arctic Campaign (Invited)

    NASA Astrophysics Data System (ADS)

    Serafimovich, A.; Metzger, S.; Hartmann, J.; Kohnert, K.; Sachs, T.

    2013-12-01

    One of the most pressing questions with regard to climate feedback processes in a warming Arctic is the regional-scale methane release from Arctic permafrost areas. The Airborne Measurements of Methane Fluxes (AIRMETH) campaign is designed to quantitatively and spatially explicitly address this question. Ground-based eddy covariance (EC) measurements provide continuous in-situ observations of the surface-atmosphere exchange of methane. However, these observations are rare in the Arctic permafrost zone and site selection is bound by logistical constraints among others. Consequently, these observations cover only small areas that are not necessarily representative of the region of interest. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking methane flux observations in the atmospheric surface layer to meteorological and biophysical drivers in the flux footprints. For this purpose thousands of kilometers of AIRMETH data across the Alaskan North Slope are utilized, with the aim to extrapolate the airborne EC methane flux observations to the entire North Slope. The data were collected aboard the research aircraft POLAR 5, using its turbulence nose boom and fast response methane and meteorological sensors. After thorough data pre-processing, Reynolds averaging is used to derive spatially integrated fluxes. To increase spatial resolution and to derive ERFs, we then use wavelet transforms of the original high-frequency data. This enables much improved spatial discretization of the flux observations, and the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between the methane flux observations and the meteorological and

  2. Airborne measurements performed by a light aircraft during Pegasos spring 2013 campaign

    NASA Astrophysics Data System (ADS)

    Väänänen, Riikka; Krejci, Radovan; Manninen, Hanna E.; Nieminen, Tuomo; Yli-Juuti, Taina; Kangasluoma, Juha; Pohja, Toivo; Aalto, Pasi P.; Petäjä, Tuukka; Kulmala, Markku

    2014-05-01

    To fully understand the chemical and physical processes in atmosphere, measuring only on-ground is not sufficient. To extend the measurements into the lower troposphere, the University of Helsinki has performed airborne campaigns since 2009. During spring 2013, a light aircraft was used to measure the aerosol size distribution over boreal forests as a part of the Pegasos 'Norhern Mission'. The aims of the measurements were to quantify the vertical profiles of aerosols up to the altitude of 3.5 km, to study the new particle formation in the lower troposphere, to measure the planetary boundary layer evolution, and to support the measurements performed by Zeppelin NT. We used a Cessna 172 light aircraft as a platform. An aerosol and gas inlet was mounted under the right wing and the sample air was conducted inside the cabin where most of the instruments were placed. The aerosol measurement instruments included a TSI 3776 condensation particle counter (CPC) with a cut-off size of 3 nm, a Scanning Mobility Particle Sizer (SMPS), with a size range of 10-350 nm, and a Particle Size Magnifier (PSM) connected with a TSI 3772 condensation particle counter. As the properties of the PSM measuring in airborne conditions were still under testing during the campaign, the setups of the PSM varied between the measurements. Other instruments on board included a Li-Cor Li-840 H2O/Co2-analyzer, a temperature sensor, a relative humidity sensor, and a GPS receiver. Total amount of 45 flights with 118 flight hours were performed between 24th April and 15th June 2013. The majority of the flights were flown around SMEAR II station located in Hyytiälä, and when possible, the flights were synchronized with the Zeppelin flights. Simultaneously, an extensive field campaign to measure aerosol and gas properties was performed on-ground at SMEAR II station. A time series of airborne aerosol data of around 1.5 months allows us to construct statistical vertical profiles of aerosol size

  3. Measurements of Ultra-fine and Fine Aerosol Particles over Siberia: Large-scale Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail; Paris, Jean-Daniel; Stohl, Andreas; Belan, Boris; Ciais, Philippe; Nédélec, Philippe

    2010-05-01

    In this paper we discuss the results of in-situ measurements of ultra-fine and fine aerosol particles carried out in the troposphere from 500 to 7000 m in the framework of several International and Russian State Projects. Number concentrations of ultra-fine and fine aerosol particles measured during intensive airborne campaigns are presented. Measurements carried over a great part of Siberia were focused on particles with diameters from 3 to 21 nm to study new particle formation in the free/upper troposphere over middle and high latitudes of Asia, which is the most unexplored region of the Northern Hemisphere. Joint International airborne surveys were performed along the following routes: Novosibirsk-Salekhard-Khatanga-Chokurdakh-Pevek-Yakutsk-Mirny-Novosibirsk (YAK-AEROSIB/PLARCAT2008 Project) and Novosibirsk-Mirny-Yakutsk-Lensk-Bratsk-Novosibirsk (YAK-AEROSIB Project). The flights over Lake Baikal was conducted under Russian State contract. Concentrations of ultra-fine and fine particles were measured with automated diffusion battery (ADB, designed by ICKC SB RAS, Novosibirsk, Russia) modified for airborne applications. The airborne ADB coupled with CPC has an additional aspiration unit to compensate ambient pressure and changing flow rate. It enabled to classify nanoparticles in three size ranges: 3-6 nm, 6-21 nm, and 21-200 nm. To identify new particle formation events we used similar specific criteria as Young et al. (2007): (1) N3-6nm >10 cm-3, (2) R1=N3-6/N621 >1 and R2=N321/N21200 >0.5. So when one of the ratios R1 or R2 tends to decrease to the above limits the new particle formation is weakened. It is very important to notice that space scale where new particle formation was observed is rather large. All the events revealed in the FT occurred under clean air conditions (low CO mixing ratios). Measurements carried out in the atmospheric boundary layer over Baikal Lake did not reveal any event of new particle formation. Concentrations of ultra

  4. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Ramanathan, Anand; Hasselbrack, William E.; Mao, Jianping; Weaver, Clark; Browell, Edward V.

    2012-01-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to greater than 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the Iidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected -linear change of the peak DOD with altitude. For measurements at altitudes greater than 6 km the random errors were approximately 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as wen as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly

  5. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Ramanathan, A.; Hasselbrack, W.; Mao, J.; Weaver, C. J.; Browell, E. V.

    2012-12-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to > 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the lidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected ~linear change of the peak DOD with altitude. For measurements at altitudes > 6 km the random errors were ~ 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as well as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity

  6. Soil moisture estimates from the SMOS Validation Rehearsal Campaign in Valencia using EMIRAD airborne measurements

    NASA Astrophysics Data System (ADS)

    Saleh Contell, K.; López-Baeza, E.; Antolín, C.; Millán, C.; Cano, A.; Wigneron, J. P.; Balling, J.; Schmidl, S. S.; Skou, N.; Kerr, Y. H.; Richaume, P.; Juglea, S.; Delwart, S.; Bouzinac, C.; Wursteisen, P.

    2009-04-01

    The European Space Agency conducted a series of flights in 2008 over the main SMOS Validation sites in Europe, amongst them at the Valencia site. The scope of these campaigns was to help in the preparation of operational soil moisture outputs to be generated by the validation teams during the SMOS commissioning phase and beyond. For that purpose, several activities were scheduled at the Valencia site as part of the SMOS Validation Rehearsal campaign. These included: i) Airborne measurements at L-band to improve the parameterisation of the microwave model L-MEB (L-band Microwave Emssion model of the Biosphere) in the area, in order to improve the match between measured brightness temperatures by SMOS, and simulations using ground-truth soil moisture. ii) Intensive soil moisture sampling in a 10 km x 10 km area to support both current studies on soil moisture spatialisation based on SVAT modelling, and the definition of homogeneous land units for the future characterisation of soil moisture at the scale of a SMOS pixel (~ 50 km). The Valencia Site is located in SE Spain, about 80 km inland to the west of Valencia. Within the Valencia validation site, an area of 10 km x 10 km was selected for the experiment. The land use in this area is dominated by vineyards and bare soil (>70%), and orchards (~18 %). Flights over this area were conducted on four different days between April 22nd and May 2nd 2008. During that period, soil moisture near the surface (0-6 cm) slowly decreased with the last rainfall having occurred on April 20. Radiometric measurements were acquired by EMIRAD (L-band, 1.4 GHz) onboard the Skyvan aircraft. The flight plan, repeated across the four days, included 4 parallel lines crossing the 10 km x 10 km area at ~2300 m above the ground level. One diagonal flight was also performed at ~900 m above the ground level on each day. EMIRAD measured the L-band radiation emitted by the surface using two horns, one close to nadir, and the other one at 43 deg

  7. Pulsed Lidar Measurements of Atmospheric CO2 Column Concentration in the ASCENDS 2014 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Ramanathan, A. K.; Mao, J.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Chen, J. R.

    2015-12-01

    We report progress in demonstrating a pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. The CO2 lidar flies on NASA's DC-8 aircraft and measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line by using 30 wavelength samples distributed across the lube. Our post-flight analysis estimates the lidar range and pulse energies at each wavelength 10 times per second. The retrievals solve for the optimum CO2 absorption line shape and the column average CO2 concentrations using radiative transfer calculations based on HITRAN, the aircraft altitude, range to the scattering surface, and the atmospheric conditions. We compare these to CO2 concentrations sampled by in-situ sensors on the aircraft. The number of wavelength samples can be reduced in the retrievals. During the ASCENDS airborne campaign in 2013 two flights were made in February over snow in the Rocky Mountains and the Central Plains allowing measurement of snow-covered surface reflectivity. Several improvements were made to the lidar for the 2014 campaign. These included using a new step-locked laser diode source, and incorporating a new HgCdTe APD detector and analog digitizer into the lidar receiver. Testing showed this detector had higher sensitivity, analog response, and a more linear dynamic range than the PMT detector used previously. In 2014 flights were made in late August and early September over the California Central Valley, the redwood forests along the California coast, two desert areas in Nevada and California, and two flights above growing agriculture in Iowa. Two flights were also made under OCO-2 satellite ground tracks. Analyses show the retrievals of lidar range and CO2 column absorption, and mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, and through thin clouds and aerosol scattering. The lidar measurements clearly

  8. A Coordinated Ice-based and Airborne Snow and Ice Thickness Measurement Campaign on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Richter-Menge, J.; Farrell, S.; Elder, B. C.; Gardner, J. M.; Brozena, J. M.

    2011-12-01

    snow depth on sea ice and characterization of the regional sea ice thickness distribution. This poster will present preliminary data from the measurement campaign. This includes the in situ measurements of snow depth and ice thickness along the survey line. The NASA IceBridge airborne survey consisted of eleven parallel flight lines along the main in situ transect and two perpendicular passes at the northern and southern ends of the survey line, coincident with two corner reflectors. We will present initial IceBridge data, including ATM sea ice elevation and DMS photography which we use to estimate surface roughness and delineate sea ice provinces nearby the in situ survey. Preliminary data from the NRL over flights of the survey line will be presented in the poster by Brozena et al. (this session). The in situ and airborne data collected during the March 2011 campaign will be fully-documented and archived on the NASA IceBridge websites at NSIDC, allowing for their free access by the broad research community.

  9. Airborne Passive Microwave Measurements from the AMISA 2008 Science Campaign for Modeling of Arctic Sea Ice Heating

    NASA Astrophysics Data System (ADS)

    Zucker, M. L.; Gasiewski, A. J.; CenterEnvironmental Technology

    2011-12-01

    While climate changes in the Arctic are occurring more rapidly than anywhere else on Earth model-based predictions of sea ice extent are at once both more optimistic than the data suggest and exhibit a high degree of variability. It is believed that this high level of uncertainty is the result of an inadequate quantitative understanding of surface heating mechanisms, which in large part is due to a lack of high spatial resolution data on boundary layer and surface energy processes during melt and freezeup. In August 2008 the NASA Arctic Mechanisms of Interactions between the Surface and Atmosphere (AMISA) campaign, in conjunction with the Swedish-led Arctic Summer Cloud-Ocean Study (ASCOS) conducted coordinated high spatial resolution measurements of geophysical parameters in the Arctic relevant to atmospheric-sea ice interaction. The IPY-approved AMISA campaign used airborne radiometers, including the Polarimetric Scanning Radiometer (PSR) system, a suite of L-band to V-band fixed-beam radiometers for cloud liquid and water vapor measurement, short and longwave radiation sensors, meteorological parameters from cloud size distribution probes, GPS dropsondes, and aerosol sensors. Calibration of the PSR is achieved through periodic observations of stable references such as thermal blackbody targets and noise diodes. A combination of methods using both infrequent external thermal blackbody views and brief frequent internal noise sources has proven practical for airborne systems such as the PSR and is proposed for spaceborne systems such as GeoMAS. Once radiometric data is calibrated it is then rasterized into brightness temperature images which are then geo-located and imported into Google EarthTM. An example brightness temperature map from the AMISA 2008 campaign is included in this abstract. The analysis of this data provides a basis for the development of a heat flux model needed to decrease the uncertainly in weather and climate predictions within the Arctic. In

  10. Coordinated airborne, space borne, and ground based measurements of massive, thick haze layers during the SAFARI-2000 Dry Season Campaign

    NASA Astrophysics Data System (ADS)

    Schmid, B.; Russell, P.; Pilewskie, P.; Redemann, J.; Hobbs, P.; Holben, B.; Welton, E.; Campbell, J.; Hlavka, D.; McGill, M.; Chu, A.; Remer, L.; Torres, O.; Kahn, R.

    2001-12-01

    From August 13 to September 25, the Southern African Regional Science Initiative's (SAFARI 2000) dry-season airborne campaign coordinated ground-based measurement teams, multiple research aircraft, and satellite overpasses across nine African nations. Among many others, unique coordinated observations were made of the evolution of massive, thick haze layers produced by biomass burning, industrial emissions, marine and biogenic sources. The NASA Ames Airborne Tracking 14-channel Sunphotometer (AATS-14) was operated successfully aboard the University of Washington CV-580 during 24 data flights. The AATS-14 instrument measures the transmission of the direct solar beam at 14 discrete wavelengths (354-1558 nm) from which we derive spectral aerosol optical depths (AOD), columnar water vapor (CWV) and columnar ozone. Flying at different altitudes over a fixed location allows derivation of layer AOD and CWV. Data taken during feasible vertical profiles allows derivation of aerosol extinction and water vapor density. In the talk, we show comparisons with ground-based AERONET sun/sky photometer results, with ground based MPL-Net lidar data, and with measurements from a lidar (CPL) aboard the high-flying ER-2 aircraft. We will use measurements from the Ames Solar Spectral Flux Radiometer to derive estimates of solar spectral forcing as a function of aerosol thickness. Validations of MODIS, MISR and TOMS satellite aerosol and water vapor retrievals will also be presented.

  11. Aerosol, Cloud and Trace Gas Observations Derived from Airborne Hyperspectral Radiance and Direct Beam Measurements in Recent Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.

    2014-01-01

    4STAR capabilities for airborne field campaigns, with an emphasis on comparisons between 4STAR and AERONET sky radiances, and retrievals of aerosol microphysical properties based on sky radiance measurements, column trace gas amounts from spectral direct beam measurements and cloud property retrievals from zenith mode observations for a few select case studies in the SEAC4RS and TCAP experiments. We summarize the aerosol, trace gas, cloud and airmass characterization studies made possible by the combined 4STAR direct beam, and sky/zenith radiance observations.

  12. Collaboration Portals for NASA's Airborne Field Campaigns

    NASA Technical Reports Server (NTRS)

    Conover, Helen; Kulkami, Ajinkya; Garrett, Michele; Goodman, Michael; Peterson, Walter Arthur; Drewry, Marilyn; Hardin, Danny M.; He, Matt

    2011-01-01

    The University of Alabama in Huntsville (UAH), in collaboration with the Global Hydrology Resource Center, a NASA Earth Science Data Center, has provided information management for a number of NASA Airborne Field campaigns, both hurricane science investigations and satellite instrument validation. Effective field campaign management requires communication and coordination tools, including utilities for personnel to upload and share flight plans, weather forecasts, a variety of mission reports, preliminary science data, and personal photos. Beginning with the Genesis and Rapid Intensification Processes (GRIP) hurricane field campaign in 2010, we have provided these capabilities via a Drupal-based collaboration portal. This portal was reused and modified for the Midlatitude Continental Convective Clouds Experiment (MC3E), part of the Global Precipitation Measurement mission ground validation program. An end goal of these development efforts is the creation of a Drupal profile for field campaign management. This presentation will discuss experiences with Drupal in developing and using these collaboration portals. Topics will include Drupal modules used, advantages and disadvantages of working with Drupal in this context, and how the science teams used the portals in comparison with other communication and collaboration tools.

  13. Collaboration Portals for NASA's Airborne Field Campaigns

    NASA Astrophysics Data System (ADS)

    Conover, H.; Kulkarni, A.; Garrett, M.; Goodman, M.; Petersen, W. A.; Drewry, M.; Hardin, D. M.; He, M.

    2011-12-01

    The University of Alabama in Huntsville (UAH), in collaboration with the Global Hydrology Resource Center, a NASA Earth Science Data Center, has provided information management for a number of NASA Airborne Field campaigns, both hurricane science investigations and satellite instrument validation. Effective field campaign management requires communication and coordination tools, including utilities for personnel to upload and share flight plans, weather forecasts, a variety of mission reports, preliminary science data, and personal photos. Beginning with the Genesis and Rapid Intensification Processes (GRIP) hurricane field campaign in 2010, we have provided these capabilities via a Drupal-based collaboration portal. This portal was reused and modified for the Midlatitude Continental Convective Clouds Experiment (MC3E), part of the Global Precipitation Measurement mission ground validation program. An end goal of these development efforts is the creation of a Drupal profile for field campaign management. This presentation will discuss experiences with Drupal in developing and using these collaboration portals. Topics will include Drupal modules used, advantages and disadvantages of working with Drupal in this context, and how the science teams used the portals in comparison with other communication and collaboration tools.

  14. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption and Range During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X.; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar only on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear C02 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed in detail and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs

  15. Campaign datasets for ARM Airborne Carbon Measurements (ARM-ACME-V)

    SciTech Connect

    Biraud,Sebastien; Mei,Fan; Flynn,Connor; Hubbe,John; Long,Chuck; Matthews,Alyssa; Pekour,Mikhail; Sedlacek,Arthur; Springston,Stephen; Tomlinson,Jason; Chand,Duli

    2016-03-15

    Atmospheric temperatures are warming faster in the Arctic than predicted by climate models. The impact of this warming on permafrost degradation is not well understood, but it is projected to increase carbon decomposition and greenhouse gas production (CO2 and/or CH4) by arctic ecosystems. Airborne observations of atmospheric trace gases, aerosols, and cloud properties at the North Slope of Alaska are improving our understanding of global climate, with the goal of reducing the uncertainty in global and regional climate simulations and projections.

  16. The analysis of in situ and retrieved aerosol properties measured during three airborne field campaigns

    NASA Astrophysics Data System (ADS)

    Corr, Chelsea A.

    Aerosols can directly influence climate, visibility, and photochemistry by scattering and absorbing solar radiation. Aerosol chemical and physical properties determine how efficiently a particle scatters and/or absorbs incoming short-wave solar radiation. Because many types of aerosol can act as nuclei for cloud droplets (CCN) and a smaller population of airborne particles facilitate ice crystal formation (IN), aerosols can also alter cloud-radiation interactions which have subsequent impacts on climate. Thus aerosol properties determine the magnitude and sign of both the direct and indirect impacts of aerosols on radiation-dependent Earth System processes. This dissertation will fill some gaps in our understanding of the role of aerosol properties on aerosol absorption and cloud formation. Specifically, the impact of aerosol oxidation on aerosol spectral (350nm < lambda< 500nm) absorption was examined for two biomass burning plumes intercepted by the NASA DC-S aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission in Spring and Summer 2008. Spectral aerosol single scattering albedo (SSA) retrieved using actinic flux measured aboard the NASA DC-8 was used to calculate the aerosol absorption Angstrom exponents (AAE) for a 6-day-old plume on April 17 th and a 3-hour old plume on June 29th. Higher AAE values for the April 17th plume (6.78+/-0.38) indicate absorption by aerosol was enhanced in the ultraviolet relative to the visible portion of the short-wave spectrum in the older plume compared to the fresher plume (AAE= 3.34 0.11). These differences were largely attributed to the greater oxidation of the organic aerosol in the April 17th plume which can arise either from the aging of primary organic aerosol or the formation of spectrally-absorbing secondary organic aerosol. The validity of the actinic flux retrievals used above were also evaluated in this work by the comparison of SSA retrieved using

  17. CU Airborne MAX-DOAS measurements over California during the CalNEx and CARES field campaigns

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Coburn, S.; Ortega, I.; Dix, B. K.; Sinreich, R.; Volkamer, R.

    2010-12-01

    The University of Colorado Airborne Multi-Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument was deployed aboard the NOAA Optical Remote Sensing Twin Otter Research Aircraft during the CalNEx 2010 and CARES field campaigns. A total of 52 flights (48 research + 4 transfer flights) were carried out between May 19 and July 19 2010 and included flights in the South California Air Basin, the High deserts, Northern Mexico, the Central Valley, Sacramento, and the San Francisco Bay Area. A particular component of the CU AMAX-DOAS deployment was to enhance the value of ground-based super sites in Pasadena and Bakersfield, as well as the CARES T0 and T1 sites. The CU AMAX-DOAS is measuring column amounts of NO2, HCHO, CHOCHO, O4 and other gases above and below the aircraft. The focus of this deployment was to map the horizontal and vertical distribution of these gases. Here we describe the CU AMAX-DOAS instrument and give an overview of the NO2 vertical columns below the plane along the flight tracks. A first comparison of NO2 vertical columns measured by AMAX-DOAS and two CU Ground based MAX-DOAS instruments which were deployed in Pasadena and Fontana Arrows during CalNEx and at the T1 site during CARES is also presented.

  18. Retrieval of Atmospheric CO2 Concentration above Clouds and Cloud Top Pressure from Airborne Lidar Measurements during ASCENDS Science Campaigns

    NASA Astrophysics Data System (ADS)

    Mao, J.; Ramanathan, A. K.; Rodriguez, M.; Allan, G. R.; Hasselbrack, W. E.; Abshire, J. B.; Riris, H.; Kawa, S. R.

    2014-12-01

    NASA Goddard is developing an integrated-path, differential absorption (IPDA) lidar approach to measure atmospheric CO2 concentrations from space as a candidate for NASA's ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission. The approach uses pulsed lasers to measure both CO2 and O2 absorption simultaneously in the vertical path to the surface at a number of wavelengths across a CO2 line at 1572.335 nm and an O2 line doublet near 764.7 nm. Measurements of time-resolved laser backscatter profiles from the atmosphere allow the technique to estimate column CO2 and O2 number density and range to cloud tops in addition to those to the ground. This allows retrievals of CO2 column above clouds and cloud top pressure, and all-sky measurement capability from space. This additional information can be used to evaluate atmospheric transport processes and other remote sensing carbon data in the free atmosphere, improve carbon data assimilation in models and help global and regional carbon flux estimates. We show some preliminary results of this capability using airborne lidar measurements from the summers of 2011 and 2014 ASCENDS science campaigns. These show simultaneous retrievals of CO2 and O2 column densities for laser returns from low-level marine stratus clouds in the west coast of California. This demonstrates the supplemental capability of the future space carbon mission to measure CO2 above clouds, which is valuable particularly for the areas with persistent cloud covers, e.g, tropical ITCZ, west coasts of continents with marine layered clouds and southern ocean with highest occurrence of low-level clouds, where underneath carbon cycles are active but passive remote sensing techniques using the reflected short wave sunlight are unable to measure accurately due to cloud scattering effect. We exercise cloud top pressure retrieval from O2 absorption measurements during the flights over the low-level marine stratus cloud decks, which is one of

  19. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs altitude. The

  20. Airborne measurements of hygroscopicity and mixing state of aerosols in the planetary boundary layer during the PEGASOS campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Weingartner, Ernest; Gysel, Martin; Rubach, Florian; Mentel, Thomas; Baltensperger, Urs

    2014-05-01

    properties and mixing state. By combining these results with measurements from an aerosol mass spectrometer (AMS) and an aethalometer, insights can be gathered to explain their hygroscopicity. In this work we will present vertical profiles of the hygroscopic growth and mixing state of aerosol particles measured during Zeppelin flights of the PEGASOS campaigns in the Netherlands, Italy and Finland. Results from ground measurements will also be included to compare the aerosol directly at the surface with different heights. W.T. Morgan et al., Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: Airborne measurements in North-Western Europe, Atmospheric Chemistry and Physics 10(2010), pp. 8151-8171. P. Zieger et al., Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw, Atmospheric Chemistry and Physics 11(2011), pp. 2603-2624.

  1. An Overview of Measurement Comparisons from the INTEX-B/MILAGRO Airborne Field Campaign

    NASA Technical Reports Server (NTRS)

    Kleb, Mary M.; Chen, Gao; Crawford, James H.; Flocke, Frank M.; Brown, Clyde C.

    2011-01-01

    As part of the NASA's INTEX-B mission, the NASA DC-8 and NSF C-130 conducted three wing-tip to wing-tip comparison flights. The intercomparison flights sampled a variety of atmospheric conditions (polluted urban, non-polluted, marine boundary layer, clean and polluted free troposphere). These comparisons form a basis to establish data consistency, but also should also be viewed as a continuation of efforts aiming to better understand and reduce measurement differences as identified in earlier field intercomparison exercises. This paper provides a comprehensive overview of 140 intercomparisons of data collected as well as a record of the measurement consistency demonstrated during INTEX-B. It is the primary goal to provide necessary information for the future research to determine if the observations from different INTEX-B platforms/instrument are consistent within the PI reported uncertainties and used in integrated analysis. This paper may also contribute to the formulation strategy for future instrument developments. For interpretation and most effective use of these results, the reader is strongly urged to consult with the instrument principle investigator.

  2. Intensity-Modulated Continuous-Wave Lidar Measurements of Surface Reflectance and Implications for CO2 Column Measurements: Results from 2013 ASCENDS Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Browell, E. V.; Harrison, F. W.; Dobler, J. T.; Lin, B.; Ismail, S.; Kooi, S. A.; Obland, M. D.

    2013-12-01

    Improved knowledge of the Earth's surface reflectance in the 1.57-micron spectral band is of particular importance for accurate Integrated Path Differential Absorption (IPDA) measurements and modeling of IPDA CO2 column measurements as required by the Active Sensing of CO2 Emission of Nights Days and Seasons (ASCENDS) Decadal Survey space mission. The Earth's surface albedo in the near-infrared portion of the spectrum is extremely low for snow and ice and for water under high wind conditions, and this can lead to degraded signal to noise ratios of surface reflectances and of IPDA CO2 column retrievals, requiring increased integration periods. This paper discusses the magnitude and variability of the surface reflectance and corresponding column CO2 measurements over snow measured using an intensity-modulated continuous-wave (IM-CW) laser absorption spectrometer (LAS), namely the Exelis Multi-function Fiber Laser Lidar (MFLL), during the winter 2013 ASCENDS airborne campaign. This LAS system is currently being evaluated by NASA Langley as the ASCENDS space mission prototype system. The surface reflectance measurements over snow and ice as well as over water collected during the 2013 winter DC-8 flight campaign were calibrated using surface reflectance data obtained over well-established satellite radiometric calibration sites such as Railroad Valley, Nevada and over other homogeneous desert sites in California and Arizona that have been used for similar calibrations on past ASCENDS airborne campaigns. Two separate flights targeting differences in surface reflectances between fresh and aged snow were conducted over the U.S. Central Plains and Colorado Rockies, respectively. From these measurements, the nominal surface reflectance of fresh snow (less than 1-2 days old; ~ 0.01/sr at 1.57 microns) was found to be approximately half that of aged snow (3-4 days old; ~ 0.02/sr) which is believed to be a result of increased absorption due to the snow water content. The

  3. Aerosol properties derived from airborne sky radiance and direct beam measurements in recent NASA and DoE field campaigns

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; LeBlanc, S. E.; Schmidt, S.; Pilewskie, P.; Song, S.

    2014-12-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and airmass characterization studies made possible by the combined 4STAR direct beam and sky radiance observations.

  4. Aerosol Properties Derived from Airborne Sky Radiance and Direct Beam Measurements in Recent NASA and DoE Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; LeBlanc, S.; Schmidt, S.; Pilewskie, P.; Song, S.

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions.The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL (Pacific Northwest National Laboratory) with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE (Department of Energy)-sponsored TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013) experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and air-mass characterization studies made possible by the combined 4STAR direct beam and sky radiance

  5. ESA airborne campaigns in support of Earth Explorers

    NASA Astrophysics Data System (ADS)

    Casal, Tania; Davidson, Malcolm; Schuettemeyer, Dirk; Perrera, Andrea; Bianchi, Remo

    2013-04-01

    In the framework of its Earth Observation Programmes the European Space Agency (ESA) carries out ground based and airborne campaigns to support geophysical algorithm development, calibration/validation, simulation of future spaceborne earth observation missions, and applications development related to land, oceans and atmosphere. ESA has been conducting airborne and ground measurements campaigns since 1981 by deploying a broad range of active and passive instrumentation in both the optical and microwave regions of the electromagnetic spectrum such as lidars, limb/nadir sounding interferometers/spectrometers, high-resolution spectral imagers, advanced synthetic aperture radars, altimeters and radiometers. These campaigns take place inside and outside Europe in collaboration with national research organisations in the ESA member states as well as with international organisations harmonising European campaign activities. ESA campaigns address all phases of a spaceborne missions, from the very beginning of the design phase during which exploratory or proof-of-concept campaigns are carried out to the post-launch exploitation phase for calibration and validation. We present four recent campaigns illustrating the objectives and implementation of such campaigns. Wavemill Proof Of Concept, an exploratory campaign to demonstrate feasibility of a future Earth Explorer (EE) mission, took place in October 2011 in the Liverpool Bay area in the UK. The main objectives, successfully achieved, were to test Astrium UKs new airborne X-band SAR instrument capability to obtain high resolution ocean current and topology retrievals. Results showed that new airborne instrument is able to retrieve ocean currents to an accuracy of ± 10 cms-1. The IceSAR2012 campaign was set up to support of ESA's EE Candidate 7,BIOMASS. Its main objective was to document P-band radiometric signatures over ice-sheets, by upgrading ESA's airborne POLARIS P-band radar ice sounder with SAR capability. Campaign

  6. ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5 Final Campaign Reports

    SciTech Connect

    Biraud, S. C.; Tom, M. S.; Sweeney, C.

    2016-01-01

    We report on a 5-year multi-institution and multi-agency airborne study of atmospheric composition and carbon cycling at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, with scientific objectives that are central to the carbon-cycle and radiative-forcing goals of the U.S. Global Change Research Program and the North American Carbon Program (NACP). The goal of these measurements is to improve understanding of 1) the carbon exchange of the Atmospheric Radiation Measurement (ARM) SGP region; 2) how CO2 and associated water and energy fluxes influence radiative-forcing, convective processes, and CO2 concentrations over the ARM SGP region, and 3) how greenhouse gases are transported on continental scales.

  7. Airborne active and passive L-band measurements using PALS instrument in SMAPVEX12 soil moisture field campaign

    NASA Astrophysics Data System (ADS)

    Colliander, Andreas; Yueh, Simon; Chazanoff, Seth; Dinardo, Steven; O'Dwyer, Ian; Jackson, Thomas; McNairn, Heather; Bullock, Paul; Wiseman, Grant; Berg, Aaron; Magagi, Ramata; Njoku, Eni

    2012-10-01

    NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in late 2014. The objective of the mission is global mapping of soil moisture and freeze/thaw state. Merging of active and passive L-band observations of the mission will enable unprecedented combination of accuracy, resolution, coverage and revisit-time for soil moisture and freeze/thaw state retrieval. For pre-launch algorithm development and validation the SMAP project and NASA coordinated a field campaign named as SMAPVEX12 (Soil Moisture Active Passive Validation Experiment 2012) together with Agriculture and Agri-Food Canada, and other Canadian and US institutions in the vicinity of Winnipeg, Canada in June-July, 2012. The main objective of SMAPVEX12 was acquisition of a data record that features long time-series with varying soil moisture and vegetation conditions over an aerial domain of multiple parallel flight lines. The coincident active and passive L-band data was acquired with the PALS (Passive Active L-band System) instrument. The measurements were conducted over the experiment domain every 2-3 days on average, over a period of 43 days. The preliminary calibration of the brightness temperatures obtained in the campaign has been performed. Daily lake calibrations were used to adjust the radiometer calibration parameters, and the obtained measurements were compared against the raw in situ soil moisture measurements. The evaluation shows that this preliminary calibration of the data produces already a consistent brightness temperature record over the campaign duration, and only secondary adjustments and cleaning of the data is need before the data can be applied to the development and validation of SMAP algorithms.

  8. Retrieval of Vertical Structure of Atmospheric CO2 Concentration from Airborne Lidar Measurements during the 2011 and 2013 ASCENDS Science Campaigns

    NASA Astrophysics Data System (ADS)

    Mao, J.; Ramanathan, A.; Rodriguez, M.; Allan, G. R.; Hasselbrack, W.; Abshire, J. B.; Riris, H.; Kawa, S. R.; Weaver, C. J.; Browell, E. V.

    2013-12-01

    NASA Goddard is developing an integrated-path, differential absorption (IPDA) lidar approach to measure atmospheric CO2 concentrations from space as a candidate for NASA's ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission. The approach uses pulsed lasers to measure both CO2 and O2 absorption simultaneously in the vertical path to the surface at a number of wavelengths across a CO2 line at 1572.335 nm and the O2 line doublet near 764.7 nm. Measurements of time-resolved laser backscatter profiles from the atmosphere allow the technique to estimate column CO2 and O2 number density and range to cloud tops in addition to those to the ground. This allows sampling the vertical structure of CO2 and O2 when broken and/or thin clouds are present. This additional information can improve absorption line fits and estimates of column-averaged CO2 and O2 number density, and help isolate and identify sources/sinks of CO2 near the surface. We show some preliminary results of this capability using airborne lidar measurements from the summer 2011 and winter 2013 ASCENDS campaigns. These show simultaneous retrievals of CO2 and O2 column densities for laser returns from ground, low-altitude clouds and cirrus clouds. CO2 concentration in the planetary boundary layer, free troposphere, and lower stratosphere are estimated and compared to those from in-situ CO2 profiles measured during the campaigns.

  9. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope of Alaska Field Campaign Report

    SciTech Connect

    Biraud, Sebastien C

    2016-05-01

    Atmospheric temperatures are warming faster in the Arctic than predicted by climate models. The impact of this warming on permafrost degradation is not well understood, but it is projected to increase carbon decomposition and greenhouse gas production (CO2 and/or CH4) by arctic ecosystems. Airborne observations of atmospheric trace gases, aerosols and cloud properties in North Slopes of Alaska (NSA) are improving our understanding of global climate, with the goal of reducing the uncertainty in global and regional climate simulations and projections. From June 1 through September 15, 2015, AAF deployed the G1 research aircraft and flew over the North Slope of Alaska (38 flights, 140 science flight hours), with occasional vertical profiling over Prudhoe Bay, Oliktok point, Barrow, Atqasuk, Ivotuk, and Toolik Lake. The aircraft payload included Picarro and Los Gatos Research (LGR) analyzers for continuous measurements of CO2, CH4, H2O, and CO and N2O mixing ratios, and a 12-flask sampler for analysis of carbon cycle gases (CO2, CO, CH4, N2O, 13CO2, and trace hydrocarbon species). The aircraft payload also include measurements of aerosol properties (number size distribution, total number concentration, absorption, and scattering), cloud properties (droplet and ice size information), atmospheric thermodynamic state, and solar/infrared radiation.

  10. Application of the LIRIC algorithm for the characterization of aerosols during the Airborne Romanian Measurements of Aerosols and Trace gases (AROMAT) campaign

    NASA Astrophysics Data System (ADS)

    Stefanie, Horatiu; Nicolae, Doina; Nemuc, Anca; Belegante, Livio; Toanca, Florica; Ajtai, Nicolae; Ozunu, Alexandru

    2015-04-01

    The ESA/ESTEC AROMAT campaign (Airborne Romanian Measurements of Aerosols and Trace gases) was held between 1st and 14th of September 2014 with the purpose to test and inter-compare newly developed airborne and ground-based instruments dedicated to air quality studies in the context of validation programs of the forthcoming European Space Agency satellites (Sentinel 5P, ADM-Aeolus and EarthCARE). Ground-based remote sensing and airborne in situ measurements were made in southern Romania in order to assess the level and the variability of NO2 and particulate matter, focusing on two areas of interest: SW (Turceni), where many coal based power plants are operating, and SE (Bucharest), affected by intense traffic and partially by industrial pollution. In this paper we present the results obtained after the application of the Lidar - Radiometer Inversion Code (LIRIC) algorithm on combined lidar and sunphotometer data collected at Magurele, 6 km South Bucharest. Full lidar data sets in terms of backscatter signals at 355, 532 and 1064 nm, as well as depolarization at 532 nm were used and combined with Aerosol Robotic Network (AERONET) data, in order to retrieve the profiles of aerosol volume concentrations, separated as fine, spherical and spheroidal coarse modes. Preliminary results showed that aerosols generated by traffic and industrial activities were present in the Planetary Boundary Layer, while biomass burning aerosols transported from the Balkan Peninsula were detected in the upper layers. Acknowledgements: ***This work has been supported by Programme for Research- Space Technology and Advanced Research - STAR, project number 55/2013 - CARESSE. ***The financial support by the European Community's FP7 - PEOPLE 2011 under ITaRS Grant Agreement n° 289923 is gratefully acknowledged.

  11. Lidar measurements of the column CO2 mixing ratio made by NASA Goddard's CO2 Sounder during the NASA ASCENDS 2014 Airborne campaign.

    NASA Astrophysics Data System (ADS)

    Ramanathan, A. K.; Mao, J.; Abshire, J. B.; Kawa, S. R.

    2015-12-01

    Remote sensing measurements of CO2 from space can help improve our understanding of the carbon cycle and help constrain the global carbon budget. However, such measurements need to be sufficiently accurate to detect small (1 ppm) changes in the CO2 mixing ratio (XCO2) against a large background (~ 400 ppm). Satellite measurements of XCO2 using passive spectrometers, such as those from the Japanese GOSAT (Greenhouse gas Observing Satellite) and the NASA OCO-2 (Orbiting Carbon Observatory-2) are limited to daytime sunlit portions of the Earth and are susceptible to biases from clouds and aerosols. For this reason, NASA commissioned the formulation study of ASCENDS a space-based lidar mission. NASA Goddard Space Flight Center's CO2 Sounder lidar is one candidate approach for the ASCENDS mission. The NASA GSFC CO2 Sounder measures the CO2 mixing ratio using a pulsed multi-wavelength integrated path differential absorption (IPDA) approach. The CO2 Sounder has flown in the 2011, 2013 and 2014 ASCENDS airborne campaigns over the continental US, and has produced measurements in close agreement with in situ measurements of the CO2 column. In 2014, the CO2 Sounder upgraded its laser with a precision step-locked diode laser source to improve the lidar wavelength position accuracy. It also improved its optical receiver with a low-noise, high efficiency, HgCdTe avalanche photo diode detector. The combination of these two technologies enabled lidar XCO2 measurements with unprecedented accuracy. In this presentation, we show analysis from the ASCENDS 2014 field campaign, exploring: (1) Horizontal XCO2 gradients measured by the lidar, (2) Comparisons of lidar XCO2 measurements against the Parameterized Chemistry Transport Model (PCTM), and (3) Lidar column water vapor measurements using a HDO absorption line that occurs next to the CO2 absorption line. This can reduce the uncertainty in the dry air column used in XCO2 retrievals.

  12. Airborne measurements of Black Carbon using miniature high-performance Aethalometers during global circumnavigation campaign GLWF 2012

    NASA Astrophysics Data System (ADS)

    Močnik, Griša; Drinovec, Luka; Vidmar, Primož; Lenarčič, Matevž

    2013-04-01

    While ground-level measurements of atmospheric aerosols are routinely performed around the world, there exists very little data on their vertical and geographical distribution in the global atmosphere. This data is a crucial requirement for our understanding of the dispersion of pollutant species of anthropogenic origin, and their possible effects on radiative forcing, cloud condensation, and other phenomena which can contribute to adverse outcomes. Black Carbon (BC) is a unique tracer for combustion emissions, and can be detected rapidly and with great sensitivity by filter-based optical methods. It has no non-combustion sources and is not transformed by atmospheric processes. Its presence at altitude is unequivocal. Recent technical advances have led to the development of miniaturized instruments which can be operated on ultra-light aircraft, balloons or UAV's. From January to April 2012, a 'Pipistrel Virus' single-seat ultra-light aircraft flew around the world on a photographic and environmental-awareness mission. The flight track covered all seven continents; crossed all major oceans; and operated at altitudes around 3000 m ASL and up to 8900 m ASL. The aircraft carried a specially-developed high-sensitivity miniaturized dual-wavelength Aethalometer, which recorded BC concentrations with very high temporal resolution and sensitivity (see Reference below). We present examples of data from flight tracks over remote oceans, uninhabited land masses, and densely populated areas. Back-trajectories are used to show transport of polluted air masses. Measuring the dependence of the aerosol absorption on the wavelength, we show that aerosols produced during biomass combustion can be transported to high altitude in high concentrations. 1. __, Carbon Sampling Takes Flight, Science 2012, 335, 1286. 2. G. Močnik, L. Drinovec, M. Lenarčič, Airborne measurements of Black Carbon during the GLW Flight using miniature high-performance Aethalometers, accessed 8 January 2013

  13. Fast Airborne Aerosol Size and Chemistry Measurements with the High Resolution Aerosol Mass Spectrometer during the MILAGRO Campaign

    NASA Technical Reports Server (NTRS)

    DeCarlo, P. F.; Dunlea, E. J.; Kimmel, J. R.; Aiken, A. C.; Sueper, D.; Crounse, J.; Wennberg, P. O.; Emmons, L.; Shinozuka, Y.; Clarke, A.; Zhou, J.; Tomlinson, J.; Collins,D. R.; Knapp, D.; Weinheimer, A. J.; Montzka,D. D.; Campos,T.; Jimenez, J. L.

    2007-01-01

    The concentration, size, and composition of non-refractory submicron aerosol (NR-PM(sub l)) was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS. During the campaign the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA) species dominate the NR-PM(sub l) mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA) and biomass burning (BB) are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 microg/cubic m (STP) ppm(exp -1). This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006) and Kleinman et al. (2008). The stability of the OA/CO while O/C increases with photochemical age implies a net loss of carbon from the OA. BB OA is marked by signals at m/z 60 and 73, and also by a signal enhancement at large m/z indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major regional source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city

  14. Airborne measurements of spectral direct aerosol radiative forcing in INTEX/ICARTT (2004) and comparisons to previous campaigns

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Pilewskie, P.; Russell, P.; Livingston, J.; Howard, S.; Schmid, B.; Pommier, J.; Gore, W.; Eilers, J.; Wendisch, M.; Bush, B.; Valero, F.

    2005-12-01

    As part of the INTEX-NA (INtercontinental chemical Transport EXperiment-North America) and ITCT (Intercontinental Transport and Chemical Transformation of anthropogenic pollution) field studies, the NASA Ames 14-channel Airborne Tracking Sunphotometer (AATS-14) and a pair of Solar Spectral Flux Radiometers (SSFR) took measurements from aboard a Jetstream 31 (J31) aircraft during 19 science flights (~ 53 flight hours) over the Gulf of Maine between 12 July and 8 August 2004. AATS-14 measures the direct solar beam transmission at 14 discrete wavelengths (354-2138 nm), yielding aerosol optical depth (AOD) spectra, while the SSFR system yields down- and upwelling solar irradiance at a spectral resolution of ~ 8-12 nm over the wavelength range 300-1700 nm. The combination of simultaneous AATS and SSFR measurements yields plots of net spectral irradiance as a function of aerosol optical depth as measured along horizontal flight legs. From the slope of these plots we determine the instantaneous aerosol-induced change in net radiative flux per change in AOD. By normalization to an aerosol optical depth change of unity we derive the spectral aerosol radiative forcing efficiency [W m-2 nm-1]. Numerical integration of the irradiance measurements over a given spectral range yields the broadband aerosol radiative forcing efficiency [W m-2]. In INTEX/ITCT, we observed a total of 16 horizontal AOD gradients, with 10 gradients well suited for our analysis because of the small changes in solar zenith angle. Within the 10 case studies we found a high variability in the derived instantaneous aerosol forcing efficiencies for the visible wavelength range (350-700 nm), with a mean of -79.6 W m-2 and a standard deviation of 21.8 W m-2 (27%). The mean instantaneous forcing efficiency for the visible plus near-IR wavelength range (350-1670 nm) was derived to be 135.3 W m-2 with a standard deviation of 36.0 W m-2 (27%). An analytical conversion of the instantaneous forcing efficiencies to

  15. Infrared radiance analysis from the SNPP airborne field campaign

    NASA Astrophysics Data System (ADS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.

    2014-11-01

    Experimental field campaigns, including satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft, are an essential part of the satellite measurement system validation task aimed at improving observations of the Earth's atmosphere, clouds, and surface for enabling enhancements in weather prediction, climate monitoring capability, and environmental change detection. The Suomi NPP (SNPP) airborne field campaign was conducted during the 6 - 31 May, 2013 timeframe based out of Palmdale, CA, and focused on under-flights of the SNPP satellite with the NASA ER-2 aircraft in order to perform cal/val of the satellite instruments and their corresponding data products. Aircraft flight profiles were designed to under-fly multiple satellites within a single sortie, when feasible, to address satellite sensor validation and cross-validation; specifically, in addition to under-flying SNPP, flight profiles were defined to also obtain data coincident with the NASA A-train (i.e. AQUA), MetOP-A, and MetOP-B satellites to enable intercomparisons with instruments aboard those platforms (i.e. AIRS, IASI, and CrIS). This presentation focuses on radiance analysis from the SNPP airborne field campaign with a particular emphasis on NAST-I intercomparisons with the Crosstrack Infrared Sounder (CrIS).

  16. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 and 2013 Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Ramanathan, A.; Mao, J.; Riris, H.; Allan, G. R.; Hasselbrack, W.; Weaver, C. J.; Browell, E. V.

    2013-12-01

    altitudes above 5 km the biases in retrieved concentrations were 1-2 ppm. Analysis shows the decrease in CO2 due to vegetation when flying over Iowa cropland as well as the sudden increases in CO2 concentration near a coal-fired power plant in New Mexico. Our team also participated in the February 2013 ASCENDS flight campaign, flying over a variety of surfaces in the US, including over Railroad Valley NV, the California Central Valley, desert areas in Arizona, and over cold snow fields in the Rocky Mountains of Colorado and warmer snow in Iowa and Wisconsin. Our post-flight analyses showed that the retrievals of lidar range, lineshape and CO2 column absorption and concentrations worked well when measuring over topography with rapidly changing height and reflectivity, and through thin clouds. As expected, the relative reflectivity of snow surfaces near 1572 nm was small, about 10% of that of the desert, and good line fits and retrievals were made to these as well. Examples from analyzing the 2011 and 2013 measurements will be presented.

  17. The 2011 Draconids: The First European Airborne Meteor Observation Campaign

    NASA Astrophysics Data System (ADS)

    Vaubaillon, Jeremie; Koten, Pavel; Margonis, Anastasios; Toth, Juraj; Rudawska, Regina; Gritsevich, Maria; Zender, Joe; McAuliffe, Jonathan; Pautet, Pierre-Dominique; Jenniskens, Peter; Koschny, Detlef; Colas, Francois; Bouley, Sylvain; Maquet, Lucie; Leroy, Arnaud; Lecacheux, Jean; Borovicka, Jiri; Watanabe, Junichi; Oberst, Jürgen

    2015-02-01

    On 8 October 2011, the Draconid meteor shower (IAU, DRA) was predicted to cause two brief outbursts of meteors, visible from locations in Europe. For the first time, a European airborne meteor observation campaign was organized, supported by ground-based observations. Two aircraft were deployed from Kiruna, Sweden, carrying six scientists, 19 cameras and eight crew members. The flight geometry was chosen such that it was possible to obtain double-station observations of many meteors. The instrument setup on the aircraft as well as on the ground is described in full detail. The main peak from 1900-dust ejecta happened at the predicted time and at the predicted rate. The second peak was observed from the earlier flight and from the ground, and was caused most likely by trails ejected in the nineteenth century. A total of 250 meteors were observed, for which light curve data were derived. The trajectory, velocity, deceleration and orbit of 35 double station meteors were measured. The magnitude distribution index was high, as a result of which there was no excess of meteors near the horizon. The light curve proved to be extremely flat on average, which was unexpected. Observations of spectra allowed us to derive the compositional information of the Draconids meteoroids and showed an early release of sodium, usually interpreted as resulting from fragile meteoroids. Lessons learned from this experience are derived for future airborne meteor shower observation campaigns.

  18. Coordinated Airborne Studies in the Tropics (CAST) Field Campaign Report

    SciTech Connect

    Vaughan, Geraint

    2016-05-01

    The last field campaign held at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility site on Manus Island, Papua New Guinea (PNG), was conducted in February 2014 as part of the Co-ordinated Airborne Studies in the Tropics (CAST) campaign. This campaign was a collaboration between the National Aeronautics and Space Administration (NASA), National Center for Atmospheric Research (NCAR), and the United Kingdom’s (UK) Natural Environment Research Council (NERC) to study the composition of the Tropical Tropopause Layer (TTL) and the impact of deep convection on this composition. There are three main areas of interest: i) transport of trace gases in the tropical atmosphere (especially short-lived halogenated compounds that can be lifted rapidly into the TTL, where they augment the stratospheric loading of these species); ii) formation of cirrus and its impact on the TTL; and iii) the upper-atmosphere water vapor budget. Overall, the aim was to improve understanding of the dynamical, radiative, and chemical role of the TTL. The Manus operation was a joint experiment between the Universities of Manchester and Cambridge and the UK National Centre for Atmospheric Science (NCAS). It consisted of two elements: an ozonesonde campaign to measure ozone vertical profiles through the TTL, and ground-based monitoring of ozone, halogenated hydrocarbons, and greenhouse gases to determine the composition of lower-boundary-layer air in the Warm Pool region. Thanks to the support from the ARM Climate Research Facility and the exemplary collaboration of ARM staff in the region, the campaign was very successful.

  19. Vertically-resolved retrievals of the atmospheric CO2 concentration using multi-wavelength pulsed lidar measurements from the ASCENDS airborne campaigns

    NASA Astrophysics Data System (ADS)

    Ramanathan, A.; Mao, J.; Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C. J.; Kawa, S. R.

    2013-12-01

    Vertically resolved remote sensing measurements of CO2 can greatly aid the understanding of terrestrial processes compared to column-averaged measurements since the effects of such processes occur mainly in planetary boundary layer of the atmosphere. Using the NASA GSFC CO2 sounder, a multi-wavelength pulsed lidar system for CO2 remote sensing, we demonstrate vertically resolved CO2 concentration measurements from the ASCENDS (Active Sensing of Co2 Emissions over Nights, Days and Seasons) airborne campaigns of July-August 2011 and February-March 2013. Our instrument uses an IPDA (Integrated Path Differential Absorption) approach probing 30 wavelengths across a 1572.335 nm CO2 absorption line. Our pulsed approach gives us height-resolved (from time-of-flight) atmospheric backscatter information, allowing us to resolve lidar reflections from clouds and the ground. When flying over thin or broken clouds, the instrument simultaneously measures the absorption to each individual cloud layer and ground. This allows us to split the vertical CO2 column into layers (cloud-slicing of the atmosphere) and solve for the CO2 concentration of each column layer. Data from a flight over Iowa, USA in August 2011 making measurements through broken cumulus clouds showed not only a 15-20 ppm reduction in the column averaged CO2 measurements due to the summer biosphere, but also a further 10 ppm decrease in the CO2 concentration in the air below the cloud tops (in the planetary boundary layer) compared to the column average. Line shape information can also be used to resolve several vertical layers from measurements in clear air. Lower atmospheric CO2 has a broader absorption feature compared to that of upper atmospheric CO2 and so changes in lower atmospheric or boundary layer CO2 affect the total column absorption line shape differently compared to those of the upper atmosphere. The CO2 sounder instrument samples the entire absorption line, potentially allowing for resolving several

  20. Anatomy of cirrus clouds: Results from the Emerald airborne campaigns

    NASA Astrophysics Data System (ADS)

    Whiteway, James; Cook, Clive; Gallagher, Martin; Choularton, Tom; Harries, John; Connolly, Paul; Busen, Reinhold; Bower, Keith; Flynn, Michael; May, Peter; Aspey, Robin; Hacker, Jorg

    2004-12-01

    The Emerald airborne measurement campaigns have provided a view of the anatomy of cirrus clouds in both the tropics and mid-latitudes. These experiments have involved two aircraft that combine remote sensing and in-situ measurements. Results are presented here from two separate flights: one in frontal cirrus above Adelaide, Australia, the other in the cirrus outflow from convection above Darwin. Recorded images of ice crystals are shown in relation to the cloud structure measured simultaneously by an airborne lidar. In mid-latitude frontal cirrus, columnar and irregular ice crystals were observed throughout the cloud while rosettes were found only at the top. The cirrus outflow from a tropical thunderstorm extended for hundreds of kilometres between the heights of 12.2 and 15.8 km. This was composed mainly of hexagonal plates, columns, and large crystal aggregates that originated from within the main core region of the convection. A small number of bullet rosettes were found at the top of the outflow cirrus and this is interpreted as an indication of in-situ crystal formation. It was found that the largest aggregates fell to the lower regions of the outflow cirrus cloud while the single crystals and small aggregates remained at the top.

  1. Airborne Tropical TRopopause EXperiment (ATTREX) 2014 Western Pacific Campaign

    NASA Technical Reports Server (NTRS)

    Jensen, E.; Pfister, L.

    2014-01-01

    The NASA Airborne Tropical TRopopause EXperiment (ATTREX) is a series of airborne campaigns focused on understanding physical processes in the Tropical Tropopause Layer (TTL) and their role in atmospheric chemistry and climate. ATTREX is using the high-altitude, long-duration NASA Global Hawk Unmanned Air System to make in situ and remote-sensing measurements spanning the Pacific. A particular ATTREX emphasis is to better understand the dehydration of air as it passes through the cold tropical tropopause region. The ATTREX payload contains 12 in situ and remote sensing instruments that measure water vapor, carbon dioxide, methane, nonmethane hydrocarbons, sulfur hexafluoride, chlorofluorocarbons, nitrous oxide), reactive chemical compounds (ozone, bromine, nitrous oxide), meteorological parameters, and radiative fluxes. During January-March, 2014, the Global Hawk was deployed to Guam for ATTREX flights. Six science flights were conducted from Guam (in addition to the transits across the Pacific), resulting in over 100 hours of Western Pacific TTL sampling and about 180 vertical profiles through the TTL. I will provide an overview of the dataset, with examples of the measurements including meteorological parameters, clouds and water vapor, and chemical tracers.

  2. Airborne Tropical TRopopause EXperiment (ATTREX) 2014 Western Pacific Campaign

    NASA Astrophysics Data System (ADS)

    Jensen, E. J.; Pfister, L.

    2014-12-01

    The NASA Airborne Tropical TRopopause EXperiment (ATTREX) is a series of airborne campaigns focused on understanding physical processes in the Tropical Tropopause Layer (TTL) and their role in atmospheric chemistry and climate. ATTREX is using the high-altitude, long-duration NASA Global Hawk Unmanned Air System to make in situ and remote-sensing measurements spanning the Pacific. A particular ATTREX emphasis is to better understand the dehydration of air as it passes through the cold tropical tropopause region. The ATTREX payload contains 12 in situ and remote sensing instruments that measure water vapor, clouds, multiple gaseous tracers (CO, CO2, CH4, NMHC, SF6, CFCs, N2O), reactive chemical compounds (O3, BrO, NO2), meteorological parameters, and radiative fluxes.During January-March, 2014, the Global Hawk was deployed to Guam for ATTREX flights. Six science flights were conducted from Guam (in addition to the transits across the Pacific), resulting in over 100 hours of Western Pacific TTL sampling and about 180 vertical profiles through the TTL. I will provide an overview of the dataset, with examples of the measurements including meteorological parameters, clouds and water vapor, and chemical tracers.

  3. Airborne CH2O measurements over the North Atlantic during the 1997 NARE campaign: Instrument comparisons and distributions

    DOE PAGES

    Fried, Alan; Lee, Yin -Nan; Frost, Greg; ...

    2002-02-27

    Here, formaldehyde measurements from two independent instruments are compared with photochemical box model calculations. The measurements were made on the NOAA P-3 aircraft as part of the 1997 North Atlantic Regional Experiment (NARE 1997). After examining the possible reasons for the model-measurement discrepancy, we conclude that there are probably one or more additional unknown sources of CH2O in the North Atlantic troposphere.

  4. An overview of the flight campaign for the GAUGE project: airborne greenhouse gas (and other complementary trace gas) measurements around and over the UK between April 2014 and May 2015

    NASA Astrophysics Data System (ADS)

    Allen, Grant; Pitt, Joseph; Le Breton, Michael; Percival, Carl; Bannan, Thomas; O'Doherty, Simon; Manning, Alistair; Rigby, Matt; Gannesan, Anita; Mead, Mohammed; Bauguitte, Stephane; Lee, James; Wenger, Angelina; Palmer, Paul

    2016-04-01

    This work highlights data measured during flights by the UK Facility for Airborne Atmospheric Measurement (FAAM) as part of the Greenhouse gAs UK and Global Emissions (GAUGE) campaign. A total of 17 flights (85 flight-hours) have been conducted so far around the UK mainland and Ireland to sample precision in situ CH4, CO2, N2O (and other trace gas) concentrations and meteorological parameters at altitudes up to 9500m throughout the period April 2014 to May 2015. Airborne remote sensing retrievals of greenhouse gas total columns have also been calculated using the Manchester Airborne Retrieval Scheme for the UK Met Office ARIES high resolution FTIR instrument. This airborne dataset represents a mapped climatology and a series of case studies from which to assess top-down bulk-net-flux snapshots for regions of the UK, and provides for evaluation of inverse modelling approaches that challenge bottom-up inventories, satellite remote sensing measurements, and assessment of model transport uncertainty. In this paper, we shall describe the instrumentation on the FAAM aircraft and provide a diary of GAUGE FAAM flights (and data highlights) to date; and discuss selected flights of interest to studies such as those above with a focus of net mass flux evaluation.

  5. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; Derksen, Chris; Royer, Alain; Belair, Stephane; Houser, Paul; McDonald, Kyle; Entin, Jared; Lewis, Kristen

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  6. Developing Metadata Requirements for NASA Airborne Field Campaigns

    NASA Astrophysics Data System (ADS)

    Parker, L.; Rinsland, P. L.; Kusterer, J.; Chen, G.; Early, A. B.; Beach, A. L., III; Wang, D.; Typanski, N. D.; Rutherford, M.; Rieflin, E.

    2014-12-01

    The common definition of metadata is "data about data". NASA has developed metadata formats to meet the needs of its satellite missions and emerging users. Coverage of satellite missions is highly predictable based on orbit characteristics. Airborne missions feature complicated flight patterns to maximize science return and changes in the instrument suites. More relevant to the airborne science data holding, the metadata describes the airborne measurements, in terms of measurement location, time, platform, and instruments. The metadata organizes the data holdings and facilitates the data ordering process from the DAAC. Therefore, the metadata requirements will need to fit the type of airborne measurements and sampling strategies as well as leverage current Earth Science and Data Information System infrastructure (ECHO/Reverb, GCMD). Current airborne data is generated/produced in a variety of formats (ICARRT, ASCII, etc) with the metadata information embedded in the data file. Special readers are needed to parse data file to generate metadata needed for search and discovery. With loosely defined standards within the airborne community this process poses challenges to the data providers. It is necessary to assess the suitability of current metadata standards, which have been mostly developed for satellite observations. To be presented are the use case-based assessments of the current airborne metadata standards and suggestions for future changes.

  7. JORNEX: An airborne campaign to quantify rangeland vegetation change and plant community-atmospheric interactions

    SciTech Connect

    Ritchie, J.C.; Rango, A.; Kustas, W.P.

    1996-11-01

    The Jornada Experimental Range in New Mexico provides a unique opportunity to integrate hydrologic-atmospheric fluxes and surface states, vegetation types, cover, and distribution, and vegetation response to changes in hydrologic states and atmospheric driving forces. The Jornada Range is the site of a long-term ecological research program to investigate the processes leading to desertification. In concert with ongoing ground measurements, remotely sensed data are being collected from ground, airborne, and satellite platforms during JORNEX (the JORNada Experiment) to provide spatial and temporal distribution of vegetation state using laser altimeter and multispectral aircraft and satellite data and surface energy balance estimates from a combination of parameters and state variables derived from remotely sensed data. These measurements will be used as inputs to models to quantify the hydrologic budget and the plant response to changes in components in the water and energy balance. Intensive three day study periods for ground and airborne campaigns have been made in May 1995 (dry season) and September 1995 (wet season), February 1996 (Winter) and are planned for wet and dry seasons of 1996. An airborne platform is being used to collect thermal, multispectral, 3-band video, and laser altimetry profile data. Bowen ratio-energy balance stations were established in shrub and grass communities in May 1995 and are collecting data continuously. Additional energy flux measurements were made using eddy correlation techniques during the September 1995 campaign. Ground-based measurements during the intensive campaigns include thermal and multispectral measurements made using yoke-based platforms and hand-held instruments, LAI, and other vegetation data. Ground and aircraft measurements are acquired during Landsat overpasses so the effect of scale on measurements can be studied. This paper discusses preliminary results from the 1995 airborne campaign. 24 refs., 13 figs., 1 tab.

  8. LIF instrument for airborne measurements of OH, HO2 and RO2 radicals in the upper troposphere deployed on HALO during the OMO 2015 campaign

    NASA Astrophysics Data System (ADS)

    Künstler, Christopher; Broch, Sebastian; Bachner, Mathias; Bayer, Norbert; Dahlhoff, Knut; Fuchs, Hendrik; Holland, Frank; Hofzumahaus, Andreas; Jansen, Peter; Wolters, Jörg; Zöger, Martin; Wahner, Andreas

    2016-04-01

    We present the first deployment of our instrument for the measurement of OH, HO2 and RO2 radical concentrations in the upper troposphere aboard the German research aircraft HALO during the OMO (Oxidation Mechanism Observation) campaigns in winter and summer 2015. Radicals are detected by laser induced fluorescence (LIF) in two separate measurement cells. One for the direct detection of OH (OH channel) and one for alternating measurements of HO2 and RO2 radicals after chemical conversion to OH by the reaction with NO (ROx channel). A special air inlet for the OH channel was developed and built at Forschungszentrum Jülich, based on the shrouded-inlet design by Eisele et al. It allows a controlled reduction of the air flow velocity prior to sampling as well as the performance of inflight calibrations via photolysis of ambient water vapor. The inflight calibrations show that the OH detection sensitivity increases substantially - roughly by a factor of 5 - over the altitude range from ground to 10 km. This is supported by the theoretical pressure dependence which is in good accordance with the measured data. The ROx channel has no special inlet system and samples directly from the fast airflow along the aircraft. We will give an overview of the instrumental setup for the application on HALO and show first results from flights performed during the OMO-EU (winter 2015) and OMO-Asia campaign (summer 2015).

  9. Evaluation of NOx emission inventories in California using multi-satellite data sets, AMAX-DOAS and in-situ airborne measurements, and regional model simulations during the CalNex field campaign

    NASA Astrophysics Data System (ADS)

    Kim, S.; Baidar, S.; Boersma, F.; Brioude, J.; Bucsela, E. J.; Burrows, J. P.; Celarier, E. A.; Cohen, R. C.; Frost, G. J.; Krotkov, N. A.; Lamsal, L. N.; Martin, R. V.; McKeen, S. A.; Oetjen, H.; Pollack, I. B.; Richter, A.; Russell, A. R.; Ryerson, T. B.; Trainer, M.; Valin, L. C.; Volkamer, R. M.

    2012-12-01

    Satellite NO2 column measurements indicate large NOx emissions from urban and agricultural sources in California. In this presentation, we highlight the NOx sources identified in California using the satellite measurements. Comparison of regional model-simulated NO2 columns with satellite retrievals has proven useful in evaluating emission inventories for various sectors. We compare the NO2 columns from the WRF-Chem model with the multi-satellite data sets from different instruments and retrieval groups for a variety of California sources. Use of multiple satellite data sets help to define the uncertainties in the satellite retrievals. In addition, the CalNex 2010 intensive field campaign provides a unique opportunity to independently assess California's emission inventories. CU-AMAX-DOAS and in-situ airborne observations from CalNex 2010 and fine-resolution model simulations are used to estimate the accuracy of the satellite NO2 column retrievals.

  10. ESA Cryovex 2011 Airborne Campaign for CRYOSAT-2 Calibration and Validation

    NASA Astrophysics Data System (ADS)

    Skourup, H.; Einarsson, I.; Sandberg, L.; Forsberg, R.; Stenseng, L.; Hendricks, S.; Helm, V.; Davidson, M.

    2011-12-01

    After the successful launch of CryoSat-2 in April 2010, the first direct validation campaign of the satellite was carried out in the April-May 2011. DTU Space has been involved in ESA's CryoSat Validation Experiment (CryoVEx) with airborne activities since 2003. To validate the performance of the CryoSat-2 radar altimeter (SIRAL), the aircraft is equipped with an airborne version of the SIRAL altimeter (ASIRAS) together with a laser scanner. Of particular interest is to study the penetration depth of SIRAL into both land- and sea ice. This can be done by comparing the radar and laser measurements, as the laser reflects on the surface, and by overflight of laser reflectors. In the spring of 2011 the DTU Space airborne team visited five main validation sites: Devon ice cap (Canada), Austfonna ice cap (Svalbard), the EGIG line crossing the Greenland Ice Sheet, as well as the sea ice north of Alert and sea ice around Svalbard in the Fram Strait. Selected tracks were planned to match CryoSat-2 passes and a few of them were flown in formation flight with the Alfred Wegener Institute (AWI) Polar-5 carrying an EM-bird. We present an overview of the 2011 airborne campaign together with first results of the CryoSat-2 underflights.

  11. Advanced sounder validation studies from recent NAST-I airborne field campaigns

    NASA Astrophysics Data System (ADS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Tian, Jialin; Smith, William L.

    2016-05-01

    The evolution of satellite measurement systems continues to improve their research and operational impact and is essential for advancing global observations of the Earth's atmosphere, clouds, and surface. Measurement system and data product validation is required to fully exploit these data for enabling their intended enhancements in weather prediction, climate monitoring capability, and environmental change detection. Airborne field campaigns can play a vital role in such validation and contribute to assessing and improving satellite sensor measurements and associated data products. The NASA LaRC National Airborne Sounder Testbed - Interferometer (NAST-I) was part of the aircraft payload for the two field experiments conducted to address Suomi NPP (SNPP) validation since the satellite's launch in late 2011: 1) mid-latitude flights based out of Palmdale, CA during May 2013 (SNPP-1), and 2) flights over Greenland during March 2015 while based out of Keflavik, Iceland (SNPP-2). This presentation focuses on radiance analysis from the SNPP airborne field campaigns with a particular emphasis on NAST-I inter-comparisons with the Cross-track Infrared Sounder (CrIS) for challenging cold scene conditions as observed during SNPP-2.

  12. Airborne Trace Gas and Aerosol Measurements in Several Shale Gas Basins during the SONGNEX (Shale Oil and Natural Gas Nexus) Campaign 2015

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Trainer, M.; De Gouw, J. A.

    2015-12-01

    Oil and natural gas from tight sand and shale formations has increased strongly over the last decade. This increased production has been associated with emissions of methane, non-methane hydrocarbons and other trace gases to the atmosphere, which are concerns for air quality, climate and air toxics. The NOAA Shale Oil and Natural Gas Nexus (SONGNEX) aircraft campaign took place in 2015, when the NOAA WP-3 aircraft conducted 20 research flights between March 19 and April 27, 2015 in the following shale gas regions: Denver-Julesberg, Uintah, Upper Green River, San Juan, Bakken, Barnett, Eagle Ford, Haynesville, Woodford, and Permian. The NOAA P3 was equipped with an extensive set of gas phase measurements, including instruments for methane, ethane, CO, CO2, a new H3O+CIMS, canister and cartridge samples for VOCs, HCHO, glyoxal, HNO3, NH3, NOx, NOy, PANs, ozone, and SO2. Aerosol number and size distributions were also measured. This presentation will focus on an overview of all the measurements onboard the NOAA WP-3 aircraft and discuss the differences between the shale gas regions. Due to a drop in oil prices, drilling for oil decreased in the months prior to the mission, but nevertheless the production of oil and natural gas were near the all-time high. Many of the shale gas basins investigated during SONGNEX have quite different characteristics. For example, the Permian Basin is a well-established field, whereas the Eagle Ford and the Bakken saw an almost exponential increase in production over the last few years. The basins differ by the relative amounts of natural gas versus oil that is being produced. Previous work had shown a large variability in methane emissions relative to the production (leak rate) between different basins. By including more and qualitatively different basins during SONGNEX, the study has provided an extensive data set to address how emissions depend on raw gas composition, extraction techniques and regulation. The influence of these

  13. Ground testing and campaign intercomparisons with the NAST-I airborne FTS

    NASA Astrophysics Data System (ADS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.; Rochette, Luc; Noe, Anna; Oliver, Don; Tian, Jialin

    2014-10-01

    The NASA / JPSS Airborne Sounder Testbed - Interferometer (NAST-I) is a well-proven airborne remote sensing system, which has flown in 19 previous field campaigns aboard the high altitude NASA ER-2, Northrop Grumman / Scaled Composites Proteus, and NASA WB-57 aircraft since initially being flight qualified in 1998. While originally developed to provide experimental observations needed to finalize specifications and test proposed designs and data processing algorithms for the Cross-track Infrared Sounder (CrIS) flying aboard the Suomi National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (SNPP) and the Joint Polar Satellite System, JPSS (formerly NPOESS, prior to program restructuring), its unprecedented data quality and system characteristics have contributed to a variety of atmospheric research and measurement validation objectives. This paper will provide a program overview and update, including a summary of measurement system capabilities, with a primary focus on postmission ground testing and characterization performed subsequent to the recently conducted Suomi NPP (SNPP) airborne field campaign.

  14. AquiferEx: Results of the Optical and Radar Airborne Campaign in Tunisia

    NASA Astrophysics Data System (ADS)

    Scheiber, R.; Hajnsek, I.; Horn, R.; Oppelt, N.; Mauser, W.; Baccar, B. B.; Bianchi, R.

    2007-03-01

    In November 2005 an ESA funded airborne campaign was conducted in Southern Tunisia to generate a data base of high resolution optical and radar data in support of science product development with respect to water management applications in semi-arid areas. Both the optical (AVIS of LMU) and radar sensor (E-SAR of DLR) were operated quasi-simultaneously from the same aircraft. In parallel a ground measurement campaign was conducted with the support of the Tunisian organisations CRDA (Commissariat Regional des Development Agricole) and IRA (Institut des Regiones Arides). This paper describes the acquired optical, radar, and ground reference data, the adopted processing methodologies as well as the results obtained in the frame of this project from the radar data.

  15. Minimizing Intra-Campaign Biases in Airborne Laser Altimetry By Thorough Calibration of Lidar System Parameters

    NASA Astrophysics Data System (ADS)

    Sonntag, J. G.; Chibisov, A.; Krabill, K. A.; Linkswiler, M. A.; Swenson, C.; Yungel, J.

    2015-12-01

    Present-day airborne lidar surveys of polar ice, NASA's Operation IceBridge foremost among them, cover large geographical areas. They are often compared with previous surveys over the same flight lines to yield mass balance estimates. Systematic biases in the lidar system, especially those which vary from campaign to campaign, can introduce significant error into these mass balance estimates and must be minimized before the data is released by the instrument team to the larger scientific community. NASA's Airborne Topographic Mapper (ATM) team designed a thorough and novel approach in order to minimize these biases, and here we describe two major aspects of this approach. First, we conduct regular ground vehicle-based surveys of lidar calibration targets, and overfly these targets on a near-daily basis during field campaigns. We discuss our technique for conducting these surveys, in particular the measures we take specifically to minimize systematic height biases in the surveys, since these can in turn bias entire campaigns of lidar data and the mass balance estimates based on them. Second, we calibrate our GPS antennas specifically for each instrument installation in a remote-sensing aircraft. We do this because we recognize that the metallic fuselage of the aircraft can alter the electromagnetic properties of the GPS antenna mounted to it, potentially displacing its phase center by several centimeters and biasing lidar results accordingly. We describe our technique for measuring the phase centers of a GPS antenna installed atop an aircraft, and show results which demonstrate that different installations can indeed alter the phase centers significantly.

  16. Lidar measurements of airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Li, Guangkun; Philbrick, C. Russell

    2003-03-01

    Raman lidar techniques have been used in remote sensing to measure the aerosol optical extinction in the lower atmosphere, as well as water vapor, temperature and ozone profiles. Knowledge of aerosol optical properties assumes special importance in the wake of studies strongly correlating airborne particulate matter with adverse health effects. Optical extinction depends upon the concentration, composition, and size distribution of the particulate matter. Optical extinction from lidar returns provide information on particle size and density. The influence of relative humidity upon the growth and size of aerosols, particularly the sulfate aerosols along the northeast US region, has been investigated using a Raman lidar during several field measurement campaigns. A particle size distribution model is being developed and verified based on the experimental results. Optical extinction measurements from lidar in the NARSTO-NE-OPS program in Philadelphia PA, during summer of 1999 and 2001, have been analyzed and compared with other measurements such as PM sampling and particle size measurements.

  17. Airborne Sun photometry and Closure Studies in SAFARI-2000 Dry Season Campaign

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Russell, P. B.; Pilewskie, P.; Redemann, J.; Livingston, J. M.; Hobbs, P. V.; Welton, E. J.; Campbell, J.; Holben, B. N.; McGill, M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    From August 13 to September 25, the Southern African Regional Science Initiative's (SAFARI 2000) dry-season airborne campaign studied the complex interactions between the region's ecosystems, air pollution, atmospheric circulation, land-atmosphere interactions, and land use change. The field campaign was timed to coincide with the annual winter fire season in Southern Africa. This challenging campaign. which coordinated ground-based measurement teams, multiple research aircraft, and satellite overpasses across nine African nations, was head quartered at the Petersburg International Airport in South Africa's Northern Province. Among many others, unique coordinated observations were made of the evolution of massive, thick haze layers produced by industrial emissions, biomass burning, marine and biogenic sources. The NASA Ames Airborne Tracking 14-channel Sunphotometer (AATS-14) was operated successfully aboard the University of Washington CV-580 during 24 data flights. The AATS-14 instrument measures the transmission of the direct solar beam at 14 discrete wavelengths (3501558 nm) from which we derive spectral aerosol optical depths (AOD), columnar water vapor (CWV) and columnar ozone. Flying at different altitudes over a fixed location allows derivation of layer AOD and CWV. Data taken during feasible vertical profiles allows derivation of aerosol extinction and water vapor density. In the talk, we show comparisons with ground-based AERONET sun/sky photometer results, with ground based MPL-Net lidar data, and with measurements from a lidar aboard the high flying ER-2 aircraft. We will use measurements from the Ames Solar Spectral Flux Radiometer to derive estimates of solar spectral forcing as a function of aerosol thickness. Validations of TOMS and Terra satellite aerosol and water-vapor retrievals will also be discussed.

  18. Airborne CH2O measurements over the North Atlantic during the 1997 NARE campaign: Instrument comparisons and distributions

    SciTech Connect

    Fried, Alan; Lee, Yin -Nan; Frost, Greg; Wert, Bryan; Henry, Bruce; Drummond, James R.; Hubler, Gerd; Jobson, Tom

    2002-02-27

    Here, formaldehyde measurements from two independent instruments are compared with photochemical box model calculations. The measurements were made on the NOAA P-3 aircraft as part of the 1997 North Atlantic Regional Experiment (NARE 1997). After examining the possible reasons for the model-measurement discrepancy, we conclude that there are probably one or more additional unknown sources of CH2O in the North Atlantic troposphere.

  19. The NRL 2011 Airborne Sea-Ice Thickness Campaign

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.

    2011-12-01

    In March of 2011, the US Naval Research Laboratory (NRL) performed a study focused on the estimation of sea-ice thickness from airborne radar, laser and photogrammetric sensors. The study was funded by ONR to take advantage of the Navy's ICEX2011 ice-camp /submarine exercise, and to serve as a lead-in year for NRL's five year basic research program on the measurement and modeling of sea-ice scheduled to take place from 2012-2017. Researchers from the Army Cold Regions Research and Engineering Laboratory (CRREL) and NRL worked with the Navy Arctic Submarine Lab (ASL) to emplace a 9 km-long ground-truth line near the ice-camp (see Richter-Menge et al., this session) along which ice and snow thickness were directly measured. Additionally, US Navy submarines collected ice draft measurements under the groundtruth line. Repeat passes directly over the ground-truth line were flown and a grid surrounding the line was also flown to collect altimeter, LiDAR and Photogrammetry data. Five CRYOSAT-2 satellite tracks were underflown, as well, coincident with satellite passage. Estimates of sea ice thickness are calculated assuming local hydrostatic balance, and require the densities of water, ice and snow, snow depth, and freeboard (defined as the elevation of sea ice, plus accumulated snow, above local sea level). Snow thickness is estimated from the difference between LiDAR and radar altimeter profiles, the latter of which is assumed to penetrate any snow cover. The concepts we used to estimate ice thickness are similar to those employed in NASA ICEBRIDGE sea-ice thickness estimation. Airborne sensors used for our experiment were a Reigl Q-560 scanning topographic LiDAR, a pulse-limited (2 nS), 10 GHz radar altimeter and an Applanix DSS-439 digital photogrammetric camera (for lead identification). Flights were conducted on a Twin Otter aircraft from Pt. Barrow, AK, and averaged ~ 5 hours in duration. It is challenging to directly compare results from the swath LiDAR with the

  20. Measurement campaigns for holdup estimation

    SciTech Connect

    Picard, R.R. )

    1988-07-01

    The derivation of technically defensible holdup estimates is described. Considerations important in the planning of measurement campaigns to provide necessary data are reviewed and the role of statistical sampling is discussed. By design, the presentation is nonmathematical and intended for a general audience. Though clearly important, use of sampling principles in the planning of holdup-related activities is sometimes viewed with apprehension. Holdup is often poorly understood to begin with, and the incorporation of the esoteric matters only adds to an image problem. Unfortunately, there are no painless options. In many operating facilities, surface areas on which holdup has accumulated amount to many square miles. It is not practical to pursue 100% measurement of all such surface areas. Thus, some portion is measured - constituting a ''sample,'' whether obtained by a formal procedure or not. Understanding the principles behind sampling is important in planning and in developing legitimate holdup estimates. Although derivation of legitimate, facility-wide holdup estimates is not currently mandated by Department of Energy regulatory requirements, the related activities would greatly advance the present state of knowledge.

  1. An Elevated Reservoir of Air Pollutants over the Mid-Atlantic States During the 2011 DISCOVER-AQ Campaign: Airborne Measurements and Numerical Simulations

    NASA Technical Reports Server (NTRS)

    He, Hao; Loughner, Christopher P.; Stehr, Jeffrey W.; Arkinson, Heather L.; Brent, Lacey C.; Follette-Cook, Melanie B.; Tzortziou, Maria A.; Pickering, Kenneth E.; Thompson, Anne M.; Martins, Douglas K.; Diskin, Glenn S.; Anderson, Bruce E.; Crawford, James H.; Weinheimer, Andrew J.; Lee, Pius; Hains, Jennifer C.; Dickerson, Russell R.

    2013-01-01

    During a classic heat wave with record high temperatures and poor air quality from July 18 to 23, 2011, an elevated reservoir of air pollutants was observed over and downwind of Baltimore, MD, with relatively clean conditions near the surface. Aircraft and ozonesonde measurements detected approximately 120 parts per billion by volume ozone at 800 meters altitude, but approximately 80 parts per billion by volume ozone near the surface. High concentrations of other pollutants were also observed around the ozone peak: approximately 300 parts per billion by volume CO at 1200 meters, approximately 2 parts per billion by volume NO2 at 800 meters, approximately 5 parts per billion by volume SO2 at 600 meters, and strong aerosol optical scattering (2 x 10 (sup 4) per meter) at 600 meters. These results suggest that the elevated reservoir is a mixture of automobile exhaust (high concentrations of O3, CO, and NO2) and power plant emissions (high SO2 and aerosols). Back trajectory calculations show a local stagnation event before the formation of this elevated reservoir. Forward trajectories suggest an influence on downwind air quality, supported by surface ozone observations on the next day over the downwind PA, NJ and NY area. Meteorological observations from aircraft and ozonesondes show a dramatic veering of wind direction from south to north within the lowest 5000 meters, implying that the development of the elevated reservoir was caused in part by the Chesapeake Bay breeze. Based on in situ observations, Community Air Quality Multi-scale Model (CMAQ) forecast simulations with 12 kilometers resolution overestimated surface ozone concentrations and failed to predict this elevated reservoir; however, CMAQ research simulations with 4 kilometers and 1.33 kilometers resolution more successfully reproduced this event. These results show that high resolution is essential for resolving coastal effects and predicting air quality for cities near major bodies of water such as

  2. An elevated reservoir of air pollutants over the Mid-Atlantic States during the 2011 DISCOVER-AQ campaign: Airborne measurements and numerical simulations

    NASA Astrophysics Data System (ADS)

    He, Hao; Loughner, Christopher P.; Stehr, Jeffrey W.; Arkinson, Heather L.; Brent, Lacey C.; Follette-Cook, Melanie B.; Tzortziou, Maria A.; Pickering, Kenneth E.; Thompson, Anne M.; Martins, Douglas K.; Diskin, Glenn S.; Anderson, Bruce E.; Crawford, James H.; Weinheimer, Andrew J.; Lee, Pius; Hains, Jennifer C.; Dickerson, Russell R.

    2014-03-01

    During a classic heat wave with record high temperatures and poor air quality from July 18 to 23, 2011, an elevated reservoir of air pollutants was observed over and downwind of Baltimore, MD, with relatively clean conditions near the surface. Aircraft and ozonesonde measurements detected ˜120 ppbv ozone at 800 m altitude, but ˜80 ppbv ozone near the surface. High concentrations of other pollutants were also observed around the ozone peak: ˜300 ppbv CO at 1200 m, ˜2 ppbv NO2 at 800 m, ˜5 ppbv SO2 at 600 m, and strong aerosol optical scattering (2 × 10-4 m-1) at 600 m. These results suggest that the elevated reservoir is a mixture of automobile exhaust (high concentrations of O3, CO, and NO2) and power plant emissions (high SO2 and aerosols). Back trajectory calculations show a local stagnation event before the formation of this elevated reservoir. Forward trajectories suggest an influence on downwind air quality, supported by surface ozone observations on the next day over the downwind PA, NJ and NY area. Meteorological observations from aircraft and ozonesondes show a dramatic veering of wind direction from south to north within the lowest 5000 m, implying that the development of the elevated reservoir was caused in part by the Chesapeake Bay breeze. Based on in situ observations, CMAQ forecast simulations with 12 km resolution overestimated surface ozone concentrations and failed to predict this elevated reservoir; however, CMAQ research simulations with 4 km and 1.33 km resolution more successfully reproduced this event. These results show that high resolution is essential for resolving coastal effects and predicting air quality for cities near major bodies of water such as Baltimore on the Chesapeake Bay and downwind areas in the Northeast.

  3. Validation of Airborne CO2 Laser Measurements

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Dobler, J. T.; Kooi, S.; Fenn, M. A.; Choi, Y.; Vay, S. A.; Harrison, F. W.; Moore, B.; Zaccheo, T. S.

    2010-12-01

    This paper discusses the flight test validation of a unique, multi-frequency, intensity-modulated, single-beam laser absorption spectrometer (LAS) that operates near 1.57 μm for remote column CO2 measurements. This laser system is under development for a future space-based mission to determine the global distribution of regional-scale CO2 sources and sinks, which is the objective of the NASA Active Sensing of CO2 Emissions during Nights, Days, and Seasons (ASCENDS) mission. A prototype of this LAS system, called the Multi-frequency Fiber Laser Lidar (MFLL), was developed by ITT, and it has been flight tested in nine airborne campaigns since May 2005. This paper focuses on the most recent results obtained over the last two years of flight-testing where the MFLL remote CO2 column measurements were evaluated against airborne in situ CO2 profile measurements traceable to World Meteorological Organization standards. A comprehensive multiple-aircraft flight test program was conducted over Oklahoma and Virginia in July-August 2009. The MFLL obtained surface reflectance and average CO2 column variations along the 50-km flight legs over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Central Facility (CF) in Lamont, Oklahoma; over rural Virginia and North Carolina; and over the Chesapeake Bay. For a flight altitude of 4.6 km, the average signal to noise ratio (SNR) for a 1-s CO2 column measurement was found to be 760, which is the equivalent of a CO2 mixing ratio precision of 0.60 ppmv, and for a 10-s average the SNR was found to be 2002 or 0.20 ppmv. Absolute comparisons of MFLL-derived and in situ-derived CO2 column measurements were made for all daytime flights conducted over Oklahoma and Virginia with an average agreement to within 0.32 ppmv. A major ASCENDS flight test campaign was conducted using the NASA DC-8 during 6-18 July 2010. The MFLL system and associated in situ CO2 instrumentation were operated on DC-8 flights over the Central Valley

  4. Airborne tunable diode laser spectrometer for trace-gas measurement in the lower stratosphere.

    PubMed

    Podolske, J; Loewenstein, M

    1993-09-20

    This paper describes the airborne tunable laser absorption spectrometer, a tunable diode laser instrument designed for in situ trace-gas measurement in the lower stratosphere from an ER-2 high-altitude research aircraft. Laser-wavelength modulation and second-harmonic detection are employed to achieve the required constituent detection sensitivity. The airborne tunable laser absorption spectrometer was used in two polar ozone campaigns, the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition, and measured nitrous oxide with a response time of Is and an accuracy ≤ 10%.

  5. Relating Hyperspectral Airborne Data to Ground Measurements in a Complex and Discontinuous Canopy

    NASA Astrophysics Data System (ADS)

    Calleja, Javier F.; Hellmann, Christine; Mendiguren, Gorka; Punalekar, Suvarna; Peón, Juanjo; MacArthur, Alasdair; Alonso, Luis

    2015-12-01

    The work described in this paper is aimed at validating hyperspectral airborne reflectance data collected during the Regional Experiments For Land-atmosphere EXchanges (REFLEX) campaign. Ground reflectance data measured in a vineyard were compared with airborne reflectance data. A sampling strategy and subsequent ground data processing had to be devised so as to capture a representative spectral sample of this complex crop. A linear model between airborne and ground data was tried and statistically tested. Results reveal a sound correspondence between ground and airborne reflectance data ( R2 > 0.97), validating the atmospheric correction of the latter.

  6. Aerosol Optical Thickness comparisons between NASA LaRC Airborne HSRL and AERONET during the DISCOVER-AQ field campaigns

    NASA Astrophysics Data System (ADS)

    Scarino, A. J.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Berkoff, T.; Cook, A. L.; Harper, D. B.; Hoff, R. M.; Holben, B. N.; Schafer, J.; McGill, M. J.; Yorks, J. E.; Lantz, K. O.; Michalsky, J. J.; Hodges, G.

    2013-12-01

    The first- and second-generation NASA airborne High Spectral Resolution Lidars (HSRL-1 and HSRL-2) have been deployed on board the NASA Langley Research Center King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns. These included deployments during July 2011 over Washington, D.C. and Baltimore, MD and during January and February 2013 over the San Joaquin Valley (SJV) of California and also a scheduled deployment during September 2013 over Houston, TX. Measurements of aerosol extinction, backscatter, and depolarization are available from both HSRL-1 and HSRL-2 in coordination with other participating research aircraft and ground sites. These measurements constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, aerosol optical thickness (AOT), as well as the Mixing Layer Height (MLH). HSRL AOT is compared to AOT measured by the Distributed Regional Aerosol Gridded Observation Networks (DRAGON) and long-term AERONET sites. For the 2011 campaign, comparisons of AOT at 532nm between HSRL-1 and AERONET showed excellent agreement (r = 0.98, slope = 1.01, intercept = 0.037) when the King Air flights were within 2.5 km of the ground site and 10 min from the retrieval time. The comparison results are similar for the 2013 DISCOVER-AQ campaign in the SJV. Additional ground-based (MPL) and airborne (CPL) lidar data were used to help screen for clouds in the AERONET observations during the SJV portion. AOT values from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) located at the Porterville, CA site during the SJV campaign are also compared to HSRL-2 AOT. Lastly, using the MLH retrieved from HSRL aerosol backscatter profiles, we describe the distribution of AOT relative to the MLH.

  7. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R. O.; Kratwurst, S.; Krings, T.; Luna, B.; Thorpe, A. K.

    2015-06-01

    Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and Methane Experiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s-1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace gas signature detection in an airborne science campaign, and presages many future applications.

  8. An Airborne Observing Campaign of an Announced Small Asteroid Impact for High Fidelity Impact Modeling Validation

    NASA Astrophysics Data System (ADS)

    Jenniskens, P. M. M.; Grinstead, J. H.

    2015-12-01

    High fidelity modeling of an asteroid impact requires a known size, mass, shape, entry orientation, entry speed, entry angle, time and location of entry, and material properties of the impacting asteroid. Much of that information can be gathered from small asteroids on an impact trajectory with Earth while they are on approach, given sufficient warning time. That makes small asteroid impacts uniquely suited for collecting data to validate such models. One-meter sized asteroids impact Earth about once a week, 4-meter sized asteroids impact once a year. So far, only asteroid 2008 TC3 was observed in space, characterized prior to impact, and then recovered in part as meteorites on the ground. The next TC3-like impact could provide more warming time to study the impact in detail. Close to 70 percent of all asteroid impacts on Earth occur over the ocean. Hence, small asteroid impact observations require an instrumented airborne platform to take a multi-disciplined research team to the right location at the right time. From a safe 100-km distance, the impact would be observed low enough in the sky to study the process of fragmentation that dictates at which altitude the kinetic energy is deposited that can cause an airburst. Constraints on radiative heating, ablation rate, and fragmentation processes can be obtained from measuring the air plasma emission escaping the shock, elemental atom line emissions and excitation conditions, pressure broadening, and deceleration in the plane of the known trajectory. It is also possible to measure wake, lightcurve and air plasma emission line intensities early in flight that can be used to evaluate the presence of regolith and the internal cohesion of asteroids. The main element abundance (asteroid composition) can be measured for individual fragments, while CN-band emission can point to the presence of organic matter. Such information will help constrain the meteorite type if no meteorites can be recovered in an over

  9. Wind-wave-induced velocity in ATI SAR ocean surface currents: First experimental evidence from an airborne campaign

    NASA Astrophysics Data System (ADS)

    Martin, Adrien C. H.; Gommenginger, Christine; Marquez, Jose; Doody, Sam; Navarro, Victor; Buck, Christopher

    2016-03-01

    Conventional and along-track interferometric (ATI) Synthetic Aperture Radar (SAR) senses the motion of the ocean surface by measuring the Doppler shift of reflected signals. Measurements are affected by a Wind-wave-induced Artifact Surface Velocity (WASV) which was modeled theoretically in past studies and has been estimated empirically only once before with Envisat ASAR by Mouche et al. (2012). An airborne campaign in the tidally dominated Irish Sea served to evaluate this effect and the current retrieval capabilities of a dual-beam SAR interferometer known as Wavemill. A comprehensive collection of Wavemill airborne data acquired in a star pattern over a well-instrumented validation site made it possible for the first time to estimate the magnitude of the WASV, and its dependence on azimuth and incidence angle from data alone. In light wind (5.5 m/s) and moderate current (0.7 m/s) conditions, the wind-wave-induced contribution to the measured ocean surface motion reaches up to 1.6 m/s upwind, with a well-defined second-order harmonic dependence on direction to the wind. The magnitude of the WASV is found to be larger at lower incidence angles. The airborne WASV results show excellent consistency with the empirical WASV estimated from Envisat ASAR. These results confirm that SAR and ATI surface velocity estimates are strongly affected by WASV and that the WASV can be well characterized with knowledge of the wind knowledge and of the geometry. These airborne results provide the first independent validation of Mouche et al. (2012) and confirm that the empirical model they propose provides the means to correct airborne and spaceborne SAR and ATI SAR data for WASV to obtain accurate ocean surface current measurements. After removing the WASV, the airborne Wavemill-retrieved currents show very good agreement against ADCP measurements with a root-mean-square error (RMSE) typically around 0.1 m/s in velocity and 10° in direction.

  10. Airborne measurements of spatial NO2 distributions during AROMAT

    NASA Astrophysics Data System (ADS)

    Meier, Andreas Carlos; Seyler, André; Schönhardt, Anja; Richter, Andreas; Ruhtz, Thomas; Lindemann, Carsten; Burrows, John P.

    2015-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In September 2014 several European research groups conducted the ESA funded Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign to test and intercompare newly developed airborne observation sytsems dedicated to air quality satellite validation studies. The IUP Bremen contributed to this campaign with its Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP) on board a Cessna 207 turbo, operated by the FU Berlin. AirMAP allows the retrieval of integrated NO2 column densities in a stripe below the aircraft at a fine spatial resolution of up to 30 x 80 m2, at a typical flight altitude. Measurements have been performed over the city of Bucharest, creating for the first time high spatial resolution maps of Bucharest's NO2 distribution in a time window of approx. 2 hours. The observations were synchronised with ground-based car MAX-DOAS measurements for comparison. In addition, measurements were taken over the city of Berlin, Germany and at the Rovinari power plant, Romania. In this work the results of the research flights will be presented and conclusions will be drawn on the quality of the measurements, their applicability for satellite data validation and possible improvements for future measurements.

  11. Utilizing The Synergy of Airborne Backscatter Lidar and In-Situ Measurements for Evaluating CALIPSO

    NASA Astrophysics Data System (ADS)

    Tsekeri, Alexandra; Amiridis, Vassilis; Marenco, Franco; Marinou, Eleni; Rosenberg, Phil; Solomos, Stavros; Trembath, Jamie; Allan, James; Bacak, Asan; Nenes, Athanasios

    2016-06-01

    Airborne campaigns dedicated to satellite validation are crucial for the effective global aerosol monitoring. CALIPSO is currently the only active remote sensing satellite mission, acquiring the vertical profiles of the aerosol backscatter and extinction coefficients. Here we present a method for CALIPSO evaluation from combining lidar and in-situ airborne measurements. The limitations of the method have to do mainly with the in-situ instrumentation capabilities and the hydration modelling. We also discuss the future implementation of our method in the ICE-D campaign (Cape Verde, August 2015).

  12. Comparisons of Anvil Cirrus Spatial Characteristics between Airborne Observations in DC3 Campaign and WRF Simulations

    NASA Astrophysics Data System (ADS)

    D'Alessandro, J.; Diao, M.; Chen, M.

    2015-12-01

    John D'Alessandro1, Minghui Diao1, Ming Chen2, George Bryan2, Hugh Morrison21. Department of Meteorology and Climate Science, San Jose State University2. Mesoscale & Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, CO, 80301 Ice crystal formation requires the prerequisite condition of ice supersaturation, i.e., relative humidity with respect to ice (RHi) greater than 100%. The formation and evolution of ice supersaturated regions (ISSRs) has large impact on the subsequent formation of ice clouds. To examine the characteristics of simulated ice supersaturated regions at various model spatial resolutions, case studies between airborne in-situ measurements in the NSF Deep Convective, Clouds and Chemistry (DC3) campaign (May - June 2012) and WRF simulations are conducted in this work. Recent studies using ~200 m in-situ observations showed that ice supersaturated regions are mostly around 1 km in horizontal scale (Diao et al. 2014). Yet it is still unclear if such observed characteristics can be represented by WRF simulations at various spatial resolutions. In this work, we compare the WRF simulated anvil cirrus spatial characteristics with those observed in the DC3 campaign over the southern great plains in US. The WRF model is run at 1 km and 3 km horizontal grid spacing with a recent update of Thompson microphysics scheme. Our comparisons focus on the spatial characteristics of ISSRs and cirrus clouds, including the distributions of their horizontal scales, the maximum relative humidity with respect to ice (RHi) and the relationship between RHi and temperature. Our previous work on the NCAR CM1 cloud-resolving model shows that the higher resolution runs (i.e., 250m and 1km) generally have better agreement with observations than the coarser resolution (4km) runs. We will examine if similar trend exists for WRF simulations in deep convection cases. In addition, we will compare the simulation results between WRF and CM1, particularly

  13. Evaluation of the Airborne Quantum Cascade Laser Spectrometer (QCLS) measurements of the carbon and greenhouse gas suite - CO2, CH4, N2O, and CO - during the CalNex and HIPPO campaigns

    NASA Astrophysics Data System (ADS)

    Santoni, G. W.; Daube, B. C.; Kort, E. A.; Jiménez, R.; Park, S.; Pittman, J. V.; Gottlieb, E.; Xiang, B.; Zahniser, M. S.; Nelson, D. D.; McManus, J. B.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Andrews, A. E.; Sweeney, C.; Hall, B. D.; Hintsa, E. J.; Moore, F. L.; Elkins, J. W.; Hurst, D. F.; Stephens, B. B.; Bent, J. D.; Wofsy, S. C.

    2013-11-01

    We present an evaluation of aircraft observations of the carbon and greenhouse gases (CO2, CH4, N2O, and CO) using a direct-absorption pulsed quantum cascade laser spectrometer (QCLS) operated during the HIPPO and CalNex airborne experiments. The QCLS made continuous 1 Hz measurements with 1-sigma Allan precisions of 20, 0.5, 0.09, and 0.15 ppb for CO2, CH4, N2O, and CO, respectively, over > 500 flight hours on 79 research flights. The QCLS measurements are compared to two vacuum ultraviolet (VUV) CO instruments (CalNex and HIPPO), a cavity ring-down spectrometer (CRDS) measuring CO2 and CH4 (CalNex), two broadband non-dispersive infrared spectrometers (NDIR) measuring CO2 (HIPPO), two onboard gas chromatographs measuring a variety of chemical species including CH4, N2O, and CO (HIPPO), and various flask-based measurements of all four species. QCLS measurements are tied to NOAA and WMO standards using an in-flight calibration system and mean differences when compared to NOAA CCG flask data over the 59 HIPPO research flights were 100, 1, 1, and 2 ppb for CO2, CH4, N2O, and CO, respectively. The details of the end-to-end calibration procedures and the data quality-assurance and quality-control (QA/QC) are presented. Specifically, we discuss our practices for the traceability of standards given uncertainties in calibration cylinders, isotopic and surface effects for the long-lived greenhouse gas tracers, interpolation techniques for in-flight calibrations, and the effects of instrument linearity on retrieved mole fractions.

  14. Evaluation of the airborne quantum cascade laser spectrometer (QCLS) measurements of the carbon and greenhouse gas suite - CO2, CH4, N2O, and CO - during the CalNex and HIPPO campaigns

    NASA Astrophysics Data System (ADS)

    Santoni, G. W.; Daube, B. C.; Kort, E. A.; Jiménez, R.; Park, S.; Pittman, J. V.; Gottlieb, E.; Xiang, B.; Zahniser, M. S.; Nelson, D. D.; McManus, J. B.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Andrews, A. E.; Sweeney, C.; Hall, B.; Hintsa, E. J.; Moore, F. L.; Elkins, J. W.; Hurst, D. F.; Stephens, B. B.; Bent, J.; Wofsy, S. C.

    2014-06-01

    We present an evaluation of aircraft observations of the carbon and greenhouse gases CO2, CH4, N2O, and CO using a direct-absorption pulsed quantum cascade laser spectrometer (QCLS) operated during the HIPPO and CalNex airborne experiments. The QCLS made continuous 1 Hz measurements with 1σ Allan precisions of 20, 0.5, 0.09, and 0.15 ppb for CO2, CH4, N2O, and CO, respectively, over > 500 flight hours on 79 research flights. The QCLS measurements are compared to two vacuum ultraviolet (VUV) CO instruments (CalNex and HIPPO), a cavity ring-down spectrometer (CRDS) measuring CO2 and CH4 (CalNex), two broadband non-dispersive infrared (NDIR) spectrometers measuring CO2 (HIPPO), two onboard gas chromatographs measuring a variety of chemical species including CH4, N2O, and CO (HIPPO), and various flask-based measurements of all four species. QCLS measurements are tied to NOAA and WMO standards using an in-flight calibration system, and mean differences when compared to NOAA CCG flask data over the 59 HIPPO research flights were 100, 1, 1, and 2 ppb for CO2, CH4, N2O, and CO, respectively. The details of the end-to-end calibration procedures and the data quality assurance and quality control (QA/QC) are presented. Specifically, we discuss our practices for the traceability of standards given uncertainties in calibration cylinders, isotopic and surface effects for the long-lived greenhouse gas tracers, interpolation techniques for in-flight calibrations, and the effects of instrument linearity on retrieved mole fractions.

  15. Ozonesonde and aircraft measurements in the tropical West Pacific from the CAST field campaign

    NASA Astrophysics Data System (ADS)

    Newton, Richard; Vaughan, Geraint; Ricketts, Hugo

    2015-04-01

    The Coordinated Airborne Studies in the Tropics (CAST) campaign comprised of ozonesonde launches and an aircraft campaign in the West Pacific in January-March 2014. Previous field campaigns in this region have highlighted an area to the east of Papua New Guinea and near the Solomon Islands as sources of deep convection and anomalously low ozone in the tropical tropopause layer (TTL). The CAST campaign provides a unique dataset of ozonesonde launches from Manus Island, Papua New Guinea, close to the hypothesized source region. CAST was performed in coordination with two sister campaigns, CONTRAST and ATTREX, bringing the FAAM BAe 146, NCAR Gulfstream V and NASA Global Hawk aircraft respectively to Guam. The aircraft campaign allowed an unprecedented comparison between ozonesondes and aircraft, which was used to verify the ozonesonde measurements and support the choice of background correction; this correction is of paramount importance in the tropics as the background constitutes half of the measured signal. The data obtained from the CAST ozonesondes suggest that the lowest ozone concentrations, at ~15 ppb, found in the tropical tropopause layer were accompanied by easterly winds from an area of deep convection, suggesting the air was lifted quickly from the marine boundary layer. The evidence from the CAST campaign suggests that the anomalously low near-zero ozone measured during previous campaigns in the tropical West Pacific is an artefact of the ozonesonde behaviour at low pressures (high altitude) - the low-ozone measurements can be recreated with the CAST ozonesondes if the background is not properly treated.

  16. Leveraging Realtime Data in Airborne Campaigns: From COMEX to Disaster Response

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Thompson, D. R.; Bovensmann, H.; Eastwood, M. L.; Fladeland, M. M.; Gerilowski, K.; Green, R. O.; Krautwurst, S.; Krings, T.; Luna, B.; Di Benedetto, J.; Morey, M.

    2015-12-01

    The COMEX (CO2 and Methane eXperiment) campaign leveraged real-time remote sensing and in situ data spanning multiple airborne and surface mobile platforms and interplatform communications to improve dramatically science outcomes. COMEX realtime remote sensing of strong methane plumes released from a producing oil field in Southern California by the non-imaging spectrometer MAMAP (Methane Airborne MAPper) were used to shift the survey strategy of the AVIRIS NG (Airborne Visual InfraRed Imaging Spectrometer-Next Generation) instrument on a separate airplane from an area of few plumes to an area of high activity. Concurrently, a ground team was re-directed to collect mobile surface validation data by the AMOG (AutoMObile gas) Surveyor in the new area. On all platforms, realtime analysis were used to adapt the survey patterns such as making tactical decisions to repeat certain swaths or flight lines by AVIRIS NG and by MAMAP and to adapt surface survey patterns. The AVIRIS-NG realtime algorithms were developed for methane; however, oil exhibits spectral features that are similar, enabling their testing on AVIRIS-NG data acquired during the Santa Barbara Oil Spill. The effort determined that realtime oil mapping currently is feasible. For oil spill disaster response as well as other disaster response applications, the tactical advantages of realtime remote sensing for time-critical data collections will facilitate greater roles played by remote sensing in future disaster response.

  17. Variability and budget of CO2 in Europe: analysis of the CAATER airborne campaigns - Part 1: Observed variability

    NASA Astrophysics Data System (ADS)

    Xueref-Remy, I.; Messager, C.; Filippi, D.; Pastel, M.; Nedelec, P.; Ramonet, M.; Paris, J. D.; Ciais, P.

    2011-06-01

    Atmospheric airborne measurements of CO2 are very well suited for estimating the time-varying distribution of carbon sources and sinks at the regional scale due to the large geographical area covered over a short time. We present here an analysis of two cross-European airborne campaigns carried out on 23-26 May 2001 (CAATER-1) and 2-3 October 2002 (CAATER-2) over Western Europe. The area covered during CAATER-1 and CAATER-2 was 4° W to 14° E long; 44° N to 52° N lat and 1° E to 17° E long; 46° N to 52° N lat respectively. High precision in situ CO2, CO and Radon 222 measurements were recorded. Flask samples were collected during both campaigns to cross-validate the in situ data. During CAATER-1 and CAATER-2, the mean CO2 concentration was 370.1 ± 4.0 (1-σ standard deviation) ppm and 371.7 ± 5.0 (1-σ) ppm respectively. A HYSPLIT back-trajectories analysis shows that during CAATER 1, northwesterly winds prevailed. In the planetary boundary layer (PBL) air masses became contaminated over Benelux and Western Germany by emissions from these highly urbanized areas, reaching about 380 ppm. Air masses passing over rural areas were depleted in CO2 because of the photosynthesis activity of the vegetation, with observations as low as 355 ppm. During CAATER-2, the back-trajectory analysis showed that air masses were distributed among the 4 sectors. Air masses were enriched in CO2 and CO over anthropogenic emission spots in Germany but also in Poland, as these countries have part of the most CO2-emitting coal-based plants in Europe. Simultaneous measurements of in situ CO2 and CO combined with back-trajectories helped us to distinguish between fossil fuel emissions and other CO2 sources. The ΔCO/ΔCO2 ratios (R2 = 0.33 to 0.88, slopes = 2.42 to 10.37), calculated for anthropogenic-influenced air masses over different countries/regions matched national inventories quite well, showing that airborne measurements can help to identify the origin of fossil fuel emissions

  18. Airborne Observations of the Spatial and Temporal Variability of Tropospheric Carbon Dioxide during the INTEX-B Campaign

    NASA Technical Reports Server (NTRS)

    Vay, Stephanie A.; Choi, Younghoon; Woo, Jung-Hun; Barrick, John D.; Sachse, Glen W.; Blake, Donald; Avery, Melody A.; Fuelberg, Henry; Nolf, Scott

    2006-01-01

    The Intercontinental Chemical Transport Experiment-North America (INTEX-NA) is an international field campaign envisioned to investigate the transport and transformation of gases and aerosols on transcontinental/intercontinental scales and assess their impact on air quality and climate. Phase B (INTEX-B) of the mission was conducted during a 10- week period from March 1 to May 15, 2006 and focused initially on pollution outflow from the Mexico City Metropolitan Area, later addressing the transport of pollution from Asia to North America during springtime meteorological conditions. During the deployment, fast-response (1-s resolution) CO2 measurements were recorded aboard the NASA DC-8 providing valuable regional-scale information on carbon sources and sinks over sparsely sampled areas of North America and adjacent ocean basins. When coupled with the enormously sophisticated chemistry payload on the DC-8, these measurements collectively afford extremely powerful multi-tracer constraints for carbon source/sink attribution. Preliminary examination of the two data sets from the INTEX-B campaign, acquired one month apart, reveals not only the influence of the CO2 seasonal cycle, but also the preponderance of human population and industrial activity in the northern hemisphere. In this presentation, a synergy of the ensemble of airborne and surface observations, bottomup emission inventories, as well as transport history are invoked in a GIS framework to elucidate the source/sink processes reflected in the observations. The airborne CO2 data, along with simultaneous surface measurements (e.g. NOAA ESRL), are examined to establish the vertical distribution and variability of CO2 as a function of location. The role of localized sources, long-range transport, the biosphere, stratospheric exchange, and dynamical processes on the CO2 spatial variability observed throughout the tropospheric column will be discussed.

  19. Overview of the Gradient in Longitude of Atmospheric constituents above the Mediterranean basin (GLAM) airborne summer campaign

    NASA Astrophysics Data System (ADS)

    Ricaud, Philippe; Zbinden, Regina; Catoire, Valery; Brocchi, Vanessa; Dulac, Francois; Hamonou, Eric; Canonici, Jean-Christophe; El Amraoui, Laaziz; Massart, Sebastien; Piguet, Bruno; Dayan, Uri; Nabat, Pierre; Sciare, Jean; Ramonet, Michel; di Sarra, Alcide; Mihalopoulos, Nikolaos; Kouvarakis, Giorgos; Kleanthous, Savvas; Pikridas, Michael; Attié, Jean-Luc

    2016-04-01

    The Gradient in Longitude of Atmospheric constituents above the Mediterranean basin (GLAM) airborne campaign has been set up to investigate the variability of constituents (pollutants and greenhouse gases) and aerosols between the West and the East of the Mediterranean Basin in summer 2014. This campaign occurred in the framework of the Chemistry-Aerosol Mediterranean Experiment (CHARMEX) as part of the Mediterranean Integrated STudies at Regional And Local Scales (MISTRALS) programme. During the campaign, several instruments including the Spectromètre InfraRouge In situ Toute altitude (SPIRIT) instrument onboard the SAFIRE Falcon-20 aircraft measured aerosols, winds, radiation, humidity and chemical compounds such as O3, CO, CH4, N2O, and CO2. The campaign took place from 6 to 10 August 2014 from Toulouse (France) to Larnaca (Cyprus) and back, via Menorca (Spain), Lampedusa (Italy) and Heraklion (Crete). The aircraft flew at about 5000 m altitude above sea level to go and at about 9000 m altitude to return. The campaign also provided some vertical profilings from the surface to about 12 km in the vicinity of the landing sites listed above. The present paper shows an overview of the measurements and of the scientific results obtained during GLAM combining space-borne and surface station measurements, modelling (MOCAGE and ALADIN-CLIMAT) and chemical forecasts and analyses from Copernicus Atmospheric Monitoring Service (CAMS) run by the European Centre for Medium range Weather Forecasting (ECMWF). Along an East-West axis or along the vertical, we analyze different processes. Among the different processes that have been studied in detail, we will particularly focus on aerosol results concentrating on the intercontinental transport and comparisons with surface stations. Combining GLAM, back-trajectories, satellite and model data, we demonstrate that the biomass burning from northern America, desert dust from Sahara and O3-depleted maritime boundary layer air masses

  20. Airborne Wind Measurements at Cape Blanco, Oregon.

    SciTech Connect

    Lin, Jung-Tai Lin; Veenhuizen, Scott D.

    1983-12-01

    The airborne wind measuring system using a fixed wing airplane and a Loran-C navigation unit was proven to be feasible to provide the large scale background wind flow for initialization of numerical wind modeling. The rms errors in the airborne wind measuring system were +- 2 mph in wind speed and +- 12 degrees in wind direction. The advantages of this method were that wind speeds over a large area (5 miles x 14 miles, or 18 miles x 30 miles) may be determined rapidly, economically and at altitudes above the normal altitudes of TALA kite mesurements. The disadvantages were that the spatial resolution of the measurements was poor and near surface measurements were not feasible using a fixed wing aircraft. 1 reference, 10 figures, 1 table.

  1. Variability and budget of CO2 in Europe: analysis of the CAATER airborne campaigns - Part 1: Observed variability

    NASA Astrophysics Data System (ADS)

    Xueref-Remy, I.; Messager, C.; Filippi, D.; Nedelec, P.; Ramonet, M.; Paris, J. D.; Ciais, P.

    2010-02-01

    Atmospheric airborne measurements of CO2 are very well-suited to estimate the time varying distribution of carbon sources and sinks at the regional scale. We present here an analysis of two cross-European airborne campaigns that have been carried out on 23-26 May 2001 (CAATER 1) and 2-3 October 2002 (CAATER 2) over Western Europe. The area covered during CAATER 1 (respectively CAATER 2) was comprised between longitude 4° W to 14° E and latitude 44° N to 52° N (respectively longitude 1° E to 17° E and latitude 46° N to 52° N). High precision in-situ CO2, CO and Radon 222 measurements have been recorded. Flasks samples have been collected during both campaigns to cross-validate the in-situ data. During CAATER 1 (respectively CAATER 2), the mean CO2 concentration was 370.1±4 ppm (respectively 371.7±5 ppm). A HYSPLIT backtrajectories analysis shows that during CAATER 1, dominant winds were blowing from the north-west. In the planetary boundary layer (PBL) airmasses got contaminated over Benelux and Western Germany by pollution from these high urbanized areas, reaching about 380 ppm. Air masses passing over rural areas are depleted in CO2 because of the photosynthesis activity of the land cover vegetation, as low as 355 ppm. During CAATER 2, the backtrajectory analysis shows that airmasses were distributed among the 4 sectors. Airmasses got enriched in CO2 and CO when passing above polluted spots in Germany but also in Poland, as these countries are known to hold part of the most polluting plants based on coal consumption, the so-called "dirty thirty" from WWF. Simultaneous measurements of in-situ CO2 and CO combined to backtrajectories helped us to discriminate the role of fossil fuel emissions from over CO2 sources. The ΔCO/ΔCO2 ratios (R2=0.33 to 0.88, slopes=2.42 to 10.37), calculated for polluted airmasses originating from different countries/regions, matched quite well national inventories, showing that the airborne measurements can help to identify

  2. BOREAS RSS-12 Airborne Tracking Sunphotometer Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Lobitz, Brad; Spanner, Michael; Wrigley, Robert

    2000-01-01

    The BOREAS RSS-12 team collected both ground and airborne sunphotometer measurements for use in characterizing the aerosol optical properties of the atmosphere during the BOREAS data collection activities. These measurements are to be used to: 1) measure the magnitude and variability of the aerosol optical depth in both time and space; 2) determine the optical properties of the boreal aerosols; and 3) atmospherically correct remotely sensed data acquired during BOREAS. This data set contains airborne tracking sunphotometer data that were acquired from the C-130 aircraft during its flights over the BOREAS study areas. The data cover selected days and times from May to September 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  3. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  4. Airborne compact rotational Raman lidar for temperature measurement.

    PubMed

    Wu, Decheng; Wang, Zhien; Wechsler, Perry; Mahon, Nick; Deng, Min; Glover, Brent; Burkhart, Matthew; Kuestner, William; Heesen, Ben

    2016-09-05

    We developed an airborne compact rotational Raman lidar (CRL) for use on the University of Wyoming King Air (UWKA) aircraft to obtain two-dimensional (2D) temperature disman tributions. It obtained fine-scale 2D temperature distributions within 3 km below the aircraft for the first time during the PECAN (Plains Elevated Convection At Night) campaign in 2015. The CRL provided nighttime temperature measurements with a random error of <0.5 K within 800 m below aircraft at 45 m vertical and 1000 m horizontal resolution. The temperatures obtained by the CRL and a radiosonde agreed. Along with water vapor and aerosol measurements, the CRL provides critical parameters on the state of the lower atmosphere for a wide range of atmospheric research.

  5. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R. O.; Kratwurst, S.; Krings, T.; Luna, B.; Thorpe, A. K.

    2015-10-01

    Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and MEthane eXperiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s-1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace-gas signature detection in an airborne science campaign, and presages many future applications. Post-analysis demonstrates matched filter methods providing noise-equivalent (1σ) detection sensitivity for 1.0 % CH4 column enhancements equal to 141 ppm m.

  6. Diode - Pumped Nd:YAG Lidar for Airborne Cloud Measurements

    NASA Technical Reports Server (NTRS)

    Mehnert, A.; Halldorsson, TH.; Herrmann, H.; Haering, R.; Krichbaumer, W.; Streicher, J.; Werner, CH.

    1992-01-01

    This work is concerned with the experimental method used to separate scattering and to use it for the determination of cloud microphysical parameters. It is also the first airborne test of a lidar version related to the ATLID Program - ESA's scheduled spaceborne lidar. The already tested DLR microlidar was modified with the new diode-pumped laser and a faster data recording system was added. The system was used during the CLEOPATRA campaign in the DLR research aircraft Falcon 20 to measure cloud parameters. The diode pumped Nd:YAG laser we developed for the microlidar is a modification of the laser we introduced at the Lidar Congress at 'Laser 1991' in Munich. Various aspects of this work are discussed.

  7. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  8. Four-laser airborne infrared spectrometer for atmospheric trace gas measurements.

    PubMed

    Roths, J; Zenker, T; Parchatka, U; Wienhold, F G; Harris, G W

    1996-12-20

    We describe the four-laser airborne infrared (FLAIR) instrument, a tunable diode laser absorption spectrometer designed for simultaneous high-sensitivity in situ measurements of four atmospheric trace gases in the troposphere. The FLAIR spectrometer was employed during the large-scale airborne research campaign on tropospheric ozone (TROPOZ II) in 1991 and was used to measure CO, H(2) O(2), HCHO, and NO(2) in the free troposphere where detection limits below 100 parts in 10(12) by volume were achieved.

  9. Recent modifications, enhancements, and measurements with an airborne lidar system

    NASA Astrophysics Data System (ADS)

    DeCoursey, Robert J.; Osborn, Mary T.; Winker, David M.; Woods, David C.

    1996-06-01

    The NASA Langley Research Center's 14-inch airborne aerosol lidar system, which is routinely flown on several NASA aircraft including the DC-8 and the P-3, has been upgraded with several modifications to enhance its measurement capabilities. A new 900 mJ, 10 pps Nd:YAG laser was added with the capability of producing 5 watts of power at 1064 nm, 2.5 watts at 532 nm and 1.5 watts at 355 nm. The existing detector package has been modified to accommodate the three wavelengths and to permit cross-polarization measurements at 532 nm. New software was developed for on- line data visualization and analysis, and computer- controlled laser alignment is being incorporated. The system is now capable of producing real-time color modulated backscatter plots. Other additions include a Pentium/90 processor, GPS (Global Positioning System) and ARINC (Aeronautical Radio Inc.) receivers for acquiring accurate aircraft position data. In 1992 and 1993 this system was flown on several airborne missions to map and characterize the stratospheric aerosol cloud produced by the 1991 eruption of the Mount Pinatubo volcano. Efforts to map the global distribution of Pinatubo were made on both daytime as well as nighttime flights from Moffett Field in California to the South Pacific, to Central and South America, to Australia and to Alaska. In September 1994, the system (aboard NASA's P-3) made correlative measurements along shuttle orbit ground tracks in support of the Lidar In-space Technology Experiment flown on the Space Shuttle. In this paper the system upgrades will be discussed and selected data obtained during these recent airborne campaigns will be presented.

  10. Airborne Measurements of Atmospheric Methane Using Pulsed Laser Transmitters

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Wu, Stewart; Gonzalez, Brayler; Rodriguez, Michael; Hasselbrack, William; Fahey, Molly; Yu, Anthony; Stephen, Mark; Mao, Jianping; Kawa, Stephan

    2016-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. At NASA Goddard Space Flight Center (GSFC) we have been developing a laser-based technology needed to remotely measure CH4 from orbit. We report on our development effort for the methane lidar, especially on our laser transmitters and recent airborne demonstration. Our lidar transmitter is based on an optical parametric process to generate near infrared laser radiation at 1651 nanometers, coincident with a CH4 absorption. In an airborne flight campaign in the fall of 2015, we tested two kinds of laser transmitters --- an optical parametric amplifier (OPA) and an optical parametric oscillator (OPO). The output wavelength of the lasers was rapidly tuned over the CH4 absorption by tuning the seed laser to sample the CH4 absorption line at several wavelengths. This approach uses the same Integrated Path Differential Absorption (IPDA) technique we have used for our CO2 lidar for ASCENDS. The two laser transmitters were successfully operated in the NASAs DC-8 aircraft, measuring methane from 3 to 13 kilometers with high precision.

  11. Electrical charge measurements on fine airborne particles

    SciTech Connect

    Tardos, G.I.; Dietz, P.W.; Snaddon, R.W.L.

    1984-11-01

    A small parallel-plate precipitator and a theoretical collection model have been used to determine the distribution of charges acquired by monodisperse airborne polystyrene latex particles in a corona charger. The mean charge based on the total number of particles was found to be slightly higher than half the predicted saturation charge, and it agreed well with independent measurements made in a Faraday cage particle separator. The importance of careful measurements of particle charge in fine particle transport studies is highlighted by a discussion of the effect of charge (particle mobility) distribution width on observed transport characteristics.

  12. Validation of LIRIC aerosol concentration retrievals using airborne measurements during a biomass burning episode over Athens

    NASA Astrophysics Data System (ADS)

    Kokkalis, Panagiotis; Amiridis, Vassilis; Allan, James D.; Papayannis, Alexandros; Solomos, Stavros; Binietoglou, Ioannis; Bougiatioti, Aikaterini; Tsekeri, Alexandra; Nenes, Athanasios; Rosenberg, Philip D.; Marenco, Franco; Marinou, Eleni; Vasilescu, Jeni; Nicolae, Doina; Coe, Hugh; Bacak, Asan; Chaikovsky, Anatoli

    2017-01-01

    In this paper we validate the Lidar-Radiometer Inversion Code (LIRIC) retrievals of the aerosol concentration in the fine mode, using the airborne aerosol chemical composition dataset obtained over the Greater Athens Area (GAA) in Greece, during the ACEMED campaign. The study focuses on the 2nd of September 2011, when a long-range transported smoke layer was observed in the free troposphere over Greece, in the height range from 2 to 3 km. CIMEL sun-photometric measurements revealed high AOD ( 0.4 at 532 nm) and Ångström exponent values ( 1.7 at 440/870 nm), in agreement with coincident ground-based lidar observations. Airborne chemical composition measurements performed over the GAA, revealed increased CO volume concentration ( 110 ppbv), with 57% sulphate dominance in the PM1 fraction. For this case, we compare LIRIC retrievals of the aerosol concentration in the fine mode with the airborne Aerosol Mass Spectrometer (AMS) and Passive Cavity Aerosol Spectrometer Probe (PCASP) measurements. Our analysis shows that the remote sensing retrievals are in a good agreement with the measured airborne in-situ data from 2 to 4 km. The discrepancies observed between LIRIC and airborne measurements at the lower troposphere (below 2 km), could be explained by the spatial and temporal variability of the aerosol load within the area where the airborne data were averaged along with the different time windows of the retrievals.

  13. Airborne Observations of Mercury Emissions from the Chicago/Gary Urban/Industrial Area during the 2013 NOMADSS Campaign

    NASA Astrophysics Data System (ADS)

    Gratz, L.; Ambrose, J. L., II; Jaffe, D. A.; Knote, C. J.; Jaegle, L.; Selin, N. E.; Campos, T. L.; Flocke, F. M.; Reeves, J. M.; Stechman, D. M.; Stell, M. H.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D.; Tyndall, G. S.; Mauldin, L.; Cantrell, C. A.; Apel, E. C.; Hornbrook, R. S.; Blake, N. J.

    2015-12-01

    Atmospheric emissions from the Chicago/Gary urban/industrial area significantly enhance ambient mercury (Hg) concentrations and lead to increased levels of atmospheric mercury deposition within the Lake Michigan Basin (Gratz et al., 2013a; Gratz et al., 2013b; Landis and Keeler, 2002; Landis et al., 2002; Vette et al., 2002). In this study we use airborne observations of total atmospheric Hg (THg) collected over Lake Michigan during summer 2013 as part of the Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS) field campaign to quantify the outflow of total atmospheric Hg from the Chicago/Gary urban/industrial area. We use concurrent airborne measurements of THg, carbon monoxide (CO), nitrogen oxides (NOx), and sulfur dioxide (SO2) to calculate measured enhancement ratios (ER) and thus characterize Chicago/Gary emissions. We determine the observed THg/CO ER in outflow from Chicago/Gary to be 2.11x10-7 mol mol-1, which is comparable to values reported in the literature for other major U.S. urban/industrial areas (Radke et al., 2007; Talbot et al., 2008; Weiss-Penzias et al., 2013). We also employ the FLEXPART Lagrangian transport and dispersion model to simulate air mass transport during plume encounters. We convolve the emissions of each species from the 2011 U.S. EPA National Emissions Inventory (NEI) with the FLEXPART-modeled air mass transport to compare our observations to inventoried emission ratios (EmR). We find that the inventoried THg/CO EmRs are biased low by -63% to -67% compared to the observed ERs for the Chicago/Gary area. This suggests that there are many small emission sources that are not fully accounted for within the inventory, and/or that the re-emission of legacy Hg is a significant source of THg to the atmosphere in this region.

  14. Airborne observations of mercury emissions from the Chicago/Gary urban/industrial area during the 2013 NOMADSS campaign

    NASA Astrophysics Data System (ADS)

    Gratz, L. E.; Ambrose, J. L.; Jaffe, D. A.; Knote, C.; Jaeglé, L.; Selin, N. E.; Campos, T.; Flocke, F. M.; Reeves, M.; Stechman, D.; Stell, M.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Tyndall, G. S.; Mauldin, R. L.; Cantrell, C. A.; Apel, E. C.; Hornbrook, R. S.; Blake, N. J.

    2016-11-01

    Atmospheric emissions from the Chicago/Gary urban/industrial area significantly enhance ambient mercury (Hg) concentrations and lead to increased levels of atmospheric Hg deposition within the Lake Michigan Basin. We use airborne observations collected over Lake Michigan during the 2013 Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS) campaign to quantify the outflow of total Hg (THg) emissions from the Chicago/Gary urban/industrial area. We use concurrent airborne measurements of THg, carbon monoxide (CO), nitrogen oxides (NOx = NO + NO2), and sulfur dioxide (SO2) to calculate measured enhancement ratios and to characterize Chicago/Gary emissions with respect to the 2011 U.S. EPA National Emissions Inventory. We determine the observed THg/CO enhancement ratio in outflow from Chicago/Gary to be 0.21 ± 0.09 × 10-6 mol mol-1 (ppqv/ppbv), which is comparable to observations reported for other major U.S. urban/industrial areas. We also employ the FLEXPART Lagrangian transport and dispersion model to simulate air mass transport during plume encounters and to compare our observations to inventoried emission ratios. We find that our observed THg/CO enhancement ratios are 63-67% greater than the transport-corrected emission ratios for the Chicago/Gary area. Our results suggest that there are many small emission sources that are not fully accounted for within the inventory, and/or that the re-emission of legacy Hg is a significant source of THg to the atmosphere in this region.

  15. Upper tropospheric water vapor: A field campaign of two Raman lidars, Airborne hygrometers, and Radiosondes

    NASA Technical Reports Server (NTRS)

    Melfi, S. Harvey; Turner, Dave; Evans, Keith; Whiteman, Dave; Schwemmer, Geary; Ferrare, Richard

    1998-01-01

    Water vapor in the atmosphere plays an important role in radiative transfer and the process of radiative balance so critical for understanding global change. It is the principal ingredient in cloud formation, one of the most difficult atmospheric processes to model, and the most variable component of the Earth-atmosphere albedo. And as a free molecule, it is the most active infrared absorber and emitter, thus, the most important greenhouse gas. The radiative impact of water vapor is important at all levels of the atmosphere. Even though moisture decreases by several orders-of-magnitude from the Earth's surface to the tropopause, recent research has shown that, from a radiative standpoint, a small percentage change in water vapor at any level is nearly equivalent. Therefore accurate and precise measurements of this important atmospheric constituent are needed at all levels to evaluate the full radiative impact. The need for improved measurements in the upper troposphere is particularly important because of the generally hostile (very dry and cold) conditions encountered. Because of the importance of water vapor to the understanding of radiative transfer, the Department of Energy's Atmospheric Radiation Measurements (ARM) program initiated a series of measurement campaigns at the Cloud And Radiation Testbed (CART) site in Oklahoma, especially focused on atmospheric water vapor. Three water vapor intensive observation period (water vapor IOP) campaigns were planned. Two of the water vapor IOP campaigns have been completed: the first IOP was held during the fall of 1996 with a focus on boundary layer water vapor measurements, and the second was conducted during the fall of 1997 with a focus on both boundary layer moisture e and moisture in the upper troposphere. This paper presents a review of the intercomparisons of water vapor measurements in the upper troposphere aquired during the second water vapor IOP. Data to be presented include water vapor measurements ements

  16. The Fork+ burnup measurement system: Design and first measurement campaign

    SciTech Connect

    Olson, C.E.; Bronowski, D.R.; McMurtry, W.; Ewing, R.; Jordan, R.; Rivard, D.

    1998-12-31

    Previous work with the original Fork detector showed that burnup as determined by reactor records could be accurately allocated to spent nuclear fuel assemblies. The original Fork detector, designed by Los Alamos National Laboratory, used an ion chamber to measure gross gamma count and a fission chamber to measure neutrons from an activation source, {sup 244}Cm. In its review of the draft Topical Report on Burnup Credit, the US Nuclear Regulatory Commission indicated it felt uncomfortable with a measurement system that depended on reactor records for calibration. The Fork+ system was developed at Sandia National Laboratories under the sponsorship of the Electric Power Research Institute with the aim of providing this independent measurement capability. The initial Fork+ prototype was used in a measurement campaign at the Maine Yankee reactor. The campaign confirmed the applicability of the sensor approach in the Fork+ system and the efficiency of the hand-portable Fork+ prototype in making fuel assembly measurements. It also indicated potential design modifications that will be necessary before the Fork+ can be used effectively on high-burnup spent fuel.

  17. NASA 1990 Multisensor Airborne Campaigns (MACs) for ecosystem and watershed studies

    NASA Technical Reports Server (NTRS)

    Wickland, Diane E.; Asrar, Ghassem; Murphy, Robert E.

    1991-01-01

    The Multisensor Airborne Campaign (MAC) focus within NASA's former Land Processes research program was conceived to achieve the following objectives: to acquire relatively complete, multisensor data sets for well-studied field sites, to add a strong remote sensing science component to ecology-, hydrology-, and geology-oriented field projects, to create a research environment that promotes strong interactions among scientists within the program, and to more efficiently utilize and compete for the NASA fleet of remote sensing aircraft. Four new MAC's were conducted in 1990: the Oregon Transect Ecosystem Research (OTTER) project along an east-west transect through central Oregon, the Forest Ecosystem Dynamics (FED) project at the Northern Experimental Forest in Howland, Maine, the MACHYDRO project in the Mahantango Creek watershed in central Pennsylvania, and the Walnut Gulch project near Tombstone, Arizona. The OTTER project is testing a model that estimates the major fluxes of carbon, nitrogen, and water through temperate coniferous forest ecosystems. The focus in the project is on short time-scale (days-year) variations in ecosystem function. The FED project is concerned with modeling vegetation changes of forest ecosystems using remotely sensed observations to extract biophysical properties of forest canopies. The focus in this project is on long time-scale (decades to millenia) changes in ecosystem structure. The MACHYDRO project is studying the role of soil moisture and its regulating effects on hydrologic processes. The focus of the study is to delineate soil moisture differences within a basin and their changes with respect to evapotranspiration, rainfall, and streamflow. The Walnut Gulch project is focused on the effects of soil moisture in the energy and water balance of arid and semiarid ecosystems and their feedbacks to the atmosphere via thermal forcing.

  18. A Reevaluation of Airborne HO(x) Observations from NASA Field Campaigns

    NASA Technical Reports Server (NTRS)

    Olson, Jennifer; Crawford, James H.; Chen, Gao; Brune, William H.; Faloona, Ian C.; Tan, David; Harder, Hartwig; Martinez, Monica

    2006-01-01

    In-situ observations of tropospheric HO(x) (OH and HO2) obtained during four NASA airborne campaigns (SUCCESS, SONEX, PEM-Tropics B and TRACE-P) are reevaluated using the NASA Langley time-dependent photochemical box model. Special attention is given to previously diagnosed discrepancies between observed and predicted HO2 which increase with higher NO(x) levels and at high solar zenith angles. This analysis shows that much of the model discrepancy at high NO(x) during SUCCESS can be attributed to modeling observations at time-scales too long to capture the nonlinearity of HO(x) chemistry under highly variable conditions for NO(x). Discrepancies at high NO(x) during SONEX can be moderated to a large extent by complete use of all available precursor observations. Differences in kinetic rate coefficients and photolysis frequencies available for previous studies versus current recommendations also explain some of the disparity. Each of these causes is shown to exert greater influence with increasing NO(x) due to both the chemical nonlinearity between HO(x) and NO(x) and the increased sensitivity of HO(x) to changes in sources at high NO(x). In contrast, discrepancies at high solar zenith angles will persist until an adequate nighttime source of HO(x) can be identified. It is important to note that this analysis falls short of fully eliminating the issue of discrepancies between observed and predicted HO(x) for high NO(x) environments. These discrepancies are not resolved with the above causes in other data sets from ground-based field studies. Nevertheless, these results highlight important considerations in the application of box models to observationally based predictions of HO(x) radicals.

  19. NASA 1990 Multisensor Airborne Campaigns (MACs) for ecosystem and watershed studies

    NASA Astrophysics Data System (ADS)

    Wickland, Diane E.; Asrar, Ghassem; Murphy, Robert E.

    The Multisensor Airborne Campaign (MAC) focus within NASA's former Land Processes research program was conceived to achieve the following objectives: to acquire relatively complete, multisensor data sets for well-studied field sites, to add a strong remote sensing science component to ecology-, hydrology-, and geology-oriented field projects, to create a research environment that promotes strong interactions among scientists within the program, and to more efficiently utilize and compete for the NASA fleet of remote sensing aircraft. Four new MAC's were conducted in 1990: the Oregon Transect Ecosystem Research (OTTER) project along an east-west transect through central Oregon, the Forest Ecosystem Dynamics (FED) project at the Northern Experimental Forest in Howland, Maine, the MACHYDRO project in the Mahantango Creek watershed in central Pennsylvania, and the Walnut Gulch project near Tombstone, Arizona. The OTTER project is testing a model that estimates the major fluxes of carbon, nitrogen, and water through temperate coniferous forest ecosystems. The focus in the project is on short time-scale (days-year) variations in ecosystem function. The FED project is concerned with modeling vegetation changes of forest ecosystems using remotely sensed observations to extract biophysical properties of forest canopies. The focus in this project is on long time-scale (decades to millenia) changes in ecosystem structure. The MACHYDRO project is studying the role of soil moisture and its regulating effects on hydrologic processes. The focus of the study is to delineate soil moisture differences within a basin and their changes with respect to evapotranspiration, rainfall, and streamflow. The Walnut Gulch project is focused on the effects of soil moisture in the energy and water balance of arid and semiarid ecosystems and their feedbacks to the atmosphere via thermal forcing.

  20. Airborne intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Gregory, Gerald L.; Mcdougal, David S.; Torres, Arnold L.; Davis, Douglas D.

    1987-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted during missions flown in the fall of 1983 and spring of 1984. Instruments intercompared included a laser-induced fluorescence (LIF) system and two chemiluminescence instruments (CL). NO mixing ratios from below 5 pptv (parts per trillion by volume) to greater than 100 pptv were reported, with the majority less than 20 pptv. Good correlation was observed between the measurements reported by the CL and LIF techniques. The general level of agreement observed for the ensemble of measurements obtained during the two missions provides the basis from which one can conclude that equally 'valid' measurements of background levels of NO can be expected from either CL or LIF instruments. At the same time the periods of disagreement that were observed between the CL and LIF instruments as well as between the two CL instruments highlight the difficulty of obtaining reliable measurements with NO mixing ratios in the 5-20 pptv range and emphasize the vigilance that should be maintained in future NO measurements.

  1. Airborne in situ vertical profiling of HDO/H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; González-Ramos, Y.; Schneider, M.

    2015-01-01

    Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δ D(H2O were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δ D) ≈ 10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote-sensing measurements of δ D(H2O) as a means to validate the remote sensing humidity and δ D(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δ D(H2O) correlations we were able to identify different layers of airmasses with specific isotopic signatures. The results are discussed.

  2. Airborne in situ vertical profiling of HDO / H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; Gonzalez-Ramos, Y.; Schneider, M.

    2015-05-01

    Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δD(H2O) were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δD) ≈10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote sensing measurements of δD(H2O) as a means to validate the remote sensing humidity and δD(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δD(H2O) correlations we were able to identify different layers of air masses with specific isotopic signatures. The results are discussed.

  3. Measurements of Solar Induced Chlorophyll Fluorescence at 685 nm by Airborne Plant Fluorescence Sensor (APFS)

    NASA Astrophysics Data System (ADS)

    Morgan, F.; Yee, J. H.; Boldt, J.; Cook, W. B.; Corp, L. A.

    2015-12-01

    Solar-induced chlorophyll fluorescence (ChlF) by terrestrial vegetation is linked closely to photosynthetic efficiency that can be exploited to monitor the plant health status and to assess the terrestrial carbon budget from space. The weak, broad continuum ChlF signal can be detected from the fill-in of strong O2 absorption lines or solar Fraunhofer lines in the reflected spectral radiation. The Johns Hopkins University, Applied Physics Laboratory (JHU/APL) Airborne Plant Fluorescence Sensor (APFS) is a triple etalon Fabry-Perot interferometer designed and optimized specifically for the ChlF sensing from an airborne platform using this line fill-in technique. In this paper, we will present the results of APFS ChlF measurements obtained from a NASA Langley King Air during two airborne campaigns (12/12 in 2014 and 5/20 in 2015) over various land, river, and vegetated targets in Virginia during stressed and growth seasons.

  4. Airborne sulfur trace species intercomparison campaign: Sulfur dioxide, dimethylsulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Hoell, James M., Jr.; Davis, Douglas D.

    1991-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of sulfur trace gases are presented. The intercomparison was part of the NASA Global Tropospheric Experiment (GTE) and was conducted during the summer of 1989. The intercomparisons were conducted on the Wallops Electra aircraft during flights from Wallops Island, Virginia, and Natal, Brazil. Sulfur measurements intercompared included sulfur dioxide (SO2), dimethylsulfide (DMS), hydrogen sulfide (H2S), carbon disulfide (CS2), and carbonyl sulfide (OCS). Measurement techniques ranged from filter collection systems with post-flight analyses to mass spectrometer and gas chromatograph systems employing various methods for measuring and identifying the sulfur gases during flight. Sampling schedules for the techniques ranged from integrated collections over periods as long as 50 minutes to one- to three-minute samples every ten or fifteen minutes. Several of the techniques provided measurements of more than one sulfur gas. Instruments employing different detection principles were involved in each of the sulfur intercomparisons. Also included in the intercomparison measurement scenario were a host of supporting measurements (i.e., ozone, nitrogen oxides, carbon monoxide, total sulfur, aerosols, etc.) for purposes of: (1) interpreting results (i.e., correlation of any noted instrument disagreement with the chemical composition of the measurement environment); and (2) providing supporting chemical data to meet CITE-3 science objectives of studying ozone/sulfur photochemistry, diurnal cycles, etc. The results of the intercomparison study are briefly discussed.

  5. Utilization of Airborne and in Situ Data Obtained in SGP99, SMEX02, CLASIC and SMAPVEX08 Field Campaigns for SMAP Soil Moisture Algorithm Development and Validation

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Chan, Steven; Yueh, Simon; Cosh, Michael; Bindlish, Rajat; Jackson, Tom; Njoku, Eni

    2010-01-01

    Field experiment data sets that include coincident remote sensing measurements and in situ sampling will be valuable in the development and validation of the soil moisture algorithms of the NASA's future SMAP (Soil Moisture Active and Passive) mission. This paper presents an overview of the field experiment data collected from SGP99, SMEX02, CLASIC and SMAPVEX08 campaigns. Common in these campaigns were observations of the airborne PALS (Passive and Active L- and S-band) instrument, which was developed to acquire radar and radiometer measurements at low frequencies. The combined set of the PALS measurements and ground truth obtained from all these campaigns was under study. The investigation shows that the data set contains a range of soil moisture values collected under a limited number of conditions. The quality of both PALS and ground truth data meets the needs of the SMAP algorithm development and validation. The data set has already made significant impact on the science behind SMAP mission. The areas where complementing of the data would be most beneficial are also discussed.

  6. Airborne Spectral Measurements of Ocean Directional Reflectance

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; King, Michael D.; Lyapustin, Alexei; Arnold, G. Thomas; Redemann, Jens

    2004-01-01

    During summer of 2001 NASA's Cloud Absorption Radiometer (CAR) obtained measurement of ocean angular distribution of reflected radiation or BRDF (bidirectional reflectance distribution function) aboard the University of Washington Convair CV-580 research aircraft under cloud-free conditions. The measurements took place aver the Atlantic Ocean off the eastern seaboard of the U.S. in the vicinity of the Chesapeake Light Tower and at nearby National Oceanic and Atmospheric Administration (NOAA) Buoy Stations. The measurements were in support of CLAMS, Chesapeake Lighthouse and Aircraft Measurements for Satellites, field campaign that was primarily designed to validate and improve NASA's Earth Observing System (EOS) satellite data products being derived from three sensors: MODIS (MODerate Resolution Imaging Spectro-Radiometer), MISR (Multi-angle Imaging Spectro-Radiometer) and CERES (Clouds and Earth s Radiant Energy System). Because of the high resolution of the CAR measurements and its high sensitivity to detect weak ocean signals against a noisy background, results of radiance field above the ocean are seen in unprecedented detail. The study also attempts to validate the widely used Cox-Munk model for predicting reflectance from a rough ocean surface.

  7. Airborne flux measurements of biogenic volatile organic compounds over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  8. Organic Halogen and Related Trace Gases in the Tropical Atmosphere: Results from Recent Airborne Campaigns Over the Pacific

    NASA Astrophysics Data System (ADS)

    Atlas, E. L.; Navarro, M. A.; Donets, V.; Schauffler, S.; Lueb, R.; Hendershot, R.; Gabbard, S.; Hornbrook, R. S.; Apel, E. C.; Riemer, D. D.; Pan, L.; Salawitch, R. J.; Nicely, J. M.; Montzka, S. A.; Miller, B.; Moore, F. L.; Elkins, J. W.; Hintsa, E. J.; Campos, T. L.; Quack, B.; Zhu, X.; Pope, L.

    2014-12-01

    Organic halogen gases, especially containing bromine and iodine, play a significant role as precursors to active halogen chemistry and ozone catalytic loss. Much of the reactive organic halogen originates from biological processes in the surface ocean, which can be quite variable by season and location. The tropics and coastal margins are potentially important sources that are being examined. The recent coordinated CONTRAST/ATTREX/CAST missions were conducted in the Western Tropical Pacific, a region that is a major transport pathway for tropospheric air entering the stratosphere. One of the goals of the missions was to identify sources, distributions, and transport of organic halogens from the ocean surface into the tropical lower stratosphere. The missions were conducted during the NH winter season, Jan-Feb, 2014. In this presentation, we will discuss the distributions and variability of organic halogen gases in the study region and will examine the input of organic halogen species into the Tropical Tropopause Layer (TTL). Comparison with other tracers, such as methyl nitrate and NMHC, will help identify source regions for these gases. We will focus on the measurements obtained in the CONTRAST and ATTREX missions with data from in-situ GC/MS measurements and whole air samples collected on the NSF GV and NASA Global Hawk aircraft. Comparisons with other recent airborne campaigns, such as HIPPO and TC4, and with several ship-based studies will provide an additional context for evaluating the variability of organic halogen species in the tropical atmosphere and their role in transporting reactive halogen compounds into the UT/LS.

  9. Temperature and wind measurements and model atmospheres of the 1989 Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Chan, K. R.; Bui, T. P.; Scott, S. G.; Bowen, S. W.; Dean-Day, J.

    1990-01-01

    The ER-2 Meteorological Measurement System provides accurate in situ measurements of atmospheric state variables. During the Airborne Arctic Stratospheric Expedition (AASE) the ER-2 flew over the polar region on 14 occasions in January and February, 1989. Vertical temperature profiles, during aircraft takeoff at about 60 deg N and during midflight descent and ascent at high latitudes, are presented. Latitudinal variations of the horizontal wind measurement are illustrated and discussed. Based on observation data, model atmospheres at 60 deg and 75 deg N, representative of the environment of the AASE campaign, are developed.

  10. AROTAL Ozone and Temperature Vertical Profile Measurements from the NASA DC-8 during the SOLVE II Campaign

    NASA Technical Reports Server (NTRS)

    McGee, Thomas J.; Twigg, Laurence; Sumnicht, Grant; Hoegy, Walter; Burris, John; Silbert, Donald; Heaps, William; Neuber, R.; Trepte, C. R.

    2004-01-01

    The AROTAL instrument (Airborne Raman Ozone Temperature and Aerosol Lidar) - a collaboration between scientists at NASA Goddard Space Flight Center, and Langley Research Center - was flown on the NASA DC-8 during the SOLVE II Campaign during January and February, 2003. The flights were flown from the Arena Arctica in Kiruna, Sweden. We report measurements of temperature and ozone profiles showing approximately a 600 ppbv loss in ozone near 17.5 km, over the time frame of the aircraft campaign. Comparisons of ozone profiles from AROTAL are made with the SAGE III instrument.

  11. Wind Field Measurements With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1999-01-01

    In collaboration with lidar atmospheric remote sensing groups at NASA Marshall Space Flight Center and National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, we have developed and flown the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) lidar on the NASA DC-8 research aircraft. The scientific motivations for this effort are: to obtain measurements of subgrid scale (i.e. 2-200 km) processes and features which may be used to improve parameterizations in global/regional-scale models; to improve understanding and predictive capabilities on the mesoscale; and to assess the performance of Earth-orbiting Doppler lidar for global tropospheric wind measurements. MACAWS is a scanning Doppler lidar using a pulsed transmitter and coherent detection; the use of the scanner allows 3-D wind fields to be produced from the data. The instrument can also be radiometrically calibrated and used to study aerosol, cloud, and surface scattering characteristics at the lidar wavelength in the thermal infrared. MACAWS was used to study surface winds off the California coast near Point Arena, with an example depicted in the figure below. The northerly flow here is due to the Pacific subtropical high. The coastal topography interacts with the northerly flow in the marine inversion layer, and when the flow passes a cape or point that juts into the winds, structures called "hydraulic expansion fans" are observed. These are marked by strong variation along the vertical and cross-shore directions. The plots below show three horizontal slices at different heights above sea level (ASL). Bottom plots are enlargements of the area marked by dotted boxes above. The terrain contours are in 200-m increments, with the white spots being above 600-m elevation. Additional information is contained in the original.

  12. Measurement of airborne mite allergen exposure in individual subjects.

    PubMed

    Sakaguchi, M; Inouye, S; Sasaki, R; Hashimoto, M; Kobayashi, C; Yasueda, H

    1996-05-01

    To evaluate the extent of personal exposure to airborne mite allergens, subjects were asked to carry a personal air sampler when in their houses. The level of Der 1 allergen trapped by the sampler was measured with a highly sensitive immunoassay. There were great variations in airborne Der 1 exposure in each subject. When used bedding was replaced with new allergen-free bedding, we detected a decrease in the allergen level. The use of new bedding seems to be an effective measure for reducing airborne mite allergen exposure.

  13. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Technical Reports Server (NTRS)

    Meadows, Byron; Davis, Ken; Barrick, John; Browell, Edward; Chen, Gao; Dobler, Jeremy; Fried, Alan; Lauvaux, Thomas; Lin, Bing; McGill, Matt; Miles, Natasha; Nehrir, Amin; Obland, Michael; O'Dell, Chris; Sweeney, Colm; Yang, Melissa

    2015-01-01

    NASA announced the research opportunity Earth Venture Suborbital -2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport -America (ACT -America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT -America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  14. Exploratory Meeting on Airborne Doppler Lidar Wind Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Fichtel, G. H. (Editor); Kaufman, J. W. (Editor); Vaughan, W. W. (Editor)

    1980-01-01

    The scientific interests and applications of the Airborne Doppler Lidar Wind Velocity Measurement System to severe storms and local weather are discussed. The main areas include convective phenomena, local circulation, atmospheric boundary layer, atmospheric dispersion, and industrial aerodynamics.

  15. Mapping methane emission sources over California based on airborne measurements

    NASA Astrophysics Data System (ADS)

    Karl, T.; Guha, A.; Peischl, J.; Misztal, P. K.; Jonsson, H.; Goldstein, A. H.; Ryerson, T. B.

    2011-12-01

    The California Global Warming Solutions Act of 2006 (AB 32) has created a need to accurately characterize the emission sources of various greenhouse gases (GHGs) and verify the existing state GHG inventory. Methane (CH4) is a major GHG with a global warming potential of 20 times that of CO2 and currently constitutes about 6% of the total statewide GHG emissions on a CO2 equivalent basis. Some of the major methane sources in the state are area sources where methane is biologically produced (e.g. dairies, landfills and waste treatment plants) making bottom-up estimation of emissions a complex process. Other potential sources include fugitive emissions from oil extraction processes and natural gas distribution network, emissions from which are not well-quantified. The lack of adequate field measurement data to verify the inventory and provide independently generated estimates further contributes to the overall uncertainty in the CH4 inventory. In order to gain a better perspective of spatial distribution of major CH4 sources in California, a real-time measurement instrument based on Cavity Ring Down Spectroscopy (CRDS) was installed in a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of airborne CH4 and CO2 measurements during eight unique flights which covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. The coincident VOC measurements, obtained through a high frequency proton transfer reaction mass spectrometer (PTRMS), aid in CH4 source identification. High mixing ratios of CH4 (> 2000 ppb) are observed consistently in all the flight transects above the Central Valley. These high levels of CH4 are accompanied by high levels of methanol which is an important

  16. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  17. Husbandry Trace Gas Emissions from a Dairy Complex By Mobile in Situ and Airborne and Spaceborne Remote Sensing: A Comex Campaign Focus

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Tratt, D. M.; Bovensmann, H.; Buckland, K. N.; Burrows, J. P.; Frash, J.; Gerilowski, K.; Iraci, L. T.; Johnson, P. D.; Kolyer, R.; Krautwurst, S.; Krings, T.; Leen, J. B.; Hu, C.; Melton, C.; Vigil, S. A.; Yates, E. L.; Zhang, M.

    2014-12-01

    Recent field study reviews on the greenhouse gas methane (CH4) found significant underestimation from fossil fuel industry and husbandry. The 2014 COMEX campaign seeks to develop methods to derive CH4 and carbon dioxide (CO2) from remote sensing data by combining hyperspectral imaging (HSI) and non-imaging spectroscopy (NIS) with in situ airborne and surface data. COMEX leverages synergies between high spatial resolution HSI column abundance maps and moderate spectral/spatial resolution NIS. Airborne husbandry data were collected for the Chino dairy complex (East Los Angeles Basin) by NIS-MAMAP, HSI-Mako thermal-infrared (TIR); AVIRIS NG shortwave IR (SWIR), with in situ surface mobile-AMOG Surveyor (AutoMObile greenhouse Gas)-and airborne in situ from a Twin Otter and the AlphaJet. AMOG Surveyor uses in situ Integrated Cavity Off Axis Spectroscopy (OA-ICOS) to measure CH4, CO2, H2O, H2S and NH3 at 5-10 Hz, 2D winds, and thermal anomaly in an adapted commuter car. OA-ICOS provides high precision and accuracy with excellent stability. NH3 and CH4 emissions were correlated at dairy size-scales but not sub-dairy scales in surface and Mako data, showing fine-scale structure and large variations between the numerous dairies in the complex (herd ~200,000-250,000) embedded in an urban setting. Emissions hotspots were consistent between surface and airborne surveys. In June, surface and MAMAP data showed a weak overall plume, while surface and Mako data showed a stronger plume in late (hotter) July. Multiple surface plume transects using NH3 fingerprinting showed East and then NE advection out of the LA Basin consistent with airborne data. Long-term trends were investigated in satellite data. This study shows the value of synergistically combined NH3 and CH4 remote sensing data to the task of CH4 source attribution using airborne and space-based remote sensing (IASI for NH3) and top of atmosphere sensitivity calculations for Sentinel V and Carbon Sat (CH4).

  18. The GLORIE Campaign: Assessment of the Capabilities of Airborne GNSS-R for Land Remote Sensing.

    NASA Astrophysics Data System (ADS)

    Mangiarotti, S.; Motte, E.; Zribi, M., Sr.; Fanise, P., Sr.

    2015-12-01

    In June and July 2015 an intensive flight campaign was conducted over the south west of France to test the sensitivity of Global Navigation Satellite System Reflectometry (GNSS-R) to the geophysical parameters of continental surfaces. Namely, the parameters of interest were soil moisture, soil roughness, plant water content, forest biomass and level of inland water bodies and rivers. We used the GLORI polarimetric GNSS-R instrument, collecting raw 10MSPS 2-bit IQ direct (RHCP, zenith) and reflected (RHCP and LHCP, nadir) signals at GPS L1 frequency aboard the ATR-42 aircraft of the SAFIRE fleet. Simultaneous measurement of aircraft attitude and position were recorded. The flight plan included flyovers of several areas of interests, with collocated ground truth measurements of soil moisture, soil roughness, cultivated biomass, and forest biomass. Also flyovers of ponds, lakes and river were included for power calibration and altimetry retrievals. In total, 6 flights were performed between June 19th and July 6th, representing more than 15 hours of raw data. A conventional GNSS-R processing of the data was performed in order to compute the direct and reflected complex waveforms. A preliminary data analysis based on the variations of the ratio of reflected maximum correlation amplitude in the LHCP antenna to direct maximum correlated amplitude shows measurements sensitivity to soil type, land use and incidence angle. Also, first altimetric retrievals using phase-delay techniques shows very promising results over calm waters. Current work is ongoing in order to fit the observed polarimetric measurements with innovative bistatic scattering models capable of taking into account complex geometries and land use configurations.

  19. Airborne gamma radiation measurements of soil moisture during FIFE: Activities and results

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.

    1992-01-01

    Soil moisture measurements were obtained during the summer of 1987 and 1989 near Manhattan, Kansas, using the National Weather Service (NWS) airborne gamma radiation system. A network of 24 flight lines were established over the research area. Airborne surveys were flown daily during two intensive field campaigns. The data collected was sufficient to modify the NWS standard operational method for estimating soil moisture for the Field Experiment (FIFE) flight lines. The average root mean square error of the soil moisture estimates for shorter FIFE flight lines was found to be 2.5 percent, compared with a reported value of 3.9 percent for NWS flight lines. Techniques were developed to compute soil moisture estimates for portions of the flight lines. Results of comparisons of the airborne gamma radiation soil moisture estimates with those obtained using the NASA Pushbroom Microwave Radiation (PBMR) system and hydrological model are presented. The airborne soil moisture measurements, and real averages computed using all remotely sensed and ground data, have been in support of the research of the many FIFE investigators whose overall goal was the upscale integration of models and the application of satellite remote sensing.

  20. Airborne measurements in the longwave infrared using an imaging hyperspectral sensor

    NASA Astrophysics Data System (ADS)

    Allard, Jean-Pierre; Chamberland, Martin; Farley, Vincent; Marcotte, Frédérick; Rolland, Matthias; Vallières, Alexandre; Villemaire, André

    2008-07-01

    Emerging applications in Defense and Security require sensors with state-of-the-art sensitivity and capabilities. Among these sensors, the imaging spectrometer is an instrument yielding a large amount of rich information about the measured scene. Standoff detection, identification and quantification of chemicals in the gaseous state is one important application. Analysis of the surface emissivity as a means to classify ground properties and usage is another one. Imaging spectrometers have unmatched capabilities to meet the requirements of these applications. Telops has developed the FIRST, a LWIR hyperspectral imager. The FIRST is based on the Fourier Transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. The FIRST, a man portable sensor, provides datacubes of up to 320×256 pixels at 0.35mrad spatial resolution over the 8-12 μm spectral range at spectral resolutions of up to 0.25cm-1. The FIRST has been used in several field campaigns, including the demonstration of standoff chemical agent detection [http://dx.doi.org/10.1117/12.788027.1]. More recently, an airborne system integrating the FIRST has been developed to provide airborne hyperspectral measurement capabilities. The airborne system and its capabilities are presented in this paper. The FIRST sensor modularity enables operation in various configurations such as tripod-mounted and airborne. In the airborne configuration, the FIRST can be operated in push-broom mode, or in staring mode with image motion compensation. This paper focuses on the airborne operation of the FIRST sensor.

  1. Airborne Carbon Dioxide Laser Absorption Spectrometer for IPDA Measurements of Tropospheric CO2: Recent Results

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Menzies, Robert T.

    2008-01-01

    The National Research Council's decadal survey on Earth Science and Applications from Space[1] recommended the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission for launch in 2013-2016 as a logical follow-on to the Orbiting Carbon Observatory (OCO) which is scheduled for launch in late 2008 [2]. The use of a laser absorption measurement technique provides the required ability to make day and night measurements of CO2 over all latitudes and seasons. As a demonstrator for an approach to meeting the instrument needs for the ASCENDS mission we have developed the airborne Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) which uses the Integrated Path Differential Absorption (IPDA) Spectrometer [3] technique operating in the 2 micron wavelength region.. During 2006 a short engineering checkout flight of the CO2LAS was conducted and the results presented previously [4]. Several short flight campaigns were conducted during 2007 and we report results from these campaigns.

  2. Initial airborne CO{sub 2} DIAL measurements: Discussion of results and data analysis considerations

    SciTech Connect

    Tiee, J.J.; Foy, B.R.; Quick, C.R.

    1997-07-01

    A detailed discussion of airborne CO{sub 2}, DIAL measurements obtained from the first joint N-ABLE field campaign at INEL is presented. System performance characteristics, including return signal strength, averaging statistics, and temporal correlation as well as multi-line DIAL spectral data are discussed. In particular, we review data acquisition and analysis strategies pertinent to chemical detection from a moving platform, such as range determination and correction, and return signal processing (waveform vs. box-car integration, baseline correction). We also report observed effects and variations due to near-field light scattering, pointing and tracking stability, and stack-release plume dynamics.

  3. Final Report on the Airborne Field Mill Project (ABFM) 2000-2001 Field Campaign

    NASA Technical Reports Server (NTRS)

    Dye, James E.; Lewis, Sharon; Bateman, Monte, G.; Mach, Douglas M.; Merceret, Francis J.; Ward, Jennifer G.; Grainger, Cedric A.

    2004-01-01

    The Airborne Field Mill (ABFM) research program conducted under the direction of the John F. Kennedy Space Center during 2000 and 2001 is described. The purpose, methodology and initial results from the program are presented. Extensive appendices detailing the instrumentation used to collect the data are provided.

  4. Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection.

    PubMed

    Spiers, Gary D; Menzies, Robert T; Jacob, Joseph; Christensen, Lance E; Phillips, Mark W; Choi, Yonghoon; Browell, Edward V

    2011-05-10

    We report airborne measurements of CO(2) column abundance conducted during two 2009 campaigns using a 2.05 μm laser absorption spectrometer. The two flight campaigns took place in the California Mojave desert and in Oklahoma. The integrated path differential absorption (IPDA) method is used for the CO(2) column mixing ratio retrievals. This instrument and the data analysis methodology provide insight into the capabilities of the IPDA method for both airborne measurements and future global-scale CO(2) measurements from low Earth orbit pertinent to the NASA Active Sensing of CO(2) Emissions over Nights, Days, and Seasons mission. The use of a favorable absorption line in the CO(2) 2 μm band allows the on-line frequency to be displaced two (surface pressure) half-widths from line center, providing high sensitivity to the lower tropospheric CO(2). The measurement repeatability and measurement precision are in good agreement with predicted estimates. We also report comparisons with airborne in situ measurements conducted during the Oklahoma campaign.

  5. Seasonal and Inter-Annual Patterns of Phytoplankton Community Structure in Monterey Bay, CA Derived from AVIRIS Data During the 2013-2015 HyspIRI Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Palacios, S. L.; Thompson, D. R.; Kudela, R. M.; Negrey, K.; Guild, L. S.; Gao, B. C.; Green, R. O.; Torres-Perez, J. L.

    2015-12-01

    There is a need in the ocean color community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand ocean biodiversity, to track energy flow through ecosystems, and to identify and monitor for harmful algal blooms. Imaging spectrometer measurements enable use of sophisticated spectroscopic algorithms for applications such as differentiating among coral species, evaluating iron stress of phytoplankton, and discriminating phytoplankton taxa. These advanced algorithms rely on the fine scale, subtle spectral shape of the atmospherically corrected remote sensing reflectance (Rrs) spectrum of the ocean surface. As a consequence, these algorithms are sensitive to inaccuracies in the retrieved Rrs spectrum that may be related to the presence of nearby clouds, inadequate sensor calibration, low sensor signal-to-noise ratio, glint correction, and atmospheric correction. For the HyspIRI Airborne Campaign, flight planning considered optimal weather conditions to avoid flights with significant cloud/fog cover. Although best suited for terrestrial targets, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has enough signal for some coastal chlorophyll algorithms and meets sufficient calibration requirements for most channels. However, the coastal marine environment has special atmospheric correction needs due to error that may be introduced by aerosols and terrestrially sourced atmospheric dust and riverine sediment plumes. For this HyspIRI campaign, careful attention has been given to the correction of AVIRIS imagery of the Monterey Bay to optimize ocean Rrs retrievals for use in estimating chlorophyll (OC3 algorithm) and phytoplankton functional type (PHYDOTax algorithm) data products. This new correction method has been applied to several image collection dates during two oceanographic seasons - upwelling and the warm, stratified oceanic period for 2013 and 2014. These two periods are dominated by either diatom blooms (occasionally

  6. Observations of Saharan dust microphysical and optical properties from the Eastern Atlantic during NAMMA airborne field campaign

    NASA Astrophysics Data System (ADS)

    Chen, G.; Ziemba, L. D.; Chu, D. A.; Thornhill, K. L.; Schuster, G. L.; Winstead, E. L.; Diskin, G. S.; Ferrare, R. A.; Burton, S. P.; Ismail, S.; Kooi, S. A.; Omar, A. H.; Slusher, D. L.; Kleb, M. M.; Reid, J. S.; Twohy, C. H.; Zhang, H.; Anderson, B. E.

    2010-05-01

    As part of the international project entitled "African Monsoon Multidisciplinary Analysis (AMMA)", NAMMA (NASA AMMA) aimed to gain a better understanding of the relationship between the African Easterly Waves (AEWs), the Sahara Air Layer (SAL), and tropical cyclogenesis. The NAMMA airborne field campaign was based out of the Cape Verde Islands during the peak of the hurricane season, i.e., August and September 2006. Multiple Sahara dust layers were sampled during 62 encounters in the eastern portion of the hurricane main development region, covering both the eastern North Atlantic Ocean and the western Saharan desert (i.e., 5-22° N and 10-35° W). The centers of these layers were located at altitudes between 1.5 and 3.3 km and the layer thickness ranged from 0.5 to 3 km. Detailed dust microphysical and optical properties were characterized using a suite of in situ instruments aboard the NASA DC-8 that included a particle counter, an Ultra-High Sensitivity Aerosol Spectrometer, an Aerodynamic Particle Sizer, nephelometer, and Particle Soot Absorption Photometer. The NAMMA dust observations showed relatively low particle number densities, ranging from 268 to 461 cm-3, but highly elevated volume density with an average at 45 μm3 cm-3. NAMMA dust particle size distributions were well represented by tri-modal lognormal regressions. The estimated volume median diameter (VMD) is averaged at 2.1 μm with a small range of variation regardless of the vertical and geographical sampling locations. The absorption coefficient measurements exhibited a strong wavelength dependence for absorption but a weak one for scattering. The single scattering albedo was estimated at 0.97±0.02. Closure analyses showed that observed scattering and absorption coefficients are highly correlated with those calculated from spherical Mie-Theory and observed dust particle size distributions. The imaginary part of the refractive index for Sahara dust was estimated at 0.0022, with a range from 0

  7. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen; Veselovskii, Igor; Forno, Ricardo; Mielke, Bernd; Stein, Bernhard; Leblanc, Thierry; McDermid, Stuart; Voemel, Holger

    2010-01-01

    A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE

  8. Airborne flux measurements of Biogenic Isoprene over California

    SciTech Connect

    Misztal, P.; Karl, Thomas G.; Weber, Robin; Jonsson, H. H.; Guenther, Alex B.; Goldstein, Allen H.

    2014-10-10

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK+MAC, methanol, monoterpenes, and MBO over ~10,000-km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z/zi). Fluxes were generally measured by flying consistently 1 at 400 m ±50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  9. The NASA Airborne Tropical TRopopause EXperiment (ATTREX):High-Altitude Aircraft Measurements in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Pfister, L.; Jordan, D. E.; Bui, T. V.; Ueyama, R.; Singh, H. B.; Lawson, P.; Thornberry, T.; Diskin, G.; McGill, M.; Pittman, J.; Atlas, E.; Kim, J.

    2016-01-01

    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes.

  10. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar. Part 2; Ground Based

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Cadirola, Martin; Venable, Demetrius; Connell, Rasheen; Rush, Kurt; Leblanc, Thierry; McDermid, Stuart

    2009-01-01

    The same RASL hardware as described in part I was installed in a ground-based mobile trailer and used in a water vapor lidar intercomparison campaign, hosted at Table Mountain, CA, under the auspices of the Network for the Detection of Atmospheric Composition Change (NDACC). The converted RASL hardware demonstrated high sensitivity to lower stratospheric water vapor indicating that profiling water vapor at those altitudes with sufficient accuracy to monitor climate change is possible. The measurements from Table Mountain also were used to explain the reason, and correct , for sub-optimal airborne aerosol extinction performance during the flight campaign.

  11. Ground truth measurement for the analysis of airborne SAR data recorded over Oberpfaffenhofen, FRG, 1989

    NASA Technical Reports Server (NTRS)

    Bayer, T.; Wieneke, F.; Winter, R.

    1990-01-01

    As a preliminary investigation to the joint multiparameter SIR-C/X-SAR shuttle experiment of NASA/JPL (USA), DLR (FRG), and PSN (Italy) which is scheduled for the year 1992 an airborne SAR campaign was conducted over Oberpfaffenhofen, FRG, in August 1989. Primarily this campaign was planned to test and verify equipment and algorithms developed at the DLR to calibrate multifrequency polarimetric SAR data. Oberpfaffenhofen is designated as one of the super test sites for the SIR-C/X-SAR experiment which will be imaged under all circumstances except severe mission errors. A super test site drives radar parameters and look directions and the recorded SAR data will be calibrated. In addition ancillary data will be available for the site. During the airborne STAR campaign conducted in the week of August 14th 1989 various sensor types were used to record remote sensing data over the calibration test site and its vicinity: the polarimetric DC-8 JPL-SAR (P-, L-, C-band), the DLR airborne SAR (C-, X-band), color infrared aerial photography (DLR), and the truck-mounted scatterometer (C- and X-band) of the Institute for Navigation, University of Stuttgart (INS). Because of this variety of different sensor types used and out of the fact that sufficiently large forested and agriculturally used areas were planned to be covered by these sensors, the interest of several German research groups involved in investigations concerning SAR land applications arose. The following groups carried out different ground-truth measurements: University of Bonn, Institute for plant cultivation (plant morphology and moisture content); University of Braunschweig, Institute for Geography (soil moisture and surface roughness); University of Freiburg, Institute for Geography (dielectric soil properties, landuse); and University of Munich, Institute for Geography (landuse inventory, plant, surface, and soil parameters). This paper presents the joint ground truth activities of the Institute for Geography

  12. Initial evaluation of airborne water vapour measurements by the IAGOS-GHG CRDS system

    NASA Astrophysics Data System (ADS)

    Filges, Annette; Gerbig, Christoph; Smit, Herman G. J.; Krämer, Martina; Spelten, Nicole

    2013-04-01

    Accurate and reliable airborne measurements of water vapour are still a challenge. Presently, no airborne humidity sensor exists that covers the entire range of water vapour content between the surface and the upper troposphere/lower stratosphere (UT/LS) region with sufficient accuracy and time resolution. Nevertheless , these data are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. The DENCHAR project (Development and Evaluation of Novel Compact Hygrometer for Airborne Research) addresses this deficit by developing and characterizing novel or improved compact airborne hygrometers for different airborne applications within EUFAR (European Facility for Airborne Research). As part of the DENCHAR inter-comparison campaign in Hohn (Germany), 23 May - 1 June 2011, a commercial gas analyzer (G2401-m, Picarro Inc.,US), based on cavity ring-down spectroscopy (CRDS), was installed on a Learjet to measure water vapour, CO2, CH4 and CO. The CRDS components are identical to those chosen for integration aboard commercial airliner within IAGOS (In-service Aircraft for a Global Observing System). Thus the campaign allowed for the initial assessment validation of the long-term IAGOS H2O measurements by CRDS against reference instruments with a long performance record (FISH, the Fast In-situ Stratospheric Hygrometer, and CR2 frostpoint hygrometer, both research centre Juelich). The inlet system, a one meter long 1/8" FEP-tube connected to a Rosemount TAT housing (model 102BX, deiced) installed on a window plate of the aircraft, was designed to eliminate sampling of larger aerosols, ice particles, and water droplets, and provides about 90% of ram-pressure. In combination with a lowered sample flow of 0.1 slpm (corresponding to a 4 second response time), this ensured a fully controlled sample pressure in the cavity of 140 torr throughout an aircraft altitude operating range up to 12.5 km without the need of an upstream sampling pump

  13. Field campaigns of the autonomous, closed-path, airborne TDLAS Hygrometer SEALDH-II and traceability to the German Primary Humidity Standards.

    NASA Astrophysics Data System (ADS)

    Buchholz, Bernhard; Ebert, Volker

    2014-05-01

    Airborne hygrometry is often demanded in scientific flight campaigns to provide datasets for environmental modeling or to correct for water vapor dilution or cross sensitivity effects in other gas analytical techniques. Water vapor measurements, however, are quite challenging due to the large dynamic range in the atmosphere (between 2 and 40000 ppmv) and the high spatio-temporal variability. Airborne hygrometers therefore need to combine a large measurement range with high temporal resolution to resolve - at typical airspeeds of 500 to 900 km/h - atmospheric gradients of several 1000 ppmv/s. Especially during the ascent into the upper troposphere, hygrometers need to work at high gas exchange rates to minimize water vapor adsorption effects. On the other hand, water vapor sensors are difficult to calibrate due to the strong water adsorption and the lack of bottled reference gas standards, which requires pre- or/and post-flight field calibrations. Recently in-flight calibration using an airborne H2O generator was demonstrated, which minimizes calibration drift but still imposes a lot of additional work and hardware to the experiments, since these kind of calibrations just transfer the accuracy level issues to the in-flight calibration-source. To make things worse, the low gas flow (1-5 std l/min, compared with up to 100 std l/min in flight for fast response instruments) adheres critical questions of wall absorption/desorption of the source and instrument even during the calibration process. The national metrological institutes (NMIs) maintain a global metrological water vapor scale which is defined via national primary humidity generators. These provide for calibration purposes well-defined, accurate water vapor samples of excellent comparability and stability traced back to the SI-units. The humidity calibration chain is maintained via high accuracy (but rather slow) Dew-Point-Mirror-Hygrometers as transfer standards. These provide a traceable performance and

  14. Airborne water vapor DIAL research: System development and field measurements

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.; Ponsardin, Patrick; Chyba, Thomas H.; Grossmann, Benoist E.; Butler, Carolyn F.; Fenn, Marta A.; Mayor, Shane D.; Ismail, Syed; Grant, William B.

    1992-01-01

    This paper describes the airborne differential absorption lidar (DIAL) system developed at the NASA Langley Research Center for remote measurement of water vapor (H2O) and aerosols in the lower atmosphere. The airborne H2O DIAL system was flight tested aboard the NASA Wallops Flight Facility (WFF) Electra aircraft in three separate field deployments between 1989 and 1991. Atmospheric measurements were made under a variety of atmospheric conditions during the flight tests, and several modifications were implemented during this development period to improve system operation. A brief description of the system and major modifications will be presented, and the most significant atmospheric observations will be described.

  15. Airborne flux measurements of biogenic isoprene over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-10-01

    Biogenic isoprene fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne Biogenic volatile organic compound (BVOC) Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a proton transfer reaction mass spectrometer (PTR-MS) and a wind radome probe to directly determine fluxes of isoprene over 7400 km of flight paths focusing on areas of California predicted to have the largest emissions. The fast Fourier transform (FFT) approach was used to calculate fluxes of isoprene over long transects of more than 15 km, most commonly between 50 and 150 km. The continuous wavelet transformation (CWT) approach was used over the same transects to also calculate instantaneous isoprene fluxes with localization of both frequency and time independent of non-stationarities. Fluxes were generally measured by flying consistently at 400 m ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence determined in the racetrack-stacked profiles. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to basal emission factor (BEF) land-cover data sets used to drive BVOC emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. Even though the isoprene emissions from agricultural crop regions, shrublands, and coniferous forests were extremely low, observations at the Walnut Grove tower south of Sacramento demonstrate that isoprene oxidation products from the high emitting regions in the surrounding oak woodlands accumulate at night in

  16. Airborne backscatter lidar measurements at three wavelengths during ELITE

    NASA Astrophysics Data System (ADS)

    Schreiber, H. G.; Wirth, Martin; Moerl, P.; Renger, Wolfgang

    1995-09-01

    The German Aerospace Establishment (DLR) operates an airborne backscatter lidar based on a Nh:YAG laser which is flashlamp-pumped at 10 Hz. It works on the wavelengths 1064, 532, and 354 nm. It is mounted downward-looking on the research aircraft Falcon 20, flying at about 12 km altitude at speeds of 200 m/s. We present airborne measurements correlated with the orbit tracks of the shuttle-borne LITE-instrument (lidar in-space technology experiment). The emphasis in data evalution is on the comparison between the airborne and the shuttle- borne lidars. First results show excellent agreement between the two instruments even on details of cirrus clouds. The results comprise cloud geometrical and optical depths, as well as profiles of aerosol backscattering coefficients at three wavelengths.

  17. Airborne measurements of gases and particles from an Alaskan wildfire

    NASA Astrophysics Data System (ADS)

    Nance, J. D.; Hobbs, Peter V.; Radke, Lawrence F.; Ward, Darold E.

    1993-08-01

    Airborne measurements of several gaseous and particulate chemical species were obtained in the emissions from a wildfire that burned in an old black spruce forest in Alaska during the summer of 1990. The relative proportions of most of the measured plume constituents are consistent with ground-based and airborne measurements in the plumes of several other biomass fires, and with laboratory measurements. Possible exceptions include the mean fine-particle emission factor, which was about 3 times larger than predicted from a regression relation based on measurements of the smoke from several prescribed biomass fires, and the mean CH4/CO molar emission ratio which was at the low end of a range of values measured for other biomass fires. Measurements of water-soluble particulate ions in the smoke plume from the Alaskan wildfire indicate that acids formed from the oxides of sulphur and nitrogen were partially neutralized inside cloud droplets by NH3 absorbed from the plume.

  18. ARM Airborne Continuous carbon dioxide measurements

    DOE Data Explorer

    Biraud, Sebastien

    2013-03-26

    The heart of the AOS CO2 Airborne Rack Mounted Analyzer System is the AOS Manifold. The AOS Manifold is a nickel coated aluminum analyzer and gas processor designed around two identical nickel-plated gas cells, one for reference gas and one for sample gas. The sample and reference cells are uniquely designed to provide optimal flushing efficiency. These cells are situated between a black-body radiation source and a photo-diode detection system. The AOS manifold also houses flow meters, pressure sensors and control valves. The exhaust from the analyzer flows into a buffer volume which allows for precise pressure control of the analyzer. The final piece of the analyzer is the demodulator board which is used to convert the DC signal generated by the analyzer into an AC response. The resulting output from the demodulator board is an averaged count of CO2 over a specified hertz cycle reported in volts and a corresponding temperature reading. The system computer is responsible for the input of commands and therefore works to control the unit functions such as flow rate, pressure, and valve control.The remainder of the system consists of compressors, reference gases, air drier, electrical cables, and the necessary connecting plumbing to provide a dry sample air stream and reference air streams to the AOS manifold.

  19. Aerosol optical properties in the ABL over arctic sea ice from airborne aerosol lidar measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Lukas; Neuber, Roland; Ritter, Christoph; Maturilli, Marion; Dethloff, Klaus; Herber, Andreas

    2014-05-01

    Between 2009 and 2013 aerosols, sea ice properties and meteorological variables were measured during several airborne campaigns covering a wide range of the western Arctic Ocean. The campaigns were carried out with the aircraft Polar 5 of the German Alfred-Wegener-Institute (AWI) during spring and summer periods. Optical properties of accumulation mode aerosol and clouds were measured with the nadir looking AMALi aerosol lidar covering the atmospheric boundary layer and the free troposphere up to 3000m, while dropsondes provided coincident vertical profiles of meteorological quantities. Based on these data we discuss the vertical distribution of aerosol backscatter in and above the atmospheric boundary layer and its dependence on relative humidity, dynamics and underlying sea ice properties. We analyze vertical profiles of lidar and coincident dropsonde measurements from various locations in the European and Canadian Arctic from spring and summer campaigns. Sea ice cover is derived from modis satellite and aircraft onboard camera images. The aerosol load in the arctic atmospheric boundary layer shows a high variability. Various meteorological parameters and in particular boundary layer properties are discussed with their respective influence on aerosol features. To investigate the effect of the frequency and size of open water patches on aerosol properties, we relate the profiles to the sea ice properties influencing the atmosphere in the upwind region.

  20. Pulsed Airborne Lidar Measurements of C02 Column Absorption

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Rodriquez, Michael; Browell, Edward V.

    2011-01-01

    We report on airborne lidar measurements of atmospheric CO2 column density for an approach being developed as a candidate for NASA's ASCENDS mission. It uses a pulsed dual-wavelength lidar measurement based on the integrated path differential absorption (IPDA) technique. We demonstrated the approach using the CO2 measurement from aircraft in July and August 2009 over four locations. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The 2009 measurements have been analyzed in detail and the results show approx.1 ppm random errors for 8-10 km altitudes and approx.30 sec averaging times. Airborne measurements were also made in 2010 with stronger signals and initial analysis shows approx. 0.3 ppm random errors for 80 sec averaging times for measurements at altitudes> 6 km.

  1. VNIR-SWIR-TIR hyperspectral airborne campaign for soil and sediment mapping in semi-arid south african environments

    NASA Astrophysics Data System (ADS)

    Milewski, Robert; Chabrillat, Sabine; Eisele, Andreas

    2016-04-01

    Airborne hyperspectral remote sensing techniques has been proven to offer efficient procedures for soil and sediment mineralogical mapping in arid areas on larger scales. Optical methods based on traditional remote sensing windows using the solar reflective spectral wavelength range from the visible-near infrared (VNIR: 0.4-1.1 μm) to the short-wave infrared region (SWIR: 1.1-2.5 μm) allow mapping of common soil properties such as iron oxides, textural characteristics and organic carbon. However, soil mapping in semi-arid environments using VNIR-SWIR is currently limited due to specific spectral characteristics. Challenges appear in such environments due to the common presence of sandy soils (coarse textured) which grain size distribution is driven by the dominant mineral, quartz (SiO2), and which lacks any distinctive Si-O bond related spectral features within the VNIR-SWIR. Furthermore, another challenge is represented by the common presence of other specific spectral features due to different salts (gypsum, halite) or coatings of different forms (cyanobacteria, iron-oxides and/or -oxyhydroxides) for which few studies exists or that oft prevent detection of any other potential spectral feature of e.g. soil organics. In this context, more methodological developments are needed to overcome current limitations of hyperspectral remote sensing for arid areas, and to extent its scope using the thermal infrared (TIR) wavelength region within the atmospheric window between 8 and 14 μm (longwave infrared). In 2015 an extensive VNIR-SWIR-TIR airborne hyperspectral dataset consisting of HySpex-VNIR, HySpex-SWIR (NEO) and Hyper-Cam (TELOPS) data has been acquired in various Namibian and South African landscapes part of the Dimap/GFZ campaign in the frame of the BMBF-SPACES Geoarchive project. Research goals are 1) to demonstrate the capabilities to extract information from such a dataset and 2) to demonstrate the potential of advanced hyperspectral remote sensing

  2. Airborne lidar measurements of ozone during the 1989 airborne Arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Fenn, Marta A.; Kooi, Susan A.

    1991-01-01

    The NASA/NOAA Airborne Arctic Stratospheric Expedition (AASE) was conducted during the winter to study the conditions leading to possible ozone (O3) destruction in the wintertime Arctic stratosphere. As part of this experiment, the NASA-Langley airborne differential absorption lidar (DIAL) system was configured for operation on the NASA-Ames DS-8 aircraft to make measurements of O3 profiles from about 1 km above the aircraft to altitudes of 22 to 26 km. The airborne DIAL system remotely sensed O3 above the DC-8 by transmitting two laser beams at 10 Hz using wavelengths of 301.5 and 311 nm. Large scale distributions of O3 were obtained on 15 long range flights into the polar vortex during the AASE. Selected data samples are presented of O3 observed during these flights, general trends observed in O3 distributions, and correlations between these measurements and meteorological and chemical parameters. The O3 distribution observed on the first flight of the DC-8 into the polar vortex on Jan. 6 reflected the result of diabatic cooling of the air inside the vortex during the winter compared to the warmer air outside the vortex. On a potential temperature surface, the O3 mixing ratio generally increases when going from outside to inside the vortex.

  3. Technical Note: Characterisation of a DUALER instrument for the airborne measurement of peroxy radicals during AMMA 2006

    NASA Astrophysics Data System (ADS)

    Kartal, D.; Andrés-Hernández, M. D.; Reichert, L.; Schlager, H.; Burrows, J. P.

    2010-03-01

    A DUALER (dual-channel airborne peroxy radical chemical amplifier) instrument has been developed and optimised for the airborne measurement of the total sum of peroxy radicals during the AMMA (African Monsoon Multidisciplinary Analyses) measurement campaign which took place in Burkina Faso in August 2006. The innovative feature of the instrument is that both reactors are sampling simultaneously from a common pre-reactor nozzle while the whole system is kept at a constant pressure to ensure more signal stability and accuracy. Laboratory experiments were conducted to characterise the stability of the NO2 detector signal and the chain length with the pressure. The results show that airborne measurements using chemical amplification require constant pressure at the luminol detector. Wall losses of main peroxy radicals HO2 and CH3O2 were investigated. The chain length was experimentally determined for different ambient mixtures and compared with simulations performed by a chemical box model. The DUALER instrument was successfully mounted within the German DLR-Falcon. The analysis of AMMA data utilises a validation procedure based on the O3 mixing ratios simultaneously measured onboard. The validation and analysis procedure is illustrated by means of the data measured during the AMMA campaign. The detection limit and the accuracy of the ambient measurements are also discussed.

  4. Evaluating the effectiveness of an Australian obesity mass-media campaign: how did the 'Measure-Up' campaign measure up in New South Wales?

    PubMed

    King, E L; Grunseit, A C; O'Hara, B J; Bauman, A E

    2013-12-01

    In 2008, the Australian Government launched a mass-media campaign 'Measure-Up' to reduce lifestyle-related chronic disease risk. Innovative campaign messages linked waist circumference and chronic disease risk. Communication channels for the campaign included television, press, radio and outdoor advertising and local community activities. This analysis examines the impact of the campaign in the state of New South Wales, Australia. Cross-sectional telephone surveys (n = 1006 adults pre- and post-campaign) covered self-reported diet and physical activity, campaign awareness, knowledge about waist circumference, personal relevance of the message, perceived confidence to make lifestyle changes and waist-measuring behaviours. The campaign achieved high unprompted (38%) and prompted (89%) awareness. From pre- to post-campaign, knowledge and personal relevance of the link between waist circumference and chronic disease and waist measuring behaviour increased, although there were no significant changes in reported fruit and vegetable intake nor in physical activity. Knowledge of the correct waist measurement threshold for chronic disease risk increased over 5-fold, adjusted for demographic characteristics. 'Measure-Up' was successful at communicating the new campaign messages. Continued long-term investment in campaigns such as 'Measure-Up', supplemented with community-based health promotion, may contribute to population risk factor understanding and behaviour change to reduce chronic disease.

  5. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) during BARCA

    NASA Astrophysics Data System (ADS)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2009-12-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR) analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  6. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region

    PubMed Central

    Thorpe, Andrew K.; Thompson, David R.; Hulley, Glynn; Kort, Eric Adam; Vance, Nick; Borchardt, Jakob; Krings, Thomas; Gerilowski, Konstantin; Sweeney, Colm; Conley, Stephen; Bue, Brian D.; Aubrey, Andrew D.; Hook, Simon; Green, Robert O.

    2016-01-01

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ∼ 2 kg/h to 5 kg/h through ∼ 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571–6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign. PMID:27528660

  7. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region.

    PubMed

    Frankenberg, Christian; Thorpe, Andrew K; Thompson, David R; Hulley, Glynn; Kort, Eric Adam; Vance, Nick; Borchardt, Jakob; Krings, Thomas; Gerilowski, Konstantin; Sweeney, Colm; Conley, Stephen; Bue, Brian D; Aubrey, Andrew D; Hook, Simon; Green, Robert O

    2016-08-30

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit [Formula: see text] 2 kg/h to 5 kg/h through [Formula: see text] 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571-6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign.

  8. Airborne High Spectral Resolution Lidar Measurements of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Ferrare, R.; Hostetler, C.; Hair, J.; Cook, A.; Harper, D.; Kleinman, L.; Clarke, A.; Russell, P.; Redemann, J.; Livingston, J.; Szykman, J.; Al-Saadi, J.

    2007-05-01

    NASA Langley Research Center (LaRC) recently developed an airborne High Spectral Resolution Lidar (HSRL) to measure aerosol distributions and optical properties. The HSRL technique takes advantage of the spectral distribution of the lidar return signal to discriminate aerosol and molecular signals and thereby measure aerosol extinction and backscatter independently. The LaRC instrument employs the HSRL technique to measure aerosol backscatter and extinction profiles at 532 nm and the standard backscatter lidar technique to measure aerosol backscatter profiles at 1064 nm. Depolarization profiles are measured at both wavelengths. Since March 2006, the airborne HSRL has acquired over 215 flight hours of data deployed on the NASA King Air B200 aircraft during several field experiments. Most of the flights were conducted during two major field experiments. The first major experiment was the joint Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX B) experiment that was conducted during March 2006 to investigate the evolution and transport of pollution from Mexico City. The second major experiment was the Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) that was conducted during August and September 2006 to investigate climate and air quality in the Houston/Gulf of Mexico region. Several flights were also conducted to help validate the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) lidar on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) satellite. In February 2007, several flights were carried out as part of an Environmental Protection Agency (EPA) experiment to assess air quality in central California. Airborne HSRL data acquired during these missions were used to quantify aerosol extinction and optical thickness contributed by various aerosol types

  9. Ground and Airborne Methane Measurements with an Optical Parametric Amplifier

    NASA Technical Reports Server (NTRS)

    Numata, Kenji

    2012-01-01

    We report on ground and airborne atmospheric methane measurements with a differential absorption lidar using an optical parametric amplifier (OPA). Methane is a strong greenhouse gas on Earth and its accurate global mapping is urgently needed to understand climate change. We are developing a nanosecond-pulsed OPA for remote measurements of methane from an Earth-orbiting satellite. We have successfully demonstrated the detection of methane on the ground and from an airplane at approximately 11-km altitude.

  10. SGP Cloud and Land Surface Interaction Campaign (CLASIC): Measurement Platforms

    SciTech Connect

    MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; TJ Jackson; B. Kustas; PJ Lamb; G McFarquhar; Q Min; B Schmid; MS Torn; DD Tuner

    2007-06-01

    The Cloud and Land Surface Interaction Campaign (CLASIC) will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of CLASIC includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the ACRF SGP site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations. An overview of the measurement platforms that will be used during the CLASIC are described in this report. The coordination of measurements, especially as it relates to aircraft flight plans, will be discussed in the CLASIC Implementation Plan.

  11. The Coca-campaign: An Attempt To Derive The Carbon Exchange of A Forested Region Using Airborne Co2 and Co Observations

    NASA Astrophysics Data System (ADS)

    Schmitgen, S.; Ciais, P.; Geiß, H.; Kley, D.; Neininger, B.; Baeumle, M.; Fuchs, W.; Brunet, Y.

    As part of the project COCA an attempt was made to measure the daytime biogenic CO2 fluxes over a forest area (about 15 by 30 km). This campaign took place around the CARBOEUROFLUX site "Le Bray" (Pinus pinaster) close to Bordeaux in France end of June 2001. Based on continuous airborne CO2, H2O and CO flux and concen- tration measurements a Lagrangian budgeting approach was chosen for the determi- nation of the regional CO2 fluxes. The objective is to determine the CO2 uptake of the extended forest area from the CO2/CO gradients up- and downwind of the ecosystem, using CO as air mass tracer and such eliminating the influence of anthropogenic CO2 advected into the area. First results will be shown of a flight on June 23rd, where fair wind speeds (about 5 m/s) and a low CBL height led to the observation of a clear decrease in CO2 at the downwind flight stacks with basically constant CO concentrations. For other flights with very low wind speeds, local effects dominate the observa- tions leading to a larger variability in the observations. Both, correlations and anti- correlations of CO2 with the anthropogenic tracer CO have been observed. Positive correlations indicate fresh plumes of anthropogenic CO2. Negative correlations are indicative of entrainment of free tropospheric air, that was marked by relatively higher CO2 and lower CO concentrations than the average CBL concentrations.

  12. Development and Evaluation of Novel and Compact Hygrometer for Airborne Research (DENCHAR): In-Flight Performance During AIRTOSS-I/II Research Aircaft Campaigns

    NASA Astrophysics Data System (ADS)

    Smit, Herman G. J.; Rolf, Christian; Kraemer, Martina; Petzold, Andreas; Spelten, Nicole; Rohs, Susanne; Neis, Patrick; Maser, Rolf; Bucholz, Bernhard; Ebert, Volker; Tatrai, David; Bozoki, Zoltan; Finger, Fanny; Klingebiel, Marcus

    2014-05-01

    Water vapour is one of the most important parameters in weather prediction and climate research. Accurate and reliable airborne measurements of water vapour are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. Presently, no airborne water vapour sensor exists that covers the entire range of water vapour content of more than four order of magnitudes between the surface and the UT/LS region with sufficient accuracy and time resolution, not to speak of the technical requirements for quasi-routine operation. In a joint research activity of the European Facility for Airborne Research (EUFAR) programme, funded by the EC in FP7, we have addressed this deficit by the Development and Evaluation of Novel and Compact Hygrometer for Airborne Research (DENCHAR), including the sampling characteristics of different gas/ice inlets. The new instruments using innovative detecting technics based on tuneable diode laser technology combined with absorption spectroscopy (TDLAS) or photoacoustic spectroscopy (PAS): (i) SEALDH based on novel self-calibrating absorption spectroscopy; (ii) WASUL, based on photoacoustic spectroscopy; (iii) commercial WVSS-II, also a TDLAS hygrometer, but using 2f-detection technics. DENCHAR has followed an unique strategy by facilitating new instrumental developments together with conducting extensive testing, both in the laboratory and during in-flight operation. Here, we will present the evaluation of the in-flight performance of the three new hygrometer instruments, which is based on the results obtained during two dedicated research aircraft campaigns (May and September 2013) as part of the AIRTOSS (AIRcraft Towed Sensor Shuttle) experiments. Aboard the Learjet 35A research aircraft the DENCHAR instruments were operated side by side with the well established Fast In-Situ Hygrometer (FISH), which is based on Lyman (alpha) resonance fluorescence detection technics and calibrated to the reference frost point

  13. Airborne Measurements of Formaldehyde Employing a Tunable Diode Laser Absorption Spectrometer During TRACE-P

    NASA Technical Reports Server (NTRS)

    Fried, Alan; Drummond, James

    2003-01-01

    This final report summarizes the progress achieved over the entire 3-year proposal period including two extensions spanning 1 year. These activities include: 1) Preparation for and participation in the NASA 2001 TRACE-P campaign using our airborne tunable diode laser system to acquire measurements of formaldehyde (CH2O); 2) Comprehensive data analysis and data submittal to the NASA archive; 3) Follow up data interpretation working with NASA modelers to place our ambient CH2O measurements into a broader photochemical context; 4) Publication of numerous JGR papers using this data; 5) Extensive follow up laboratory tests on the selectivity and efficiency of our CH20 scrubbing system; and 6) An extensive follow up effort to assess and study the mechanical stability of our entire optical system, particularly the multipass absorption cell, with aircraft changes in cabin pressure.

  14. A Study of Reflected Sonic Booms Using Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Kantor, Samuel R.; Cliatt, Larry J., II

    2017-01-01

    In support of ongoing efforts to bring commercial supersonic flight to the public, the Sonic Booms in Atmospheric Turbulence (SonicBAT) flight test was conducted at NASA Armstrong Flight Research Center. During this test, airborne sonic boom measurements were made using an instrumented TG-14 motor glider, called the Airborne Acoustic Measurement Platform (AAMP).During the flight program, the AAMP was consistently able to measure the sonic boom wave that was reflected off of the ground, in addition to the incident wave, resulting in the creation of a completely unique data set of airborne sonic boom reflection measurements. This paper focuses on using this unique data set to investigate the ability of sonic boom modeling software to calculate sonic boom reflections. Because the algorithms used to model sonic boom reflections are also used to model the secondary carpet and over the top booms, the use of actual flight data is vital to improving the understanding of the effects of sonic booms outside of the primary carpet. Understanding these effects becomes especially important as the return of commercial supersonic approaches, as well as ensuring the accuracy of mission planning for future experiments.

  15. Airborne vacuum ultraviolet resonance fluorescence instrument for in situ measurement of CO

    NASA Astrophysics Data System (ADS)

    Takegawa, N.; Kita, K.; Kondo, Y.; Matsumi, Y.; Parrish, D. D.; Holloway, J. S.; Koike, M.; Miyazaki, Y.; Toriyama, N.; Kawakami, S.; Ogawa, T.

    2001-10-01

    An airborne instrument for fast-response, high-precision measurement of tropospheric carbon monoxide (CO) was developed using a vacuum ultraviolet (VUV) resonance fluorescence technique. The excitation radiation is obtained by a DC discharge CO resonance lamp combined with an optical filter for the CO fourth positive band emission around 150 nm. The optical filter consists of a VUV monochromator and a crystalline quartz window (<147-nm cutoff). The crystalline quartz window ensures a sharp discrimination against wavelengths below 135.7 nm that yield a positive interference from water vapor. Laboratory tests showed that the optical system achieved a precision of 1.1 parts per billion by volume (ppbv) at a CO concentration of 100 ppbv for a 1-s integration period, and the flow system provided a response time (1/e time constant) of ˜2 s. The aircraft measurement campaign Biomass Burning and Lightning Experiment-phase B (BIBLE-B) was conducted between August and September 1999 over the western Pacific and Australia. The flight data obtained during this campaign were used to demonstrate the high precision and fast response of the instrument. An intercomparison of the VUV CO measurement and a gas chromatographic CO measurement was conducted during BIBLE-B. Overall, these two independent measurements showed good agreement, within the experimental uncertainties.

  16. Active-passive airborne ocean color measurement. II - Applications

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Yungel, J. K.

    1986-01-01

    Reported here for the first time is the use of a single airborne instrument to make concurrent measurements of oceanic chlorophyll concentration by (1) laser-induced fluorescence, (2) passive upwelling radiance, and (3) solar-induced chlorophyll fluorescence. Results from field experiments conducted with the NASA airborne oceanographic lidar (AOL) in the New York Bight demonstrate the capability of a single active-passive instrument to perform new and potentially important ocean color studies related to (1) active lidar validation of passive ocean color in-water algorithms, (2) chlorophyll a in vivo fluorescence yield variability, (3) calibration of active multichannel lidar systems, (4) effect of sea state on passive and active ocean color measurements, (5) laser/solar-induced chlorophyll fluorescence investigations, and (6) subsequent improvement of satellite-borne ocean color scanners. For validation and comparison purposes a separate passive ocean color sensor was also flown along with the new active-passive sensor during these initial field trials.

  17. Radon measurements aboard the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Rosner, Stefan W.

    1995-01-01

    We have carried out three (piggyback) radon-related projects aboard the KAO. The first, which was limited to upper tropospheric measurements while in level flight, revealed the systematic occurrence of unexpectedly high radon concentrations in this region of the atmosphere. The second project was an instrument development project, which led to the installation of an automatic radon measurement system aboard the NASA ER-2 High Altitude Research Aircraft. In the third, we installed a new system capable of collecting samples during the normal climb and descent of the KAO. The results obtained in these projects have resulted in significant contributions to our knowledge of atmospheric transport processes, and are currently playing a key role in the validation of global circulation and transport models.

  18. Airborne Measurements of atmospheric PAH's across Europe

    NASA Astrophysics Data System (ADS)

    Davison, B.; Jaward, F.; Jones, K.; Lee, R.

    2003-04-01

    Atmospheric measurements of PAHs were taken aboard the DRL Falcon 20 during May 2001. A sampling system was designed to work aboard this aircraft platform. Particulate PAHs were collected on a glass fiber filter (GFF) with their gaseous component concentrated on a polyurethane foam sheets located behind the filter. Typically sampling volumes of between 20-50m^3 were collected which equated to a collection time of about 30minutes. In this way the distance travelled was kept within an acceptable level, about 60 nautical miles. The average concentrations of the data set for phenanthrene was 450 pg m-3 while values for many of the heavier PAH marker compounds used in the UK such as benzo(a)pyrene, diben(ah)anthracene were below the detection limits on all flights. The results will be discussed with consideration of location, altitude and airmass trajectory.

  19. Proof of concept for turbulence measurements with the RPAS SUMO during the BLLAST campaign

    NASA Astrophysics Data System (ADS)

    Båserud, Line; Reuder, Joachim; Jonassen, Marius O.; Kral, Stephan T.; Paskyabi, Mostafa B.; Lothon, Marie

    2016-10-01

    The micro-RPAS (remotely piloted aircraft system) SUMO (Small Unmanned Meteorological Observer) equipped with a five-hole-probe (5HP) system for turbulent flow measurements was operated in 49 flight missions during the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign in 2011. Based on data sets from these flights, we investigate the potential and limitations of airborne velocity variance and TKE (turbulent kinetic energy) estimations by an RPAS with a take-off weight below 1 kg. The integration of the turbulence probe in the SUMO system was still in an early prototype stage during this campaign, and therefore extensive post-processing of the data was required. In order to be able to calculate the three-dimensional wind vector, flow probe measurements were first synchronized with the autopilot's attitude and velocity data. Clearly visible oscillations were detected in the resulting vertical velocity, w, even after correcting for the aircraft motion. The oscillations in w were identified as the result of an internal time shift between the inertial measurement unit (IMU) and the GPS sensors, leading to insufficient motion correction, especially for the vertical wind component, causing large values of σw. Shifting the IMU 1-1.5 s forward in time with respect to the GPS yields a minimum for σw and maximum covariance between the IMU pitch angle and the GPS climb angle. The SUMO data show a good agreement to sonic anemometer data from a 60 m tower for σu, but show slightly higher values for σv and σw. Vertical TKE profiles, obtained from consecutive flight legs at different altitudes, show reasonable results, both with respect to the overall TKE level and the temporal variation. A thorough discussion of the methods used and the identified uncertainties and limitations of the system for turbulence measurements is included and should help the developers and users of other systems with similar problems.

  20. Airborne sodium lidar measurements of gravity wave intrinsic parameters

    NASA Astrophysics Data System (ADS)

    Kwon, Kang H.; Gardner, Chester S.

    1990-11-01

    A data analysis technique for determining gravity wave intrinsic parameters including wave propagation direction is described. The technique involves measuring the altitude variations of the wave-induced density perturbations of the atmospheric Na layer. This technique can be used with airborne lidars, multiple ground-based lidars, and steerable lidars. In this paper the technique is applied to airborne Na lidar data obtained during a round-trip flight from Denver, Colorado, to the Pacific Coast in November 1986. During the flight, strong wave perturbations were observed in the Na layer near the Pacific coast over a horizontal distance of nearly 700 km. The intrinsic horizontal wavelength of this wave was estimated to be about 85 km, and the vertical wavelength was 4.1 km. The intrinsic period was about 102 min, and the propagation direction was almost due south.

  1. Airborne UV DIAL Measurements of Ozone and Aerosols

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.

    2000-01-01

    The NASA Langley Research Center's airborne UV Differential Absorption Lidar (DIAL) system measures vertical profiles of ozone and aerosols above and below the aircraft along its flight track. This system has been used in over 20 airborne field missions designed to study the troposphere and stratosphere since 1980. Four of these missions involved tropospheric measurement programs in the Pacific Ocean with two in the western North Pacific and two in the South Pacific. The UV DIAL system has been used in these missions to study such things as pollution outflow, long-range transport, and stratospheric intrusions; categorize the air masses encountered; and to guide the aircraft to altitudes where interesting features can be studied using the in situ instruments. This paper will highlight the findings with the UV DIAL system in the Pacific Ocean field programs and introduce the mission planned for the western North Pacific for February-April 2001. This will be an excellent opportunity for collaboration between the NASA airborne mission and those with ground-based War systems in Asia Pacific Rim countries to make a more complete determination of the transport of air from Asia to the western Pacific.

  2. Analyzers Measure Greenhouse Gases, Airborne Pollutants

    NASA Technical Reports Server (NTRS)

    2012-01-01

    In complete darkness, a NASA observatory waits. When an eruption of boiling water billows from a nearby crack in the ground, the observatory s sensors seek particles in the fluid, measure shifts in carbon isotopes, and analyze samples for biological signatures. NASA has landed the observatory in this remote location, far removed from air and sunlight, to find life unlike any that scientists have ever seen. It might sound like a scene from a distant planet, but this NASA mission is actually exploring an ocean floor right here on Earth. NASA established a formal exobiology program in 1960, which expanded into the present-day Astrobiology Program. The program, which celebrated its 50th anniversary in 2010, not only explores the possibility of life elsewhere in the universe, but also examines how life begins and evolves, and what the future may hold for life on Earth and other planets. Answers to these questions may be found not only by launching rockets skyward, but by sending probes in the opposite direction. Research here on Earth can revise prevailing concepts of life and biochemistry and point to the possibilities for life on other planets, as was demonstrated in December 2010, when NASA researchers discovered microbes in Mono Lake in California that subsist and reproduce using arsenic, a toxic chemical. The Mono Lake discovery may be the first of many that could reveal possible models for extraterrestrial life. One primary area of interest for NASA astrobiologists lies with the hydrothermal vents on the ocean floor. These vents expel jets of water heated and enriched with chemicals from off-gassing magma below the Earth s crust. Also potentially within the vents: microbes that, like the Mono Lake microorganisms, defy the common characteristics of life on Earth. Basically all organisms on our planet generate energy through the Krebs Cycle, explains Mike Flynn, research scientist at NASA s Ames Research Center. This metabolic process breaks down sugars for energy

  3. Diode-pumped Nd:YAG lidar for airborne cloud measurements

    NASA Astrophysics Data System (ADS)

    Mehnert, A.; Halldorsson, Th.; Herrmann, H.; Haering, R.; Krichbaumer, W.; Streicher, J.; Werner, Ch.

    1992-07-01

    This work is concerned with the experimental method used to separate scattering and to use it for the determination of cloud microphysical parameters. It is also the first airborne test of a lidar version related to the ATLID Program - ESA's scheduled spaceborne lidar. The already tested DLR microlidar was modified with the new diode-pumped laser and a faster data recording system was added. The system was used during the CLEOPATRA campaign in the DLR research aircraft Falcon 20 to measure cloud parameters. The diode pumped Nd:YAG laser we developed for the microlidar is a modification of the laser we introduced at the Lidar Congress at 'Laser 1991' in Munich. Various aspects of this work are discussed.

  4. Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer

    PubMed Central

    Navarro, Maria A.; Atlas, Elliot L.; Saiz-Lopez, Alfonso; Rodriguez-Lloveras, Xavier; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Filus, Michal; Harris, Neil R. P.; Meneguz, Elena; Ashfold, Matthew J.; Manning, Alistair J.; Cuevas, Carlos A.; Schauffler, Sue M.; Donets, Valeria

    2015-01-01

    Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the NASA Airborne Tropical Tropopause Experiment campaigns. We combine aircraft observations and a chemistry−climate model to quantify the total bromine loading injected to the stratosphere. Surprisingly, despite differences in vertical transport between the Eastern and Western Pacific, VSLBr (organic + inorganic) contribute approximately similar amounts of bromine [∼6 (4−9) parts per thousand] to the stratospheric input at the tropical tropopause. These levels of bromine cause substantial ozone depletion in the lower stratosphere, and any increases in future abundances (e.g., as a result of aquaculture) will lead to larger depletions. PMID:26504212

  5. Precipitation susceptibility in marine stratocumulus and shallow cumulus from airborne measurements

    NASA Astrophysics Data System (ADS)

    Jung, Eunsil; Albrecht, Bruce A.; Sorooshian, Armin; Zuidema, Paquita; Jonsson, Haflidi H.

    2016-09-01

    Precipitation tends to decrease as aerosol concentration increases in warm marine boundary layer clouds at fixed liquid water path (LWP). The quantitative nature of this relationship is captured using the precipitation susceptibility (So) metric. Previously published works disagree on the qualitative behavior of So in marine low clouds: So decreases monotonically with increasing LWP or cloud depth (H) in stratocumulus clouds (Sc), while it increases and then decreases in shallow cumulus clouds (Cu). This study uses airborne measurements from four field campaigns on Cu and Sc with similar instrument packages and flight maneuvers to examine if and why So behavior varies as a function of cloud type. The findings show that So increases with H and then decreases in both Sc and Cu. Possible reasons for why these results differ from those in previous studies of Sc are discussed.

  6. Airborne measurements of biomass burning aerosol distribution and composition in the springtime Arctic 2008

    NASA Astrophysics Data System (ADS)

    Thornberry, T.; Froyd, K. D.; Murphy, D. M.; Thomson, D. S.; Brock, C. A.; Cozic, J.; Warneke, C.; Degouw, J.; Middlebrook, A. M.; Bahreini, R.; Brioude, J.

    2008-12-01

    The springtime Arctic troposphere in 2008 was characterized by high concentrations of biomass burning aerosol. During the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) campaign, airborne measurements of aerosol composition by the NOAA single particle mass spectrometer instrument (PALMS) identified biomass burning particles using an established composition tracer. Fires in northern Asia produced biomass burning aerosol that were transported to the Arctic within 3-12 days. Concentrations of biomass burning aerosols were elevated not only within well defined plumes, but also regionally throughout the Arctic. Above the boundary layer, biomass burning particles dominated the total aerosol volume and were largely responsible for the Arctic Haze observed during the period of study. The composition of plume aerosols varied according to source region, transport time, and anthropogenic influence.

  7. Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer.

    PubMed

    Navarro, Maria A; Atlas, Elliot L; Saiz-Lopez, Alfonso; Rodriguez-Lloveras, Xavier; Kinnison, Douglas E; Lamarque, Jean-Francois; Tilmes, Simone; Filus, Michal; Harris, Neil R P; Meneguz, Elena; Ashfold, Matthew J; Manning, Alistair J; Cuevas, Carlos A; Schauffler, Sue M; Donets, Valeria

    2015-11-10

    Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the NASA Airborne Tropical Tropopause Experiment campaigns. We combine aircraft observations and a chemistry-climate model to quantify the total bromine loading injected to the stratosphere. Surprisingly, despite differences in vertical transport between the Eastern and Western Pacific, VSLBr (organic + inorganic) contribute approximately similar amounts of bromine [∼6 (4-9) parts per trillion] [corrected] to the stratospheric input at the tropical tropopause. These levels of bromine cause substantial ozone depletion in the lower stratosphere, and any increases in future abundances (e.g., as a result of aquaculture) will lead to larger depletions.

  8. Ground and Airborne Aerosol Composition Measurements of California Coastal Chaparral Smoke Emissions

    NASA Astrophysics Data System (ADS)

    Craven, J. S.; Sorooshian, A.; Hersey, S. P.; Metcalf, A. R.; Schilling-Fahnestock, K.; Newman, S.; Akagi, S. K.; Taylor, J.; McMeeking, G.; Coe, H.; Tang, P.; Cocker, D. R., III; Yokelson, R. J.; Flagan, R. C.; Seinfeld, J.

    2014-12-01

    Wildfire smoke has large local to global pollution impacts. We present aerosol composition data from two fires in southern California. We measured organic aerosol (OA) of nascent and aged (4 h) smoke from the Williams Fire during the 2009 airborne San Luis Obispo Biomass Burning Campaign (SLOBB). The net ΔOA/ΔCO2 decreased by ~20%; however, positive matrix factorization (PMF) analysis of the organic mass spectra supports two factors that enable the OA emissions to be separated into fresh and oxidized OA. The Δfresh BBOA/ΔCO2 had a steeper decline than the ΔOA/ΔCO2 consistent with outgassing of semi-voltile organic compounds (SVOCs) due to dilution, whereas the Δoxidized BBOA/ΔCO2 increased from its initial value, consist with formation of secondary organic aerosol (SOA). We compare these fresh and oxidized mass spectral signatures, along with chaparral smoke samples measured in the Missoula Fire Lab, to ground-based aerosol measurements made during the Station Fire that occurred one month earlier than the Williams Fire during the Pasadena Aerosol Characterization Observatory Campaign (PACO). Night and daytime aerosol smoke emissions were sampled for one week during the Station Fire. Daytime organic aerosol smoke emissions exhibited larger variability both in mass concentration and composition than nighttime smoke emissions. Both levoglucosan and potassium, known biomass burning tracers, were measured and had distinct time series, supporting diversity in the flaming vs. smoldering initial burning conditions. Similar to the Williams Fire, PMF of the Station Fire mass spectra also reveal two biomass burning factors, one that is less oxidized and correlates strongly with levoglucosan measurements and one that is heavily oxidized and correlates in time with the potassium signal. These two campaigns have allowed us to probe fresh and oxidized smoke in both night and daytime conditions, and PMF results have revealed that at least two emission factors are useful to

  9. First Airborne Lidar Measurements of Methane and Carbon Dioxide Applying the MERLIN Demonstrator CHARM-F

    NASA Astrophysics Data System (ADS)

    Amediek, Axel; Büdenbender, Christian; Ehret, Gerhard; Fix, Andreas; Gerbig, Christoph; Kiemle, Chritstoph; Quatrevalet, Mathieu; Wirth, Martin

    2016-04-01

    CHARM-F is the new airborne four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4. Due to its high technological conformity it is also a demonstrator for MERLIN, the French-German satellite mission providing a methane lidar. MERLIN's Preliminary Design Review was successfully passed recently. The launch is planned for 2020. First CHARM-F measurements were performed in Spring 2015 onboard the German research aircraft HALO. The aircraft's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, result in data similar to those obtained by a spaceborne system. The CHARM-F and MERLIN lidars are designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between the system and ground. The successfully completed CHARM-F flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. Furthermore, the dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on system design questions. These activities are supported by another instrument onboard the aircraft during the flight campaign: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the aircraft lidar. For the near future, detailed characterizations of CHARM-F are planned, further support of the MERLIN design, as well as the scientific aircraft campaign CoMet.

  10. Coordinated Airborne, Spaceborne, and Ground-Based Measurements of Massive, Thick Aerosol Layers During the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J.; Torres, O.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    During the dry-season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), unique coordinated observations were made of massive, thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sunphotometer measurements of aerosol optical depth (lambda=354-1558 nm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data MPL-Net), and with measurements from a downward-pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sunphotometer and those retrieved over land and over water using four spaceborne sensors (TOMS (Total Ozone Mapping Spectrometer), MODIS (Moderate Resolution Imaging Spectrometer), MISR (Multiangle Imaging Spectroradiometer) and ATSR-2 (Along Track Scanning Radiometer)).

  11. Coordinated Airborne, Spaceborne and Ground-based Measurements of Massive Thick Aerosol Layers during the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J. R.; Torres, O.

    2003-01-01

    During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of aerosol optical depth (lambda = 0.354- 1.557 microns), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data (MPL-Net), and with measurements from a downward pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths fiom the Sun photometer and those retrieved over land and over water using four spaceborne sensors (TOMS, MODIS, MISR, and ATSR-2).

  12. Cloud Physics Lidar Measurements During the SAFARI-2000 Field Campaign

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Hlavka, Dennis; Hart, William; Spinhirne, James; Scott, Stan; Starr, David OC. (Technical Monitor)

    2001-01-01

    A new remote sensing instrument, the Cloud Physics Lidar (CPL) has been built for use on the ER-2 aircraft. The first deployment for CPL was the SAFARI-2000 field campaign during August-September 2000. The CPL is a three-wavelength lidar designed for studies of cirrus, subvisual cirrus, and boundary layer aerosols. The CPL utilizes a high repetition rate, low pulse energy laser with photon counting detectors. A brief description of the CPL instrument will be given, followed by examples of CPL data products. In particular, examples of aerosol backscatter, including boundary layer smoke and cirrus clouds will be shown. Resulting optical depth estimates derived from the aerosol measurements will be shown. Comparisons of the CPL optical depth and optical depth derived from microPulse Lidar and the AATS-14 sunphotomer will be shown.

  13. Measurement of airborne {sup 218}Po - A Bayesian approach

    SciTech Connect

    Groer, P.G.; Lo, Y.

    1996-12-01

    The standard mathematical treatment of the buildup and decay of airborne radionuclides on a filter paper uses the solutions of the so-called bateman equations adapted to the sampling process. The equations can be interpreted as differential equations for the expectation of an underlying stochastic process, which describes the random fluctuations in the accumulation and decay of the sampled radioactive atoms. The process for the buildup and decay of airborne {sup 218}Po can be characterized as an {open_quotes}immigration-death process{close_quotes} in the widely adopted, biologically based jargon. The probability distribution for the number of {sup 218}Po atoms, accumulated after sampling time t, is Poisson. We show that the distribution of the number of counts, registered by a detector with efficiency {epsilon} during a counting period T after the end of sampling, it also Poisson, with mean dependent on {epsilon},t,T, the flowrate and N{sub o}, the number of airborne {sup 218}Po atoms per unit volume. This Poisson distribution was used to construct the likelihood given the observed number of counts. After inversion with Bayes` Theorem we obtained the posterior density for N{sub o}. This density characterizes the remaining uncertainty about the measured under of {sup 218}Po atoms per unit volume of air. 6 refs., 3 figs., 1 tab.

  14. Validating MODIS above-cloud aerosol optical depth retrieved from "color ratio" algorithm using direct measurements made by NASA's airborne AATS and 4STAR sensors

    NASA Astrophysics Data System (ADS)

    Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rosenheimer, Michal; Spurr, Rob

    2016-10-01

    We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the "color ratio" method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne matchups revealed a good agreement (root-mean-square difference < 0.1), with most matchups falling within the estimated uncertainties associated the MODIS retrievals (about -10 to +50 %). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50 % for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite-based retrievals.

  15. Trace gas retrievals from Airborne Compact Atmospheric Mapper (ACAM) observations during the 2011 DISCOVER-AQ flight campaign

    NASA Astrophysics Data System (ADS)

    Liu, X.; Kowalewski, M. G.; Janz, S. J.; Bhartia, P. K.; Chance, K.; Krotkov, N. A.; Pickering, K. E.; Crawford, J. H.

    2011-12-01

    The DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) mission has just finished its first flight campaign in the Baltimore-Washington D.C. area in July 2011. The ACAM, flown on board the NASA UC-12 aircraft, includes two spectrographs covering the spectral region 304-900 nm and a high-definition video camera, and is expected to provide column measurements of several important air quality trace gases and aerosols for the DISCOVER-AQ mission. The quick look results for NO2 have been shown to very useful in capturing the strong spatiotemporal variability of NO2. Preliminary fitting of UV/Visible spectra has shown that ACAM measurements have adequate signal to noise ratio to measure the trace gases O2, NO2, HCHO, and maybe SO2 and CHOCHO, at individual pixel resolution, although a great deal of effort is needed to improve the instrument calibration and derive proper reference spectrum for retrieving absolute trace gas column densities. In this study, we present analysis of ACAM instrument calibration including slit function, wavelength registration, and radiometric calibration for both nadir-viewing and zenith-sky measurements. Based on this analysis, an irradiance reference spectrum at ACAM resolution will be derived from a high-resolution reference spectrum with additional correction to account for instrument calibration. Using the derived reference spectrum and/or the measured zenith sky measurements, we will perform non-linear least squares fitting to investigate the retrievals of slant column densities of these trace gases from ACAM measurements, and also use an optimal estimation based algorithm including full radiative transfer calculations to derive the vertical column densities of these trace gases. The initial results will be compared with available in-situ and ground-based measurements taken during the DISCOVER-AQ campaign.

  16. Functional requirements document for measuring emissions of airborne radioactive materials

    SciTech Connect

    Criddle, J.D. Jr.

    1994-09-01

    This document states the functional requirements and procedures for systems making measurements of radioactive airborne emissions from facilities at the Hanford Site. The following issues are addressed in this document: Definition of the program objectives; Selection of the overall approach to collecting the samples; Sampling equipment design; Sampling equipment maintenance, and quality assurance issues. The intent of this document is to assist WHC in demonstrating a high quality of air emission measurements with verified system performance based on documented system design, testing, inspection, and maintenance.

  17. Electron density measurements during the NLC-91 campaign

    NASA Technical Reports Server (NTRS)

    Ulwick, J. C.; Kelley, Michael C.; Alcala, C.

    1994-01-01

    A Super Arcas rocket, MISTI B, containing DC and RF probes, was launched as a part of the PMSE (Polar Mesosphere Summer Echoes) Salvo during the NLC-91 (Noctilucent Cloud) campaign to measure electron density irregularities with high spatial resolution. Measurements of large and small scale structures in the electron density were made on rocket ascent and descent at the altitudes of 86.5 and 88.5 +/- 0.5 km corresponding to the two altitudes of strongest backscatter recorded by the nearby CUPRI (Cornell University Portable Radar Interferometer) radar. Power spectra of the fluctuations shows two different structuring and scattering mechanisms exist at altitudes only 1 km apart. Since the rocket apogee was 89 km, the rocket was in the height range 88.5 +/- 0.5 km for 30 seconds giving an unusual measurement of horizontal structure over a distance of 5.5 km. Using the simultaneous DC and RF probe measurements of electron depletions and sharp gradient in the lower layer, the role of aerosols in creating these depletions and gradients is speculated upon.

  18. Assessing Aerosol Mixed Layer Heights from the NASA Larc Airborne High Spectral Resolution Lidar (HSRL) during the Discover-AQ Field Campaigns

    NASA Astrophysics Data System (ADS)

    Scarino, A. J.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Berkoff, T.; Sawamura, P.; Collins, J. E., Jr.; Seaman, S. T.; Cook, A. L.; Harper, D. B.; Follette-Cook, M. B.; daSilva, A.; Randles, C. A.

    2014-12-01

    The first- and second-generation NASA airborne High Spectral Resolution Lidars (HSRL-1 and HSRL-2) have been deployed on board the NASA Langley Research Center King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns. These included deployments during July 2011 over Washington, D.C. and Baltimore, MD, during January and February 2013 over the San Joaquin Valley of California, during September 2013 over Houston, TX and during July and August 2014 over Denver, CO. Measurements of aerosol extinction, backscatter, and depolarization are available from both HSRL-1 and HSRL-2 in coordination with other participating research aircraft and ground sites. These measurements constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, aerosol optical thickness (AOT), as well as the mixed layer (ML) height. Analysis of the ML height at these four locations is presented, including temporal and horizontal variability and comparisons between land and water, including the Chesapeake Bay and Galveston Bay. Using the ML heights, the distribution of AOT relative to the ML heights is determined, which is relevant for assessing the long-range transport of aerosols. The ML heights are also used to help relate column AOT measurements and extinction profiles to surface PM2.5 concentrations. The HSRL ML heights are also used to evaluate the performance in simulating the temporal and spatial variability of ML heights from both chemical regional models and global forecast models.

  19. Ice Nucleating Particles at Mace Head during the 2015 BACCHUS campaign through off-line measurements

    NASA Astrophysics Data System (ADS)

    Rinaldi, Matteo; Belosi, Franco; Nicosia, Alessia; Santachiara, Gianni; Decesari, Stefano; Facchini, Maria Cristina

    2016-04-01

    During the August 2015 BACCHUS campaign at Mace Head (Ireland), Ice Nucleating Particle (INP) concentration was determined, with the aim of investigating the dominant sources of INP in the North Atlantic Marine Boundary Layer (MBL). Samples have been collected in strictly controlled clean marine air masses, using a parallel PM1 - PM10 sampling system. One couple of parallel samples (PM1 and PM10) were collected every day of the campaign, with a sampling time of the order of two to five hours. A replica of the Langer dynamic developing chamber (Langer and Rodgers, 1975) housed in a refrigerator was used to detect and determine the concentration of aerosol particles active as ice nuclei (INP), at -22° C temperature and at different water saturation ratios (Sw) (Santachiara et al., 2010). Specifically, measurements were performed at Sw = 0.96 and 1.02. Measurements with Langer-Rogers device below water saturation (Sw < 0) represent deposition-nucleation, and above water saturation (Sw ≥ 0) represent deposition and condensation-freezing (Rogers et al., 2001). The average INP concentration observed at Mace Head during the campaign, in the PM10 size range, was 4.7 m-3 and 10.2 m-3, for Sw = 0.96 and Sw = 1.02, respectively. INP concentration ranged from a minimum of 1.1 m-3 (Sw = 0.96) and 1.9 m-3 (Sw = 1.02) to a maximum of 16.7 m-3 (Sw = 0.96) and 40 m-3 (Sw = 1.02). The major contribution to INP was observed in the super-micrometre particle size range: averagely 62% of INP, for Sw = 0.96, and 73%, for Sw = 1.02. This evidences the need to measure the freezing activity even in particles larger than one micrometre. The sources of the observed INP will be discussed based on their size and air mass origin. The relation of INP with oceanic biological activity, inferred from satellite ocean colour observations, will be also presented and discussed. References Langer, G., Rodgers, J., 1975. An experimental study of ice nuclei on membrane filters and other substrata

  20. A towed airborne platform for turbulence measurements over the ocean

    NASA Astrophysics Data System (ADS)

    Friehe, Carl; Khelif, Djamal

    2008-11-01

    Measurements of wind stress and associated heat and mass fluxes (water vapor and CO2) down to ˜10 meters height over the ocean are required to establish parameterizations for wave, weather, hurricane and climate models. At high winds and accompanying sea states, such measurements are difficult or impossible. A new airborne instrumented towed platform has been developed that allows measurements down to 10 meters under radar-altitude control while the tow aircraft is safely above. Measurements include the three components of the wind, temperature, humidity, infrared surface temperature, CO2, and motion and navigational parameters. The bandwidth of the sensors allows calculation of the Reynolds averaged covariance's of stress and sensible heat and evaporation fluxes. Results are compared to equivalent measurements made with an instrumented aircraft. We would like to thank Robert Bluth of the Naval Postgraduate School and Jesse Barge and Dan Bierly of Zivko Aeronautics.

  1. Science Measurement Requirements for Imaging Spectrometers from Airborne to Spaceborne

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Asner, Gregory P.; Boardman, Joseph; Ungar, Stephen; Mouroulis, Pantazis

    2006-01-01

    This slide presentation reviews the objectives of the work to create imaging spectrometers. The science objectives are to remotely determine the properties of the surface and atmosphere (physics, chemistry and biology) revealed by the interaction of electromagnetic energy with matter via spectroscopy. It presents a review the understanding of spectral, radiometric and spatial science measurement requirements for imaging spectrometers based upon science research results from past and current airborne and spaceborne instruments. It also examines the future requirements that will enable the next level of imaging spectroscopy science.

  2. Retrievals of cloud microphysical properties from the Research Scanning Polarimeter measurements made during PODEX field campaign

    NASA Astrophysics Data System (ADS)

    Alexandrov, M. D.; Cairns, B.; Sinclair, K.

    2013-12-01

    We present the retrievals of cloud droplet size distribution parameters (effective radius and variance) from the Research Scanning Polarimeter (RSP) measurements made during NASA's POlarimeter Definition EXperiment (PODEX), which was based in Palmdale, California in January - February 2013. The RSP is an airborne prototype for the Aerosol Polarimetery Sensor (APS), which was built for the NASA Glory Mission project. This instrument measures both polarized and total reflectances in 9 spectral channels with center wavelengths of 410, 470, 555, 670, 865, 960, 1590, 1880 and 2250 nm. The RSP is a push broom scanner making samples at 0.8 degree intervals within 60 degrees from nadir in both forward and backward directions. The data from actual RSP scans is aggregated into "virtual" scans, each consisting of all reflectances (at a variety of scattering angles) from a single point on the ground or at the cloud top. In the case of water clouds the rainbow is observed in the polarized reflectances in the scattering angle range between 135 and 170 degrees. It has a unique signature that is being used to accurately determine the droplet size and is not affected by cloud morphology. Simple parametric fitting algorithm applied to these polarized reflectances provides retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT), which allows to retrieve the droplet size distribution a parametric model. Of particular interest is the information contained in droplet size distribution width, which is indicative of cloud life cycle. The absorbing band method is also applied to RSP total reflectance observations. The difference in the retrieved droplet size between polarized and absorbing band techniques is expected to reflect the strength of the vertical gradient in cloud liquid water content. In addition to established retrieval

  3. Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriquez, Michael D.; Allan, Graham R.; Hasselbrack, William E.; Mao, Jianping; Stephen, Mark A.; Abshire, James B.

    2012-01-01

    Accurate measurements of greenhouse gas mixing ratios on a global scale are currently needed to gain a better understanding of climate change and its possible impact on our planet. In order to remotely measure greenhouse gas concentrations in the atmosphere with regard to dry air, the air number density in the atmosphere is also needed in deriving the greenhouse gas concentrations. Since oxygen is stable and uniformly mixed in the atmosphere at 20.95%, the measurement of an oxygen absorption in the atmosphere can be used to infer the dry air density and used to calculate the dry air mixing ratio of a greenhouse gas, such as carbon dioxide or methane. OUT technique of measuring Oxygen uses integrated path differential absorption (IPDA) with an Erbium Doped Fiber Amplifier (EDF A) laser system and single photon counting module (SPCM). It measures the absorbance of several on- and off-line wavelengths tuned to an O2 absorption line in the A-band at 764.7 nm. The choice of wavelengths allows us to maximize the pressure sensitivity using the trough between two absorptions in the Oxygen A-band. Our retrieval algorithm uses ancillary meteorological and aircraft altitude information to fit the experimentally obtained lidar O2 line shapes to a model atmosphere and derives the pressure from the profiles of the two lines. We have demonstrated O2 measurements from the ground and from an airborne platform. In this paper we will report on our airborne measurements during our 2011 campaign for the ASCENDS program.

  4. Observations of Saharan dust microphysical and optical properties from the Eastern Atlantic during NAMMA airborne field campaign

    NASA Astrophysics Data System (ADS)

    Chen, G.; Ziemba, L. D.; Chu, D. A.; Thornhill, K. L.; Schuster, G. L.; Winstead, E. L.; Diskin, G. S.; Ferrare, R. A.; Burton, S. P.; Ismail, S.; Kooi, S. A.; Omar, A. H.; Slusher, D. L.; Kleb, M. M.; Reid, J. S.; Twohy, C. H.; Zhang, H.; Anderson, B. E.

    2011-01-01

    As part of the international project entitled "African Monsoon Multidisciplinary Analysis (AMMA)", NAMMA (NASA AMMA) aimed to gain a better understanding of the relationship between the African Easterly Waves (AEWs), the Sahara Air Layer (SAL), and tropical cyclogenesis. The NAMMA airborne field campaign was based out of the Cape Verde Islands during the peak of the hurricane season, i.e., August and September 2006. Multiple Sahara dust layers were sampled during 62 encounters in the eastern portion of the hurricane main development region, covering both the eastern North Atlantic Ocean and the western Saharan desert (i.e., 5-22° N and 10-35° W). The centers of these layers were located at altitudes between 1.5 and 3.3 km and the layer thickness ranged from 0.5 to 3 km. Detailed dust microphysical and optical properties were characterized using a suite of in-situ instruments aboard the NASA DC-8 that included a particle counter, an Ultra-High Sensitivity Aerosol Spectrometer, an Aerodynamic Particle Sizer, a nephelometer, and a Particle Soot Absorption Photometer. The NAAMA sampling inlet has a size cut (i.e., 50% transmission efficiency size) of approximately 4 μm in diameter for dust particles, which limits the representativeness of the NAMMA observational findings. The NAMMA dust observations showed relatively low particle number densities, ranging from 268 to 461 cm-3, but highly elevated volume density with an average at 45 μm3 cm-3. NAMMA dust particle size distributions can be well represented by tri-modal lognormal regressions. The estimated volume median diameter (VMD) is averaged at 2.1 μm with a small range of variation regardless of the vertical and geographical sampling locations. The Ångström Exponent assessments exhibited strong wavelength dependence for absorption but a weak one for scattering. The single scattering albedo was estimated at 0.97 ± 0.02. The imaginary part of the refractive index for Sahara dust was estimated at 0.0022, with a

  5. Airborne measurements of HC(O)OH in the European Arctic: A winter - summer comparison

    NASA Astrophysics Data System (ADS)

    Jones, Benjamin T.; Muller, Jennifer B. A.; O'Shea, Sebastian J.; Bacak, Asan; Le Breton, Michael; Bannan, Thomas J.; Leather, Kimberley E.; Booth, A. Murray; Illingworth, Sam; Bower, Keith; Gallagher, Martin W.; Allen, Grant; Shallcross, Dudley E.; Bauguitte, Stephane J.-B.; Pyle, John A.; Percival, Carl J.

    2014-12-01

    This study represents the first airborne, in-situ measurements of HC(O)OH in the European Arctic, across the winter and summer seasons. HC(O)OH concentrations are under predicted at present, particularly in the mid to high northern latitudes. Data presented here probe unconfirmed sources of HC(O)OH in the Arctic, and would suggest an ocean source of HC(O)OH is more significant than proposed land sources in both winter and summer environments. A maximum concentration of 420 ppt was recorded over the ocean during the July 2012 campaign. This was more than 1.7 times greater than the maximum land concentration reported. Calculated estimates on HC(O)OH production would suggest diiodomethane photolysis could represent a significant source of HC(O)OH in marine environments in the European Arctic. Enhanced HC(O)OH concentrations observed at altitudes greater than 2 km particularly during the March campaign highlight the significance of long range transport on the European Arctic budget. In addition, two HC(O)OH vertical profiles between the altitudes 0.3-6.6 km are presented to provide a more representative vertical profile for this latitude which may be used to improve forthcoming regional and global modelling of the HC(O)OH budget.

  6. Aerosol Classification using Airborne High Spectral Resolution Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R.; Butler, C. F.; Cook, A.; Harper, D.; Froyd, K. D.

    2011-12-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired extensive datasets of aerosol extinction (532 nm), aerosol optical thickness (AOT) (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 18 field missions that have been conducted over North America since 2006. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, backscatter color ratio, spectral depolarization ratio) are shown to vary with location and aerosol type. A methodology based on observations of known aerosol types is used to qualitatively classify the extensive set of HSRL aerosol measurements into eight separate types. Several examples are presented showing how the aerosol intensive parameters vary with aerosol type and how these aerosols are classified according to this new methodology. The HSRL-based classification reveals vertical variability of aerosol types during the NASA ARCTAS field experiment conducted over Alaska and northwest Canada during 2008. In two examples derived from flights conducted during ARCTAS, the HSRL classification of biomass burning smoke is shown to be consistent with aerosol types derived from coincident airborne in situ measurements of particle size and composition. The HSRL retrievals of aerosol optical thickness and inferences of aerosol types are used to apportion aerosol optical thickness to aerosol type; results of this analysis are shown for several experiments.

  7. The 2011 Eco3D Flight Campaign: Vegetation Structure and Biomass Estimation from Simultaneous SAR, Lidar and Radiometer Measurements

    NASA Technical Reports Server (NTRS)

    Fatoyinbo, Temilola; Rincon, Rafael; Harding, David; Gatebe, Charles; Ranson, Kenneth Jon; Sun, Guoqing; Dabney, Phillip; Roman, Miguel

    2012-01-01

    The Eco3D campaign was conducted in the Summer of 2011. As part of the campaign three unique and innovative NASA Goddard Space Flight Center airborne sensors were flown simultaneously: The Digital Beamforming Synthetic Aperture Radar (DBSAR), the Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) and the Cloud Absorption Radiometer (CAR). The campaign covered sites from Quebec to Southern Florida and thereby acquired data over forests ranging from Boreal to tropical wetlands. This paper describes the instruments and sites covered and presents the first images resulting from the campaign.

  8. Lake-Atmosphere Turbulent EXchanges (LATEX) field measurement campaign

    NASA Astrophysics Data System (ADS)

    Bou-Zeid, E.; Huwald, H.; Lemmin, U.; Selker, J.; Parlange, M. B.

    2006-12-01

    High resolution measurements of surface fluxes in the atmospheric boundary layer over water surfaces are less common than over land. Nevertheless, developing our understanding of air-water interaction is crucial for improving evaporation models, developing and testing surface parameterizations in meso-scale and global circulation models, and understanding local atmospheric dynamics over water. The Lake-Atmosphere Turbulent EXchanges (LATEX) field measurement campaign was designed to address these issues. The experiment took place on a platform in Lake Geneva in Switzerland (exposed to a 30 km long wind fetch) over the period extending from August through October of 2006. The primary instrumentation consisted of: 1) a vertical array of four sonic anemometers and four open-path H2O/CO2 analyzers, 2) a Raman scattering fiber- optic temperature profiler having a resolution of 4-mm vertically and 0.01 deg C in temperature (3 meter range: 1 meter above the water surface and 2 meters below), and 3) a lake current profiler. Additional supporting measurements included net radiation, surface temperature, relative humidity, wave height and speed, as well as several point-measurements of air and water temperature. We present results for fluxes of momentum, heat, water vapor, and CO2 and test flux-profiles relations (derived from Monin-Obukhov similarity) that are frequently used to estimate these fluxes. Different formulations for roughness and scalar lengths are tested for different lake surface conditions. Finally, we look at small scale turbulence over the lake by computing the eddy-viscosity, the turbulent Prandtl number, and turbulent Schmidt numbers for water vapor and CO2 at scales comparable to large eddy simulation (LES) grid scales; these results can be used to prescribe model coefficient a priori in LES or to test the performance of various dynamic models in reproducing the correct sub-grid scale fluxes.

  9. Airborne Particle Size Distribution Measurements at USDOE Fernald

    SciTech Connect

    Harley, N.H.; Chittaporn, P.; Heikkinen, M.; Medora, R.; Merrill, R.

    2003-03-27

    There are no long term measurements of the particle size distribution and concentration of airborne radionuclides at any USDOE facility except Fernald. Yet the determinant of lung dose is the particle size, determining the airway and lower lung deposition. Beginning in 2000, continuous (6 to 8 weeks) measurements of the aerosol particle size distribution have been made with a miniature sampler developed under EMSP. Radon gas decays to a chain of four short lived solid radionuclides that attach immediately to the resident atmospheric aerosol. These in turn decay to long lived polonium 210. Alpha emitting polonium is a tracer for any atmospheric aerosol. Six samplers at Fernald and four at QC sites in New Jersey show a difference in both polonium concentration and size distribution with the winter measurements being higher/larger than summer by almost a factor of two at all locations. EMSP USDOE Contract DE FG07 97ER62522.

  10. Method for measuring the size distribution of airborne rhinovirus

    SciTech Connect

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  11. Measurement campaign for wind power potential in west Greenland

    NASA Astrophysics Data System (ADS)

    Rønnow Jakobsen, Kasper

    2013-04-01

    Experiences and results from a wind resource exploring campaign 2003- in west Greenland. Like many other countries, Greenland is trying to reduce its dependency of fossil fuel by implementing renewable energy. The main challenge is that the people live on the coast in scattered settlements, without power infrastructure. Based on this a wind power potential project was established in 2002, funded by the Greenlandic government and the Technical University of Denmark. We present results and experiences of the campaign. 1 Field campaign There were only a few climate stations in or close to settlements and due to their positioning and instrumentation, they were not usable for wind resource estimation. To establish met stations in Arctic areas with complex topography, there are some challenges to face; mast positioning in complex terrain, severe weather conditions, instrumentation, data handling, installation and maintenance budget. The terrain in the ice free and populated part, mainly consists of mountains of different heights and shapes, separated by deep fjords going from the ice cap to the sea. With a generally low wind resource the focus was on the most exposed positions close to the settlements. Data from the nearest existing climate stations was studied for background estimations of predominant wind directions and extreme wind speeds, and based on that the first 10m masts were erected in 2003. 2 Instruments The first installations used standard NRG systems with low cost NRG instruments. For most of the sites this low cost setup did a good job, but there were some problems with the first design, including instrument and boom strains. In subsequent years, the systems were updated several times to be able to operate in the extreme conditions. Different types of instruments, data logger and boom systems were tested to get better data quality and reliability. Today 11 stations with heights ranging from 10-50m are installed and equipped according to the IEC standard

  12. Measurements of VOCs in Mexico City during the MILAGRO Campaign

    NASA Astrophysics Data System (ADS)

    Baker, A. K.; Beyersdorf, A. J.; Blake, N. J.; Meinardi, S.; Atlas, E.; Rowland, F.; Blake, D. R.

    2006-12-01

    During March of 2006 we participated in MILAGRO (Megacities Initiative: Local and Global Research Observations), a multi-platform campaign to measure pollutants in and in outflow from the Mexico City metropolitan area. As part of MILAGRO we collected whole air canister samples at two Mexico City ground sites: the Instituto Mexicano del Petroleo, located in the city, northeast of the center, and the Universidad Technologica de Tecamac, a suburban site approximately 50 km northeast of the city center. Samples were also collected in various other locations throughout Mexico City. Over 300 whole air samples were collected and analyzed for a wide range of volatile organic compounds (VOCs) including methane, carbon monoxide, nonmethane hydrocarbons (NMHCs) and halocarbons. Propane was the most abundant NMHC at both the urban and suburban locations, with mixing ratios frequently in excess of 10 parts per billion at both locations. This is likely the result of the widespread use of liquefied petroleum gas (LPG) of which propane is the major component. For most species, median mixing ratios at the urban sites were significantly greater than at the suburban site. Here we compare results from both urban and suburban locations and also examine the influence of transport on the composition of outflow from Mexico City.

  13. Ground and Airborne Methane Measurements Using Optical Parametric Amplifiers

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James Brice; Dawsey, Martha; Ramanathan, Anand

    2011-01-01

    We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from c1athrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 micrometers and 1.65 micrometers. We have demonstrated detection of methane at 3.3 micrometers and 1650 nanometers in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 micrometers.

  14. Mapping methane sources and emissions over California from direct airborne flux and VOC source tracer measurements

    NASA Astrophysics Data System (ADS)

    Guha, A.; Misztal, P. K.; Peischl, J.; Karl, T.; Jonsson, H. H.; Woods, R. K.; Ryerson, T. B.; Goldstein, A. H.

    2013-12-01

    Quantifying the contributions of methane (CH4) emissions from anthropogenic sources in the Central Valley of California is important for validation of the statewide greenhouse gas (GHG) inventory and subsequent AB32 law implementation. The state GHG inventory is largely based on activity data and emission factor based estimates. The 'bottom-up' emission factors for CH4 have large uncertainties and there is a lack of adequate 'top-down' measurements to characterize emission rates. Emissions from non-CO2 GHG sources display spatial heterogeneity and temporal variability, and are thus, often, poorly characterized. The Central Valley of California is an agricultural and industry intensive region with large concentration of dairies and livestock operations, active oil and gas fields and refining operations, as well as rice cultivation all of which are known CH4 sources. In order to gain a better perspective of the spatial distribution of major CH4 sources in California, airborne measurements were conducted aboard a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of low-altitude and mixed layer airborne CH4 and CO2 measurements alongside coincident VOC measurements. Transects during eight unique flights covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. We report direct quantification of CH4 fluxes using real-time airborne Eddy Covariance measurements. CH4 and CO2 were measured at 1-Hz data rate using an instrument based on Cavity Ring Down Spectroscopy (CRDS) along with specific VOCs (like isoprene, methanol, acetone etc.) measured at 10-Hz using Proton Transfer Reaction Mass Spectrometer - Eddy Covariance (PTRMS-EC) flux system. Spatially resolved eddy covariance

  15. Airborne Measurements of Important Ozone-depleting and Climate-forcing Trace Gases from 1991 to HIPPO and Beyond

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Nance, J. D.; Moore, F. L.; Hintsa, E. J.; Dutton, G. S.; Hall, B. D.; Mondeel, D. J.; Montzka, S. A.; Hurst, D. F.; Oltmans, S. J.; Gao, R.; Fahey, D. W.; Wofsy, S. C.

    2012-12-01

    Through collaborations with the National Aeronautics and Space Administration (NASA) and the National Science Foundation, the National Oceanographic and Atmospheric Administration Earth System Research Laboratory Global Monitoring Division (NOAA/ESRL/GMD) has measured a number of trace gases from manned and unmanned aircraft up to 21 km, and balloon platforms up to 32 km since 1991 at locations spanning the globe. Over 40 trace gases, including nitrous oxide (N2O), chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), methyl halides, numerous other halocarbons, sulfur gases (COS, SF6, CS2), and selected hydrocarbons, have been measured at Earth's surface and at altitude. This presentation will highlight our recent observations of halocarbons and other trace gases during the NSF and NOAA sponsored HIAPER Pole-to-Pole Observations (HIPPO) campaigns (2009-2011) that included flyovers of NDACC (Network for the Detection of Atmospheric Composition Change), AGAGE (Advanced Global Atmospheric Gases Experiment), and NOAA stations. Other observations from the recent NASA and NOAA sponsored Unmanned Aircraft Systems (UAS) GloPac and ATTREX campaigns (2010 - present) will also be highlighted, along with comparisons to proximate NDACC and satellite observations (ACE-FTS, Aura MLS and TES instruments). Our goal is to assemble a complete data set of geolocated airborne observations of halocarbons and other important trace gases measured by NOAA/ESRL airborne gas chromatographs for the purpose of facilitating model development and studies of atmospheric chemistry and transport processes in the troposphere and lower stratosphere.

  16. First Transmitted Hyperspectral Light Measurements and Cloud Properties from Recent Field Campaign Sampling Clouds Under Biomass Burning Aerosol

    NASA Technical Reports Server (NTRS)

    Leblanc, S.; Redemann, Jens; Shinozuka, Yohei; Flynn, Connor J.; Segal Rozenhaimer, Michal; Kacenelenbogen, Meloe Shenandoah; Pistone, Kristina Marie Myers; Schmidt, Sebastian; Cochrane, Sabrina

    2016-01-01

    We present a first view of data collected during a recent field campaign aimed at measuring biomass burning aerosol above clouds from airborne platforms. The NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) field campaign recently concluded its first deployment sampling clouds and overlying aerosol layer from the airborne platform NASA P3. We present results from the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), in conjunction with the Solar Spectral Flux Radiometers (SSFR). During this deployment, 4STAR sampled transmitted solar light either via direct solar beam measurements and scattered light measurements, enabling the measurement of aerosol optical thickness and the retrieval of information on aerosol particles in addition to overlying cloud properties. We focus on the zenith-viewing scattered light measurements, which are used to retrieve cloud optical thickness, effective radius, and thermodynamic phase of clouds under a biomass burning layer. The biomass burning aerosol layer present above the clouds is the cause of potential bias in retrieved cloud optical depth and effective radius from satellites. We contrast the typical reflection based approach used by satellites to the transmission based approach used by 4STAR during ORACLES for retrieving cloud properties. It is suspected that these differing approaches will yield a change in retrieved properties since light transmitted through clouds is sensitive to a different cloud volume than reflected light at cloud top. We offer a preliminary view of the implications of these differences in sampling volumes to the calculation of cloud radiative effects (CRE).

  17. Processing and analysis of radiometer measurements for airborne reconnaissance

    NASA Astrophysics Data System (ADS)

    Suess, Helmut

    1990-11-01

    Thi8 paper describes selected results of airborne, radiometric imaging measurements at 90 GHz and 140 GHz relevant for the application in reconnaissance. Using a temperature resolution below 0.5 K and an angular resolution of about 1 degree high quality images show the capability of discriminating between many brightness temperature classes within our natural environment and man-made objects. Measurement examples are given for cloud and fog penetration at 90 GHz, for the detection of vehicles on roads, and for the detection and classification of airports and airplanes. The application of different contour enhancement methods (Marr-Hildreth and Canny) shows the possibility of extracting lines and shapes precisely in order to improve automatic target recognition. The registration of the passive images with corresponding X-band synthetic aperture images from the same area is carried out and the high degree of correlation is dicussed.

  18. Processing and analysis of radiometer measurements for airborne reconnaissance

    NASA Technical Reports Server (NTRS)

    Suess, Helmut

    1990-01-01

    This paper describes selected results of airborne, radiometric imaging measurements at 90 GHz and 140 GHz relevant for the application in reconnaissance. Using a temperature resolution below 0.5 K and an angular resolution of about 1-degree high-quality images show the capability of discriminating between many brightness temperature classes within our natural environment and man-made objects. Measurement examples are given for cloud and fog penetration at 90 GHz, for the detection of vehicles on roads, and for the detection and classification of airports and airplanes. The application of different contour enhancement methods (Marr-Hildreth and Canny) shows the possibility of extracting lines and shapes precisely in order to improve automatic target recognition. The registration of the passive images with corresponding X-band synthetic aperture images from the same area is carried out and the high degree of correlation is discussed.

  19. Improved Instrumentation for the Detection of Atmospheric CO2 Concentration using an Airborne IPDA LIDAR for 2014 NASA ASCENDS Science Campaign

    NASA Astrophysics Data System (ADS)

    Allan, G. R.; Riris, H.; Hasselbrack, W. E.; Rodriguez, M.; Ramanathan, A. K.; Sun, X.; Mao, J.; Abshire, J. B.

    2014-12-01

    NASA-GSFC is developing a twin-channel, Integrated-Path, Differential Absorption (IPDA) lidar to measure atmospheric CO2 from space as a candidate for NASA's ASCENDS mission (Active Sensing of CO2 Emissions over Nights, Days, and Seasons). This lidar consists of two independent, tuned, pulsed transmitters on the same optical bench using a common 8" receiver telescope. The system measures CO2 abundance and O2 surface pressure in the same column to derive the dry volume mixing ratio (vmr). The system is being tested on an airborne platform up to altitudes of 13 Km. The lidar uses a cw scanning laser, externally pulsed and a fiber amplifier in a Master Oscillator Power Amplifier (MOPA) configuration to measure lineshape, range to scattering surfaces and backscatter profiles. The CO2 operates at 1572.335 nm. The O2 channel uses similar technology but frequency doubles to the O2 A-band absorption, around 765nm. Both lasers are scanned across the absorption feature measuring at a fixed number of discrete (~30) wavelengths per scan around ~300 scans/s. Each output pulse is slightly chirped <12MHz as the laser is tuning. Removing this chirp will improve our ability to infer vertical CO2 distribution from a more accurately measured line shape. A Step Tuned Frequency Locked (STFL) DBR diode laser system has been integrated into the CO2 lidar. Tuning and locking takes a ~30μs and the laser is locked to < ±100KHz. We have the ability to position these pulses anywhere on the absorption line other than within a few MHz of line center. While the telescope and fiber coupling scheme remains unchanged the detectors have been upgraded. The O2 system now uses eight SPCMs in parallel to improve count rates and increase dynamic range. Especially useful when flying over bright surfaces. This will improve our ability to measure the O2 pressure at cloud tops and aid in the determining the vmr above clouds. An HgCdTe e-APD detector with a quantum efficient of >80%, linear over five

  20. Aspects regarding vertical distribution of greenhouse gases resulted from in situ airborne measurements

    NASA Astrophysics Data System (ADS)

    Boscornea, Andreea; Sorin Vajaiac, Nicolae; Ardelean, Magdalena; Benciu, Silviu Stefan

    2016-04-01

    In the last decades the air quality, as well as other components of the environment, has been severely affected by uncontrolled emissions of gases - most known as greenhouse gases (GHG). The main role of GHG is given by the direct influence on the Earth's radiative budget, through Sun light scattering and indirectly by participating in cloud formation. Aldo, many efforts were made for reducing the high levels of these pollutants, e.g., International Panel on Climate Change (IPCC) initiatives, Montreal Protocol, etc., this issue is still open. In this context, this study aims to present several aspects regarding the vertical distribution in the lower atmosphere of some greenhouse gases: water vapours, CO, CO2 and methane. Bucharest and its metropolitan area is one of the most polluted regions of Romania due to high traffic. For assessing the air quality of this area, in situ measurements of water vapours, CO, CO2 and CH4 were performed using a Britten Norman Islander BN2 aircraft equipped with a Picarro gas analyser, model G2401-mc, able to provide precised, continuous and accurate data in real time. This configuration consisting in aircraft and airborne instruments was tested for the first time in Romania. For accomplishing the objectives of the measurement campaign, there were proposed several flight strategies which included vertical and horizontal soundings from 105 m to 3300 m and vice-versa around Clinceni area (20 km West of Bucharest). During 5 days (25.08.2015 - 31.08.2015) were performed 7 flights comprising 10h 18min research flight hours. The measured concentrations of GHS ranged between 0.18 - 2.2 ppm for water vapours with an average maximum value of 1.7 ppm, 0.04 - 0.53 ppm for CO with an average maximum value of 0.21 ppm, 377 - 437.5 ppm for CO2 with an average maximum value of 397 ppm and 1.7 - 6.1 ppm for CH4 with an average maximum value of 2.195 ppm. It was noticed that measured concentrations of GHG are decreasing for high values of sounding

  1. Coincident Retrieval of Sea Surface Salinity from the Northern Gulf of Mexico Using SMOS and STARRS During the 2011 COSSAR Airborne Campaign.

    NASA Astrophysics Data System (ADS)

    Burrage, D. M.; Wesson, J. C.; Wang, D. W.; Hwang, P. A.; Howden, S. D.

    2012-04-01

    Airborne mapping of Sea Surface Salinity (SSS) using L-band radiometers has been practiced for over a decade. However, aircraft range has limited mapping to coastal regions with occasional extended offshore transects. With 2-years of successful SMOS operation and the launch of NASA's Aquarius mission on 10 June 2011, open ocean SSS remote sensing has become an operational reality. The spatial resolution of the L-band radiometers is limited by deployable antenna size, but the relatively fine (35 km) resolution of SMOS at nadir, provides unprecedented opportunities to study SSS variations in marginal seas. Here, the relatively high signal to noise ratio produced by freshwater inflows at the coast allows the averaging period needed to map open ocean SSS variations to be reduced; improving temporal resolution without significantly compromising sensitivity. We describe an airborne campaign that combined the high-resolution coastal mapping capabilities of NRL's airborne Salinity Temperature and Roughness Remote Scanner (STARRS) with the open ocean mapping capabilities of SMOS. The Color Surface Salinity and Roughness (COSSAR) airborne campaign was conducted under summertime conditions, by flying STARRS over the Northern Gulf of Mexico during 2-13 June, 2011. Campaign objectives were to map SSS over the continental shelf and fly offshore transects coincident with SMOS overpasses. The campaign started immediately following a record flood crest in the Mississippi River, with flows exceeding 42,500 m^3/s. This necessitated large diversions into the Atchafalaya River and Lake Ponchartrain, to avoid catastrophic flooding of New Orleans and Baton Rouge. The flood, and its diversion, produced large plumes from both rivers, which were observed by STARRS. Line transects crossing the plumes were flown along three ascending SMOS groundtracks and a descending one, at times coincident with satellite overpasses. Shorter zig-zag transects were flown along the coast. Intensive mapping

  2. Constraining isoprene emission factors using airborne flux measurements during CABERNET

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Jiang, X.; Avise, J. C.; Scott, K.; Jonsson, H.; Guenther, A. B.; Goldstein, A. H.

    2012-12-01

    An aircraft flux study was conducted to assess biogenic volatile organic compound (BVOC) emissions from California ecosystems targeting oak woodlands and isoprene for most transects. The direct eddy covariance approach featured high speed proton transfer reaction mass spectrometry onboard a CIRPAS (Center for Interdisciplinary Remotely-Piloted Aircraft Studies) Twin Otter aircraft during June 2011 as part of the CABERNET (California Airborne BVOC Emission Research in Natural Ecosystem Transects) project. Isoprene fluxes were calculated using wavelet analysis and scaled to surface fluxes using a divergence term obtained by measuring fluxes at multiple altitudes over homogenous oak terrain. By normalization of fluxes to standard temperature and photosynthetically active radiation levels using standard BVOC modeling equations, the resulting emission factors could be directly compared with those used by MEGAN (Model of Emissions of Gases and Aerosols from Nature) and BEIGIS (Biogenic Emission Inventory Geographic Information System) models which are the most commonly used BVOC emission models for California. As expected, oak woodlands were found to be the dominant source of isoprene in all areas surrounding and in the Central Valley of California. The airborne fluxes averaged to 2 km spatial resolution matched remarkably well with current oak woodland distributions driving the models and hence the correspondence of modeled and aircraft derived emission factors was also good, although quantitative differences were encountered depending on the region and driving variables used. Fluxes measured from aircraft proved to be useful for the improvement of the accuracy of modeled predictions for isoprene and other important ozone and aerosol precursor compounds. These are the first regional isoprene flux measurements using direct eddy covariance on aircraft.

  3. A model-based data analysis of the atmospheric methane above Siberia during YAK-AEROSIB airborne campaign in summer 2012

    NASA Astrophysics Data System (ADS)

    Arzoumanian, Emmanuel; Paris, Jean-Daniel; Pruvost, Arnaud; Berchet, Antoine; Pison, Isabelle; Arshinov, Mikhail; Belan, Boris

    2014-05-01

    High latitude regions are large sources of CH4 in the atmosphere, both natural from boreal wetlands and wildfires, and anthropogenic from natural gas extraction industry, especially in the Russian Arctic. Our current understanding of the extent and amplitude of the natural sources, as well as the large scale driving factors, remain highly uncertain (Kirschke et al., Nature Geosci., 2013). After a decade of pause, atmospheric methane seems to be increasing again, with a possible significant contribution from the wetlands of the northern high latitudes initiated by an unusual rise of regional temperatures in 2007 (Dlugokencky et al., 2009). This work aims at better understanding high latitude CH4 sources and sinks using atmospheric measurements and transport model. YAK-AEROSIB atmospheric airborne campaigns have been performed in order to provide observational data about the composition of Siberian air. In this work, we focus on the 2012 campaign which has been conducted on July 31st and August 1st. It consisted of five flights, performed in the troposphere from the boundary layer up to 8.5 km, connecting Novosibirsk to Yakutsk and back. This particular campaign was dominated by wildfires in Western and central Siberia. Therefore a chemistry-transport model (CHIMERE), combined with datasets for anthropogenic (EDGAR) emissions and models for wetlands (ORCHIDEE) and wildfire (GFED), has been used to interpret the collected data. From tagged tracers and model observation mismatch we describe results concerning CH4 fluxes in the Siberian territory. This work was funded by CNRS (France), the French Ministry of Foreign Affairs, CEA (France), Presidium of RAS (Program No. 4), Brunch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5), Interdisciplinary integration projects of Siberian Branch of RAS (No. 35, No. 70, No. 131), Russian Foundation for Basic Research (grants No 14-05-00526, 14-05-00590). Kirschke, S., P. Bousquet, P. Ciais, M. Saunois, J

  4. An Intercomparison of Airborne VOC and PAN Measurements

    NASA Astrophysics Data System (ADS)

    Hansel, A.; Wisthaler, A.; Flocke, F.; Weinheimer, A.; Fall, R.; Goldan, P.; Hübler, G.; Fehsenfeld, F. C.

    2002-12-01

    As part of the Texas Air Quality Study (TexAQS 2000) an informal airborne intercomparison has been conducted to evaluate the state-of-the-art of fast-response, in-situ methods for analyzing Volatile Organic Compounds (VOCs) and peroxyacetyl nitrate (PAN). Instrumentation included a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS), the Tropospheric Airborne Chromatograph for Oxy-hydrocarbons and Hydrocarbons (TACOH) and a gas chromatograph for PAN detection using electron capture (GC/ECD). The measurements were made in the Greater Houston area and East Texas in August/September 2000 during 13 flights with the NSF/NCAR ELECTRA aircraft. The intercomparison was conducted mainly in the boundary layer but included some encounters with air masses from the free troposphere. Final results from the intercomparison show that measurements of acetaldehyde, isoprene, the sum\\textsuperscript{*} of acetone and propanal, the sum\\textsuperscript{*} methyl vinyl ketone and methacrolein (\\textsuperscript{*} PTR-MS does not distinguish between isobaric species) and toluene agree very well. Poor agreement was achieved in the case of methanol and the underlying sensitivity problem in the PTR-MS or TACOH system is under investigation. The results of the PAN intercomparison indicate that the PTR-MS technique suffered from an interference most likely associated with the presence of peracetic acid in photochemically aged air. If this interfering signal was traced by periodically inserting a selective PAN scrubber (thermal decomposition) into the sample air stream and subtracted from the original signal, the corrected PTR-MS PAN data are in very good agreement with the GC/ECD results.

  5. Infrared heterodyne radiometer for airborne atmospheric transmittance measurements

    NASA Technical Reports Server (NTRS)

    Wolczok, J. M.; Lange, R. A.; Dinardo, A. J.

    1980-01-01

    An infrared heterodyne radiometer (IHR) was used to measure atmospheric transmittance at selected hydrogen fluoride (2.7 micrometer) and deuterium fluoride (3.8 micrometer) laser transitions. The IHR was installed aboard a KC-135 aircraft for an airborne atmospheric measurements program that used the sun as a backlighting source for the transmission measurements. The critical components are: a wideband indium antimonide (1nSb) photomixer, a CW HF/DF laser L0, a radiometric processor, and a 1900 K blackbody reference source. The measured heterodyne receiver sensitivity (NEP) is 1.3 x 10 to the -19th power W/Hz, which yields a calculated IHR temperature resolution accuracy of delta I sub S/-3 sub S = 0.005 for a source temperature of 1000 K and a total transmittance of 0.5. Measured atmospheric transmittance at several wavelengths and aircraft altitudes from 9.14 km (30,000 ft) to 13.72 km (45,000 ft) were obtained during the measurements program and have been compared with values predicted by the AFGL Atmospheric Line Parameter Compilation.

  6. Retrieval of Snow and Rain From Combined X- and W-B and Airborne Radar Measurements

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tian, Lin; Heymsfield, Gerald M.

    2008-01-01

    Two independent airborne dual-wavelength techniques, based on nadir measurements of radar reflectivity factors and Doppler velocities, respectively, are investigated with respect to their capability of estimating microphysical properties of hydrometeors. The data used to investigate the methods are taken from the ER-2 Doppler radar (X-band) and Cloud Radar System (W-band) airborne Doppler radars during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment campaign in 2002. Validity is assessed by the degree to which the methods produce consistent retrievals of the microphysics. For deriving snow parameters, the reflectivity-based technique has a clear advantage over the Doppler-velocity-based approach because of the large dynamic range in the dual-frequency ratio (DFR) with respect to the median diameter Do and the fact that the difference in mean Doppler velocity at the two frequencies, i.e., the differential Doppler velocity (DDV), in snow is small relative to the measurement errors and is often not uniquely related to Do. The DFR and DDV can also be used to independently derive Do in rain. At W-band, the DFR-based algorithms are highly sensitive to attenuation from rain, cloud water, and water vapor. Thus, the retrieval algorithms depend on various assumptions regarding these components, whereas the DDV-based approach is unaffected by attenuation. In view of the difficulties and ambiguities associated with the attenuation correction at W-band, the DDV approach in rain is more straightforward and potentially more accurate than the DFR method.

  7. Snow thickness retrieval using SMOS satellite data: Comparison with airborne IceBridge and buoy measurements

    NASA Astrophysics Data System (ADS)

    Maaß, N.; Kaleschke, L.; Tian-Kunze, X.

    2015-12-01

    The passive microwave mission SMOS (Soil Moisture and Ocean Salinity) provides daily coverage of the polar regions and its data have been used to retrieve thin sea ice thickness up to about one meter. In addition, there has been an attempt to retrieve snow thickness over thick Arctic multi-year ice, which is a crucial parameter for the freeboard-based estimation of (thick) sea ice thickness from lidar and radar altimetry. SMOS provides measurements at a frequency of 1.4 GHz (L-band) at horizontal and vertical polarization for a range of incidence angles (0 to 60°). The retrieval of ice or snow parameters from SMOS measurements is based on an emission model that describes the 1.4 GHz brightness temperature of (snow-covered) sea ice as a function of the ice and snow thicknesses and the permittivities of these media, which are mainly determined by ice temperature and salinity and snow density, respectively. In the first attempts to retrieve snow thickness from SMOS data, these parameters were assumed to be constant in the emission model, and the resulting maps were compared with airborne ice and snow thickness measurements taken during NASA's Operation IceBridge mission in spring 2012. The present approach to produce SMOS snow thickness maps is more elaborate. For example, available information on the ice surface temperature from MODIS (MODerate resolution Imaging Spectroradiometer) satellite images or from the IceBridge campaign itself are used, and the ice in the retrieval model is described by temperature and salinity profiles instead of using bulk values. As a first step we have produced (winter/spring) snow thickness maps of the Arctic, from 3-day-averages up to monthly means, using the available SMOS data from 2010 on. Here, we show how our spatial snow thickness distributions compare with IceBridge campaign data in the western Arctic from spring 2011 to 2015. In addition, we show how the temporal evolution of SMOS-retrieved snow thickness compares with snow

  8. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  9. Ground-based aerosol measurements during CHARMEX/ADRIMED campaign at Granada station

    NASA Astrophysics Data System (ADS)

    Granados-Muñoz, Maria Jose; Bravo-Aranda, Juan Antonio; Navas-Guzman, Francisco; Guerro-Rascado, Juan Luis; Titos, Gloria; Lyamani, Hassan; Valenzuela, Antonio; Cazorla, Alberto; Olmo, Francisco Jose; Mallet, Marc; Alados-Arboledas, Lucas

    2015-04-01

    In the framework of ChArMEx/ADRIMED (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/; Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) projects, a field experiment based on in situ and remote sensing measurements from surface and airborne platforms was performed. The ADRIMED project aimed to capture the high complexity of the Mediterranean region by using an integrated approach based on intensive experimental field campaign and spaceborne observations, radiative transfer calculations and climate modelling with Regional Climate Models better adapted than global circulation models. For this purpose, measurements were performed at different surface super-sites (including Granada station) over the Occidental Mediterranean region during summer 2013 for creating an updated database of the physical, chemical, optical properties and the vertical distribution of the major "Mediterranean aerosols". Namely, measurements at Granada station were performed on 16 and 17 July 2013, in coincidence with the overpasses of the ATR aircraft over the station. The instrumentation used for the campaign includes both remote sensing instruments (a multiwavelength Raman lidar and a sun photometer) and in-situ measurements (a nephelometer, a Multi-Angle Absorption Photometer (MAAP), an Aerodynamic particle sizer (APS), a high volume sampler of PM10 and an aethalometer). During the measurement period a mineral dust event was detected, with similar dust load on both days. According to in-situ measurements, the event reached the surface level on 16 of June. Vertically resolved lidar measurements indicated presence of mineral dust layers up to 5 km asl both on 16 and 17 June 2013. Temporal evolution analysis indicated that on 17 June the dust layer decoupled from the boundary layer and disappeared around 14:00 UTC. In addition, lidar and sun-photometer data were used to retrieve volume concentration profiles by means of LIRIC (Lidar

  10. ARM Airborne Carbon Measurements VI (ACME VI) Science Plan

    SciTech Connect

    Biraud, S

    2015-12-01

    From October 1 through September 30, 2016, the Atmospheric Radiation Measurement (ARM) Aerial Facility will deploy the Cessna 206 aircraft over the Southern Great Plains (SGP) site, collecting observations of trace-gas mixing ratios over the ARM’s SGP facility. The aircraft payload includes two Atmospheric Observing Systems, Inc., analyzers for continuous measurements of CO2 and a 12-flask sampler for analysis of carbon cycle gases (CO2, CO, CH4, N2O, 13CO2, 14CO2, carbonyl sulfide, and trace hydrocarbon species, including ethane). The aircraft payload also includes instrumentation for solar/infrared radiation measurements. This research is supported by the U.S. Department of Energy’s ARM Climate Research Facility and Terrestrial Ecosystem Science Program and builds upon previous ARM Airborne Carbon Measurements (ARM-ACME) missions. The goal of these measurements is to improve understanding of 1) the carbon exchange at the SGP site, 2) how CO2 and associated water and energy fluxes influence radiative forcing, convective processes and CO2 concentrations over the SGP site, and 3) how greenhouse gases are transported on continental scales.

  11. Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton.

    PubMed

    Churnside, James H; Thorne, Richard E

    2005-09-10

    Airborne lidar has the potential to survey large areas quickly and at a low cost per kilometer along a survey line. For this reason, we investigated the performance of an airborne lidar for surveys of zooplankton. In particular, we compared the lidar returns with echo-sounder measurements of zooplankton in Prince William Sound, Alaska. Data from eight regions of the Sound were compared, and the correlation between the two methods was 0.78. To obtain this level of agreement, a threshold was applied to the lidar return to remove the effects of scattering from phytoplankton.

  12. OPTIMIZING THE PAKS METHOD FOR MEASURING AIRBORNE ACROLEIN

    EPA Science Inventory

    Airborne acrolein is produced from the combustion of fuel and tobacco and is of concern due to its potential for respiratory tract irritation and other adverse health effects. DNPH active-sampling is a method widely used for sampling airborne aldehydes and ketones (carbonyls); ...

  13. Measuring Radiant Emissions from Entire Prescribed Fires with Ground, Airborne and Satellite Sensors RxCADRE 2012

    NASA Technical Reports Server (NTRS)

    Dickinson, Matthew B.; Hudak, Andrew T.; Zajkowski, Thomas; Loudermilk, E. Louise; Schroeder, Wilfrid; Ellison, Luke; Kremens, Robert L.; Holley, William; Martinez, Otto; Paxton, Alexander; Bright, Benjamin C.; O'Brien, Joseph J.; Hornsby, Benjamin; Ichoku, Charles; Faulring, Jason; Gerace, Aaron; Peterson, David; Mauceri, Joseph

    2015-01-01

    Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE) field campaign, we used ground, airborne and spaceborne sensors to measure fire radiative power (FRP) from whole fires, applying different methods to small (2 ha) and large (.100 ha) burn blocks. For small blocks (n1/46), FRP estimated from an obliquely oriented long-wave infrared (LWIR) camera mounted on a boom lift were compared with FRP derived from combined data from tower-mounted radiometers and remotely piloted aircraft systems (RPAS). For large burn blocks (n1/43), satellite FRP measurements from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors were compared with near-coincident FRP measurements derived from a LWIR imaging system aboard a piloted aircraft. We describe measurements and consider their strengths and weaknesses. Until quantitative sensors exist for small RPAS, their use in fire research will remain limited. For oblique, airborne and satellite sensors, further FRP measurement development is needed along with greater replication of coincident measurements, which we show to be feasible.

  14. The OLI Radiometric Scale Realization Round Robin Measurement Campaign

    NASA Technical Reports Server (NTRS)

    Cutlip, Hansford; Cole,Jerold; Johnson, B. Carol; Maxwell, Stephen; Markham, Brian; Ong, Lawrence; Hom, Milton; Biggar, Stuart

    2011-01-01

    A round robin radiometric scale realization was performed at the Ball Aerospace Radiometric Calibration Laboratory in January/February 2011 in support of the Operational Land Imager (OLI) Program. Participants included Ball Aerospace, NIST, NASA Goddard Space Flight Center, and the University of Arizona. The eight day campaign included multiple observations of three integrating sphere sources by nine radiometers. The objective of the campaign was to validate the radiance calibration uncertainty ascribed to the integrating sphere used to calibrate the OLI instrument. The instrument level calibration source uncertainty was validated by quatnifying: (1) the long term stability of the NIST calibrated radiance artifact, (2) the responsivity scale of the Ball Aerospace transfer radiometer and (3) the operational characteristics of the large integrating sphere.

  15. Boundary Layer CO2 mixing ratio measurements by an airborne pulsed IPDA lidar

    NASA Astrophysics Data System (ADS)

    Ramanathan, A. K.; Mao, J.; Abshire, J. B.; Allan, G. R.

    2014-12-01

    Since the primary signature of CO2 fluxes at the surface occurs in the planetary boundary layer (PBL), remote sensing measurements of CO2 that can resolve the CO2 absorption in the PBL separate from the total column are more sensitive to fluxes than those that can only measure a total column. The NASA Goddard CO2 sounder is a pulsed, range-resolved lidar that samples multiple (presently 30) wavelengths across the 1572.335 nm CO2 absorption line. The range resolution and line shape measurement enable CO2 mixing ratio measurements to be made in two or more altitude layers including the PBL via lidar cloud-slicing and multi-layer retrievals techniques. The pulsed lidar approach allows range-resolved backscatter of scattering from ground and cloud tops. Post flight data analysis can be used split the vertical CO2 column into layers (lidar cloud-slicing) and solve for the CO2 mixing ratio in each layer. We have demonstrated lidar cloud slicing with lidar measurements from a flight over Iowa, USA in August 2011 during the corn-growing season, remotely measuring a ≈15 ppm drawdown in the PBL CO2. We will present results using an improved lidar cloud slicing retrieval algorithm as well as preliminary measurements from the upcoming ASCENDS 2014 flight campaign. The CO2 absorption line is also more pressure broadened at lower altitudes. Analyzing the line shape also allows solving for some vertical resolution in the CO2 distribution. By allowing the retrieval process to independently vary the column concentrations in two or more altitude layers, one can perform a best-fit retrieval to obtain the CO2 mixing ratios in each of the layers. Analysis of airborne lidar measurements (in 2011) over Iowa, USA and Four Corners, New Mexico, USA show that for altitudes above 8 km, the CO2 sounder can detect and measure enhanced or diminished CO2 mixing ratios in the PBL even in the absence of clouds. We will present these results as well as preliminary measurements from the upcoming

  16. Using an A-10 Aircraft for Airborne measurements of TGFs

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.; Christian, Hugh, J.; Blakeslee, Richard J.; Grove, J. Eric; Chektman, Alexandre; Jonsson, Haflidi; Detwiler, Andrew G.

    2012-01-01

    Plans are underway to convert an A-10 combat attack aircraft into a research aircraft for thunderstorm research. This aircraft would be configured and instrumented for flights into large, convective thunderstorms. It would have the capabilities of higher altitude performance and protection for thunderstorm conditions that exceed those of aircraft now in use for this research. One area of investigation for this aircraft would be terrestrial gamma ]ray flashes (TGFs), building on the pioneering observations made by the Airborne Detector for Energetic Lightning Emissions (ADELE) project several years ago. A new and important component of the planned investigations are the continuous, detailed correlations of TGFs with the electric fields near the aircraft, as well as detailed measurements of nearby lightning discharges. Together, the x-and gamma-radiation environments, the electric field measurements, and the lightning observations (all measured on microsecond timescales) should provide new insights into this TGF production mechanism. The A -10 aircraft is currently being modified for thunderstorm research. It is anticipated that the initial test flights for this role will begin next year.

  17. Ground and Airborne Methane Measurements using Optical Parametric Amplifiers

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James; Dawsey, Martha; Ramanathan, Anand

    2012-01-01

    We report on an initial airborne demonstration of atmospheric methane column measurements at 1.65 micrometers using a widely tunable, seeded optical parametric amplifier (OPA) lidar and a photon counting detector. Methane is an important greenhouse gas and accurate knowledge of its sources and sinks is needed for climate modeling. Our lidar system uses 20 pulses at increasing wavelengths and integrated path differential absorption (IPDA) to map a methane line at 1650.9 nanometers. The wavelengths are generated by using a Nd:YAG pump laser at 1064.5 nanometers and distributed feedback diode laser at 1650.9 nanometers and a periodically-poled lithium niobate (PPLN) crystal. The pulse width was 3 nanoseconds and the pulse repetition rate was 6.28 KHz. The outgoing energy was approximately 13 microJoules/pulse. A commercial 20 nanometer diameter fiber-coupled telescope with a photon counting detector operated in analog mode with a 0.8 nanometer bandpass filter was used as the lidar receiver. The lidar system was integrated on NASA's DC-8 flying laboratory, based at Dryden Airborne operations Facility (DAOF) in Palmdale CA. Three flights were performed in the central valley of California. Each flight lasted about 2.5 hours and it consisted of several flight segments at constant altitudes at approximately 3, 4.5, 6, 7.6, 9.1, 10.6 km (l0, 15, 20, 25, 30, 35 kft). An in-situ cavity ring down spectrometer made by Picarro Inc. was flown along with the lidar instrument provided us with the "truth" i.e. the local CH4, CO2 and H2O concentrations at the constant flight altitude segments. Using the aircraft's altitude, GPS, and meteorological data we calculated the theoretical differential optical depth of the methane absorption at increasing altitudes. Our results showed good agreement between the experimentally derived optical depth measurements from the lidar instrument and theoretical calculations as the flight altitude was increased from 3 to 10.6 kilometers, assuming a

  18. Airborne Double Pulsed 2-Micron IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Singh, Upendra

    2015-01-01

    We have developed an airborne 2-micron Integrated Path Differential Absorption (IPDA) lidar for atmospheric CO2 measurements. The double pulsed, high pulse energy lidar instrument can provide high-precision CO2 column density measurements.

  19. Airborne Measurements of Aerosol Size Distributions During PACDEX

    NASA Astrophysics Data System (ADS)

    Rogers, D. C.; Gandrud, B.; Campos, T.; Kok, G.; Stith, J.

    2007-12-01

    The Pacific Dust Experiment (PACDEX) is an airborne project that attempts to characterize the indirect aerosol effect by tracing plumes of dust and pollution across the Pacific Ocean. This project occurred during April-May 2007 and used the NSF/NCAR HIAPER research aircraft. When a period of strong generation of dust particles and pollution was detected by ground-based and satellite sensors, then the aircraft was launched from Colorado to Alaska, Hawaii, and Japan. Its mission was to intercept and track these plumes from Asia, across the Pacific Ocean, and ultimately to the edges of North America. For more description, see the abstract by Stith and Ramanathan (this conference) and other companion papers on PACDEX. The HIAPER aircraft carried a wide variety of sensors for measuring aerosols, cloud particles, trace gases, and radiation. Sampling was made in several weather regimes, including clean "background" air, dust and pollution plumes, and regions with cloud systems. Altitude ranges extended from 100 m above the ocean to 13.4 km. This paper reports on aerosol measurements made with a new Ultra-High Sensitivity Aerosol Spectrometer (UHSAS), a Radial Differential Mobility Analyzer (RDMA), a water-based CN counter, and a Cloud Droplet Probe (CDP). These cover the size range 10 nm to 10 um diameter. In clear air, dust was detected with the UHSAS and CDP. Polluted air was identified with high concentrations of carbon monoxide, ozone, and CN. Aerosol size distributions will be presented, along with data to define the context of weather regimes.

  20. Hygroscopic Measurements of Aerosol Particles in Colorado during the Discover AQ Campaign 2014

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Delgado, R.; Espinosa, R.; Martins, J. V.; Hoff, R. M.

    2014-12-01

    In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground observations with other optical aerosol measurements such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. In the summer of 2014, the DISCOVER-AQ campaign was held in Colorado, where systematic and concurrent observations of column- integrated surface, and vertically-resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Aerosol optical properties were measured in the UMBC trailer at the city of Golden using a TSI-3563 nephelometer and an in-situ Polarized Imaging Nephelometer (PI-NEPH) designed and built by the LACO group at UMBC. The PI-NEPH measures aerosol phase matrix components in high angular range between 2 and 178 degrees scattering angle at three wavelengths (λ=473, 532 and 671nm). The two measured elements of the phase matrix, intensity (P11) and linear polarization (P12) provide extensive characterization of the scattering properties of the studied aerosol. The scattering coefficient, P11 and P12 were measured under different humidity conditions to obtain the enhancement factor f(RH) and the dependence of P11 and P12 to RH using a humidifier dryer system covering a RH range from 20 to 90%. The ratio between scattering coefficients at high and low humidity in Golden Colorado showed relatively low hygroscopic growth in the aerosol particles f(RH=80%) was 1.27±0.19 for the first three weeks of sampling. According to speciated measurements performed at the UMBC trailer, the predominance of dust and organic aerosols over more hygroscopic nitrate and sulfate in the

  1. Airborne Lidar Measurements of Atmospheric Column CO2 Concentration to Cloud Tops

    NASA Astrophysics Data System (ADS)

    Mao, J.; Ramanathan, A. K.; Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.

    2015-12-01

    Globally distributed atmospheric CO2 measurements with high precision, low bias and full seasonal sampling are crucial to advance carbon cycle sciences. However, two thirds of the Earth's surface is typically covered by clouds, and passive remote sensing approaches from space, e.g., OCO-2 and GOSAT, are limited to cloud-free scenes. They are unable to provide useful retrievals in cloudy areas where the photon path-length can't be well characterized. Thus, passive approaches have limited global coverage and poor sampling in cloudy regions, even though some cloudy regions have active carbon surface fluxes. NASA Goddard is developing a pulsed integrated-path, differential absorption (IPDA) lidar approach to measure atmospheric column CO2 concentrations from space as a candidate for NASA's ASCENDS mission. Measurements of time-resolved laser backscatter profiles from the atmosphere also allow this technique to estimate column CO2 and range to cloud tops in addition to those to the ground with precise knowledge of the photon path-length. This allows retrievals of column CO2 concentrations to cloud tops, providing much higher spatial coverage and some information about vertical structure of CO2. This is expected to benefit atmospheric transport process studies, carbon data assimilation in models, and global and regional carbon flux estimation. We show some preliminary results of the all-sky retrieval capability using airborne lidar measurements from the 2011, 2013 and 2014 ASCENDS airborne campaigns on the NASA DC-8. These show retrievals of atmospheric CO2 over low-level marine stratus clouds, cumulus clouds at the top of planetary boundary layer, some mid-level clouds and visually thin high-level cirrus clouds. The CO2 retrievals from the lidar are validated against in-situ measurements and compared to Goddard PCTM model simulations. Lidar cloud slicing to derive CO2 abundance in the planetary boundary layer and free troposphere also has been demonstrated. The

  2. CBSIT 2009: Airborne Validation of Envisat Radar Altimetry and In Situ Ice Camp Measurements Over Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Connor, Laurence; Farrell, Sinead; McAdoo, David; Krabill, William; Laxon, Seymour; Richter-Menge, Jacqueline; Markus, Thorsten

    2010-01-01

    The past few years have seen the emergence of satellite altimetry as valuable tool for taking quantitative sea ice monitoring beyond the traditional surface extent measurements and into estimates of sea ice thickness and volume, parameters that arc fundamental to improved understanding of polar dynamics and climate modeling. Several studies have now demonstrated the use of both microwave (ERS, Envisat/RA-2) and laser (ICESat/GLAS) satellite altimeters for determining sea ice thickness. The complexity of polar environments, however, continues to make sea ice thickness determination a complicated remote sensing task and validation studies remain essential for successful monitoring of sea ice hy satellites. One such validation effort, the Arctic Aircraft Altimeter (AAA) campaign of2006. included underflights of Envisat and ICESat north of the Canadian Archipelago using NASA's P-3 aircraft. This campaign compared Envisat and ICESat sea ice elevation measurements with high-resolution airborne elevation measurements, revealing the impact of refrozen leads on radar altimetry and ice drift on laser altimetry. Continuing this research and validation effort, the Canada Basin Sea Ice Thickness (CBSIT) experiment was completed in April 2009. CBSIT was conducted by NOAA. and NASA as part of NASA's Operation Ice Bridge, a gap-filling mission intended to supplement sea and land ice monitoring until the launch of NASA's ICESat-2 mission. CBIST was flown on the NASA P-3, which was equipped with a scanning laser altimeter, a Ku-band snow radar, and un updated nadir looking photo-imaging system. The CB5IT campaign consisted of two flights: an under flight of Envisat along a 1000 km track similar to that flown in 2006, and a flight through the Nares Strait up to the Lincoln Sea that included an overflight of the Danish GreenArc Ice Camp off the coast of northern Greenland. We present an examination of data collected during this campaign, comparing airborne laser altimeter measurements

  3. Using airborne LIDAR to measure tides and river slope

    NASA Astrophysics Data System (ADS)

    Talke, S. A.; Hudson, A.; Chickadel, C. C.; Farquharson, G.; Jessup, A. T.

    2014-12-01

    The spatial variability of tides and the tidally-averaged water-level is often poorly resolved in shallow waters, despite its importance in validating models and interpreting dynamics. In this contribution we explore using airborne LIDAR to remotely observe tides and along-river slope in the Columbia River estuary (CRE). Using an airplane equipped with LIDAR, differential GPS, and an infra-red camera, we flew 8 longitudinal transects over a 50km stretch of the CRE over a 14 hour period in June 2013. After correcting for airplane elevation, pitch and roll and median filtering over 1km blocks, a spatially-resolved data set of relative water level was generated. Results show the tide (amplitude 2m) propagating upstream at the expected phase velocity. A sinusoid with 2 periods (12.4 and 24 hours) was next fit to data to produce a smooth tide and extract the mean slope. Comparison with 4 tide gauges indicates first order agreement with measured tides (rms error 0.1m), and confirms that a substantial sub-tidal gradient exists in the CRE. This proof-of-concept experiment indicates that remote sensing of tides in coastal areas is feasible, with possible applications such as improving bathymetric surveys or inferring water depths.

  4. A comparison of LOWTRAN-7 corrected Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data with ground spectral measurements

    NASA Technical Reports Server (NTRS)

    Xu, Peng-Yang; Greeley, Ronald

    1992-01-01

    Atmospheric correction of imaging spectroscopy data is required for quantitative analysis. Different models were proposed for atmospheric correction of these data. LOWTRAN-7 is a low-resolution model and computer code for predicting atmospheric transmittance and background radiance from 0 to 50,00 cm(sup -1) which was developed by the Air Force Geophysics Laboratory. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data used are radiometrically calibrated and include the 28 Sep. 1989 Providence Fan flight line segment 07, California. It includes a dark gravel surface defined as a calibration site by the Geologic Remote Sensing Field Experiment (GRSFE). Several ground measurements of portable spectrometer DAEDALUS AA440 Spectrafax were taken during the GRSFE, July 1989 field campaign. Comparisons of the LOWTRAN-7 corrected AVIRIS data with the ground spectrometer measurement were made.

  5. Carbon monoxide total column retrievals by use of the measurements of pollution in the troposphere airborne test radiometer.

    PubMed

    Niu, Jianguo; Deeter, Merritt N; Gille, John C; Edwards, David P; Ziskin, Daniel C; Francis, Gene L; Hills, Alan J; Smith, Mark W

    2004-08-20

    The Measurements of Pollution in the Troposphere (MOPITT) Airborne Test Radiometer (MATR) uses gas correlation filter radiometry from high-altitude aircraft to measure tropospheric carbon monoxide. This radiometer is used in support of the ongoing validation campaign for the MOPITT instrument aboard the Earth Observation System Terra satellite. A recent study of MATR CO retrievals that used data from the autumn of 2001 in the western United States is presented. Retrievals of the CO total column were performed and compared to in situ sampling with less than 10% retrieval error. Effects that influence retrieval, such as instrument sensitivity, retrieval sensitivity, and the bias between observations and the radiative transfer model, are discussed. Comparisons of MATR and MOPITT retrievals show promising consistency. A preliminary interpretation of MATR results is also presented.

  6. Alexandrite laser transmitter development for airborne water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Chyba, Thomas H.; Ponsardin, Patrick; Higdon, Noah S.; DeYoung, Russell J.; Browell, Edward V.

    1995-01-01

    In the DIAL technique, the water vapor concentration profile is determined by analyzing the lidar backscatter signals for laser wavelengths tuned 'on' and 'off' a water vapor absorption line. Desired characteristics of the on-line transmitted laser beam include: pulse energy greater than or equal to 100 mJ, high-resolution tuning capability (uncertainty less than 0.25 pm), good spectral stability (jitter less than 0.5 pm about the mean), and high spectral purity (greater than 99 percent). The off-line laser is generally detuned less than 100 pm away from the water vapor line. Its spectral requirements are much less stringent. In our past research, we developed and demonstrated the airborne DIAL technique for water vapor measurements in the 720-nm spectral region using a system based on an alexandrite laser as the transmitter for the on-line wavelength and a Nd:YAG laser-pumped dye laser for the off-line wavelength. This off-line laser has been replaced by a second alexandrite laser. Diode lasers are used to injection seed both lasers for frequency and linewidth control. This eliminates the need for the two intracavity etalons utilized in our previous alexandrite laser and thereby greatly reduces the risk of optical damage. Consequently, the transmitted pulse energy can be substantially increased, resulting in greater measurement range, higher data density, and increased measurement precision. In this paper, we describe the diode injection seed source, the two alexandrite lasers, and the device used to line lock the on-line seed source to the water vapor absorption feature.

  7. Measurement of airborne particle concentrations near the Sunset Crater volcano, Arizona.

    PubMed

    Benke, Roland R; Hooper, Donald M; Durham, James S; Bannon, Donald R; Compton, Keith L; Necsoiu, Marius; McGinnis, Ronald N

    2009-02-01

    Direct measurements of airborne particle mass concentrations or mass loads are often used to estimate health effects from the inhalation of resuspended contaminated soil. Airborne particle mass concentrations were measured using a personal sampler under a variety of surface-disturbing activities within different depositional environments at both volcanic and nonvolcanic sites near the Sunset Crater volcano in northern Arizona. Focused field investigations were performed at this analog site to improve the understanding of natural and human-induced processes at Yucca Mountain, Nevada. The level of surface-disturbing activity was found to be the most influential factor affecting the measured airborne particle concentrations, which increased over three orders of magnitude relative to ambient conditions. As the surface-disturbing activity level increased, the particle size distribution and the majority of airborne particle mass shifted from particles with aerodynamic diameters less than 10 mum (0.00039 in) to particles with aerodynamic diameters greater than 10 mum (0.00039 in). Under ambient conditions, above average wind speeds tended to increase airborne particle concentrations. In contrast, stronger winds tended to decrease airborne particle concentrations in the breathing zone during light and heavy surface-disturbing conditions. A slight increase in the average airborne particle concentration during ambient conditions was found above older nonvolcanic deposits, which tended to be finer grained than the Sunset Crater tephra deposits. An increased airborne particle concentration was realized when walking on an extremely fine-grained deposit, but the sensitivity of airborne particle concentrations to the resuspendible fraction of near-surface grain mass was not conclusive in the field setting when human activities disturbed the bulk of near-surface material. Although the limited sample size precluded detailed statistical analysis, the differences in airborne particle

  8. Airborne Sunphotometry in Support of the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) Experiment, 2001

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Schmid, B.; Livingston, J. M.; Russell, P. B.; Eilers, J. A.; Hobbs, P. V.; Kahn, R.; Smith, W. L.

    2001-12-01

    As part of the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) experiment, July 10 - August 2, 2001, the 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) was operated successfully aboard the University of Washington CV-580 during 10 research flights, totaling 45.09 flight hours. The CLAMS campaign was a clear sky, shortwave (SW) closure campaign sponsored by CERES, MISR, MODIS-Atmospheres, and the NASA/GEWEX Global Aerosol Climatology Project (GACP), and entailed measurements from the Chesapeake Lighthouse research platform, several land sites, 6 research aircraft and the TERRA satellite. Among the CLAMS research goals were the validation of satellite-based retrievals of aerosol properties, vertical profiles of radiative fluxes, temperature and water vapor. AATS-14 measures the direct solar beam transmission at 14 discrete wavelengths (354-1558 nm), yielding aerosol optical depth (AOD) spectra, columnar water vapor and columnar ozone. Differentiation of AOD (CWV) with respect to altitude in favorable flight patterns, allows the derivation of aerosol extinction (water vapor density). During coordinated flights of the UW CV-580, AATS-14 measured full column aerosol optical depth spectra at exact TERRA overpass time on at least 7 occasions. For five of these opportunities, AOD at 499nm was at or below 0.1. During TERRA overpass time on July 17, 2001, AATS-14 measured the highest AOD encountered during the entire experiment (ca. 0.48 at 499nm), including a horizontal gradient in AOD of more than 0.1 over a horizontal distance of ca. 80 kilometers. In this paper, we will show first sunphotometer-derived results regarding the spatial variation of AOD and CWV during TERRA overpass time at key locations for the CLAMS experiment. Preliminary comparison studies between our AOD/aerosol extinction data and results from (i) extinction products derived using in situ measurements aboard the UW CV-580 and (ii) AOD retrievals using the Multi

  9. Analyzing Source Apportioned Methane in Northern California During DISCOVER-AQ-CA Using Airborne Measurements and Model Simulations

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.

    2014-01-01

    This study analyzes source apportioned methane (CH4) emissions and atmospheric concentrations in northern California during the Discover-AQ-CA field campaign using airborne measurement data and model simulations. Source apportioned CH4 emissions from the Emissions Database for Global Atmospheric Research (EDGAR) version 4.2 were applied in the 3-D chemical transport model GEOS-Chem and analyzed using airborne measurements taken as part of the Alpha Jet Atmospheric eXperiment over the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV). During the time period of the Discover-AQ-CA field campaign EDGAR inventory CH4 emissions were 5.30 Gg/day (Gg 1.0 109 grams) (equating to 1.9 103 Gg/yr) for all of California. According to EDGAR, the SFBA and northern SJV region contributes 30 of total emissions from California. Source apportionment analysis during this study shows that CH4 concentrations over this area of northern California are largely influenced by global emissions from wetlands and local/global emissions from gas and oil production and distribution, waste treatment processes, and livestock management. Model simulations, using EDGAR emissions, suggest that the model under-estimates CH4 concentrations in northern California (average normalized mean bias (NMB) -5 and linear regression slope 0.25). The largest negative biases in the model were calculated on days when hot spots of local emission sources were measured and atmospheric CH4 concentrations reached values 3.0 parts per million (model NMB -10). Sensitivity emission studies conducted during this research suggest that local emissions of CH4 from livestock management processes are likely the primary source of the negative model bias. These results indicate that a variety, and larger quantity, of measurement data needs to be obtained and additional research is necessary to better quantify source apportioned CH4 emissions in California and further the understanding of the physical processes

  10. AMAXDOAS measurements and first results for the EUPLEX campaign

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Richter, Andreas; Bruns, Marco; Burrows, John P.; Heue, Klaus-Peter; Pundt, Irene; Wagner, Thomas; Platt, Ulrich

    2003-08-01

    The AMAXDOAS instrument on the DLR Falcon participated in the EUPLEX campaign in January and February 2003. The AMAXDOAS instrument is a UV/visible spectrometer observing scattered light in four different directions: zenith, nadir, off-axis above and off-axis below. From the spectra, vertical columns can be retrieved for several trace gases including OClO, NO2, and O3 using the well known DOAS (Differential Optical Absorption Spectroscopy) method. In this paper, instrument and data analysis are described. Slant columns for OClO are presented as first results and discussed in view to chlorine activation in the polar vortex. The results are also compared with data from the satellite instruments GOME and SCIAMACHY.

  11. Filter measurements of chemical composition during the airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Grandrud, B. W.; Sperry, P. D.; Sanford, L.

    1988-01-01

    During the Airborne Antarctic Ozone Experiment campaign, a filter sampler was flown to measure the bulk composition of aerosol and gas phases. The background sulfate aerosol was measured in regions inside and outside of the chemically perturbed region (CPR) of the polar vortex. The mass ratio of sulfate outside to inside was 2.8. This is indicative of a cleansing mechanism effecting the CPR or of a different air mass inside versus outside. The absolute value of the sulfate mixing ratio shows that the background aerosol has not been influenced by recent volcanic eruptions. The sulfate measured on the ferry flight returning to NASA Ames shows a decrease towards the equator with increasing concentrations in the northern hemisphere. Nitrate in the aerosol phase was observed on two flights. The largest amount of nitrate measured in the aerosol was 44 percent of the total amount of nitrate observed. Other samples on the same flights show no nitrate in the aerosol phase. The presence of nitrate in the aerosol is correlated with the coldest temperatures observed on a given flight. Total nitrate (aerosol plus acidic vapor nitrate) concentrations were observed to increase at flight altitude with increasing latitude north and south of the equator. Total nitrate was lower inside the CPR than outside. Chloride and flouride were not detected in the aerosol phase. From the concentrations of acidic chloride vapor, the ratio of acidic vapor Cl to acidic vapor F and a summing of the individual chloride containing species to yield a total chloride concentration, there is a suggestion that some of the air sampled was dechlorinated. Acidic vapor phase fluoride was observed to increase at flight altitude with increasing latitude both north and south of the equator. The acidic vapor phase fluoride was the only compound measured with the filter technique that exhibited larger concentrations inside the CPR than outside.

  12. Airborne particle concentrations at schools measured at different spatial scales

    NASA Astrophysics Data System (ADS)

    Buonanno, G.; Fuoco, F. C.; Morawska, L.; Stabile, L.

    2013-03-01

    Potential adverse effects on children health may result from school exposure to airborne particles. To address this issue, measurements in terms of particle number concentration, particle size distribution and black carbon (BC) concentrations were performed in three school buildings in Cassino (Italy) and its suburbs, outside and inside of the classrooms during normal occupancy and use. Additional time resolved information was gathered on ventilation condition, classroom activity, and traffic count data around the schools were obtained using a video camera. Across the three investigated school buildings, the outdoor and indoor particle number concentration monitored down to 4 nm and up to 3 μm ranged from 2.8 × 104 part cm-3 to 4.7 × 104 part cm-3 and from 2.0 × 104 part cm-3 to 3.5 × 104 part cm-3, respectively. The total particle concentrations were usually higher outdoors than indoors, because no indoor sources were detected. I/O measured was less than 1 (varying in a relatively narrow range from 0.63 to 0.74), however one school exhibited indoor concentrations higher than outdoor during the morning rush hours. Particle size distribution at the outdoor site showed high particle concentrations in different size ranges, varying during the day; in relation to the starting and finishing of school time two modes were found. BC concentrations were 5 times higher at the urban school compared with the suburban and suburban-to-urban differences were larger than the relative differences of ultrafine particle concentrations.

  13. Simple method for measuring vibration amplitude of high power airborne ultrasonic transducer: using thermo-couple.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2014-03-01

    Vibration amplitude of transducer's elements is the influential parameters in the performance of high power airborne ultrasonic transducers to control the optimum vibration without material yielding. The vibration amplitude of elements of provided high power airborne transducer was determined by measuring temperature of the provided high power airborne transducer transducer's elements. The results showed that simple thermocouples can be used both to measure the vibration amplitude of transducer's element and an indicator to power transmission to the air. To verify our approach, the power transmission to the air has been investigated by other common method experimentally. The experimental results displayed good agreement with presented approach.

  14. Airborne measurements of gas and particle pollutants during CAREBeijing-2008

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Zhu, T.; Yang, W.; Bai, Z.; Sun, Y. L.; Xu, Y.; Yin, B.; Zhao, X.

    2014-01-01

    Measurements of gaseous pollutants - including ozone (O3), sulfur dioxide (SO2), nitrogen oxides (NOX = NO + NO2), carbon monoxide (CO), particle number concentrations (5.6-560 nm and 0.47-30 μm) - and meteorological parameters (T, RH, P) were conducted during the Campaigns of Air Quality Research in Beijing and Surrounding Regions in 2008 (CAREBeijing-2008), from 27 August through 13 October 2008. The data from a total 18 flights (70 h flight time) from near the surface to 2100 m altitude were obtained with a Yun-12 aircraft in the southern surrounding areas of Beijing (38-40° N, 114-118° E). The objectives of these measurements were to characterize the regional variation of air pollution during and after the Olympics of 2008, determine the importance of air mass trajectories and to evaluate of other factors that influence the pollution characteristics. The results suggest that there are primarily four distinct sources that influenced the magnitude and properties of the pollutants in the measured region based on back-trajectory analysis: (1) southerly transport of air masses from regions with high pollutant emissions, (2) northerly and northeasterly transport of less pollutant air from further away, (3) easterly transport from maritime sources where emissions of gaseous pollutant are less than from the south but still high in particle concentrations, and (4) the transport of air that is a mixture from different regions; that is, the air at all altitudes measured by the aircraft was not all from the same sources. The relatively long-lived CO concentration is shown to be a possible transport tracer of long-range transport from the northwesterly direction, especially at the higher altitudes. Three factors that influenced the size distribution of particles - i.e., air mass transport direction, ground source emissions and meteorological influences - are also discussed.

  15. Flux Of Carbon from an Airborne Laboratory (FOCAL): Synergy of airborne and surface measures of carbon emission and isotopologue content from tundra landscape in Alaska

    NASA Astrophysics Data System (ADS)

    Dobosy, R.; Dumas, E.; Sayres, D. S.; Kochendorfer, J.

    2013-12-01

    Arctic tundra, recognized as a potential major source of new atmospheric carbon, is characterized by low topographic relief and small-scale heterogeneity consisting of small lakes and intervening tundra vegetation. This fits well the flux-fragment method (FFM) of analysis of data from low-flying aircraft. The FFM draws on 1)airborne eddy-covariance flux measurements, 2)a classified surface-characteristics map (e.g. open water vs tundra), 3)a footprint model, and 4)companion surface-based eddy-covariance flux measurements. The FOCAL, a collaboration among Harvard University's Anderson Group, NOAA's Atmospheric Turbulence and Diffusion Division (ATDD), and Aurora Flight Sciences, Inc., made coordinated flights in 2013 August with a collaborating surface site. The FOCAL gathers not only flux data for CH4 and CO2 but also the corresponding carbon-isotopologue content of these gases. The surface site provides a continuous sample of carbon flux from interstitial tundra over time throughout the period of the campaign. The FFM draws samples from the aircraft data over many instances of tundra and also open water. From this we will determine how representative the surface site is of the larger area (100 km linear scale), and how much the open water differs from the tundra as a source of carbon.

  16. Aerosol Optical Depth Measurements by Airborne Sun Photometer in SOLVE II: Comparisons to SAGE III, POAM III and Airborne Spectrometer Measurements

    NASA Technical Reports Server (NTRS)

    Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Ramirez, S.; Yee, J-H.; Swartz, W.; Shetter, R.

    2004-01-01

    The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) measured solar-beam transmission on the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II). This paper presents AATS-14 results for multiwavelength aerosol optical depth (AOD), including its spatial structure and comparisons to results from two satellite sensors and another DC-8 instrument. These are the Stratospheric Aerosol and Gas Experiment III (SAGE III), the Polar Ozone and Aerosol Measurement III (POAM III) and the Direct beam Irradiance Airborne Spectrometer (DIAS).

  17. An Empirical Function for Bidirectional Reflectance Characterization for Smoke Aerosols Using Multi-angular Airborne Measurements

    NASA Astrophysics Data System (ADS)

    Poudyal, R.; Singh, M. K.; Gatebe, C. K.; Gautam, R.; Varnai, T.

    2015-12-01

    Using airborne Cloud Absorption Radiometer (CAR) reflectance measurements of smoke, an empirical relationship between reflectances measured at different sun-satellite geometry is established, in this study. It is observed that reflectance of smoke aerosol at any viewing zenith angle can be computed using a linear combination of reflectance at two viewing zenith angles. One of them should be less than 30° and other must be greater than 60°. We found that the parameters of the linear combination computation follow a third order polynomial function of the viewing geometry. Similar relationships were also established for different relative azimuth angles. Reflectance at any azimuth angle can be written as a linear combination of measurements at two different azimuth angles. One must be in the forward scattering direction and the other in backward scattering, with both close to the principal plane. These relationships allowed us to create an Angular Distribution Model (ADM) for smoke, which can estimate reflectances in any direction based on measurements taken in four view directions. The model was tested by calculating the ADM parameters using CAR data from the SCAR-B campaign, and applying these parameters to different smoke cases at three spectral channels (340nm, 380nm and 470nm). We also tested our modelled smoke ADM formulas with Absorbing Aerosol Index (AAI) directly computed from the CAR data, based on 340nm and 380nm, which is probably the first study to analyze the complete multi-angular distribution of AAI for smoke aerosols. The RMSE (and mean error) of predicted reflectance for SCAR-B and ARCTAS smoke ADMs were found to be 0.002 (1.5%) and 0.047 (6%), respectively. The accuracy of the ADM formulation is also tested through radiative transfer simulations for a wide variety of situations (varying smoke loading, underlying surface types, etc.).

  18. Remote sensing of large scale methane emission sources with the Methane Airborne MAPper (MAMAP) instrument over the Kern River and Kern Front Oil fields and validation through airborne in-situ measurements - Initial results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, K.; Krautwurst, S.; Kolyer, R.; Jonsson, H.; Krings, T.; Horstjann, M.; Leifer, I.; Schuettemeyer, D.; Fladeland, M. M.; Burrows, J. P.; Bovensmann, H.

    2014-12-01

    During three flights performed with the MAMAP (Methane Airborne MAPper) airborne remote sensing instrument in the framework of the CO2 and MEthane Experiment (COMEX) - a NASA and ESA funded campaign in support of HyspIRI and CarbonSat mission definition activities - large scale methane plumes were detected over the Kern River and Kern Front Oil fields in the period between June 3 and 13, 2014. MAMAP was installed for these flights aboard of the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with a Picarro fast in-situ greenhouse gas (GHG) analyzer (operate by the Ames Research Center, ARC), a 5 hole turbulence probe as well as a atmospheric measurement package (operated by CIRPAS), measuring aerosols, temperature, dew-point and other atmospheric parameters. Data collected with the in-situ GHG analyzer will be used for validation of MAMAP remotely sensed data by acquiring vertical cross sections of the discovered plumes at a fixed downwind distance. Precise airborne wind information from the turbulence probe together with ground based wind data from the nearby airport will be used to estimate emission rates from the remote sensed and in-situ measured data. Remote sensed and in-situ data as well as initial flux estimates for the three flights will be presented.

  19. Airborne measurements of organosulfates over the continental U.S.

    PubMed

    Liao, Jin; Froyd, Karl D; Murphy, Daniel M; Keutsch, Frank N; Yu, Ge; Wennberg, Paul O; St Clair, Jason M; Crounse, John D; Wisthaler, Armin; Mikoviny, Tomas; Jimenez, Jose L; Campuzano-Jost, Pedro; Day, Douglas A; Hu, Weiwei; Ryerson, Thomas B; Pollack, Ilana B; Peischl, Jeff; Anderson, Bruce E; Ziemba, Luke D; Blake, Donald R; Meinardi, Simone; Diskin, Glenn

    2015-04-16

    Organosulfates are important secondary organic aerosol (SOA) components and good tracers for aerosol heterogeneous reactions. However, the knowledge of their spatial distribution, formation conditions, and environmental impact is limited. In this study, we report two organosulfates, an isoprene-derived isoprene epoxydiols (IEPOX) (2,3-epoxy-2-methyl-1,4-butanediol) sulfate and a glycolic acid (GA) sulfate, measured using the NOAA Particle Analysis Laser Mass Spectrometer (PALMS) on board the NASA DC8 aircraft over the continental U.S. during the Deep Convective Clouds and Chemistry Experiment (DC3) and the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS). During these campaigns, IEPOX sulfate was estimated to account for 1.4% of submicron aerosol mass (or 2.2% of organic aerosol mass) on average near the ground in the southeast U.S., with lower concentrations in the western U.S. (0.2-0.4%) and at high altitudes (<0.2%). Compared to IEPOX sulfate, GA sulfate was more uniformly distributed, accounting for about 0.5% aerosol mass on average, and may be more abundant globally. A number of other organosulfates were detected; none were as abundant as these two. Ambient measurements confirmed that IEPOX sulfate is formed from isoprene oxidation and is a tracer for isoprene SOA formation. The organic precursors of GA sulfate may include glycolic acid and likely have both biogenic and anthropogenic sources. Higher aerosol acidity as measured by PALMS and relative humidity tend to promote IEPOX sulfate formation, and aerosol acidity largely drives in situ GA sulfate formation at high altitudes. This study suggests that the formation of aerosol organosulfates depends not only on the appropriate organic precursors but also on emissions of anthropogenic sulfur dioxide (SO2), which contributes to aerosol acidity.

  20. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  1. Initial results of detected methane emissions from landfills in the Los Angeles Basin during the COMEX campaign by the Methane Airborne MAPper (MAMAP) instrument and a greenhouse gas in-situ analyser

    NASA Astrophysics Data System (ADS)

    Krautwurst, Sven; Gerilowski, Konstantin; Kolyer, Richard; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Vigil, Sam; Buchwitz, Michael; Schüttemeyer, Dirk; Fladeland, Matthew M.; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    Methane (CH4) is the second most important anthropogenic greenhouse gas beside carbon dioxide (CO2). Significant contributors to the global methane budget are fugitive emissions from landfills. Due to the growing world population, it is expected that the amount of waste and, therefore, waste disposal sites will increase in number and size in parts of the world, often adjacent growing megacities. Besides bottom-up modelling, a variety of ground based methods (e.g., flux chambers, trace gases, radial plume mapping, etc.) have been used to estimate (top-down) these fugitive emissions. Because landfills usually are large, sometimes with significant topographic relief, vary temporally, and leak/emit heterogeneously across their surface area, assessing total emission strength by ground-based techniques is often difficult. In this work, we show how airborne based remote sensing measurements of the column-averaged dry air mole fraction of CH4 can be utilized to estimate fugitive emissions from landfills in an urban environment by a mass balance approach. Subsequently, these emission rates are compared to airborne in-situ horizontal cross section measurements of CH4 taken within the planetary boundary layer (PBL) upwind and downwind of the landfill at different altitudes immediately after the remote sensing measurements were finished. Additional necessary parameters (e.g., wind direction, wind speed, aerosols, dew point temperature, etc.) for the data inversion are provided by a standard instrumentation suite for atmospheric measurements aboard the aircraft, and nearby ground-based weather stations. These measurements were part of the CO2 and Methane EXperiment (COMEX), which was executed during the summer 2014 in California and was co-funded by the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). The remote sensing measurements were taken by the Methane Airborne MAPper (MAMAP) developed and operated by the University of Bremen and

  2. Airborne Laser Absorption Spectrometer Measurements of CO2 Column Mixing Ratios: Source and Sink Detection in the Atmospheric Environment

    NASA Astrophysics Data System (ADS)

    Menzies, Robert T.; Spiers, Gary D.; Jacob, Joseph C.

    2016-06-01

    The JPL airborne Laser Absorption Spectrometer instrument has been flown several times in the 2007-2011 time frame for the purpose of measuring CO2 mixing ratios in the lower atmosphere. The four most recent flight campaigns were on the NASA DC-8 research aircraft, in support of the NASA ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission formulation studies. This instrument operates in the 2.05-μm spectral region. The Integrated Path Differential Absorption (IPDA) method is used to retrieve weighted CO2 column mixing ratios. We present key features of the CO2LAS signal processing, data analysis, and the calibration/validation methodology. Results from flights in various U.S. locations during the past three years include observed mid-day CO2 drawdown in the Midwest, also cases of point-source and regional plume detection that enable the calculation of emission rates.

  3. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  4. On-board Polarimetric Calibration of Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) Measurements

    NASA Astrophysics Data System (ADS)

    van Harten, G.; Diner, D. J.; Bull, M. A.; Tkatcheva, I. N.; Jovanovic, V. M.; Seidel, F. C.; Garay, M. J.; Xu, F.; Davis, A. B.; Rheingans, B. E.; Chipman, R. A.

    2015-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) aims at characterizing atmospheric aerosols and clouds using highly accurate imaging polarimetry. The instrument is deployed regularly onboard the NASA ER2 high-altitude aircraft, which is an ideal testbed for satellite remote sensing. Flying at 20 km altitude, AirMSPI's pushbroom camera typically provides 11×11 km images at 10 m resolution. The target is observed from multiple along-track angles within ±67° using a gimbal mount. Eight spectral bands within 355-935 nm are recorded simultaneously in different detector rows, 3 of which also measure linear polarization: 470, 660 and 865 nm. Photoelastic modulators (PEMs) encode the polarized and total intensities in each polarimetric pixel as the amplitude and offset of a wavelike intensity pattern, such that the ratio of the two is insensitive to pixel-to-pixel differences. This enables an accuracy in the degree of linear polarization of ~0.001, as measured in the lab. To maintain this accuracy in-flight, an optical probe continuously monitors the PEMs' retardances and controls their driving signals. Before and after observing a target, the instrument also observes a validator, which is an extended, polarized light source, located inside the instrument housing. These data are now incorporated in the data processing pipeline to further improve the calibration of the modulation functions. Highly polarized pixels in Earth data are utilized to transfer the validator results to meet the illumination in Earth scenes, as well as to make fine adjustments at higher temporal resolution. The reprocessed polarization products for the PODEX campaign show significant improvements when intercompared with the Research Scanning Polarimeter (RSP, Goddard Institute for Space Studies). We currently evaluate the impact of the on-board polarimetric calibration on aerosol retrievals, and compare against AERONET reference measurements.

  5. The Ny-Alesund aerosol and ozone measurements intercomparison campaign 1997/1998 (NAOMI-1998)

    NASA Technical Reports Server (NTRS)

    Neuber, R.; Beyerle, G.; Beninga, I.; VonderGathen, P.; Rairoux, P.; Schrems, O.; Wahl, P.; Gross, M.; McGee, Th.; Iwasaka, Y.; Fujiwara, M.; Shibata, T.; Klein, U.; Steinbrecht, W.

    1998-01-01

    An intercomparison campaign for Lidar measurements of stratospheric ozone and aerosol has been conducted at the Primary Station of the Network for the Detection of Stratospheric Change (NDSC) in Ny-Alesund/Spitsbergen during January-February 1998. In addition to local instrumentation, the NDSC mobile ozone lidar from NASA/GSFC and the mobile aerosol lidar from Alfred Wegener Institute (AWI) participated. The aim is the validation of stratospheric ozone and aerosol profile measurements according to NDSC guidelines. This paper briefly presents the employed instruments and outlines the campaign. Results of the blind intercomparison of ozone profiles are given in a companion paper and temperature measurements are described in this issue.

  6. Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm

    NASA Astrophysics Data System (ADS)

    Riris, H.; Rodriguez, M.; Allan, G. R.; Mao, J.; Hasselbrack, W.; Abshire, J. B.

    2013-12-01

    We report on an airborne demonstration of atmospheric oxygen (O2) optical depth measurements with an Integrated Path Differential Absorption (IPDA) lidar using a fiber-based laser system and a photon counting detector. Accurate atmospheric temperature and pressure measurements are required for NASA's Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission. Since O2 in uniformly mixed in the atmosphere, its absorption spectra can be used to estimate atmospheric pressure. In its airborne configuration, the IPDA lidar uses a doubled Erbium Doped Fiber amplifier and single photon counting detector to measure oxygen absorption at multiple discrete wavelengths in the oxygen A-band near 765 nm. This instrument has been deployed three times aboard NASA's DC-8 airborne laboratory as part of campaigns to measure CO2 mixing ratios over a wide range of topography and weather conditions from altitudes between 3 km and 13 km. The O2 IPDA lidar flew seven flights in 2011 and six flights in 2013 in the continental United States and British Columbia, Canada. Our results from 2011 showed good agreement between the experimentally derived differential optical depth measurements with the theoretical predictions for aircraft altitudes from 3 to 13 km after a systematic bias correction of approximately 8% was applied. The random noise component was 2.5-3.0 %. The most recent data recorded in 2013 show better agreement between experimental optical depth measurements and theoretical predictions and much smaller systematic errors. The random error remained comparable with 2011 at 2-3%. The main source of random error is primarily the low energy (power) of the laser transmitter and the high solar background. We are in the process of addressing this issue with a new, higher energy amplifier that we anticipate will reduce the random noise component by a factor of 3-5 to less than 0.5%. The results from these flights show that the IPDA technique is a viable method

  7. Assimilation of satellite Aerosol Optical Depth measurements in the CTM MOCAGE during the ChArMEx campaign

    NASA Astrophysics Data System (ADS)

    Sic, Bojan; El Amraoui, Laaziz; Piacentini, Andrea; Emili, Emanuele

    2014-05-01

    Aerosols are of great importance for atmospheric chemistry, climate, and public health. Consequently, it is important to well simulate the spatial and temporal aerosol distribution. The atmospheric aerosols are a chemically and physically complex mixture of solid and liquid particles from natural and anthropogenic sources. Thus, modelling of different types of aerosols is subject of many uncertainties related to their parameterizations or sources/sinks. This contribution deals with the improvement of the spatial and temporal representation of different types of aerosols within the chemistry-transport model of Météo-France, MOCAGE. This consists of assimilating Aerosol Optical Depth (AOD) from satellite observations. The used approach during AOD assimilation consists in choosing the total aerosol concentrations as the control variable. First, we will present the methodology and the advantages of such an approach. Second, we will evaluate the AOD analyses by comparison to the independent aerosol measurements performed during the ChArMEx campaign (summer 2013). ChArMEx is a French initiative which aimed to characterize the atmospheric pollution in the western-Mediterranean basin using airborne measurements from balloons and aircrafts as well as ground-based measurements.

  8. An International Parallax Campaign to Measure Distance to the Moon and Mars

    ERIC Educational Resources Information Center

    Cenadelli, D.; Zeni, M.; Bernagozzi, A.; Calcidese, P.; Ferreira, L.; Hoang, C.; Rijsdijk, C.

    2009-01-01

    Trigonometric parallax is a powerful method to work out the distance of celestial bodies, and it was used in the past to measure the distance of the Moon, Venus, Mars and nearby stars. We set up an observation campaign for high school and undergraduate students with the purpose to measure both the Moon's and Mars' parallax. To have a large enough…

  9. Ship emissions of SO2 and NO2: DOAS measurements from airborne platforms

    NASA Astrophysics Data System (ADS)

    Berg, N.; Mellqvist, J.; Jalkanen, J.-P.; Balzani, J.

    2012-05-01

    A unique methodology to measure gas fluxes of SO2 and NO2 from ships using optical remote sensing is described and demonstrated in a feasibility study. The measurement system is based on Differential Optical Absorption Spectroscopy using reflected skylight from the water surface as light source. A grating spectrometer records spectra around 311 nm and 440 nm, respectively, with the telescope pointed downward at a 30° angle from the horizon. The mass column values of SO2 and NO2 are retrieved from each spectrum and integrated across the plume. A simple geometric approximation is used to calculate the optical path. To obtain the total emission in kg h-1 the resulting total mass across the plume is multiplied with the apparent wind, i.e. a dilution factor corresponding to the vector between the wind and the ship speed. The system was tested in two feasibility studies in the Baltic Sea and Kattegat, from a CASA-212 airplane in 2008 and in the North Sea outside Rotterdam from a Dauphin helicopter in an EU campaign in 2009. In the Baltic Sea the average SO2 emission out of 22 ships was (54 ± 13) kg h-1, and the average NO2 emission was (33 ± 8) kg h-1, out of 13 ships. In the North Sea the average SO2 emission out of 21 ships was (42 ± 11) kg h-1, NO2 was not measured here. The detection limit of the system made it possible to detect SO2 in the ship plumes in 60% of the measurements when the described method was used. A comparison exercise was carried out by conducting airborne optical measurements on a passenger ferry in parallel with onboard measurements. The comparison shows agreement of (-30 ± 14)% and (-41 ± 11)%, respectively, for two days, with equal measurement precision of about 20%. This gives an idea of the measurement uncertainty caused by errors in the simple geometric approximation for the optical light path neglecting scattering of the light in ocean waves and direct and multiple scattering in the exhaust plume under various conditions. A tentative

  10. The Importance and Technology for Measuring Atmospheric Humidity in Airborne Applications

    NASA Astrophysics Data System (ADS)

    Bozóki, Zoltán; Tátrai, Dávid; Gulyás, Gábor; Varga, Attila; Szabó, Gábor

    2013-04-01

    The concentrations of atmospheric water vapour (i.e. humidity) and total water (i.e. water vapour plus liquid water and ice particles) are crucially important parameters for weather forecast and climate research, while these substances also play dominant roles in aircraft icing and contrail formation. Their concentration varies over more than three orders of magnitudes in the troposphere and stratosphere with high temporal and spatial variation especially when being measured by an instrument operated on-board of a research or commercial aircraft. Therefore an instrument for their measurement has to have short response time, long-term maintenance free operation, small size, low weight, as well as accurate and reliable operation even under extreme conditions. We have developed a diode laser based dual channel instrument (Hilase-Hygro) which operates on a special type of optical absorption methods (i.e. the photoacoustic principle) and which can measure the concentration of water vapour and total water simultaneously while meeting the strictest requirements listed above. One of our instruments is in operation as a part of an automatic laboratory deployed intermittently into the cargo bay of a passenger aircraft within the framework of the CARIBIC project since 2002. Other instrument takes part in various measurement campaigns within the framework of the EUFAR (European Facility for Airborne Research) project. Recently the instrument has been improved in several topics: The wavelength of the applied laser now can be locked with 10^-8 relative accuracy, what results a maximum of 0.1% error in the measured optical absorption, i.e. in the measured humidity levels. The calibration method was also improved, what also increased the performance of the whole instrument. This new calibration method gives the possibility for real time mixing ratio calculation both for water vapour and total water content. Altogether now the instrument is capable for measuring humidity with 1

  11. Characterizing the impact of urban emissions on regional aerosol particles; airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouch, N.; Pichon, J.-M.; Prévôt, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2013-09-01

    The MEGAPOLI experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) giving detailed information of the non-refractory submicron aerosol species. The mass concentration of BC, measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), black carbon and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy). Plotting the equivalent ratios for the Positive Matrix Factorization (PMF) resolved species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA). Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in Mexico city, Mexico and in New England, USA. Using the measured VOCs species together with recent organic aerosol formation yields we predicted ~ 50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA

  12. The ESA/NASA Multi-Aircraft ATV-1 Re-Entry Campaign: Analysis of Airborne Intensified Video Observations from the NASA/JSC Experiment

    NASA Technical Reports Server (NTRS)

    Barker, Ed; Maley, Paul; Mulrooney, Mark; Beaulieu, Kevin

    2009-01-01

    In September 2008, a joint ESA/NASA multi-instrument airborne observing campaign was conducted over the Southern Pacific ocean. The objective was the acquisition of data to support detailed atmospheric re-entry analysis for the first flight of the European Automated Transfer Vehicle (ATV)-1. Skilled observers were deployed aboard two aircraft which were flown at 12.8 km altitude within visible range of the ATV-1 re-entry zone. The observers operated a suite of instruments with low-light-level detection sensitivity including still cameras, high speed and 30 fps video cameras, and spectrographs. The collected data has provided valuable information regarding the dynamic time evolution of the ATV-1 re-entry fragmentation. Specifically, the data has satisfied the primary mission objective of recording the explosion of ATV-1's primary fuel tank and thereby validating predictions regarding the tanks demise and the altitude of its occurrence. Furthermore, the data contains the brightness and trajectories of several hundred ATV-1 fragments. It is the analysis of these properties, as recorded by the particular instrument set sponsored by NASA/Johnson Space Center, which we present here.

  13. Airborne measurements of cloud forming nuclei and aerosol particles at Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Radke, L. F.; Langer, G.; Hindman, E. E., II

    1978-01-01

    Results of airborne measurements of the sizes and concentrations of aerosol particles, ice nuclei, and cloud condensation nuclei that were taken at Kennedy Space Center, Florida, are presented along with a detailed description of the instrumentation and measuring capabilities of the University of Washington airborne measuring facility (Douglas B-23). Airborne measurements made at Ft. Collins, Colorado, and Little Rock, Arkansas, during the ferry of the B-23 are presented. The particle concentrations differed significantly between the clean air over Ft. Collins and the hazy air over Little Rock and Kennedy Space Center. The concentrations of cloud condensation nuclei over Kennedy Space Center were typical of polluted eastern seaboard air. Three different instruments were used to measure ice nuclei: one used filters to collect the particles, and the others used optical and acoustical methods to detect ice crystals grown in portable cloud chambers. A comparison of the ice nucleus counts, which are in good agreement, is presented.

  14. Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouche, N.; Pichon, J.-M.; Bourianne, T.; Gomes, L.; Prevot, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2014-02-01

    The MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris, using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS), giving detailed information on the non-refractory submicron aerosol species. The mass concentration of black carbon (BC), measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), BC, and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy)). Plotting the equivalent ratios of different organic aerosol species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA) formation. Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in London, Mexico City, and in New England, USA. Using the measured SOA volatile organic compounds (VOCs) species together with organic aerosol formation

  15. An Assessment of the Surface Longwave Direct Radiative Effect of Airborne Saharan Dust During the NAMMA Field Campaign

    NASA Technical Reports Server (NTRS)

    Hansell, R. A.; Tsay, S. C.; Ji, Q.; Hsu, N. C.; Jeong, M. J.; Wang, S. H.; Reid, J. S.; Liou, K. N.; Ou, S. C.

    2010-01-01

    In September 2006, NASA Goddard s mobile ground-based laboratories were deployed to Sal Island in Cape Verde (16.73degN, 22.93degW) to support the NASA African Monsoon Multidisciplinary Analysis (NAMMA) field study. The Atmospheric Emitted Radiance Interferometer (AERI), a key instrument for spectrally characterizing the thermal IR, was used to retrieve the dust IR aerosol optical depths (AOTs) in order to examine the diurnal variability of airborne dust with emphasis on three separate dust events. AERI retrievals of dust AOT are compared with those from the coincident/collocated multifilter rotating shadow-band radiometer (MFRSR), micropulse lidar (MPL), and NASA Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) sensors. The retrieved AOTs are then inputted into the Fu-Liou 1D radiative transfer model to evaluate local instantaneous direct longwave radiative effects (DRE(sub LW)) of dust at the surface in cloud-free atmospheres and its sensitivity to dust microphysical parameters. The top-of-atmosphere DRE(sub LW) and longwave heating rate profiles are also evaluated. Instantaneous surface DRE(sub LW) ranges from 2 to 10 W/sq m and exhibits a strong linear dependence with dust AOT yielding a DRE(sub LW) of 16 W/sq m per unit dust AOT. The DRE(sub LW) is estimated to be approx.42% of the diurnally averaged direct shortwave radiative effect at the surface but of opposite sign, partly compensating for the shortwave losses. Certainly nonnegligible, the authors conclude that DRE(sub LW) can significantly impact the atmospheric energetics, representing an important component in the study of regional climate variation.

  16. Measuring and monitoring in the South African Kha Ri Gude mass literacy campaign

    NASA Astrophysics Data System (ADS)

    McKay, Veronica

    2015-06-01

    After many previous failed attempts to reach illiterate adults, the award-winning South African Kha Ri Gude mass literacy campaign, launched in 2008, undertook to ensure that learners seized the opportunity to learn - for many adults, this was a "last chance". Written from an insider perspective by the campaign's founding Chief Executive Officer, this article outlines the features which contributed to its success despite the many challenges it initially faced. The author outlines the social and legislative backdrop, notably the South African National Qualifications Framework (NQF) providing the scaffold for the continuum of adult learning and the assessment of learning outcomes, and examines the various components which influenced the design of the campaign. She focuses, in particular, on the learning outcomes measurement model tailored to the campaign's specific context, namely a structured and standardised learner assessment portfolio (LAP). Designed as a tool to be administered universally for both formative and diagnostic purposes, the portfolio enables continuous assessment, forming an integral part of the process of learning and teaching. After many initial challenges encountered in introducing this mode of learner assessment, it was eventually institutionalised and found to be a non-threatening way of assessing learning outcomes while also functioning as a tool for monitoring and ensuring accountability in the campaign. This article gives an account of the development considerations and explains the role of the assessment process within the broader context of the campaign. It also refers to ways in which the mass-based assessments were administered under difficult campaign conditions with a view to assessing for learning.

  17. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2015-01-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new 2-miron pulsed IPDA lidar has been flown in spring of 2014 for total ten flights with 27 flight hours. It provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  18. Lidar Measurements of Stratospheric Ozone, Aerosols and Temperature during the SAUNA Campaign at Sodankyla, Finland

    NASA Technical Reports Server (NTRS)

    McGee, T.; Twigg, L.; Sumnicht, G.; McPeters, R.; Bojkov, B.; Kivi, R.

    2008-01-01

    The Sodankyla Total Column Ozone Intercomparison (SAUNA) campaign took place at the Finnish Meteorological Institute Arctic Research Center (FMI-ARC) at Sodankyla, Finland (67.37 N) in two separate phases during early spring 2006, and winter 2007. These campaigns has several goals: to determine and improve the accuracy of total column ozone measurements during periods of low solar zenith angle and high total column ozone; to determine the effect of ozone profile shape on the total column retrieval; and to make validate satellite ozone measurements under these same conditions. The GSFC Stratospheric Ozone Lidar (STROZ), which makes profile measurements of ozone temperature, aerosols and water vapor participated in both phases of the campaign. During the deployments, more than 30 profile measurements were made by the lidar instrument, along with Dobson, Brewer, DOAS, ozonesonde, and satellite measurements. The presentation will concentrate on STROZ lidar results from the second phase of the campaign and comparisons with other instruments will be discussed. This will include both ground-based and satellite comparisons.

  19. Hydrometeor discrimination in melting layer using multiparameter airborne radar measurement

    NASA Technical Reports Server (NTRS)

    Kumagai, H.; Meneghini, R.; Kozu, T.

    1992-01-01

    Results from a multiparameter airborne radar/radiometer experiment (the Typhoon experiment) are presented. The experiment was conducted in the western Pacific with the NASA DC-8 aircraft, in which a dual-wavelength at X-band and Ka-band and dual-polarization at X-band radar was installed. The signatures of dBZ(X), dBZ(Ka), LDR (linear depolarization ratio) at X-band and DZ=dBZ(X)-dBZ(Ka) are discussed for the data obtained in the penetration of the typhoon Flo. With emphasis on discrimination of hydrometeor particles, some statistical features of the brightband in stratiform rain are discussed.

  20. Airborne-Measured Spatially-Averaged Temperature and Moisture Turbulent Structure Parameters Over a Heterogeneous Surface

    NASA Astrophysics Data System (ADS)

    Platis, Andreas; Martinez, Daniel; Bange, Jens

    2014-05-01

    Turbulent structure parameters of temperature and humidity can be derived from scintillometer measurements along horizontal paths of several 100 m to several 10 km. These parameters can be very useful to estimate the vertical turbulent heat fluxes at the surface (applying MOST). However, there are many assumptions required by this method which can be checked using in situ data, e.g. 1) Were CT2 and CQ2 correctly derived from the initial CN2 scintillometer data (structure parameter of density fluctuations or refraction index, respectively)? 2) What is the influence of the surround hetereogeneous surface regarding its footprint and the weighted averaging effect of the scintillometer method 3) Does MOST provide the correct turbulent fluxes from scintillometer data. To check these issues, in situ data from low-level flight measurements are well suited, since research aircraft cover horizontal distances in very short time (Taylor's hypothesis of a frozen turbulence structure can be applyed very likely). From airborne-measured time series the spatial series are calculated and then their structure functions that finally provide the structure parameters. The influence of the heterogeneous surface can be controlled by the definition of certain moving-average window sizes. A very useful instrument for this task are UAVs since they can fly very low and maintain altitude very precisely. However, the data base of such unmanned operations is still quite thin. So in this contribution we want to present turbulence data obtained with the Helipod, a turbulence probe hanging below a manned helicopter. The structure parameters of temperature and moisture, CT2 and CQ2, in the lower convective boundary layer were derived from data measured using the Helipod in 2003. The measurements were carried out during the LITFASS03 campaign over a heterogeneous land surface around the boundary-layer field site of the Lindenberg Meteorological Observatory-Richard-Aßmann-Observatory (MOL) of the

  1. Simulations of an airborne laser absorption spectrometer for atmospheric CO2 measurements

    NASA Astrophysics Data System (ADS)

    Lin, B.; Ismail, S.; Harrison, F. W.; Browell, E. V.; Dobler, J. T.; Refaat, T.; Kooi, S. A.

    2012-12-01

    Atmospheric column amount of carbon dioxide (CO2), a major greenhouse gas of the atmosphere, has significantly increased from a preindustrial value of about 280 parts per million (ppm) to more than 390 ppm at present. Our knowledge about the spatiotemporal change and variability of the greenhouse gas, however, is limited. Thus, a near-term space mission of the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) is crucial to increase our understanding of global sources and sinks of CO2. Currently, NASA Langley Research Center (LaRC) and ITT Exelis are jointly developing and testing an airborne laser absorption spectrometer (LAS) as a prototype instrument for the mission. To assess the space capability of accurate atmospheric CO2 measurements, accurate modeling of the instrument and practical evaluation of space applications are the keys for the success of the ASCENDS mission. This study discusses the simulations of the performance of the airborne instrument and its CO2 measurements. The LAS is a multi-wavelength spectrometer operating on a 1.57 um CO2 absorption line. The Intensity-Modulated Continuous-Wave (IM-CW) approach is implemented in the instrument. To reach accurate CO2 measurements, transmitted signals are monitored internally as reference channels. A model of this kind of instrument includes all major components of the spectrometer, such as modulation generator, fiber amplifier, telescope, detector, transimpedance amplifier, matched filter, and other signal processors. The characteristics of these components are based on actual laboratory tests, product specifications, and general understanding of the functionality of the components. For simulations of atmospheric CO2 measurements, environmental conditions related to surface reflection, atmospheric CO2 and H2O profiles, thin clouds, and aerosol layers, are introduced into the model. Furthermore, all major noise sources such as those from detectors, background radiation, speckle, and

  2. Airborne measurements of launch vehicle effluent: Launch of Space Shuttle (STS-1) on 12 April 1981

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Woods, D. C.; Sebacher, D. I.

    1983-01-01

    Launch vehicle effluent environmental impact activities from the first space shuttle (STS-1) included airborne measurements within the exhaust cloud from about 9 min after launch (T + 9) to T + 120 min. Measurements included total hydrogen chloride (gaseous plus aqueous) concentrations, particulate concentrations, temperature, and dewpoint temperature. The airborne measurements are summarized. The physical growth and behavior of exhaust clouds is presented as well as the results of laboratory analysis of elemental composition of particulate samples collected by the aircraft. Observed results from the STS-1 launch are compared with earlier Titan III results. Shuttle effluent concentrations are found to be within the range of Titan III observations.

  3. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust

    PubMed Central

    Barone, T. L.; Patts, J. R.; Janisko, S. J.; Colinet, J. F.; Patts, L. D.; Beck, T. W.; Mischler, S. E.

    2016-01-01

    Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine. PMID:26618374

  4. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust.

    PubMed

    Barone, T L; Patts, J R; Janisko, S J; Colinet, J F; Patts, L D; Beck, T W; Mischler, S E

    2016-01-01

    Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine.

  5. Variability of tropospheric ozone concentrations: comparison of ground-level data with aircraft measurements during the "O 3 Reg" campaign (19-21 July 2000)

    NASA Astrophysics Data System (ADS)

    Pont, Véronique; Fontan, Jacques; Lopez, Alain

    The aim of the campaign presented here is to compare data networks' measurements of atmospheric pollutants (mainly tropospheric ozone) with airborne measurements in the atmospheric boundary layer. It is designed to determine whether ozone fields are homogeneous on a regional scale and to show the modulation, on a local scale, of ozone concentrations due to local emissions of anthropogenic and industrial primary pollutants, and/or meteorological thermal processes such as sea/land breeze. The study bears on ozone concentration variability within an anticyclonic air mass on a scale of about 500 km. The contribution of large-scale phenomena in the formation of ozone episodes is shown. Daily maximum ozone values are relatively well representative of tropospheric ozone aircraft measurements. Zooming in on southeastern France establishes that in this area, ozone concentrations arise from multiscale phenomena.

  6. In Situ Airborne Measurement of Formaldehyde with a New Laser Induced Fluorescence Instrument

    NASA Astrophysics Data System (ADS)

    Arkinson, H.; Hanisco, T. F.; Cazorla, M.; Fried, A.; Walega, J.

    2012-12-01

    Formaldehyde (HCHO) is a highly reactive and ubiquitous compound in the atmosphere that originates from primary emissions and secondary formation by photochemical oxidation of volatile organic compounds. HCHO is an important precursor to the formation of ozone and an ideal tracer for the transport of boundary layer pollutants to higher altitudes. In situ measurements of HCHO are needed to improve understanding of convective transport mechanisms and the effects of lofted pollutants on ozone production and cloud microphysics in the upper troposphere. The Deep Convective Clouds and Chemistry Project (DC3) field campaign addressed the effects of deep, midlatitude continental convective clouds on the upper troposphere by examining vertical transport of fresh emissions and water aloft and by characterizing subsequent changes in composition and chemistry. Observations targeting convective storms were conducted over Colorado, Alabama, and Texas and Oklahoma. We present measurements of the In Situ Airborne Formaldehyde instrument (ISAF), which uses laser induced fluorescence to achieve the high sensitivity and fast time response required to detect low concentrations in the upper troposphere and capture the fine structure characteristic of convective storm outflow. Preliminary results from DC3 indicate that the ISAF is able to resolve concentrations ranging from under 35 ppt to over 35 ppb, spanning three orders of magnitude, in less than a few minutes. Frequent, abrupt changes in HCHO captured by the ISAF are corroborated by similar patterns observed by simultaneous trace gas and aerosol measurements. Primary HCHO emissions are apparent in cases when the DC-8 flew over combustion sources or biomass burning, and secondary HCHO formation is suggested by observations of enhanced HCHO concurrent with other elevated hydrocarbons. Vertical transport of HCHO is indicated by measurements of over 6 ppb from outflow in the upper troposphere. The DC-8 payload also included the

  7. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    DOE PAGES

    Atkinson, D. B.; Radney, J. G.; Lum, J.; ...

    2015-04-17

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined heremore » as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  8. Airborne volcanic plume measurements using a FTIR spectrometer, Kilauea volcano, Hawaii

    USGS Publications Warehouse

    McGee, K.A.; Gerlach, T.M.

    1998-01-01

    A prototype closed-path Fourier transform infrared spectrometer system (FTIK), operating from battery power and with a Stirling engine microcooler for detector cooling, was successfully used for airborne measurements of sulfur dioxide at Kilauea volcano. Airborne profiles of the volcanic plume emanating from the erupting Pu'u 'O'o vent on the East Rift of Kilauea revealed levels of nearly 3 ppm SO2 in the core of the plume. An emission rate of 2,160 metric tons per day of sulfur dioxide was calculated from the FTIR data, which agrees closely with simultaneous measurements by a correlation spectrometer (COSPEC). The rapid spatial sampling possible from an airborne platform distinguishes the methodology described here from previous FTIR measurements.

  9. The Multi-Center Airborne Coherent Atmospheric Wind Sensor: Recent Measurements and Future Applications

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Howell, James N.; Darby, Lisa S.; Tratt, David M.; Menzies, Robert T.

    1999-01-01

    The coherent Doppler lidar, when operated from an airborne platform, offers a unique measurement capability for study of atmospheric dynamical and physical properties. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are at a disadvantage in terms of spatial resolution and coverage. Recent experience suggests airborne coherent Doppler lidar can yield unique wind measurements of--and during operation within--extreme weather phenomena. This paper presents the first airborne coherent Doppler lidar measurements of hurricane wind fields. The lidar atmospheric remote sensing groups of National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, and Jet Propulsion Laboratory jointly developed an airborne lidar system, the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS). The centerpiece of MACAWS is the lidar transmitter from the highly successful NOAA Windvan. Other field-tested lidar components have also been used, when feasible, to reduce costs and development time. The methodology for remotely sensing atmospheric wind fields with scanning coherent Doppler lidar was demonstrated in 1981; enhancements were made and the system was reflown in 1984. MACAWS has potentially greater scientific utility, compared to the original airborne scanning lidar system, owing to a factor of approx. 60 greater energy-per-pulse from the NOAA transmitter. MACAWS development was completed and the system was first flown in 1995. Following enhancements to improve performance, the system was re-flown in 1996 and 1998. The scientific motivation for MACAWS is three-fold: obtain fundamental measurements of subgrid scale (i.e., approx. 2-200 km) processes and features which may be used to improve parameterizations in hydrological, climate, and general

  10. LIF measurements of HOx radicals in the lower troposphere aboard the Zeppelin NT during the PEGASOS campaign 2012

    NASA Astrophysics Data System (ADS)

    Gomm, Sebastian; Broch, Sebastian; Fuchs, Hendrik; Hofzumahaus, Andreas; Holland, Frank; Bohn, Birger; Häseler, Rolf; Jäger, Julia; Kaiser, Jennifer; Keutsch, Frank; Kiendler-Scharr, Astrid; Li, Xin; Lohse, Insa; Lu, Keding; Mentel, Thomas; Rohrer, Franz; Tillmann, Ralf; Wegener, Robert; Wolfe, Glenn; Wahner, Andreas

    2013-04-01

    The hydroxyl (OH) and hydroperoxy (HO2) radicals are key compounds for the degradation of pollutants in the atmosphere. Therefore, accurate and precise measurements of HOx radicals (= OH + HO2) at different altitudes and in different regions are necessary to test our understanding of atmospheric chemical processes. The planetary boundary layer (PBL) is of special interest as it is chemically the most active part of the atmosphere. Until today there is a general lack of measurements investigating the distribution of radicals, trace gases, and aerosols in the PBL with high spatial resolution. Here, we present results of two measurement campaigns performed from May - July 2012 in the metropolitan area of Rotterdam, the Netherlands, and in the Po valley region in Italy as part of the Pan-European Gas-AeroSOls-climate interaction Study (PEGASOS). We used the Zeppelin NT as an airborne platform for measurements of HOx radical concentrations and total OH reactivity applying a remotely controlled Laser Induced Fluorescence (LIF) instrument. In addition a comprehensive set of other trace gases (O3, CO, NO, NO2, HCHO, HONO), photolysis frequencies, particle number concentration, and meteorological parameters were measured. The airship Zeppelin NT allowed us to perform unique flight patterns, including localized height profiles up to 900 m above ground and transect flights at low flight speeds. We present measured data for the HOx radical concentrations and the total OH reactivity along with a model analysis of the radical chemistry. Maximum daytime concentrations were 2.0 × 107cm-3 for OH and 1.5 × 109cm-3 for HO2. Typical values for the total OH reactivity were smaller than 10 s-1. During the morning hours, vertical gradients in radical and trace gas concentrations were observed indicating a layered atmospheric structure. The vertical gradients vanished after sunrise due to enhanced convective mixing of the PBL.

  11. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  12. Airborne lidar measurements of ozone and aerosols during the pacific exploratory mission-tropics A

    NASA Technical Reports Server (NTRS)

    Fenn, Marta A.; Browell, Edward V.; Grant, William B.; Butler, Carolyn F.; Kooi, Susan A.; Clayton, Marian B.; Brackett, Vincent G.; Gregory, Gerald L.

    1998-01-01

    Airborne lidar measurements of aerosol and ozone distributions from the surface to above the tropopause over the South Pacific Ocean are presented. The measurements illustrate large-scale features of the region, and are used to quantify the relative contributions of different ozone sources to the tropospheric ozone budget in this remote region.

  13. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Astrophysics Data System (ADS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2016-06-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new instrument has been flown in spring of 2014 for a total of ten flights with 27 flight hours. This IPDA lidar provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the results.

  14. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Chance, K.; González Abad, G.; Liu, C.; Zoogman, P.; Cole, J.; Delker, T.; Good, W.; Murcray, F.; Ruppert, L.; Soo, D.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Loughner, C. P.; Pickering, K. E.; Herman, J. R.; Beaver, M. R.; Long, R. W.; Szykman, J. J.; Judd, L. M.; Kelley, P.; Luke, W. T.; Ren, X.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a testbed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas in September 2013. Measurements of backscattered solar radiation between 420-465 nm collected on four days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 molecules cm-2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.91 for the most polluted day). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.84, slope = 0.94). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  15. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    NASA Astrophysics Data System (ADS)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; González Abad, Gonzalo; Liu, Cheng; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; Murcray, Frank; Ruppert, Lyle; Soo, Daniel; Follette-Cook, Melanie B.; Janz, Scott J.; Kowalewski, Matthew G.; Loughner, Christopher P.; Pickering, Kenneth E.; Herman, Jay R.; Beaver, Melinda R.; Long, Russell W.; Szykman, James J.; Judd, Laura M.; Kelley, Paul; Luke, Winston T.; Ren, Xinrong; Al-Saadi, Jassim A.

    2016-06-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm-2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  16. Hygroscopic Measurements of Aerosol Particles in the San Joaquin Valley California during the DRAGON and Discover AQ Campaign 2013

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Delgado, R.; Hoff, R. M.

    2013-12-01

    In the ambient atmosphere, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH). Wet aerosols particles are larger than their dry equivalents, therefore they scatter more light. Quantitative knowledge of the RH effect and its influence on the light scattering coefficient on aerosol particles is of substantial importance when comparing ground based observations with other optical aerosol measurements techniques such satellite and sunphotometric retrievals of aerosol optical depth. The DISCOVER-AQ campaign is focused in improving the interpretation and relation between satellite observations and surface conditions related to air quality. In the winter of 2013, this campaign was held in the San Joaquin Valley, California, where systematic and concurrent observations of column integrated surface, and vertically resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Different instruments such as particulate samplers, lidars, meteorological stations and airborne passive and active monitoring were coordinated to measure the aerosol structure of the San Joaquin Valley in a simultaneous fashion. A novel humidifier-dryer system for a TSI 3563 Nephelometer was implemented in the Penn State University NATIVE trailer located in Porterville California in order to measure the scattering coefficient σsp(λ) at three different wavelengths (λ=440, 550 and 700nm) in a RH range from 30 to 95%. The system was assembled by combining Nafion tubes to humidify and dry the aerosols and stepping motor valves to control the flow and the amount of humidity entering to the Nephelometer. Measurements in Porterville California reached dry scattering coefficient readings greater than 300Mm-1 at 550nm indicating the presence of a large amount of particles in the region. However, the ratio between scattering coefficients at high and low humidity, called the enhancement factor f

  17. Development of Airborne Eddy-Correlation Flux Measurement Capabilities for Reactive Oxides of Nitrogen

    NASA Technical Reports Server (NTRS)

    Sandholm, Scott

    1998-01-01

    This report addresses the Tropospheric Trace Gas and Airborne Measurement Group (TTGAMG) endeavors to continue to push the evolution of the Georgia Institute of Technology's Airborne Laser Induced Fluorescence Experiment (GITALIFE) into a sensor capable of making airborne eddy correlation measurements of nitrogen oxides. It will mainly address the TTGAMG successes and failures as well as its participation in the summer 1998 Wallops Island test flights on board the P3-B. Due to the restructuring and reorganization of the TTGAMG since the original funding of this grant, some of the objectives and the deliverables can not be achieved as proposed in the original funding of this grant. Most of these changes have been driven by the passing away of John Bradshaw, the original principal investigator.

  18. Lidar measurement campaign at CNR-IMAA in the framework of the EAQUATE Italian phase

    NASA Astrophysics Data System (ADS)

    Mona, L.; Amodeo, A.; Boselli, A.; Cornacchia, C.; D'Amico, G.; Madonna, F.; Pandolfi, M.; Pappalardo, G.; Cuomo, V.

    2005-10-01

    The European AQUA Thermodynamic Experiment was devoted to study atmosphere, ocean and land with high resolution measurements. It consisted of two phases: the first one took place in Italy in the 6-10 September period and the second one in England on 13-22 September. In the framework of the EAQUATE Italian phase, an intensive lidar measurement campaign was performed at CNR-IMAA, sited in Tito Scalo (40°36'N 15°44'E, 760 m a.s.l.). Independent measurements of aerosol extinction and backscatter coefficient at 355nm, and aerosol backscatter coefficient at 532 nm were obtained by means of an elastic\\Raman lidar. Another Raman lidar allowed the vertical profiling of the water vapour mixing ratio. Both the lidar systems have high vertical and temporal resolution (15 m - 1 minute), allowing a characterization of the Planetary Boundary Layer as well as of the Free Troposphere also in terms of dynamical behaviour. Ancillary instruments were utilized contemporaneously with lidar measurements. In particular 17 Vaisala radiosondes for PTU measurements were launched during the campaign, 10 of these equipped with RS90 sensors, while 7 utilized RS92 sondes equipped with GSP sensors for wind velocity and direction measurement. Furthermore a 12 channels microwave radiometer providing all around the clock measurements of temperature, relative humidity and water vapour content, was used during the campaign together with a ceilometer for continuous indication of the cloud cover.

  19. Unmanned Airborne System Deployment at Turrialba Volcano for Real Time Eruptive Cloud Measurements

    NASA Astrophysics Data System (ADS)

    Diaz, J. A.; Pieri, D. C.; Fladeland, M. M.; Bland, G.; Corrales, E.; Alan, A., Jr.; Alegria, O.; Kolyer, R.

    2015-12-01

    The development of small unmanned aerial systems (sUAS) with a variety of instrument packages enables in situ and proximal remote sensing measurements of volcanic plumes, even when the active conditions of the volcano do not allow volcanologists and emergency response personnel to get too close to the erupting crater. This has been demonstrated this year by flying a sUAS through the heavy ash driven erupting volcanic cloud of Turrialba Volcano, while conducting real time in situ measurement of gases over the crater summit. The event also achieved the collection of newly released ash samples from the erupting volcano. The interception of the Turrialba ash cloud occurred during the CARTA 2015 field campaign carried out as part of an ongoing program for remote sensing satellite calibration and validation purposes, using active volcanic plumes. These deployments are timed to support overflights of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard the NASA Terra satellite on a bimonthly basis using airborne platforms such as tethered balloons, free-flying fixed wing small UAVs at altitudes up to 12.5Kft ASL within about a 5km radius of the summit crater. The onboard instrument includes the MiniGas payload which consists of an array of single electrochemical and infrared gas detectors (SO2, H2S CO2), temperature, pressure, relative humidity and GPS sensors, all connected to an Arduino-based board, with data collected at 1Hz. Data are both stored onboard and sent by telemetry to the ground operator within a 3 km range. The UAV can also carry visible and infrared cameras as well as other payloads, such as a UAV-MS payload that is currently under development for mass spectrometer-based in situ measurements. The presentation describes the ongoing UAV- based in situ remote sensing validation program at Turrialba Volcano, the results of a fly-through the eruptive cloud, as well as future plans to continue these efforts. Work presented here was

  20. Analyzing source apportioned methane in northern California during Discover-AQ-CA using airborne measurements and model simulations

    SciTech Connect

    Johnson, Matthew S.; Yates, Emma L.; Iraci, Laura T.; Loewenstein, Max; Tadić, Jovan M.; Wecht, Kevin J.; Jeong, Seongeun; Fischer, Marc L.

    2014-12-01

    This study analyzes source apportioned methane (CH4) emissions and atmospheric mixing ratios in northern California during the Discover-AQ-CA field campaign using airborne measurement data and model simulations. Source apportioned CH4 emissions from the Emissions Database for Global Atmospheric Research (EDGAR) version 4.2 were applied in the 3-D chemical transport model GEOS-Chem and analyzed using airborne measurements taken as part of the Alpha Jet Atmospheric eXperiment over the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV). During the time period of the Discover-AQ-CA field campaign EDGAR inventory CH4 emissions were ~5.30 Gg day –1 (Gg = 1.0 × 109 g) (equating to ~1.90 × 103 Gg yr–1) for all of California. According to EDGAR, the SFBA and northern SJV region contributes ~30% of total CH4 emissions from California. Source apportionment analysis during this study shows that CH4 mixing ratios over this area of northern California are largely influenced by global emissions from wetlands and local/global emissions from gas and oil production and distribution, waste treatment processes, and livestock management. Model simulations, using EDGAR emissions, suggest that the model under-estimates CH4 mixing ratios in northern California (average normalized mean bias (NMB) = –5.2% and linear regression slope = 0.20). The largest negative biases in the model were calculated on days when large amounts of CH4 were measured over local emission sources and atmospheric CH4 mixing ratios reached values >2.5 parts per million. Sensitivity emission studies conducted during this research suggest that local emissions of CH4 from livestock management processes are likely the primary source of the negative model bias. These results indicate that a variety, and larger quantity, of measurement data needs to be

  1. Analyzing source apportioned methane in northern California during Discover-AQ-CA using airborne measurements and model simulations

    DOE PAGES

    Johnson, Matthew S.; Yates, Emma L.; Iraci, Laura T.; ...

    2014-12-01

    This study analyzes source apportioned methane (CH4) emissions and atmospheric mixing ratios in northern California during the Discover-AQ-CA field campaign using airborne measurement data and model simulations. Source apportioned CH4 emissions from the Emissions Database for Global Atmospheric Research (EDGAR) version 4.2 were applied in the 3-D chemical transport model GEOS-Chem and analyzed using airborne measurements taken as part of the Alpha Jet Atmospheric eXperiment over the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV). During the time period of the Discover-AQ-CA field campaign EDGAR inventory CH4 emissions were ~5.30 Gg day –1 (Gg = 1.0 ×more » 109 g) (equating to ~1.90 × 103 Gg yr–1) for all of California. According to EDGAR, the SFBA and northern SJV region contributes ~30% of total CH4 emissions from California. Source apportionment analysis during this study shows that CH4 mixing ratios over this area of northern California are largely influenced by global emissions from wetlands and local/global emissions from gas and oil production and distribution, waste treatment processes, and livestock management. Model simulations, using EDGAR emissions, suggest that the model under-estimates CH4 mixing ratios in northern California (average normalized mean bias (NMB) = –5.2% and linear regression slope = 0.20). The largest negative biases in the model were calculated on days when large amounts of CH4 were measured over local emission sources and atmospheric CH4 mixing ratios reached values >2.5 parts per million. Sensitivity emission studies conducted during this research suggest that local emissions of CH4 from livestock management processes are likely the primary source of the negative model bias. These results indicate that a variety, and larger quantity, of measurement data needs to be obtained and additional research is necessary to better quantify source apportioned CH4 emissions in California.« less

  2. Aquatic and terrestrial optical measurements - laser induced fluorescence technique (ATOM-LIFT): Summer 1997 field measurement campaign

    NASA Astrophysics Data System (ADS)

    McMurtrey, James E., III; Cecchi, Giovanna; Chappelle, Emmett W.; Kim, Moon S.; Bazzani, Marco; Corp, Lawrence A.

    1998-07-01

    A joint IROE-CNR, NASA/GSFC, and USDA/ARS measurement campaign was conducted in Italy for a three week period in July, 1997. The campaign was split into two parts: the first part for aquatic vegetation studies and the second part for terrestrial vegetation studies. The main objective of the campaign was to study optical properties of intact plant material as it relates to photosynthetic activity of living vegetation. The aquatic studies were carried out at an aquarium-laboratory in the seashore city of Livorno on the West coast of Italy. The investigations involved an important sea grass species that is native to the Mediterranean Sea. The terrestrial studies were carried out Northeast of the Town of St. Stefano di Cadore (Belluno), Italy. Measurements were taken in a wooded site at an Italian Department of Forestry Station on species of natural alpine vegetation. Instrumentation available for the studies were the Italian Fluorescence Light Detection And Ranging (FLIDAR) System, the NASA/USDA Fluorescence Imaging System (FIS), the Perkin Elmer Spectrofluorometer and LI-COR 6400 infrared gas exchange analyzer for photosynthesis measurements. Preliminary evaluations, analysis, and summaries were made by personnel from both Italian and United Sates groups on data collected during the measurement campaign. The joint Italian/American data collection effort with Aquatic and Terrestrial Optical Measurements produced a range of data for characterizing the relationships between fluorescence and the photosynthetic potentials of vegetative scenes.

  3. An overview of the AROMAT campaigns

    NASA Astrophysics Data System (ADS)

    Merlaud, Alexis; Dekemper, Emmanuel; Van Roozendael, Michel; Constantin, Daniel; Georgescu, Lucian; Meier, Andreas; Richter, Andreas; Den Hoed, Mirjam; Allaart, Marc; Boscornea, Andreea; Vajaiac, Sorin; Bellegante, Livio; Nemuc, Anca; Nicolae, Doina; Shaifangar, Reza; Dörner, Steffen; Wagner, Thomas; Stebel, Kerstin; Schuettemeyer, Dirk

    2016-04-01

    The Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign and its follow-up AROMAT-2 were held in September 2014 and August 2015, respectively. Both campaigns focused on two geophysical targets: the city of Bucharest and the large power plants of the Jiu Valley, which are located in a rural area 170 km West of Bucharest. These two areas are complementary in terms of emitted chemical species and their spatial distributions. The objectives of the AROMAT campaigns were (i) to test recently developed airborne observation systems dedicated to air quality satellite validation studies such as the AirMAP imaging DOAS system (University of Bremen), the NO2 sonde (KNMI), and the compact SWING whiskbroom imager (BIRA), and (ii) to prepare the validation programme of the future Atmospheric Sentinels, starting with Sentinel-5 Precursor (S5P) to be launched in early summer 2016. We present results from the different airborne instrumentations and from coincident ground-based measurements (lidar, in-situ, and mobile DOAS systems) performed during both campaigns. The AROMAT dataset addresses several of the mandatory products of TROPOMI/S5P, in particular NO2 and SO2 (horizontal distribution and profile from aircraft, plume image with ground-based SO2 and NO2 cameras, transects with mobile DOAS, in-situ), H2CO (mobile MAX-DOAS), and aerosols (lidar, airborne FUBISS-ASA2 sun-photometer, and aircraft in-situ). We investigate the information content of the AROMAT dataset for satellite validation studies based on co-located OMI and GOME-2 data, and simulations of TROPOMI measurements. The experience gained during AROMAT and AROMAT-2 will be used in support of a large-scale TROPOMI/S5P validation campaign in Romania scheduled for summer 2017.

  4. High Energy 2-Micron Solid-State Laser Transmitter for NASA's Airborne CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Bai, Yingxin

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  5. Airborne measurements of aerosols from burning biomass in Brazil related to the TRACE A experiment

    NASA Astrophysics Data System (ADS)

    Pereira, E. B.; Setzer, A. W.; Gerab, F.; Artaxo, P. E.; Pereira, M. C.; Monroe, G.

    1996-10-01

    Results are reported from an airborne campaign to investigate the impacts of burning biomass upon the loading of lower-tropospheric aerosols and its composition over the Brazilian tropics. The flights, conducted as part of the NASA/Transport and Atmospheric Chemistry Near the Equator-Atlantic (TRACE A) mission, started on September 1, 1992, when the dry (fire) season still prevailed in the central part of Brazil, and ended on September 29. Of the total number of burnings detected in Brazil by the advanced very high resolution radiometer (AVHRR)/NOAA satellite sensor, 74% were concentrated in the states of Amazonas, Maranhão, Mato Grosso, Pará, Roraima, and Tocantins during this period. Aerosol particles were sampled from a twin-engine aircraft in transit and vertical profile flights were made up to 4,000 m altitude. Black carbon measurements made in real time and in areas of burning biomass peaked at ˜2,500 m above the ground, increasing to ˜12,000 ng/m3. In other areas these values were lower by 1 order of magnitude. A condensation nuclei counter measuring small particles (>0.014 μm) produced values ranging from 2,000 to 16,000/cm3 for areas with low and high burning biomass, respectively. Deposition filters in a two-stage cascade impactor, and Nuclepore filters collected aerosols for analysis of 13 elements through particle-induced X ray emissions (PIXE). Primary elements associated with soil dust (Al, Si, Mn, Fe, Ni) prevailed in the aerosol coarse mode (>1 μm) while the fine mode aerosols were enriched in S, K, Br, and Rb, which are tracers normally associated with burning of biomass. The good correlation between fire spot counts, obtained via AVHRR aboard NOAA satellites, and black carbon, counts of small particles and total aerosol mass, suggests the determining of local concentrations of fire-derived aerosol fire emissions by satellite to be a new and useful approach.

  6. Wave-measurement capabilities of the surface contour radar and the airborne oceanographic lidar

    NASA Technical Reports Server (NTRS)

    Walsh, Edward J.; Hancock, David W., III; Hines, Donald E.; Swift, Robert N.; Scott, John F.

    1987-01-01

    The 36-gigahertz surface contour radar and the airborne oceanographic lidar were used in the SIR-B underflight mission off the coast of Chile in October 1984. The two systems and some of their wave-measurement capabilities are described. The surface contour radar can determine the directional wave spectrum and eliminate the 180-degree ambiguity in wave propagation direction that is inherent in some other techniques such as stereophotography and the radar ocean wave spectrometer. The Airborne Oceanographic Lidar can acquire profile data on the waves and produce a spectrum that is close to the nondirectional ocean-wave spectrum for ground tracks parallel to the wave propagation direction.

  7. Experimental feasibility of the airborne measurement of absolute oil fluorescence spectral conversion efficiency

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne lidar oil spill experiments carried out to determine the practicability of the AOFSCE (absolute oil fluorescence spectral conversion efficiency) computational model are described. The results reveal that the model is suitable over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency are also conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. Whereas the AOFSCE model is seen as highly promising, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are thought necessary for a final determination of suitability.

  8. Airborne Sunphotometer, Airborne in-situ, Space-borne, and Ground-Based Measurements of Troposoheric Aerosol in Ace-2

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Collins, D.; Gasso, S.; Ostrom, E.; Powell, D.; Welton, E.; Durkee, P.; Livingstron, J.; Russell, P.; Flagan, R.; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    We report on clear-sky column closure experiments performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present results obtained by combining airborne sunphotometer and in-situ aerosol measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidars A wide range of aerosol types was encountered throughout the ACE-2 area, including background Atlantic marine, European pollution-derived, and African mineral dust. During !he two days discussed here, vertical profiles flown in cloud free air masses revealed three distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. We found that the presence of the elevated dust layer removes the good agreement between satellite and sunphotometer AOD usually found in the absence of the dust layer. Using size-resolved composition information we have computed optical properties of the ambient aerosol from the in-situ measurements and subsequently compared those to the sunphotometer results. In the dust, the agreement in layer aerosol optical depth (380-1060 nm) is 3-8%. In the MBL there is tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at 525 nm), but these differences are within the combined error bars of the measurements and computations.

  9. Lidar Measurements of Aerosol and Ozone Distributions During the 1992 Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Butler, C. F.; Fenn, M. A.; Grant, W. B.; Carter, A. F.

    1992-01-01

    The LaRC airborne lidar system was operated from the ARC DC-8 aircraft during the 1992 Airborne Arctic Stratospheric Expedition (ASEE-2) to investigate the distribution of stratospheric aerosols and O3 across the Arctic vortex from Jan. to Mar. 1992. Monthly flights were made across the Arctic vortex from Anchorage, Alaska, to Stavanger, Norway, and then back to Bangor, Maine, and additional round-trip flights north into the vortex were made each month from either Stavanger or Bangor depending on the location of the vortex that month. The airborne lidar system uses the differential absorption lidar (DIAL) technique at laser wavelengths of 301.5 and 310.8 nm to measure O3 profiles above the DC-8 over the 12-25 km altitude range. Lidar measurements of aerosol backscatter and depolarization profiles over the 12-30 km altitude range are made simultaneously with the O3 measurements using infrared (IR) and visible (VIS) laser wavelengths of 603 and 1064 nm, respectively. The measurements of Pinatubo aerosols, polar stratospheric clouds, and O3 made with the airborne DIAL system during the AASE-2 expedition and to chemical and dynamical process that contribute to O3 depletion in the wintertime Arctic stratosphere.

  10. Measurement of the ratio of hydrogen to deuterium at the KSTAR 2009 experimental campaign

    SciTech Connect

    Kwak, Jong-Gu; Wang, Son Jong; Kim, Sun Ho; Park, Jae Min; Na, Hoon Kyun

    2010-10-15

    The control of the ratio of hydrogen to the deuterium is one of the very important issues for ion cyclotron range of frequency (ICRF) minority heating as well as the plasma wall interaction in the tokamak. The ratio of hydrogen to deuterium during the tokamak shot was deduced from the emission spectroscopy measurements during the KSTAR 2009 experimental campaign. Graphite tiles were used for the plasma facing components (PFCs) at KSTAR and its surface area exposed to the plasma was about 11 m{sup 2}. The data showed that it remained as high as around 50% during the campaign period because graphite tiles were exposed to the air for about two months and the hydrogen contents at the tiles are not fully pumped out due to the lack of baking on the PFC in the 2009 campaign. The validation of the spectroscopy method was checked by using the Zeeman effects and the ratio of hydrogen to the deuterium is compared with results from the residual gas analysis. During the tokamak shot, the ratio is low below 10% initially and saturated after around 1 s. When there is a hydrogen injection to the vessel via ion cyclotron wall conditioning and the boronization process where the carbone is used, the ratio of the hydrogen to the deuterium is increased by up to 100% and it recovers to around 50% after one day of operation. However it does not decrease below 50% at the end of the experimental campaign. It was found that the full baking on the PFC (with a high temperature and sufficient vacuum pumping) is required for the ratio control which guarantees the efficient ICRF heating at the KSTAR 2010 experimental campaign.

  11. Measurement of the ratio of hydrogen to deuterium at the KSTAR 2009 experimental campaign.

    PubMed

    Kwak, Jong-Gu; Wang, Son Jong; Kim, Sun Ho; Park, Jae Min; Na, Hoon Kyun

    2010-10-01

    The control of the ratio of hydrogen to the deuterium is one of the very important issues for ion cyclotron range of frequency (ICRF) minority heating as well as the plasma wall interaction in the tokamak. The ratio of hydrogen to deuterium during the tokamak shot was deduced from the emission spectroscopy measurements during the KSTAR 2009 experimental campaign. Graphite tiles were used for the plasma facing components (PFCs) at KSTAR and its surface area exposed to the plasma was about 11 m(2). The data showed that it remained as high as around 50% during the campaign period because graphite tiles were exposed to the air for about two months and the hydrogen contents at the tiles are not fully pumped out due to the lack of baking on the PFC in the 2009 campaign. The validation of the spectroscopy method was checked by using the Zeeman effects and the ratio of hydrogen to the deuterium is compared with results from the residual gas analysis. During the tokamak shot, the ratio is low below 10% initially and saturated after around 1 s. When there is a hydrogen injection to the vessel via ion cyclotron wall conditioning and the boronization process where the carbone is used, the ratio of the hydrogen to the deuterium is increased by up to 100% and it recovers to around 50% after one day of operation. However it does not decrease below 50% at the end of the experimental campaign. It was found that the full baking on the PFC (with a high temperature and sufficient vacuum pumping) is required for the ratio control which guarantees the efficient ICRF heating at the KSTAR 2010 experimental campaign.

  12. Magnetic Approaches to Measuring and Mitigating Airborne Particulate Pollution

    NASA Astrophysics Data System (ADS)

    Maher, B.

    2014-12-01

    Human exposure to airborne particulate matter (PM) generates adverse human health impacts at all life stages from the embryonic to the terminal, including damage to respiratory and cardiovascular health, and neurodevelopment and cognitive function. Detailed understanding of the causal links between PM exposure and specific health impacts, and possible means to reduce PM exposure require knowledge of PM concentrations, compositions and sources at the fine-scale; i.e. beyond the current resolution of spatially-sparse conventional PM monitoring, non-unique elemental analyses, or poorly-validated PM modelling. Magnetically-ordered iron oxide minerals appear to be a ubiquitous component of urban PM. These minerals derive partly from the presence of iron impurities in fuels, which form, upon combustion, a non-volatile residue, often dominated by magnetite, within glassy, spherical condensates. Iron-rich, magnetic PM also arises from abrasion from vehicle components, including disk brakes, and road dust. The ubiquity and diversity of these magnetic PM phases, and the speed and sensitivity of magnetic analyses (down to trace concentrations), makes possible rapid, cost-effective magnetic characterization and quantification of PM, a field of study which has developed rapidly across the globe over the last 2 decades. Magnetic studies of actively-sampled PM, on filters, and passively-sampled PM, on tree leaves and other depositional surfaces, can be used to: monitor and map at high spatial resolution ambient PM concentrations; address the controversial issue of the efficacy of PM capture by vegetation; and add a new, discriminatory dimension to PM source apportionment.

  13. Radiative Characteristics of Clouds Embedded in Smoke Derived from Airborne Multiangular Measurements

    NASA Technical Reports Server (NTRS)

    Gautam, Ritesh; Gatebe, Charles K.; Singh, Manoj; Varnai, Tamas; Poudyal, Rajesh

    2016-01-01

    Clouds in the presence of absorbing aerosols result in their apparent darkening, observed at the top of atmosphere (TOA), which is associated with the radiative effects of aerosol absorption. Owing to the large radiative effect and potential impacts on regional climate, above-cloud aerosols have recently been characterized in multiple satellite-based studies. While satellite data are particularly useful in showing the radiative impact of above-cloud aerosols at the TOA, recent literature indicates large uncertainties in satellite retrievals of above-cloud aerosol optical depth (AOD) and single scattering albedo (SSA), which are among the most important parameters in the assessment of associated radiative effects. In this study, we analyze radiative characteristics of clouds in the presence of wildfire smoke using airborne data primarily from NASA's Cloud Absorption Radiometer, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites campaign in Canada during the 2008 summer season. We found a strong positive reflectance (R) gradient in the UV-visible (VIS)-near infrared (NIR) spectrum for clouds embedded in dense smoke, as opposed to an (expected) negative gradient for cloud-free smoke and a flat spectrum for smoke-free cloud cover. Several cases of clouds embedded in thick smoke were found, when the aircraft made circular/spiral measurements, which not only allowed the complete characterization of angular distribution of smoke scattering but also provided the vertical distribution of smoke and clouds (within 0.5-5 km). Specifically, the largest darkening by smoke was found in the UV/VIS, with R(sub 0.34 microns) reducing to 0.2 (or 20%), in contrast to 0.8 at NIR wavelengths (e.g., 1.27 microns). The observed darkening is associated with large AODs (0.5-3.0) and moderately low SSA (0.85-0.93 at 0.53 microns), resulting in a significantly large instantaneous aerosol forcing efficiency of 254 +/- 47 W/sq m/t. Our

  14. Radiative characteristics of clouds embedded in smoke derived from airborne multiangular measurements

    NASA Astrophysics Data System (ADS)

    Gautam, Ritesh; Gatebe, Charles K.; Singh, Manoj K.; Várnai, Tamás.; Poudyal, Rajesh

    2016-08-01

    Clouds in the presence of absorbing aerosols result in their apparent darkening, observed at the top of atmosphere (TOA), which is associated with the radiative effects of aerosol absorption. Owing to the large radiative effect and potential impacts on regional climate, above-cloud aerosols have recently been characterized in multiple satellite-based studies. While satellite data are particularly useful in showing the radiative impact of above-cloud aerosols at the TOA, recent literature indicates large uncertainties in satellite retrievals of above-cloud aerosol optical depth (AOD) and single scattering albedo (SSA), which are among the most important parameters in the assessment of associated radiative effects. In this study, we analyze radiative characteristics of clouds in the presence of wildfire smoke using airborne data primarily from NASA's Cloud Absorption Radiometer, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites campaign in Canada during the 2008 summer season. We found a strong positive reflectance (R) gradient in the UV-visible (VIS)-near infrared (NIR) spectrum for clouds embedded in dense smoke, as opposed to an (expected) negative gradient for cloud-free smoke and a flat spectrum for smoke-free cloud cover. Several cases of clouds embedded in thick smoke were found, when the aircraft made circular/spiral measurements, which not only allowed the complete characterization of angular distribution of smoke scattering but also provided the vertical distribution of smoke and clouds (within 0.5-5 km). Specifically, the largest darkening by smoke was found in the UV/VIS, with R0.34μm reducing to 0.2 (or 20%), in contrast to 0.8 at NIR wavelengths (e.g., 1.27 µm). The observed darkening is associated with large AODs (0.5-3.0) and moderately low SSA (0.85-0.93 at 0.53 µm), resulting in a significantly large instantaneous aerosol forcing efficiency of 254 ± 47 W m-2 τ-1. Our observations of smoke

  15. Spatio-Temporal Variability of Atmospheric CO2 as Observed from In-Situ Measurements over North America during NASA Field Campaigns (2004-2008)

    NASA Technical Reports Server (NTRS)

    Choi, Yonghoon; Vay, Stephanie A.; Woo, Jung-Hun; Choi, Kichul; Diskin, Glenn S.; Sachse, G. W.; Vadrevu, Krishna P.; Czech, E.

    2009-01-01

    Regional-scale measurements were made over the eastern United States (Intercontinental Chemical Transport Experiment - North America (INTEX-NA), summer 2004); Mexico (Megacity Initiative: Local and Global Research Observations (MILAGRO), March 2006); the eastern North Pacific and Alaska (INTEX-B May 2006); and the Canadian Arctic (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS), spring and summer 2008). For these field campaigns, instrumentation for the in situ measurement of CO2 was integrated on the NASA DC-8 research aircraft providing high-resolution (1 second) data traceable to the WMO CO2 mole fraction scale. These observations provide unique and definitive data sets via their intermediate-scale coverage and frequent vertical profiles (0.1 - 12 km) for examining the variability CO2 exhibits above the Earth s surface. A bottom-up anthropogenic CO2 emissions inventory (1deg 1deg) and processing methodology has also been developed for North America in support of these airborne science missions. In this presentation, the spatio-temporal distributions of CO2 and CO column values derived from the campaign measurements will be examined in conjunction with the emissions inventory and transport histories to aid in the interpretation of the CO2 observations.

  16. Summertime tropospheric ozone enhancement associated with a cold front passage due to stratosphere-to-troposphere transport and biomass burning: Simultaneous ground-based lidar and airborne measurements

    NASA Astrophysics Data System (ADS)

    Kuang, Shi; Newchurch, Michael J.; Johnson, Matthew S.; Wang, Lihua; Burris, John; Pierce, Robert B.; Eloranta, Edwin W.; Pollack, Ilana B.; Graus, Martin; Gouw, Joost; Warneke, Carsten; Ryerson, Thomas B.; Markovic, Milos Z.; Holloway, John S.; Pour-Biazar, Arastoo; Huang, Guanyu; Liu, Xiong; Feng, Nan

    2017-01-01

    Stratosphere-to-troposphere transport (STT) and biomass burning (BB) are two important natural sources for tropospheric ozone that can result in elevated ozone and air-quality episode events. High-resolution observations of multiple related species are critical for complex ozone source attribution. In this article, we present an analysis of coinciding ground-based and airborne observations, including ozone lidar, ozonesonde, high spectral resolution lidar (HSRL), and multiple airborne in situ measurements, made on 28 and 29 June 2013 during the Southeast Nexus field campaign. The ozone lidar and HSRL reveal detailed ozone and aerosol structures as well as the temporal evolution associated with a cold front passage. The observations also captured two enhanced (+30 ppbv) ozone layers in the free troposphere (FT), which were determined from this study to be caused by a mixture of BB and stratospheric sources. The mechanism for this STT is tropopause folding associated with a cutoff upper level low-pressure system according to the analysis of its potential vorticity structure. The depth of the tropopause fold appears to be shallow for this case compared to events observed in other seasons; however, the impact on lower tropospheric ozone was clearly observed. This event suggests that strong STT may occur in the southeast United States during the summer and can potentially impact lower troposphere during these times. Statistical analysis of the airborne observations of trace gases suggests a coincident influence of BB transport in the FT impacting the vertical structure of ozone during this case study.

  17. Integrated Airborne and In-Situ Measurements Over Land-Fast Ice Near Barrow, AK.

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Richter-Menge, J.; Abelev, A.; Liang, R.; Ball, D.; Claffey, K. J.; Hebert, D. A.; Jones, K.

    2015-12-01

    The Naval Research Laboratory has collected two field seasons of integrated airborne and in-situ measurements over multiple sites of floating, but land-fast ice north of Barrow, AK. During the first season in March of 2014 the Cold Regions Research and Engineering Laboratory led the on-ice group including NRL personnel and Naval Academy midshipmen. The second season (March 2015) included only NRL scientists and midshipmen. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439), a low-frequency SAR (P-band in 2014 and P and L bands in 2015) and a snow/Ku radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The CReSIS radar was updated in 2015 to integrate the snow and Ku radars into a single continuous chirp, thus improving resolution. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects a sites generally consisting of a 2 km long profile of Magnaprobe and EM31 measurements with periodic boreholes. A 60 m x 400 m swath of Magnaprobe measurements was centered on this profile. Airborne data were collected on multiple overflights of the transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The SAR imaged the ice beneath the snow and the snow/Ku radar measured snow thickness. The freeboard measurements and snow thickness are used to estimate ice thickness via isostasy and density estimates. Comparisons and processing methodology will be shown. The results of this ground-truth experiment will inform our analysis of grids of airborne data collected

  18. Integrated Airborne and In-Situ Measurements over Land-Fast Ice near Barrow, AK.

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.; Claffey, K. J.; Abelev, A.; Hebert, D. A.; Jones, K.

    2014-12-01

    During March of 2014, the Naval Research Laboratory and the Cold Regions Research and Engineering Laboratory collected an integrated set of airborne and in-situ measurements over two areas of floating, but land-fast ice near the coast of Barrow, AK. The near-shore site was just north of Point Barrow, and the "offshore" site was ~ 20 km east of Point Barrow. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439) and a snow radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects at both sites consisting of a 2 km long profile of snow depth and ice thickness measurements with periodic boreholes. A 60 m x 400 m swath of snow depth measurements was centered on this profile. Airborne data were collected on five overflights of the two transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The radar measured snow thickness. The freeboard and snow thickness measurements are used to estimate ice thickness via isostasy and density estimates. The central swath of in situ snow depth data allows examination of the effects of cross-track variations considering the relatively large footprint of the snow radar. Assuming a smooth, flat surface the radar range resolution in air is < 4 cm, but the along-track sampling distance is ~ 3 m after unfocussed SAR processing. The width of the footprint varies from ~ 9 m up to about 40 m (beam-limited) for uneven surfaces. However, the radar could not resolve snow thickness

  19. Origin of particulate matter and gaseous precursors in the Paris Megacity: Results from intensive campaigns, long term measurements and modelling

    NASA Astrophysics Data System (ADS)

    Beekmann, Matthias; Petetin, Hervé; Zhang, Qijie; Prevot, André S. H.; Sciare, Jean; Gros, Valérie; Ghersi, Véronique; Rosso, Amandine; Crippa, Monica; Zotter, Peter; Freutel, Fredericke; Poulain, Laurent; Freney, Evelyne; Sellegri, Karine; Drewnick, Frank; Borbon, Agnès; Wiedensohler, Aflred; Pandis, Spyros N.; Baltensperger, Urs

    2016-04-01

    Uncertainties on the origin of primary and secondary particulate matter and its gaseous precursors in megacities is still large and needs to be reduced. A detailed characterization of air quality in Paris (France), a megacity of more than 10 million inhabitants, during two one month intensive campaigns (MEGAPOLI) and from additional one year observations (PARTICULATE and FRANCIPOL), revealed that about 70% of the fine particulate matter (PM) at urban background is transported on average into the megacity from upwind regions. While advection of sulfate is well documented for other megacities, there was a surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The data set of urban local and advected PM concentrations in the Paris area were used for a thorough evaluation of the CHIMERE model and revealed error compensation for the local and advected components of organic matter and nitrate. During spring time, CHIMERE simulations overestimate the sensitivity of ammonium nitrate peaks to NH3, because (i) they underestimate the urban background NH3 levels, probably due to neglecting enhanced NH3 emissions for larger temperatures, and because they overestimate HNO3. However, from an ensemble of mobile Max-DOAS NO2 column and airborne NOy measurements around Paris, no clear sign on a NOx emission bias in the TNO-Airparif data set was made evident. The origin of organic PM was investigated by a comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions contributed less than 20% in winter and 40% in summer to carbonaceous fine PM, unexpectedly little for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e. from biogenic precursors and from wood burning. Implementation

  20. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique

    NASA Astrophysics Data System (ADS)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2010-03-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR) analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  1. Application of Bayesian decision theory to airborne gamma snow measurement

    NASA Technical Reports Server (NTRS)

    Bissell, V. C.

    1975-01-01

    Measured values of several variables are incorporated into the calculation of snow water equivalent as measured from an aircraft by snow attenuation of terrestrial gamma radiation. Bayesian decision theory provides a snow water equivalent measurement by taking into account the uncertainties in the individual measurement variables and filtering information about the measurement variables through prior notions of what the calculated variable (water equivalent) should be.

  2. Greenland annual accumulation along the EGIG line, 1959-2004, from ASIRAS airborne radar and neutron-probe density measurements

    NASA Astrophysics Data System (ADS)

    Overly, Thomas B.; Hawley, Robert L.; Helm, Veit; Morris, Elizabeth M.; Chaudhary, Rohan N.

    2016-08-01

    We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and high resolution neutron-probe (NP) density profiles. ASIRAS-NP-derived accumulation rates are not statistically different (95 % confidence interval) from in situ EGIG accumulation measurements from 1985 to 2004. ASIRAS-NP-derived accumulation increases by 20 % below 3000 m elevation, and increases by 13 % above 3000 m elevation for the period 1995 to 2004 compared to 1985 to 1994. Three Regional Climate Models (PolarMM5, RACMO2.3, MAR) underestimate snow accumulation below 3000 m by 16-20 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modeled density profiles in place of NP densities. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates in the dry snow region. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the Operation IceBridge campaign.

  3. Tracer concentration profiles measured in central London as part of the REPARTEE campaign

    NASA Astrophysics Data System (ADS)

    Martin, D.; Petersson, K. F.; White, I. R.; Henshaw, S. J.; Nickless, G.; Lovelock, A.; Barlow, J. F.; Dunbar, T.; Wood, C. R.; Shallcross, D. E.

    2009-11-01

    There have been relatively few tracer experiments carried out that have looked at vertical plume spread in urban areas. In this paper we present results from cyclic perfluorocarbon tracer experiments carried out in 2006 and 2007 in central London centred on the BT Tower as part of the REPARTEE (Regent's Park and Tower Environmental Experiment) campaign. The height of the tower gives a unique opportunity to study dispersion over a large vertical gradient. These gradients are then compared with classical Gaussian profiles of the relevant stability classes over a range of distances as well as interpretation of data with reference to both anemometry and LIDAR measurements made. Data are then compared with an operational model and contrasted with data taken in central London as part of the DAPPLE campaign looking at dosage compared with non-dimensionalised distance from source. Such analysis illustrates the feasibility of the use of these empirical correlations over these prescribed distances in central London.

  4. Tracer concentration profiles measured in central London as part of the REPARTEE campaign

    NASA Astrophysics Data System (ADS)

    Martin, D.; Petersson, K. F.; White, I. R.; Henshaw, S. J.; Nickless, G.; Lovelock, A.; Barlow, J. F.; Dunbar, T.; Wood, C. R.; Shallcross, D. E.

    2011-01-01

    There have been relatively few tracer experiments carried out that have looked at vertical plume spread in urban areas. In this paper we present results from two tracer (cyclic perfluorocarbon) experiments carried out in 2006 and 2007 in central London centred on the BT Tower as part of the REPARTEE (Regent's Park and Tower Environmental Experiment) campaign. The height of the tower gives a unique opportunity to study vertical dispersion profiles and transport times in central London. Vertical gradients are contrasted with the relevant Pasquill stability classes. Estimation of lateral advection and vertical mixing times are made and compared with previous measurements. Data are then compared with a simple operational dispersion model and contrasted with data taken in central London as part of the DAPPLE campaign. This correlates dosage with non-dimensionalised distance from source. Such analyses illustrate the feasibility of the use of these empirical correlations over these prescribed distances in central London.

  5. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  6. Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurement

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-10-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 mJ and up to 10 Hz repetition rate. The two laser pulses are separated by 200 µs and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-µm direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-μm IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  7. Assessment of water pollution by airborne measurement of chlorophyll

    NASA Technical Reports Server (NTRS)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1972-01-01

    Remote measurement of chlorophyll concentrations to determine extent of water pollution is discussed. Construction and operation of radiometer to provide measurement capability are explained. Diagram of equipment is provided.

  8. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, C.V.; Killian, E.W.; Grafwallner, E.G.; Kynaston, R.L.; Johnson, L.O.; Randolph, P.D.

    1996-09-03

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector. 7 figs.

  9. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, Charles V.; Killian, E. Wayne; Grafwallner, Ervin G.; Kynaston, Ronnie L.; Johnson, Larry O.; Randolph, Peter D.

    1996-01-01

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector.

  10. Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: Measurement comparison, emission ratios, and source attribution

    SciTech Connect

    Bon, D.M.; Springston, S.; M.Ulbrich, I.; de Gouw, J. A.; Warneke, C.; Kuster, W. C.; Alexander, M. L.; Baker, A.; Beyersdorf, A. J.; Blake, D.; Fall, R.; Jimenez, J. L., Herndon, S. C.; Huey, L. G.; Knighton, W. B.; Ortega, J.; Vargas, O.

    2011-03-16

    Volatile organic compound (VOC) mixing ratios were measured with two different instruments at the T1 ground site in Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign in March of 2006. A gas chromatograph with flame ionization detector (GC-FID) quantified 18 light alkanes, alkenes and acetylene while a proton-transfer-reaction ion-trap mass spectrometer (PIT-MS) quantified 12 VOC species including oxygenated VOCs (OVOCs) and aromatics. A GC separation system was used in conjunction with the PIT-MS (GC-PIT-MS) to evaluate PIT-MS measurements and to aid in the identification of unknown VOCs. The VOC measurements are also compared to simultaneous canister samples and to two independent proton-transfer-reaction mass spectrometers (PTR-MS) deployed on a mobile and an airborne platform during MILAGRO. VOC diurnal cycles demonstrate the large influence of vehicle traffic and liquid propane gas (LPG) emissions during the night and photochemical processing during the afternoon. Emission ratios for VOCs and OVOCs relative to CO are derived from early-morning measurements. Average emission ratios for non-oxygenated species relative to CO are on average a factor of {approx}2 higher than measured for US cities. Emission ratios for OVOCs are estimated and compared to literature values the northeastern US and to tunnel studies in California. Positive matrix factorization analysis (PMF) is used to provide insight into VOC sources and processing. Three PMF factors were distinguished by the analysis including the emissions from vehicles, the use of liquid propane gas and the production of secondary VOCs + long-lived species. Emission ratios to CO calculated from the results of PMF analysis are compared to emission ratios calculated directly from measurements. The total PIT-MS signal is summed to estimate the fraction of identified versus unidentified VOC species.

  11. Comparison between carbon monoxide measurements from spaceborne and airborne platforms

    NASA Technical Reports Server (NTRS)

    Connors, V. S.; Cahoon, D. R.; Reichle, H. G., Jr.; Scheel, H. E.

    1991-01-01

    The measurements of air pollution from satellites (MAPS) experiment measured the distribution of middle tropospheric carbon monoxide (CO) from the Space Shuttle during October 1984. A critical area of the experiment is the assessment of experimental error of the MAPS data. This error is determined by the comparison between the space-based CO data and concurrent, direct CO measurements taken aboard aircraft. Because of the variability in the CO measurements near land sources, a strategy for comparing the tropospheric CO measurements over the remote oceans is presented.

  12. Turbulence measurements in the mesosphere during the WADIS-1 sounding rocket campaign: Insight into horizontal variability

    NASA Astrophysics Data System (ADS)

    Strelnikov, Boris; Luebken, Franz-Josef; Rapp, Markus; Stober, Gunter; Szewczyk, Artur; Strelnikova, Irina; Chau, Jorge L.; Sommer, Svenja; Latteck, Ralph

    In the frame of the WADIS (Wave propagation and dissipation in the middle atmosphere: energy budget and distribution of trace constituents) project the first sounding rocket campaign was conducted at the Andøya Rocket Range (69 (°) N, 16 (°) E) during June/July 2013. During this campaign, among other things, extensive turbulence measurements were conducted employing different techniques. In situ measurements were done using two CONE instruments mounted on both front and rear decks of the payload, implying that two profiles of turbulence energy dissipation rates were near simultaneously measured with high altitude resolution at ˜30 km horizontal distance. Ground based measurements of the turbulence field were conducted using the MAARSY VHF-, the SAURA MF-, and the EISCAT-radars. The measurements with MAARSY allow to resolve turbulent structures not only vertically, but also horizontally at scales of several kilometers and cover both up- and downleg parts of the rocket trajectory. We discuss these turbulence measurements and estimate the horizontal variability of the turbulent structures.

  13. Noncontact Measurement of Humidity and Temperature Using Airborne Ultrasound

    NASA Astrophysics Data System (ADS)

    Akihiko Kon,; Koichi Mizutani,; Naoto Wakatsuki,

    2010-04-01

    We describe a noncontact method for measuring humidity and dry-bulb temperature. Conventional humidity sensors are single-point measurement devices, so that a noncontact method for measuring the relative humidity is required. Ultrasonic temperature sensors are noncontact measurement sensors. Because water vapor in the air increases sound velocity, conventional ultrasonic temperature sensors measure virtual temperature, which is higher than dry-bulb temperature. We performed experiments using an ultrasonic delay line, an atmospheric pressure sensor, and either a thermometer or a relative humidity sensor to confirm the validity of our measurement method at relative humidities of 30, 50, 75, and 100% and at temperatures of 283.15, 293.15, 308.15, and 323.15 K. The results show that the proposed method measures relative humidity with an error rate of less than 16.4% and dry-bulb temperature with an error of less than 0.7 K. Adaptations of the measurement method for use in air-conditioning control systems are discussed.

  14. Field Campaign Guidelines

    SciTech Connect

    Voyles, J. W.; Chapman, L. A.

    2015-12-01

    This document establishes a common set of guidelines for the Atmospheric Radiation Measurement (ARM) Climate Research Facility for planning, executing, and closing out field campaigns. The steps that guide individual field campaigns are described in the Field Campaign Tracking System and are specifically tailored to meet the scope of each field campaign.

  15. Vertical distribution of aerosol number concentration in the troposphere over Siberia derived from airborne in-situ measurements

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Paris, Jean-Daniel; Machida, Toshinobu; Kozlov, Alexandr; Malyskin, Sergei; Simonenkov, Denis; Davydov, Denis; Fofonov, Alexandr

    2016-04-01

    Knowledge of the vertical distribution of aerosols particles is very important when estimating aerosol radiative effects. To date there are a lot of research programs aimed to study aerosol vertical distribution, but only a few ones exist in such insufficiently explored region as Siberia. Monthly research flights and several extensive airborne campaigns carried out in recent years in Siberian troposphere allowed the vertical distribution of aerosol number concentration to be summarized. In-situ aerosol measurements were performed in a wide range of particle sizes by means of improved version of the Novosibirsk-type diffusional particle sizer and GRIMM aerosol spectrometer Model 1.109. The data on aerosol vertical distribution enabled input parameters for the empirical equation of Jaenicke (1993) to be derived for Siberian troposphere up to 7 km. Vertical distributions of aerosol number concentration in different size ranges averaged for the main seasons of the year will be presented. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); and Russian Foundation for Basic Research (grant No. 14-05-00526). Jaenicke R. Tropospheric aerosols, in Aerosol-Cloud-Climate Interactions, edited by P.V. Hobs. -Academic Press, San Diego, CA, 1993.- P. 1-31.

  16. Reconciling In Situ Foliar Nitrogen and Vegetation Structure Measurements with Airborne Imagery Across Ecosystems

    NASA Astrophysics Data System (ADS)

    Flagg, C.

    2015-12-01

    Over the next 30 years the National Ecological Observatory Network (NEON) will monitor environmental and ecological change throughout North America. NEON will provide a suite of standardized data from several ecological topics of interest, including net primary productivity and nutrient cycling, from 60+ sites across 20 eco-climatic domains when fully operational in 2017. The breadth of sampling includes ground-based measurements of foliar nitrogen and vegetation structure, ground-based spectroscopy, airborne LIDAR, and airborne hyperspectral surveys occurring within narrow overlapping time intervals once every five years. While many advancements have been made in linking and scaling in situ data with airborne imagery, establishing these relationships across dozens of highly variable sites poses significant challenges to understanding continental-wide processes. Here we study the relationship between foliar nitrogen content and airborne hyperspectral imagery at different study sites. NEON collected foliar samples from three sites in 2014 as part of a prototype study: Ordway Swisher Biological Station (pine-oak savannah, with active fire management), Jones Ecological Research Center (pine-oak savannah), and San Joaquin Experimental Range (grass-pine oak woodland). Leaf samples and canopy heights of dominant and co-dominant species were collected from trees located within 40 x 40 meter sampling plots within two weeks of aerial LIDAR and hyperspectral surveys. Foliar canopy samples were analyzed for leaf mass per area (LMA), stable isotopes of C and N, C/N content. We also examine agreement and uncertainty between ground based canopy height and airborne LIDAR derived digital surface models (DSM) for each site. Site-scale maps of canopy nitrogen and canopy height will also be presented.

  17. Radon emanation and soil moisture effects on airborne gamma-ray measurements

    SciTech Connect

    Grasty, R.L.

    1997-09-01

    A theoretical model is developed to explain variations in airborne gamma-ray measurements over a calibration range near Ottawa, Ontario. The gamma-ray flux from potassium and the thorium decay series showed an expected decrease with increasing soil moisture. However, the gamma-ray flux from the uranium decay series was highest in the spring when the ground was water-saturated and even covered with snow. These results are explained through the build-up of radon and its associated gamma-ray-emitting decay products in the clay soil of the calibration range with increasing soil moisture. Similar results were found from airborne measurements over other clay soils. However, measurements over sandy soils showed that the count rates from all three radio elements increased with decreasing soil moisture. This difference between soil types was attributed to the lower radon emanation of the more coarse-grained sandy soils compared to finer-grained clay soils. The theoretical and experimental results demonstrate that any estimate of the natural gamma-ray field caused by radium in the ground must take into consideration the radon emanation coefficient of the soil. The radon diffusion coefficient of the soil must also be considered since it depends strongly on soil moisture. This has significant implications for the assessment of outdoor radiation doses using laboratory analyses of soil samples and the use of ground and airborne gamma-ray measurements for radon potential mapping.

  18. The Cabauw Intercomparison Campaign for Nitrogen Dioxide Measuring Instruments (CINDI): Design, Execution, and Early Results

    NASA Technical Reports Server (NTRS)

    Piters, Ankie; Boersma, K.F.; Kroon, M.; Hains, J. C.; Roozendael, M. Van; Wittrock, F.; Abuhassan, N.; Adams, C.; Akrami, M.; Allaart, M. A. F.; Apituley, A.; Beirle, S.; Bergwerff, J. B.; Berkhout, A. J. C.; Brunner, D.; Cede, A.; Chong, J.; Clemer, K.; Fayt, C.; FrieB, U.; Gast, L. F. L.; Gil-Ojeda, M.; Goutail, F.; Graves, R.; Griesfeller, A.

    2012-01-01

    From June to July 2009 more than thirty different in-situ and remote sensing instruments from all over the world participated in the Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). The campaign took place at KNMI's Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands. Its main objectives were to determine the accuracy of state-ofthe- art ground-based measurement techniques for the detection of atmospheric nitrogen dioxide (both in-situ and remote sensing), and to investigate their usability in satellite data validation. The expected outcomes are recommendations regarding the operation and calibration of such instruments, retrieval settings, and observation strategies for the use in ground-based networks for air quality monitoring and satellite data validation. Twenty-four optical spectrometers participated in the campaign, of which twenty-one had the capability to scan different elevation angles consecutively, the so-called Multi-axis DOAS systems, thereby collecting vertical profile information, in particular for nitrogen dioxide and aerosol. Various in-situ samplers and lidar instruments simultaneously characterized the variability of atmospheric trace gases and the physical properties of aerosol particles. A large data set of continuous measurements of these atmospheric constituents has been collected under various meteorological conditions and air pollution levels. Together with the permanent measurement capability at the CESAR site characterizing the meteorological state of the atmosphere, the CINDI campaign provided a comprehensive observational data set of atmospheric constituents in a highly polluted region of the world during summertime. First detailed comparisons performed with the CINDI data show that slant column measurements of NO2, O4 and HCHO with MAX-DOAS agree within 5 to 15%, vertical profiles of NO2 derived from several independent instruments agree within 25% of one another, and MAX

  19. An intercomparison of airborne nitric oxide measurements - A second opportunity

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Hoell, James M., Jr.; Torres, Arnold L.; Carroll, Mary Anne; Ridley, Brian A.

    1990-01-01

    Results are reported from a comparison of three tropospheric NO measurement instruments during the NASA Global Tropospheric Experiment Chemical Instrumentation Test and Evaluation 2 (CITE 2) in summer 1986. The instruments tested were those used in CITE 1 (Hoell et al., 1987): a two-photon LIF system and two chemiluminescence systems. It is found that the mixing ratios obtained with the three systems agreed to within 15-20 parts per trillion volume (pptv) for sampling perods of 1-6 min at mixing ratios less than 20 pptv; the average difference between pairs of measurements was 5-7 pptv, which is considered to be the uncertainty in state-of-the-art ambient NO measurements.

  20. Airborne Measurements of NO, NO2, and NO(y) as Related to NASA's Pacific Exploratory Mission

    NASA Technical Reports Server (NTRS)

    Sandholm, Scott

    1997-01-01

    The Tropospheric Trace Gas and Airborne Measurements Group's (TTGAMG) efforts on NASA GTE (Global Tropospheric Experiment) PEM (Pacific Exploratory Mission) West A & B field campaign primarily involved the acquisition of NO, NO2 and NO(y) measurements, as well as the subsequent analysis and interpretation of the data base obtained during the PEM West field campaign. These investigations focused on the distribution of trace gases, sources and sinks of ozone, ozone producing precursors with a heavy emphasize on ozone's photochemical state, and the partitioning of the molecules within the NO(y) family over the north western Pacific Ocean. The two components of PEM West were focused on observing air masses as they reached the Asian Continent (PEM West A) or as the air mass departed the Asian Continent (PEM West B). NO(x) concentrations play a pivotal role in controlling the photochemical lifetime of ozone in these environments, and understanding the NO(x) species partitioning is paramount. The transport of NO(x) into the regions, in the form of longer lived NO(y) family members, was examined in relation to the comparison of natural occurring sources of NO(x) (i.e., lightning and stratosphere/troposphere exchange) to those produced as a result of anthropogenic activity (i.e., biomass burning and aircraft emissions). The TTGAMG's measurements of NOx and NO(y), in conjunction with other investigators' measurements of PAN (H. B. Singh's group) and HNO3 (R. W. Talbot's group), have been used to assess the total reactive odd nitrogen levels over the study regions, the partitioning of the reactive odd nitrogen species in their various forms, and the usefulness of the NO, measurement and its measurement technique. The TTGAMG's primary PEM West objectives were the characterization of the factors controlling the distribution and fate of reactive odd nitrogen compounds over the western Pacific Ocean and an analysis of the concentration of various trace gases in the troposphere as

  1. Total OH reactivity measurement in a BVOC dominated temperate forest during a summer campaign, 2014

    NASA Astrophysics Data System (ADS)

    Ramasamy, Sathiyamurthi; Ida, Akira; Jones, Charlotte; Kato, Shungo; Tsurumaru, Hiroshi; Kishimoto, Iori; Kawasaki, Shio; Sadanaga, Yasuhiro; Nakashima, Yoshihiro; Nakayama, Tomoki; Matsumi, Yutaka; Mochida, Michihiro; Kagami, Sara; Deng, Yange; Ogawa, Shuhei; Kawana, Kaori; Kajii, Yoshizumi

    2016-04-01

    A total OH reactivity measurement was conducted in coniferous forest located in Wakayama prefecture, Japan, during the summer of 2014. The average total OH reactivity, measured using a laser-induced pump and probe technique was 7.1 s-1. The measured OH reactivity was comparable with other coniferous and temperate forest measurements and much lower than that of tropical forests. OH reactivity varied diurnally and showed moderate linear correlation with temperature (r2 = 0.66) and light (r2 = 0.53). Monoterpene emitters, Cryptomeria japonica and Chamaecyparis obutsa, are the dominant tree species in this forest. Although clean air from the sea was predominant, the beginning of the campaign was influenced by transported anthropogenic pollutants and consequently a higher average OH reactivity of 9.8 s-1 with high missing sinks of 37.3% was determined. Cleaner conditions, along with cooler day-time temperatures during in the second half of the campaign resulted in a lower average OH reactivity of 6.0 s-1 with a lower missing OH reactivity of 21.5%. Monoterpenes, isoprene, acetaldehyde were the dominant contributors to the total OH reactivity, accounting for 23.7%, 17.0% and 14.5%, respectively.

  2. GROMOS-C, a novel ground-based microwave radiometer for ozone measurement campaigns

    NASA Astrophysics Data System (ADS)

    Fernandez, S.; Murk, A.; Kämpfer, N.

    2015-07-01

    Stratospheric ozone is of major interest as it absorbs most harmful UV radiation from the sun, allowing life on Earth. Ground-based microwave remote sensing is the only method that allows for the measurement of ozone profiles up to the mesopause, over 24 hours and under different weather conditions with high time resolution. In this paper a novel ground-based microwave radiometer is presented. It is called GROMOS-C (GRound based Ozone MOnitoring System for Campaigns), and it has been designed to measure the vertical profile of ozone distribution in the middle atmosphere by observing ozone emission spectra at a frequency of 110.836 GHz. The instrument is designed in a compact way which makes it transportable and suitable for outdoor use in campaigns, an advantageous feature that is lacking in present day ozone radiometers. It is operated through remote control. GROMOS-C is a total power radiometer which uses a pre-amplified heterodyne receiver, and a digital fast Fourier transform spectrometer for the spectral analysis. Among its main new features, the incorporation of different calibration loads stands out; this includes a noise diode and a new type of blackbody target specifically designed for this instrument, based on Peltier elements. The calibration scheme does not depend on the use of liquid nitrogen; therefore GROMOS-C can be operated at remote places with no maintenance requirements. In addition, the instrument can be switched in frequency to observe the CO line at 115 GHz. A description of the main characteristics of GROMOS-C is included in this paper, as well as the results of a first campaign at the High Altitude Research Station at Jungfraujoch (HFSJ), Switzerland. The validation is performed by comparison of the retrieved profiles against equivalent profiles from MLS (Microwave Limb Sounding) satellite data, ECMWF (European Centre for Medium-Range Weather Forecast) model data, as well as our nearby NDACC (Network for the Detection of Atmospheric

  3. MAX-DOAS measurements of tropospheric NO2 and SO2 during the AROMAT-campaign in Rumania in September 2014

    NASA Astrophysics Data System (ADS)

    Shaiganfar, Reza; Wagner, Thomas; Riffel, Katharina; Donner, Sebastian

    2015-04-01

    The Airborne Romanian Measurements of Aerosols and Trace gases (AROMAT) campaigh took place in Rumania during September 2014. The aim of the AROMAT campaign was to measure the spatial distribution of trace gases (mainly NO2 and SO2) and aerosols. We carried out car-borne Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements using two Mini-MAX-DOAS instruments covering the UV and visible spectral range. During the first week car-MAX-DOAS measurements were carried-out on circles around Bucharest. From these observations, together with information on the wind fields, we derive the total NOx emissions from the city. We also provide estimates on the SO2 emissions, but these estimates have rather large uncertainties because the SO2 measurements are close or below the detection limit. We also made measurements within the city to quantify the spatial gradients. This information is especially important for the validation of satellite observations. In the second week, the car-MAX-DOAS measurements were carried-out around large power plants at Turceni. During these measurements, very strong SO2 absorptions were observed downwind of the power plants. From these observations, we estimate the SO2 emissions. We also determine the NO2 / SO2 ratio and investigate its dependence on the distance from the power plant.

  4. Airborne, In Situ and Laboratory Measurements of the Optical and Photochemical Properties of Surface Marine Waters

    DTIC Science & Technology

    2016-06-07

    Airborne, In Situ And Laboratory Measurements Of The Optical And Photochemical Properties Of Surface Marine Waters Neil V. Blough Department of...matter (CDOM) in marine and estuarine waters , 2) to determine the impact of CDOM on the aquatic light field and remotely-sensed optical signals, 3) to...October 1999 was performed to examine the optical and photochemical properties of waters in the Middle Atlantic Bight and in the Delaware and Chesapeake

  5. Radiative flux measurements during the Airborne Tropical Tropopause Experiment (ATTREX) Guam Deployment.

    NASA Astrophysics Data System (ADS)

    Kindel, B. C.; Pilewskie, P.; Schmidt, S.

    2015-12-01

    The Airborne Tropical Tropopause Experiment was a field program utilizing the NASA Global Hawk aircraft, to make extensive measurements of tropical tropopause layer (TTL) over the Pacific Ocean. In February and March of 2014, the NASA Global Hawk was deployed to Guam and flew six long duration science flights. The aircraft was outfitted with a suite of instruments to study the composition of the TTL. Measurements included: water vapor amount, cloud particle size and shape, various gaseous species (e.g. CO, CH4, CO2, O3), and radiation measurements. The radiation measurements were comprised of the Solar Spectral Flux Radiometer (SSFR) that made spectrally resolved measurements of upwelling and downwelling solar irradiance from 350 to 2200 nm and thermal broadband (4μm to 42 μm) upwelling and downwelling irradiance. Once airborne, the Global Hawk made numerous vertical profiles (14 - 18 km) through the TTL. In this work we present results of combined solar spectral irradiance and broadband thermal irradiance measurements. Solar spectral measurements are correlated, wavelength-by-wavelength, with broadband thermal measurements. The radiative impact in the TTL of water vapor and cirrus clouds are examined both in the solar and thermal wavelengths from both upwelling and downwelling irradiances. The spectral measurements are used in an attempt to attribute physical mechanisms to the thermal (spectrally integrated) measurements. Measurements of heating rates are also presented, highlighting the difficultly in obtaining reliable results from aircraft measurements.

  6. Development of a cavity-enhanced absorption spectrometer for airborne measurements of CH4 and CO2

    NASA Astrophysics Data System (ADS)

    O'Shea, S. J.; Bauguitte, S. J.-B.; Gallagher, M. W.; Lowry, D.; Percival, C. J.

    2013-05-01

    High-resolution CH4 and CO2 measurements were made on board the FAAM BAe-146 UK (Facility for Airborne Atmospheric Measurements, British Aerospace-146) atmospheric research aircraft during a number of field campaigns. The system was based on an infrared spectrometer using the cavity-enhanced absorption spectroscopy technique. Correction functions to convert the mole fractions retrieved from the spectroscopy to dry-air mole fractions were derived using laboratory experiments and over a 3 month period showed good stability. Long-term performance of the system was monitored using WMO (World Meteorological Office) traceable calibration gases. During the first year of operation (29 flights) analysis of the system's in-flight calibrations suggest that its measurements are accurate to 1.28 ppb (1σ repeatability at 1 Hz = 2.48 ppb) for CH4 and 0.17 ppm (1σ repeatability at 1 Hz = 0.66 ppm) for CO2. The system was found to be robust, no major motion or altitude dependency could be detected in the measurements. An inter-comparison between whole-air samples that were analysed post-flight for CH4 and CO2 by cavity ring-down spectroscopy showed a mean difference between the two techniques of -2.4 ppb (1σ = 2.3 ppb) for CH4 and -0.22 ppm (1σ = 0.45 ppm) for CO2. In September 2012, the system was used to sample biomass-burning plumes in Brazil as part of the SAMBBA project (South AMerican Biomass Burning Analysis). From these and simultaneous CO measurements, emission factors for savannah fires were calculated. These were found to be 2.2 ± 0.2 g (kg dry matter)-1 for CH4 and 1710 ± 171 g (kg dry matter)-1 for CO2, which are in excellent agreement with previous estimates in the literature.

  7. Experimental evidence of interhemispheric transport from airborne carbon monoxide measurements

    NASA Technical Reports Server (NTRS)

    Newell, R. E.; Gauntner, D. J.

    1979-01-01

    During the period 28-30 October 1977, a Pan American 747-SP aircraft flew around the world with an automated instrument package that included measurements of atmospheric CO made every 4 sec. The flight path extended from San Francisco, over the North Pole to London, south to Capetown, over the South Pole to Auckland, and back to San Francisco. The data collected show large changes with longitude, which are interpreted as direct evidence of interhemispheric mixing. Possible sources for CO are discussed.

  8. Airborne Validation of Spatial Properties Measured by the CALIPSO Lidar

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Vaughan, Mark A.; Trepte, Charles Reginald; Hart, William D.; Hlavka, Dennis L.; Winker, David M.; Keuhn, Ralph

    2007-01-01

    The primary payload onboard the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite is a dual-wavelength backscatter lidar designed to provide vertical profiling of clouds and aerosols. Launched in April 2006, the first data from this new satellite was obtained in June 2006. As with any new satellite measurement capability, an immediate post-launch requirement is to verify that the data being acquired is correct lest scientific conclusions begin to be drawn based on flawed data. A standard approach to verifying satellite data is to take a similar, or validation, instrument and fly it onboard a research aircraft. Using an aircraft allows the validation instrument to get directly under the satellite so that both the satellite instrument and the aircraft instrument are sensing the same region of the atmosphere. Although there are almost always some differences in the sampling capabilities of the two instruments, it is nevertheless possible to directly compare the measurements. To validate the measurements from the CALIPSO lidar, a similar instrument, the Cloud Physics Lidar, was flown onboard the NASA high-altitude ER-2 aircraft during July- August 2006. This paper presents results to demonstrate that the CALIPSO lidar is properly calibrated and the CALIPSO Level 1 data products are correct. The importance of the results is to demonstrate to the research community that CALIPSO Level 1 data can be confidently used for scientific research.

  9. Indoor and outdoor measurements of vertical concentration profiles of airborne particulate matter.

    PubMed

    Micallef, A; Deuchar, C N; Colls, J J

    1998-05-04

    Vertical concentration profiles of various particle size ranges of airborne particulate matter were measured from ground level up to 3 m, in outdoor and indoor environments. Indoor measurements were carried out in an electronics workshop, while two outdoor environments were chosen: a street canyon cutting across a town and an open field situated in a semi-rural environment. The novel measurement technique employed in this experimental work, which can also be used to determine vertical concentration gradients of pollutants other than airborne particles in different environments, is given particular attention. Analyses of the collected data for the environments considered are presented and some conclusions and plausible explanations of the profiles are discussed. The workshop and street canyon environments exhibited larger concentrations and vertical concentration gradients as compared to the sports field. This indicates that people breathing at different heights are subjected to different concentrations of airborne particulate matter, which has implications for sitting air pollution monitors intended for protection of public health and estimation of human exposure.

  10. Potential for airborne offbeam lidar measurements of snow and sea ice thickness

    NASA Astrophysics Data System (ADS)

    VáRnai, TamáS.; Cahalan, Robert F.

    2007-12-01

    This article discusses the capabilities and limitations of a new approach to airborne measurements of snow and sea ice thickness. Such measurements can help better understand snow and sea ice processes and can also contribute to the validation of satellite measurements. The approach discussed here determines physical snow and sea ice thickness by observing the horizontal spread of lidar pulses: The bright halo observed around an illuminated spot extends farther out in thicker layers because photons can travel longer without escaping through the bottom. Since earlier studies suggested the possibility of such sea ice retrievals, this article presents a theoretical analysis of additional uncertainties that arise in airborne observations of snow and sea ice. Snow and sea ice retrievals pose somewhat different challenges because while sea ice is usually much thicker, snow contains a much higher concentration of scatterers. As a result, sea ice halos are larger, but snow halos are brighter. The results indicate that airborne sea ice retrievals are possible at night and that snow retrievals are possible during both night and day. For snow thicknesses less than about 50 cm, observational issues, such as calibration uncertainty, can cause retrieval uncertainties on the order of 10% in 1-km-resolution retrievals. For moderate snow and sea ice thicknesses (<30 cm and 3 m, respectively), these issues cause similar (˜10%) uncertainties in sea ice thickness retrievals as well. These results indicate that offbeam lidars have the potential to become an important component of future snow and sea ice observing systems.

  11. Airborne Spectral Measurements of Ocean Anisotropy during CLAMS

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; King, M. D.; Arnold, G. T.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The Cloud Absorption Radiometer (CAR) aboard the University of Washington Convair CV-580 research aircraft obtained bidirectional reflectance-distribution function (BRDF) of Atlantic Ocean and Dismal Swamp between July 10 and August 2, 2001. The BRDF measurements (15 in total, 8 uncontaminated by clouds) obtained under a variety of sun angles and wind conditions, will be used to characterize ocean anisotropy in support of Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) science objectives principally to validate products from NASA's EOS satellites, and to parameterize and validate BRDF models of the ocean. In this paper we present results of BRDF of the Ocean under different sun angles and wind conditions. The CAR is capable of measuring scattered light in fourteen spectral bands. The scan mirror, rotating at 100 rpm, directs the light into a Dall-Kirkham telescope where the beam is split into nine paths. Eight light beams pass through beam splitters, dichroics, and lenses to individual detectors (0.34-1.27 micron), and finally are registered by eight data channels. They are sampled simultaneously and continuously. The ninth beam passes through a spinning filter wheel to an InSb detector cooled by a Stirling cycle cooler. Signals registered by the ninth data channel are selected from among six spectral channels (1.55-2.30 micron). The filter wheel can either cycle through all six spectral bands at a prescribed interval (usually changing filter every fifth scan line), or lock onto any one of the six spectral bands and sample it continuously. To measure the BRF of the surface-atmosphere system, the University of Washington CV-580 had to fly in a circle about 3 km in diameter above the surface for roughly two minutes. Replicated observations (multiple circular orbits) were acquired over selected surfaces so that average BRF smooth out small-scale surface and atmospheric inhomogeneities. At an altitude of 600 m above the targeted surface area and

  12. Airborne measurements of biomass burning products over Africa

    NASA Technical Reports Server (NTRS)

    Helas, Guenter; Lobert, Juergen; Goldammer, Johann; Andreae, Meinrat O.; Lacaux, J. P.; Delmas, R.

    1994-01-01

    Ozone has been observed in elevated concentrations by satellites over hitherto believed 'background' areas. There is meteorological evidence that these ozone 'plumes' found over the Atlantic ocean originate from biomass fires on the African continent. Therefore we have investigated ozone and assumed precursor compounds over African regions. The measurements revealed large photosmog layers in altitudes between 1.5 and 4 km. Here we will focus on some results of ozone mixing ratios obtained during the DECAFE 91/FOS experiment and estimate the relevance of biomass burning as a source by comparing the strength of this source to stratospheric input.

  13. Validation of Airborne FMCW Radar Measurements of Snow Thickness Over Sea Ice in Antarctica

    NASA Technical Reports Server (NTRS)

    Galin, Natalia; Worby, Anthony; Markus, Thorsten; Leuschen, Carl; Gogineni, Prasad

    2012-01-01

    Antarctic sea ice and its snow cover are integral components of the global climate system, yet many aspects of their vertical dimensions are poorly understood, making their representation in global climate models poor. Remote sensing is the key to monitoring the dynamic nature of sea ice and its snow cover. Reliable and accurate snow thickness data are currently a highly sought after data product. Remotely sensed snow thickness measurements can provide an indication of precipitation levels, predicted to increase with effects of climate change in the polar regions. Airborne techniques provide a means for regional-scale estimation of snow depth and distribution. Accurate regional-scale snow thickness data will also facilitate an increase in the accuracy of sea ice thickness retrieval from satellite altimeter freeboard estimates. The airborne data sets are easier to validate with in situ measurements and are better suited to validating satellite algorithms when compared with in situ techniques. This is primarily due to two factors: better chance of getting coincident in situ and airborne data sets and the tractability of comparison between an in situ data set and the airborne data set averaged over the footprint of the antennas. A 28-GHz frequency modulated continuous wave (FMCW) radar loaned by the Center for Remote Sensing of Ice Sheets to the Australian Antarctic Division is used to measure snow thickness over sea ice in East Antarctica. Provided with the radar design parameters, the expected performance parameters of the radar are summarized. The necessary conditions for unambiguous identification of the airsnow and snowice layers for the radar are presented. Roughnesses of the snow and ice surfaces are found to be dominant determinants in the effectiveness of layer identification for this radar. Finally, this paper presents the first in situ validated snow thickness estimates over sea ice in Antarctica derived from an FMCW radar on a helicopterborne platform.

  14. Aircraft measurements within a warm conveyor belt during the T-NAWDEX-FALCON campaign

    NASA Astrophysics Data System (ADS)

    Schäfler, Andreas; Boettcher, Maxi; Borrmann, Stephan; Busen, Reinhold; Dörnbrack, Andreas; Grams, Christian; Kaufmann, Stefan; Klingebiel, Marcus; Lammen, Yannick; Reutter, Philipp; Rautenhaus, Marc; Schlager, Hans; Sodemann, Harald; Voigt, Christiane; Wernli, Heini

    2013-04-01

    Warm Conveyor Belts (WCBs) are air streams that are highly relevant for the dynamics in the mid-latitudes as they strongly influence the evolution and intensity of northern hemispheric mid-latitude weather systems. For the predictability of cyclones the representation of diabatic processes associated with latent heat release due to phase transitions of water, surface fluxes, or radiative effects are believed to be a limiting factor. Diabatic processes in cyclones strongly depend on the transport of water vapor and are mainly organized and controlled by the coherently ascending WCB air masses. In October 2012 the T-NAWDEX-Falcon (THORPEX-North Atlantic Waveguide and Downstream Impact Experiment) campaign was organized by DLR Oberpfaffenhofen and ETH Zurich. During 9 research flights over Europe in-cloud measurements in WCBs were obtained with the DLR aircraft Falcon. Lagrangian flights were conducted with the aim to measure in the same air mass during different stages of the WCB to quantify the transport of moisture and the net latent heating along WCBs and their importance for forecast errors associated with mid-latitude weather systems. Besides in-situ observations of wind, temperature and humidity to characterize the thermodynamic structure of the WCBs, a set of dropsondes was deployed to gain a complete view on the complex structure of the cyclone. This presentation gives an overview of the three successful IOPs performed during the T-NAWDEX-Falcon campaign. To address forecast uncertainty and to enable flight planning up to four days in advance of the flights novel diagnostics based on deterministic and ensemble prediction NWP data were employed during the campaign. Furthermore a number of different trajectory models were applied for this field experiment. Based on selected flights from one intensive observation period the challenging planning process of Lagrangian matches of flight paths is described and first results are presented.

  15. The First Simultaneous Airborne Measurements of BrO, BrCl HOBr in the Tropics: An Assessment on the HOx Budget and O3 Depletion

    NASA Astrophysics Data System (ADS)

    Le Breton, M. R.; Gallagher, M. W.; Shallcross, D. E.; Evans, M. J.; Carpenter, L.; Andrews, S.; Lidster, R. T.; Harris, N. R. P.; Percival, C.

    2014-12-01

    This study represents the first simultaneous airborne measurements of BrO, BrCl, Br2 and HOBr in the tropics using a chemical ionisation mass spectrometer (CIMS). The results suggest that inorganic halogen chemistry has a more significant impact on O3 depletion and oxidising capacity of the troposphere than previously thought. The CIMS instrument was operated on-board the BAe-146 FAAM research aircraft across 20 flights, as part of the CAST (Coordinated Airborne Studies in the Tropics) campaign based on Guam, Micronesia and was supported by measurements of O3 and NOx from core instruments and bromocarbons from Whole Air Samples (WAS). The mean tropospheric BrO concentration over 20 flights was calculated to be 0.69 ppt; a factor of 4 times greater than that predicted by GEOS-Chem running with a tropospheric bromine simulation. An underestimation of HOBr, Br2 and BrCl in the model, when compared to the CIMS data, will contribute to this discrepancy, thus increasing the availability of atomic Br through photolysis, however this does not compensate for the bias currently observed. The magnitude of this discrepancy and subsequent effect on O3 depletion in the tropics is assessed and possible mechanisms are proposed. The measurements of these halogenated species are further used to assess their impact on the HOx budget in the tropics via steady state estimations.

  16. Lidar System for Airborne Measurement of Clouds and Aerosols

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Scott, V. Stanley; Izquierdo, Luis Ramos; Marzouk, Joe

    2008-01-01

    A lidar system for measuring optical properties of clouds and aerosols at three wavelengths is depicted. The laser transmitter is based on a Nd:YVO4 laser crystal pumped by light coupled to the crystal via optical fibers from laser diodes that are located away from the crystal to aid in dissipating the heat generated in the diodes and their drive circuits. The output of the Nd:YVO4 crystal has a wavelength of 1064 nm, and is made to pass through frequency-doubling and frequency-tripling crystals. As a result, the net laser output is a collinear superposition of beams at wavelengths of 1064, 532, and 355 nm. The laser operates at a pulse-repetition rate of 5 kHz, emitting per-pulse energies of 50 microJ at 1064 nm, 25 microJ at 532 nm and 50 microJ at 355 nm. An important feature of this system is an integrating sphere located between the laser output and the laser beam expander lenses. The integrating sphere collects light scattered from the lenses. Three energy-monitor detectors are located at ports inside the integrating sphere. Each of these detectors is equipped with filters such that the laser output energy is measured independently for each wavelength. The laser output energy is measured on each pulse to enable the most accurate calibration possible. The 1064-nm and 532-nm photodetectors are, more specifically, single photon-counting modules (SPCMs). When used at 1064 nm, these detectors have approximately 3% quantum efficiency and low thermal noise (fewer than 200 counts per second). When used at 532 nm, the SPCMs have quantum efficiency of about 60%. The photodetector for the 355-nm channel is a photon-counting photomultiplier tube having a quantum efficiency of about 20%. The use of photon-counting detectors is made feasible by the low laser pulse energy. The main advantage of photon-counting is ease of inversion of data without need for complicated calibration schemes like those necessary for analog detectors. The disadvantage of photon-counting detectors

  17. Determination of precipitation profiles from airborne passive microwave radiometric measurements

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Hakkarinen, Ida M.; Pierce, Harold F.; Weinman, James A.

    1991-01-01

    This study presents the first quantitative retrievals of vertical profiles of precipitation derived from multispectral passive microwave radiometry. Measurements of microwave brightness temperature (Tb) obtained by a NASA high-altitude research aircraft are related to profiles of rainfall rate through a multichannel piecewise-linear statistical regression procedure. Statistics for Tb are obtained from a set of cloud radiative models representing a wide variety of convective, stratiform, and anvil structures. The retrieval scheme itself determines which cloud model best fits the observed meteorological conditions. Retrieved rainfall rate profiles are converted to equivalent radar reflectivity for comparison with observed reflectivities from a ground-based research radar. Results for two case studies, a stratiform rain situation and an intense convective thunderstorm, show that the radiometrically derived profiles capture the major features of the observed vertical structure of hydrometer density.

  18. Passive Measurement of CO2 Column from an Airborne Platform

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Kawa, S. R.; Wilson, Emily; Georgleva, Elena

    2004-01-01

    We are in the third and final year of our IIP funding to develop a sensor for very precise determination of the CO2 Column. Global measurements of this sort from a satellite platform are needed to improve our understanding of the global carbon budget. In previous reports to this meeting we have described the method by which this system operates and presented data taken during ground based tests of the instrument. Work in the final year has concentrated on building the flight hardened version of the instrument that will be used in our field trials on the Dryden DC-8. The flight unit represents an integration of three channels into a single instrument. These three channels are the CO2 channel, the oxygen pressure sensing channel, and the oxygen temperature sensing channel. Integration of the three channels into a single unit significantly decreases the size of the instrument. The flight unit also employs more rugged optical mounts and integrated optical shielding. Light enters the instrument from below first striking the right angled mirror shown extending over the edge of the platform. The light is then focused through a pinhole to define the instrument field of view, chopped and recollimated. Dichroic mirrors are used to separate the CO2 wavelength from the O2 wavelength and that light is further divided by a 50-50 beamsplitter between the 2 oxygen channels - the pressure channel and the temperature channel. The six white boxes contain the detectors for each of the three channels. The detectors on the left in the photo serve the reference channels and the detectors on the right are for the Fabry-Perots. CO2 is measured by the pair of detectors farthest from the viewer. Pressure via O2 is detected by the central pair of detectors. The closest pair is used to determine temperature via O2.

  19. Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles

    NASA Astrophysics Data System (ADS)

    Hill, Steven C.; Pinnick, Ronald G.; Nachman, Paul; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1995-10-01

    We have assembled an aerosol-fluorescence spectrum analyzer (AFS), which can measure the fluorescence spectra and elastic scattering of airborne particles as they flow through a laser beam. The aerosols traverse a scattering cell where they are illuminated with intense (50 kW/cm 2) light inside the cavity of an argon-ion laser operating at 488 nm. This AFS can obtain fluorescence spectra of individual dye-doped polystyrene microspheres as small as 0.5 mu m in diameter. The spectra obtained from microspheres doped with pink and green-yellow dyes are clearly different. We have also detected the fluorescence spectra of airborne particles (although not single particles) made from various

  20. Downsizing of Georgia Tech's Airborne Fluorescence Spectrometer (AFS) for the Measurement of Nitrogen Oxides

    NASA Technical Reports Server (NTRS)

    Sandholm, Scott

    1998-01-01

    This report addresses the Tropospheric Trace Gas and Airborne Measurements (TTGAMG) endeavors to further downsize and stabilize the Georgia Institute of Technology's Airborne Laser Induced Fluorescence Experiment (GITALIFE). It will mainly address the TTGAMG successes and failures as participants in the summer 1998 Wallops Island test flights on board the P3-B. Due to the restructuring and reorganization of the TTGAMG since the original funding of this grant, some of the objectives and time lines of the deliverables have been changed. Most of these changes have been covered in the preceding annual report. We are anticipating getting back on track with the original proposal's downsizing effort this summer, culminating in the GITALIFE no longer occupying a high bay rack and the loss of several hundred pounds.

  1. Airborne Shaped Sonic Boom Demonstration Pressure Measurements with Computational Fluid Dynamics Comparisons

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Murray, James E.; Purifoy, Dana D.; Graham, David H.; Meredith, Keith B.; Ashburn, Christopher E.; Stucky, Mark

    2005-01-01

    The Shaped Sonic Boom Demonstration project showed for the first time that by careful design of aircraft contour the resultant sonic boom can maintain a tailored shape, propagating through a real atmosphere down to ground level. In order to assess the propagation characteristics of the shaped sonic boom and to validate computational fluid dynamics codes, airborne measurements were taken of the pressure signatures in the near field by probing with an instrumented F-15B aircraft, and in the far field by overflying an instrumented L-23 sailplane. This paper describes each aircraft and their instrumentation systems, the airdata calibration, analysis of the near- and far-field airborne data, and shows the good to excellent agreement between computational fluid dynamics solutions and flight data. The flights of the Shaped Sonic Boom Demonstration aircraft occurred in two phases. Instrumentation problems were encountered during the first phase, and corrections and improvements were made to the instrumentation system for the second phase, which are documented in the paper. Piloting technique and observations are also given. These airborne measurements of the Shaped Sonic Boom Demonstration aircraft are a unique and important database that will be used to validate design tools for a new generation of quiet supersonic aircraft.

  2. The airborne mass spectrometer AIMS - Part 1: AIMS-H2O for UTLS water vapor measurements

    NASA Astrophysics Data System (ADS)

    Kaufmann, Stefan; Voigt, Christiane; Jurkat, Tina; Thornberry, Troy; Fahey, David W.; Gao, Ru-Shan; Schlage, Romy; Schäuble, Dominik; Zöger, Martin

    2016-03-01

    In the upper troposphere and lower stratosphere (UTLS), the accurate quantification of low water vapor concentrations has presented a significant measurement challenge. The instrumental uncertainties are passed on to estimates of H2O transport, cloud formation and the role of H2O in the UTLS energy budget and resulting effects on surface temperatures. To address the uncertainty in UTLS H2O determination, the airborne mass spectrometer AIMS-H2O, with in-flight calibration, has been developed for fast and accurate airborne water vapor measurements. We present a new setup to measure water vapor by direct ionization of ambient air. Air is sampled via a backward facing inlet that includes a bypass flow to assure short residence times (< 0.2 s) in the inlet line, which allows the instrument to achieve a time resolution of ˜ 4 Hz, limited by the sampling frequency of the mass spectrometer. From the main inlet flow, a smaller flow is extracted into the novel pressure-controlled gas discharge ion source of the mass spectrometer. The air is directed through the gas discharge region where ion-molecule reactions lead to the production of hydronium ion clusters, H3O+(H2O)n (n = 0, 1, 2), in a complex reaction scheme similar to the reactions in the D-region of the ionosphere. These ions are counted to quantify the ambient water vapor mixing ratio. The instrument is calibrated during flight using a new calibration source based on the catalytic reaction of H2 and O2 on a Pt surface to generate a calibration standard with well-defined and stable H2O mixing ratios. In order to increase data quality over a range of mixing ratios, two data evaluation methods are presented for lower and higher H2O mixing ratios respectively, using either only the H3O+(H2O) ions or the ratio of all water vapor dependent ions to the total ion current. Altogether, a range of water vapor mixing ratios from 1 to 500 parts per million by volume (ppmv) can be covered with an accuracy between 7 and 15 %. AIMS

  3. The airborne mass spectrometer AIMS - Part 1: AIMS-H2O for UTLS water vapor measurements

    NASA Astrophysics Data System (ADS)

    Kaufmann, S.; Voigt, C.; Jurkat, T.; Thornberry, T.; Fahey, D. W.; Gao, R.-S.; Schlage, R.; Schäuble, D.; Zöger, M.

    2015-12-01

    In the upper troposphere and lower stratosphere (UTLS), the accurate quantification of low water vapor concentrations has presented a significant measurement challenge. The instrumental uncertainties are passed on to estimates of H2O transport, cloud formation and the H2O role in the UTLS energy budget and resulting effects on surface temperatures. To address the uncertainty in UTLS H2O determination, the airborne mass spectrometer AIMS-H2O, with in-flight calibration, has been developed for fast and accurate airborne water vapor measurements. We present the new setup to measure water vapor by direct ionization of ambient air. Air is sampled via a backward facing inlet that includes a bypass flow to assure short residence times (< 0.2 s) in the inlet line, which allows the instrument to achieve a time resolution of ∼ 4 Hz. From the main inlet flow, a smaller flow is extracted into the novel pressure-controlled gas discharge ion source of the mass spectrometer. The air is directed through the gas discharge region where water molecules react to form hydronium ion clusters, H3O+(H2O)n (n= 0, 1, 2), in a complex reaction scheme similar to the reactions in the D-region of the ionosphere. These ions are counted to quantify the ambient water vapor mixing ratio. The instrument is calibrated during flight using a new calibration source based on the catalytic reaction of H2 and O2 on a Pt surface to generate a calibration standard with well defined and stable H2O mixing ratios. In order to increase data quality over a range of mixing ratios, two data evaluation methods are presented for lower and higher H2O mixing ratios respectively, using either only the H3O+(H2O) ions or the ratio of all water vapor dependent ions to the total ion current. Altogether, a range of water vapor mixing ratios from 1 to 500 ppmv (mole ratio, 10-6 mol mol-1) can be covered with an accuracy between 7 and 15 %. AIMS-H2O was deployed on two DLR research aircraft, the Falcon during CONCERT

  4. Rapid assessment of water pollution by airborne measurement of chlorophyll content.

    NASA Technical Reports Server (NTRS)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1971-01-01

    Present techniques of airborne chlorophyll measurement are discussed as an approach to water pollution assessment. The differential radiometer, the chlorophyll correlation radiometer, and an infrared radiometer for water temperature measurements are described as the key components of the equipment. Also covered are flight missions carried out to evaluate the capability of the chlorophyll correlation radiometer in measuring the chlorophyll content in water bodies with widely different levels of nutrients, such as fresh-water lakes of high and low eutrophic levels, marine waters of high and low productivity, and an estuary with a high sediment content. The feasibility and usefulness of these techniques are indicated.

  5. Double-Pulse Two-Micron IPDA Lidar Simulation for Airborne Carbon Dioxide Measurements

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta

    2015-01-01

    An advanced double-pulsed 2-micron integrated path differential absorption lidar has been developed at NASA Langley Research Center for measuring atmospheric carbon dioxide. The instrument utilizes a state-of-the-art 2-micron laser transmitter with tunable on-line wavelength and advanced receiver. Instrument modeling and airborne simulations are presented in this paper. Focusing on random errors, results demonstrate instrument capabilities of performing precise carbon dioxide differential optical depth measurement with less than 3% random error for single-shot operation from up to 11 km altitude. This study is useful for defining CO2 measurement weighting, instrument setting, validation and sensitivity trade-offs.

  6. Coordinated analysis of various auroral measurements made during NASA's 1968 and 1969 airborne auroral expeditions

    NASA Technical Reports Server (NTRS)

    Sivjee, G. G.

    1976-01-01

    Auroral optical measurements made aboard NASA's CV 990 were analyzed. The measurements analyzed form a small part of extensive spectroscopic, photometric and photographic data gathered during the 1968 and 1969 Airborne Auroral Expeditions. Simultaneous particle measurements from ESRO IA satellite were used in the analysis. Information about magnetospheric boundaries, interaction between magnetosheath particles and the terrestrial ionosphere, the polar bulge in helium abundance and excitation mechanisms of the triplet state of atmospheric N2 in auroras was obtained. Further analysis of the data is required to elucidate the relation between 3466 and 5200 A emissions of NI and the excitation of 3726-3729 A emissions from atomic oxygen ions in auroras.

  7. Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriquez, Michael; Allan, Graham R.; Hasselbrack, William E.; Stephen, Mark A.; Abshire, James B.

    2011-01-01

    We report on airborne measurements of atmospheric pressure using a fiber-laser based lidar operating in the oxygen A-band near 765 nm and the integrated path differential absorption measurement technique. Our lidar uses fiber optic technology and non-linear optics to generate tunable laser radiation at 765 nm, which overlaps an absorption line pair in the Oxygen A-band. We use a pulsed time resolved technique, which rapidly steps the laser wavelength across the absorption line pair, a 20 cm telescope and photon counting detector to measure Oxygen concentrations.

  8. Terrestrial and Airborne LIDAR: Comparison of Coincident Datasets for Measuring Ground Deformation and Topographic Change

    NASA Astrophysics Data System (ADS)

    Kayen, R. E.; Stewart, J. P.; Lembo, A. J.; Hu, J.; Davis, C. A.; Hogue, T.; Collins, B. D.; Minasian, D.; Louis-Kayen, N. M.; O'Rourke, T. D.

    2009-05-01

    We present the results from a controlled study on the use of pulse-based terrestrial lidar and phase-based airborne lidar to detect topographic change and ground deformation in areas of earthquake- and storm- induced landslides. Terrestrial and airborne lidar scans were performed at three sites in Los Angeles County and their accuracy was gauged using coincident total station survey measurements as the control. The study was supported by the Multidisciplinary Center for Earthquake Engineering Research (MCEER), the National Science Foundation (NSF), and the Los Angeles Department of Water and Power (LADWP). Horizontal accuracy was evaluated through the measurement of Northing and Easting residuals, standardized to WGS84. Assessment of accuracy was made on lengths and heights of well-defined objects in the lidar scans, such as LADWP buildings and water tanks. The bias and dispersion of lidar height measurements, standardized to NGVD88, were assessed at the Mulholland Tank adjacent to Hollywood Reservoir, the Owens Aqueduct Penstock at Power Plant 2 (PP2) in San Francisquito Canyon, and a flat un-vegetated site near the Los Angeles Reservoir before and after carefully measured trenching. At the vegetated slopes near PP2 and the Hollywood Reservoir site, airborne lidar showed minimal elevation bias and a standard deviation of approximately 50 cm, whereas terrestrial lidar demonstrated large bias and dispersion (on order of meters) due to the inability of ground-based lidar to penetrate heavy vegetation. Both systems were able to assess heights and lengths on unobstructed man made structures at the sub-decimeter scale. At the trench site, airborne lidar showed decimeter scale bias of -23.6 cm for flat ground to -8.7 cm for trenched ground, and dispersion of 5.6 for flat ground to 20 cm for trenched ground. Terrestrial lidar was nearly unbiased (~0 cm for flat or trenched ground) and with very low dispersion of 4.1 and 6.5 cm for flat and trenched ground, respectively

  9. Airborne lidar measurements of El Chichon stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Osborn, M. T.

    1985-01-01

    A NASA Electra airplane, outfitted with a lidar system, was flown in January to February 1983 between the latitudes of 27 deg N and 76 deg N. One of the primary purposes of this mission was to determine the spatial distribution and aerosol characteristics of the El Chichon-produced stratospheric material. This report presents the lidar data from that flight mission. Representative profiles of lidar backscatter ratio, plots of the integrated backscattering function versus latitude, and contours of backscatter mixing ratio versus altitude and latitude are given. It addition, tables containing numerical values of the backscatter ratio and backscattering function versus altitude are supplied for each profile. The largest amount of material produced by the El Chichon eruptions of late March to early April 1982, which was measured by this flight, resided between 35 deg N and 52 deg N. Peak backscatter ratios at a wavelength of 0.6943 micro m decreased from 8 to 10 at the lower latitudes to 3 at the higher latitudes. Backscatter ratio profiles taken while crossing the polar vortex show that the high-altitude material from El Chichon arrived at the north polar region sometime after the winter polar vortex was established. This report presents the results of this mission in a ready-to-use format for atmospheric and climatic studies.

  10. Airborne passive remote sensing of large-scale methane emissions from oil fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Initial results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Kolyer, Richard W.; Thompson, David R.; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Schüttemeyer, Dirk; Fladeland, Matthew; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    On several flights performed over the Kern River, Kern Front, and Poso Creek Oil Fields in California between June 3 and September 4, 2014, in the framework of the CO2 and MEthane Experiment (COMEX) - a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities - the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) detected large-scale, high-concentration, methane plumes. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with a Picarro fast in-situ greenhouse gas (GHG) analyzer (operated by the NASA Ames Research Center, ARC), a 5-hole turbulence probe and an atmospheric measurement package (operated by CIRPAS), measuring aerosols, temperature, dew-point, and other atmospheric parameters. Some of the flights were accompanied by the next generation of the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft (operated by Twin Otter International). Data collected with the in-situ GHG analyzer were used for validation of the MAMAP and AVIRIS-NG remotely sensed data. The in-situ measurements were acquired in vertical cross sections of the discovered plumes at fixed distances downwind of the sources. Emission rates are estimated from both the remote and in-situ data using wind information from the turbulence probe together with ground-based wind data from the nearby airport. Remote sensing and in-situ data as well as initial flux estimates for selected flights will be presented.

  11. Experimental validation of the MODTRAN 5.3 sea surface radiance model using MIRAMER campaign measurements.

    PubMed

    Ross, Vincent; Dion, Denis; St-Germain, Daniel

    2012-05-01

    Radiometric images taken in mid-wave and long-wave infrared bands are used as a basis for validating a sea surface bidirectional reflectance distribution function (BRDF) being implemented into MODTRAN 5 (Berk et al. [Proc. SPIE5806, 662 (2005)]). The images were obtained during the MIRAMER campaign that took place in May 2008 in the Mediterranean Sea near Toulon, France. When atmosphere radiances are matched at the horizon to remove possible calibration offsets, the implementation of the BRDF in MODTRAN produces good sea surface radiance agreement, usually within 2% and at worst 4% from off-glint azimuthally averaged measurements. Simulations also compare quite favorably to glint measurements. The observed sea radiance deviations between model and measurements are not systematic, and are well within expected experimental uncertainties. This is largely attributed to proper radiative coupling between the surface and the atmosphere implemented using the DISORT multiple scattering algorithm.

  12. Passive remote sensing of large-scale methane emissions from Oil Fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Thompson, David R.; Thorpe, Andrew K.; Kolyer, Richard W.; Jonsson, Haflidi; Krings, Thomas; Frankenberg, Christian; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Fladeland, Matthew; Schüttemeyer, Dirk; Burrows, John P.; Bovensmann, Heinrich

    2016-04-01

    The CO2 and MEthane EXperiment (COMEX) was a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities. As a part of this effort, seven flights were performed between June 3 and September 4, 2014 with the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) over the Kern River, Kern Front, and Poso Creek Oil Fields located in California's San Joaquin Valley. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with: a Picarro fast in-situ greenhouse gas (GHG) analyzer operated by the NASA Ames Research Center, ARC; a 5-hole turbulence probe; and an atmospheric measurement package operated by CIRPAS measuring aerosols, temperature, dew-point, and other atmospheric parameters. Three of the flights were accompanied by the Next Generation Airborne Visual InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft. Large-scale, high-concentration CH4 plumes were detected by the MAMAP instrument over the fields and tracked over several kilometers. The spatial distribution of the MAMAP observed plumes was compared to high spatial resolution CH4 anomaly maps derived by AVIRIS-NG imaging spectroscopy data. Remote sensing data collected by MAMAP was used to infer CH4 emission rates and their distributions over the three fields. Aggregated emission estimates for the three fields were compared to aggregated emissions inferred by subsequent airborne in-situ validation measurements collected by the Picarro instrument. Comparison of remote sensing and in-situ flux estimates will be presented, demonstrating the ability of airborne remote sensing data to provide accurate emission estimates for concentrations above the

  13. Portable Airborne Laser System Measures Forest-Canopy Height

    NASA Technical Reports Server (NTRS)

    Nelson, Ross

    2005-01-01

    (PALS) is a combination of laser ranging, video imaging, positioning, and data-processing subsystems designed for measuring the heights of forest canopies along linear transects from tens to thousands of kilometers long. Unlike prior laser ranging systems designed to serve the same purpose, the PALS is not restricted to use aboard a single aircraft of a specific type: the PALS fits into two large suitcases that can be carried to any convenient location, and the PALS can be installed in almost any local aircraft for hire, thereby making it possible to sample remote forests at relatively low cost. The initial cost and the cost of repairing the PALS are also lower because the PALS hardware consists mostly of commercial off-the-shelf (COTS) units that can easily be replaced in the field. The COTS units include a laser ranging transceiver, a charge-coupled-device camera that images the laser-illuminated targets, a differential Global Positioning System (dGPS) receiver capable of operation within the Wide Area Augmentation System, a video titler, a video cassette recorder (VCR), and a laptop computer equipped with two serial ports. The VCR and computer are powered by batteries; the other units are powered at 12 VDC from the 28-VDC aircraft power system via a low-pass filter and a voltage converter. The dGPS receiver feeds location and time data, at an update rate of 0.5 Hz, to the video titler and the computer. The laser ranging transceiver, operating at a sampling rate of 2 kHz, feeds its serial range and amplitude data stream to the computer. The analog video signal from the CCD camera is fed into the video titler wherein the signal is annotated with position and time information. The titler then forwards the annotated signal to the VCR for recording on 8-mm tapes. The dGPS and laser range and amplitude serial data streams are processed by software that displays the laser trace and the dGPS information as they are fed into the computer, subsamples the laser range and

  14. Development of airborne eddy-correlation flux measurement capabilities for reactive oxides of nitrogen

    NASA Technical Reports Server (NTRS)

    Bradshaw, John (Principal Investigator); Zheng, Xiaonan; Sandholm, Scott T.

    1996-01-01

    This research is aimed at producing a fundamental new research tool for characterizing the source strength of the most important compound controlling the hemispheric and global scale distribution of tropospheric ozone. Specifically, this effort seeks to demonstrate the proof-of-concept of a new general purpose laser-induced fluorescence based spectrometer for making airborne eddy-correlation flux measurements of nitric oxide (NO) and other reactive nitrogen compounds. The new all solid-state laser technology being used in this advanced sensor will produce a forerunner of the type of sensor technology that should eventually result in highly compact operational systems. The proof-of-concept sensor being developed will have over two orders-of-magnitude greater sensitivity than present-day instruments. In addition, this sensor will offer the possibility of eventual extension to airborne eddy-correlation flux measurements of nitrogen dioxide (NO2) and possibly other compounds, such as ammonia (NH3), peroxyradicals (HO2), nitrateradicals (NO3) and several iodine compounds (e.g., I and IO). Demonstration of the new sensor's ability to measure NO fluxes will occur through a series of laboratory and field tests. This proof-of-concept demonstration will show that not only can airborne fluxes of important ultra-trace compounds be made at the few parts-per-trillion level, but that the high accuracy/precision measurements currently needed for predictive models can also. These measurement capabilities will greatly enhance our current ability to quantify the fluxes of reactive nitrogen into the troposphere and significantly impact upon the accuracy of predictive capabilities to model O3's distribution within the remote troposphere. This development effort also offers a timely approach for producing the reactive nitrogen flux measurement capabilities that will be needed by future research programs such as NASA's planned 1999 Amazon Biogeochemistry and Atmospheric Chemistry

  15. Investigating seasonal methane emissions in Northern California using airborne measurements and inverse modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew S.; Xi, Xin; Jeong, Seongeun; Yates, Emma L.; Iraci, Laura T.; Tanaka, Tomoaki; Loewenstein, Max; Tadić, Jovan M.; Fischer, Marc L.

    2016-11-01

    Seasonal methane (CH4) emissions in Northern California are evaluated during this study by using airborne measurement data and inverse model simulations. This research applies Alpha Jet Atmospheric eXperiment (AJAX) measurements obtained during January-February 2013, July 2014, and October-November 2014 over the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV) in order to constrain seasonal CH4 emissions in Northern California. The California Greenhouse Gas Emissions Measurement (CALGEM) a priori emission inventory was applied in conjunction with the Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport model and inverse modeling techniques to optimize CH4 emissions. Comparing model-predicted CH4 mixing ratios with airborne measurements, we find substantial underestimates suggesting that CH4 emissions were likely larger than the year 2008 a priori CALGEM emission inventory in Northern California. Using AJAX measurements to optimize a priori emissions resulted in CH4 flux estimates from the SFBA/SJV of 1.77 ± 0.41, 0.83 ± 0.31, and 1.06 ± 0.39 Tg yr-1 when using winter, summer, and fall flight data, respectively. Averaging seasonal a posteriori emission estimates (weighted by posterior uncertainties) results in SFBA/SJV annual CH4 emissions of 1.28 ± 0.38 Tg yr-1. A posteriori uncertainties are reduced more effectively in the SFBA/SJV region compared to state-wide values indicating that the airborne measurements are most sensitive to emissions in this region. A posteriori estimates during this study suggest that dairy livestock was the source with the largest increase relative to the a priori CALGEM emission inventory during all seasons.

  16. On the impact of a refined stochastic model for airborne LiDAR measurements

    NASA Astrophysics Data System (ADS)

    Bolkas, Dimitrios; Fotopoulos, Georgia; Glennie, Craig

    2016-09-01

    Accurate topographic information is critical for a number of applications in science and engineering. In recent years, airborne light detection and ranging (LiDAR) has become a standard tool for acquiring high quality topographic information. The assessment of airborne LiDAR derived DEMs is typically based on (i) independent ground control points and (ii) forward error propagation utilizing the LiDAR geo-referencing equation. The latter approach is dependent on the stochastic model information of the LiDAR observation components. In this paper, the well-known statistical tool of variance component estimation (VCE) is implemented for a dataset in Houston, Texas, in order to refine the initial stochastic information. Simulations demonstrate the impact of stochastic-model refinement for two practical applications, namely coastal inundation mapping and surface displacement estimation. Results highlight scenarios where erroneous stochastic information is detrimental. Furthermore, the refined stochastic information provides insights on the effect of each LiDAR measurement in the airborne LiDAR error budget. The latter is important for targeting future advancements in order to improve point cloud accuracy.

  17. Pressure Measurements Using an Airborne Differential Absorption Lidar. Part 1; Analysis of the Systematic Error Sources

    NASA Technical Reports Server (NTRS)

    Flamant, Cyrille N.; Schwemmer, Geary K.; Korb, C. Laurence; Evans, Keith D.; Palm, Stephen P.

    1999-01-01

    Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines.

  18. Airborne Measurements of Atmospheric Methane Column Abundance Made Using a Pulsed IPDA Lidar

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Ramanathan, Anamd; Dawsey, Martha; Mao, Jianping; Kawa, Randolph; Abshire, James B.

    2012-01-01

    We report airborne measurements of the column abundance of atmospheric methane made over an altitude range of 3-11 km using a direct detection IPDA lidar with a pulsed laser emitting at 1651 nm. The laser transmitter was a tunable, seeded optical parametric amplifier (OPA) pumped by a Nd:YAG laser and the receiver used a photomultiplier detector and photon counting electronics. The results follow the expected changes with aircraft altitude and the measured line shapes and optical depths show good agreement with theoretical calculations.

  19. Development of an Airborne Sea Ice Thickness Measurement System and Field Test Results

    DTIC Science & Technology

    1989-12-01

    Kovacs and J . Scott Holladay PJTIS CRA&I DTIC TAB Unannronced JustiCaton By Distribution I AvaIabilit Cordes AvjII d-dlc, Dist Prepared for U.S...Development of an Airborne Sea Ice Thickness Measurement System and Field Test Results 12. PERSONAL AUTHOR(S) Kovacs, Austin and Holladay, J . Scott 13a...Thickness Measurement System and Field Test Results AUSTIN KOVACS AND J . SCOTT HOLLADAY INTRODUCTION was determined to be desirable. The goals of the 1986-87

  20. Comparison of in situ stratospheric ozone measurements obtained during the MAP/GLOBUS 1983 campaign

    NASA Technical Reports Server (NTRS)

    Aimedieu, P.; Matthews, W. A.; Attmannspacher, W.; Hartmannsgruber, R.; Cisneros, J.; Komhyr, W.; Robbins, D. E.

    1987-01-01

    Data from five types of in situ ozone sensors flown aboard ballons during the MAP/GLOBUS 1983 campaign were found to agree to within 5 percent uncertainty throughout the middle atmosphere. A description of the individual techniques and the error budget is given in addition to explanations for the discrepancies found at higher and lower altitudes. In comparison to UV photometry values, results from two electrochemical techniques were found to be greater in the lower atmosphere and to be lower in the upper atmosphere. In general, olefin chemiluminescence results were within 8 percent of the UV photometry results. Ozone column contents measured by the indigo colorization technique for two altitude regions of about 6 km height were greater than measurements from other techniques by 52 and 17 percent, respectively.

  1. Recent Surface Reflectance Measurement Campaigns with Emphasis on Best Practices, SI Traceability and Uncertainty Estimation

    NASA Technical Reports Server (NTRS)

    Helder, Dennis; Thome, Kurtis John; Aaron, Dave; Leigh, Larry; Czapla-Myers, Jeff; Leisso, Nathan; Biggar, Stuart; Anderson, Nik

    2012-01-01

    A significant problem facing the optical satellite calibration community is limited knowledge of the uncertainties associated with fundamental measurements, such as surface reflectance, used to derive satellite radiometric calibration estimates. In addition, it is difficult to compare the capabilities of calibration teams around the globe, which leads to differences in the estimated calibration of optical satellite sensors. This paper reports on two recent field campaigns that were designed to isolate common uncertainties within and across calibration groups, particularly with respect to ground-based surface reflectance measurements. Initial results from these efforts suggest the uncertainties can be as low as 1.5% to 2.5%. In addition, methods for improving the cross-comparison of calibration teams are suggested that can potentially reduce the differences in the calibration estimates of optical satellite sensors.

  2. Airborne FTIR remote sensing of methane from the FAAM aircraft

    NASA Astrophysics Data System (ADS)

    Allen, Grant; Illingworth, Samuel; Mead, Iq; Harlow, Chawn; Newman, Stuart; Vance, Alan

    2015-04-01

    This paper presents the first campaign results for retrievals of methane (and other gases and thermodynamic parameters) from the Airborne Research Interferometer Evaluation System (ARIES) FTIR instrument on the UK Facility for Airborne Atmospheric Measurement (FAAM) BAE-146 aircraft. The ARIES is a thermal infrared BOMEM FTS tailored for airborne use and has an unapodised spectral resolution of 1 cm-1. It was developed as an IASI analogue for radiometric calibration of its satellite countepart. We will discuss the technical and theoretical assessment of the ARIES retrieval processor and present retrievals and interpretation of remote sampling over several years of campaign data in the tropics, around the UK, and in the high Arctic, during the Jaivex, GAUGE and MAMM campaigns respectively. Validation studies against airborne in situ data have shown that ARIES can achieve accuracties of ~2% in partial column retrievals of methane, while providing simultaneous information on a wide range of other trace gases typical of FTIR measurement. The ARIES has now beein in operation on the FAAM aircraft for a range of campaigns around the world and represents a useful validation bridge between high precision in situ point measurements (on the ground and by aircraft) and satellite remote sensing.

  3. Comparison of Retracking Algorithms Using Airborne Radar and Laser Altimeter Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-01-01

    This paper compares four continental ice sheet radar altimeter retracking algorithms using airborne radar and laser altimeter data taken over the Greenland ice sheet in 1991. The refurbished Advanced Application Flight Experiment (AAFE) airborne radar altimeter has a large range window and stores the entire return waveform during flight. Once the return waveforms are retracked, or post-processed to obtain the most accurate altitude measurement possible, they are compared with the high-precision Airborne Oceanographic Lidar (AOL) altimeter measurements. The AAFE waveforms show evidence of varying degrees of both surface and volume scattering from different regions of the Greenland ice sheet. The AOL laser altimeter, however, obtains a return only from the surface of the ice sheet. Retracking altimeter waveforms with a surface scattering model results in a good correlation with the laser measurements in the wet and dry-snow zones, but in the percolation region of the ice sheet, the deviation between the two data sets is large due to the effects of subsurface and volume scattering. The Martin et al model results in a lower bias than the surface scattering model, but still shows an increase in the noise level in the percolation zone. Using an Offset Center of Gravity algorithm to retrack altimeter waveforms results in measurements that are only slightly affected by subsurface and volume scattering and, despite a higher bias, this algorithm works well in all regions of the ice sheet. A cubic spline provides retracked altitudes that agree with AOL measurements over all regions of Greenland. This method is not sensitive to changes in the scattering mechanisms of the ice sheet and it has the lowest noise level and bias of all the retracking methods presented.

  4. Comparing modelled and measured ice crystal concentrations in orographic clouds during the INUPIAQ campaign

    NASA Astrophysics Data System (ADS)

    Farrington, Robert; Connolly, Paul J.; Lloyd, Gary; Bower, Keith N.; Flynn, Michael J.; Gallagher, Martin W.; Field, Paul R.; Dearden, Chris; Choularton, Thomas W.; Hoyle, Chris

    2016-04-01

    At temperatures between -35°C and 0°C, the presence of insoluble aerosols acting as ice nuclei (IN) is the only way in which ice can nucleate under atmospheric conditions. Previous field and laboratory campaigns have suggested that mineral dust present in the atmosphere act as IN at temperatures warmer than -35°C (e.g. Sassen et al. 2003); however, the cause of ice nucleation at temperatures greater than -10°C is less certain. In-situ measurements of aerosol properties and cloud micro-physical processes are required to drive the improvement of aerosol-cloud processes in numerical models. As part of the Ice NUcleation Process Investigation and Quantification (INUPIAQ) project, two field campaigns were conducted in the winters of 2013 and 2014 (Lloyd et al. 2014). Both campaigns included measurements of cloud micro-physical properties at the summit of Jungfraujoch in Switzerland (3580m asl), using cloud probes, including the Two-Dimensional Stereo Hydrometeor Spectrometer (2D-S), the Cloud Particle Imager 3V (CPI-3V) and the Cloud Aerosol Spectrometer with Depolarization (CAS-DPOL). The first two of these probes measured significantly higher ice number concentrations than those observed in clouds at similar altitudes from aircraft. In this contribution, we assess the source of the high ice number concentrations observed by comparing in-situ measurements at Jungfraujoch with WRF simulations applied to the region around Jungfraujoch. During the 2014 field campaign the model simulations regularly simulated ice particle concentrations that were 3 orders of magnitude per litre less than the observed ice number concentration, even taking into account the aerosol properties measured upwind. WRF was used to investigate a number of potential sources of the high ice crystal concentrations, including: an increased ice nucleating particle (INP) concentration, secondary ice multiplication and the advection of surface ice or snow crystals into the clouds. It was found that the

  5. Sources of methane and nitrous oxide in California's Central Valley estimated through direct airborne flux and positive matrix factorization source apportionment of groundbased and regional tall tower measurements

    NASA Astrophysics Data System (ADS)

    Guha, Abhinav

    Methane (CH4) and nitrous oxide (N2O) are two major greenhouse gases that contribute significantly to the increase in anthropogenic radiative-forcing causing perturbations to the earth's climate system. In a watershed moment in the state's history of environmental leadership and commitment, California, in 2006, opted for sharp reductions in their greenhouse gas (GHG) emissions and adopted a long-term approach to address climate change that includes regulation of emissions from individual emitters and source categories. There are large CH4 and N2O emissions sources in the state, predominantly in the agricultural and waste management sector. While these two gases account for < 10% of total annual greenhouse gas emissions of the state, large uncertainties exist in their `bottom-up' accounting in the state GHG inventory. Additionally, an increasing number of `top-down' studies based on ambient observations point towards underestimation of their emissions in the inventory. Three intensive field observation campaigns that were spatially and temporally diverse took place between 2010 and 2013 in the Central Valley of California where the largest known sources of CH4 and N2O (e.g. agricultural systems and dairies) and potentially significant CH4 sources (e.g. oil and gas extraction) are located. The CalNex (California Nexus - Research at the Nexus of Air Quality and Climate Change) field campaign during summer 2010 (May 15 - June 30) took place in the urban core of Bakersfield in the southern San Joaquin Valley, a city whose economy is built around agriculture and the oil and gas industry. During summer of 2011, airborne measurements were performed over a large spatial domain, all across and around the Central Valley as part of the CABERNET (California Airborne BVOC Emission Research in Natural Ecosystem Transects) study. Next, a one-year continuous field campaign (WGC 2012-13, June 2012 - August 2013) was conducted at the Walnut Grove tall tower near the Sacramento

  6. Multiangular L-band Datasets for Soil Moisture and Sea Surface Salinity Retrieval Measured by Airborne HUT-2D Synthetic Aperture Radiometer

    NASA Astrophysics Data System (ADS)

    Kainulainen, J.; Rautiainen, K.; Seppänen, J.; Hallikainen, M.

    2009-04-01

    SMOS is the European Space Agency's next Earth Explorer satellite due for launch in 2009. It aims for global monitoring of soil moisture and ocean salinity utilizing a new technology concept for remote sensing: two-dimensional aperture synthesis radiometry. The payload of SMOS is Microwave Imaging Radiometer by Aperture Synthesis, or MIRAS. It is a passive instrument that uses 72 individual L-band receivers for measuring the brightness temperature of the Earth. From each acquisition, i.e. integration time or snapshot, MIRAS provides two-dimensional brightness temperature of the scene in the instrument's field of view. Thus, consecutive snapshots provide multiangular measurements of the target once the instrument passes over it. Depending on the position of the target in instrument's swath, the brightness temperature of the target at incidence angles from zero up to 50 degrees can be measured with one overpass. To support the development MIRAS instrument, its calibration, and soil moisture and sea surface salinity retrieval algorithm development, Helsinki University of Technology (TKK) has designed, manufactured and tested a radiometer which operates at L-band and utilizes the same two-dimensional methodology of interferometery and aperture synthesis as MIRAS does. This airborne instrument, called HUT-2D, was designed to be used on board the University's research aircraft. It provides multiangular measurements of the target in its field of view, which spans up to 30 degrees off the boresight of the instrument, which is pointed to the nadir. The number of independent measurements of each target point depends on the flight speed and altitude. In addition to the Spanish Airborne MIRAS demonstrator (AMIRAS), HUT-2D is the only European airborne synthetic aperture radiometer. This paper presents the datasets and measurement campaigns, which have been carried out using the HUT-2D radiometer and are available for the scientific community. In April 2007 HUT-2D participated

  7. Atmospheric Radiation Measurement (ARM) Data from Manacapuru, Brazil for the Green Ocean Amazon (GOAMAZON) Field Campaign

    DOE Data Explorer

    The Amazon rain forest in Brazil is the largest broadleaf forest in the world, covering 7 million square kilometers of the Amazon Basin in South America. It represents over half of the planet’s remaining rain forests, and comprises the most biodiverse tract of tropical rain forest on the planet. Due to the sheer size of the Amazon rain forest, the area has a strong impact on the climate in the Southern Hemisphere. To understand the intricacies of the natural state of the Amazon rain forest, the Green Ocean Amazon, or GOAMAZON, field campaign is a two-year scientific collaboration among U.S. and Brazilian research organizations. They are conducting a variety of different experiments with dozens of measurement tools, using both ground and aerial instrumentation, including the ARM Aerial Facility's G-1 aircraft. For more information on the holistic view of the campaign, see the Department of Energy’s GOAMAZON website. As a critical component of GOAMAZON, the ARM Mobile Facility (AMF) will obtain measurements near Manacapuru, south of Manaus, Brazil, from January to December 2014. The city of Manaus, with a population of 3 million, uses high-sulfur oil as their primary source of electricity. The AMF site is situated to measure the atmospheric extremes of a pristine atmosphere and the nearby cities’ pollution plume, as it regularly intersects with the site. Along with other instrument systems located at the Manacapuru site, this deployment will enable scientists to study how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity.

  8. Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5 km during the SEAC4RS campaign

    NASA Astrophysics Data System (ADS)

    Shingler, Taylor; Crosbie, Ewan; Ortega, Amber; Shiraiwa, Manabu; Zuend, Andreas; Beyersdorf, Andreas; Ziemba, Luke; Anderson, Bruce; Thornhill, Lee; Perring, Anne E.; Schwarz, Joshua P.; Campazano-Jost, Pedro; Day, Douglas A.; Jimenez, Jose L.; Hair, Johnathan W.; Mikoviny, Tomas; Wisthaler, Armin; Sorooshian, Armin

    2016-04-01

    In situ aerosol particle measurements were conducted during 21 NASA DC-8 flights in the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys field campaign over the United States, Canada, Pacific Ocean, and Gulf of Mexico. For the first time, this study reports rapid, size-resolved hygroscopic growth and real refractive index (RI at 532 nm) data between the surface and upper troposphere in a variety of air masses including wildfires, agricultural fires, biogenic, marine, and urban outflow. The Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP) quantified size-resolved diameter growth factors (GF = Dp,wet/Dp,dry) that are used to infer the hygroscopicity parameter κ. Thermokinetic simulations were conducted to estimate the impact of partial particle volatilization within the DASH-SP across a range of sampling conditions. Analyses of GF and RI data as a function of air mass origin, dry size, and altitude are reported, in addition to κ values for the inorganic and organic fractions of aerosol. Average RI values are found to be fairly constant (1.52-1.54) for all air mass categories. An algorithm is used to compare size-resolved DASH-SP GF with bulk scattering f(RH = 80%) data obtained from a pair of nephelometers, and the results show that the two can only be reconciled if GF is assumed to decrease with increasing dry size above 400 nm (i.e., beyond the upper bound of DASH-SP measurements). Individual case studies illustrate variations of hygroscopicity as a function of dry size, environmental conditions, altitude, and composition.

  9. Characterization of shallow marine convection in subtropical regions by airborne and spaceborne lidar measurements

    NASA Astrophysics Data System (ADS)

    Gross, Silke; Gutleben, Manuel; Schäfler, Andreas; Kiemle, Christoph; Wirth, Martin; Hirsch, Lutz; Ament, Felix

    2016-04-01

    One of the biggest challenges in present day climate research is still the quantification of cloud feedbacks in climate models. Especially the feedback from marine cumulus clouds in the boundary layer with maximum cloud top heights of 4 km introduces large uncertainties in climate sensitivity. Therefore a better understanding of these shallow marine clouds, as well as of their interaction with aerosols and the Earth's energy budget is demanded. To improve our knowledge of shallow marine cumulus convection, measurements onboard the German research aircraft HALO were performed during the NARVAL (Next-generation Aircraft Remote-sensing for Validation studies) mission in December 2013. During NARVAL an EarthCARE equivalent remote sensing payload, with the DLR airborne high spectral resolution and differential absorption lidar system WALES and the cloud radar of the HAMP (HALO Microwave Package) as its core instrumentation, was deployed. To investigate the capability of spaceborne lidar measurements for this kind of study several CALIOP underflights were performed. We will present a comparison of airborne and spaceborne lidar measurements, and we will present the vertical and horizontal distribution of the clouds during NARVAL based on lidar measurements. In particular we investigate the cloud top distribution and the horizontal cloud and cloud gap length. Furthermore we study the representativeness of the NARVAL data by comparing them to and analysing a longer time series and measurements at different years and seasons.

  10. The airborne Laser Absorption Spectrometer - A new instrument of remote measurement of atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.; Menzies, R. T.

    1978-01-01

    The Laser Absorption Spectrometer is a portable instrument developed by JPL for remote measurement of trace gases from an aircraft platform. It contains two carbon dioxide lasers, two optical heterodyne receivers, appropriate optics to aim the lasers at the ground and detect the backscattered energy, and signal processing and recording electronics. Operating in the differential-absorption mode, it is possible to monitor one atmospheric gas at a time and record the data in real time. The system can presently measure ozone, ethylene, water vapor, and chlorofluoromethanes with high sensitivity. Airborne measurements were made in early 1977 from the NASA/JPL twin-engine Beechcraft and in May 1977 from the NASA Convair 990 during the ASSESS-II Shuttle Simulation Study. These flights resulted in measurements of ozone concentrations in the lower troposphere which were compared with ground-based values provided by the Air Pollution Control District. This paper describes the details of the instrument and results of the airborne measurements.

  11. Airborne Lidar measurements of the atmospheric pressure profile with tunable Alexandrite lasers

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Milrod, J.; Walden, H.

    1986-01-01

    The first remote measurements of the atmospheric pressure profile made from an airborne platform are described. The measurements utilize a differential absorption lidar and tunable solid state Alexandrite lasers. The pressure measurement technique uses a high resolution oxygen A band where the absorption is highly pressure sensitive due to collision broadening. Absorption troughs and regions of minimum absorption were used between pairs of stongly absorption lines for these measurements. The trough technique allows the measurement to be greatly desensitized to the effects of laser frequency instabilities. The lidar system was set up to measure pressure with the on-line laser tuned to the absorption trough at 13147.3/cm and with the reference laser tuned to a nonabsorbing frequency near 13170.0/cm. The lidar signal returns were sampled with a 200 range gate (30 vertical resoltion) and averaged over 100 shots.

  12. On-Road Measurement of Vehichle VOC Emission Measurements During the 2003 Mexico City Metropolitan Area Field Campaign

    NASA Astrophysics Data System (ADS)

    Knighton, W. B.; Rogers, T.; Grimsrud, E.; Herndon, S.; Allwine, E.; Lamb, B.; Velasco, E.; Westberg, H.

    2004-12-01

    In the spring of 2003 (April 1-May 5), a multinational team of experts conducted an intensive, five-week field campaign in the Mexico City Metropolitan Area (MCMA). The overall goal of this effort was to contribute to the understanding of the air quality problem in megacities. As part of the campaign the Aerodyne Mobile Laboratory was equipped with state-of-the-art analytical instruments and deployed for measuring a variety of vehicle emissions in real time including CO2, NO2, NH3, HCHO, VOC's and volatile (at 600 °C) aerosol. The on-road measurement of vehicle VOC emissions were performed using a commercial version of the IONICON PTR-MS modified to operate onboard the mobile lab platform. A summary of the PTR-MS results from these and supporting laboratory experiments will be presented and discussed. In particular, selected chase events will be presented to illustrate the utility of the PTR-MS technique for characterizing vehicle VOC emission profiles in real time. VOC emission profiles for different vehicle engine types which include gasoline, diesel and compressed natural gas will be discussed and compared to the measurements from other high time response instruments deployed on the Aerodyne mobile van.

  13. Remote and ground-based measurements of ozone profiles during the MAP/GLOBUS 1983 campaign

    NASA Astrophysics Data System (ADS)

    de La Noe, J.; Brillet, J.; Turati, C.; Megie, G.; Godin, S.

    1987-05-01

    Ozone observations were carried out during the MAP/GLOBUS campaign in September 1983 by five ground-based instruments located either at the Observatoire de Haute-Provence (the Dobson spectrophotometer, the IR SISAM spectrometer, and the UV Lidar) the Bordeaux Observatory (a microwave spectrometer), or at the Biscarosse station (another Dobson spectrophotometer). A balloon-borne microwave spectrometer was flown from Aire-sur-l'Adour on September 28. A brief description of the instruments is given. Results obtained by the different instruments are also given. Their comparison is done first with respect to the ozone content over the whole month of September, then within layers 4, 5 and part of 6 for which Brewer-Mast sonde measurements were included, and finally for vertical profiles at altitudes higher than 30 km. Most comparisons show a good agreement, in general within 5 percent on the average.

  14. Comparison of airborne and terrestrial gamma spectrometry measurements - evaluation of three areas in southern Sweden.

    PubMed

    Kock, Peder; Samuelsson, Christer

    2011-06-01

    The Geological Survey of Sweden (SGU) has been conducting airborne gamma spectrometry measurements of natural radioactivity in Sweden for more than 40 years. Today, the database covers about 80% of the country's land surface. This article explores the first step of putting this data into use in radioactive source search at ground level. However, in order to be able to use the airborne background measurements at ground level, SGU data must be validated against terrestrial data. In this work, we compare the SGU data with data measured by a portable backpack system. This is done for three different areas in southern Sweden. The statistical analysis shows that a linear relationship and a positive correlation exist between the air and ground data. However, this linear relationship could be revealed only when the region possessed large enough variations in areal activity. Furthermore, the activity distributions measured show good agreement to those of SGU. We conclude that the SGU database could be used for terrestrial background assessment, given that a linear transfer function is established.

  15. Distance measurement to high remote targets based on the airborne chaotic laser

    NASA Astrophysics Data System (ADS)

    Kou, Renke; Wang, Haiyan; Wu, Xueming

    2016-10-01

    According to the characteristics of chaotic laser, which has ability of novel anti-jamming, high bandwidth and detecting distance of the movement target to the millimeter precision, a modeling method of using airborne chaotic laser system to detect distance of high remote targets is proposed for the first time. The characteristics of chaotic laser and principle of interferometry distance were analyzed and the model of airborne chaotic laser ranging is established. Meanwhile, the influence of detection accuracy, which inducted by the main peak width of chaotic laser and the jamming signal is analyzed. According to the results of simulation analysis, we can get conclusions that the main factors of affecting the distance measurement are transmitted power, receiving sensitivity, and various losses of transmission medium. Autocorrelation characteristic of chaotic signal can also affect the dynamic range of the whole system. The main peak width of chaotic laser is the main factor of influencing the accuracy of measurement. However, the jamming signal affect distance measuring range and accuracy of measurement little. Finally, the model's effectiveness is proved by comparing the experience data and simulation data.

  16. Laser measurement of extinction coefficients of highly absorbing liquids. [airborne oil spill monitoring application

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Kincaid, J. S.

    1980-01-01

    A coaxial dual-channel laser system has been developed for the measurement of extinction coefficients of highly absorbing liquids. An empty wedge-shaped sample cell is first translated laterally through a He-Ne laser beam to measure the differential thickness using interference fringes in reflection. The wedge cell is carefully filled with the oil sample and translated through the coaxially positioned dye laser beam for the differential attenuation or extinction measurement. Optional use of the instrumentation as a single-channel extinction measurement system and also as a refractometer is detailed. The system and calibration techniques were applied to the measurement of two crude oils whose extinction values were required to complete the analysis of airborne laser data gathered over four controlled spills.

  17. Measurements of ocean wave spectra and modulation transfer function with the airborne two frequency scatterometer

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Johnson, J. W.

    1984-01-01

    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  18. Measurement of backscattering from sea with an airborne radar at L band

    NASA Astrophysics Data System (ADS)

    Luo, Xianyun; Zhang, Zhongzhi; Yin, Zhiying; Sun, Fang; Kang, Shifeng; Wang, Laibu; Yu, Yunchao; Wen, Fangru

    1998-08-01

    Measurements of electromagnetic backscattering from sea surface at L band have been done with airborne side-looking radar system. Several flights are made for various sea states. Coherent radar data ta HH polarization and some truth data such as wave height, wind velocity and direction, temperature of sea water are recorded. Corner reflectors and active backscattering coefficient can be derived from the radar data and the cinematic data. The result presented in this paper include scattering coefficient and statistical analysis of radar echo with typical probability distribution functions such as Rayleigh, Weibull, Log-normal and K distribution.

  19. Airborne urban/suburban noise measurements at 121.5/243 MHz

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1977-01-01

    An airborne measurement of the terrestrial, radio-frequency (RF) noise environment over U.S. metropolitan urban/suburban areas has been made at the 121.5/243 MHz emergency-distress search and rescue (S&R) communications frequencies. Profile contour plots of antenna-noise temperature for U.S.A. East Coast and mid-west urban/suburban areas is presented for daytime/nighttime observations at 121.5/243 MHz. These plots are helpful for compiling radio-noise environment maps; in turn useful for designing satellite-aided, emergency-distress search and rescue communication systems.

  20. Prediction and performance measures of atmospheric disturbances on an airborne imaging platform

    NASA Astrophysics Data System (ADS)

    Dayton, David C.; Gonglewski, John D.; Martin, Jeffrey B.; Kovacs, Mark A.; Cardani, Joseph C.; Maia, Francisco; Aflalo, Tyson; Shilko, Michael L., Sr.

    2004-02-01

    A series of airborne imaging experiments have been conducted on the island of Maui. The imaging platform was a Twin Otter aircraft, which circled ground target sites. The typical platform altitude was 3000 meters, with a slant range to the target of 9000 meters. This experiment was performed during the day using solar illuminated target buildings, and at night with spotlights used to simulate point sources. Imaging system performance predictions were calculated using standard atmospheric turbulence models, and aircraft boundary layer models. Several different measurement approaches were then used to estimate the actual system performance, and make comparisons with the calculations.

  1. Measurement comparison of gas phase pollutants during field campaign in Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Shao, M.; Zeng, L.; Hu, M.; Zhang, Y.

    2005-12-01

    Pearl River delta, an economically developed region in Guangdong province China, has been suffering from serious ground-level ozone pollution. To understand the formation mechanisms of the photochemical smog in this area, a field measurement campaign involving 12 separate institutes, was performed from Oct. 1 to Nov. 4, 2004. Measurements of gas phase pollutants, performed by the different research groups using several different methods, were inter-compared. Ambient SO2, O3 and NO were measured by Peking University and Hong Kong Polytechnic University using the same methods: chemiluminescence for NOx, pulsed fluorescence for SO2, and UV photometric method for O3. VOC speciation was accomplished using canister sampling followed by GC-MS measurement by Peking University and on-line GC-FID technology by National Central University in Taiwan. Ambient concentrations of HONO, the photolysis of which is the most important source of OH radical in Pearl River delta, was measured by two wet chemical methods: one from Energy Research Foundation of the Netherlands and one developed in Peking University. Based on these inter-comparisons, the co-variation of O3, NO and VOCs at an urban site and one rural site in Pearl River delta and estimates of the relative contributions to OH production from photolysis of O3, HONO and HCHO will be presented.

  2. The DROPPS/MIDAS Campaign Neutral Atmosphere Measurements and the Occurrence of PMSE and NLC

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Schauer, A. G.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Measurements of the neutral atmosphere and their relationship to electrodynamic conditions in the mesosphere have been of interest for many years. Inflatable falling sphere measurements along with electrodynamic measurements were obtained in conjunction with the occurrence of PMSE and NLC during the DROPPS/MIDAS Campaign conducted in July 1999 from Andenes Rocket Range, Norway. The inflatable failing sphere measurements in conjunction with a PMSE event on 5-6 July and with a NLC event on 14 July are used to infer thermal advection and its influence on the clouds' maintenance. Hodograph analysis, an early tropospheric tool used by analyst and forecasters, will be used to determine the magnitude and direction of thermal advection from measured wind data. Analysis of the wind structure through the use of hodographs and some assumptions can determine thermal advection, wind shear, and possible vertical motion. Changes in the temperature structure between allied observations were subtle which may be explained by advection. Because of meteorological instabilities in the mesosphere it is possible that hodograph analysis may not fully work. It is our intention to show that such analysis has value and has a place in the mesosphere.

  3. The marine atmospheric boundary layer under strong wind conditions: Organized turbulence structure and flux estimates by airborne measurements

    NASA Astrophysics Data System (ADS)

    Brilouet, Pierre-Etienne; Durand, Pierre; Canut, Guylaine

    2017-02-01

    During winter, cold air outbreaks take place in the northwestern Mediterranean sea. They are characterized by local strong winds (Mistral and Tramontane) which transport cold and dry continental air across a warmer sea. In such conditions, high values of surface sensible and latent heat flux are observed, which favor deep oceanic convection. The HyMeX/ASICS-MED field campaign was devoted to the study of these processes. Airborne measurements, gathered in the Gulf of Lion during the winter of 2013, allowed for the exploration of the mean and turbulent structure of the marine atmospheric boundary layer (MABL). A spectral analysis based on an analytical model was conducted on 181 straight and level runs. Profiles of characteristic length scales and sharpness parameter of the vertical wind spectrum revealed larger eddies along the mean wind direction associated with an organization of the turbulence field into longitudinal rolls. These were highlighted by boundary layer cloud bands on high-resolution satellite images. A one-dimensional description of the vertical exchanges is then a tricky issue. Since the knowledge of the flux profile throughout the entire MABL is essential for the estimation of air-sea exchanges, a correction of eddy covariance turbulent fluxes was developed taking into account the systematic and random errors due to sampling and data processing. This allowed the improvement of surface fluxes estimates, computed from the extrapolation of the stacked levels. A comparison between those surface fluxes and bulk fluxes computed at a moored buoy revealed considerable differences, mainly regarding the latent heat flux under strong wind conditions.

  4. Toward the Direct Measurement of Coronal Magnetic Fields: An Airborne Infrared Spectrometer for Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Samra, J.; DeLuca, E. E.; Golub, L.; Cheimets, P.

    2014-12-01

    The solar magnetic field enables the heating of the corona and provides its underlying structure. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections (CME) and provides the ultimate source of energy for space weather. Therefore, direct measurements of the coronal magnetic field have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of coronal field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind. While current instruments routinely observe only the photospheric and chromospheric magnetic fields, a proposed airborne spectrometer will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. The targeted lines are four forbidden magnetic dipole transitions between 2 and 4 μm. The airborne system will consist of a telescope, grating spectrometer, and pointing/stabilization system to be flown on the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the August 2017 total solar eclipse. The project incorporates several optical engineering challenges, centered around maintaining adequate spectral and spatial resolution in a compact and inexpensive package and on a moving platform. Design studies are currently underway to examine the tradeoffs between various optical geometries and control strategies for the pointing/stabilization system. The results will be presented and interpreted in terms of the consequences for the scientific questions. In addition, results from a laboratory prototype and simulations of the final system will be presented.

  5. Analysis of the diurnal development of the Ora del Garda wind in the Alps from airborne and surface measurements

    NASA Astrophysics Data System (ADS)

    Laiti, L.; Zardi, D.; de Franceschi, M.; Rampanelli, G.

    2013-07-01

    A lake-breeze and valley-wind coupled circulation system, known as Ora del Garda, typically arises in the late morning from the northern shorelines of Lake Garda (southeastern Italian Alps), and then channels into the Sarca and Lakes valleys to the north. After flowing over an elevated saddle, in the early afternoon this wind breaks out from the west into the nearby Adige Valley, hindering the regular development of the local up-valley wind by producing a strong and gusty anomalous flow in the area. Two targeted flights of an equipped motorglider were performed in the morning and afternoon of 23 August 2001 in the above valleys, exploring selected vertical slices of the atmosphere, from the lake's shore to the area where the two local airflows interact. At the same time, surface observations were collected during an intensive field measurement campaign held in the interaction area, as well as from routinely-operated weather stations disseminated along the whole study area, allowing the analysis of the different stages of the Ora del Garda development. From airborne measurements, an atmospheric boundary-layer (ABL) vertical structure, typical of deep Alpine valleys, was detected in connection with the wind flow, with rather shallow (∼500 m) convective mixed layers surmounted by deeper, weakly stable layers. On the other hand, close to the lake's shoreline the ABL was found to be stabilized down to very low heights, as an effect of the onshore advection of cold air by the lake breeze. Airborne potential temperature observations were mapped over high-resolution 3-D grids for each valley section explored by the flights, using a geostatistical technique called residual kriging (RK). RK-regridded fields revealed fine-scale features and inhomogeneities of ABL thermal structures associated with the complex thermally-driven wind field developing in the valleys. The combined analysis of surface observations and RK-interpolated fields revealed an irregular propagation of

  6. Lidar measurements of polar stratospheric clouds during the 1989 airborne Arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Browell, Edward V.

    1991-01-01

    The Airborne Arctic Stratospheric Expedition (AASE) was conducted during January to February 1989 from the Sola Air Station, Norway. As part of this expedition, the NASA Langley Research Center's multiwavelength airborne lidar system was flown on the NASA Ames Research Center's DC-8 aircraft to measure ozone (O3) and aerosol profiles in the region of the polar vortex. The lidar system simultaneously transmitted laser beams at 1064, 603, 311, and 301.5 nm to measure atmospheric scattering, polarization and O3 profiles. Long range flights were made between Stavanger, Norway, and the North Pole, and between 40 deg W and 20 deg E meridians. Eleven flights were made, each flight lasting an average of 10 hours covering about 8000 km. Atmospheric scattering ratios, aerosol polarizations, and aerosol scattering ratio wavelength dependences were derived from the lidar measurements to altitudes above 27 km. The details of the aerosol scattering properties of lidar observations in the IR, VIS, and UV regions are presented along with correlations with the national meteorological Center's temperature profiles.

  7. The correlation and quantification of airborne spectroradiometer data to turbidity measurements at Lake Powell, Utah

    NASA Technical Reports Server (NTRS)

    Merry, C. J.

    1979-01-01

    A water sampling program was accomplished at Lake Powell, Utah, during June 1975 for correlation to multispectral data obtained with a 500-channel airborne spectroradiometer. Field measurements were taken of percentage of light transmittance, surface temperature, pH and Secchi disk depth. Percentage of light transmittance was also measured in the laboratory for the water samples. Analyses of electron micrographs and suspended sediment concentration data for four water samples located at Hite Bridge, Mile 168, Mile 150 and Bullfrog Bay indicated differences in the composition and concentration of the particulate matter. Airborne spectroradiometer multispectral data were analyzed for the four sampling locations. The results showed that: (1) as the percentage of light transmittance of the water samples decreased, the reflected radiance increased; and (2) as the suspended sediment concentration (mg/l) increased, the reflected radiance increased in the 1-80 mg/l range. In conclusion, valuable qualitative information was obtained on surface turbidity for the Lake Powell water spectra. Also, the reflected radiance measured at a wavelength of 0.58 micron was directly correlated to the suspended sediment concentration.

  8. Analysis of Airborne Radar Altimetry Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.

    1994-01-01

    This dissertation presents an analysis of airborne altimetry measurements taken over the Greenland ice sheet with the 13.9 GHz Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter. This Ku-band instrument was refurbished in 1990 by the Microwave Remote Sensing Laboratory at the University of Massachusetts to obtain high-resolution altitude measurements and to improve the tracking, speed, storage and display capabilities of the radar. In 1991 and 1993, the AAFE altimeter took part in the NASA Multisensor Airborne Altimetry Experiments over Greenland, along with two NASA laser altimeters. Altitude results from both experiments are presented along with comparisons to the laser altimeter and calibration passes over the Sondrestroem runway in Greenland. Although it is too early to make a conclusion about the growth or decay of the ice sheet, these results show that the instrument is capable of measuring small-scale surface changes to within 14 centimeters. In addition, results from these experiments reveal that the radar is sensitive to the different diagenetic regions of the ice sheet. Return waveforms from the wet- snow, percolation and dry-snow zones show varying effects of both surface scattering and sub-surface or volume scattering. Models of each of the diagenetic regions of Greenland are presented along with parameters such as rms surface roughness, rms surface slope and attenuation coefficient of the snow pack obtained by fitting the models to actual return waveforms.

  9. Aerosol classification using airborne High Spectral Resolution Lidar measurements - methodology and examples

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.

    2012-01-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired extensive datasets of aerosol extinction (532 nm), aerosol optical depth (AOD) (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 18 field missions that have been conducted over North America since 2006. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, backscatter color ratio, and spectral depolarization ratio) are shown to vary with location and aerosol type. A methodology based on observations of known aerosol types is used to qualitatively classify the extensive set of HSRL aerosol measurements into eight separate types. Several examples are presented showing how the aerosol intensive parameters vary with aerosol type and how these aerosols are classified according to this new methodology. The HSRL-based classification reveals vertical variability of aerosol types during the NASA ARCTAS field experiment conducted over Alaska and northwest Canada during 2008. In two examples derived from flights conducted during ARCTAS, the HSRL classification of biomass burning smoke is shown to be consistent with aerosol types derived from coincident airborne in situ measurements of particle size and composition. The HSRL retrievals of AOD and inferences of aerosol types are used to apportion AOD to aerosol type; results of this analysis are shown for several experiments.

  10. Aerosol classification using airborne High Spectral Resolution Lidar measurements - methodology and examples

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.

    2011-09-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired extensive datasets of aerosol extinction (532 nm), aerosol optical thickness (AOT) (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 18 field missions that have been conducted over North America since 2006. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, backscatter color ratio, and spectral depolarization ratio) are shown to vary with location and aerosol type. A methodology based on observations of known aerosol types is used to qualitatively classify the extensive set of HSRL aerosol measurements into eight separate types. Several examples are presented showing how the aerosol intensive parameters vary with aerosol type and how these aerosols are classified according to this new methodology. The HSRL-based classification reveals vertical variability of aerosol types during the NASA ARCTAS field experiment conducted over Alaska and northwest Canada during 2008. In two examples derived from flights conducted during ARCTAS, the HSRL classification of biomass burning smoke is shown to be consistent with aerosol types derived from coincident airborne in situ measurements of particle size and composition. The HSRL retrievals of AOT and inferences of aerosol types are used to apportion AOT to aerosol type; results of this analysis are shown for several experiments.

  11. Measurements of meteor smoke particles during the ECOMA-2006 campaign: 2. Results

    NASA Astrophysics Data System (ADS)

    Strelnikova, Irina; Rapp, Markus; Strelnikov, Boris; Baumgarten, Gerd; Brattli, Alvin; Svenes, Knut; Hoppe, Ulf-Peter; Friedrich, Martin; Gumbel, Jörg; Williams, Bifford P.

    2009-03-01

    The first sounding rocket of the European ECOMA-project (ECOMA, Existence and Charge state Of Meteoric smoke particles in the middle Atmosphere) was launched on 8 September 2006. Measurements with a new particle detector described in the companion paper by Rapp and Strelnikova [2008. Measurements of meteor smoke particles during the ECOMA-2006 campaign: 1. Particle detection by active photoionization. Journal of Atmospheric and Solar-Terrestrial Physics, this issue, doi:10.1016/j.jastp.2008.06.002] clearly showed meteor smoke particle (MSP) signatures in both data channels. The data channels measure particles directly impacting on the detector electrode and photoelectrons from the particles actively created using ionization by the UV-photons of a xenon-flashlamp. Measured photoelectron currents resemble model expectations of the shape of the MSP layer almost perfectly, whereas derived number densities in the altitude range 60-90 km are larger than model results by about a factor of 5. Given the large uncertainties inherent to both model and the analysis of our measurements (e.g., the composition of the particles is not known and must be assumed) we consider this a satisfactory agreement and proof that MSPs do extend throughout the entire mesosphere as predicted by models. The measurements of direct particle impacts revealed a confined layer of negative charge between 80 and 90 km. This limited altitude range, however, is quantitatively shown to be the consequence of the aerodynamics of the rocket flight and does not have any geophysical origin. Measured charge signatures are consistent with expectations of particle charging given our own measurements of the background ionization. Unfortunately, however, a contamination of these measurements from triboelectric charging cannot be excluded at this stage.

  12. Overview and Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.

    2015-12-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements spanning a longer interval. The NSF/NCAR GV employed standard flight-level measurements and new airborne lidar and imaging measurements of gravity waves (GWs) from sources at lower altitudes throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-105 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) and two IR "wing" cameras imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar measuring radial winds below the Falcon. DEEPWAVE also included extensive ground-based measurements in New Zealand, Tasmania, and Southern Ocean Islands. DEEPWAVE performed 26 GV flights and 13 Falcon flights, and ground-based measurements occurred whether or not the aircraft were flying. Collectively, many diverse cases of GW forcing, propagation, refraction, and dissipation spanning altitudes of 0-100 km were observed. Examples include strong mountain wave (MW) forcing and breaking in the lower and middle stratosphere, weak MW forcing yielding MW penetration into the MLT having very large amplitudes and momentum fluxes, MW scales at higher altitudes ranging from ~10-250 km, large-scale trailing waves from orography refracting into the polar vortex and extending to high altitudes, GW generation by deep convection, large-scale GWs arising from jet stream sources, and strong MWs in the MLT arising from strong surface flow over a small island. DEEPWAVE yielded a number of surprises, among

  13. Analysis of the Uncertainty in Wind Measurements from the Atmospheric Radiation Measurement Doppler Lidar during XPIA: Field Campaign Report

    SciTech Connect

    Newsom, Rob

    2016-03-01

    In March and April of 2015, the ARM Doppler lidar that was formerly operated at the Tropical Western Pacific site in Darwin, Australia (S/N 0710-08) was deployed to the Boulder Atmospheric Observatory (BAO) for the eXperimental Planetary boundary-layer Instrument Assessment (XPIA) field campaign. The goal of the XPIA field campaign was to investigate methods of using multiple Doppler lidars to obtain high-resolution three-dimensional measurements of winds and turbulence in the atmospheric boundary layer, and to characterize the uncertainties in these measurements. The ARM Doppler lidar was one of many Doppler lidar systems that participated in this study. During XPIA the 300-m tower at the BAO site was instrumented with well-calibrated sonic anemometers at six levels. These sonic anemometers provided highly accurate reference measurements against which the lidars could be compared. Thus, the deployment of the ARM Doppler lidar during XPIA offered a rare opportunity for the ARM program to characterize the uncertainties in their lidar wind measurements. Results of the lidar-tower comparison indicate that the lidar wind speed measurements are essentially unbiased (~1cm s-1), with a random error of approximately 50 cm s-1. Two methods of uncertainty estimation were tested. The first method was found to produce uncertainties that were too low. The second method produced estimates that were more accurate and better indicators of data quality. As of December 2015, the first method is being used by the ARM Doppler lidar wind value-added product (VAP). One outcome of this work will be to update this VAP to use the second method for uncertainty estimation.

  14. Winds measured by the Rover Environmental Monitoring Station (REMS) during Curiosity's Bagnold Dunes Campaign

    NASA Astrophysics Data System (ADS)

    Newman, Claire E.; Gomez-Elvira, Javier; Navarro Lopez, Sara; Marin Jimenez, Mercedes; Torres Redondo, Josefina; Richardson, Mark I.

    2016-10-01

    Curiosity's damaged wind sensor has trouble measuring winds coming from behind the rover, due to the loss of its side-pointing boom during landing. During the Bagnold Dunes Campaign, however, the rover was turned to permit measurements of winds from missing directions, capturing upslope/downslope day-night flow on the slopes of Aeolis Mons and blocking of wind in the lee of a dune.The rover's heading is generally determined by the drive direction and often varies little over many tens of sols. Good wind measurements are made when the wind comes from the hemisphere to the front of the rover, but there are sometimes long periods during which winds from certain directions (i.e., at certain times of sol) are largely missed. Since rover turns are often precluded by rover safety and other operational constraints, it is usually not possible to turn to measure such winds properly.During the Bagnold Dunes Campaign, wind measurements were prioritized to provide context for aeolian dune studies. Rover headings were optimized for three wind investigations covering a period of about 90 sols. The first investigation characterized the wind field on approach to the dunes, with the rover turned to face two unusual headings for several sols each and monitoring focused on the 'missing' winds / times of sol. This confirmed the expected primary wind pattern of daytime roughly upslope winds (from ~NW/N) and nighttime downslope winds (from ~S/SE) on the slopes of Aeolis Mons, with significant sol-to-sol variability in e.g. the timing of the reversals. Comparison with the previous year suggests an increasingly upslope-downslope pattern as Curiosity approached the slope.The second investigation studied changes to the wind pattern in the lee of the Namib Dune. This revealed the blocking of northerly winds by the large dune, leaving primarily a westerly component to the daytime winds with weaker wind speeds.The third investigation characterized the wind field at the side of Namib Dune. The

  15. Measuring and Monitoring in the South African "Kha Ri Gude" Mass Literacy Campaign

    ERIC Educational Resources Information Center

    McKay, Veronica

    2015-01-01

    After many previous failed attempts to reach illiterate adults, the award-winning South African "Kha Ri Gude" mass literacy campaign, launched in 2008, undertook to ensure that learners seized the opportunity to learn--for many adults, this was a "last chance". Written from an insider perspective by the campaign's founding…

  16. Airborne Sunphotometer Measurements of Aerosol Optical Depth and Water Vapor in ACE-Asia and Their Comparisons to Correlative Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Livingston, J.; Russell, P.; Hegg, D.; Wang, J.; Kahn, R.; Hsu, C.; Masonis, S.; Murayama, T.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    In the Spring 2001 phase of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the 6-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) operated on 15 of the 19 research flights of the NCAR C-130, while its 14-channel counterpart (AATS-14) flew successfully on all 19 research flights of the CIRPAS Twin Otter. ACE-Asia studied aerosol outflow from the Asian continent to the Pacific basin. It was designed to integrate suborbital and satellite measurements and models to reduce the uncertainty in calculations of the climate forcing due to aerosols. AATS-6 and AATS-14 measured solar beam transmission at six and 14 wavelengths (380-1021 and 354-1558 nm, respectively), yielding aerosol optical depth (AOD) spectra and columnar water vapor (CWV). Vertical differentiation in profiles yielded aerosol extinction spectra and water vapor concentration. In this paper, we plan to present examples of the following, preliminary findings that are based in part on our airborne sunphotometer measurements: (1) The wavelength dependence of sunphotometer-derived AOD and extinction indicates that supermicron dust was often a major component of the aerosol, frequently extending to high altitudes. The percentage of full-column AOD (525 nm) that Jay above 3 km was typically 34+/-13%. In contrast, the analogous percentage of columnar water vapor was only 10+/-4%; (2) Initial comparison studies between AOD data obtained by AATS-6 and AATS-14 during coordinated low-level flight legs show agreement well within the instruments' error bars; (3) Aerosol extinction has been derived from airborne in situ measurements of scattering (nephelometers) and absorption (particle soot/ absorption photometer, PSAP) or calculated from particle size distribution measurements (mobility analyzers and aerodynamic particle sizers). Comparison with corresponding extinction values derived from the Ames airborne sunphotometer measurements shows good agreement for the vertical distribution

  17. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  18. A new method to measure air-borne pyrogens based on human whole blood cytokine response.

    PubMed

    Kindinger, Ilona; Daneshian, Mardas; Baur, Hans; Gabrio, Thomas; Hofmann, Andreas; Fennrich, Stefan; von Aulock, Sonja; Hartung, Thomas

    2005-03-01

    Air-borne microorganisms, as well as their fragments and components, are increasingly recognized to be associated with pulmonary diseases, e.g. organic dust toxic syndrome, humidifier lung, building-related illness, "Monday sickness." We have previously described and validated a new method for the detection of pyrogenic (fever-inducing) microbial contaminations in injectable drugs, based on the inflammatory reaction of human blood to pyrogens. We have now adapted this test to evaluate the total inflammatory capacity of air samples. Air was drawn onto PTFE membrane filters, which were incubated with human whole blood from healthy volunteers inside the collection device. Cytokine release was measured by ELISA. The test detects endotoxins and non-endotoxins, such as fungal spores, Gram-positive bacteria and their lipoteichoic acid moiety and pyrogenic dust particles with high sensitivity, thus reflecting the total inflammatory capacity of a sample. When air from different surroundings such as working environments and animal housing was assayed, the method yielded reproducible data which correlated with other parameters of microbial burden tested. We further developed a standard material for quantification and showed that this assay can be performed with cryopreserved as well as fresh blood. The method offers a test to measure the integral inflammatory capacity of air-borne microbial contaminations relevant to humans. It could thus be employed to assess air quality in different living and work environments.

  19. Airborne lidar for simultaneous measurement of column CO2 and water vapor in the atmosphere

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Antill, Charles W.; Remus, Ruben; Yu, Jirong

    2016-10-01

    The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption feathers for the gas at this particular wavelength. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers. This paper will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar. The development of this active optical remote sensing IPDA instrument is targeted for measuring both CO2 and water vapor (H2O) in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver telescope, detection system and data acquisition. Future plans for the IPDA lidar system for ground integration, testing and flight validation will also be presented.

  20. Airborne Lidar for Simultaneous Measurement of Column CO2 and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Antill, Charles W.; Remus, Ruben; Yu, Jirong

    2016-01-01

    The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption feathers for the gas at this particular wavelength. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers. This paper will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar. The development of this active optical remote sensing IPDA instrument is targeted for measuring both CO2 and water vapor (H2O) in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver telescope, detection system and data acquisition. Future plans for the IPDA lidar system for ground integration, testing and flight validation will also be presented.

  1. Airborne CO2 and H2S Measurements at Hot Spring Basin, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    McGee, K. A.; Doukas, M. P.; Werner, C. A.

    2007-12-01

    Gas emission-rate measurements at thermal areas located in remote regions with difficult ground access and little topographic relief pose a special challenge to those attempting to assess volcanic hazards in those areas. Several attempts have been made to measure gas emission rates from geyser basins, thermal areas and discrete large fumaroles at Yellowstone National Park through the use of fixed-wing aircraft with an on-board measurement system similar to that employed elsewhere at large stratovolcanoes. Despite minimum flight elevation restrictions and relatively flat terrain that often make access to the lowest margins of the plume difficult in these areas, we have successfully measured plumes of CO2 and H2S at several such areas and features at Yellowstone. We report here the results of a series of airborne measurements on 7 Jun 2006 at Hot Spring Basin (HSB), a remote vapor-dominated hydrothermal system just outside the northeast margin of Yellowstone caldera containing multiple gas vents. Using a LI-COR infrared spectrometer and Interscan electrochemical detector system, we detected a 3-km-wide plume approximately 2 km downwind from HSB. Several airborne traverses through a vertical slice of the plume allowed us to construct a cross-section of the plume and yielded emission rates of 170 metric tonnes per day (t/d) for CO2 and 2 t/d for H2S, similar to rates measured at Mt. Baker, WA (USA) in September 2000. However, an August 2006 ground-based study of emissions from HSB yielded higher emission rates for both CO2 and H2S (Werner et al., this session), suggesting that not all of the diffuse emissions are reflected in the airborne measurement. Although a complete inventory of plume emission rates from the majority of degassing sources in Yellowstone National Park is not yet complete, HSB appears to be a smaller gas emitter than some of the other sources in the Park (e.g., Norris Geyser Basin, Brimstone Basin, Mud Volcano, Grand Prismatic Spring and Mammoth Hot

  2. On error sources during airborne measurements of the ambient electric field

    NASA Technical Reports Server (NTRS)

    Evteev, B. F.

    1991-01-01

    The principal sources of errors during airborne measurements of the ambient electric field and charge are addressed. Results of their analysis are presented for critical survey. It is demonstrated that the volume electric charge has to be accounted for during such measurements, that charge being generated at the airframe and wing surface by droplets of clouds and precipitation colliding with the aircraft. The local effect of that space charge depends on the flight regime (air speed, altitude, particle size, and cloud elevation). Such a dependence is displayed in the relation between the collector conductivity of the aircraft discharging circuit - on one hand, and the sum of all the residual conductivities contributing to aircraft discharge - on the other. Arguments are given in favor of variability in the aircraft electric capacitance. Techniques are suggested for measuring from factors to describe the aircraft charge.

  3. Double-Pulse Two-micron LPDA Lidar Simulation for Airborne Carbon Dioxide Measurements

    NASA Astrophysics Data System (ADS)

    Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta

    2016-06-01

    An advanced double-pulse 2-μm integrated path differential absorption lidar has been developed at NASA Langley Research Center for measuring atmospheric carbon dioxide. The instrument utilizes a state-of-the-art 2-μm laser transmitter with tunable on-line wavelength and advanced receiver. Instrument modeling and airborne simulations are presented in this paper. Focusing on random errors, results demonstrate instrument capabilities of performing precise carbon dioxide differential optical depth measurement with less than 3% random error for single-shot operation up to 11 km altitude. This study is useful for defining CO2 measurement weighting function for adaptive targeting, instrument setting, validation and sensitivity trade-offs.

  4. Stratocumulus Drizzle Measurements Using High Spectral Resolution Lidar and Radar Data During the MAGIC Campaign

    NASA Astrophysics Data System (ADS)

    Eloranta, E. W.

    2015-12-01

    Marine stratus clouds are an important feature of the global climate system. Drizzle plays an important role in the determining cloud lifetime. Drizzle not only removes water from the cloud but evaporation of the falling droplets cools the sub-cloud layer acting to suppress convection. Drizzle rates are often very small and difficult to measure.The ratio of millimeter radar and High Spectral Resolution Lidar (HSRL) backscatter is used to determine drizzle rates and these are compared to conventional ground based measurements. The robustly calibrated HSRL backscatter cross section provides advantages over measurements made with traditional lidars.Several investigators have used simultaneous lidar and radar observations to determine particle size. However, measurements made with conventional lidar are hampered by: 1) changes in the transmission of the output window caused by water accumulation, 2) the difficulty of correcting the backscatter signal for atmospheric extinction, 3) the effects of multiple scattering, and 4) the need to convert backscatter measurements to extinction. The use of High Spectral Resolution Lidar(HSRL) data avoids many of these problems. HSRL backscatter measurements are referenced to the known molecular scattering cross-section at each point in the profile and are thus independent of changes in window and atmospheric transmission. This study uses data collected during the US Department of Energy Atmospheric Sciences program MAGIC campaign. Instruments including a suite of conventional precipitation gages, a High Spectral Resolution Lidar, along with 3.2 mm wavelength WACR and a 8.6 mm wavelength KAZR radars, were installed on the container ship Horizon Spirit as it made repeated trips between Long Beach, CA and Honolulu, HI.

  5. Aerosol Properties over the Eastern North Pacific based on Measurements from the MAGIC Field Campaign

    NASA Astrophysics Data System (ADS)

    Lewis, E. R.; Senum, G.; Springston, S. R.; Kuang, C.

    2015-12-01

    The MAGIC field campaign, funded and operated by the ARM (Atmospheric Radiation Measurement) Climate Research Facility of the US Department of Energy, occurred between September 2012 and October, 2013 aboard the Horizon Lines cargo container ship Spirit making regular trips between Los Angeles, CA and Honolulu, HI. Along this route, which lies very near the GPCI (GCSS Pacific Cross-section Intercomparison) transect, the predominant cloud regime changes from stratocumulus near the California coast to trade-wind cumulus near Hawaii. The transition between these two regimes is poorly understood and not accurately represented in models. The goal of MAGIC was to acquire statistic of this transition and thus improve its representation in models by making repeated transects through this region and measuring properties of clouds and precipitation, aerosols, radiation, and atmospheric structure. To achieve these goals, the Second ARM Mobile Facility (AMF2) was deployed on the Horizon Spirit as it ran its regular route between Los Angeles and Honolulu. AMF2 consists of three 20-foot SeaTainers and includes three radars and other instruments to measure properties of clouds and precipitation; the Aerosol Observing System (AOS), which has a suite of instruments to measure properties of aerosols; and other instruments to measure radiation, meteorological quantities, and sea surface temperature. Two technicians accompanied the AMF2, and scientists rode the ship as observers. MAGIC made nearly 20 round trips between Los Angeles and Honolulu (and thus nearly 40 excursions through the stratocumulus-to-cumulus transition) and spent 200 days at sea, collecting an unprecedented data set. Aerosol properties measured with the AOS include number concentration and size distribution, CCN activity, hygroscopic growth, and light-scattering and absorption. Additionally, more than one hundred filter samples were collected. Aerosol properties and their spatial and temporal behavior are discussed

  6. Measurements of meteor smoke particles during the ECOMA-2006 campaign: 1. Particle detection by active photoionization

    NASA Astrophysics Data System (ADS)

    Rapp, Markus; Strelnikova, Irina

    2009-03-01

    We present a new design of an in situ detector for the study of meteor smoke particles (MSPs) in the middle atmosphere. This detector combines a classical Faraday cup with a xenon-flashlamp for the active photoionization/photodetachment of MSPs and the subsequent detection of corresponding photoelectrons. This instrument was successfully launched in September 2006 from the Andøya Rocket Range in Northern Norway. A comparison of photocurrents measured during this rocket flight and measurements performed in the laboratory proves that observed signatures are truly due to photoelectrons. In addition, the observed altitude cut-off at 60 km (i.e., no signals were observed below this altitude) is fully understood in terms of the mean free path of the photoelectrons in the ambient atmosphere. This interpretation is also proven by a corresponding laboratory experiment. Consideration of all conceivable species which can be ionized by the photons of the xenon-flashlamp demonstrates that only MSPs can quantitatively explain the measured currents below an altitude of 90 km. Above this altitude, measured photocurrents are most likely due to photoionization of nitric oxide. In conclusion, our results demonstrate that the active photoionization and subsequent detection of photoelectrons provides a promising new tool for the study of MSPs in the middle atmosphere. Importantly, this new technique does not rely on the a priori charge of the particles, neither is the accessible particle size range severely limited by aerodynamical effects. Based on the analysis described in this study, the geophysical interpretation of our measurements is presented in the companion paper by Strelnikova, I., et al. [2008. Measurements of meteor smoke particles during the ECOMA-2006 campaign: 2. results. Journal of Atmospheric and Solar-Terrestrial Physics, this issue, doi:10.1016/j.jastp.2008.07.011].

  7. Intercomparison of field measurements of nitrous acid (HONO) during the SHARP campaign

    NASA Astrophysics Data System (ADS)

    Pinto, J. P.; Dibb, J.; Lee, B. H.; Rappenglück, B.; Wood, E. C.; Levy, M.; Zhang, R.-Y.; Lefer, B.; Ren, X.-R.; Stutz, J.; Tsai, C.; Ackermann, L.; Golovko, J.; Herndon, S. C.; Oakes, M.; Meng, Q.-Y.; Munger, J. W.; Zahniser, M.; Zheng, J.

    2014-05-01

    Because of the importance of HONO as a radical reservoir, consistent and accurate measurements of its concentration are needed. As part of SHARP (Study of Houston Atmospheric Radical Precursors), time series of HONO were obtained by six different measurement techniques on the roof of the Moody Tower at the University of Houston. Techniques used were long path differential optical absorption spectroscopy (DOAS), stripping coil-visible absorption photometry (SC-AP), long path absorption photometry (LOPAP®), mist chamber/ion chromatography (MC-IC), quantum cascade-tunable infrared laser differential absorption spectroscopy (QC-TILDAS), and ion drift-chemical ionization mass spectrometry (ID-CIMS). Various combinations of techniques were in operation from 15 April through 31 May 2009. All instruments recorded a similar diurnal pattern of HONO concentrations with higher median and mean values during the night than during the day. Highest values were observed in the final 2 weeks of the campaign. Inlets for the MC-IC, SC-AP, and QC-TILDAS were collocated and agreed most closely with each other based on several measures. Largest differences between pairs of measurements were evident during the day for concentrations < ~100 parts per trillion (ppt). Above ~ 200 ppt, concentrations from the SC-AP, MC-IC, and QC-TILDAS converged to within about 20%, with slightly larger discrepancies when DOAS was considered. During the first 2 weeks, HONO measured by ID-CIMS agreed with these techniques, but ID-CIMS reported higher values during the afternoon and evening of the final 4 weeks, possibly from interference from unknown sources. A number of factors, including building related sources, likely affected measured concentrations.

  8. Advances in high-energy solid-state 2-micron laser transmitter development for ground and airborne wind and CO2 measurements

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; Beyon, Jeffrey

    2010-10-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2- micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  9. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; Beyon, Jeffrey

    2010-01-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  10. Atmospheric Radiation Measurement Madden-Julian Oscillation Investigation Experiment Field Campaign Report

    SciTech Connect

    Long, Chuck

    2016-07-01

    Every 30–90 days during the Northern Hemisphere winter, the equatorial tropical atmosphere experiences pulses of extraordinarily strong deep convection and rainfall. This phenomenon is referred to as the Madden–Julian Oscillation, or MJO, named after the scientists who identified this cycle. The MJO significantly affects weather and rainfall patterns around the world (Zhang 2013). To improve predictions of the MJO—especially about how it forms and evolves throughout its lifecycle—an international group of scientists collected an unprecedented set of observations from the Indian Ocean and western Pacific region from October 2011 through March 2012 through several coordinated efforts. The coordinated field campaigns captured six distinct MJO cycles in the Indian Ocean. The rich set of observations capturing several MJO events from these efforts will be used for many years to study the physics of the MJO. Here we highlight early research results using data from the Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation Investigation Experiment (AMIE), sponsored by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility.

  11. Measurements of Ocean Surface Scattering Using an Airborne 94-GHz Cloud Radar: Implication for Calibration of Airborne and Spaceborne W-band Radars

    NASA Technical Reports Server (NTRS)

    Li, Li-Hua; Heymsfield, Gerald M.; Tian, Lin; Racette, Paul E.

    2004-01-01

    Scattering properties of the Ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well understood, in part, due to the lack of experimental measurements. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), measurements of ocean surface backscattering were made using a 94-GHz (W-band) cloud radar onboard a NASA ER-2 high-altitude aircraft. The measurement set includes the normalized Ocean surface cross section over a range of the incidence angles under a variety of wind conditions. Analysis of the radar measurements shows good agreement with a quasi-specular scattering model. This unprecedented dataset enhances our knowledge about the Ocean surface scattering mechanism at 94 GHz. The results of this work support the proposition of using the Ocean surface as a calibration reference for airborne millimeter-wave cloud radars and for the ongoing NASA CloudSat mission, which will use a 94-GHz spaceborne cloud radar for global cloud measurements.

  12. Hydroxyl and Hydroperoxy Radical Chemistry during the MCMA-2006 Field Campaign: Measurement and Model Comparison

    NASA Astrophysics Data System (ADS)

    Dusanter, S.; Vimal, D.; Stevens, P. S.; Volkamer, R.; Molina, L. T.

    2007-12-01

    The Mexico City Metropolitan Area (MCMA) field campaign, held in March 2006, was a unique opportunity to collect data in one of the most polluted megacities in the world. Such environments exhibit a complex oxidation chemistry involving a strong coupling between odd hydrogen radicals (HOX=OH+HO2) and nitrogen oxides species (NOX=NO+NO2). High levels of volatile organic compounds (VOCs) and NOX control the HOX budget and lead to elevated tropospheric ozone formation. The HOX-NOX coupling can be investigated by comparing measured and model-predicted HOx concentrations. Atmospheric HOX concentrations were measured by the Indiana University laser-induced fluorescence instrument and data were collected at the Instituto Mexicano del Petroleo between 14 and 31 March. Measured hydroxyl radical (OH) concentrations are comparable to that measured in less polluted urban environments and suggest that the OH concentrations are highly buffered under high NOX conditions. In contrast, hydroperoxy radical (HO2) concentrations are more sensitive to the NOX levels and are highly variable between different urban sites. Enhanced levels of OH and HO2 radicals were observed on several days between 9h30-11h00 AM and suggest an additional HOX source for the morning hours and/or a fast HOX cycling under the high NOX conditions of the MCMA. A preliminary investigation of the HOX chemistry occurring in the MCMA urban atmosphere was performed using a photochemical box model based on the Regional Atmospheric Chemistry Mechanism (RACM). Model comparisons will be presented and the agreement between measured and predicted HOX concentrations will be discussed.

  13. Coherent Structure Patterns Affect Energy Balance Closure: Evidence from Virtual Measurements for a Field Campaign

    NASA Astrophysics Data System (ADS)

    Zhang, S.; De Roo, F.; Heinze, R.; Eder, F.; Huq, S.; Schmidt, M.; Kalthoff, N.; Mauder, M.

    2015-12-01

    The energy balance closure problem is a well-known issue of eddy-covariance measurements. However, the underlying mechanisms are still under debate. Recent evidence suggests that organized low-frequency motion contributes significantly to the energy balance residual, because the associated transport cannot be captured by a point measurement. In this study, we carry out virtual measurements using a PArallelized Large-Eddy Simulation Model (PALM). In order to represent specific measurement days of the field campaign "High definition clouds and precipitation for advancing climate prediction" (HD(CP)²), which was part of the project "High Definition Clouds and Precipitation for Advancing Climate Prediction"(HOPE) in 2013, the simulations were driven by synoptic-scale COSMO-DE reanalysis data. Planet boundary layer height, the vertical profiles of variance and skewness of vertical wind were analyzed and a comparison with Doppler-lidar observations shows good agreement. Furthermore, simulated energy imbalances were compared with real-world imbalances from two eddy-covariance stations in the model domain. Particularly poor energy balance closure was found for a day with cellular organized structures in the surface layer, while the energy balance closure was better on other days with roll-like structures. This finding might be one explanation why the energy balance closure generally tends to improve with increasing friction velocity, since roll-like structures are typically associated with higher wind speeds. In order to gain insight into the partitioning of the energy balance residual between the sensible and latent heat fluxes, we further employed a control volume method within the numerical simulation. Hence, advection and storage terms were identified as the most important causes for the lack of energy balance closure by the eddy-covariance method. The results of the virtual measurements indicate that the "missing" part of the surface energy mainly comes from the

  14. Absorption/transmission measurements of PSAP particle-laden filters from the Biomass Burning Observation Project (BBOP) field campaign

    SciTech Connect

    Presser, Cary; Nazarian, Ashot; Conny, Joseph M.; Chand, Duli; Sedlacek, Arthur; Hubbe, John M.

    2016-12-02

    Absorptivity measurements with a laser-heating approach, referred to as the laser-driven thermal reactor (LDTR), were carried out in the infrared and applied at ambient (laboratory) nonreacting conditions to particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). Here, the particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign. The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the LDTR approach, and compare results with other commercially available instrumentation (in this case with the PSAP, which has been compared with numerous other optical techniques).

  15. Measurements of Biogenic and Anthropogenic Ozone and Aerosol Precursors during the SENEX (Southeast Nexus) Campaign 2013

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Trainer, M.; De Gouw, J. A.

    2013-12-01

    Natural emissions of ozone and aerosol precursor gases such as isoprene and monoterpenes are the highest in the southeast of the U.S. and rival those found in tropical forests. In addition, anthropogenic emissions are significant in the Southeast and photochemistry is rapid. The southeast U.S. has not warmed like other parts of the U.S. in response to global climate change, and the temperature anomaly has been suggested to be related to aerosols derived from a combination of anthropogenic and biogenic precursors. The NOAA SENEX aircraft campaign took place in June-July 2013 in the southeast U.S. as part of the Southeast Atmosphere Study (SAS). The NOAA WP-3 aircraft conducted 20 research flights between May 27 and July 10, 2013 based out of Smyrna, TN. To investigate the combination of anthropogenic and biogenic emissions several flights were designed to follow the emissions of cities and power plants as they are transported over forested regions in the Southeast. For example, over-flights of Atlanta, Birmingham and Nashville were performed and the plumes were followed to the forested areas with high isoprene and monoterpene emissions. The same was done for several power plants such as EC Gaston, Scherer and Johnsonville. In the anthropogenic plumes, effects such as the modulation of the isoprene chemistry by high NOx and particle formation and growth were investigated. The same strategy was used for three nighttime flights over Atlanta, Birmingham and the New Madrid and White Bluff power plants. Flights over and downwind of St Lois and Indianapolis were used as a contrast in areas with smaller biogenic emissions. Other anthropogenic emissions sources that were investigated during SENEX included bio refineries, paper mills, coalmines, poultry and pork farming. Also biomass burning emissions were observed during one daytime and one nighttime flight. Another focus of the SENEX campaign was to determine the emissions of natural gas and oil production from the

  16. Measurements of total reactive nitrogen during the Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Fahey, D. W.; Anderson, L. C.; Loewenstein, M.; Chan, K. R.

    1990-01-01

    Composite distributions of measured total reactive nitrogen NO(y), from the NASA ER-2 during the Airborne Arctic Stratospheric Expedition are presented. The observed features of these distributions are discussed in terms of the controlling dynamical, chemical and microphysical processes. In the latitudinal profile from 58 deg N to within about 4 deg poleward of the polar vortex boundary, NO(y) conforms closely to predictions of NO(y) based on N2O measurements. Poleward of 5 deg of latitude within the boundary, the average NO(y) decreases sharply and is significantly lower than that predicted from N2O. This feature is consistent with loss of NO(y) through sedimentation of particles containing NO(y) in polar stratospheric clouds.

  17. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  18. A new measurement method for separating airborne and structureborne noise radiated by aircraft type panels

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1982-01-01

    The theoretical basis for and experimental validation of a measurement method for separating airborne and structure borne noise radiated by aircraft type panels are presented. An extension of the two microphone, cross spectral, acoustic intensity method combined with existing theory of sound radiation of thin shell structures of various designs, is restricted to the frequency range below the coincidence frequency of the structure. Consequently, the method lends itself to low frequency noise problems such as propeller harmonics. Both an aluminum sheet and two built up aircraft panel designs (two aluminum panels with frames and stringers) with and without added damping were measured. Results indicate that the method is quick, reliable, inexpensive, and can be applied to thin shell structures of various designs.

  19. Derivation of Cumulus Cloud Dimensions and Shape from the Airborne Measurements by the Research Scanning Polarimeter

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail D.; Cairns, Brian; Emde, Claudia; Ackerman, Andrew S.; Ottaviani, Matteo; Wasilewski, Andrzej P.

    2016-01-01

    The Research Scanning Polarimeter (RSP) is an airborne instrument, whose measurements have been extensively used for retrievals of microphysical properties of clouds. In this study we show that for cumulus clouds the information content of the RSP data can be extended by adding the macroscopic parameters of the cloud, such as its geometric shape, dimensions, and height above the ground. This extension is possible by virtue of the high angular resolution and high frequency of the RSP measurements, which allow for geometric constraint of the cloud's 2D cross section between a number of tangent lines of view. The retrieval method is tested on realistic 3D radiative transfer simulations and applied to actual RSP data.

  20. Oil film thickness measurement using airborne laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1980-01-01

    The use of laser-induced water Raman backscatter for remote thin oil film detection and thickness measurement is reported here for the first time. A 337.1-nm nitrogen laser was used to excite the 3400-cm-1 OH stretch band of natural ocean water beneath the oil slick from an altitude of 150 m. The signal strength of the 381-nm water Raman backscatter was always observed to depress when the oil was encountered and then return to its original undepressed value after complete aircraft traversal of the floating slick. After removal of background and oil fluorescence contributions, the ratio of the depressed-to-undepressed airborne water Raman signal intensities, together with laboratory measured oil extinction coefficients, is used to calculate the oil film thickness.

  1. Comparison of measured data and model-results during PEGASOS-campaign 2012

    NASA Astrophysics Data System (ADS)

    Ehlers, Christian; Elbern, Hendrik; Klemp, Dieter; Rohrer, Franz; Wahner, Andreas

    2014-05-01

    In the Forschungszentrum Jülich a mobile Lab (MOBILAB) has been developed to perform mobile measurements with a high temporal resolution covering rural background regions and highly polluted urban areas. During the west campaign of the PEGASOS-project the MOBILAB was used as a mobile ground station and as a tool for mapping the concentrations in the rural background regions in the Netherlands. As a part of the PEGASOS-project high resolution day by day forecasts have been calculated by EURAD. The forecast quality is based on the implementation of atmospheric chemistry and transport processes and the consistency of the emission inventories. Values calculated in the EURAD-model represent average values for the corresponding 1x1 km grid-cells of the model. For comparison with the mobile ground-based measurements the lowest layer from the model has been used. Based on the GPS-track recorded from MOBILAB the corresponding model-results were derived via a web interface provided by EURAD. For the model-evaluation 80 hours of measurements were used. The dataset ranges from high concentrations in urban areas and on motorways to low concentrations in rural agricultural areas and a large forest. As the MOBILAB has been measuring while driving along the roads, the effects of local emissions from single cars were eliminated from the data using a 5%-percentile filter with a 180 seconds time base. The results indicate that the model can predict the concentrations for CO very well while the nitric oxides are significantly underestimated by a factor of two. As transport and mixing processes would affect all species in the same way, the results indicate that deviations of the emission inventories are the most probable explanation for the underestimation found for the nitric oxides.

  2. Assimilation Ionosphere Model: Development and testing with Combined Ionospheric Campaign Caribbean measurements

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Thompson, D. C.; Schunk, R. W.; Bullett, T. W.; Makela, J. J.

    2001-03-01

    Assimilation Ionosphere Model (AIM) is a physics-based, global, ionospheric specification model that is currently under development. It assimilates a diverse set of real-time (or near-real-time) measurements, such as ionograms, GPS slant total electron content (TEC), and in situ plasma measurements. This study focuses on a middle latitude ionosonde assimilation capability in both local and regional forms. The models described are capable of using theƒ0F2 and hmF2 from ionograms to generate either a local or a regional distribution of the induced plasma drift. This induced drift is usually caused by the meridional neutral wind. Results from a local model (AIM1.03L) and a regional model (AIM1.03R) are presented and compared with the international reference ionosphere (IRI) climatological predictions as well as GPS slant TEC measurements. Results from year-long studies during solar maximum show that the accuracy of the AIM1.03L model is about a factor of 2 better than that of IRI. An initial month-long regional study is also presented, and the results are almost as good. A study is also carried out using observations taken during the Combined Ionospheric Campaign (CIC) held in November, 1997, in the Caribbean. The digisonde located at Ramey Solar Observatory is used to drive the AIM1.03L model, and the predicted GPS slant TECs are compared to those observed by a GPS receiver located at St. Croix. This study confirms that this first step in preparing a weather-sensitive ionospheric representation is superior to a climatological representation. This sets the stage for the development of full assimilation of GPS TEC, in situ density measurements, etc., and it is anticipated that the AIM1.03L-R ionospheric representation will provide an accurate ionospheric specification.

  3. Airborne Flux Measurements of Volatile Organic Compounds and NOx over a European megacity

    NASA Astrophysics Data System (ADS)

    Shaw, Marvin; Lee, James; Davison, Brian; Misztal, Pawel; Karl, Thomas; Hewitt, Nick; Lewis, Alistair

    2014-05-01

    Ground level ozone (O3) and nitrogen dioxide (NO2) are priority pollutants whose concentrations are closely regulated by European Union Air Quality Directive 2008/50/EC. O3 is a secondary pollutant, produced from a complex chemical interplay between oxides of nitrogen (NOx = NO + NO2) and volatile organic compounds (VOCs). Whilst the basic atmospheric chemistry leading to O3 formation is generally well understood, there are substantial uncertainties associated with the magnitude of emissions of both VOCs and NOx. At present our knowledge of O3 precursor emissions in the UK is primarily derived from National Atmospheric Emission inventories (NAEI) that provide spatially disaggregated estimates at 1x1km resolution, and these are not routinely tested at city or regional scales. Uncertainties in emissions propagate through into uncertainties in predictions of air quality in the future, and hence the likely effectiveness of control policies on both background and peak O3 and NO2 concentrations in the UK. The Ozone Precursor Fluxes in the Urban Environment (OPFUE) project aims to quantify emission rates for NOx and selected VOCs in and around the megacity of London using airborne eddy covariance (AEC). The mathematical foundation for AEC has been extensively reviewed and AEC measurements of ozone, dimethyl sulphide, CO2 and VOCs have been previously reported. During the summer of 2013, approximately 30 hours of airborne flux measurements of toluene, benzene, NO and NO2 were obtained from the NERC Airborne Research and Survey Facility's (ARSF) Dornier-228 aircraft. Over SE England, flights involved repeated south west to north east transects of ~50 km each over Greater London and it's surrounding suburbs and rural areas, flying at the aircraft's minimum operating flight altitude and airspeed (~300m, 80m/s). Mixing ratios of benzene and toluene were acquired at 2Hz using a proton transfer reaction mass spectrometer (PTR-MS) and compared to twice hourly whole air canister

  4. Validating Above-cloud Aerosol Optical Depth Retrieved from MODIS using NASA Ames Airborne Sun-Tracking Photometric and Spectrometric (AATS and 4STAR) Measurements

    NASA Astrophysics Data System (ADS)

    Jethva, H. T.; Torres, O.; Remer, L. A.; Redemann, J.; Dunagan, S. E.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.

    2014-12-01

    Absorbing aerosols produced from biomass burning and dust outbreaks are often found to overlay the lower level cloud decks as evident in the satellite images. In contrast to the cloud-free atmosphere, in which aerosols generally tend to cool the atmosphere, the presence of absorbing aerosols above cloud poses greater potential of exerting positive radiative effects (warming) whose magnitude directly depends on the aerosol loading above cloud, optical properties of clouds and aerosols, and cloud fraction. In recent years, development of algorithms that exploit satellite-based passive measurements of ultraviolet (UV), visible, and polarized light as well as lidar-based active measurements constitute a major breakthrough in the field of remote sensing of aerosols. While the unprecedented quantitative information on aerosol loading above cloud is now available from NASA's A-train sensors, a greater question remains ahead: How to validate the satellite retrievals of above-cloud aerosols (ACA)? Direct measurements of ACA such as carried out by the NASA Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) can be of immense help in validating ACA retrievals. In this study, we validate the ACA optical depth retrieved using the 'color ratio' (CR) method applied to the MODIS cloudy-sky reflectance by using the airborne AATS and 4STAR measurements. A thorough search of the historic AATS-4STAR database collected during different field campaigns revealed five events where biomass burning, dust, and wildfire-emitted aerosols were found to overlay lower level cloud decks observed during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS-2013, respectively. The co-located satellite-airborne measurements revealed a good agreement (root-mean-square-error<0.1 for Aerosol Optical Depth (AOD) at 500 nm) with most matchups falling within the estimated uncertainties in the MODIS retrievals (-10% to +50%). An extensive validation of

  5. Frequency analysis and data correlation for beam displacement measurements based on the ISTIMES campaign in Montagnole

    NASA Astrophysics Data System (ADS)

    Nordebo, S.; Gustafsson, M.; Dumoulin, J.; Perrone, A.; Pignatti, S.; Soldovieri, F.

    2012-04-01

    Time-frequency analysis is an interdisciplinary subject, which originates from mathematics, signal analysis and physics (Grochenig, 2001). From a signal theoretical and mathematical point of view the primary purpose has been to understand how signals, operators and other mathematical objects can be understood simultaneously in the time and frequency variables, which correspond to the phase space variables in physics (Grochenig, 2001; Claasen, 1980). Perhaps the most popular time-frequency representations are the short-time Fourier transform (STFT) and the Wigner distribution (Grochenig, 2001). Their common feature is to localize a function before taking the Fourier transform, thereby obtaining a time-frequency representation. Here, we employ the classical Kaiser window (Kaiser and Schafer, 1980) which is well known in spectrum analysis, since it provides a flexible approach to control the frequency resolution as well as the amplitude dynamics (sidelobe rejection) for a given measurement interval (or resolution) in time. In this contribution, we employ frequency analysis and data correlation for beam displacement measurements based on the ISTIMES campaign (Proto et al., 2010) conducted at the rock fall test center in Montagnole, France, on October 14, 2010. Several test cases are considered based on direct and indirect impact from a steel sphere dropped on a reinforced concrete beam. Several measurement technologies were used to measure the deformation of the beam based on IRT (InfraRed Thermography), GBSAR (Ground Based Synthetic Aperture Radar), and ODM (Optical Diode Measurements). A time-frequency analysis was used to analyze the evolution of the resonance frequencies of the beam. A short-time cross-correlation followed by Fourier transformation was used to integrate data based on two different signal sources (sensor technologies). The results were compared to a frequency analysis based on video data and image processing to yield a high-accuracy reference

  6. An Overview of the Regional Experiments for Land-atmosphere Exchanges 2012 (REFLEX 2012) Campaign

    NASA Astrophysics Data System (ADS)

    Timmermans, Wim J.; van der Tol, Christiaan; Timmermans, Joris; Ucer, Murat; Chen, Xuelong; Alonso, Luis; Moreno, Jose; Carrara, Arnaud; Lopez, Ramon; de la Cruz Tercero, Fernando; Corcoles, Horacio L.; de Miguel, Eduardo; Sanchez, Jose A. G.; Pérez, Irene; Franch, Belen; Munoz, Juan-Carlos J.; Skokovic, Drazen; Sobrino, Jose; Soria, Guillem; MacArthur, Alasdair; Vescovo, Loris; Reusen, Ils; Andreu, Ana; Burkart, Andreas; Cilia, Chiara; Contreras, Sergio; Corbari, Chiara; Calleja, Javier F.; Guzinski, Radoslaw; Hellmann, Christine; Herrmann, Ittai; Kerr, Gregoire; Lazar, Adina-Laura; Leutner, Benjamin; Mendiguren, Gorka; Nasilowska, Sylwia; Nieto, Hector; Pachego-Labrador, Javier; Pulanekar, Survana; Raj, Rahul; Schikling, Anke; Siegmann, Bastian; von Bueren, Stefanie; Su, Zhongbo (Bob)

    2015-12-01

    The REFLEX 2012 campaign was initiated as part of a training course on the organization of an airborne campaign to support advancement of the understanding of land-atmosphere interaction processes. This article describes the campaign, its objectives and observations, remote as well as in situ. The observations took place at the experimental Las Tiesas farm in an agricultural area in the south of Spain. During the period of ten days, measurements were made to capture the main processes controlling the local and regional land-atmosphere exchanges. Apart from multi-temporal, multi-directional and multi-spatial space-borne and airborne observations, measurements of the local meteorology, energy fluxes, soil temperature profiles, soil moisture profiles, surface temperature, canopy structure as well as leaf-level measurements were carried out. Additional thermo-dynamical monitoring took place at selected sites. After presenting the different types of measurements, some examples are given to illustrate the potential of the observations made.

  7. Condor equatorial spread F-italic Campaign: Overview and results of the large-scale measurements

    SciTech Connect

    Kelley, M.C.; LaBelle, J.; Kudeki, E.; Fejer, B.G.; Basu, S.; Basu, S.; Baker, K.D.; Hanuise, C.; Argo, P.; Woodman, R.F.; Swartz, W.E.; Farley, D.T.; Meriwether J.W. Jr.

    1986-05-01

    During the Condor campaign a number of instruments were set up in Peru to support the rocket experiments. In this series of papers we report on the results of the experiments designed to study the equatorial F-italic region. In this overview paper we summarize the main results as well as report upon the macroscopic developments of spread F-italic as evidenced by data from backscatter radars, from scintillation observations, and from digital ionosonde measurements. In this latter regard, we argue here that at least two factors other than the classical gravitational Rayleigh-Taylor plasma instability process must operate to yield the longest-scale horizontal organization of spread F-italic structures. The horizontal scale typical of plume separation distances can be explained by invoking the effect of a shear in the plasma flow, although detailed