Science.gov

Sample records for airborne microparticles based

  1. Size-based microfluidic multimodal microparticle sorter.

    PubMed

    Wang, Xiao; Papautsky, Ian

    2015-03-01

    Microfluidic sorting of synthetic and biological microparticles has attracted much interest in recent years. Inertial microfluidics uses hydrodynamic forces to manipulate migration of such microparticles in microfluidic channels to achieve passive sorting based on size with high throughput. However, most inertial microfluidic devices are only capable of bimodal separation with a single cutoff diameter and a well-defined size difference. These limitations inhibit efficient separation of real-world samples that often include heterogeneous mixtures of multiple microparticle components. Our design overcomes these challenges to achieve continuous multimodal sorting of microparticles with high resolution and high tunability of separation cutoff diameters. We demonstrate separations with flexible modulation of the separation bandwidth and the passband location. Our approach offers a number of benefits, including straightforward system design, easily and precisely tuned cutoff diameters, high separation resolution, and high throughput. Ultimately, the unique multimodal separation functionality significantly broadens applications of inertial microfluidics in sorting of complex microparticle samples. PMID:25590954

  2. Detection and Classification of Individual Airborne Microparticles using Laser Ablation Mass Spectroscopy and Multivariate Analysis

    SciTech Connect

    Gieray, R.A.; Lazar, A.; Parker, E.P.; Ramsey, J. M.; Reilly, P.T.A.; Rosenthal, S.E.; Trahan, M.W.; Wagner, J.S.; Whitten, W.B.

    1999-04-27

    We are developing a method for the real-time analysis of airborne microparticles based on laser ablation mass spectroscopy. Airborne particles enter an ion trap mass spectrometer through a differentially-pumped inlet, are detected by light scattered from two CW laser beams, and sampled by a 10 ns excimer laser pulse at 308 nm as they pass through the center of the ion trap electrodes. After the laser pulse, the stored ions are separated by conventional ion trap methods. In this work thousands of positive and negative ion spectra were collected for eighteen different species: six bacteria, six pollen, and six particulate samples. The data were then averaged and analyzed using the Multivariate Patch Algorithm (MPA), a variant of traditional multivariate anal ysis. The MPA correctly identified all of the positive ion spectra and 17 of the 18 negative ion spectra. In addition, when the average positive and negative spectra were combined the MPA correctly identified all 18 species. Finally, the MPA is also able to identify the components of computer synthesized mixtures of the samples studied

  3. Therapeutic Strategies Based on Polymeric Microparticles

    PubMed Central

    Vilos, C.; Velasquez, L. A.

    2012-01-01

    The development of the field of materials science, the ability to perform multidisciplinary scientific work, and the need for novel administration technologies that maximize therapeutic effects and minimize adverse reactions to readily available drugs have led to the development of delivery systems based on microencapsulation, which has taken one step closer to the target of personalized medicine. Drug delivery systems based on polymeric microparticles are generating a strong impact on preclinical and clinical drug development and have reached a broad development in different fields supporting a critical role in the near future of medical practice. This paper presents the foundations of polymeric microparticles based on their formulation, mechanisms of drug release and some of their innovative therapeutic strategies to board multiple diseases. PMID:22665988

  4. Real-Time Analysis of Individual Airborne Microparticles Using Laser Ablation Mass Spectroscopy and Genetically Trained Neural Networks

    SciTech Connect

    Parker, E.P.; Rosenthal, S.E.; Trahan, M.W.; Wagner, J.S.

    1999-01-22

    We are developing a method for analysis of airborne microparticles based on laser ablation of individual molecules in an ion trap mass spectrometer. Airborne particles enter the spectrometer through a differentially-pumped inlet, are detected by light scattered from two CW laser beams, and sampled by a pulsed excimer laser as they pass through the center of the ion trap electrodes. After the laser pulse, the stored ions are separated by conventional ion trap methods. The mass spectra are then analyzed using genetically-trained neural networks (NNs). A number of mass spectra are averaged to obtain training cases which contain a recognizable spectral signature. Averaged spectra for a bacteria and a non-bacteria are shown to the NNs, the response evaluated, and the weights of the connections between neurodes adjusted by a Genetic Algorithm (GA) such that the output from the NN ranges from 0 for non-bacteria to 1 for bacteria. This process is iterated until the population of the GA converges or satisfies predetermined stopping criteria. Using this type of bipolar training we have obtained generalizing NNs able to distinguish five new bacteria from five new non-bacteria, none of which were used in training the NN.

  5. Microparticles prepared from sulfenamide-based polymers

    PubMed Central

    D’Mello, Sheetal R.; Yoo, Jun; Bowden, Ned B.; Salem, Aliasger K.

    2015-01-01

    Polysulfenamides (PSN), with a SN linkage (RSNR2) along the polymer backbone, are a new class of biodegradable and biocompatible polymers. These polymers were unknown prior to 2012 when their synthesis and medicinally relevant properties were reported. The aim of this study was to develop microparticles as a controlled drug delivery system using polysulfenamide as the matrix material. The microparticles were prepared by a water-in-oil-in-water double emulsion solvent evaporation method. For producing drug-loaded particles, FITC-dextran was used as a model hydrophilic compound. At the optimal formulation conditions, the external morphology of the PSN microparticles was examined by scanning electron microscopy to show the formation of smooth-surfaced spherical particles with low polydispersity. The microparticles had a net negative surface charge (−23 mV) as analyzed by the zetasizer. The drug encapsulation efficiency of the particles and the drug loading were found to be dependent on the drug molecular weight, amount of FITC-dextran used in fabricating FITC-dextran loaded microparticles, concentration of PSN and surfactant, and volume of the internal and external water phases. FITC-dextran was found to be distributed throughout the PSN microparticles and was released in an initial burst followed by more continuous release over time. Confocal laser scanning microscopy was used to qualitatively observe the cellular uptake of PSN microparticles and indicated localization of the particles in both the cytoplasm and the nucleus. PMID:23862723

  6. Thermoresponsive Agarose Based Microparticles for Antibody Separation.

    PubMed

    Ooi, Huey Wen; Ketterer, Benedikt; Trouillet, Vanessa; Franzreb, Matthias; Barner-Kowollik, Christopher

    2016-01-11

    We report the development of thermoresponsive 4-mercaptoethylpyridine (MEP)-based chromatographic microsphere based resins for antibody separation that show switchable release abilities by adsorbing immunoglobulins at 40 °C and releasing the proteins at 5 °C. The thermoswitchable release properties were introduced to the porous resins by the grafting of linear poly(N-isopropylacrylamide) (PNIPAM) chains synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, which were modified to possess MEP end functionalities. Adsorption of γ-globulins as a model antibody on the shortest PNIPAM-MEP (3 kDa) grafted microparticles display binding capacities of up to 20 g L(-1) at 40 °C and a significant decrease in binding capacity to less than 2.5 g L(-1) at 5 °C. By switching the temperature to 5 °C, the release of bound γ-globulins is shown to be as high as 90%. The effects of polymer chain length on the binding capacity are studied in detail and found to be critical as they influence the density of MEP functionalities on the particle surfaces. PMID:26626821

  7. RDX-based nanocomposite microparticles for significantly reduced shock sensitivity.

    PubMed

    Qiu, Hongwei; Stepanov, Victor; Di Stasio, Anthony R; Chou, Tsengming; Lee, Woo Y

    2011-01-15

    Cyclotrimethylenetrinitramine (RDX)-based nanocomposite microparticles were produced by a simple, yet novel spray drying method. The microparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and high performance liquid chromatography (HPLC), which shows that they consist of small RDX crystals (∼0.1-1 μm) uniformly and discretely dispersed in a binder. The microparticles were subsequently pressed to produce dense energetic materials which exhibited a markedly lower shock sensitivity. The low sensitivity was attributed to small crystal size as well as small void size (∼250 nm). The method developed in this work may be suitable for the preparation of a wide range of insensitive explosive compositions. PMID:20940087

  8. Microparticles based on natural and synthetic polymers for ophthalmic applications.

    PubMed

    Tataru, G; Popa, M; Costin, D; Desbrieres, J

    2012-05-01

    Sodium salt of carboxymethylcellulose/poly(vinyl alcohol) particles suitable for application in ocular drug administration were prepared by crosslinking with epichlorohydrin in an alkaline medium, in reverse emulsion. The influence of parameters related with the particles elaboration process (ratio between polymer mixture and crosslinking agent, concentration of polymer solution, duration of crosslinking reaction, stirring intensity, etc.) based on their composition, size, and swelling ability was studied. Obtained microparticles fulfill the requirements for biomaterials-they are formed from biocompatible polymers; the acute toxicity value (LD(50)) is high enough to consider these materials as weakly toxic (hence able to introduce within the organism); they are able to include and release drugs in a controlled way. The in vivo adrenalin ocular delivery from the microparticles was tested on voluntary human patient. The particles showed good adhesion properties without irritation to the patient and proved the capability to treat the ocular congestion. PMID:22344747

  9. Reduction in microparticle adsorption using a lateral interconnection method in a PDMS-based microfluidic device.

    PubMed

    Lee, Do-Hyun; Park, Je-Kyun

    2013-12-01

    Microparticle adsorption on microchannel walls occurs frequently due to nonspecific interactions, decreasing operational performance in pressure-driven microfluidic systems. However, it is essential for delicate manipulation of microparticles or cells to maintain smooth fluid traffic. Here, we report a novel microparticle injection technique, which prevents particle loss, assisted by sample injection along the direction of fluid flow. Sample fluids, including microparticles, mammalian (U937), and green algae (Chlorella vulgaris) cells, were injected directly via a through hole drilled in the lateral direction, resulting in a significant reduction in microparticle attachment. For digital microfluidic application, the proposed regime achieved a twofold enhancement of single-cell encapsulation compared to the conventional encapsulation rate, based on a Poisson distribution, by reducing the number of empty droplets. This novel interconnection method can be straightforwardly integrated as a microparticle or cell injection component in integrated microfluidic systems. PMID:24105848

  10. Fabrication of starch-based microparticles by an emulsification-crosslinking method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-based microparticles (MPs) fabricated by a water-in-water (w/w) emulsification-crosslinking method could be used as a controlled-release delivery vehicle for food bioactives. Due to the processing route without the use of toxic organic solvents, it is expected that these microparticles can be...

  11. Magnetic microparticles based on natural polymers.

    PubMed

    Tataru, G; Popa, M; Desbrieres, J

    2011-02-14

    Magnetic micro- and nanoparticles based on ferrofluid (maghemite) were elaborated by inverse emulsion crosslinking of sodium salt of carboxymethylcellulose (CMCNa) and gelatin. Crosslinking was carried out with glutaric aldehyde within aqueous droplets dispersed into toluene in presence of surfactants. The influence of parameters such as the ratio of polymers and maghemite in the initial mixture on the composition, size, size dispersity, particle swelling and their ability for drug inclusion was studied. The ability to take-up drugs is directly correlated with the degree of swelling and gelatin content within the particles. Particle size is between tens of nanometers and a few microns. The magnetic properties of particles are demonstrated from saturation magnetization (between 43 and 44 emu g(-1)) when their superparamagnetic character was shown by the absence of hysteresis on the magnetization curve. Polymer-drug systems elaborated under particles keep their bactericide activity for at least 48 h. The absence of toxicity, associated with the bactericide activity, make these systems potential drug carriers. PMID:21075184

  12. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  13. Amorphous Calcium Carbonate Based-Microparticles for Peptide Pulmonary Delivery.

    PubMed

    Tewes, Frederic; Gobbo, Oliviero L; Ehrhardt, Carsten; Healy, Anne Marie

    2016-01-20

    Amorphous calcium carbonate (ACC) is known to interact with proteins, for example, in biogenic ACC, to form stable amorphous phases. The control of amorphous/crystalline and inorganic/organic ratios in inhalable calcium carbonate microparticles may enable particle properties to be adapted to suit the requirements of dry powders for pulmonary delivery by oral inhalation. For example, an amorphous phase can immobilize and stabilize polypeptides in their native structure and amorphous and crystalline phases have different mechanical properties. Therefore, inhalable composite microparticles made of inorganic (i.e., calcium carbonate and calcium formate) and organic (i.e., hyaluronan (HA)) amorphous and crystalline phases were investigated for peptide and protein pulmonary aerosol delivery. The crystalline/amorphous ratio and polymorphic form of the inorganic component was altered by changing the microparticle drying rate and by changing the ammonium carbonate and HA initial concentration. The bioactivity of the model peptide, salmon calcitonin (sCT), coprocessed with alpha-1-antitrypsin (AAT), a model protein with peptidase inhibitor activity, was maintained during processing and the microparticles had excellent aerodynamic properties, making them suitable for pulmonary aerosol delivery. The bioavailability of sCT after aerosol delivery as sCT and AAT-loaded composite microparticles to rats was 4-times higher than that of sCT solution. PMID:26692360

  14. Polymer-based microparticles in tissue engineering and regenerative medicine.

    PubMed

    Oliveira, Mariana B; Mano, João F

    2011-07-01

    Different types of biomaterials, processed into different shapes, have been proposed as temporary support for cells in tissue engineering (TE) strategies. The manufacturing methods used in the production of particles in drug delivery strategies have been adapted for the development of microparticles in the fields of TE and regenerative medicine (RM). Microparticles have been applied as building blocks and matrices for the delivery of soluble factors, aiming for the construction of TE scaffolds, either by fusion giving rise to porous scaffolds or as injectable systems for in situ scaffold formation, avoiding complicated surgery procedures. More recently, organ printing strategies have been developed by the fusion of hydrogel particles with encapsulated cells, aiming the production of organs in in vitro conditions. Mesoscale self-assembly of hydrogel microblocks and the use of leachable particles in three-dimensional (3D) layer-by-layer (LbL) techniques have been suggested as well in recent works. Along with innovative applications, new perspectives are open for the use of these versatile structures, and different directions can still be followed to use all the potential that such systems can bring. This review focuses on polymeric microparticle processing techniques and overviews several examples and general concepts related to the use of these systems in TE and RE applications. The use of materials in the development of microparticles from research to clinical applications is also discussed. PMID:21584949

  15. In vitro degradation behavior of chitosan based hybrid microparticles

    PubMed Central

    Jayasuriya, A. Champa; Mauch, Kristalyn J.

    2014-01-01

    The degradation properties of the MPs is important to the long-term benefits of the use of the chitosan (CS) based hybrid MPs in bone tissue-engineering, because the degradation kinetics could affect a multitude of processes within the cell, such as cell growth, tissue regeneration, and host response. The aim of this study was to investigate the degradation of solid, hybrid CS microparticles (MPs), CS-10% calcium phosphate (CaHPO4, w/w), and CS-10% calcium carbonate (CaCO3, w/w) MPs in phosphate buffered solution (PBS) over a 30-week period. The hybrid MPs were synthesized by emulsification technique, cross-linked with 64% sodium tripolyphosphate (TPP), purified and air dried overnight. Each sample had 30 mg of MPs was placed in a glass vial with 9 ml of PBS added and then the vial was closed to prevent evaporation. Every week 4 ml of the incubated solution was removed for sample measurement and all samples were replaced with an equivalent amount of fresh medium. The samples were maintained at 37°C under continuous shaking. The hybrid MPs were measured for pH and calcium release, every week in triplicate. At 0, 5, 10, 15, 20, 25, and 30 weeks, surface and bulk morphology were analyzed with a scanning electron microscope (SEM). The degradation data suggested that the hybrid MPs were stable at least up to 25 week and maintain the physiologically relevant pH. Therefore, we can use these hybrid MPs to apply in the bone tissue engineering applications since they do not degrade within a short period. PMID:25289115

  16. In vitro degradation behavior of chitosan based hybrid microparticles.

    PubMed

    Jayasuriya, A Champa; Mauch, Kristalyn J

    2011-05-17

    The degradation properties of the MPs is important to the long-term benefits of the use of the chitosan (CS) based hybrid MPs in bone tissue-engineering, because the degradation kinetics could affect a multitude of processes within the cell, such as cell growth, tissue regeneration, and host response. The aim of this study was to investigate the degradation of solid, hybrid CS microparticles (MPs), CS-10% calcium phosphate (CaHPO4, w/w), and CS-10% calcium carbonate (CaCO3, w/w) MPs in phosphate buffered solution (PBS) over a 30-week period. The hybrid MPs were synthesized by emulsification technique, cross-linked with 64% sodium tripolyphosphate (TPP), purified and air dried overnight. Each sample had 30 mg of MPs was placed in a glass vial with 9 ml of PBS added and then the vial was closed to prevent evaporation. Every week 4 ml of the incubated solution was removed for sample measurement and all samples were replaced with an equivalent amount of fresh medium. The samples were maintained at 37°C under continuous shaking. The hybrid MPs were measured for pH and calcium release, every week in triplicate. At 0, 5, 10, 15, 20, 25, and 30 weeks, surface and bulk morphology were analyzed with a scanning electron microscope (SEM). The degradation data suggested that the hybrid MPs were stable at least up to 25 week and maintain the physiologically relevant pH. Therefore, we can use these hybrid MPs to apply in the bone tissue engineering applications since they do not degrade within a short period. PMID:25289115

  17. Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber.

    PubMed

    Schmidt, Oliver A; Euser, Tijmen G; Russell, Philip St J

    2013-12-01

    We show how microparticles can be moved over long distances and precisely positioned in a low-loss air-filled hollow-core photonic crystal fiber using a coherent superposition of two co-propagating spatial modes, balanced by a backward-propagating fundamental mode. This creates a series of trapping positions spaced by half the beat-length between the forward-propagating modes (typically a fraction of a millimeter). The system allows a trapped microparticle to be moved along the fiber by continuously tuning the relative phase between the two forward-propagating modes. This mode-based optical conveyor belt combines long-range transport of microparticles with a positional accuracy of 1 µm. The technique also has potential uses in waveguide-based optofluidic systems. PMID:24514492

  18. Biocompatibility Assessment of Si-based Nano- and Micro-particles

    PubMed Central

    Jaganathan, Hamsa; Godin, Biana

    2012-01-01

    Silicon is one of the most abundant chemical elements found on the Earth. Due to its unique chemical and physical properties, silicon based materials and their oxides (e.g. silica) have been used in several industries such as building and construction, electronics, food industry, consumer products and biomedical engineering/medicine. This review summarizes studies on effects of silicon and silica nano- and micro-particles on cells and organs following four main exposure routes, namely, intravenous, pulmonary, dermal and oral. Further, possible genotoxic effects of silica based nanoparticles are discussed. The review concludes with an outlook on improving and standardizing biocompatibility assessment for nano- and micro-particles. PMID:22634160

  19. Microparticles manipulation and enhancement of their separation in pinched flow fractionation by insulator-based dielectrophoresis.

    PubMed

    Khashei, Hesamodin; Latifi, Hamid; Seresht, Mohsen Jamshidi; Ghasemi, Amir Hossein Baradaran

    2016-03-01

    The separation and manipulation of microparticles in lab on a chip devices have importance in point of care diagnostic tools and analytical applications. The separation and sorting of particles from biological and clinical samples can be performed using active and passive techniques. In passive techniques, no external force is applied while in active techniques by applying external force (e.g. electrical), higher separation efficiency is obtained. In this article, passive (pinched flow fractionation) and active (insulator-based dielectrophoresis) methods were combined to increase the separation efficiency at lower voltages. First by simulation, appropriate values of geometry and applied voltages for better focusing, separation, and lower Joule heating were obtained. Separation of 1.5 and 6 μm polystyrene microparticles was experimentally obtained at optimized geometry and low total applied voltage (25 V). Also, the trajectory of 1.5 μm microparticles was controlled by adjusting the total applied voltage. PMID:26685118

  20. An on-line remote supervisory system for microparticles based on image analysis

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Hua; Jiang, Ming-Shun; Sui, Qing-Mei

    2011-11-01

    A new on-line remote particle analysis system based on image processing has been developed to measure microparticles. The system is composed of particle collector sensor (PCS), particle image sensor (PIS), image remote transmit module and image processing system. Then some details of image processing are discussed. The main advantage of this system is more convenient in particle sample collection and particle image acquisition. The particle size can be obtained using the system with a deviation abot less than 1 μm, and the particle number can be obtained without deviation. The developed system is also convenient and versatile for other analyses of microparticle for academic and industrial application.

  1. Production and characterization of engineered alginate-based microparticles containing ECM powder for cell/tissue engineering applications.

    PubMed

    Mazzitelli, Stefania; Luca, Giovanni; Mancuso, Francesca; Calvitti, Mario; Calafiore, Riccardo; Nastruzzi, Claudio; Johnson, Scott; Badylak, Stephen F

    2011-03-01

    A method for the production of engineered alginate-based microparticles, containing extracellular matrix and neonatal porcine Sertoli cells (SCs), is described. As a source for extracellular matrix, a powder form of isolated and purified urinary bladder matrix (UBM) was employed. We demonstrated that the incorporation of UBM does not significantly alter the morphological and dimensional characteristics of the microparticles. The alginate microparticles were used for SC encapsulation as an immunoprotective barrier for transplant purposes, while the co-entrapped UBM promoted retention of cell viability and function. These engineered microparticles could represent a novel approach to enhancing immunological acceptance and increasing the functional life-span of the entrapped cells for cell/tissue engineering applications. In this respect, it is noteworthy that isolated neonatal porcine SCs, administered alone in highly biocompatible microparticles, led to diabetes prevention and reversion in nonobese diabetic (NOD) mice. PMID:20950716

  2. Microparticles based on chitosan/carboxymethylcellulose polyelectrolyte complexes for colon delivery of vancomycin.

    PubMed

    Cerchiara, T; Abruzzo, A; Parolin, C; Vitali, B; Bigucci, F; Gallucci, M C; Nicoletta, F P; Luppi, B

    2016-06-01

    The aim of this work was to prepare polyelectrolyte complexes based on chitosan (CH) and carboxymethylcellulose (CMC) for colon delivery of vancomycin (VM). Various batches of polyelectrolyte complexes, using three different CH/CMC weight ratios (3:1, 1:1 and 1:3), were prepared and collected as microparticles by spray-drying process. Microparticles were characterized in terms of yield, encapsulation efficiency, drug loading, morphology and mucoadhesion properties. Microparticles water-uptake and VM release as well as its protection against gastric pepsin degradation were also investigated. Finally, the antibacterial activity against Staphylococcus aureus, a Gram-positive model strain, was evaluated. The best formulation CH/CMC 1:3 was selected based on the encapsulation efficiency, water-uptake and drug release rate. Moreover, microparticles were able to prevent VM degradation and showed a good antibacterial activity against S. aureus. Finally, to improve the release of VM in the colon the selected formulation was coated with lauric acid. PMID:27083351

  3. Lectin-Based Characterization of Vascular Cell Microparticle Glycocalyx

    PubMed Central

    Scruggs, April K.; Cioffi, Eugene A.; Cioffi, Donna L.; King, Judy A. C.; Bauer, Natalie N.

    2015-01-01

    Microparticles (MPs) are released constitutively and from activated cells. MPs play significant roles in vascular homeostasis, injury, and as biomarkers. The unique glycocalyx on the membrane of cells has frequently been exploited to identify specific cell types, however the glycocalyx of the MPs has yet to be defined. Thus, we sought to determine whether MPs, released both constitutively and during injury, from vascular cells have a glycocalyx matching those of the parental cell type to provide information on MP origin. For these studies we used rat pulmonary microvascular and artery endothelium, pulmonary smooth muscle, and aortic endothelial cells. MPs were collected from healthy or cigarette smoke injured cells and analyzed with a panel of lectins for specific glycocalyx linkages. Intriguingly, we determined that the MPs released either constitutively or stimulated by CSE injury did not express the same glycocalyx of the parent cells. Further, the glycocalyx was not unique to any of the specific cell types studied. These data suggest that MPs from both normal and healthy vascular cells do not share the parental cell glycocalyx makeup. PMID:26274589

  4. Offutt Air Force Base, Looking Glass Airborne Command Post, Blast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Offutt Air Force Base, Looking Glass Airborne Command Post, Blast Deflector Fences, Northeast & Southwest sides of Operational Apron, Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  5. Offutt Air Force Base, Looking Glass Airborne Command Post, Operational ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Offutt Air Force Base, Looking Glass Airborne Command Post, Operational & Hangar Access Aprons, Spanning length of northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  6. Propaedeutic study for the delivery of nucleic acid-based molecules from PLGA microparticles and stearic acid nanoparticles

    PubMed Central

    Grassi, G; Coceani, N; Farra, R; Dapas, B; Racchi, G; Fiotti, N; Pascotto, A; Rehimers, B; Guarnieri, G; Grassi, M

    2006-01-01

    We studied the mechanism governing the delivery of nucleic acid-based drugs (NABD) from microparticles and nanoparticles in zero shear conditions, a situation occurring in applications such as in situ delivery to organ parenchyma. The delivery of a NABD molecule from poly(DL-lactide-co-glycolide) (PLGA) microparticles and stearic acid (SA) nanoparticles was studied using an experimental apparatus comprising a donor chamber separated from the receiver chamber by a synthetic membrane. A possible toxic effect on cell biology, as evaluated by studying cell proliferation, was also conducted for just PLGA microparticles. A mathematical model based on the hypothesis that NABD release from particles is due to particle erosion was used to interpret experimental release data. Despite zero shear conditions imposed in the donor chamber, particle erosion was the leading mechanism for NABD release from both PLGA microparticles and SA nanoparticles. PLGA microparticle erosion speed is one order of magnitude higher than that of competing to SA nanoparticles. Finally, no deleterious effects of PLGA microparticles on cell proliferation were detected. Thus, the data here reported can help optimize the delivery systems aimed at release of NABD from micro- and nanoparticles. PMID:17722283

  7. Microfluidic-based fabrication, characterization and magnetic functionalization of microparticles with novel internal anisotropic structure

    PubMed Central

    Qiu, Yang; Wang, Fei; Liu, Ying-Mei; Wang, Wei; Chu, Liang-Yin; Wang, Hua-Lin

    2015-01-01

    Easy fabrication and independent control of the internal and external morphologies of core-shell microparticles still remain challenging. Core-shell microparticle comprised of a previously unknown internal anisotropic structure and a spherical shell was fabricated by microfluidic-based emulsificaiton and photopolymerization. The interfacial and spatial 3D morphology of the anisotropic structure were observed by SEM and micro-CT respectively. Meanwhile, a series of layer-by-layer scans of the anisotropic structure were obtained via the micro-CT, which enhanced the detail characterization and analysis of micro materials. The formation mechanism of the internal anisotropic structure may be attributed to solution-directed diffusion caused by the semipermeable membrane structure and chemical potential difference between inside and outside of the semipermeable membrane-like polymerized shell. The morphology evolution of the anisotropic structure was influenced and controlled by adjusting reaction parameters including polymerization degree, polymerization speed, and solute concentration difference. The potential applications of these microparticles in microrheological characterization and image enhancement were also proposed by embedding magnetic nanoparticles in the inner core. PMID:26268148

  8. Microfluidic-based fabrication, characterization and magnetic functionalization of microparticles with novel internal anisotropic structure

    NASA Astrophysics Data System (ADS)

    Qiu, Yang; Wang, Fei; Liu, Ying-Mei; Wang, Wei; Chu, Liang-Yin; Wang, Hua-Lin

    2015-08-01

    Easy fabrication and independent control of the internal and external morphologies of core-shell microparticles still remain challenging. Core-shell microparticle comprised of a previously unknown internal anisotropic structure and a spherical shell was fabricated by microfluidic-based emulsificaiton and photopolymerization. The interfacial and spatial 3D morphology of the anisotropic structure were observed by SEM and micro-CT respectively. Meanwhile, a series of layer-by-layer scans of the anisotropic structure were obtained via the micro-CT, which enhanced the detail characterization and analysis of micro materials. The formation mechanism of the internal anisotropic structure may be attributed to solution-directed diffusion caused by the semipermeable membrane structure and chemical potential difference between inside and outside of the semipermeable membrane-like polymerized shell. The morphology evolution of the anisotropic structure was influenced and controlled by adjusting reaction parameters including polymerization degree, polymerization speed, and solute concentration difference. The potential applications of these microparticles in microrheological characterization and image enhancement were also proposed by embedding magnetic nanoparticles in the inner core.

  9. Formulation of inhalable lipid-based salbutamol sulfate microparticles by spray drying technique

    PubMed Central

    2014-01-01

    Background The aim of this work was to develop dry powder inhaler (DPI) formulations of salbutamol sulfate (SS) by the aid of solid lipid microparticles (SLmPs), composed of biocompatible phospholipids or cholesterol. Methods The SLmPs were prepared by using two different solvent systems (ethanol and water-ethanol) and lipid carriers (dipalmitoylphosphatidylcholine (DPPC) and cholesterol) with/without L-leucine in the spray drying process. The spray-dried microparticles were physically-mixed with coarse lactose monohydrate in order to make our final DPI formulations and were investigated in terms of physical characteristics as well as in vitro drug release profile and aerosolization behavior. Results We observed significant differences in the sizes, morphologies, and in vitro pulmonary depositions between the formulations. In particular, the SS-containing SLmPs prepared with water-ethanol (30:70 v/v) solution of DPPC and L-leucine which had then been blended with coarse lactose (1:9 w/w) exhibited the highest emitted dose (87.9%) and fine particle fraction (42.7%) among the formulations. In vitro drug release study indicated that despite of having a significant initial burst release for both cholesterol and DPPC-based microparticles, the remained drug released more slowly than the pure drug. Conclusion This study demonstrated the potential of using lipid carriers as well as L-leucine in DPI formulations of SS to improve its aerosolization behavior and retard the release profile of the drug. PMID:24919924

  10. Trapping and rotating microparticles and bacteria with moiré-based optical propelling beams

    PubMed Central

    Zhang, Peng; Hernandez, Daniel; Cannan, Drake; Hu, Yi; Fardad, Shima; Huang, Simon; Chen, Joseph C.; Christodoulides, Demetrios N.; Chen, Zhigang

    2012-01-01

    We propose and demonstrate trapping and rotation of microparticles and biological samples with a moiré-based rotating optical tweezers. We show that polystyrene beads, as well as Escherichia coli cells, can be rotated with ease, while the speed and direction of rotation are fully controllable by a computer, obviating mechanical movement or phase-sensitive interference. Furthermore, we demonstrate experimentally the generation of white-light propelling beams and arrays, and discuss the possibility of optical tweezing and particle micro-manipulation based on incoherent white-light rotating patterns. PMID:22876352

  11. Interfacial tension based on-chip extraction of microparticles confined in microfluidic Stokes flows

    NASA Astrophysics Data System (ADS)

    Huang, Haishui; He, Xiaoming

    2014-10-01

    Microfluidics involving two immiscible fluids (oil and water) has been increasingly used to produce hydrogel microparticles with wide applications. However, it is difficult to extract the microparticles out of the microfluidic Stokes flows of oil that have a Reynolds number (the ratio of inertia to viscous force) much less than one, where the dominant viscous force tends to drive the microparticles to move together with the surrounding oil. Here, we present a passive method for extracting hydrogel microparticles in microfluidic Stokes flow from oil into aqueous extracting solution on-chip by utilizing the intrinsic interfacial tension between oil and the microparticles. We further reveal that the thickness of an "extended confining layer" of oil next to the interface between oil and aqueous extracting solution must be smaller than the radius of microparticles for effective extraction. This method uses a simple planar merging microchannel design that can be readily fabricated and further integrated into a fluidic system to extract microparticles for wide applications.

  12. Offutt Air Force Base, Looking Glass Airborne Command Post, Vehicle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Offutt Air Force Base, Looking Glass Airborne Command Post, Vehicle Refueling Station, Northeast of AGE Storage Facility at far northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  13. Offutt Air Force Base, Looking Glass Airborne Command Post, Hydraulic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Offutt Air Force Base, Looking Glass Airborne Command Post, Hydraulic Fluid Buildings, Northeast of Looking Glass Avenue at southwest side of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  14. VCSEL-based optical trapping for microparticle manipulation

    NASA Astrophysics Data System (ADS)

    Michalzik, Rainer; Kroner, Andrea; Bergmann, Anna; Rinaldi, Fernando

    2009-02-01

    In recent years, research into microfluidic devices has attracted much interest in the fields of biology and medicine, since they promise cheap and fast sample analysis with drastically reduced volume requirements. The combination of various analysis steps on one chip forms a small-sized biomedical system, where handling, fixing, and sorting of particles are major components. Here, it was demonstrated that optical manipulation is an efficient tool; in particular it is accurate, contactless, and biocompatible. However, the commonly required extensive optical setup contradicts the concept of a miniaturized system. We present a novel particle manipulation concept based on vertical-cavity surface-emitting lasers (VCSELs) as light sources. The small dimensions and the low power consumption of these devices enable a direct integration with microfluidic systems. The symmetric geometry of VCSELs leads to a high-quality, circular output beam, which we additionally shape by an etched surface relief in the laser output facet and an integrated photoresist microlens. Thus, a weakly focused output beam with a beam waist of some micrometers is generated in the microfluidic channel. With this configuration we were able to demonstrate particle deflection, trapping, and sorting with a solitary VCSEL with output powers of only 5mW. Furthermore, the surface emission of VCSELs allows a comparatively easy fabrication of two-dimensional laser arrays with arbitrary arrangement of pixels. Smart particle sorting and switching schemes can thus be realized. We have fabricated densely packed VCSEL arrays with center-to-center spacings of only 24 μm. Equipped with integrated microlenses, these arrays are integrated with microfluidic chips based on polydimethylsiloxane (PDMS), enabling ultra-compact particle sorting and fractionation.

  15. Formulation, characterization and anti-malarial activity of homolipid-based artemether microparticles.

    PubMed

    Agubata, Chukwuma O; Nzekwe, Ifeanyi T; Attama, Anthony A; Mueller-Goymann, Christel C; Onunkwo, Godswill C

    2015-01-15

    The anti-malarial activity of artemether is dependent on its bioavailability. The purpose of the research is to improve the solubility, bioavailability and therapeutic efficacy of lipophilic artemether using homolipid-based microparticles. Irvingia fat was extracted from Irvingia gabonensis var. excelsa (Irvingia wombolu), and its lipid matrices (LM) with Phospholipon(®) 90G (P90G) were characterized by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). Solid lipid microparticles were formulated, characterized, filled and compressed into capsules and tablets, respectively, and drug release studied. In vivo anti-plasmodial activity of artemether SLMs was evaluated in mice. The crystallinity of the phyto-lipid reduced in the presence of P90G, which was integrated into the irvingia fat crystal lattice. SLM dispersions with 3:1 irvingia fat/P90G composition showed higher diffusion and permeability through dialysis membrane while lower proportion of P90G (9:1 LM) favored increased dissolution rate of artemether from capsules (p<0.05). Significant increase (p<0.05) in % plasmodial growth inhibition and reduced parasitemia were observed in mice administered with the SLM dispersions compared with the controls. Therefore, SLMs prepared with composite mixtures of a homolipid and P90G could be used to improve the solubility, dissolution, permeability, bioavailability and anti-malarial efficacy of artemether. PMID:25448583

  16. Interfacial tension based on-chip extraction of microparticles confined in microfluidic Stokes flows

    PubMed Central

    Huang, Haishui; He, Xiaoming

    2014-01-01

    Microfluidics involving two immiscible fluids (oil and water) has been increasingly used to produce hydrogel microparticles with wide applications. However, it is difficult to extract the microparticles out of the microfluidic Stokes flows of oil that have a Reynolds number (the ratio of inertia to viscous force) much less than one, where the dominant viscous force tends to drive the microparticles to move together with the surrounding oil. Here, we present a passive method for extracting hydrogel microparticles in microfluidic Stokes flow from oil into aqueous extracting solution on-chip by utilizing the intrinsic interfacial tension between oil and the microparticles. We further reveal that the thickness of an “extended confining layer” of oil next to the interface between oil and aqueous extracting solution must be smaller than the radius of microparticles for effective extraction. This method uses a simple planar merging microchannel design that can be readily fabricated and further integrated into a fluidic system to extract microparticles for wide applications. PMID:25378709

  17. Bottle beam based optical trapping system for three-dimensional trapping of high and low index microparticles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Balpreet Singh; Yuan, Xiaocong; Tao, Shaohua

    2005-08-01

    The quest for applying optical tweezers system for novel applications has aggrandized its trapping capabilities since its inception. Researchers have proposed and applied light based micro-manipulation technique in the field of colloidal sciences, bioscience, MEMS and the count is limitless. In this paper we report the self-imaged optical bottle beam based optical tweezers system. A self-imaged bottle beam possesses three-dimensional intensity-null points along the propagation axis. The transverse intensity profile of the self-imaged bottle beam oscillates along the propagation axis, hence providing three-dimensional trapping potential for high and low indices microparticles at constructive and destructive interference points, respectively. Bottle beam based optical tweezer system adds the beneficial property of Gaussian and Bessel beam based trapping systems by providing three-dimensional trapping potential and self-reconstruction ability, respectively. As self-imaged bottle beam belong to the family of propagation-invariant beams, it can be used to trap chain of high and low indices microparticles three-dimensionally along the propagation directions, which can be used to periodically stack microparticles (of different refractive index) longitudinally.

  18. A Versatile Microparticle-Based Immunoaggregation Assay for Macromolecular Biomarker Detection and Quantification

    PubMed Central

    Wu, Haiyan; Han, Yu; Yang, Xi; Chase, George G.; Tang, Qiong; Lee, Chen-Jung; Cao, Bin; Zhe, Jiang; Cheng, Gang

    2015-01-01

    The rapid, sensitive and low-cost detection of macromolecular biomarkers is critical in clinical diagnostics, environmental monitoring, research, etc. Conventional assay methods usually require bulky, expensive and designated instruments and relative long assay time. For hospitals and laboratories that lack immediate access to analytical instruments, fast and low-cost assay methods for the detection of macromolecular biomarkers are urgently needed. In this work, we developed a versatile microparticle (MP)-based immunoaggregation method for the detection and quantification of macromolecular biomarkers. Antibodies (Abs) were firstly conjugated to MP through streptavidin-biotin interaction; the addition of macromolecular biomarkers caused the aggregation of Ab-MPs, which were subsequently detected by an optical microscope or optical particle sizer. The invisible nanometer-scale macromolecular biomarkers caused detectable change of micrometer-scale particle size distributions. Goat anti-rabbit immunoglobulin and human ferritin were used as model biomarkers to demonstrate MP-based immunoaggregation assay in PBS and 10% FBS to mimic real biomarker assay in the complex medium. It was found that both the number ratio and the volume ratio of Ab-MP aggregates caused by biomarker to all particles were directly correlated to the biomarker concentration. In addition, we found that the detection range could be tuned by adjusting the Ab-MP concentration. We envision that this novel MP-based immunoaggregation assay can be combined with multiple detection methods to detect and quantify macromolecular biomarkers at the nanogram per milliliter level. PMID:25658837

  19. Polyester-based microparticles of different hydrophobicity: the patterns of lipophilic drug entrapment and release.

    PubMed

    Korzhikov, Viktor; Averianov, Ilia; Litvinchuk, Evgeniia; Tennikova, Tatiana B

    2016-05-01

    The paper is devoted to the investigation of the effect of polyester hydrophobicity and ability for crystallisation on lipophilic drug loading and release from microparticles fabricated on the base of these polymers. Poly(l-lactic acid), poly(d, l-lactic acid) and poly (lactic acid-co-glycolic acid) were synthesised by ring-opening polymerisation using stannous octoate as catalyst, while poly(caprolactone) (PCL) and poly(ω-pentadecalactone) (PPDL) formation was catalysed by lipase. The particles were formed via single emulsion evaporation/diffusion method. The particles obtained were studied using SEM, XRD and DSC methods. The degradation of particles based on different polyesters, entrapment and release of a model hydrophobic drug (risperidone®) were thoroughly studied. The effect of particles hydrophobicity and crystallinity on these parameters was of most interest. The drug entrapment is greater for the hydrophobic polymers. Drug release was more rapid from crystalline particles (PLLA, PCL, PPDL), than from amorphous PDLLA and PLGA ones. PMID:26888064

  20. Enhancing the longevity of microparticle-based glucose sensors towards one month continuous operation

    PubMed Central

    Singh, Saurabh; McShane, Mike

    2009-01-01

    Luminescent microspheres encapsulating glucose oxidase have recently been reported as potential implantable sensors, but the operational lifetime of these systems has been limited by enzyme degradation. We report here that the longevity of these enzymatic microparticle-based sensors has been extended by the coimmobilization of glucose oxidase (GOx) and catalase (CAT) into the sensor matrix. A mathematical model was used to compare the response and longevity of the sensors with and without catalase. To experimentally test the longevity, sensors were continuously operated under normoglycemic dermal substrate concentrations and physiological conditions (5.5 mM glucose and 140 µM O2, 37°C and pH 7.4). The sensors incorporating CAT were experimentally shown to be ~5 times more stable than those without CAT; nevertheless, the response of sensors with CAT still changed by approximately 20%, when operated continuously for seven days. The experimentally-determined trends obtained for the variation in sensor response due to enzyme deactivation were in close agreement with modeling predictions, which also revealed a significant apparent loss in enzyme activity upon immobilization. It was further predicted via modeling that by incorporating 0.1 mM each of active GOx and CAT, the sensors will exhibit less than 2% variation in response over one month of continuous operation. PMID:19926464

  1. Matrix polyelectrolyte capsules based on polysaccharide/MnCO₃ hybrid microparticle templates.

    PubMed

    Wei, Qingrong; Ai, Hua; Gu, Zhongwei

    2011-06-15

    An efficient strategy for biomacromolecule encapsulation based on spontaneous deposition into polysaccharide matrix-containing capsules is introduced in this study. First, hybrid microparticles composed of manganese carbonate and ionic polysaccharides including sodium hyaluronate (HA), sodium alginate (SA) and dextran sulfate sodium (DS) with narrow size distribution were synthesized to provide monodisperse templates. Incorporation of polysaccharide into the hybrid templates was successful as verified by thermogravimetric analysis (TGA) and confocal laser scanning microscopy (CLSM). Matrix polyelectrolyte microcapsules were fabricated through layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolytes (PEs) onto the hybrid particles, followed by removal of the inorganic part of the cores, leaving polysaccharide matrix inside the capsules. The loading and release properties of the matrix microcapsules were investigated using myoglobin as a model biomacromolecule. Compared to matrix-free capsules, the matrix capsules had a much higher loading capacity up to four times; the driving force is mostly due to electrostatic interactions between myoglobin and the polysaccharide matrix. From our observations, for the same kind of polysaccharide, a higher amount of polysaccharide inside the capsules usually led to better loading capacity. The release behavior of the loaded myoglobin could be readily controlled by altering the environmental pH. These matrix microcapsules may be used as efficient delivery systems for various charged water-soluble macromolecules with applications in biomedical fields. PMID:21130616

  2. Fluorescent Ratiometric Indicators Based on Cu(II)-Induced Changes in Poly(NIPAM) Microparticle Volume

    PubMed Central

    Osambo, John; Seitz, W. Rudolf; Kennedy, Daniel P.; Planalp, Roy P.; Jones, Aaron M.; Jackson, Randy K.; Burdette, Shawn

    2013-01-01

    Microparticles consisting of the thermal responsive polymer N-isopropyl acrylamide (polyNIPAM), a metal ion-binding ligand and a fluorophore pair that undergoes fluorescence resonance energy transfer (FRET) have been prepared and characterized. Upon the addition of Cu(II), the microparticles swell or contract depending on whether charge is introduced or neutralized on the polymer backbone. The variation in microparticle morphology is translated into changes in emission of each fluorophore in the FRET pair. By measuring the emission intensity ratio between the FRET pair upon Cu(II) addition, the concentration of metal ion in solution can be quantified. This ratiometric fluorescent indicator is the newest technique in an ongoing effort to use emission spectroscopy to monitor Cu(II) thermodynamic activity in environmental water samples. PMID:23337337

  3. Airborne Tactical Intent-Based Conflict Resolution Capability

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Vivona, Robert A.; Roscoe, David A.

    2009-01-01

    Trajectory-based operations with self-separation involve the aircraft taking the primary role in the management of its own trajectory in the presence of other traffic. In this role, the flight crew assumes the responsibility for ensuring that the aircraft remains separated from all other aircraft by at least a minimum separation standard. These operations are enabled by cooperative airborne surveillance and by airborne automation systems that provide essential monitoring and decision support functions for the flight crew. An airborne automation system developed and used by NASA for research investigations of required functionality is the Autonomous Operations Planner. It supports the flight crew in managing their trajectory when responsible for self-separation by providing monitoring and decision support functions for both strategic and tactical flight modes. The paper focuses on the latter of these modes by describing a capability for tactical intent-based conflict resolution and its role in a comprehensive suite of automation functions supporting trajectory-based operations with self-separation.

  4. Rapid Software-Based Design and Optical Transient Liquid Molding of Microparticles.

    PubMed

    Wu, Chueh-Yu; Owsley, Keegan; Di Carlo, Dino

    2015-12-22

    Microparticles with complex 3D shape and composition are produced using a novel fabrication method, optical transient liquid molding, in which a 2D light pattern exposes a photopolymer precursor stream shaped along the flow axis by software-aided inertial flow engineering. PMID:26509252

  5. Experimental investigations on airborne gravimetry based on compressed sensing.

    PubMed

    Yang, Yapeng; Wu, Meiping; Wang, Jinling; Zhang, Kaidong; Cao, Juliang; Cai, Shaokun

    2014-01-01

    Gravity surveys are an important research topic in geophysics and geodynamics. This paper investigates a method for high accuracy large scale gravity anomaly data reconstruction. Based on the airborne gravimetry technology, a flight test was carried out in China with the strap-down airborne gravimeter (SGA-WZ) developed by the Laboratory of Inertial Technology of the National University of Defense Technology. Taking into account the sparsity of airborne gravimetry by the discrete Fourier transform (DFT), this paper proposes a method for gravity anomaly data reconstruction using the theory of compressed sensing (CS). The gravity anomaly data reconstruction is an ill-posed inverse problem, which can be transformed into a sparse optimization problem. This paper uses the zero-norm as the objective function and presents a greedy algorithm called Orthogonal Matching Pursuit (OMP) to solve the corresponding minimization problem. The test results have revealed that the compressed sampling rate is approximately 14%, the standard deviation of the reconstruction error by OMP is 0.03 mGal and the signal-to-noise ratio (SNR) is 56.48 dB. In contrast, the standard deviation of the reconstruction error by the existing nearest-interpolation method (NIPM) is 0.15 mGal and the SNR is 42.29 dB. These results have shown that the OMP algorithm can reconstruct the gravity anomaly data with higher accuracy and fewer measurements. PMID:24647125

  6. Experimental Investigations on Airborne Gravimetry Based on Compressed Sensing

    PubMed Central

    Yang, Yapeng; Wu, Meiping; Wang, Jinling; Zhang, Kaidong; Cao, Juliang; Cai, Shaokun

    2014-01-01

    Gravity surveys are an important research topic in geophysics and geodynamics. This paper investigates a method for high accuracy large scale gravity anomaly data reconstruction. Based on the airborne gravimetry technology, a flight test was carried out in China with the strap-down airborne gravimeter (SGA-WZ) developed by the Laboratory of Inertial Technology of the National University of Defense Technology. Taking into account the sparsity of airborne gravimetry by the discrete Fourier transform (DFT), this paper proposes a method for gravity anomaly data reconstruction using the theory of compressed sensing (CS). The gravity anomaly data reconstruction is an ill-posed inverse problem, which can be transformed into a sparse optimization problem. This paper uses the zero-norm as the objective function and presents a greedy algorithm called Orthogonal Matching Pursuit (OMP) to solve the corresponding minimization problem. The test results have revealed that the compressed sampling rate is approximately 14%, the standard deviation of the reconstruction error by OMP is 0.03 mGal and the signal-to-noise ratio (SNR) is 56.48 dB. In contrast, the standard deviation of the reconstruction error by the existing nearest-interpolation method (NIPM) is 0.15 mGal and the SNR is 42.29 dB. These results have shown that the OMP algorithm can reconstruct the gravity anomaly data with higher accuracy and fewer measurements. PMID:24647125

  7. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    NASA Astrophysics Data System (ADS)

    Zhu, Benpeng; Xu, Jiong; Li, Ying; Wang, Tian; Xiong, Ke; Lee, Changyang; Yang, Xiaofei; Shiiba, Michihisa; Takeuchi, Shinichi; Zhou, Qifa; Shung, K. Kirk

    2016-03-01

    Single-beam acoustic tweezers (SBAT), used in laboratory-on-a-chip (LOC) device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d33 = 270pC/N and kt = 0.51) was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50MHz, a low f-number (˜0.9), demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  8. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    PubMed Central

    Zhu, Benpeng; Xu, Jiong; Li, Ying; Wang, Tian; Xiong, Ke; Lee, Changyang; Yang, Xiaofei; Shiiba, Michihisa; Takeuchi, Shinichi; Zhou, Qifa; Shung, K. Kirk

    2016-01-01

    Single-beam acoustic tweezers (SBAT), used in laboratory-on-a-chip (LOC) device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d33 = 270pC/N and kt = 0.51) was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50MHz, a low f-number (∼0.9), demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications. PMID:27014504

  9. Platinum black electrodeposited thread based electrodes for dielectrophoretic assembly of microparticles.

    PubMed

    Fernandez, Renny Edwin; Koklu, Anil; Mansoorifar, Amin; Beskok, Ali

    2016-05-01

    We report dielectrophoretic (DEP) assembly of biological cells and microparticles using platinum-black electrodeposited conductive textile fiber. The three-dimensional conductive structures with high aspect ratios were found to facilitate high electric field regions, as revealed by scanning electron microscope characterization. The effective conducting area (Aeff) and its stability of thread electrodes were estimated using electrochemical methods. Potential of platinum black electrodeposited thread as 3-D electrodes for creating high gradient electrical field for dielectrophoretic assembly of microspheres and Saccharomyces cerevisiae (yeast cells) into 1D and two-dimensional structures over long ranges under the application of low voltages (4-10 Vpp) has been demonstrated. The formation of highly ordered pearl chains of microparticles using thread electrodes when subjected to dielectrophoresis (DEP) has been discussed in detail. PMID:27158295

  10. A cell-based microarray to investigate combinatorial effects of microparticle-encapsulated adjuvants on dendritic cell activation

    PubMed Central

    Acharya, Abhinav P.; Carstens, Matthew R.; Lewis, Jamal S.; Dolgova, Natalia; Xia, C. Q.; Clare-Salzler, Michael J.

    2016-01-01

    Experimental vaccine adjuvants are being designed to target specific toll-like receptors (TLRs) alone or in combination, expressed by antigen presenting cells, notably dendritic cells (DCs). There is a need for high-content screening (HCS) platforms to explore how DC activation is affected by adjuvant combinations. Presented is a cell-based microarray approach, “immunoarray”, exposing DCs to a large number of adjuvant combinations. Microparticles encapsulating TLR ligands are printed onto arrays in a range of doses for each ligand, in all possible dose combinations. Dendritic cells are then co-localized with physisorbed microparticles on the immunoarray, adherent to isolated islands surrounded by a non-fouling background, and DC activation is quantified. Delivery of individual TLR ligands was capable of eliciting high levels of specific DC activation markers. For example, either TLR9 ligand, CpG, or TLR3 ligand, poly I:C, was capable of inducing among the highest 10% expression levels of CD86. In contrast, MHC-II expression in response to TLR4 agonist MPLA was among the highest, whereas either MPLA or poly I:C, was capable of producing among the highest levels of CCR7 expression, as well as inflammatory cytokine IL-12. However, in order to produce robust responses across all activation markers, adjuvant combinations were required, and combinations were more represented among the high responders. The immunoarray also enables investigation of interactions between adjuvants, and each TLR ligand suggested antagonism to other ligands, for various markers. Altogether, this work demonstrates feasibility of the immunoarray platform to screen microparticle-encapsulated adjuvant combinations for the development of improved and personalized vaccines. PMID:26985393

  11. Knowledge-based architecture for airborne mine and minefield detection

    NASA Astrophysics Data System (ADS)

    Agarwal, Sanjeev; Menon, Deepak; Swonger, C. W.

    2004-09-01

    One of the primary lessons learned from airborne mid-wave infrared (MWIR) based mine and minefield detection research and development over the last few years has been the fact that no single algorithm or static detection architecture is able to meet mine and minefield detection performance specifications. This is true not only because of the highly varied environmental and operational conditions under which an airborne sensor is expected to perform but also due to the highly data dependent nature of sensors and algorithms employed for detection. Attempts to make the algorithms themselves more robust to varying operating conditions have only been partially successful. In this paper, we present a knowledge-based architecture to tackle this challenging problem. The detailed algorithm architecture is discussed for such a mine/minefield detection system, with a description of each functional block and data interface. This dynamic and knowledge-driven architecture will provide more robust mine and minefield detection for a highly multi-modal operating environment. The acquisition of the knowledge for this system is predominantly data driven, incorporating not only the analysis of historical airborne mine and minefield imagery data collection, but also other "all source data" that may be available such as terrain information and time of day. This "all source data" is extremely important and embodies causal information that drives the detection performance. This information is not being used by current detection architectures. Data analysis for knowledge acquisition will facilitate better understanding of the factors that affect the detection performance and will provide insight into areas for improvement for both sensors and algorithms. Important aspects of this knowledge-based architecture, its motivations and the potential gains from its implementation are discussed, and some preliminary results are presented.

  12. Airborne Evaluation and Demonstration of a Time-Based Airborne Inter-Arrival Spacing Tool

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Oseguera-Lohr, Rosa M.; Abbott, Terence S.; Capron, William R.; Howell, Charles T.

    2005-01-01

    An airborne tool has been developed that allows an aircraft to obtain a precise inter-arrival time-based spacing interval from the preceding aircraft. The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast (ADS-B) data to compute speed commands for the ATAAS-equipped aircraft to obtain this inter-arrival spacing behind another aircraft. The tool was evaluated in an operational environment at the Chicago O'Hare International Airport and in the surrounding terminal area with three participating aircraft flying fixed route area navigation (RNAV) paths and vector scenarios. Both manual and autothrottle speed management were included in the scenarios to demonstrate the ability to use ATAAS with either method of speed management. The results on the overall delivery precision of the tool, based on a target spacing of 90 seconds, were a mean of 90.8 seconds with a standard deviation of 7.7 seconds. The results for the RNAV and vector cases were, respectively, M=89.3, SD=4.9 and M=91.7, SD=9.0.

  13. Shape-encoded silica microparticles for multiplexed bioassays.

    PubMed

    Kim, Lily Nari; Kim, Mira; Jung, Keumsim; Bae, Hyung Jong; Jang, Jisung; Jung, Yushin; Kim, Jiyun; Kwon, Sunghoon

    2015-08-01

    Shape-encoded silica microparticles for use in multiplexed bioassays were fabricated by using optofluidic maskless lithography (OFML) and tetraethylorthosilicate (TEOS) polymerization. These encoded silica microparticles exhibit excellent bioconjugation properties and negligible non-specific analyte adsorption. Encoded silica microparticles could be useful in a wide variety of applications, including DNA- and protein-based diagnostics. PMID:26125980

  14. Antimicrobial Properties of Microparticles Based on Carmellose Cross-Linked by Cu2+ Ions

    PubMed Central

    Kejdušová, Martina; Vysloužil, Jakub; Kubová, Kateřina; Celer, Vladimír; Krásna, Magdaléna; Pechová, Alena; Vyskočilová, Věra; Košťál, Vratislav

    2015-01-01

    Carmellose (CMC) is frequently used due to its high biocompatibility, biodegradability, and low immunogenicity for development of site-specific or controlled release drug delivery systems. In this experimental work, CMC dispersions in two different concentrations (1% and 2%) cross-linked by copper (II) ions (0.5, 1, 1.5, or 2.0 M CuCl2) were used to prepare microspheres with antimicrobial activity against Escherichia coli and Candida albicans, both frequently occurring pathogens which cause vaginal infections. The microparticles were prepared by an ionotropic gelation technique which offers the unique possibility to entrap divalent copper ions in a CMC structure and thus ensure their antibacterial activity. Prepared CMC microspheres exhibited sufficient sphericity. Both equivalent diameter and copper content were influenced by CMC concentration, and the molarity of copper (II) solution affected only the copper content results. Selected samples exhibited stable but pH-responsive behaviour in environments which corresponded with natural (pH 4.5) and inflamed (pH 6.0) vaginal conditions. All the tested samples exhibited proven substantial antimicrobial activity against both Gram-negative bacteria Escherichia coli and yeast Candida albicans. Unexpectedly, a crucial parameter for microsphere antimicrobial activity was not found in the copper content but in the swelling capacity of the microparticles and in the degree of CMC surface shrinking. PMID:26090444

  15. Study of radiation characteristic of airborne sensor based on tarps

    NASA Astrophysics Data System (ADS)

    Yu, Xiujuan; Qi, Weijun; Fang, Aiping

    2014-07-01

    The radiation characteristic of aerial sensor directly affects the quantitative application level of sensor data. In order to study the radiation characteristic, we carried out the radiation characteristic test based on ground tarps laid onto the calibration field of image quality in Anyang, Henan. The airborne sensor was calibrated adopting reflectance-based method. 8 gray-scale tarps and 4 tarps of high reflectance were laid onto the calibration field and they were all with better Lambert radiation characteristic and spectral performance uniformity. Preliminary results show that the bias is larger and the effective dynamic range is smaller and the SNR is lower but the linearity and repeatability are better which can be used to test the response performance of the sensor. Overall, the radiation characteristic tarps laid on the calibration field are suitable for the study of in-flight radiation characteristic of the aerial digital sensor.

  16. Object-based detection of vehicles in airborne data

    NASA Astrophysics Data System (ADS)

    Schilling, Hendrik; Bulatov, Dimitri; Middelmann, Wolfgang

    2015-10-01

    Robust detection of vehicles in airborne data is a challenging task since a high variation in the object signatures - depending on data resolution - and often a small contrast between objects and background lead to high false classification rates and missed detections. Despite these facts, many applications require reliable results which can be obtained in a short time. In this paper, an object-based approach for vehicle detection in airborne laser scans (ALS) and photogrammetrically reconstructed 2.5D data is described. The focus of this paper lies on a robust object segmentation algorithm as well as the identification of features for a reliable separation between vehicles and background (all nonevehicle objects) on different scenes. The described method is based on three consecutive steps, namely, object segmentation, feature extraction and supervised classification. In the first step, the 2.5D data is segmented and possible targets are identified. The segmentation progress is based on the morphological top-hat filtering, which leaves areas that are smaller than a given filter size and higher (brighter) than their surroundings. The approach is chosen due to the low computational effort of this filter, which allows a fast computation even for large areas. The next step is feature extraction. Based on the initial segmentation, features for every identified object are extracted. In addition to frequently used features like height above ground, object area, or point distribution, more complex features like object planarity, entropy in the intensity image, and lineness measures are used. The last step contains classification of each object. For this purpose, a random forest classifier (RF) using the normalized features extracted in the previous step is chosen. RFs are suitable for high dimensional and nonlinear problems. In contrast to other approaches (e.g. maximum likelihood classifier), RFs achieves good results even with relatively small training samples.

  17. An all fiber apparatus for microparticles selective manipulation based on a variable ratio coupler and a microfiber

    NASA Astrophysics Data System (ADS)

    Li, Baoli; Luo, Wei; Xu, Fei; Lu, Yanqing

    2016-09-01

    We propose an all fiber apparatus based on a variable ratio coupler which can transport microparticles controllably and trap particles one by one along a microfiber. By connecting two output ports of a variable ratio coupler with two end pigtails of a microfiber and launching a 980 nm laser into the variable ratio coupler, particles in suspension were trapped to the waist of microfiber due to a gradient force and then transported along the microfiber due to a total scattering force generated by two counter-propagating beams. The direction of transportation was controlled by altering the coupling ratio of the variable ratio coupler. When the intensities of two output ports were equivalent, trapped particles stayed at fixed positions. With time going, another particle around the micro fiber was trapped onto the microfiber. There were three particles trapped in total in our experiment. This technique combines with the function of conventional tweezers and optical conveyor.

  18. Critical rolling angle of microparticles

    NASA Astrophysics Data System (ADS)

    Farzi, Bahman; Vallabh, Chaitanya K. P.; Stephens, James D.; Cetinkaya, Cetin

    2016-03-01

    At the micrometer-scale and below, particle adhesion becomes particularly relevant as van der Waals force often dominates volume and surface proportional forces. The rolling resistance of microparticles and their critical rolling angles prior to the initiation of free-rolling and/or complete detachment are critical in numerous industrial processes and natural phenomenon involving particle adhesion and granular dynamics. The current work describes a non-contact measurement approach for determining the critical rolling angle of a single microparticle under the influence of a contact-point base-excitation generated by a transient displacement field of a prescribed surface acoustic wave pulse and reports the critical rolling angle data for a set of polystyrene latex microparticles.

  19. SRMS142-based solid lipid microparticles: application in oral delivery of glibenclamide to diabetic rats.

    PubMed

    Nnamani, P O; Attama, A A; Ibezim, E C; Adikwu, M U

    2010-09-01

    P90Gylation refers to the modification of lipid molecules by one or more phospholipid chains. Phospholipon 90G (P90G) contains about 94.0% of phosphatidylcholine stabilized with 0.1% ascorbyl palmitate and is a safe (GRAS) FDA-approved parenteral excipient with wide applications in drug delivery. P90Gylated-Softisan 142 conjugate, otherwise referred to as (SRMS142), has numerous advantages: wetting, solubilization, drug stabilization, emulsification, and modified release. Here, we report an evaluation of solid lipid microparticles (SLMs) formulated from SRMS142 systems as an alternative carrier system for oral glibenclamide administration in diabetic rats. The result of our findings showed that SRMS142 generated an imperfect matrix with numerous spaces that accommodated glibenclamide in a concentration-dependent manner up to 60.58%. The blood glucose-lowering effect of the SLMs was higher than that of a commercial sample. PMID:20554020

  20. Flow cytometric analysis of circulating microparticles in plasma.

    PubMed

    Orozco, Aaron F; Lewis, Dorothy E

    2010-06-01

    Microparticles, which include exosomes, micro-vesicles, apoptotic bodies and apoptotic microparticles, are small (0.05 - 3 mum in diameter), membranous vesicles that can contain DNA, RNA, miRNA, intracellular proteins and express extracellular surface markers from the parental cells. They can be secreted from intracellular multivesicular bodies or released from the surface of blebbing membranes. Circulating microparticles are abundant in the plasma of normal individuals and can be derived from circulating blood cells such as platelets, red blood cells and leukocytes as well as from tissue sources, such as endothelial and placental tissues. Elevated levels of microparticles are associated with various diseases such as thrombosis (platelet microparticles), congestive heart failure (endothelial microparticles), breast cancer patients (leukocyte microparticles) and women with preeclampsia (syncytiotrophoblast microparticles). Although microparticles can be detected by microscopy, enzyme-linked immunoassays and functional assays, flow cytometry is the preferred method because of the ability to quantitate (fluorescent bead- or flow rate-based method) and because of polychromatic capabilities. However, standardization of pre-analytical and analytical modus operandi for isolating, enumerating and fluorescent labeling of microparticles remains a challenge. The primary focus of this article is to review the preliminary steps required to optimally study circulating in vivo microparticles which include: 1) centrifugation speed used, 2) quantitation of microparticles before antibody labeling, 3) levels of fluorescence intensity of antibody-labeled microparticles, 4) polychromatic flow cytometric analysis of microparticle sub-populations and 5) use of polyclonal antibodies designed for Western blotting for flow cytometry. These studies determine a roadmap to develop microparticles as biomarkers for a variety of conditions. PMID:20235276

  1. Particulate matter induces prothrombotic microparticle shedding by human mononuclear and endothelial cells.

    PubMed

    Neri, Tommaso; Pergoli, Laura; Petrini, Silvia; Gravendonk, Lotte; Balia, Cristina; Scalise, Valentina; Amoruso, Angela; Pedrinelli, Roberto; Paggiaro, Pierluigi; Bollati, Valentina; Celi, Alessandro

    2016-04-01

    Particulate airborne pollution is associated with increased cardiopulmonary morbidity. Microparticles are extracellular vesicles shed by cells upon activation or apoptosis involved in physiological processes such as coagulation and inflammation, including airway inflammation. We investigated the hypothesis that particulate matter causes the shedding of microparticles by human mononuclear and endothelial cells. Cells, isolated from the blood and the umbilical cords of normal donors, were cultured in the presence of particulate from a standard reference. Microparticles were assessed in the supernatant as phosphatidylserine concentration. Microparticle-associated tissue factor was assessed by an one-stage clotting assay. Nanosight technology was used to evaluate microparticle size distribution. Particulate matter induces a dose- and time- dependent, rapid (1h) increase in microparticle generation in both cells. These microparticles express functional tissue factor. Particulate matter increases intracellular calcium concentration and phospholipase C inhibition reduces microparticle generation. Nanosight analysis confirmed that upon exposure to particulate matter both cells express particles with a size range consistent with the definition of microparticles (50-1000 nm). Exposure of mononuclear and endothelial cells to particulate matter upregulates the generation of microparticles at least partially mediated by calcium mobilization. This observation might provide a further link between airborne pollution and cardiopulmonary morbidity. PMID:26876346

  2. A wing pod-based millimeter wavelength airborne cloud radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Ellis, S.; Tsai, P.; Loew, E.; Lee, W. C.; Emmett, J.; Dixon, M.; Burghart, C.; Rauenbuehler, S.

    2015-04-01

    This paper describes a novel, airborne pod-based millimeter wavelength radar. Its frequency of operation is 94 GHz (3 mm wavelength). The radar has been designed to fly on the NCAR Gulfstream V HIAPER aircraft; however, it could be deployed on other similarly equipped aircraft. The pod-based configuration occupies minimum cabin space and maximizes scan coverage. The radar system is capable of collecting observations in a staring mode between zenith and nadir or in a scanning mode. Standard pulse-pair estimates of moments and raw time series of backscattered signals are recorded. The radar system design and characteristics, as well as techniques for calibrating reflectivity and correcting Doppler velocity for aircraft attitude and motion are described. The radar can alternatively be deployed in a ground-based configuration, housed in the 20 ft shipping container it shares with the High Spectral Resolution Lidar (HSRL). The radar was tested both on the ground and in flight. Preliminary measurements of Doppler and polarization measurements were collected and examples are presented.

  3. A wing pod-based millimeter wavelength airborne cloud radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Ellis, S.; Tsai, P.; Loew, E.; Lee, W.-C.; Emmett, J.; Dixon, M.; Burghart, C.; Rauenbuehler, S.

    2015-08-01

    This paper describes a novel, airborne pod-based millimeter (mm) wavelength radar. Its frequency of operation is 94 GHz (3 mm wavelength). The radar has been designed to fly on the NCAR Gulfstream V HIAPER aircraft; however, it could be deployed on other similarly equipped aircraft. The pod-based configuration occupies minimum cabin space and maximizes scan coverage. The radar system is capable of collecting observations in a staring mode between zenith and nadir or in a scanning mode. Standard pulse-pair estimates of moments and raw time series of backscattered signals are recorded. The radar system design and characteristics as well as techniques for calibrating reflectivity and correcting Doppler velocity for aircraft attitude and motion are described. The radar can alternatively be deployed in a ground-based configuration, housed in the 20 ft shipping container it shares with the High Spectral Resolution Lidar (HSRL). The radar was tested both on the ground and in flight. Preliminary measurements of Doppler and polarization measurements were collected and examples are presented.

  4. A facile method of fabricating mechanical durable anti-icing coatings based on CeO2 microparticles

    NASA Astrophysics Data System (ADS)

    Wang, Pengren; Peng, Chaoyi; Wu, Binrui; Yuan, Zhiqing; Yang, Fubiao; Zeng, Jingcheng

    2015-07-01

    Compromising between hydrophobicity and mechanical durability may be a feasible approach to fabricating usable anti-icing coatings. This work improves the contact angle of current commercial anti-icing coatings applied to wind turbine blades dramatically and keeps relatively high mechanical durability. CeO2 microparticles and diluent were mixed with fluorocarbon resin to fabricate high hydrophobic coatings on the glass fiber reinforced epoxy composite substrates. The proportion of CeO2 microparticles and diluent influences the contact angles significantly. The optimum mass ratio of fluorocarbon resin to CeO2 microparticles to diluent is 1:1.5:1, which leads to the highest contact angle close to 140°. The microscopy analysis shows that the CeO2 microparticles form nano/microscale hierarchical structure on the surface of the coatings.

  5. In situ microparticle analysis of marine phytoplankton cells with infrared laser-based optical tweezers

    NASA Astrophysics Data System (ADS)

    Sonek, G. J.; Liu, Y.; Iturriaga, R. H.

    1995-11-01

    We describe the application of infrared optical tweezers to the in situ microparticle analysis of marine phytoplankton cells. A Nd:YAG laser (lambda=3D 1064 nm) trap is used to confine and manipulate single Nannochloris and Synechococcus cells in an enriched seawater medium while spectral fluorescence and Lorenz-Mie backscatter signals are simultaneously acquired under a variety of excitation and trapping conditions. Variations in the measured fluorescence intensities of chlorophyll a (Chl a) and phycoerythrin pigments in phytoplankton cells are observed. These variations are related, in part, to basic intrasample variability, but they also indicate that increasing ultraviolet-exposure time and infrared trapping power may have short-term effects on cellular physiology that are related to Chl a photobleaching and laser-induced heating, respectively. The use of optical tweezers to study the factors that affect marine cell physiology and the processes of absorption, scattering, and attenuation by individual cells, organisms, and particulate matter that contribute to optical closure on a microscopic scale are also described. (c)1995 Optical Society of America

  6. Preparation and characterization of chitosan-based spray-dried microparticles for the delivery of clindamycin phosphate to periodontal pockets.

    PubMed

    Kilicarslan, Muge; Gumustas, Mehmet; Yildiz, Sulhiye; Baykara, Tamer

    2014-01-01

    Biodegradable spray-dried chitosan microparticles loaded with clindamycin phosphate (CDP) were formulated to deliver drugs locally into the periodontal pocket. The effects of spray dryer conditions, drug/polymer ratio, and added amounts of glutaraldehyde (GA) solution on the characterization of microparticles were investigated by determining process yield, encapsulation efficiency, particle size and size distribution, surface morphology, drug release, release kinetics, thermal analysis, and antimicrobial efficacy of formulations. Burst release was obtained for all formulations due to the water solubility of the drug, but the increased amount of chitosan decreased the drug release rates. Microparticles with a more wrinkled surface were obtained by increasing the amount of the drug. Incorporation efficiencies higher than 80% were obtained for all preparation conditions. The addition of GA caused higher viscosity of the chitosan solution, leading to larger particles with more spherical and smooth surface characteristics. However, the increased GA amount did not significantly influence the drug release. The data obtained from in vitro release experiments were best fitted to the Weibull and Higuchi models. The amorphous nature of the drug-loaded microparticles was detected by differential scanning calorimetric (DSC) thermographs. A delayed drug release of more than one week could be obtained by loading the drug into the chitosan microparticles. Antimicrobial efficacy studies reflected a positive drug release profile. These results indicate that spray-dried clindamycin-loaded microparticles with sustained antimicrobial efficacy appear to be a promising periodontal therapy for drug delivery into the periodontal pocket. PMID:23947602

  7. Orodispersible films and tablets with prednisolone microparticles.

    PubMed

    Brniak, Witold; Maślak, Ewelina; Jachowicz, Renata

    2015-07-30

    Orodispersible tablets (ODTs) and orodispersible films (ODFs) are solid oral dosage forms disintegrating or dissolving rapidly when placed in the mouth. One of the main issues related to their preparation is an efficient taste masking of a bitter drug substance. Therefore, the aim of this study was to prepare and evaluate the microparticles intended to mask a bitter taste of the prednisolone and use them in further preparation of two orodispersible dosage forms. Microparticles based on the Eudragit E PO or E 100 as a taste-masking agent were prepared with spray-drying technique. Tablets containing microparticles, co-processed ODT excipient Pharmaburst, and lubricant were directly compressed with single-punch tablet press. Orodispersible films were prepared by casting polymeric solutions of hydroxypropyl methylcellulose containing uniformly dispersed microparticles. Physicochemical properties of microparticles were evaluated, as well as mechanical properties analysis, disintegration time measurements and dissolution tests were performed for prepared dosage forms. Both formulations showed good mechanical resistance while maintaining excellent disintegration properties. The dissolution studies showed good masking properties of microparticles with Eudragit E 100. The amount of prednisolone released during the first minute in phosphate buffer 6.8 was around 0.1%. After incorporation into the orodispersible forms, the amount of released prednisolone increased significantly. It was probably the effect of faster microparticles wetting in orodispersible forms and their partial destruction by compression force during tableting process. PMID:25889975

  8. The antibody-based magnetic microparticle immunoassay using p-FET sensing platform for Alzheimer's disease pathogenic factor

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Beom; Kim, Kwan-Soo; Song, Ki-Bong

    2013-05-01

    The importance of early Alzheimer's disease (AD) detection has been recognized to diagnose people at high risk of AD. The existence of intra/extracellular beta-amyloid (Aβ) of brain neurons has been regarded as the most archetypal hallmark of AD. The existing computed-image-based neuroimaging tools have limitations on accurate quantification of nanoscale Aβ peptides due to optical diffraction during imaging processes. Therefore, we propose a new method that is capable of evaluating a small amount of Aβ peptides by using photo-sensitive field-effect transistor (p-FET) integrated with magnetic force-based microbead collecting platform and selenium(Se) layer (thickness ~700 nm) as an optical filter. This method demonstrates a facile approach for the analysis of Aβ quantification using magnetic force and magnetic silica microparticles (diameter 0.2~0.3 μm). The microbead collecting platform mainly consists of the p-FET sensing array and the magnet (diameter ~1 mm) which are placed beneath each sensing region of the p-FET, which enables the assembly of the Aβ antibody conjugated microbeads, captures the Aβ peptides from samples, measures the photocurrents generated by the Q-dot tagged with Aβ peptides, and consequently results in the effective Aβ quantification.

  9. A combination hydrogel microparticle-based vaccine prevents type 1 diabetes in non-obese diabetic mice

    PubMed Central

    Yoon, Young Mee; Lewis, Jamal S.; Carstens, Matthew R.; Campbell-Thompson, Martha; Wasserfall, Clive H.; Atkinson, Mark A.; Keselowsky, Benjamin G.

    2015-01-01

    Targeted delivery of self-antigens to the immune system in a mode that stimulates a tolerance-inducing pathway has proven difficult. To address this hurdle, we developed a vaccine based-approach comprised of two synthetic controlled-release biomaterials, poly(lactide-co-glycolide; PLGA) microparticles (MPs) encapsulating denatured insulin (key self-antigen in type 1 diabetes; T1D), and PuraMatrixTM peptide hydrogel containing granulocyte macrophage colony-stimulating factor (GM-CSF) and CpG ODN1826 (CpG), which were included as vaccine adjuvants to recruit and activate immune cells. Although CpG is normally considered pro-inflammatory, it also has anti-inflammatory effects, including enhancing IL-10 production. Three subcutaneous administrations of this hydrogel (GM-CSF/CpG)/insulin-MP vaccine protected 40% of NOD mice from T1D. In contrast, all control mice became diabetic. In vitro studies indicate CpG stimulation increased IL-10 production, as a potential mechanism. Multiple subcutaneous injections of the insulin containing formulation resulted in formation of granulomas, which resolved by 28 weeks. Histological analysis of these granulomas indicated infiltration of a diverse cadre of immune cells, with characteristics reminiscent of a tertiary lymphoid organ, suggesting the creation of a microenvironment to recruit and educate immune cells. These results demonstrate the feasibility of this injectable hydrogel/MP based vaccine system to prevent T1D. PMID:26279095

  10. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  11. Mapping methane emission sources over California based on airborne measurements

    NASA Astrophysics Data System (ADS)

    Karl, T.; Guha, A.; Peischl, J.; Misztal, P. K.; Jonsson, H.; Goldstein, A. H.; Ryerson, T. B.

    2011-12-01

    The California Global Warming Solutions Act of 2006 (AB 32) has created a need to accurately characterize the emission sources of various greenhouse gases (GHGs) and verify the existing state GHG inventory. Methane (CH4) is a major GHG with a global warming potential of 20 times that of CO2 and currently constitutes about 6% of the total statewide GHG emissions on a CO2 equivalent basis. Some of the major methane sources in the state are area sources where methane is biologically produced (e.g. dairies, landfills and waste treatment plants) making bottom-up estimation of emissions a complex process. Other potential sources include fugitive emissions from oil extraction processes and natural gas distribution network, emissions from which are not well-quantified. The lack of adequate field measurement data to verify the inventory and provide independently generated estimates further contributes to the overall uncertainty in the CH4 inventory. In order to gain a better perspective of spatial distribution of major CH4 sources in California, a real-time measurement instrument based on Cavity Ring Down Spectroscopy (CRDS) was installed in a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of airborne CH4 and CO2 measurements during eight unique flights which covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. The coincident VOC measurements, obtained through a high frequency proton transfer reaction mass spectrometer (PTRMS), aid in CH4 source identification. High mixing ratios of CH4 (> 2000 ppb) are observed consistently in all the flight transects above the Central Valley. These high levels of CH4 are accompanied by high levels of methanol which is an important

  12. Multiplex Immunoassay Platforms Based on Shape-Coded Poly(ethylene glycol) Hydrogel Microparticles Incorporating Acrylic Acid

    PubMed Central

    Park, Saemi; Lee, Hyun Jong; Koh, Won-Gun

    2012-01-01

    A suspension protein microarray was developed using shape-coded poly(ethylene glycol) (PEG) hydrogel microparticles for potential applications in multiplex and high-throughput immunoassays. A simple photopatterning process produced various shapes of hydrogel micropatterns that were weakly bound to poly(dimethylsiloxane) (PDMS)-coated substrates. These micropatterns were easily detached from substrates during the washing process and were collected as non-spherical microparticles. Acrylic acids were incorporated into hydrogels, which could covalently immobilize proteins onto their surfaces due to the presence of carboxyl groups. The amount of immobilized protein increased with the amount of acrylic acid due to more available carboxyl groups. Saturation was reached at 25% v/v of acrylic acid. Immunoassays with IgG and IgM immobilized onto hydrogel microparticles were successfully performed with a linear concentration range from 0 to 500 ng/mL of anti-IgG and anti-IgM, respectively. Finally, a mixture of two different shapes of hydrogel microparticles immobilizing IgG (circle) and IgM (square) was prepared and it was demonstrated that simultaneous detection of two different target proteins was possible without cross-talk using same fluorescence indicator because each immunoassay was easily identified by the shapes of hydrogel microparticles. PMID:22969408

  13. Microparticles with hierarchical porosity

    DOEpatents

    Petsev, Dimiter N; Atanassov, Plamen; Pylypenko, Svitlana; Carroll, Nick; Olson, Tim

    2012-12-18

    The present disclosure provides oxide microparticles with engineered hierarchical porosity and methods of manufacturing the same. Also described are structures that are formed by templating, impregnating, and/or precipitating the oxide microparticles and method for forming the same. Suitable applications include catalysts, electrocatalysts, electrocatalysts support materials, capacitors, drug delivery systems, sensors and chromatography.

  14. In vivo detection of lipid-based nano- and microparticles in the outermost human stratum corneum by EDX analysis.

    PubMed

    Iannuccelli, Valentina; Coppi, Gilberto; Romagnoli, Marcello; Sergi, Santo; Leo, Eliana

    2013-04-15

    Lipid-based particulate delivery systems have been extensively investigated in the last decade for both pharmaceutical and cosmetic skin application although their translocation across the skin is not yet clarified. The aim of this paper was to investigate on humans the ability of solid lipid nanoparticles (SLN) and solid lipid microparticles (SLM) to penetrate the outermost stratum corneum (SC) and to be modified upon contact with the cutaneous components by using the Tape Stripping Test coupled with the energy dispersive X-ray (EDX) analysis. SLN and SLM were prepared by the melt emulsification technique and loaded with nanosized titanium dioxide (TiO2) to become identifiable by means of X-ray emission. Following human skin application, the translocation of the particulate systems was monitored by the analysis of twelve repetitive stripped tapes using non-encapsulated metal dioxide as the control. Intact SLN as well as non-encapsulated TiO₂ were recorded along the largest SC openings until the 12th stripped tape suggesting the intercluster region as their main pathway. Evidences of a concurrent biodegradation process of the lipid matrix, as the result of SLN interaction with the lipid packing between the corneocyte clusters, were found in the deepest SC layers considered. On the contrary, SLM were retained on the skin surface without undergoing biodegradation so preventing the leaching and the subsequent SC translocation of the loaded TiO₂. PMID:23500767

  15. The potential adjuvanticity of quaternized chitosan hydrogel based microparticles for porcine reproductive and respiratory syndrome virus inactivated vaccine.

    PubMed

    Wang, Yue-Qi; Liu, Yan; Wang, Yu-Xia; Wu, Ya-Jun; Jia, Pei-Yuan; Shan, Jun-Jie; Wu, Jie; Ma, Guang-Hui; Su, Zhi-Guo

    2016-10-01

    Infectious diseases possess a big threat to the livestock industry worldwide. Currently, inactivated veterinary vaccines have attracted much attention to prevent infection due to their safer profile compared to live attenuated vaccine. However, its intrinsic poor immunogenicity demands the incorporation of an adjuvant. Mineral oil based adjuvant (Montanide™ ISA206) was usually used to potentiate the efficacy of veterinary vaccines. However, ISA206 could not induce robust cellular immune responses, which was very important in controlling virus replication and clearing the infected cells. Moreover, mineral oil would result in severe side effects. To improve both the humoral and cellular immune responses of porcine reproductive and respiratory syndrome virus (PRRSV) inactivated vaccine, we developed pH-sensitive and size-controllable quaternized chitosan hydrogel microparticles (Gel MPs) without using chemical cross linking agent. Gel MPs, ionic cross-linked with glycerophosphate (GP), were biocompatible and could efficiently adsorb the inactivated PRRSV vaccine with a loading capacity of 579.05μg/mg. After intramuscular immunization in mice, results suggested that Gel MPs elicited significantly higher cell-mediated immune responses and comparable humoral immune responses compared to ISA 206. Regarding the biocompatibility, safety and effectiveness, Gel MPs would be a promising candidate to enhance the efficacy of veterinary vaccine. PMID:27449471

  16. PLGA-based microparticles loaded with bacterial-synthesized prodigiosin for anticancer drug release: Effects of particle size on drug release kinetics and cell viability.

    PubMed

    Obayemi, J D; Danyuo, Y; Dozie-Nwachukwu, S; Odusanya, O S; Anuku, N; Malatesta, K; Yu, W; Uhrich, K E; Soboyejo, W O

    2016-09-01

    This paper presents the synthesis and physicochemical characterization of biodegradable poly (d,l-lactide-co-glycolide) (PLGA)-based microparticles that are loaded with bacterial-synthesized prodigiosin drug obtained from Serratia marcescens subsp. Marcescens bacteria for controlled anticancer drug delivery. The micron-sized particles were loaded with anticancer drugs [prodigiosin (PG) and paclitaxel (PTX) control] using a single-emulsion solvent evaporation technique. The encapsulation was done in the presence of PLGA (as a polymer matrix) and poly-(vinyl alcohol) (PVA) (as an emulsifier). The effects of processing conditions (on the particle size and morphology) are investigated along with the drug release kinetics and drug-loaded microparticle degradation kinetics. The localization and apoptosis induction by prodigiosin in breast cancer cells is also elucidated along with the reduction in cell viability due to prodigiosin release. The implication of this study is for the potential application of prodigiosin PLGA-loaded microparticles for controlled delivery of cancer drug and treatment to prevent the regrowth or locoregional recurrence, following surgical resection of triple negative breast tumor. PMID:27207038

  17. Microfluidic production of polymeric functional microparticles

    NASA Astrophysics Data System (ADS)

    Jiang, Kunqiang

    This dissertation focuses on applying droplet-based microfluidics to fabricate new classes of polymeric microparticles with customized properties for various applications. The integration of microfluidic techniques with microparticle engineering allows for unprecedented control over particle size, shape, and functional properties. Specifically, three types of microparticles are discussed here: (1) Magnetic and fluorescent chitosan hydrogel microparticles and their in-situ assembly into higher-order microstructures; (2) Polydimethylsiloxane (PDMS) microbeads with phosphorescent properties for oxygen sensing; (3) Macroporous microparticles as biological immunosensors. First, we describe a microfluidic approach to generate monodisperse chitosan hydrogel microparticles that can be further connected in-situ into higher-order microstructures. Microparticles of the biopolymer chitosan are created continuously by contacting an aqueous solution of chitosan at a microfluidic T-junction with a stream of hexadecane containing a nonionic detergent, followed by downstream crosslinking of the generated droplets by a ternary flow of glutaraldehyde. Functional properties of the microparticles can be easily varied by introducing payloads such as magnetic nanoparticles and/or fluorescent dyes into the chitosan solution. We then use these prepared microparticles as "building blocks" and assemble them into high ordered microstructures, i.e. microchains with controlled geometry and flexibility. Next, we describe a new approach to produce monodisperse microbeads of PDMS using microfluidics. Using a flow-focusing configuration, a PDMS precursor solution is dispersed into microdroplets within an aqueous continuous phase. These droplets are collected and thermally cured off-chip into soft, solid microbeads. In addition, our technique allows for direct integration of payloads, such as an oxygen-sensitive porphyrin dye, into the PDMS microbeads. We then show that the resulting dye

  18. Microfluidic Fabrication of Hydrogel Microparticles Containing Functionalized Viral Nanotemplates

    PubMed Central

    Lewis, Christina L.; Lin, Yan; Yang, Cuixian; Manocchi, Amy K.; Yuet, Kai P.; Doyle, Patrick S.; Yi, Hyunmin

    2010-01-01

    We demonstrate rapid microfluidic fabrication of hybrid microparticles composed of functionalized viral nanotemplates directly embedded in polymeric hydrogels. Specifically, genetically modified tobacco mosaic virus (TMV) templates were covalently labeled with fluorescent markers or metalized with palladium (Pd) nanoparticles (Pd-TMV), then suspended in a poly(ethylene glycol)-based solution. Upon formation in a flow-focusing device, droplets were photopolymerized with UV light to form microparticles. Fluorescence and confocal microscopy images of microparticles containing fluorescently labeled TMV show uniform distribution of TMV nanotemplates throughout the microparticles. Catalytic activity, via the dichromate reduction reaction, is also demonstrated with microparticles containing Pd-TMV complexes. Additionally, Janus microparticles were fabricated containing viruses embedded in one side and magnetic nanoparticles in the other, that enabled simple separation from bulk solution. These results represent a facile route to directly harness the advantages of viral nanotemplates into a readily usable and stable 3D assembled format. PMID:20695589

  19. Wavelet-based fractal analysis of airborne pollen

    NASA Astrophysics Data System (ADS)

    Degaudenzi, M. E.; Arizmendi, C. M.

    1999-06-01

    The most abundant biological particles in the atmosphere are pollen grains and spores. Self-protection of a pollen allergy is possible through information about future pollen contents in the air. In spite of the importance of airborne pollen concentration forecasting, it has not been possible to predict the pollen concentrations with great accuracy, and about 25% of daily pollen forecasts result in failures. Previous analyses of the dynamic characteristics of atmospheric pollen time series indicate that the system can be described by a low dimensional chaotic map. We apply a wavelet transform to study the multifractal characteristics of an airborne pollen time series. The information and the correlation dimensions correspond to a chaotic system showing a loss of information with time evolution.

  20. Toxicodynamics of rigid polystyrene microparticles on pulmonary gas exchange in mice: implications for microemboli-based drug delivery systems.

    PubMed

    Kutscher, H L; Gao, D; Li, S; Massa, C B; Cervelli, J; Deshmukh, M; Joseph, L B; Laskin, D L; Sinko, P J

    2013-01-15

    The toxicodynamic relationship between the number and size of pulmonary microemboli resulting from uniformly sized, rigid polystyrene microparticles (MPs) administered intravenously and their potential effects on pulmonary gas exchange were investigated. CD-1 male mice (6-8 weeks) were intravenously administered 10, 25 and 45 μm diameter MPs. Oxygen hemoglobin saturation in the blood (SpO(2)) was measured non-invasively using a pulse oximeter while varying inhaled oxygen concentration (F(I)O(2)). The resulting data were fit to a physiologically based non-linear mathematical model that estimates 2 parameters: ventilation-perfusion ratio (V(A)/Q) and shunt (percentage of deoxygenated blood returning to systemic circulation). The number of MPs administered prior to a statistically significant reduction in normalized V(A)/Q was dependent on particle size. MP doses that resulted in a significant reduction in normalized V(A)/Q one day post-treatment were 4000, 40,000 and 550,000 MPs/g for 45, 25 and 10 μm MPs, respectively. The model estimated V(A)/Q and shunt returned to baseline levels 7 days post-treatment. Measuring SpO(2) alone was not sufficient to observe changes in gas exchange; however, when combined with model-derived V(A)/Q and shunt early reversible toxicity from pulmonary microemboli was detected suggesting that the model and physical measurements are both required for assessing toxicity. Moreover, it appears that the MP load required to alter gas exchange in a mouse prior to lethality is significantly higher than the anticipated required MP dose for effective drug delivery. Overall, the current results indicate that the microemboli-based approach for targeted pulmonary drug delivery is potentially safe and should be further explored. PMID:23142466

  1. Lyophilised Vegetal BM 297 ATO-Inulin lipid-based synbiotic microparticles containing Bifidobacterium longum LMG 13197: design and characterisation.

    PubMed

    Amakiri, A C; Kalombo, L; Thantsha, M S

    2015-01-01

    This study aimed at the manufacturing and characterisation of Vegetal BM 297 ATO-inulin-Bifidobacterium longum LMG 13197 microparticles prepared by freeze drying. Emulsions containing 1%, 1.5%, 2%, 3.5% or 5% w/v inulin were prepared, with or without centrifugation before freeze drying. Morphological properties, particle size distribution, encapsulation efficiency of the microparticles and their ability to preserve viability of the enclosed B. longum LMG 13197 cells were evaluated. The microparticles produced from both formulations without a centrifugation step were irregular, porous with concavities and contained high number of bacterial cells. Formulations with or without inulin had average particle sizes of 33.4-81.0 μm with encapsulation efficiencies of 82% and 88%, respectively. Vegetal-inulin microparticles have the morphology and size that will enable their even distribution in final food products, and hence, they have the potential for use as a functional food additive because they are likely to deliver sufficient numbers of viable bacteria. PMID:26458011

  2. Synthesis and characterization of microparticles based on poly-methacrylic acid with glucose oxidase for biosensor applications.

    PubMed

    Hervás Pérez, J P; López-Ruiz, B; López-Cabarcos, E

    2016-03-01

    In the line of the applicability of biocompatible monomers pH and temperature dependent, we assayed poly-methacrylic acid (p-MAA) microparticles as immobilization system in the design of enzymatic biosensors. Glucose oxidase was used as enzyme model for the study of microparticles as immobilization matrices and as biological material in the performance of glucose biosensors. The enzyme immobilization method was optimized by investigating the influence of monomer concentration and cross-linker content (N',N'-methylenebisacrylamide), used in the preparation of the microparticles in the response of the biosensors. The kinetics of the polymerization and the effects of the temperature were studied, also the conversion of the polymerization was determinates by a weight method. The structure of the obtained p-MAA microparticles were studied through scanning electron microscopy (SEM) and differential scanning microscopy (DSC). The particle size measurements were performed with a Galai-Cis 1 particle analyzer system. Furthermore, the influence of the swelling behavior of hydrogel matrix as a function of pH and temperature were studied. Analytical properties such as sensitivity, linear range, response time and detection limit were studied for the glucose biosensors. The sensitivity for glucose detection obtained with poly-methacrylic acid (p-MAA) microparticles was 11.98mAM(-1)cm(-2) and 10μM of detection limit. A Nafion® layer was used to eliminate common interferents of the human serum such as uric and ascorbic acids. The biosensors were used to determine glucose in human serum samples with satisfactory results. When stored in a frozen phosphate buffer solution (pH 6.0) at -4°C, the useful lifetime of all biosensors was at least 550 days. PMID:26717846

  3. Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices.

    PubMed

    Wang, Jiawei; Poon, Andrew W

    2014-04-21

    We propose an intuitive and quantitative design rule to determine the microparticle transport processes, including buffering and dropping, on microring-resonator-based add-drop devices at cavity resonances in an integrated optofluidic chip. The design rule uses the splitting ratio, S, of the optical-field intensity at the microring feedback-arc just after the output-coupling region to that at the drop-waveguide as a figure-of-merit for particle transport to determine between particle buffering (S > 1) and dropping (S < 1). The particle transport, however, becomes probabilistic in the case that S is close to 1. The S factor thus provides a clearer physical criterion for determining the particle transport processes compared to the cavity quality (Q) factor. We experimentally investigate this design rule on four different devices with different design parameters on a silicon nitride-on-silica substrate, and show that the particle transport behaviours of 2.2 μm- and 0.8 μm-sized polystyrene particles are consistent with the S values extracted from the transmission spectra. Our numerical simulations of the four devices suggest that the S values extracted from the simulated transmission spectra are consistent with those extracted from the simulated mode-field intensity distributions. We calculate the optical force field using Maxwell stress tensor and an effective microdisk model to relate the S values to the particle transport processes. We further experimentally demonstrate the viability of the design rule by switching between deterministic particle buffering and probabilistic particle transport processes by switching the polarization modes. PMID:24567040

  4. Characterizations of kinetic power and propulsion of the nematode Caenorhabditis elegans based on a micro-particle image velocimetry system.

    PubMed

    Kuo, Wan-Jung; Sie, Yue-Syun; Chuang, Han-Sheng

    2014-03-01

    Quantifying the motility of micro-organisms is beneficial in understanding their biomechanical properties. This paper presents a simple image-based algorithm to derive the kinetic power and propulsive force of the nematode Caenorhabditis elegans. To avoid unnecessary disturbance, each worm was confined in an aqueous droplet of 0.5 μl. The droplet was sandwiched between two glass slides and sealed with mineral oil to prevent evaporation. For motion visualization, 3-μm fluorescent particles were dispersed in the droplet. Since the droplet formed an isolated environment, the fluid drag and energy loss due to wall frictions were associated with the worm's kinetic power and propulsion. A microparticle image velocimetry system was used to acquire consecutive particle images for fluid analysis. The short-time interval (Δt < 20 ms) between images enabled quasi real-time measurements. A numerical simulation of the flow in a straight channel showed that the relative error of this algorithm was significantly mitigated as the image was divided into small interrogation windows. The time-averaged power and propulsive force of a N2 adult worm over three swimming cycles were estimated to be 5.2 ± 3.1 pW and 1.0 ± 0.8 nN, respectively. In addition, a mutant, KG532 [kin-2(ce179) X], and a wild-type (N2) worm in a viscous medium were investigated. Both cases showed an increase in the kinetic power as compared with the N2 worm in the nematode growth medium due to the hyperactive nature of the kin-2 mutant and the high viscosity medium used. Overall, the technique deals with less sophisticated calculations and is automation possible. PMID:24803965

  5. Magnetic and fluorescence-encoded polystyrene microparticles for cell separation

    NASA Astrophysics Data System (ADS)

    Bradbury, Diana; Anglin, Emily J.; Bailey, Sheree; Macardle, Peter J.; Fenech, Michael; Thissen, Helmut; Voelcker, Nicolas H.

    2008-12-01

    Materials assisting with the efforts of cell isolation are attractive for numerous biomedical applications including tissue engineering and cell therapy. Here, we have developed surface modification methods on microparticles for the purposes of advanced cell separation. Iron oxide nanoparticles were incorporated into 200 ım polystyrene microparticles for separation of particle-bound cells from non-bound cells in suspension by means of a permanent magnet. The polystyrene microparticles were further encoded with fluorescent quantum dots (QD) as identification tags to distinguish between specific microparticles in a mixture. Cluster of differentiation (CD) antibodies were displayed on the surface of the microparticles through direct adsorption and various methods of covalent attachment. In addition, a protein A coating was used to orientate the antibodies on the microparticle surface and to maximise accessibility of the antigen-binding sites. Microparticles which carried CD antibodies via covalent attachment showed greater cell attachment over those modifications that were only adsorbed to the surface through weak electrostatic interactions. Greatest extent of cell attachment was observed on microparticles modified with protein A - CD antibody conjugates. B and T lymphocytes were successfully isolated from a mixed population using two types of microparticles displaying B and T cell specific CD antibodies, respectively. Our approach will find application in preparative cell separation from tissue isolates and for microcarrier-based cell expansion.

  6. Rapid and sensitive lateral flow immunoassay method for determining alpha fetoprotein in serum using europium (III) chelate microparticles-based lateral flow test strips.

    PubMed

    Liang, Rong-Liang; Xu, Xu-Ping; Liu, Tian-Cai; Zhou, Jian-Wei; Wang, Xian-Guo; Ren, Zhi-Qi; Hao, Fen; Wu, Ying-Song

    2015-09-01

    Alpha-fetoprotein (AFP), a primary marker for many diseases including various cancers, is important in clinical tumor diagnosis and antenatal screening. Most immunoassays provide high sensitivity and accuracy for determining AFP, but they are expensive, often complex, time-consuming procedures. A simple and rapid point-of-care system that integrates Eu (III) chelate microparticles with lateral flow immunoassay (LFIA) has been developed to determine AFP in serum with an assay time of 15 min. The approach is based on a sandwich immunoassay performed on lateral flow test strips. A fluorescence strip reader was used to measure the fluorescence peak heights of the test line (HT) and the control line (HC); the HT/HC ratio was used for quantitation. The Eu (III) chelate microparticles-based LFIA assay exhibited a wide linear range (1.0-1000 IU mL(-1)) for AFP with a low limit of detection (0.1 IU mL(-1)) based on 5ul of serum. Satisfactory specificity and accuracy were demonstrated and the intra- and inter-assay coefficients of variation (CV) for AFP were both <10%. Furthermore, in the analysis of human serum samples, excellent correlation (n = 284, r = 0.9860, p < 0.0001) was obtained between the proposed method and a commercially available CLIA kit. Results indicated that the Eu (III) chelate microparticles-based LFIA system provided a rapid, sensitive and reliable method for determining AFP in serum, indicating that it would be suitable for development in point-of-care testing. PMID:26388387

  7. Application of Airborne Sea Ice Observations Towards Improving Satellite-based Products

    NASA Astrophysics Data System (ADS)

    Tschudi, M. A.; Baldwin, D.; Liu, Y.; Dworak, R.; Key, J.

    2015-12-01

    Recent airborne and satellite observations suggest large decreases in Arctic sea ice thickness in recent years, but uncertainty remains in terms of overall loss of ice mass versus redistribution of mass within the Arctic Basin. In general though, the combination of airborne and satellite observations tend to agree that some thinning of the ice cover has occurred. In addition to changes in ice thickness and mass, other related changes in properties are likely if the ice pack is undergoing fundamental changes such as a shift to a largely seasonal sea-ice cover. Therefore, it is imperative to utilize airborne and surface-based observations to evaluate satellite-based sea ice products and to improve algorithms that estimate sea ice properties. Sea ice surface properties derived from NASA's Operation IceBridge (OIB) airborne measurements are currently being used to evaluate and update Suomi-NPP VIIRS sea ice products. Estimates of ice thickness derived from the OIB observations may be used to establish a relationship between sea ice thickness and the age of the ice. Drifting buoys serve to improve errors in tracking the movement of ice parcels through Arctic waters. Future airborne measurements of spectral reflectance during the melt season will improve algorithms that estimate melt pond fraction. We present examples of airborne validation of VIIRS sea ice products, relationships between sea ice thickness estimated from OIB measurements and sea ice age, and demonstrate the need for future airborne high-resolution estimates of surface reflectance, particularly in melt ponds. OIB thickness estimates over one sea ice age cell (12.5 km box) are shown in the attached figure.

  8. Microparticle Flow Sensor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    2005-01-01

    The microparticle flow sensor (MFS) is a system for identifying and counting microscopic particles entrained in a flowing liquid. The MFS includes a transparent, optoelectronically instrumented laminar-flow chamber (see figure) and a computer for processing instrument-readout data. The MFS could be used to count microparticles (including micro-organisms) in diverse applications -- for example, production of microcapsules, treatment of wastewater, pumping of industrial chemicals, and identification of ownership of liquid products.

  9. Fusion of remotely sensed data from airborne and ground-based sensors for cotton regrowth study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study investigated the use of aerial multispectral imagery and ground-based hyperspectral data for the discrimination of different crop types and timely detection of cotton plants over large areas. Airborne multispectral imagery and ground-based spectral reflectance data were acquired at the sa...

  10. Evaluating evaporation from field crops using airborne radiometry and ground-based meteorological data

    USGS Publications Warehouse

    Jackson, R. D.; Moran, M.S.; Gay, L.W.; Raymond, L.H.

    1987-01-01

    Airborne measurements of reflected solar and emitted thermal radiation were combined with ground-based measurements of incoming solar radiation, air temperature, windspeed, and vapor pressure to calculate instantaneous evaporation (LE) rates using a form of the Penman equation. Estimates of evaporation over cotton, wheat, and alfalfa fields were obtained on 5 days during a one-year period. A Bowen ratio apparatus, employed simultaneously, provided ground-based measurements of evaporation. Comparison of the airborne and ground techniques showed good agreement, with the greatest difference being about 12% for the instantaneous values. Estimates of daily (24 h) evaporation were made from the instantaneous data. On three of the five days, the difference between the two techniques was less than 8%, with the greatest difference being 25%. The results demonstrate that airborne remote sensing techniques can be used to obtain spatially distributed values of evaporation over agricultural fields. ?? 1987 Springer-Verlag.

  11. Toxicodynamics of rigid polystyrene microparticles on pulmonary gas exchange in mice: Implications for microemboli-based drug delivery systems

    SciTech Connect

    Kutscher, H.L.; Gao, D.; Li, S.; Massa, C.B.; Cervelli, J.; Deshmukh, M.; Joseph, L.B.; Laskin, D.L.; Sinko, P.J.

    2013-01-15

    The toxicodynamic relationship between the number and size of pulmonary microemboli resulting from uniformly sized, rigid polystyrene microparticles (MPs) administered intravenously and their potential effects on pulmonary gas exchange were investigated. CD-1 male mice (6–8 weeks) were intravenously administered 10, 25 and 45 μm diameter MPs. Oxygen hemoglobin saturation in the blood (SpO{sub 2}) was measured non-invasively using a pulse oximeter while varying inhaled oxygen concentration (F{sub I}O{sub 2}). The resulting data were fit to a physiologically based non-linear mathematical model that estimates 2 parameters: ventilation–perfusion ratio (V{sub A}/Q) and shunt (percentage of deoxygenated blood returning to systemic circulation). The number of MPs administered prior to a statistically significant reduction in normalized V{sub A}/Q was dependent on particle size. MP doses that resulted in a significant reduction in normalized V{sub A}/Q one day post-treatment were 4000, 40,000 and 550,000 MPs/g for 45, 25 and 10 μm MPs, respectively. The model estimated V{sub A}/Q and shunt returned to baseline levels 7 days post-treatment. Measuring SpO{sub 2} alone was not sufficient to observe changes in gas exchange; however, when combined with model-derived V{sub A}/Q and shunt early reversible toxicity from pulmonary microemboli was detected suggesting that the model and physical measurements are both required for assessing toxicity. Moreover, it appears that the MP load required to alter gas exchange in a mouse prior to lethality is significantly higher than the anticipated required MP dose for effective drug delivery. Overall, the current results indicate that the microemboli-based approach for targeted pulmonary drug delivery is potentially safe and should be further explored. -- Highlights: ► Murine pulmonary gas exchange after microembolization was non-invasively studied. ► A physiologically based model quantified impairment of pulmonary gas exchange.

  12. Investigation of novel solid lipid microparticles based on homolipids from Bos indicus for the delivery of gentamicin

    PubMed Central

    Kenechukwu, Franklin C.; Momoh, Mumuni A.; Umeyor, Emmanuel C.; Uronnachi, Emmanuel M.; Attama, Anthony A.

    2016-01-01

    Background: The aim of this study was to formulate solidified reverse micellar solution (SRMS)-based solid lipid microparticles (SLMs) using homolipids from tallow fat (Bos indicus) and evaluate its potential for enhanced delivery of gentamicin. Materials and Methods: SLMs were formulated by melt-emulsification using SRMS (15% w/w Phospholipon® 90G in 35% w/w Bos indicus), polyethylene glycol 4000 (PEG) and gentamicin (1.0, 2.0, 3.0% w/w), and characterized with respect to size, morphology, encapsulation efficiency % and pH-dependent stability. The in vitro release of gentamicin from the SLMs was performed in phosphate buffer (pH 7.4) while bioevaluation was carried out using clinical isolates of Staphylococcus aureus and Escherichia coli. Results: Results showed that the lipid matrix accommodated gentamicin in a concentration-dependent manner, and that stable and spherical SLMs with size range of 18.62 ± 1.24-20.59 ± 1.36 μm and 21.35 ± 1.57-50.62 ± 2.37 μm respectively for unloaded and drug-loaded formulations were obtained. The in vitro drug release studies revealed that SRMS-based SLMs could better be used to control the release of gentamicin than gentamicin injection. Results of sensitivity test revealed that the SLMs time-dependently and capacity-limitedly produced greater inhibition zone diameters (IZDs) than the standards, an indication of improved bioactivity against the test organisms, with greater IZDs against S. aureus than E. coli. Overall, SLMs containing 2% w/w SRMS, 3% w/w gentamicin and PEG 4000 entrapped the highest amount of drug, achieved complete drug release and gave highest IZD against the organisms within 420 min, while plain gentamicin gave the least. Conclusion: This research has shown that SLMs based on Bos indicus and P90G is a potential carrier system for dissolution and bioactivity enhancement of gentamicin. PMID:27014617

  13. Acne Treatment Based on Selective Photothermolysis of Sebaceous Follicles with Topically Delivered Light-Absorbing Gold Microparticles.

    PubMed

    Paithankar, Dilip Y; Sakamoto, Fernanda H; Farinelli, William A; Kositratna, Garuna; Blomgren, Richard D; Meyer, Todd J; Faupel, Linda J; Kauvar, Arielle N B; Lloyd, Jenifer R; Cheung, Wang L; Owczarek, Witold D; Suwalska, Anna M; Kochanska, Katarzyna B; Nawrocka, Agnieszka K; Paluchowska, Elwira B; Podolec, Katarzyna M; Pirowska, Magdalena M; Wojas-Pelc, Anna B; Anderson, R Rox

    2015-07-01

    The pathophysiology of acne vulgaris depends on active sebaceous glands, implying that selective destruction of sebaceous glands could be an effective treatment. We hypothesized that light-absorbing microparticles could be delivered into sebaceous glands, enabling local injury by optical pulses. A suspension of topically applied gold-coated silica microparticles exhibiting plasmon resonance with strong absorption at 800 nm was delivered into human pre-auricular and swine sebaceous glands in vivo, using mechanical vibration. After exposure to 10-50 J cm(-2), 30 milliseconds, 800 nm diode laser pulses, microscopy revealed preferential thermal injury to sebaceous follicles and glands, consistent with predictions from a computational model. Inflammation was mild; gold particles were not retained in swine skin 1 month after treatment, and uptake in other organs was negligible. Two independent prospective randomized controlled clinical trials were performed for treatment of moderate-to-severe facial acne, using unblinded and blinded assessments of disease severity. Each trial showed clinically and statistically significant improvement of inflammatory acne following three treatments given 1-2 weeks apart. In Trial 2, inflammatory lesions were significantly reduced at 12 weeks (P=0.015) and 16 weeks (P=0.04) compared with sham treatments. Optical microparticles enable selective photothermolysis of sebaceous glands. This appears to be a well-tolerated, effective treatment for acne vulgaris. PMID:25748556

  14. Acne Treatment Based on Selective Photothermolysis of Sebaceous Follicles with Topically Delivered Light-Absorbing Gold Microparticles

    PubMed Central

    Paithankar, Dilip Y; Sakamoto, Fernanda H; Farinelli, William A; Kositratna, Garuna; Blomgren, Richard D; Meyer, Todd J; Faupel, Linda J; Kauvar, Arielle N B; Lloyd, Jenifer R; Cheung, Wang L; Owczarek, Witold D; Suwalska, Anna M; Kochanska, Katarzyna B; Nawrocka, Agnieszka K; Paluchowska, Elwira B; Podolec, Katarzyna M; Pirowska, Magdalena M; Wojas-Pelc, Anna B; Anderson, R Rox

    2015-01-01

    The pathophysiology of acne vulgaris depends on active sebaceous glands, implying that selective destruction of sebaceous glands could be an effective treatment. We hypothesized that light-absorbing microparticles could be delivered into sebaceous glands, enabling local injury by optical pulses. A suspension of topically applied gold-coated silica microparticles exhibiting plasmon resonance with strong absorption at 800 nm was delivered into human pre-auricular and swine sebaceous glands in vivo, using mechanical vibration. After exposure to 10–50 J cm−2, 30 milliseconds, 800 nm diode laser pulses, microscopy revealed preferential thermal injury to sebaceous follicles and glands, consistent with predictions from a computational model. Inflammation was mild; gold particles were not retained in swine skin 1 month after treatment, and uptake in other organs was negligible. Two independent prospective randomized controlled clinical trials were performed for treatment of moderate-to-severe facial acne, using unblinded and blinded assessments of disease severity. Each trial showed clinically and statistically significant improvement of inflammatory acne following three treatments given 1–2 weeks apart. In Trial 2, inflammatory lesions were significantly reduced at 12 weeks (P=0.015) and 16 weeks (P=0.04) compared with sham treatments. Optical microparticles enable selective photothermolysis of sebaceous glands. This appears to be a well-tolerated, effective treatment for acne vulgaris. PMID:25748556

  15. Geometric rectification of airborne sensor data using GPS-based attitude and position information

    SciTech Connect

    Wilson, A.K.; Mockridge, W.

    1996-11-01

    The geometric rectification of remotely sensed data, acquired using airborne platforms, is an essential prerequisite for quantitative processing and analysis, due to the complex distortions inherent in such imagery. The Natural Environment Research Council (NERC) has implemented an Integrated Data System (IDS) on-board its survey aircraft to derive both attitude and position for use in a parametric solution to the geometric correction of data from two airborne sensors. This paper describes the elements of the NERC IDS and the complementary ground data processing system that carries out navigation pre-processing and geometric resampling of the airborne data. Test flights have been flown and processed to demonstrate the potential of this completely GPS-based solution to providing high quality, spatially referenced, data for use in environmental monitoring applications. 6 refs., 5 figs., 1 tab.

  16. Fabrication of monodisperse liposomes-in-microgel hybrid microparticles in capillary-based microfluidic devices.

    PubMed

    Jeong, Eun Seon; Son, Han Am; Kim, Min Kyung; Park, Kyoung-Ho; Kay, Sechan; Chae, Pil Seok; Kim, Jin Woong

    2014-11-01

    This study introduces a drop-based microfluidic approach to physically immobilize liposomes in microgel (liposomes-in-microgel) particles. For this, we generate a uniform liposomes-in-water-in-oil emulsion in a capillary-based microfluidic device. Basically, we have investigated how the flow rate and flow composition affect generation of emulsion precursor drops in micro-channels. Then, the precursor emulsion drops are solidified by photo-polymerization. From characterization of hydrogel mesh sizes, we have figured out that the mesh size of the liposomes-in-microgel particles is bigger than that of bare microgel particles, since liposomes take space in the hydrogel phase. In our further study on drug releasing, we have observed that immobilization of liposomes in the microgel particles can not only remarkably retard drug releasing, but also enables a sustained release, which stems from the enhanced matrix viscosity of the surrounding hydrogel phase. PMID:25288532

  17. Biochemical and proteomic characterization of retrovirus Gag based microparticles carrying melanoma antigens

    PubMed Central

    Kurg, Reet; Reinsalu, Olavi; Jagur, Sergei; Õunap, Kadri; Võsa, Liisi; Kasvandik, Sergo; Padari, Kärt; Gildemann, Kiira; Ustav, Mart

    2016-01-01

    Extracellular vesicles are membraneous particles released by a variety of cells into the extracellular microenvironment. Retroviruses utilize the cellular vesiculation pathway for virus budding/assembly and the retrovirus Gag protein induces the spontaneous formation of microvesicles or virus-like particles (VLPs) when expressed in the mammalian cells. In this study, five different melanoma antigens, MAGEA4, MAGEA10, MART1, TRP1 and MCAM, were incorporated into the VLPs and their localization within the particles was determined. Our data show that the MAGEA4 and MAGEA10 proteins as well as MCAM are expressed on the surface of VLPs. The compartmentalization of exogenously expressed cancer antigens within the VLPs did not depend on the localization of the protein within the cell. Comparison of the protein content of VLPs by LC-MS/MS-based label-free quantitative proteomics showed that VLPs carrying different cancer antigens are very similar to each other, but differ to some extent from VLPs without recombinant antigen. We suggest that retrovirus Gag based virus-like particles carrying recombinant antigens have a potential to be used in cancer immunotherapy. PMID:27403717

  18. An airborne multispectral imaging system based on two consumer-grade cameras for agricultural remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...

  19. Development of optical micro resonance based sensor for detection and identification of microparticles and biological agents

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schweiger, Gustav

    2009-05-01

    A novel emerging technique for the label-free analysis of nanoparticles including biomolecules using optical micro cavity resonance of whispering-gallery-type modes is being developed. Schemes of such a method based on microsphere melted by laser on the tip of a standard single mode fiber optical cable with a laser and free microsphere matrix have been developed. Using a calibration principal of ultra high resolution spectroscopy based on such a scheme the method is being transformed to make further development for microbial application. The sensitivity of developed schemes has been tested to refractive index changes by monitoring the magnitude of the whispering gallery modes spectral shift. Water solutions of ethanol, glucose, vitamin C and biotin have been used. Some other schemes using similar principals: stand-alone, array and matrix microsphere resonators, liquid core optical ring resonators are also being under development. The influences of the gap in whispering-gallery modes on energy coupling, resonance quality and frequency have been investigated. An optimum gap for sensing applications has been defined at the half maximum energy coupling where both the Q factor and coupling efficiency are high and the resonance frequency is little affected by the gap variation. Developed schemes have been demonstrated to be a promising technology platform for sensitive, lab-on-chip type sensor which can be used for development of diagnostic tools for different biological molecules, e.g. proteins, oligonucleotides, oligosaccharides, lipids, small molecules, viral particles, cells as well as in different experimental contexts e.g. proteomics, genomics, drug discovery, and membrane studies.

  20. Magnetorheological fluids based on a hyperbranched polycarbosilane matrix and iron microparticles

    NASA Astrophysics Data System (ADS)

    Vasiliev, V. G.; Sheremetyeva, N. A.; Buzin, M. I.; Turenko, D. V.; Papkov, V. S.; Klepikov, I. A.; Razumovskaya, I. V.; Muzafarov, A. M.; Kramarenko, E. Yu

    2016-05-01

    Magnetorheological fluids (MFs) based on hyperbranched polycarbosilanes as a carrier medium and micron-sized carbonyl iron particles as filler have been synthesized for the first time. Their magnetorheological (MR) behavior has been studied in steady-state flow regime and under dynamic torsion oscillations on a commercial rheometer. At zero magnetic field, in spite of a rather high molecular mass, the hyperbranched polymers as well as their magnetic compositions with up to 72 mass% of magnetic filler demonstrate Newtonian behavior, and their viscosity considerably increases with magnetic filler content. In magnetic fields MFs show a huge MR response. Namely, in steady-state flow experiments a five orders of magnitude increase in viscosity was observed accompanied by magnetic-field-induced well-pronounced non-Newtonian behavior and a non-zero yield stress. Dynamic experiments demonstrate the transition from liquid-like to solid-like behavior of MFs with a large increase in both the storage and loss moduli under application of a magnetic field. In magnetic fields, the rheological behavior of the obtained MF resembles that of soft MR elastomers being mainly determined by the magnetic particle network formed due to magnetic interactions. In particular, like MR elastomers the MFs exhibit the Payne effect, i.e. dependence of the dynamic modulus on the strain amplitude.

  1. Clogging-free microfluidics for continuous size-based separation of microparticles

    PubMed Central

    Yoon, Yousang; Kim, Seonil; Lee, Jusin; Choi, Jaewoong; Kim, Rae-Kwon; Lee, Su-Jae; Sul, Onejae; Lee, Seung-Beck

    2016-01-01

    In microfluidic filtration systems, one of the leading obstacles to efficient, continuous operation is clogging of the filters. Here, we introduce a lateral flow microfluidic sieving (μ-sieving) technique to overcome clogging and to allow continuous operation of filter based microfluidic separation. A low frequency mechanical oscillation was added to the fluid flow, which made possible the release of aggregated unwanted polystyrene (PS) particles trapped between the larger target PS particles in the filter demonstrating continuous μ-sieving operation. We achieved collection of the target PS particles with 100% separation efficiency. Also, on average, more than 98% of the filtered target particles were retrieved after the filtration showing high retrieval rates. Since the oscillation was applied to the fluid but not to the microfluidic filter system, mechanical stresses to the system was minimized and no additional fabrication procedures were necessary. We also applied the μ-sieving technique to the separation of cancer cells (MDA-MB-231) from whole blood and showed that the fluidic oscillations prevented the filters from being blocked by the filtered cancer cells allowing continuous microfluidic separation with high efficiency. PMID:27198601

  2. Continuous size-based separation of microparticles in a microchannel with symmetric sharp corner structures.

    PubMed

    Fan, Liang-Liang; He, Xu-Kun; Han, Yu; Du, Li; Zhao, Liang; Zhe, Jiang

    2014-03-01

    A new microchannel with a series of symmetric sharp corner structures is reported for passive size-dependent particle separation. Micro particles of different sizes can be completely separated based on the combination of the inertial lift force and the centrifugal force induced by the sharp corner structures in the microchannel. At appropriate flow rate and Reynolds number, the centrifugal force effect on large particles, induced by the sharp corner structures, is stronger than that on small particles; hence after passing a series of symmetric sharp corner structures, large particles are focused to the center of the microchannel, while small particles are focused at two particle streams near the two side walls of the microchannel. Particles of different sizes can then be completely separated. Particle separation with this device was demonstrated using 7.32 μm and 15.5 μm micro particles. Experiments show that in comparison with the prior multi-orifice flow fractionation microchannel and multistage-multiorifice flow fractionation microchannel, this device can completely separate two-size particles with narrower particle stream band and larger separation distance between particle streams. In addition, it requires no sheath flow and complex multi-stage separation structures, avoiding the dilution of analyte sample and complex operations. The device has potentials to be used for continuous, complete particle separation in a variety of lab-on-a-chip and biomedical applications. PMID:24738015

  3. Continuous size-based separation of microparticles in a microchannel with symmetric sharp corner structures

    PubMed Central

    Fan, Liang-Liang; He, Xu-Kun; Han, Yu; Du, Li; Zhao, Liang; Zhe, Jiang

    2014-01-01

    A new microchannel with a series of symmetric sharp corner structures is reported for passive size-dependent particle separation. Micro particles of different sizes can be completely separated based on the combination of the inertial lift force and the centrifugal force induced by the sharp corner structures in the microchannel. At appropriate flow rate and Reynolds number, the centrifugal force effect on large particles, induced by the sharp corner structures, is stronger than that on small particles; hence after passing a series of symmetric sharp corner structures, large particles are focused to the center of the microchannel, while small particles are focused at two particle streams near the two side walls of the microchannel. Particles of different sizes can then be completely separated. Particle separation with this device was demonstrated using 7.32 μm and 15.5 μm micro particles. Experiments show that in comparison with the prior multi-orifice flow fractionation microchannel and multistage-multiorifice flow fractionation microchannel, this device can completely separate two-size particles with narrower particle stream band and larger separation distance between particle streams. In addition, it requires no sheath flow and complex multi-stage separation structures, avoiding the dilution of analyte sample and complex operations. The device has potentials to be used for continuous, complete particle separation in a variety of lab-on-a-chip and biomedical applications. PMID:24738015

  4. Clogging-free microfluidics for continuous size-based separation of microparticles.

    PubMed

    Yoon, Yousang; Kim, Seonil; Lee, Jusin; Choi, Jaewoong; Kim, Rae-Kwon; Lee, Su-Jae; Sul, Onejae; Lee, Seung-Beck

    2016-01-01

    In microfluidic filtration systems, one of the leading obstacles to efficient, continuous operation is clogging of the filters. Here, we introduce a lateral flow microfluidic sieving (μ-sieving) technique to overcome clogging and to allow continuous operation of filter based microfluidic separation. A low frequency mechanical oscillation was added to the fluid flow, which made possible the release of aggregated unwanted polystyrene (PS) particles trapped between the larger target PS particles in the filter demonstrating continuous μ-sieving operation. We achieved collection of the target PS particles with 100% separation efficiency. Also, on average, more than 98% of the filtered target particles were retrieved after the filtration showing high retrieval rates. Since the oscillation was applied to the fluid but not to the microfluidic filter system, mechanical stresses to the system was minimized and no additional fabrication procedures were necessary. We also applied the μ-sieving technique to the separation of cancer cells (MDA-MB-231) from whole blood and showed that the fluidic oscillations prevented the filters from being blocked by the filtered cancer cells allowing continuous microfluidic separation with high efficiency. PMID:27198601

  5. A one-step electrospray-based technique for modulating morphology and surface properties of poly(lactide-co-glycolide) microparticles using Pluronics®

    PubMed Central

    Seth, Anushree; Katti, Dhirendra S

    2012-01-01

    The influence of morphology and surface properties on the therapeutic efficacy of degradable polymeric microparticles has not been well understood. One of the primary reasons for this is the limited ability to fabricate microparticles with controlled morphology and surface properties. Here, we report the electrospraying of blends of Pluronic® with poly(lactide-co-glycolide) (PLGA) as a novel, one-step approach for the simultaneous modulation of morphology and surface properties of PLGA microparticles. Blending with Pluronic® altered the morphology from doughnut-shaped to smooth, spherical-shaped microparticles, and variation in the type of Pluronic® systematically modulated the surface properties of the microparticles. Hence, blending with Pluronic® can be a facile technique for the modulation of morphology and surface properties of electrosprayed PLGA microparticles. PMID:23055725

  6. FTIR-based airborne spectral imagery for target interrogation

    NASA Astrophysics Data System (ADS)

    Smithson, Tracy L.; St. Germain, Daniel; Nadeau, Denis

    2007-09-01

    DRDC Valcartier is continuing to developed infrared spectral imagery systems for a variety of military applications. Recently a hybrid airborne spectral imager / broadband imager system has been developed for ground target interrogation (AIRIS). This system employs a Fourier Transform Interferometer system coupled to two 8x8 element detector arrays to create spectral imagery in the region from 2.0 to 12 microns (830 to 5000 cm -1) at a spectral resolution of up to 1 cm -1. In addition, coupled to this sensor are three broadband imagers operating in the visible, mid-wave and long-wave infrared regions. AIRIS uses an on-board tracking capability to: dwell on a target, select multiple targets sequentially, or build a mosaic description of the environment around a specified target point. Currently AIRIS is being modified to include real-time spectral imagery calibration and application processing. In this paper the flexibility of the AIRIS system will be described, its concept of operation discussed and examples of measurements will be shown.

  7. Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading

    PubMed Central

    Han, Felicity Y.; Thurecht, Kristofer J.; Whittaker, Andrew K.; Smith, Maree T.

    2016-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is the most widely used biomaterial for microencapsulation and prolonged delivery of therapeutic drugs, proteins and antigens. PLGA has excellent biodegradability and biocompatibility and is generally recognized as safe by international regulatory agencies including the United States Food and Drug Administration and the European Medicines Agency. The physicochemical properties of PLGA may be varied systematically by changing the ratio of lactic acid to glycolic acid. This in turn alters the release rate of microencapsulated therapeutic molecules from PLGA microparticle formulations. The obstacles hindering more widespread use of PLGA for producing sustained-release formulations for clinical use include low drug loading, particularly of hydrophilic small molecules, high initial burst release and/or poor formulation stability. In this review, we address strategies aimed at overcoming these challenges. These include use of low-temperature double-emulsion methods to increase drug-loading by producing PLGA particles with a small volume for the inner water phase and a suitable pH of the external phase. Newer strategies for producing PLGA particles with high drug loading and the desired sustained-release profiles include fabrication of multi-layered microparticles, nanoparticles-in-microparticles, use of hydrogel templates, as well as coaxial electrospray, microfluidics, and supercritical carbon dioxide methods. Another recent strategy with promise for producing particles with well-controlled and reproducible sustained-release profiles involves complexation of PLGA with additives such as polyethylene glycol, poly(ortho esters), chitosan, alginate, caffeic acid, hyaluronic acid, and silicon dioxide. PMID:27445821

  8. Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading.

    PubMed

    Han, Felicity Y; Thurecht, Kristofer J; Whittaker, Andrew K; Smith, Maree T

    2016-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is the most widely used biomaterial for microencapsulation and prolonged delivery of therapeutic drugs, proteins and antigens. PLGA has excellent biodegradability and biocompatibility and is generally recognized as safe by international regulatory agencies including the United States Food and Drug Administration and the European Medicines Agency. The physicochemical properties of PLGA may be varied systematically by changing the ratio of lactic acid to glycolic acid. This in turn alters the release rate of microencapsulated therapeutic molecules from PLGA microparticle formulations. The obstacles hindering more widespread use of PLGA for producing sustained-release formulations for clinical use include low drug loading, particularly of hydrophilic small molecules, high initial burst release and/or poor formulation stability. In this review, we address strategies aimed at overcoming these challenges. These include use of low-temperature double-emulsion methods to increase drug-loading by producing PLGA particles with a small volume for the inner water phase and a suitable pH of the external phase. Newer strategies for producing PLGA particles with high drug loading and the desired sustained-release profiles include fabrication of multi-layered microparticles, nanoparticles-in-microparticles, use of hydrogel templates, as well as coaxial electrospray, microfluidics, and supercritical carbon dioxide methods. Another recent strategy with promise for producing particles with well-controlled and reproducible sustained-release profiles involves complexation of PLGA with additives such as polyethylene glycol, poly(ortho esters), chitosan, alginate, caffeic acid, hyaluronic acid, and silicon dioxide. PMID:27445821

  9. Biodegradable microparticles based on poly(D,L-lactide) as a protective transport system in ruminant digestion.

    PubMed

    Jay, Steven M; Peevy, Nolan J; Jenkins, Thomas C; Burg, Karen J L

    2006-01-01

    Despite its abundance in their diet, cattle are unable to directly digest cellulose. The bovine digestive tract overcomes this problem via the rumen, a portion of the stomach containing mixed anaerobic bacteria. These microbes, while breaking down foodstuffs, also perform undesirable processes such as biohydrogenation, in which unsaturated fatty acids become saturated, with deleterious cardiovascular effects. An approach to preventing this saturation entailing the use of polymeric microspheres to encapsulate feed supplements is proposed, with a single emulsion, solvent evaporation method used to formulate poly(D,L-lactide) microparticles for delivery of unsaturated fatty acids to ruminant abomasum. PMID:17101519

  10. Evaluation of multiple-channel OFDM based airborne ultrasonic communications.

    PubMed

    Jiang, Wentao; Wright, William M D

    2016-09-01

    Orthogonal frequency division multiplexing (OFDM) modulation has been extensively used in both wired and wireless communication systems. The use of OFDM technology allows very high spectral efficiency data transmission without using complex equalizers to correct the effect of a frequency-selective channel. This work investigated OFDM methods in an airborne ultrasonic communication system, using commercially available capacitive ultrasonic transducers operating at 50kHz to transmit information through the air. Conventional modulation schemes such as binary phase shift keying (BPSK) and quadrature amplitude modulation (QAM) were used to modulate sub-carrier signals, and the performances were evaluated in an indoor laboratory environment. Line-of-sight (LOS) transmission range up to 11m with no measurable errors was achieved using BPSK at a data rate of 45kb/s and a spectral efficiency of 1b/s/Hz. By implementing a higher order modulation scheme (16-QAM), the system data transfer rate was increased to 180kb/s with a spectral efficiency of 4b/s/Hz at attainable transmission distances up to 6m. Diffraction effects were incorporated into a model of the ultrasonic channel that also accounted for beam spread and attenuation in air. The simulations were a good match to the measured signals and non-LOS signals could be demodulated successfully. The effects of multipath interference were also studied in this work. By adding cyclic prefix (CP) to the OFDM symbols, the bit error rate (BER) performance was significantly improved in a multipath environment. PMID:27365316

  11. Risk-Based Causal Modeling of Airborne Loss of Separation

    NASA Technical Reports Server (NTRS)

    Geuther, Steven C.; Shih, Ann T.

    2015-01-01

    Maintaining safe separation between aircraft remains one of the key aviation challenges as the Next Generation Air Transportation System (NextGen) emerges. The goals of the NextGen are to increase capacity and reduce flight delays to meet the aviation demand growth through the 2025 time frame while maintaining safety and efficiency. The envisioned NextGen is expected to enable high air traffic density, diverse fleet operations in the airspace, and a decrease in separation distance. All of these factors contribute to the potential for Loss of Separation (LOS) between aircraft. LOS is a precursor to a potential mid-air collision (MAC). The NASA Airspace Operations and Safety Program (AOSP) is committed to developing aircraft separation assurance concepts and technologies to mitigate LOS instances, therefore, preventing MAC. This paper focuses on the analysis of causal and contributing factors of LOS accidents and incidents leading to MAC occurrences. Mid-air collisions among large commercial aircraft are rare in the past decade, therefore, the LOS instances in this study are for general aviation using visual flight rules in the years 2000-2010. The study includes the investigation of causal paths leading to LOS, and the development of the Airborne Loss of Separation Analysis Model (ALOSAM) using Bayesian Belief Networks (BBN) to capture the multi-dependent relations of causal factors. The ALOSAM is currently a qualitative model, although further development could lead to a quantitative model. ALOSAM could then be used to perform impact analysis of concepts and technologies in the AOSP portfolio on the reduction of LOS risk.

  12. Microparticle analysis system and method

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    2007-01-01

    A device for analyzing microparticles is provided which includes a chamber with an inlet and an outlet for respectively introducing and dispensing a flowing fluid comprising microparticles, a light source for providing light through the chamber and a photometer for measuring the intensity of light transmitted through individual microparticles. The device further includes an imaging system for acquiring images of the fluid. In some cases, the device may be configured to identify and determine a quantity of the microparticles within the fluid. Consequently, a method for identifying and tracking microparticles in motion is contemplated herein. The method involves flowing a fluid comprising microparticles in laminar motion through a chamber, transmitting light through the fluid, measuring the intensities of the light transmitted through the microparticles, imaging the fluid a plurality of times and comparing at least some of the intensities of light between different images of the fluid.

  13. Requirements analysis of airborne gravity gradiometry on moving-based platform

    NASA Astrophysics Data System (ADS)

    Tu, L.; Li, Z.; Wu, W.

    2014-12-01

    Airborne gravity and gravity gradient measurement are the most effective ways for the earth gravitational field measurement. Gravity gradient is a derivative of gravity acceleration, due to the high order feature of gravity gradient, it is more sensitive to short wave component, and can reflect the details of the source so that the gravity gradient measurement has wide applications in geophysical science, resource exploration, and inertial navigation. Airborne gravity gradient measurement uses the plane or ship as the platform, and it is efficient and high precision. In this paper, We compared the gravity and gravity gradient measurement, and analyzed the advantages of the gravity gradient measurement compared with gravity measurement. The airborne gravity gradient measurement system and the inertial stabilization platform were discussed. By setting a goal sensitivity of the gravity gradient measurement being 1 E/√Hz, the key factors of the stabilized platform, namely the pointing accuracy, pointing stability, and gyroscope random drift, are 0.5°, 0.01°/hr/√Hz, and 0.01°/hr respectively. Compared with the airborne gravity measurement whose goal sensitivity is 1mGal/√Hz, the requirements of moving-based gravity gradient measurement on the inertial stabilization platform is significantly lower and hence easy to realize, and the major reason is the differential measurement mode being used.

  14. Calibration of area based diameter distribution with individual tree based diameter estimates using airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Hou, Zhengyang; Maltamo, Matti; Tokola, Timo

    2014-07-01

    Diameter distribution is essential for calculating stem volume and timber assortments of forest stands. A new method was proposed in this study to improve the estimation of stem volume and timber assortments, by means of combining the Area-based approach (ABA) and individual tree detection (ITD), the two main approaches to deriving forest attributes from airborne laser scanning (ALS) data. Two methods, replacement, and histogram matching were employed to calibrate ABA-derived diameter distributions with ITD-derived diameter estimates at plot level. The results showed that more accurate estimates were obtained when calibrations were applied. In view of the highest accuracy between ABA and ITD, calibrated diameter distributions decreased its relative RMSE of the estimated entire growing stock, saw log and pulpwood fractions by 2.81%, 3.05% and 7.73% points at best, respectively. Calibration improved pulpwood fraction significantly, which contributed to the negligible bias of the estimated entire growing stock.

  15. Airborne Four-Dimensional Flight Management in a Time-based Air Traffic Control Environment

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Green, Steven M.

    1991-01-01

    Advanced Air Traffic Control (ATC) systems are being developed which contain time-based (4D) trajectory predictions of aircraft. Airborne flight management systems (FMS) exist or are being developed with similar 4D trajectory generation capabilities. Differences between the ATC generated profiles and those generated by the airborne 4D FMS may introduce system problems. A simulation experiment was conducted to explore integration of a 4D equipped aircraft into a 4D ATC system. The NASA Langley Transport Systems Research Vehicle cockpit simulator was linked in real time to the NASA Ames Descent Advisor ATC simulation for this effort. Candidate procedures for handling 4D equipped aircraft were devised and traffic scenarios established which required time delays absorbed through speed control alone or in combination with path stretching. Dissimilarities in 4D speed strategies between airborne and ATC generated trajectories were tested in these scenarios. The 4D procedures and FMS operation were well received by airline pilot test subjects, who achieved an arrival accuracy at the metering fix of 2.9 seconds standard deviation time error. The amount and nature of the information transmitted during a time clearance were found to be somewhat of a problem using the voice radio communication channel. Dissimilarities between airborne and ATC-generated speed strategies were found to be a problem when the traffic remained on established routes. It was more efficient for 4D equipped aircraft to fly trajectories with similar, though less fuel efficient, speeds which conform to the ATC strategy. Heavy traffic conditions, where time delays forced off-route path stretching, were found to produce a potential operational benefit of the airborne 4D FMS.

  16. Reconciling Discrepancies Between Airborne and Buoy-Based Measurements of Wind Stress Over Mixed Seas

    NASA Astrophysics Data System (ADS)

    García-Nava, Héctor; Ocampo-Torres, Francisco J.; Hwang, Paul A.

    2015-06-01

    In a previous study it was found that airborne and buoy-based measurements of wind stress made in the Gulf of Tehuantepc, México failed to agree. Here we revisit the issue and analyze data from both platforms in the context of flux-sampling strategies and find that there is now good agreement between wind-stress estimates from both experiments. The sampling strategies used for airborne and buoy-based sampling capture most of the contributing scales to the momentum flux and, correspondingly, the systematic errors for both stress estimates are low. On the other hand, the random error is much larger for the airborne measurements as compared with that for the buoy-based estimates. Increasing the averaging period for the aircraft-based estimates reduces the random error and brings the stress estimates into a better agreement with those from the buoy data. Since there is a good agreement between stress estimates, the apparent underestimation found earlier seems to be coincidental and caused by the interpolation method employed by the source paper.

  17. Development and Characterization of Sodium Hyaluronate Microparticle-Based Sustained Release Formulation of Recombinant Human Growth Hormone Prepared by Spray-Drying.

    PubMed

    Kim, Sun J; Kim, Chan W

    2016-02-01

    The purpose of this study was to develop and characterize a sodium hyaluronate microparticle-based sustained release formulation of recombinant human growth hormone (SR-rhGH) prepared by spray-drying. Compared to freeze-drying, spray-dried SR-rhGH showed not only prolonged release profiles but also better particle property and injectability. The results of size-exclusion high-performance liquid chromatography showed that no aggregate was detected, and dimer was just about 2% and also did not increase with increase of inlet temperature up to 150 °C. Meanwhile, the results of reversed-phase high-performance liquid chromatography revealed that related proteins increased slightly from 4.6% at 100 °C to 6.3% at 150 °C. Thermal mapping test proved that product temperature did not become high to cause protein degradation during spray-drying because thermal energy was used for the evaporation of surface moisture of droplets. The structural characterization by peptide mapping, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and circular dichroism revealed that the primary, secondary, and tertiary structures of rhGH in SR-rhGH were highly comparable to those of reference somatropin materials. The biological characterization by rat weight gain and cell proliferation assays provided that bioactivity of SR-rhGH was equivalent to that of native hGH. These data establish that spray-dried SR-rhGH is highly stable by preserving intact rhGH and hyaluronate microparticle-based formulation by spray-drying can be an alternative delivery system for proteins. PMID:26869423

  18. Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles.

    PubMed

    Marquis, M; Davy, J; Cathala, B; Fang, A; Renard, D

    2015-02-13

    Capillary flow-based approach such as microfluidic devices offer a number of advantages over conventional flow control technology because they ensure highly versatile geometry and can be used to produce monodisperse spherical and non-spherical polymeric microparticles. Based on the principle of a flow-focusing device to emulsify the coflow of aqueous solutions in an organic phase, we were able to produce the following innovative polysaccharide hydrogel microparticles: - Janus hydrogel microparticles made of pectin–pectin (homo Janus) and pectin–alginate (hetero Janus) were produced. The efficiency of separation of the two hemispheres was investigated by confocal scanning laser microscopy (CSLM) of previously labelled biopolymers. The Janus structure was confirmed by subjecting each microparticle hemisphere to specific enzymatic degradation. As a proof of concept, free BSA or BSA grafted with dextran, were encapsulated in each hemisphere of the hetero Janus hydrogel microparticles. While BSA, free or grafted with dextran, was always confined in the alginate hemisphere, a fraction of BSA diffused from the pectin to the alginate hemisphere. Methoxy groups along the pectin chain will be responsible of the decrease of the number of attractive electrostatic interactions occurring between amino groups of BSA and carboxylic groups of pectin. - Pectin hydrogel microparticles of complex shapes were successfully produced by combining on-chip the phenomenon of gelation and water diffusion induced self-assembly, using dimethyl carbonate as continuous phase, or by deformation of the pre-gelled droplets off-chip at a fluid–fluid interface. Sphere, oblate ellipsoid, torus or mushroom-type morphologies were thus obtained. Moreover, it was established that after crossing the interface during their collect, mushroom-type microparticles did not migrate in the calcium or DMC phase but stayed at the liquid–liquid interface. These new and original hydrogel microparticles will

  19. Thermogelling bioadhesive scaffolds for intervertebral disk tissue engineering: preliminary in vitro comparison of aldehyde-based versus alginate microparticle-mediated adhesion.

    PubMed

    Wiltsey, C; Christiani, T; Williams, J; Scaramazza, J; Van Sciver, C; Toomer, K; Sheehan, J; Branda, A; Nitzl, A; England, E; Kadlowec, J; Iftode, C; Vernengo, J

    2015-04-01

    Tissue engineering of certain load-bearing parts of the body can be dependent on scaffold adhesion or integration with the surrounding tissue to prevent dislocation. One such area is the regeneration of the intervertebral disc (IVD). In this work, poly(N-isopropylacrylamide) (PNIPAAm) was grafted with chondroitin sulfate (CS) (PNIPAAm-g-CS) and blended with aldehyde-modified CS to generate an injectable polymer that can form covalent bonds with tissue upon contact. However, the presence of the reactive aldehyde groups can compromise the viability of encapsulated cells. Thus, liposomes were encapsulated in the blend, designed to deliver the ECM derivative, gelatin, after the polymer has adhered to tissue and reached physiological temperature. This work is based on the hypothesis that the discharge of gelatin will enhance the biocompatibility of the material by covalently reacting with, or "end-capping", the aldehyde functionalities within the gel that did not participate in bonding with tissue upon contact. As a comparison, formulations were also created without CS aldehyde and with an alternative adhesion mediator, mucoadhesive calcium alginate particles. Gels formed from blends of PNIPAAm-g-CS and CS aldehyde exhibited increased adhesive strength compared to PNIPAAm-g-CS alone (p<0.05). However, the addition of gelatin-loaded liposomes to the blend significantly decreased the adhesive strength (p<0.05). The encapsulation of alginate microparticles within PNIPAAm-g-CS gels caused the tensile strength to increase twofold over that of PNIPAAm-g-CS blends with CS aldehyde (p<0.05). Cytocompatibility studies indicate that formulations containing alginate particles exhibit reduced cytotoxicity over those containing CS aldehyde. Overall, the results indicated that the adhesives composed of alginate microparticles encapsulated in PNIPAAm-g-CS have the potential to serve as a scaffold for IVD regeneration. PMID:25641647

  20. Airborne and ground based CCN spectral characteristics: Inferences from CAIPEEX - 2011

    NASA Astrophysics Data System (ADS)

    Varghese, Mercy; Prabha, Thara V.; Malap, Neelam; Resmi, E. A.; Murugavel, P.; Safai, P. D.; Axisa, Duncan; Pandithurai, G.; Dani, K.

    2016-01-01

    A first time comprehensive study of Cloud Condensation Nuclei (CCN) and associated spectra from both airborne and ground campaigns of the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) conducted over the rain shadow region of Western Ghats during September and October 2011 is illustrated. Observations of CCN spectra during clean, polluted and highly polluted conditions indicated significant differences between airborne and ground observations. Vertical variation of CCN concentration is illustrated from airborne observations in the clean, polluted and highly polluted conditions with different air mass characteristics. The cloud base CCN number concentrations are three times less than that of the surface measurements at different supersaturations. Diurnal variations of the ground based CCN number concentration and activation diameter showed bimodality. Atmospheric mixing in the wet conditions is mainly through mechanical mixing. The dry conditions favored convective mixing and were dominated by more CCN than the wet conditions. New particle formation and growth events have been observed and were found more often on days with convective mixing. The average critical activation diameter (at 0.6% SS) observed at the ground is approximately 60 nm and availability of a large number of particles below this limit was due to the new particle formation. Observations give convincing evidence that the precipitable water and liquid water path is inversely proportional to surface CCN number concentration, and this relationship is largely dictated by the meteorological conditions.

  1. Tensor Modeling Based for Airborne LiDAR Data Classification

    NASA Astrophysics Data System (ADS)

    Li, N.; Liu, C.; Pfeifer, N.; Yin, J. F.; Liao, Z. Y.; Zhou, Y.

    2016-06-01

    Feature selection and description is a key factor in classification of Earth observation data. In this paper a classification method based on tensor decomposition is proposed. First, multiple features are extracted from raw LiDAR point cloud, and raster LiDAR images are derived by accumulating features or the "raw" data attributes. Then, the feature rasters of LiDAR data are stored as a tensor, and tensor decomposition is used to select component features. This tensor representation could keep the initial spatial structure and insure the consideration of the neighborhood. Based on a small number of component features a k nearest neighborhood classification is applied.

  2. Swellable Microparticles as Carriers for Sustained Pulmonary Drug Delivery

    PubMed Central

    EL-SHERBINY, IBRAHIM M.; MCGILL, SHAYNA; SMYTH, HUGH D.C.

    2012-01-01

    In this investigation, novel biodegradable physically crosslinked hydrogel micro-particles were developed and evaluated in vitro as potential carriers for sustained pulmonary drug delivery. To facilitate sustained release in the lungs, aerosols must first navigate past efficient aerodynamic filtering to penetrate to the deep lung (requires small particle size) where they must then avoid rapid macrophage clearance (enhanced by large particle size). The strategy suggested in this study to solve this problem is to deliver drug-loaded hydrogel microparticles with aerodynamic characteristics allowing them to be respirable when dry but attain large swollen sizes once deposited on moist lung surfaces to reduce macrophage uptake rates. The microparticles are based on PEG graft copolymerized onto chitosan in combination with Pluronic® F-108 and were prepared via cryomilling. The synthesized polymers used in preparation of the microparticles were characterized using FTIR, EA, 2D-XRD, and differential scanning calorimetry (DSC). The microparticles size, morphology, moisture content, and biodegradation rates were investigated. Swelling studies and in vitro drug release profiles were determined. An aerosolization study was conducted and macrophage uptake rates were evaluated against controls. The microparticles showed a respirable fraction of approximately 15% when prepared as dry powders. Enzymatic degradation of microparticles started within the first hour and about 7–41% weights were remaining after 240 h. Microparticles showed sustained release up to 10 and 20 days in the presence and absence of lysozyme, respectively. Preliminary macrophage interaction studies indicate that the developed hydrogel microparticles significantly delayed phagocytosis and may have the potential for sustained drug delivery to the lung. PMID:19967777

  3. Airborne derivation of microburst alerts from ground-based Terminal Doppler Weather Radar information: A flight evaluation

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1993-01-01

    An element of the NASA/FAA windshear program is the integration of ground-based microburst information on the flight deck, to support airborne windshear alerting and microburst avoidance. NASA conducted a windshear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. Microburst information was extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the windshear hazard level (F-factor) that would be experienced by the aircraft in each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which atmospheric 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne reactive windshear detection system. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurements would be required to support an airborne executive-level alerting protocol, the practicality of airborne utilization of TDWR data link data has been demonstrated.

  4. Block adjustment of airborne InSAR based on interferogram phase and POS data

    NASA Astrophysics Data System (ADS)

    Yue, Xijuan; Zhao, Yinghui; Han, Chunming; Dou, Changyong

    2015-12-01

    High-precision surface elevation information in large scale can be obtained efficiently by airborne Interferomatric Synthetic Aperture Radar (InSAR) system, which is recently becoming an important tool to acquire remote sensing data and perform mapping applications in the area where surveying and mapping is difficult to be accomplished by spaceborne satellite or field working. . Based on the study of the three-dimensional (3D) positioning model using interferogram phase and Position and Orientation System (POS) data and block adjustment error model, a block adjustment method to produce seamless wide-area mosaic product generated from airborne InSAR data is proposed in this paper. The effect of 6 parameters, including trajectory and attitude of the aircraft, baseline length and incline angle, slant range, and interferometric phase, on the 3D positioning accuracy is quantitatively analyzed. Using the data acquired in the field campaign conducted in Mianyang county Sichuan province, China in June 2011, a mosaic seamless Digital Elevation Model (DEM) product was generated from 76 images in 4 flight strips by the proposed block adjustment model. The residuals of ground control points (GCPs), the absolute positioning accuracy of check points (CPs) and the relative positioning accuracy of tie points (TPs) both in same and adjacent strips were assessed. The experimental results suggest that the DEM and Digital Orthophoto Map (DOM) product generated by the airborne InSAR data with sparse GCPs can meet mapping accuracy requirement at scale of 1:10 000.

  5. Feature Line Based Building Detection and Reconstruction from Oblique Airborne Imagery

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Jiang, W.; Zhang, J.

    2015-05-01

    In this paper, a feature line based method for building detection and reconstruction from oblique airborne imagery is presented. With the development of Multi-View Stereo technology, increasing photogrammetric softwares are provided to generate textured meshes from oblique airborne imagery. However, errors in image matching and mesh segmentation lead to the low geometrical accuracy of building models, especially at building boundaries. To simplify massive meshes and construct accurate 3D building models, we integrate multi-view images and meshes by using feature lines, in which contour lines are used for building detection and straight skeleton for building reconstruction. Firstly, through the contour clustering method, buildings can be quickly and robustly detected from meshes. Then, a feature preserving mesh segmentation method is applied to accurately extract 3D straight skeleton from meshes. Finally, straight feature lines derived from multi-view images are used to rectify inaccurate parts of 3D straight skeleton of buildings. Therefore, low quality model can be refined by the accuracy improvement of mesh feature lines and rectification with feature lines of multi-view images. The test dataset in Zürich is provided by ISPRS/EuroSDR initiative Benchmark on High Density Image Matching for DSM Computation. The experiments reveal that the proposed method can obtain convincing and high quality 3D building models from oblique airborne imagery.

  6. PC-based artificial neural network inversion for airborne time-domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Zhu, Kai-Guang; Ma, Ming-Yao; Che, Hong-Wei; Yang, Er-Wei; Ji, Yan-Ju; Yu, Sheng-Bao; Lin, Jun

    2012-03-01

    Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and over-determined problems in the inversion. The correlation complicates the mapping relation between the ATEM data and the earth parameters and thus increases the inversion complexity. To obviate this, we adopt principal component analysis to transform ATEM data into orthogonal principal components (PCs) to reduce the correlations and the data dimensionality and simultaneously suppress the unrelated noise. In this paper, we use an artificial neural network (ANN) to approach the PCs mapping relation with the earth model parameters, avoiding the calculation of Jacobian derivatives. The PC-based ANN algorithm is applied to synthetic data for layered models compared with data-based ANN for airborne time-domain electromagnetic inversion. The results demonstrate the PC-based ANN advantages of simpler network structure, less training steps, and better inversion results over data-based ANN, especially for contaminated data. Furthermore, the PC-based ANN algorithm effectiveness is examined by the inversion of the pseudo 2D model and comparison with data-based ANN and Zhody's methods. The results indicate that PC-based ANN inversion can achieve a better agreement with the true model and also proved that PC-based ANN is feasible to invert large ATEM datasets.

  7. a Min-Cut Based Filter for Airborne LIDAR Data

    NASA Astrophysics Data System (ADS)

    Ural, Serkan; Shan, Jie

    2016-06-01

    LiDAR (Light Detection and Ranging) is a routinely employed technology as a 3-D data collection technique for topographic mapping. Conventional workflows for analyzing LiDAR data require the ground to be determined prior to extracting other features of interest. Filtering the terrain points is one of the fundamental processes to acquire higher-level information from unstructured LiDAR point data. There are many ground-filtering algorithms in literature, spanning several broad categories regarding their strategies. Most of the earlier algorithms examine only the local characteristics of the points or grids, such as the slope, and elevation discontinuities. Since considering only the local properties restricts the filtering performance due to the complexity of the terrain and the features, some recent methods utilize global properties of the terrain as well. This paper presents a new ground filtering method, Min-cut Based Filtering (MBF), which takes both local and global properties of the points into account. MBF considers ground filtering as a labeling task. First, an energy function is designed on a graph, where LiDAR points are considered as the nodes on the graph that are connected to each other as well as to two auxiliary nodes representing ground and off-ground labels. The graph is constructed such that the data costs are assigned to the edges connecting the points to the auxiliary nodes, and the smoothness costs to the edges between points. Data and smoothness terms of the energy function are formulated using point elevations and approximate ground information. The data term conducts the likelihood of the points being ground or off-ground while the smoothness term enforces spatial coherence between neighboring points. The energy function is optimized by finding the minimum-cut on the graph via the alpha-expansion algorithm. The resulting graph-cut provides the labeling of the point cloud as ground and off-ground points. Evaluation of the proposed method on

  8. Edge-Based Registration for Airborne Imagery and LIDAR Data

    NASA Astrophysics Data System (ADS)

    Chen, L. C.; Lo, C. Y.

    2012-07-01

    Aerial imagery and LIDAR points are two important data sources for building reconstruction in a geospatial area. Aerial imagery implies building contours with planimetric features; LIDAR data explicitly represent building geometries using three-dimensional discrete point clouds. Data integration may take advantage of merits from two data sources in building reconstruction and change detection. However, heterogeneous data may contain a relative displacement because of different sensors and the capture time. To reduce this displacement, data registration should be an essential step. Therefore, this investigation proposes an edge-based approach to register these two data sets in three parts: (1) data preprocessing; (2) feature detection; and (3) data registration. The first step rasterizes laser point clouds into a pseudo-grid digital surface model (PDSM), which describes the relief with the original elevation information. The second step implements topological analyses to detect image edges and three-dimensional structure lines from the aerial image and PDSM. These detected features provide the initial positions of building shapes for registration. The third part registers these two data sets in Hough space to compensate for the displacement. Because each building may have prominent geometric structures, the proposed scheme transforms these two groups of edges, and estimates the correspondence by the Hough distribution. The following procedure then iteratively compares two groups of Hough patterns, which are from an aerial image and LIDAR data. This iterative procedure stops when the displacement is within a threshold. The test area is located in Taipei City, Taiwan. DMC system captured the aerial image with 18-cm spatial resolution. The LIDAR data were scanned with a 10-point density per square meter using the Leica ALS50 system. This study proposed a 50 cm spatial resolution of PDSM, which is slightly larger than the point spacing. The experiment selected two

  9. Highly sensitive and multiple DNA biosensor based on isothermal strand-displacement polymerase reaction and functionalized magnetic microparticles.

    PubMed

    Luo, Ming; Li, Ningxing; Liu, Yufei; Chen, Chaohui; Xiang, Xia; Ji, Xinghu; He, Zhike

    2014-05-15

    A universal, highly sensitive and selective chemiluminescence (CL) imaging method has been developed for high throughput detection of DNA. After molecular beacon (MB) hybridized with the target DNA, the biotin-labeled primer was attached to a magnetic microparticle (MMP) surface by hybridization with the stem part of the MB to initiate a polymerization of DNA strand, which led to the release of the target and another polymerization cycle. Thus the polymerization produced the multiplication of biotin-labeled primer on the surface of MMPs. Sequentially, the horseradish peroxidase (HRP) was conjugated to MMPs surface through the biotin-streptavidin reaction. Then, the conjugated HRP was determined by the CL imaging method. This proposed method could detect the sequence-specific DNA as low as 0.4 pM and discriminate perfectly matched target DNA from the mismatch DNAs. All in all, this proposed method exhibited an efficient amplification performance, and would open new opportunities for sensitive and high throughput detection of DNA. PMID:24412765

  10. Gold Nanoplate-Based 3D Hierarchical Microparticles: A Single Particle with High Surface-Enhanced Raman Scattering Enhancement.

    PubMed

    Ma, Ying; Yung, Lin-Yue Lanry

    2016-08-01

    Formation of intended nano- and microstructures with regular building blocks has attracted much attention because of their potential applications in the fields of optics, electronics, and catalysis. Herein, we report a novel strategy to spontaneously grow three-dimensional (3D) hierarchical cabbagelike microparticles (CLMPs) constructed by individual Au nanoplates. By reducing gold precursor to gold atoms, N-(3-amidino)-aniline (NAAN) itself was oxidized to form poly(N-(3-amidino)-aniline) (PNAAN), which specifically binds on Au(111) facet as a capping agent and which leads to the formation of gold nanoplates. Because of the incomplete coverage of Au(111) facet, new gold nanoplate growth sites were spontaneously generated from the crystal plane of existing Au nanoplates for the growth of other nanoplates. This process continued until the nanoplate density reached its maximum range, eventually resulting in CLMPs with well-controlled structures. This opens a new avenue to utilize the imperfection during nanoparticle (NP) growth for the construction of microstructures. The individual CLMP shows excellent surface-enhanced Raman scattering (SERS) performance with high enhancement factor (EF) and good reproducibility as it integrates the SERS enhancement effects of individual Au nanoplate and the nanogaps formed by the uniform and hierarchical structures. PMID:27452074

  11. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen; Veselovskii, Igor; Forno, Ricardo; Mielke, Bernd; Stein, Bernhard; Leblanc, Thierry; McDermid, Stuart; Voemel, Holger

    2010-01-01

    A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE

  12. A concept of ferroelectric microparticle propulsion thruster

    SciTech Connect

    Yarmolich, D.; Vekselman, V.; Krasik, Ya. E.

    2008-02-25

    A space propulsion concept using charged ferroelectric microparticles as a propellant is suggested. The measured ferroelectric plasma source thrust, produced mainly by microparticles emission, reaches {approx}9x10{sup -4} N. The obtained trajectories of microparticles demonstrate that the majority of the microparticles are positively charged, which permits further improvement of the thruster.

  13. A knowledge-based expert system for scheduling of airborne astronomical observations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, P. R.; Gevarter, W. B.; Stutz, J. C.; Banda, C. P.

    1985-01-01

    The Kuiper Airborne Observatory Scheduler (KAOS) is a knowledge-based expert system developed at NASA Ames Research Center to assist in route planning of a C-141 flying astronomical observatory. This program determines a sequence of flight legs that enables sequential observations of a set of heavenly bodies derived from a list of desirable objects. The possible flight legs are constrained by problems of observability, avoiding flyovers of warning and restricted military zones, and running out of fuel. A significant contribution of the KAOS program is that it couples computational capability with a reasoning system.

  14. A knowledge-based expert system for scheduling of airborne astronomical observations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, P. R.; Gevarter, W. B.; Stutz, J. C.; Banda, C. P.

    1986-01-01

    KAOS (Kuiper Airborne Observatory Scheduler) is a knowledge-based expert system developed at NASA Ames Research Center to assist in route planning of a C-141 flying astronomical observatory. This program determines a sequence of flight legs that enables sequential observations of a set of heavenly bodies derived from a list of desirable objects. The possible flight legs are constrained by problems of observability, avoiding flyovers of warning and restricted military zones, and running out of fuel. A significant contribution of the KAOS program is that it couples computational capability with a reasoning system.

  15. Activation of invariant Natural Killer T lymphocytes in response to the α-galactosylceramide analogue KRN7000 encapsulated in PLGA-based nanoparticles and microparticles.

    PubMed

    Macho Fernandez, Elodie; Chang, Jiang; Fontaine, Josette; Bialecki, Emilie; Rodriguez, Fabien; Werkmeister, Elisabeth; Krieger, Vanessa; Ehret, Christophe; Heurtault, Béatrice; Fournel, Sylvie; Frisch, Benoit; Betbeder, Didier; Faveeuw, Christelle; Trottein, François

    2012-02-14

    Invariant Natural Killer T (iNKT) cells have potent immunostimulatory activities that could be exploited for human therapies. The high-affinity CD1d antigen α-galactosylceramide analogue KRN7000 (KRN) activates a cascade of anti-tumor effector cells and clinical studies have already had some initial success. To improve the efficacy of the treatment, strategies that aim to vectorize KRN would be valuable. In this study, we intended to characterize and compare the effect of KRN encapsulated in poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs, 90nm) and microparticles instead of macroparticles (MPs, 715nm) on the iNKT cell response. Our data show that whatever the size of the particles, vectorized KRN induced potent primary activation of iNKT cells in vitro and in vivo. We show that endocytosis of PLGA-based particles by dendritic cells is mediated by a clathrin-dependent manner and that this event is important to stimulate iNKT cells. Finally, we report that KRN vectorized in NPs and MPs exhibited different behaviours in vivo in terms of iNKT cell expansion and responsiveness to a recall stimulation. Collectively, our data validate the concept that KRN encapsulated in PLGA-based particles can be used as delivery systems to activate iNKT cells in vitro and in vivo. PMID:21575695

  16. Voxel Based Representation of Full-Waveform Airborne Laser Scanner Data for Forestry Applications

    NASA Astrophysics Data System (ADS)

    Stelling, N.; Richter, K.

    2016-06-01

    The advantages of using airborne full-waveform laser scanner data in forest applications, e.g. for the description of the vertical vegetation structure or accurate biomass estimation, have been emphasized in many publications. To exploit the full potential offered by airborne full-waveform laser scanning data, the development of voxel based methods for data analysis is essential. In contrast to existing approaches based on the extraction of discrete 3D points by a Gaussian decomposition, it is very promising to derive the voxel attributes from the digitised waveform directly. For this purpose, the waveform data have to be transferred into a 3D voxel representation. This requires a series of radiometric and geometric transformations of the raw full-waveform laser scanner data. Thus, the paper deals with the geometric aspects and describes a processing chain from the raw waveform data to an attenuationcorrected volumetric forest stand reconstruction. The integration of attenuation-corrected waveform data into the voxel space is realised with an efficient parametric voxel traversal method operating on an octree data structure. The voxel attributes are derived from the amplitudes of the attenuation-corrected waveforms. Additionally, a new 3D filtering approach is presented to eliminate non-object voxel. Applying these methods to real full-waveform laser scanning data, a voxel based representation of a spruce was generated combining three flight strips from different viewing directions.

  17. Characterization of spray dried bioadhesive metformin microparticles for oromucosal administration.

    PubMed

    Sander, Camilla; Madsen, Katrine Dragsbæk; Hyrup, Birgitte; Nielsen, Hanne Mørck; Rantanen, Jukka; Jacobsen, Jette

    2013-11-01

    Delivery of drugs into or via the oral cavity offers some distinct advantages due to the easy access to the oral mucosa, fast onset of action, and avoidance of hepatic and intestinal degradation mechanisms. To overcome the effective removal mechanisms existing in this area, bioadhesive drug delivery systems are considered a promising approach as they facilitate a close contact between the drug and the oral mucosa. In this study, bioadhesive chitosan-based microparticles of metformin hydrochloride were prepared by spray drying aqueous dispersions with different chitosan:metformin ratios and chitosan grades with increasing molecular weights. A recently developed ex vivo flow retention model with porcine buccal mucosa was used to evaluate the bioadhesive properties of spray dried microparticles. An important outcome of this study was that microparticles with the desired metformin content could be prepared and analyzed using the ex vivo retention model. We observed an increase in metformin retention on porcine mucosa with increasing chitosan:metformin ratios, while no effect of increasing the chitosan molecular weight was found. Rheological characterization of feeds for spray drying was performed and used for designing the microparticles. This way, novel microparticles with similar particle size distribution, high encapsulation efficiencies, and low moisture content were obtained independent of the chitosan:metformin ratio and the chitosan molecular weight. In conclusion, chitosan:metformin microparticles with significant bioadhesive properties on porcine buccal mucosa were developed. PMID:23774184

  18. Controlled Lateral Positioning of Microparticles Inside Droplets Using Acoustophoresis.

    PubMed

    Fornell, Anna; Nilsson, Johan; Jonsson, Linus; Periyannan Rajeswari, Prem Kumar; Joensson, Haakan N; Tenje, Maria

    2015-10-20

    In this paper, we utilize bulk acoustic waves to control the position of microparticles inside droplets in two-phase microfluidic systems and demonstrate a method to enrich the microparticles. In droplet microfluidics, different unit operations are combined and integrated on-chip to miniaturize complex biochemical assays. We present a droplet unit operation capable of controlling the position of microparticles during a trident shaped droplet split. An acoustic standing wave field is generated in the microchannel, and the acoustic forces direct the encapsulated microparticles to the center of the droplets. The method is generic, requires no labeling of the microparticles, and is operated in a noncontact fashion. It was possible to achieve 2+-fold enrichment of polystyrene beads (5 μm in diameter) in the center daughter droplet with an average recovery of 89% of the beads. Red blood cells were also successfully manipulated inside droplets. These results show the possibility to use acoustophoresis in two-phase systems to enrich microparticles and open up the possibility for new droplet-based assays that are not performed today. PMID:26422760

  19. Porphyrin Microparticles for Biological and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Huynh, Elizabeth

    Lipids are one of the critical building blocks of life, forming the plasma membrane of cells. In addition, porphyrins also play an equally important role in life, for example, through carrying oxygen in blood. The importance of both these components is evident through the biological and biomedical applications of supramolecular structures generated from lipids and porphyrins. This thesis investigates new porphyrin microparticles based on porphyrin-lipid architecture and their potential applications in biology and medicine. In Chapter 1, a background on lipid and porphyrin-based supramolecular structures is presented and design considerations for generating multifunctional agents. Chapter 2 describes the generation of a monolayer porphyrin microparticle as a dual-modal ultrasound and photoacoustic contrast agent and subsequently, a trimodal ultrasound, photoacoustic and fluorescence contrast agent. Chapter 3 examines the optical and morphological response of these multimodality ultrasound-based contrast agents to low frequency, high duty cycle ultrasound that causes the porphyrin microparticles to convertinto nanoparticles. Chapter 4 examines the generation of bilayer micrometer-sized porphyrin vesicles and their properties. Chapter 5 presents a brief summary and potential future directions. Although these microscale structures are similar in structure, the applications of these structures greatly differ with potential applications in biology and also imaging and therapy of disease. This thesis aims to explore and demonstrate the potential of new simplified, supramolecular structures based on one main building block, porphyrin-lipid.

  20. Kalman Filter Based Feature Analysis for Tracking People from Airborne Images

    NASA Astrophysics Data System (ADS)

    Sirmacek, B.; Reinartz, P.

    2011-09-01

    Recently, analysis of man events in real-time using computer vision techniques became a very important research field. Especially, understanding motion of people can be helpful to prevent unpleasant conditions. Understanding behavioral dynamics of people can also help to estimate future states of underground passages, shopping center like public entrances, or streets. In order to bring an automated solution to this problem, we propose a novel approach using airborne image sequences. Although airborne image resolutions are not enough to see each person in detail, we can still notice a change of color components in the place where a person exists. Therefore, we propose a color feature detection based probabilistic framework in order to detect people automatically. Extracted local features behave as observations of the probability density function (pdf) of the people locations to be estimated. Using an adaptive kernel density estimation method, we estimate the corresponding pdf. First, we use estimated pdf to detect boundaries of dense crowds. After that, using background information of dense crowds and previously extracted local features, we detect other people in non-crowd regions automatically for each image in the sequence. We benefit from Kalman filtering to track motion of detected people. To test our algorithm, we use a stadium entrance image data set taken from airborne camera system. Our experimental results indicate possible usage of the algorithm in real-life man events. We believe that the proposed approach can also provide crucial information to police departments and crisis management teams to achieve more detailed observations of people in large open area events to prevent possible accidents or unpleasant conditions.

  1. [Remote sensing of chlorophyll fluorescence at airborne level based on unmanned airship platform and hyperspectral sensor].

    PubMed

    Yang, Pei-Qi; Liu, Zhi-Gang; Ni, Zhuo-Ya; Wang, Ran; Wang, Qing-Shan

    2013-11-01

    The solar-induced chlorophyll fluorescence (ChlF) has a close relationship with photosynthetic and is considered as a probe of plant photosynthetic activity. In this study, an airborne fluorescence detecting system was constructed by using a hyperspectral imager on board an unmanned airship. Both Fraunhofer Line Discriminator (FLD) and 3FLD used to extract ChlF require the incident solar irradiance, which is always difficult to receive at airborne level. Alternative FLD (aFLD) can overcome the problem by selecting non-fluorescent emitter in the image. However, aFLD is based on the assumption that reflectance is identical around the Fraunhofer line, which is not realistic. A new method, a3FLD, is proposed, which assumes that reflectance varies linearly with the wavelength around Fraunhofer line. The result of simulated data shows that ChlF retrieval error of a3FLD is significantly lower than that of aFLD when vegetation reflectance varies near the Fraunhofer line. The results of hyperspectral remote sensing data with the airborne fluorescence detecting system show that the relative values of retrieved ChlF of 5 kinds of plants extracted by both aFLD and a3FLD are consistent with vegetation growth stage and the ground-level ChlF. The ChlF values of aFLD are about 15% greater than a3FLD. In addition, using aFLD, some non-fluorescent objects have considerable ChlF value, while a3FLD can effectively overcome the problem. PMID:24555390

  2. Road centerline extraction from airborne LiDAR point cloud based on hierarchical fusion and optimization

    NASA Astrophysics Data System (ADS)

    Hui, Zhenyang; Hu, Youjian; Jin, Shuanggen; Yevenyo, Yao Ziggah

    2016-08-01

    Road information acquisition is an important part of city informatization construction. Airborne LiDAR provides a new means of acquiring road information. However, the existing road extraction methods using LiDAR point clouds always decide the road intensity threshold based on experience, which cannot obtain the optimal threshold to extract a road point cloud. Moreover, these existing methods are deficient in removing the interference of narrow roads and several attached areas (e.g., parking lot and bare ground) to main roads extraction, thereby imparting low completeness and correctness to the city road network extraction result. Aiming at resolving the key technical issues of road extraction from airborne LiDAR point clouds, this paper proposes a novel method to extract road centerlines from airborne LiDAR point clouds. The proposed approach is mainly composed of three key algorithms, namely, Skewness balancing, Rotating neighborhood, and Hierarchical fusion and optimization (SRH). The skewness balancing algorithm used for the filtering was adopted as a new method for obtaining an optimal intensity threshold such that the "pure" road point cloud can be obtained. The rotating neighborhood algorithm on the other hand was developed to remove narrow roads (corridors leading to parking lots or sidewalks), which are not the main roads to be extracted. The proposed hierarchical fusion and optimization algorithm caused the road centerlines to be unaffected by certain attached areas and ensured the road integrity as much as possible. The proposed method was tested using the Vaihingen dataset. The results demonstrated that the proposed method can effectively extract road centerlines in a complex urban environment with 91.4% correctness and 80.4% completeness.

  3. Detection of airborne carbon nanotubes based on the reactivity of the embedded catalyst.

    PubMed

    Neubauer, N; Kasper, G

    2015-01-01

    A previously described method for detecting catalyst particles in workplace air((1,2)) was applied to airborne carbon nanotubes (CNT). It infers the CNT concentration indirectly from the catalytic activity of metallic nanoparticles embedded as part of the CNT production process. Essentially, one samples airborne CNT onto a filter enclosed in a tiny chemical reactor and then initiates a gas-phase catalytic reaction on the sample. The change in concentration of one of the reactants is then determined by an IR sensor as measure of activity. The method requires a one-point calibration with a CNT sample of known mass. The suitability of the method was tested with nickel containing (25 or 38% by weight), well-characterized multi-walled CNT aerosols generated freshly in the lab for each experiment. Two chemical reactions were investigated, of which the oxidation of CO to CO2 at 470°C was found to be more effective, because nearly 100% of the nickel was exposed at that temperature by burning off the carbon, giving a linear relationship between CO conversion and nickel mass. Based on the investigated aerosols, a lower detection limit of 1 μg of sampled nickel was estimated. This translates into sampling times ranging from minutes to about one working day, depending on airborne CNT concentration and catalyst content, as well as sampling flow rate. The time for the subsequent chemical analysis is on the order of minutes, regardless of the time required to accumulate the sample and can be done on site. PMID:25271474

  4. Preparation of naproxen-ethyl cellulose microparticles by spray-drying technique and their application to textile materials.

    PubMed

    Arici, Mesut; Topbas, Ozlem; Karavana, Sinem Yaprak; Ertan, Gokhan; Sariisik, Merih; Ozturk, Cihat

    2014-01-01

    The objective of this study is to develop a new textile-based drug delivery system containing naproxen (NAP) microparticles and to evaluate the potential of the system as the carrier of NAP for topical delivery. Microparticles were prepared by spray-drying using an aqueous ethyl cellulose dispersion. The drug content and entrapment efficiency, particle size and distribution, particle morphology and in vitro drug release characteristics of microparticles were optimized for the application of microparticles onto the textile fabrics. Microparticles had spherical shape in the range of 10-15 μm and a narrow particle size distribution. NAP encapsulated in microparticles was in the amorphous or partially crystalline nature. Microparticles were tightly fixed onto the textile fabrics. In vitro drug release exhibited biphasic release profile with an initial burst followed by a very slow release. Skin permeation profiles were observed to follow near zero-order release kinetics. PMID:24861324

  5. Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose

    PubMed Central

    Sani, Negar; Wang, Xin; Granberg, Hjalmar; Andersson Ersman, Peter; Crispin, Xavier; Dyreklev, Peter; Engquist, Isak; Gustafsson, Göran; Berggren, Magnus

    2016-01-01

    Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future “internet of things” viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-μPs) and glycerol dispersed in nanofibrillated cellulose (NFC). NFC, Si-μPs and glycerol are mixed in a water suspension, forming a self-supporting nanocellulose-silicon composite film after drying. This film is cut and laminated between a flexible pre-patterned Al bottom electrode and a conductive Ni-coated carbon tape top contact. A Schottky junction is established between the Al electrode and the Si-μPs. The resulting flexible diodes show current levels on the order of mA for an area of 2 mm2, a current rectification ratio up to 4 × 103 between 1 and 2 V bias and a cut-off frequency of 1.8 GHz. Energy harvesting experiments have been demonstrated using resistors as the load at 900 MHz and 1.8 GHz. The diode stack can be delaminated away from the Al electrode and then later on be transferred and reconfigured to another substrate. This provides us with reconfigurable GHz-operating diode circuits. PMID:27357006

  6. Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose.

    PubMed

    Sani, Negar; Wang, Xin; Granberg, Hjalmar; Andersson Ersman, Peter; Crispin, Xavier; Dyreklev, Peter; Engquist, Isak; Gustafsson, Göran; Berggren, Magnus

    2016-01-01

    Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future "internet of things" viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-μPs) and glycerol dispersed in nanofibrillated cellulose (NFC). NFC, Si-μPs and glycerol are mixed in a water suspension, forming a self-supporting nanocellulose-silicon composite film after drying. This film is cut and laminated between a flexible pre-patterned Al bottom electrode and a conductive Ni-coated carbon tape top contact. A Schottky junction is established between the Al electrode and the Si-μPs. The resulting flexible diodes show current levels on the order of mA for an area of 2 mm(2), a current rectification ratio up to 4 × 10(3) between 1 and 2 V bias and a cut-off frequency of 1.8 GHz. Energy harvesting experiments have been demonstrated using resistors as the load at 900 MHz and 1.8 GHz. The diode stack can be delaminated away from the Al electrode and then later on be transferred and reconfigured to another substrate. This provides us with reconfigurable GHz-operating diode circuits. PMID:27357006

  7. Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose

    NASA Astrophysics Data System (ADS)

    Sani, Negar; Wang, Xin; Granberg, Hjalmar; Andersson Ersman, Peter; Crispin, Xavier; Dyreklev, Peter; Engquist, Isak; Gustafsson, Göran; Berggren, Magnus

    2016-06-01

    Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future “internet of things” viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-μPs) and glycerol dispersed in nanofibrillated cellulose (NFC). NFC, Si-μPs and glycerol are mixed in a water suspension, forming a self-supporting nanocellulose-silicon composite film after drying. This film is cut and laminated between a flexible pre-patterned Al bottom electrode and a conductive Ni-coated carbon tape top contact. A Schottky junction is established between the Al electrode and the Si-μPs. The resulting flexible diodes show current levels on the order of mA for an area of 2 mm2, a current rectification ratio up to 4 × 103 between 1 and 2 V bias and a cut-off frequency of 1.8 GHz. Energy harvesting experiments have been demonstrated using resistors as the load at 900 MHz and 1.8 GHz. The diode stack can be delaminated away from the Al electrode and then later on be transferred and reconfigured to another substrate. This provides us with reconfigurable GHz-operating diode circuits.

  8. Image-Based Airborne Sensors: A Combined Approach for Spectral Signatures Classification through Deterministic Simulated Annealing

    PubMed Central

    Guijarro, María; Pajares, Gonzalo; Herrera, P. Javier

    2009-01-01

    The increasing technology of high-resolution image airborne sensors, including those on board Unmanned Aerial Vehicles, demands automatic solutions for processing, either on-line or off-line, the huge amountds of image data sensed during the flights. The classification of natural spectral signatures in images is one potential application. The actual tendency in classification is oriented towards the combination of simple classifiers. In this paper we propose a combined strategy based on the Deterministic Simulated Annealing (DSA) framework. The simple classifiers used are the well tested supervised parametric Bayesian estimator and the Fuzzy Clustering. The DSA is an optimization approach, which minimizes an energy function. The main contribution of DSA is its ability to avoid local minima during the optimization process thanks to the annealing scheme. It outperforms simple classifiers used for the combination and some combined strategies, including a scheme based on the fuzzy cognitive maps and an optimization approach based on the Hopfield neural network paradigm. PMID:22399989

  9. Probability voting and SVM-based vehicle detection in complex background airborne traffic video

    NASA Astrophysics Data System (ADS)

    Lei, Bo; Li, Qingquan; Zhang, Zhijie; Wang, Chensheng

    2012-11-01

    This paper introduces a novel vehicle detection method combined with probability voting based hypothesis generation (HG) and SVM based hypothesis verification (HV) specialized for the complex background airborne traffic video. In HG stage, a statistic based road area extraction method is applied and the lane marks are eliminated. Remained areas are clustered, and then the canny algorithm is performed to detect edges in clustered areas. A voting strategy is designed to detect rectangle objects in the scene. In HV stage, every possible vehicle area is rotated to align the vehicle along the vertical direction, and the vertical and horizontal gradients of them are calculated. SVM is adopted to classify vehicle and non-vehicle. The proposed method has been applied to several traffic scenes, and the experiment results show it's effective and veracious for the vehicle detection.

  10. IGF-1 Release Kinetics from Chitosan Microparticles Fabricated Using Environmentally Benign Conditions

    PubMed Central

    Mantripragada, Venkata P.; Jayasuriya, Ambalangodage C.

    2014-01-01

    The main objective of this study is to maximize growth factor encapsulation efficiency into microparticles. The novelty of this study is to maximize the encapsulated growth factors into microparticles by minimizing the use of organic solvents and using relatively low temperatures. The microparticles were fabricated using chitosan biopolymer as a base polymer and cross-linked with tripolyphosphate (TPP). Insulin like-growth factor-1 (IGF-1) was encapsulated into microparticles to study release kinetics and bioactivity. In order to authenticate the harms of using organic solvents like hexane and acetone during microparticle preparation, IGF-1 encapsulated microparticles prepared by the emulsification and coacervation methods were compared. The microparticles fabricated by emulsification method have shown a significant decrease (p<0.05) in IGF-1 encapsulation efficiency, and cumulative release during the two-week period. The biocompatibility of chitosan microparticles and the bioactivity of the released IGF-1 were determined in vitro by live/dead viability assay. The mineralization data observed with Von Kossa assay, was supported by mRNA expression levels of osterix and runx2, which are transcription factors necessary for osteoblasts differentiation. Real time RT-PCR data showed an increased expression of runx 2 and a decreased expression of osterix over time, indicating differentiating osteoblasts. Chitosan microparticles prepared in optimum environmental conditions are a promising controlled delivery system for cells to attach, proliferate, differentiate and mineralize, thereby acting as a suitable bone repairing material. PMID:25063148

  11. Bundle block adjustment of airborne three-line array imagery based on rotation angles.

    PubMed

    Zhang, Yongjun; Zheng, Maoteng; Huang, Xu; Xiong, Jinxin

    2014-01-01

    In the midst of the rapid developments in electronic instruments and remote sensing technologies, airborne three-line array sensors and their applications are being widely promoted and plentiful research related to data processing and high precision geo-referencing technologies is under way. The exterior orientation parameters (EOPs), which are measured by the integrated positioning and orientation system (POS) of airborne three-line sensors, however, have inevitable systematic errors, so the level of precision of direct geo-referencing is not sufficiently accurate for surveying and mapping applications. Consequently, a few ground control points are necessary to refine the exterior orientation parameters, and this paper will discuss bundle block adjustment models based on the systematic error compensation and the orientation image, considering the principle of an image sensor and the characteristics of the integrated POS. Unlike the models available in the literature, which mainly use a quaternion to represent the rotation matrix of exterior orientation, three rotation angles are directly used in order to effectively model and eliminate the systematic errors of the POS observations. Very good experimental results have been achieved with several real datasets that verify the correctness and effectiveness of the proposed adjustment models. PMID:24811075

  12. Enhanced Feature Based Mosaicing Technique for Visually and Geometrically Degraded Airborne Synthetic Aperture Radar Images

    NASA Astrophysics Data System (ADS)

    Manikandan, S.; Vardhini, J. P.

    2015-11-01

    In airborne synthetic aperture radar (SAR), there was a major problem encountered in the area of image mosaic in the absence of platform information and sensor information (geocoding), when SAR is applied in large-scale scene and the platform faces large changes. In order to enhance real-time performance and robustness of image mosaic, enhancement based Speeded-Up Robust Features (SURF) mosaic method for airborne SAR is proposed in this paper. SURF is a novel scale-invariant and rotation-invariant feature. It is perfect in its high computation, speed and robustness. In this paper, When the SAR image is acquired, initially the image is enhanced by using local statistic techniques and SURF is applied for SAR image matching accord to its characteristic, and then acquires its invariant feature for matching. In the process of image matching, the nearest neighbor rule for initial matching is used, and the wrong points of the matches are removed through RANSAC fitting algorithm. The proposed algorithm is implemented in different SAR images with difference in scale change, rotation change and noise. The proposed algorithm is compared with other existing algorithms and the quantitative and qualitative measures are calculated and tabulated. The proposed algorithm is robust to changes and the threshold is varied accordingly to increase the matching rate more than 95 %.

  13. Compact mid-infrared DIAL lidar for ground-based and airborne pipeline monitoring

    NASA Astrophysics Data System (ADS)

    Degtiarev, Egor V.; Geiger, Allen R.; Richmond, Richard D.

    2003-04-01

    We report the progress in the development of a compact mid-infrared differential absorption lidar (DIAL) for ground-based and airborne monitoring of leaks in natural gas pipeline systems. This sensor, named Lidar II, weighs approximately 30 kg (70 lbs) and occupies a volume of 0.08 m3 (3.5 ft3). Lidar II can be used on the ground in a topographic mode or in a look-down mode from a helicopter platform. The 10-Hz pulse repetition rate and burst-mode averaging currently limit the airborne inspection speed to 30 km/h. The Lidar II laser transmitter employs an intracavity optical parametric oscillator. Wavelength tuning is accomplished through two mechanisms: a servo-controlled crystal rotation for slow and broad-band tuning and a fast piezo-activated wavelength shifter for on-line/off-line switching in less than 10 ms. The sensor operates in the 3.2-3.5-μm band with the primary focus on hydrocarbons and volatile organics. In the pipeline inspection work, the two main targets are methane and ethane, the latter chemical being important in preventing false positives. Initial results of Lidar II testing on actual pipeline leaks are reported. To supplement the mapping capabilities of Lidar II with range-resolved information, a short-range (less than 300 m) aerosol backscatter lidar is currently under development.

  14. Fusion of remotely sensed data from airborne and ground-based sensors to enhance detection of cotton plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study investigated the use of aerial multispectral imagery and ground-based hyperspectral data for the discrimination of different crop types and timely detection of cotton plants over large areas. Airborne multispectral imagery and ground-based spectral reflectance data were acquired at the sa...

  15. Geometric Correction of Airborne Linear Array Image Based on Bias Matrix

    NASA Astrophysics Data System (ADS)

    Wang, M.; Hu, J.; Zhou, M.; Li, J. M.; Zhang, Z.

    2013-05-01

    As the linear array sensor has great potential in disaster monitoring, geological survey, the quality of the image geometric correction should be guaranteed. The primary focus of this paper is to present a new method correcting airbone linear image based on the bias matrix,which is bulit by describing and analysing the errors of airbone linear image included the misalignment. The bias matrix was considered as additional observations to the traditional geometric correction model in our method. And by using control points which have both image coordinate and object coordinate, the solving equation from geometric correction model can be established and the bias matrix can be calculated by adjustment strategy. To avoid the singularity problem in the calculating process, this paper uses quaternion to describe the image's attitude and rotation instead of traditional calculating method which is structured by the Euler angle. Finally, geometric correction of airborne linear array image with high accuracy based on bias matrix can be achieved.

  16. Detection of airborne bacteria in a German turkey house by cultivation-based and molecular methods.

    PubMed

    Fallschissel, Kerstin; Klug, Kerstin; Kämpfer, Peter; Jäckel, Udo

    2010-11-01

    Today's large-scale poultry production with densely stocked and enclosed production buildings is often accompanied by very high concentrations of airborne microorganisms leading to a clear health hazard for employees working in such environments. Depending on the expected exposure to microorganisms, work has to be performed under occupational safety conditions. In this study, turkey houses bioaerosols were investigated by cultivation-based and molecular methods in parallel to determine the concentrations and the composition of bacterial community. Results obtained with the molecular approach showed clearly its applicability for qualitative exposure measurements. With both, cultivation-based and molecular methods species of microorganism with a potential health risk for employees (Acinetobacter johnsonii, Aerococcus viridans, Pantoea agglomerans, and Shigella flexneri) were identified. These results underline the necessity of adequate protection measures, including the recommendation to wear breathing masks during work in poultry houses. PMID:20720091

  17. Overview and Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.

    2015-12-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements spanning a longer interval. The NSF/NCAR GV employed standard flight-level measurements and new airborne lidar and imaging measurements of gravity waves (GWs) from sources at lower altitudes throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-105 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) and two IR "wing" cameras imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar measuring radial winds below the Falcon. DEEPWAVE also included extensive ground-based measurements in New Zealand, Tasmania, and Southern Ocean Islands. DEEPWAVE performed 26 GV flights and 13 Falcon flights, and ground-based measurements occurred whether or not the aircraft were flying. Collectively, many diverse cases of GW forcing, propagation, refraction, and dissipation spanning altitudes of 0-100 km were observed. Examples include strong mountain wave (MW) forcing and breaking in the lower and middle stratosphere, weak MW forcing yielding MW penetration into the MLT having very large amplitudes and momentum fluxes, MW scales at higher altitudes ranging from ~10-250 km, large-scale trailing waves from orography refracting into the polar vortex and extending to high altitudes, GW generation by deep convection, large-scale GWs arising from jet stream sources, and strong MWs in the MLT arising from strong surface flow over a small island. DEEPWAVE yielded a number of surprises, among

  18. Complementing airborne laser bathymetry with UAV-based lidar for capturing alluvial landscapes

    NASA Astrophysics Data System (ADS)

    Mandlburger, Gottfried; Pfennigbauer, Martin; Riegl, Ursula; Haring, Alexander; Wieser, Martin; Glira, Philipp; Winiwarter, Lukas

    2015-10-01

    In this paper we report on a flight experiment employing airborne laser bathymetry (ALB) and unmanned aerial vehicle (UAV) based laser scanning (ULS) for capturing very high resolution topography of shallow water areas and the surrounding littoral zone at the pre-alpine Pielach River in Austria. The aim of the research is to assess how information gained from non-bathymetric, ultra-high resolution ULS can support the ALB data. We focus first on the characterization of the water surface of a lowland river and provide validation results using the data of a topographic airborne laser scanning (ALS) sensor and a low flying ULS system. By repeat ULS survey of a the meandering river reach we are able to quantify short-term water level changes due to surface waves in high resolution. Based on a hydrodynamic-numerical (HN) model we assess the accuracy of the water surface derived from a water penetrating ALB sensor. In the second part of the paper we investigate the ability of ALB, ALS, and ULS to describe the complex topography and vegetation structure of the alluvial area. This is carried out by comparing the Digital Terrain Models (DTM) derived from different sensor configurations. Finally we demonstrate the potential of ULS for estimating single tree positions and stem diameters for detailed floodplain roughness characterization in HN simulations. The key findings are: (i) NIR scan data from ALS or ULS provide more precise water level height estimates (no bias, 1σ: 2 cm) compared to ALB (bias: 3 cm, 1σ: 4 cm), (ii) within the studied reach short-term water level dynamics irrelevant for ALB data acquisition considering a 60 cm footprint diameter, and (iii) stem diameters can be estimated based on ULS point clouds but not from ALS and ALB.

  19. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    NASA Astrophysics Data System (ADS)

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-06-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations.

  20. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles.

    PubMed

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-01-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations. PMID:27279329

  1. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    PubMed Central

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-01-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations. PMID:27279329

  2. a New Control Points Based Geometric Correction Algorithm for Airborne Push Broom Scanner Images Without On-Board Data

    NASA Astrophysics Data System (ADS)

    Strakhov, P.; Badasen, E.; Shurygin, B.; Kondranin, T.

    2016-06-01

    Push broom scanners, such as video spectrometers (also called hyperspectral sensors), are widely used in the present. Usage of scanned images requires accurate geometric correction, which becomes complicated when imaging platform is airborne. This work contains detailed description of a new algorithm developed for processing of such images. The algorithm requires only user provided control points and is able to correct distortions caused by yaw, flight speed and height changes. It was tested on two series of airborne images and yielded RMS error values on the order of 7 meters (3-6 source image pixels) as compared to 13 meters for polynomial-based correction.

  3. Airborne Laser Laboratory departure from Kirtland Air Force Base and a brief history of aero-optics

    NASA Astrophysics Data System (ADS)

    Kyrazis, Demos T.

    2013-07-01

    We discuss aspects of the development of the Airborne Laser Laboratory. Our discussion is historical in nature and consists of the text from a speech given on the occasion of the Airborne Laser Laboratory leaving Kirtland Air Force Base (AFB) to fly to Wright-Patterson AFB to become an exhibit at the National Museum of the United States Air Force. The last part of the discussion concerns the inception of the study of aero-optics as an area of research and some of the milestones in the understanding of the causes and prediction of aero-optical effects.

  4. Immunologic, spectrophotometric and nucleic acid based methods for the detection and quantification of airborne pollen

    PubMed Central

    Rittenour, William R.; Hamilton, Robert G.; Beezhold, Donald H.; Green, Brett J.

    2015-01-01

    Microscopic identification of pollen morphological phenotypes has been the traditional method used to identify and quantify pollen collected by air monitoring stations worldwide. Although this method has enabled a semi-standardized approach for the assessment of pollen exposure, limitations including labor intensiveness, required expertise, examiner bias, and the inability to differentiate species, genera, and in some cases families have limited data derived from the these stations. Recent advances in chemical, biochemical and molecular detection methods have provided standardized alternatives to this microscopic approach. In this review, we examine the applicability of alternative methodologies, in particular nucleic acid based assays involving the quantitative polymerase chain reaction, for the standardized detection of airborne pollen. PMID:22342607

  5. An entropy-based filtering approach for airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Zeng, Zhe; Wan, Jiaxin; Liu, Hui

    2016-03-01

    Parameter-tuning is a challenging task when generating digital terrain models from airborne laser scanning (light detection and ranging, LiDAR) data. To address this issue, this paper presents a filtering method for near-infrared laser scanning data that exploits the principle of entropy maximization as the optimization objective. The proposed approach generates ground elevation of point cloud by constructing a triangulated irregular network, calculates the entropy of the elevation from different parts, and automatically separates ground and non-ground points by the principle of entropy maximization. Experimental results from different ground surfaces show that the proposed entropy-based filtering method can effectively extract bare-earth points from the point cloud without adjusting thresholds.

  6. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar. Part 2; Ground Based

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Cadirola, Martin; Venable, Demetrius; Connell, Rasheen; Rush, Kurt; Leblanc, Thierry; McDermid, Stuart

    2009-01-01

    The same RASL hardware as described in part I was installed in a ground-based mobile trailer and used in a water vapor lidar intercomparison campaign, hosted at Table Mountain, CA, under the auspices of the Network for the Detection of Atmospheric Composition Change (NDACC). The converted RASL hardware demonstrated high sensitivity to lower stratospheric water vapor indicating that profiling water vapor at those altitudes with sufficient accuracy to monitor climate change is possible. The measurements from Table Mountain also were used to explain the reason, and correct , for sub-optimal airborne aerosol extinction performance during the flight campaign.

  7. Combination of doxorubicin-based chemotherapy and polyethylenimine/p53 gene therapy for the treatment of lung cancer using porous PLGA microparticles.

    PubMed

    Shi, Xiaozheng; Li, Chunjie; Gao, Sai; Zhang, Lingfei; Han, Haobo; Zhang, Jianxu; Shi, Wei; Li, Quanshun

    2014-10-01

    In this study, porous PLGA microparticles for the co-delivery of doxorubicin and PEI25K/p53 were successfully prepared by the water-oil-water emulsion solvent evaporation method, using ammonium bicarbonate as a porogen. The porous microparticles were obtained with a mean diameter of 22.9±11.8μm as determined by laser scattering particle size analysis. The particles' surface porous morphology and distributions of doxorubicin and p53 were systematically characterized by scanning electron microscopy, flow cytometry, fluorescence microscopy and confocal laser scanning microscopy, revealing that doxorubicin and the plasmid were successfully co-encapsulated. Encapsulation efficiencies of 88.2±1.7% and 36.5±7.5% were achieved for doxorubicin and the plasmid, respectively, demonstrating that the porous structure did not adversely affect payload encapsulation. Microparticles harboring both doxorubicin and PEI25K/p53 exhibited enhanced tumor growth inhibition and apoptosis induction compared to those loaded with either agent alone in A549 human lung adenocarcinoma cells. Overall, the porous PLGA microparticles provide a promising anticancer delivery system for combined chemotherapy and gene therapy, and have great potential as a tool for sustained local drug delivery by inhalation. PMID:25082753

  8. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  9. Ground-based and airborne measurements of the Mount St. Helens stratospheric effluents

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1982-01-01

    Shortly after the 18 May eruption, a series of airborne lidar flights were made over the Eastern United States. During the same period, ground-based systems were activated throughout the world. The available worldwide lidar data is put together in a consistent set. These data show the dispersion of material at different altitudes during the early global circuits. The material in the lower stratosphere and upper troposphere was very patchy in horizontal extent with backscattering ratio values over the east coast of the United States greater than 100 at the ruby wavelength of 0.6943. Two wavelength ratios and depolarization values for the material in the lower stratosphere (12 to 18 km) appear to have returned to the pre-18 May values within a month after the eruption and this indicated a rapid conversion to spherical shapes and normal indices of refraction. The material above 20 km moved slowly westward while most of the ejecta moved eastward at various speeds and directions which varied considerably with altitude. The westward material was detected first by the Japanese lidar system and then subsequently by the European and American ground-based systems. It circuited the globe in about 60 days. An airborne lidar flight in early September across the continental United States showed the layers to have homogenized considerably one broad layer between about 14 and 21 km peaking at 18 to 19 km and another more intermittent thin layer between 21 and 22 km. The ruby peak backscattering ratio of the broad layer was between 1.3 and 1.5.

  10. Solid microparticles based on chitosan or methyl-β-cyclodextrin: a first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate.

    PubMed

    Rassu, Giovanna; Soddu, Elena; Cossu, Massimo; Brundu, Antonio; Cerri, Guido; Marchetti, Nicola; Ferraro, Luca; Regan, Raymond F; Giunchedi, Paolo; Gavini, Elisabetta; Dalpiaz, Alessandro

    2015-03-10

    We propose the formulation and characterization of solid microparticles as nasal drug delivery systems able to increase the nose-to-brain transport of deferoxamine mesylate (DFO), a neuroprotector unable to cross the blood brain barrier and inducing negative peripheral impacts. Spherical chitosan chloride and methyl-β-cyclodextrin microparticles loaded with DFO (DCH and MCD, respectively) were obtained by spray drying. Their volume-surface diameters ranged from 1.77 ± 0.06 μm (DCH) to 3.47 ± 0.05 μm (MCD); the aerodynamic diameters were about 1.1 μm and their drug content was about 30%. In comparison with DCH, MCD enhanced the in vitro DFO permeation across lipophilic membranes, similarly as shown by ex vivo permeation studies across porcine nasal mucosa. Moreover, MCD were able to promote the DFO permeation across monolayers of PC 12 cells (neuron-like), but like DCH, it did not modify the DFO permeation pattern across Caco-2 monolayers (epithelial-like). Nasal administration to rats of 200 μg DFO encapsulated in the microparticles resulted in its uptake into the cerebrospinal fluid (CSF) with peak values ranging from 3.83 ± 0.68 μg/mL (DCH) to 14.37 ± 1.69 μg/mL (MCD) 30 min after insufflation of microparticles. No drug CSF uptake was detected after nasal administration of a DFO water solution. The DFO systemic absolute bioavailabilities obtained by DCH and MCD nasal administration were 6% and 15%, respectively. Chitosan chloride and methyl-β-cyclodextrins appear therefore suitable to formulate solid microparticles able to promote the nose to brain uptake of DFO and to limit its systemic exposure. PMID:25620068

  11. Solid microparticles based on chitosan or methyl-β-cyclodextrin: a first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate

    PubMed Central

    Rassu, Giovanna; Soddu, Elena; Cossu, Massimo; Brundu, Antonio; Cerri, Guido; Marchetti, Nicola; Ferraro, Luca; Regan, Raymond F.; Giunchedi, Paolo; Gavini, Elisabetta; Dalpiaz, Alessandro

    2015-01-01

    We propose the formulation and characterization of solid microparticles as nasal drug delivery systems able to increase the nose-to-brain transport of deferoxamine mesylate (DFO), a neuroprotector unable to cross the blood brain barrier and inducing negative peripheral impacts. Spherical chitosan chloride and methyl-β-cyclodextrin microparticles loaded with DFO (DCH and MCD, respectively) were obtained by spray drying. Their volume-surface diameters ranged from 1.77 ± 0.06 μm (DCH) to 3.47 ± 0.05 μm (MCD); the aerodynamic diameters were about 1.1 μm and their drug content was about 30%. In comparison with DCH, MCD enhanced the in vitro DFO permeation across lipophilic membranes, similarly as shown by ex vivo permeation studies across porcine nasal mucosa. Moreover, MCD were able to promote the DFO permeation across monolayers of PC 12 cells (neuron like), but like DCH did not modify the DFO permeation pattern across Caco-2 monolayers (epithelial like). Nasal administration to rats of 200 μg DFO encapsulated in the microparticles resulted in its uptake into the cerebrospinal fluid (CSF) with peak values ranging from 3.83 ± 0.68 μg/mL (DCH) and 14.37 ± 1.69 μg/mL (MCD) 30 min after insufflation of microparticles. No drug CSF uptake was detected after nasal administration of a DFO water solution. The DFO systemic absolute bioavailabilities obtained by DCH and MCD nasal administration were 6% and 15%, respectively. Chitosan chloride and methyl-β-cyclodextrins appear therefore suitable to formulate solid microparticles able to promote the nose to brain uptake of DFO and to limit its systemic exposure. PMID:25620068

  12. A chemical free, nanotechnology-based method for airborne bacterial inactivation using engineered water nanostructures†‡

    PubMed Central

    Pyrgiotakis, Georgios; McDevitt, James; Bordini, Andre; Diaz, Edgar; Molina, Ramon; Watson, Christa; Deloid, Glen; Lenard, Steve; Fix, Natalie; Mizuyama, Yosuke; Yamauchi, Toshiyuki; Brain, Joseph

    2015-01-01

    Airborne pathogens are associated with the spread of infectious diseases and increased morbidity and mortality. Herein we present an emerging chemical free, nanotechnology-based method for airborne pathogen inactivation. This technique is based on transforming atmospheric water vapor into Engineered Water Nano-Structures (EWNS) via electrospray. The generated EWNS possess a unique set of physical, chemical, morphological and biological properties. Their average size is 25 nm and they contain reactive oxygen species (ROS) such as hydroxyl and superoxide radicals. In addition, EWNS are highly electrically charged (10 electrons per particle on average). A link between their electric charge and the reduction of their evaporation rate was illustrated resulting in an extended lifetime (over an hour) at room conditions. Furthermore, it was clearly demonstrated that the EWNS have the ability to interact with and inactivate airborne bacteria. Finally, inhaled EWNS were found to have minimal toxicological effects, as illustrated in an acute in-vivo inhalation study using a mouse model. In conclusion, this novel, chemical free, nanotechnology-based method has the potential to be used in the battle against airborne infectious diseases. PMID:26180637

  13. A graph-based segmentation algorithm for tree crown extraction using airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Strîmbu, Victor F.; Strîmbu, Bogdan M.

    2015-06-01

    This work proposes a segmentation method that isolates individual tree crowns using airborne LiDAR data. The proposed approach captures the topological structure of the forest in hierarchical data structures, quantifies topological relationships of tree crown components in a weighted graph, and finally partitions the graph to separate individual tree crowns. This novel bottom-up segmentation strategy is based on several quantifiable cohesion criteria that act as a measure of belief on weather two crown components belong to the same tree. An added flexibility is provided by a set of weights that balance the contribution of each criterion, thus effectively allowing the algorithm to adjust to different forest structures. The LiDAR data used for testing was acquired in Louisiana, inside the Clear Creek Wildlife management area with a RIEGL LMS-Q680i airborne laser scanner. Three 1 ha forest areas of different conditions and increasing complexity were segmented and assessed in terms of an accuracy index (AI) accounting for both omission and commission. The three areas were segmented under optimum parameterization with an AI of 98.98%, 92.25% and 74.75% respectively, revealing the excellent potential of the algorithm. When segmentation parameters are optimized locally using plot references the AI drops to 98.23%, 89.24%, and 68.04% on average with plot sizes of 1000 m2 and 97.68%, 87.78% and 61.1% on average with plot sizes of 500 m2. More than introducing a segmentation algorithm, this paper proposes a powerful framework featuring flexibility to support a series of segmentation methods including some of those recurring in the tree segmentation literature. The segmentation method may extend its applications to any data of topological nature or data that has a topological equivalent.

  14. Moxifloxacin in situ gelling microparticles-bioadhesive delivery system.

    PubMed

    Guo, Qiongyu; Aly, Ahmed; Schein, Oliver; Trexler, Morgana M; Elisseeff, Jennifer H

    2012-01-01

    Antibiotic use for ocular treatments has been largely limited by poor local bioavailability with conventional eyedrops formulations. Here, we developed a controlled delivery system composed of moxifloxacin-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles encapsulated in a chondroitin sulfate-based, two-component bioadhesive hydrogel. Using a simple and fast electrohydrodynamic spray drying (electrospraying) technique, surfactant-free moxifloxacin-loaded microparticles were fabricated with diameters on the order of 1 μm. A mixed solvent system of methanol/dichloromethane (MeOH/DCM) was employed to prepare the microparticles for the electrospraying processing. Extended release of moxifloxacin using a series of MeOH/DCM mixed solvents was accomplished over 10 days with release concentrations higher than the minimum inhibitory concentration (MIC). In contrast, moxifloxacin loaded directly in hydrogels was released rapidly within 24 h. We observed a decrease of the drug release rate from the microparticles when using an increased percentage of methanol in the mixed solvent from 10% to 30% (v/v), which can be explained by the mixed solvent system providing a driving force to form a gradient of the drug concentrations inside the microparticles. In addition, the delivery system developed in this study, which incorporates a bioadhesive to localize drug release by in situ gelling, may potentially integrate antibiotic prophylaxis and wound healing in the eye. PMID:25755996

  15. Scanning Web-based ICARTT File Tool (SWIFT): an online tool used to validate ICARTT-formatted airborne science data

    NASA Astrophysics Data System (ADS)

    Lucker, P. L.; Mangosing, D. C.; Chen, G.; Rinsland, P.; Brennan, J. H.; Clodius, B. F.

    2011-12-01

    The ICARTT (International Consortium for Atmospheric Research on Transport and Transformation) file format was recently endorsed by the NASA Earth Science Data Systems Standards Process Group (ESDS SPG) as a standard (ESDS-RFC-019) for specifying airborne-based Earth System Data Records (ESDR). In order to accelerate adoption of the new standard in the airborne science data community, SWIFT (Scanning Web-based ICARTT File Tool) was developed to provide a means for data providers to validate their own originated ICARTT-formatted file before submission to data archival facilities provided by NASA Langley's Atmospheric Science Data Center and the NASA Langley Airborne Science Data for Atmospheric Composition group. SWIFT builds upon a predecessor, a software utility named: FSCAN (File Scan). A major upgrade to FSCAN, the objective of SWIFT is to support all valid ICARTT files and to extract and store the file metadata in an ESDR relational database. The SWIFT-validated search metadata make it possible for COTS software and web applications to leverage the built-in spatial and temporal query capabilities of the relational database and to enable file and parameter sub-setting capabilities, as well as facilitating the generation of airborne science data merge products. These enhancements help to minimize development time of other related web applications and open up opportunities for robust data queries.

  16. Source localization corrections for airborne acoustic platforms based on a climatological assessment of temperature and wind velocity profiles

    NASA Astrophysics Data System (ADS)

    Ostashev, Vladimir E.; Cheinet, Sylvain; Collier, Sandra L.; Reiff, Christian; Ligon, David A.; Wilson, D. Keith; Noble, John M.; Alberts, W. C. Kirkpatrick, II

    2012-06-01

    Acoustic sensors are being employed on airborne platforms, such as Persistent Threat Detection System (PTDS) and Persistent Ground Surveillance System (PGSS), for source localization. Under certain atmospheric conditions, airborne sensors oer a distinct advantage over ground sensors. The performance of both ground and airborne sensors is aected by environmental factors, such as atmospheric turbulence and wind and temperature proles. For airborne sensors, the eects of refraction must be accounted for in order to determine the source coordinates. Such a method for ground-to-air applications has been developed and is further rened here. Ideally, knowledge of the exact atmospheric proles will allow for the most accurate mitigation of refractive eects. However, acoustic sensors deployed in theater are rarely supported by atmospheric sensing systems that retrieve real-time temperature and wind elds. Atmospheric conditions evolve through seasons, time of day, and are strongly location dependent. Therefore, the development of an atmospheric proles database based on a long time series climatological assessment will provide knowledge for use in physics-based bearing estimation algorithms, where otherwise no correction would have been performed. Long term atmospheric data sets from weather modeling systems are used for a climatological assessment of the refraction corrections and localization errors over selected sites.

  17. Hyperspectral Observations of Land Surfaces Using Ground-based, Airborne, and Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Knuteson, R. O.; Best, F. A.; Revercomb, H. E.; Tobin, D. C.

    2006-12-01

    The University of Wisconsin-Madison Space Science and Engineering Center (UW-SSEC) has helped pioneer the use of high spectral resolution infrared spectrometers for application to atmospheric and surface remote sensing. This paper is focused on observations of land surface infrared emission from high spectral resolution measurements collected over the past 15 years using airborne, ground-based, and satellite platforms. The earliest data was collected by the High-resolution Interferometer Sounder (HIS), an instrument designed in the 1980s for operation on the NASA ER-2 high altitude aircraft. The HIS was replaced in the late 1990s by the Scanning-HIS instrument which has flown on the NASA ER-2, WB-57, DC-8, and Scaled Composites Proteus aircraft and continues to support field campaigns, such as those for EOS Terra, Aqua, and Aura validation. Since 1995 the UW-SSEC has fielded a ground-based Atmospheric Emitted Radiance Interferometer (AERI) in a research vehicle (the AERIBAGO) which has allowed for direct field measurements of land surface emission from a height of about 16 ft above the ground. Several ground-based and aircraft campaigns were conducted to survey the region surrounding the ARM Southern Great Plains site in north central Oklahoma. The ground- based AERIBAGO has also participated in surface emissivity campaigns in the Western U.S.. Since 2002, the NASA Atmospheric InfraRed Sounder (AIRS) has provided similar measurements from the Aqua platform in an afternoon sun-synchronous polar orbit. Ground-based and airborne observations are being used to validate the land surface products derived from the AIRS observations. These cal/val activities are in preparation for similar measurements anticipated from the operational Cross-track InfraRed Sounder (CrIS) on the NPOESS Preparatory Platform (NPP), expected to be launched in 2008. Moreover, high spectral infrared observations will soon be made by the Infrared Atmospheric Sounder Interferometer (IASI) on the

  18. False-alarm mitigation and feature-based discrimination for airborne mine detection

    NASA Astrophysics Data System (ADS)

    Menon, Deepak; Agarwal, Sanjeev; Ganju, Ritesh; Swonger, C. W.

    2004-09-01

    The aim of an anomaly detector is to locate spatial target locations that show significantly different spectral/spatial characteristics as compared to the background. Typical anomaly detectors can achieve a high probability of detection, however at the cost of significantly high false alarm rates. For successful minefield detection there is a need for a further processing step to identify mine-like targets and/or reject non-mine targets in order to improve the mine detection to false alarm ratio. In this paper, we discuss a number of false alarm mitigation (FAM) modalities for MWIR imagery. In particular, we investigate measures based on circularity, gray scale shape profile and reflection symmetry. The performance of these modalities is evaluated for false alarm mitigation using real airborne MWIR data at different times of the day and for different spectral bands. We also motivate a feature based clustering and discrimination scheme based on these modalities to classify similar targets. While false alarm mitigation is primarily used to reject non-mine like targets, feature based clustering can be used to select similar-looking mine-like targets. Minefield detection can subsequently proceed on each localized cluster of similar looking targets.

  19. Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery

    PubMed Central

    Giri, Tapan Kumar; Choudhary, Chhatrapal; Ajazuddin; Alexander, Amit; Badwaik, Hemant; Tripathi, Dulal Krishna

    2012-01-01

    Several methods and techniques are potentially useful for the preparation of microparticles in the field of controlled drug delivery. The type and the size of the microparticles, the entrapment, release characteristics and stability of drug in microparticles in the formulations are dependent on the method used. One of the most common methods of preparing microparticles is the single emulsion technique. Poorly soluble, lipophilic drugs are successfully retained within the microparticles prepared by this method. However, the encapsulation of highly water soluble compounds including protein and peptides presents formidable challenges to the researchers. The successful encapsulation of such compounds requires high drug loading in the microparticles, prevention of protein and peptide degradation by the encapsulation method involved and predictable release, both rate and extent, of the drug compound from the microparticles. The above mentioned problems can be overcome by using the double emulsion technique, alternatively called as multiple emulsion technique. Aiming to achieve this various techniques have been examined to prepare stable formulations utilizing w/o/w, s/o/w, w/o/o, and s/o/o type double emulsion methods. This article reviews the current state of the art in double emulsion based technologies for the preparation of microparticles including the investigation of various classes of substances that are pharmaceutically and biopharmaceutically active. PMID:23960828

  20. Preliminary results of experimental measurements to determine microparticle charge in a complex plasma

    NASA Astrophysics Data System (ADS)

    Gillman, Eric; Amatucci, Bill

    2015-09-01

    Microparticles in a dusty plasma typically collect many of the more mobile electrons as they charge up and therefore typically attain a net negative potential. The charge on these microparticles is typically estimated by calculating the charge on a spherical capacitor at the floating potential or by making measurements of particles levitating in the plasma sheath. However, secondary processes can alter the charging process and are significantly altered in the plasma sheath. Currently there is no reliable method to measure microparticle surface charge in the bulk region of complex or dusty plasmas. A novel, non-invasive, experimental method of measuring the charging of microparticles in the bulk region of a plasma will be presented. Ions impinging directly upon the microparticle surface and interacting electrostatically with the charged microparticle, known as collisional and electrostatic Coulomb ion drag, respectively, slows particle acceleration due to gravity as the particle falls through a plasma discharge. Since ion and neutral drag are commonly the dominant forces on microparticles in complex plasmas, the reduced acceleration is measured without a plasma to determine the neutral drag. By repeating the measurement with a plasma and subtracting the neutral drag, the ion drag is obtained. The microparticle net charge is then ascertained from the ion drag on isolated grains falling through a plasma discharge. This work was supported by the Naval Research Laboratory Base Program.

  1. Facile and High-Throughput Synthesis of Functional Microparticles with Quick Response Codes.

    PubMed

    Ramirez, Lisa Marie S; He, Muhan; Mailloux, Shay; George, Justin; Wang, Jun

    2016-06-01

    Encoded microparticles are high demand in multiplexed assays and labeling. However, the current methods for the synthesis and coding of microparticles either lack robustness and reliability, or possess limited coding capacity. Here, a massive coding of dissociated elements (MiCODE) technology based on innovation of a chemically reactive off-stoichimetry thiol-allyl photocurable polymer and standard lithography to produce a large number of quick response (QR) code microparticles is introduced. The coding process is performed by photobleaching the QR code patterns on microparticles when fluorophores are incorporated into the prepolymer formulation. The fabricated encoded microparticles can be released from a substrate without changing their features. Excess thiol functionality on the microparticle surface allows for grafting of amine groups and further DNA probes. A multiplexed assay is demonstrated using the DNA-grafted QR code microparticles. The MiCODE technology is further characterized by showing the incorporation of BODIPY-maleimide (BDP-M) and Nile Red fluorophores for coding and the use of microcontact printing for immobilizing DNA probes on microparticle surfaces. This versatile technology leverages mature lithography facilities for fabrication and thus is amenable to scale-up in the future, with potential applications in bioassays and in labeling consumer products. PMID:27151936

  2. Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery.

    PubMed

    Giri, Tapan Kumar; Choudhary, Chhatrapal; Ajazuddin; Alexander, Amit; Badwaik, Hemant; Tripathi, Dulal Krishna

    2013-04-01

    Several methods and techniques are potentially useful for the preparation of microparticles in the field of controlled drug delivery. The type and the size of the microparticles, the entrapment, release characteristics and stability of drug in microparticles in the formulations are dependent on the method used. One of the most common methods of preparing microparticles is the single emulsion technique. Poorly soluble, lipophilic drugs are successfully retained within the microparticles prepared by this method. However, the encapsulation of highly water soluble compounds including protein and peptides presents formidable challenges to the researchers. The successful encapsulation of such compounds requires high drug loading in the microparticles, prevention of protein and peptide degradation by the encapsulation method involved and predictable release, both rate and extent, of the drug compound from the microparticles. The above mentioned problems can be overcome by using the double emulsion technique, alternatively called as multiple emulsion technique. Aiming to achieve this various techniques have been examined to prepare stable formulations utilizing w/o/w, s/o/w, w/o/o, and s/o/o type double emulsion methods. This article reviews the current state of the art in double emulsion based technologies for the preparation of microparticles including the investigation of various classes of substances that are pharmaceutically and biopharmaceutically active. PMID:23960828

  3. Skin penetration of silica microparticles.

    PubMed

    Boonen, J; Baert, B; Lambert, J; De Spiegeleer, B

    2011-06-01

    Knowledge about skin penetration of nano- and microparticles is essential for the development of particle-core drug delivery systems and toxicology. A large number of studies have been devoted to metallic particle penetration. However, little work has been published about the importance of chemical material properties of the particles and the skin penetration effect of the applied formulation. Here, we investigated the penetration of 3 microm silica particles in water and in a 65% ethanolic plant extract on ex vivo human skin using scanning electron microscopy. Contrary to most other microsphere skin studies, we observed for the first time that 3 microm silica particles can penetrate the living epidermis. Moreover, when formulated in the ethanolic medium, particles even reach the dermis. The deviating chemical properties of silica compared to previously investigated microparticles (titanium dioxide, zinc oxide) and confounding effect of the formulation in which the silica microparticles are presented, is thus demonstrated. PMID:21699089

  4. Image-based 3D scene analysis for navigation of autonomous airborne systems

    NASA Astrophysics Data System (ADS)

    Jaeger, Klaus; Bers, Karl-Heinz

    2001-10-01

    In this paper we describe a method for automatic determination of sensor pose (position and orientation) related to a 3D landmark or scene model. The method is based on geometrical matching of 2D image structures with projected elements of the associated 3D model. For structural image analysis and scene interpretation, a blackboard-based production system is used resulting in a symbolic description of image data. Knowledge of the approximated sensor pose measured for example by IMU or GPS enables to estimate an expected model projection used for solving the correspondence problem of image structures and model elements. These correspondences are presupposed for pose computation carried out by nonlinear numerical optimization algorithms. We demonstrate the efficiency of the proposed method by navigation update approaching a bridge scenario and flying over urban area, whereas data were taken with airborne infrared sensors in high oblique view. In doing so we simulated image-based navigation for target engagement and midcourse guidance suited for the concepts of future autonomous systems like missiles and drones.

  5. Short-range order and fractal cluster structure of aggregates of barium titanate microparticles in a composite based on cyano-ethyl ester of polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Krasovskii, A. N.; Novikov, D. V.; Vasina, E. S.; Matveichikova, P. V.; Sychev, M. M.; Rozhkova, N. N.

    2015-12-01

    The distribution of barium titanate (BaTiO3) microparticles in the matrix of cyano-ethyl ester of polyvinyl alcohol and the change in the surface energy upon introduction of shungite carbon nanoclusters into the dielectric composite have been investigated using the methods of scanning electron microscopy and contact angles. The computer processing of the electron microscopy data has demonstrated that the introduction of 0.04% shungite carbon nanoparticles into the composite leads to a decrease in the spatial homogeneity of the quasi-lattice and to an increase in the local density distribution of BaTiO3 microparticles, as well as in the correlation length corresponding to the formation of an infinite cluster of BaTiO3 particles. It has been found that, in this case, the surface energy and dielectric permittivity of the composite extremely increase.

  6. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  7. Airborne electromagnetic mapping of the base of aquifer in areas of western Nebraska

    USGS Publications Warehouse

    Abraham, Jared D.; Cannia, James C.; Bedrosian, Paul A.; Johnson, Michaela R.; Ball, Lyndsay B.; Sibray, Steven S.

    2012-01-01

    Airborne geophysical surveys of selected areas of the North and South Platte River valleys of Nebraska, including Lodgepole Creek valley, collected data to map aquifers and bedrock topography and thus improve the understanding of groundwater - surface-water relationships to be used in water-management decisions. Frequency-domain helicopter electromagnetic surveys, using a unique survey flight-line design, collected resistivity data that can be related to lithologic information for refinement of groundwater model inputs. To make the geophysical data useful to multidimensional groundwater models, numerical inversion converted measured data into a depth-dependent subsurface resistivity model. The inverted resistivity model, along with sensitivity analyses and test-hole information, is used to identify hydrogeologic features such as bedrock highs and paleochannels, to improve estimates of groundwater storage. The two- and three-dimensional interpretations provide the groundwater modeler with a high-resolution hydrogeologic framework and a quantitative estimate of framework uncertainty. The new hydrogeologic frameworks improve understanding of the flow-path orientation by refining the location of paleochannels and associated base of aquifer highs. These interpretations provide resource managers high-resolution hydrogeologic frameworks and quantitative estimates of framework uncertainty. The improved base of aquifer configuration represents the hydrogeology at a level of detail not achievable with previously available data.

  8. Airborne Linear Array Image Geometric Rectification Method Based on Unequal Segmentation

    NASA Astrophysics Data System (ADS)

    Li, J. M.; Li, C. R.; Zhou, M.; Hu, J.; Yang, C. M.

    2016-06-01

    As the linear array sensor such as multispectral and hyperspectral sensor has great potential in disaster monitoring and geological survey, the quality of the image geometric rectification should be guaranteed. Different from the geometric rectification of airborne planar array images or multi linear array images, exterior orientation elements need to be determined for each scan line of single linear array images. Internal distortion persists after applying GPS/IMU data directly to geometrical rectification. Straight lines may be curving and jagged. Straight line feature -based geometrical rectification algorithm was applied to solve this problem, whereby the exterior orientation elements were fitted by piecewise polynomial and evaluated with the straight line feature as constraint. However, atmospheric turbulence during the flight is unstable, equal piecewise can hardly provide good fitting, resulting in limited precision improvement of geometric rectification or, in a worse case, the iteration cannot converge. To solve this problem, drawing on dynamic programming ideas, unequal segmentation of line feature-based geometric rectification method is developed. The angle elements fitting error is minimized to determine the optimum boundary. Then the exterior orientation elements of each segment are fitted and evaluated with the straight line feature as constraint. The result indicates that the algorithm is effective in improving the precision of geometric rectification.

  9. Machine vision based particle size and size distribution determination of airborne dust particles of wood and bark pellets

    SciTech Connect

    Igathinathane, C; Pordesimo, L.O.

    2009-08-01

    Dust management strategies in industrial environment, especially of airborne dust, require quantification and measurement of size and size distribution of the particles. Advanced specialized instruments that measure airborne particle size and size distribution apply indirect methods that involve light scattering, acoustic spectroscopy, and laser diffraction. In this research, we propose a simple and direct method of airborne dust particle dimensional measurement and size distribution analysis using machine vision. The method involves development of a user-coded ImageJ plugin that measures particle length and width and analyzes size distribution of particles based on particle length from high-resolution scan images. Test materials were airborne dust from soft pine wood sawdust pellets and ground pine tree bark pellets. Subsamples prepared by dividing the actual dust using 230 mesh (63 m) sieve were analyzed as well. A flatbed document scanner acquired the digital images of the dust particles. Proper sampling, layout of dust particles in singulated arrangement, good contrast smooth background, high resolution images, and accurate algorithm are essential for reliable analysis. A halo effect around grey-scale images ensured correct threshold limits. The measurement algorithm used Feret s diameter for particle length and pixel-march technique for particle width. Particle size distribution was analyzed in a sieveless manner after grouping particles according to their distinct lengths, and several significant dimensions and parameters of particle size distribution were evaluated. Results of the measurement and analysis were presented in textual and graphical formats. The developed plugin was evaluated to have a dimension measurement accuracy in excess of 98.9% and a computer speed of analysis of <8 s/image. Arithmetic mean length of actual wood and bark pellets airborne dust particles were 0.1138 0.0123 and 0.1181 0.0149 mm, respectively. The airborne dust particles of

  10. pH-sensitive microparticles for oral drug delivery based on alginate/oligochitosan/Eudragit(®) L100-55 "sandwich" polyelectrolyte complex.

    PubMed

    Calija, Bojan; Cekić, Nebojša; Savić, Snežana; Daniels, Rolf; Marković, Bojan; Milić, Jela

    2013-10-01

    The primary objective of this study was to investigate the influence of the oligochitosan-Eudragit(®) L100-55 polyelectrolyte complex (OCH-EL PEC) on the pH-sensitivity of Eudragit(®) L100-55-treated alginate-oligochitosan microparticles. In order to achieve this, three types of naproxen-loaded microparticles were prepared under mild and environmentally friendly conditions using a custom made device with coaxial air flow: Ca-alginate (Ca-ALG), alginate-oligochitosan (ALG-OCH) and alginate-oligochitosan-Eudragit(®) L100-55 (ALG-OCH-EL) microparticles. After drying, the microparticles were subjected to microscopic analysis, and physicochemical and biopharmaceutical characterization. The non-covalent interaction between OCH and EL and the formation of OCH-EL PEC during the preparation procedure of the particles were verified by thermal and FT-IR analysis. The obtained particles exhibited acceptable sphericity and surface roughness due to the presence of the drug crystals (Ca-ALG particles) and OCH-EL PEC (ALG-OCH-EL particles). It was found that reinforcement of the ALG-OCH particles with OCH-EL PEC had no significant effect on the relatively high encapsulation efficiencies (>74.4%). The results of drug release studies confirmed the ability of ALG-OCH PEC to sustain drug release at pH 6.8 and 7.4. However, this PEC showed enhanced sensitivity to an acidic environment and to simulated intestinal fluid (pH 6.8) after prior exposure to an acidic medium. Additional treatment of ALG-OCH particles with EL and formation of "sandwich" ALG-OCH-EL PEC was essential not only to improve stability and decrease drug release in acidic medium, but also to achieve sustained release after the pH of dissolution medium was raised to 6.8. The obtained results suggested that ALG-OCH-EL microparticles have promising potential as pH-sensitive multiparticulate drug carriers for oral delivery of NSAIDs. PMID:23751419

  11. A wavelet-based baseline drift correction method for grounded electrical source airborne transient electromagnetic signals

    NASA Astrophysics Data System (ADS)

    Wang, Yuan 1Ji, Yanju 2Li, Suyi 13Lin, Jun 12Zhou, Fengdao 1Yang, Guihong

    2013-09-01

    A grounded electrical source airborne transient electromagnetic (GREATEM) system on an airship enjoys high depth of prospecting and spatial resolution, as well as outstanding detection efficiency and easy flight control. However, the movement and swing of the front-fixed receiving coil can cause severe baseline drift, leading to inferior resistivity image formation. Consequently, the reduction of baseline drift of GREATEM is of vital importance to inversion explanation. To correct the baseline drift, a traditional interpolation method estimates the baseline `envelope' using the linear interpolation between the calculated start and end points of all cycles, and obtains the corrected signal by subtracting the envelope from the original signal. However, the effectiveness and efficiency of the removal is found to be low. Considering the characteristics of the baseline drift in GREATEM data, this study proposes a wavelet-based method based on multi-resolution analysis. The optimal wavelet basis and decomposition levels are determined through the iterative comparison of trial and error. This application uses the sym8 wavelet with 10 decomposition levels, and obtains the approximation at level-10 as the baseline drift, then gets the corrected signal by removing the estimated baseline drift from the original signal. To examine the performance of our proposed method, we establish a dipping sheet model and calculate the theoretical response. Through simulations, we compare the signal-to-noise ratio, signal distortion, and processing speed of the wavelet-based method and those of the interpolation method. Simulation results show that the wavelet-based method outperforms the interpolation method. We also use field data to evaluate the methods, compare the depth section images of apparent resistivity using the original signal, the interpolation-corrected signal and the wavelet-corrected signal, respectively. The results confirm that our proposed wavelet-based method is an

  12. Mucoadhesive microparticles for local treatment of gastrointestinal diseases.

    PubMed

    Preisig, Daniel; Roth, Roger; Tognola, Sandy; Varum, Felipe J O; Bravo, Roberto; Cetinkaya, Yalcin; Huwyler, Jörg; Puchkov, Maxim

    2016-08-01

    Mucoadhesive microparticles formulated in a capsule and delivered to the gastrointestinal tract might be useful for local drug delivery. However, swelling and agglomeration of hydrophilic polymers in the gastrointestinal milieu can have a negative influence on particle retention of mucoadhesive microparticles. In this work, we investigated the impact of dry-coating with nano-sized hydrophilic fumed silica on dispersibility and particle retention of mucoadhesive microparticles. As a model for local treatment of gastrointestinal diseases, antibiotic therapy of Clostridium difficile infections with metronidazole was selected. For particle preparation, we used a two-step fluidized-bed method based on drug loading of porous microcarriers and subsequent outer coating with the mucoadhesive polymer chitosan. The prepared microparticles were analysed for drug content, and further characterized by thermal analysis, X-ray diffraction, and scanning electron microscopy. The optimal molecular weight and content of chitosan were selected by measuring particle retention on porcine colonic mucosa under dynamic flow conditions. Mucoadhesive microparticles coated with 5% (weight of chitosan coating/total weight of particles) of low molecular weight chitosan showed good in vitro particle retention, and were used for the investigation of dispersibility enhancement. By increasing the amount of silica, the dissolution rate measured in the USPIV apparatus was increased, which was an indirect indication for improved dispersibility due to increased surface area. Importantly, mucoadhesion was not impaired up to a silica concentration of 5% (w/w). In summary, mucoadhesive microparticles with sustained-release characteristics over several hours were manufactured at pilot scale, and dry-coating with silica nanoparticles has shown to improve the dispersibility, which is essential for better particle distribution along the intestinal mucosa in humans. Therefore, this advanced drug delivery

  13. An Open Source Software and Web-GIS Based Platform for Airborne SAR Remote Sensing Data Management, Distribution and Sharing

    NASA Astrophysics Data System (ADS)

    Changyong, Dou; Huadong, Guo; Chunming, Han; Ming, Liu

    2014-03-01

    With more and more Earth observation data available to the community, how to manage and sharing these valuable remote sensing datasets is becoming an urgent issue to be solved. The web based Geographical Information Systems (GIS) technology provides a convenient way for the users in different locations to share and make use of the same dataset. In order to efficiently use the airborne Synthetic Aperture Radar (SAR) remote sensing data acquired in the Airborne Remote Sensing Center of the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), a Web-GIS based platform for airborne SAR data management, distribution and sharing was designed and developed. The major features of the system include map based navigation search interface, full resolution imagery shown overlaid the map, and all the software adopted in the platform are Open Source Software (OSS). The functions of the platform include browsing the imagery on the map navigation based interface, ordering and downloading data online, image dataset and user management, etc. At present, the system is under testing in RADI and will come to regular operation soon.

  14. Coordinated Airborne, Spaceborne and Ground-based Measurements of Massive Thick Aerosol Layers during the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J. R.; Torres, O.

    2003-01-01

    During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of aerosol optical depth (lambda = 0.354- 1.557 microns), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data (MPL-Net), and with measurements from a downward pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths fiom the Sun photometer and those retrieved over land and over water using four spaceborne sensors (TOMS, MODIS, MISR, and ATSR-2).

  15. Coordinated Airborne, Spaceborne, and Ground-Based Measurements of Massive, Thick Aerosol Layers During the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J.; Torres, O.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    During the dry-season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), unique coordinated observations were made of massive, thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sunphotometer measurements of aerosol optical depth (lambda=354-1558 nm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data MPL-Net), and with measurements from a downward-pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sunphotometer and those retrieved over land and over water using four spaceborne sensors (TOMS (Total Ozone Mapping Spectrometer), MODIS (Moderate Resolution Imaging Spectrometer), MISR (Multiangle Imaging Spectroradiometer) and ATSR-2 (Along Track Scanning Radiometer)).

  16. Development of a multi-sensor airborne investigation platform based on an ultra-light aircraft

    NASA Astrophysics Data System (ADS)

    Herd, Rainer; Holst, Jonathan; Lay, Michael

    2013-04-01

    In the year 2012 the chair Raw Material and Natural Resource Management of Brandenburg University of Technology Cottbus, Germany started to develop, construct and assemble a multi-sensor airborne investigation system based on an ultra-light aircraft. The conceptual ideas were born several years before and triggered by the increasing demand of spatial underground information, increasing restrictions to access private property and the lack of affordable commercially operated systems for projects with small budgets. The concept of the presented system comprehends a full composite ultra-light aircraft, the Pipistrel VIRUS which combines a low minimum (65 km/h, a high crusing speed (250 km/h, a long range (1700 km) and a low noise potential. The investigation equipment which can be modified according to the investigation target comprises actually a CsI-y-spectrometer in the fuselage, 2 K-magnetometer at the wing tips and a VLF-EM-receiver underneath the tail. This configuration enables the system to operate for mineral exploration, geological mapping, detection of freshwater resources and brines and different environmental monitoring missions. The development and actual stage of the project will be presented. The first operating flight is scheduled for spring 2013.

  17. Evaluating Sentinel-2 for Lakeshore Habitat Mapping Based on Airborne Hyperspectral Data

    PubMed Central

    Stratoulias, Dimitris; Balzter, Heiko; Sykioti, Olga; Zlinszky, András; Tóth, Viktor R.

    2015-01-01

    Monitoring of lakeshore ecosystems requires fine-scale information to account for the high biodiversity typically encountered in the land-water ecotone. Sentinel-2 is a satellite with high spatial and spectral resolution and improved revisiting frequency and is expected to have significant potential for habitat mapping and classification of complex lakeshore ecosystems. In this context, investigations of the capabilities of Sentinel-2 in regard to the spatial and spectral dimensions are needed to assess its potential and the quality of the expected output. This study presents the first simulation of the high spatial resolution (i.e., 10 m and 20 m) bands of Sentinel-2 for lakeshore mapping, based on the satellite’s Spectral Response Function and hyperspectral airborne data collected over Lake Balaton, Hungary in August 2010. A comparison of supervised classifications of the simulated products is presented and the information loss from spectral aggregation and spatial upscaling in the context of lakeshore vegetation classification is discussed. We conclude that Sentinel-2 imagery has a strong potential for monitoring fine-scale habitats, such as reed beds. PMID:26378538

  18. [Inversion of vegetation canopy's chlorophyll content based on airborne hyperspectral image].

    PubMed

    Li, Ming-Ze; Zhao, Xiao-Hong; Liu, Yue; Lu, Wei; Dong, Shuai; Meng, Lu

    2013-01-01

    By using the airborne hyperspectral remote sensing data of Liangshui National Nature Reserve in Yichun of Heilongjiang Province, Northeast China, 15 spectral parameters including red edge area, triangular vegetation index, and normalized difference vegetation index, etc. were extracted, and in combining with 5 geographical parameters including slope, aspect, elevation, canopy density and total vegetation coverage, and by using SPAD-502, the vegetation canopy's relative chlorophyll content in the reserve were measured, with the correlations of the leaf spectral reflectivity, its first-order derivative and other deformations with the SPAD value analyzed. A prediction model for relative chlorophyll content was established by adopting the kernel-based partial least-squares regression, and a quantitative estimation of the vegetation canopy's relative chlorophyll content in the study area was carried out with the established model. The results showed that the model performed best when the sections were three and the principle components were ten. The co-efficient of determination of the model was R2 = 0.855, the mean absolute percent error was 9.6%, and the prediction precision was 89.7%. PMID:23718007

  19. Effective localized collection and identification of airborne species through electrodynamic precipitation and SERS-based detection

    PubMed Central

    Lin, En-Chiang; Fang, Jun; Park, Se-Chul; Johnson, Forrest W.; Jacobs, Heiko O.

    2013-01-01

    Various nanostructured sensor designs currently aim to achieve or claim single molecular detection by a reduction of the active sensor size. However, a reduction of the sensor size has the negative effect of reducing the capture probability considering the diffusion-based analyte transport commonly used. Here we introduce and apply a localized programmable electrodynamic precipitation concept as an alternative to diffusion. The process provides higher collection rates of airborne species and detection at lower concentration. As an example, we compare an identical nanostructured surfaced-enhanced Raman spectroscopy sensor with and without localized delivery and find that the sensitivity and detection time is improved by at least two orders of magnitudes. Localized collection in an active-matrix array-like fashion is also tested, yielding hybrid molecular arrays on a single chip over a broad range of molecular weights, including small benzenethiol (110.18 Da) and 4-fluorobenzenethiol (128.17 Da), or large macromolecules such as anti-mouse IgG (~150 kDa). PMID:23535657

  20. Roof Reconstruction from Airborne Laser Scanning Data Based on Image Processing Methods

    NASA Astrophysics Data System (ADS)

    Goebbels, S.; Pohle-Fröhlich, R.

    2016-06-01

    The paper presents a new data-driven approach to generate CityGML building models from airborne laser scanning data. The approach is based on image processing methods applied to an interpolated height map and avoids shortcomings of established methods for plane detection like Hough transform or RANSAC algorithms on point clouds. The improvement originates in an interpolation algorithm that generates a height map from sparse point cloud data by preserving ridge lines and step edges of roofs. Roof planes then are detected by clustering the height map's gradient angles, parameterizations of planes are estimated and used to filter out noise around ridge lines. On that basis, a raster representation of roof facets is generated. Then roof polygons are determined from region outlines, connected to a roof boundary graph, and simplified. Whereas the method is not limited to churches, the method's performance is primarily tested for church roofs of the German city of Krefeld because of their complexity. To eliminate inaccuracies of spires, contours of towers are detected additionally, and spires are rendered as solids of revolution. In our experiments, the new data-driven method lead to significantly better building models than the previously applied model-driven approach.

  1. Evaluating Sentinel-2 for Lakeshore Habitat Mapping Based on Airborne Hyperspectral Data.

    PubMed

    Stratoulias, Dimitris; Balzter, Heiko; Sykioti, Olga; Zlinszky, András; Tóth, Viktor R

    2015-01-01

    Monitoring of lakeshore ecosystems requires fine-scale information to account for the high biodiversity typically encountered in the land-water ecotone. Sentinel-2 is a satellite with high spatial and spectral resolution and improved revisiting frequency and is expected to have significant potential for habitat mapping and classification of complex lakeshore ecosystems. In this context, investigations of the capabilities of Sentinel-2 in regard to the spatial and spectral dimensions are needed to assess its potential and the quality of the expected output. This study presents the first simulation of the high spatial resolution (i.e., 10 m and 20 m) bands of Sentinel-2 for lakeshore mapping, based on the satellite's Spectral Response Function and hyperspectral airborne data collected over Lake Balaton, Hungary in August 2010. A comparison of supervised classifications of the simulated products is presented and the information loss from spectral aggregation and spatial upscaling in the context of lakeshore vegetation classification is discussed. We conclude that Sentinel-2 imagery has a strong potential for monitoring fine-scale habitats, such as reed beds. PMID:26378538

  2. Extracting DEM from airborne X-band data based on PolInSAR

    NASA Astrophysics Data System (ADS)

    Hou, X. X.; Huang, G. M.; Zhao, Z.

    2015-06-01

    Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) is a new trend of SAR remote sensing technology which combined polarized multichannel information and Interferometric information. It is of great significance for extracting DEM in some regions with low precision of DEM such as vegetation coverage area and building concentrated area. In this paper we describe our experiments with high-resolution X-band full Polarimetric SAR data acquired by a dual-baseline interferometric airborne SAR system over an area of Danling in southern China. Pauli algorithm is used to generate the double polarimetric interferometry data, Singular Value Decomposition (SVD), Numerical Radius (NR) and Phase diversity (PD) methods are used to generate the full polarimetric interferometry data. Then we can make use of the polarimetric interferometric information to extract DEM with processing of pre filtering , image registration, image resampling, coherence optimization, multilook processing, flat-earth removal, interferogram filtering, phase unwrapping, parameter calibration, height derivation and geo-coding. The processing system named SARPlore has been exploited based on VC++ led by Chinese Academy of Surveying and Mapping. Finally compared optimization results with the single polarimetric interferometry, it has been observed that optimization ways can reduce the interferometric noise and the phase unwrapping residuals, and improve the precision of DEM. The result of full polarimetric interferometry is better than double polarimetric interferometry. Meanwhile, in different terrain, the result of full polarimetric interferometry will have a different degree of increase.

  3. Comparison of airborne laser scanning methods for estimating forest structure indicators based on Lorenz curves

    NASA Astrophysics Data System (ADS)

    Valbuena, Rubén; Vauhkonen, Jari; Packalen, Petteri; Pitkänen, Juho; Maltamo, Matti

    2014-09-01

    The purpose of this study was to compare a number of state-of-the-art methods in airborne laser scanning (ALS) remote sensing with regards to their capacity to describe tree size inequality and other indicators related to forest structure. The indicators chosen were based on the analysis of the Lorenz curve: Gini coefficient (GC), Lorenz asymmetry (LA), the proportions of basal area (BALM) and stem density (NSLM) stocked above the mean quadratic diameter. Each method belonged to one of these estimation strategies: (A) estimating indicators directly; (B) estimating the whole Lorenz curve; or (C) estimating a complete tree list. Across these strategies, the most popular statistical methods for area-based approach (ABA) were used: regression, random forest (RF), and nearest neighbour imputation. The latter included distance metrics based on either RF (NN-RF) or most similar neighbour (MSN). In the case of tree list estimation, methods based on individual tree detection (ITD) and semi-ITD, both combined with MSN imputation, were also studied. The most accurate method was direct estimation by best subset regression, which obtained the lowest cross-validated coefficients of variation of their root mean squared error CV(RMSE) for most indicators: GC (16.80%), LA (8.76%), BALM (8.80%) and NSLM (14.60%). Similar figures [CV(RMSE) 16.09%, 10.49%, 10.93% and 14.07%, respectively] were obtained by MSN imputation of tree lists by ABA, a method that also showed a number of additional advantages, such as better distributing the residual variance along the predictive range. In light of our results, ITD approaches may be clearly inferior to ABA with regards to describing the structural properties related to tree size inequality in forested areas.

  4. Development of a screening assay for ligands to the estrogen receptor based on magnetic microparticles and LC-MS.

    PubMed

    Choi, Yongsoo; van Breemen, Richard B

    2008-01-01

    A high throughput screening assay for the identification of ligands to pharmacologically significant receptors was developed based on magnetic particles containing immobilized receptors followed by liquid chromatography-mass spectrometry (LC-MS). This assay is suitable for the screening of complex mixtures such as botanical extracts. For proof-of-principle, estrogen receptor-alpha (ER-alpha) and ER-beta were immobilized on magnetic particles functionalized with aldehyde or carboxylic acid groups. Alternatively, biotinylated ER was immobilized onto streptavidin-derivatized magnetic particles. The ER that was immobilized using the streptavidin-biotin chemistry showed higher activity than that immobilized on aldehyde or carboxylic acid functionalized magnetic particles. Immobilized ER was incubated with extracts of Trifolium pratense L. (red clover) or Humulus lupulus L. (hops). As a control for non-specific binding, each botanical extract was incubated with magnetic particles containing no ER. After magnetic separation of the particles containing bound ligands from the unbound components in the extract, the particles were washed, ligands were released using methanol, and then the ligands were identified using LC-MS. The estrogens genistein and daidzein were identified in the red clover extract, and the estrogen 8-prenylnaringenin was identified in the hop extract. These screening results are consistent with those obtained using previous screening approaches. PMID:18220538

  5. Relationships between MODIS black-sky shortwave albedo and airborne lidar based forest canopy structure

    NASA Astrophysics Data System (ADS)

    Korhonen, Lauri; Rautiainen, Miina; Arumäe, Tauri; Lang, Mait; Flewelling, James; Tokola, Timo; Stenberg, Pauline

    2016-04-01

    Albedo is one of the essential climate variables affecting the Earth's radiation balance. It is however not well understood how changes in forest canopy structure influence the albedo. Canopy structure can be mapped consistently for fairly large areas using airborne lidar sensors. Our objective was to study the relationships between MODIS shortwave black sky albedo product and lidar-based estimates of canopy structure in different biomes ranging from arctic to tropical. Our study is based on six structurally different forest sites located in Finland, Estonia, USA and Laos. Lidar-based mean height of the canopy, canopy cover and their transformations were used as predictor variables to describe the canopy structure. Tree species composition was also included for the three sites where it was available. We noticed that the variables predicting albedo best were different in open and closed canopy forests. In closed canopy forests, the species information was more important than canopy structure variables (R2=0.31-0.32) and using only structural variables resulted in poor R2 (0.13-0.15). If the 500 m MODIS pixel contained a mixture of forests and other land cover types, the albedo was strongly related to the forest area percent. In open canopy forests, structural variables such as canopy cover or height explained albedo well, but species information still improved the models (R2=0.27-0.52). We obtained the highest R2=0.52 using only structural variables in Laos on a partially degraded tropical forest with large variation in canopy cover. The different canopy structure variables were often correlated and the one that provided the best model changed from site to site.

  6. Strategies for minimizing sample size for use in airborne LiDAR-based forest inventory

    USGS Publications Warehouse

    Junttila, Virpi; Finley, Andrew O.; Bradford, John B.; Kauranne, Tuomo

    2013-01-01

    Recently airborne Light Detection And Ranging (LiDAR) has emerged as a highly accurate remote sensing modality to be used in operational scale forest inventories. Inventories conducted with the help of LiDAR are most often model-based, i.e. they use variables derived from LiDAR point clouds as the predictive variables that are to be calibrated using field plots. The measurement of the necessary field plots is a time-consuming and statistically sensitive process. Because of this, current practice often presumes hundreds of plots to be collected. But since these plots are only used to calibrate regression models, it should be possible to minimize the number of plots needed by carefully selecting the plots to be measured. In the current study, we compare several systematic and random methods for calibration plot selection, with the specific aim that they be used in LiDAR based regression models for forest parameters, especially above-ground biomass. The primary criteria compared are based on both spatial representativity as well as on their coverage of the variability of the forest features measured. In the former case, it is important also to take into account spatial auto-correlation between the plots. The results indicate that choosing the plots in a way that ensures ample coverage of both spatial and feature space variability improves the performance of the corresponding models, and that adequate coverage of the variability in the feature space is the most important condition that should be met by the set of plots collected.

  7. Numerical simulation of airflow and microparticle deposition in a synchrotron micro-CT-based pulmonary acinus model.

    PubMed

    Sera, Toshihiro; Uesugi, Kentaro; Yagi, Naoto; Yokota, Hideo

    2015-01-01

    The acinus consists of complex, branched alveolar ducts and numerous surrounding alveoli, and so in this study, we hypothesized that the particle deposition can be much influenced by the complex acinar geometry, and simulated the airflow and particle deposition (density = 1.0 g/cm(3), diameter = 1 and 3 μm) numerically in a pulmonary acinar model based on synchrotron micro-CT of the mammalian lung. We assumed that the fluid-structure interaction was neglected and that alveolar flow was induced by the expansion and contraction of the acinar model with the volume changing sinusoidally with time as the moving boundary conditions. The alveolar flow was dominated by radial flows, and a weak recirculating flow was observed at the proximal side of alveoli during the entire respiratory cycle, despite the maximum Reynolds number at the inlet being 0.029. Under zero gravity, the particle deposition rate after single breathing was less than 0.01, although the particles were transported deeply into the acinus after inspiration. Under a gravitational field, the deposition rate and map were influenced strongly by gravity orientation. In the case of a particle diameter of 1 μm, the rate increased dramatically and mostly non-deposited particles remained in the model, indicating that the rate would increase further after repeated breathing. At a particle diameter of 3 μm, the rate was 1.0 and all particles were deposited during single breathing. Our results show that the particle deposition rate in realistic pulmonary acinar model is higher than in an idealized model. PMID:24821393

  8. Calculating the torque of the optical vortex tweezer to the ellipsoidal micro-particles

    NASA Astrophysics Data System (ADS)

    Zhu, Lie; Guo, Zhongyi; Xu, Qiang; Zhang, Jingran; Zhang, Anjun; Wang, Wei; Liu, Yi; li, Yan; Wang, Xinshun; Qu, Shiliang

    2015-11-01

    In this paper, we have accurately computed the torque of the optical vortex tweezers to the ellipsoidal micro-particles with the method of finite-difference time-domain (FDTD). The transferred orbital angular momentum (OAM) from the vortex beam to the micro-particles can be obtained based on the scattering phase function (SPF) of the micro-particles. We have verified that the calculated SPF of a spherical particle by FDTD agrees well with that by Mie theory, which indicates that the SPF of micro-particles with any shapes can be calculated by FDTD accurately. In addition, with the method of FDTD, we have obtained the SPFs of the different-shape ellipsoidal micro-particles with same volume, including prolate ellipsoids and oblate ellipsoids. Meanwhile, the transferred OAM between the light and the ellipsoidal micro-particles have been deduced analytically by the relative formulas. And the rotating angular velocities of the trapped ellipsoidal micro-particles have been investigated and discussed in detail based on the obtained corresponding SPFs.

  9. Biocompatibility of polysebacic anhydride microparticles with chondrocytes in engineered cartilage.

    PubMed

    Ponnurangam, Sathish; O'Connell, Grace D; Hung, Clark T; Somasundaran, Ponisseril

    2015-12-01

    One of main challenges in developing clinically relevant engineered cartilage is overcoming limited nutrient diffusion due to progressive elaboration of extracellular matrix at the periphery of the construct. Macro-channels have been used to decrease the nutrient path-length; however, the channels become occluded with matrix within weeks in culture, reducing nutrient diffusion. Alternatively, microparticles can be imbedded throughout the scaffold to provide localized nutrient delivery. In this study, we evaluated biocompatibility of polysebacic anhydride (PSA) polymers and the effectiveness of PSA-based microparticles for short-term delivery of nutrients in engineered cartilage. PSA-based microparticles were biocompatible with juvenile bovine chondrocytes for concentrations up to 2mg/mL; however, cytotoxicity was observed at 20mg/mL. Cytotoxicity at high concentrations is likely due to intracellular accumulation of PSA degradation products and resulting lipotoxicity. Cytotoxicity of PSA was partially reversed in the presence of bovine serum albumin. In conclusion, the findings from this study demonstrate concentration-dependent biocompatibility of PSA-based microparticles and potential application as a nutrient delivery vehicle that can be imbedded in scaffolds for tissue engineering. PMID:26398146

  10. Data correction techniques for the airborne large-aperture static image spectrometer based on image registration

    NASA Astrophysics Data System (ADS)

    Zhang, Geng; Shi, Dalian; Wang, Shuang; Yu, Tao; Hu, Bingliang

    2015-01-01

    We propose an approach to correct the data of the airborne large-aperture static image spectrometer (LASIS). LASIS is a kind of stationary interferometer which compromises flux output and device stability. It acquires a series of interferograms to reconstruct the hyperspectral image cube. Reconstruction precision of the airborne LASIS data suffers from the instability of the plane platform. Usually, changes of plane attitudes, such as yaws, pitches, and rolls, can be precisely measured by the inertial measurement unit. However, the along-track and across-track translation errors are difficult to measure precisely. To solve this problem, we propose a co-optimization approach to compute the translation errors between the interferograms using an image registration technique which helps to correct the interferograms with subpixel precision. To demonstrate the effectiveness of our approach, experiments are run on real airborne LASIS data and our results are compared with those of the state-of-the-art approaches.

  11. MEMS-based silicon cantilevers with integrated electrothermal heaters for airborne ultrafine particle sensing

    NASA Astrophysics Data System (ADS)

    Wasisto, Hutomo Suryo; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin

    2013-05-01

    The development of low-cost and low-power MEMS-based cantilever sensors for possible application in hand-held airborne ultrafine particle monitors is described in this work. The proposed resonant sensors are realized by silicon bulk micromachining technology with electrothermal excitation, piezoresistive frequency readout, and electrostatic particle collection elements integrated and constructed in the same sensor fabrication process step of boron diffusion. Built-in heating resistor and full Wheatstone bridge are set close to the cantilever clamp end for effective excitation and sensing, respectively, of beam deflection. Meanwhile, the particle collection electrode is located at the cantilever free end. A 300 μm-thick, phosphorus-doped silicon bulk wafer is used instead of silicon-on-insulator (SOI) as the starting material for the sensors to reduce the fabrication costs. To etch and release the cantilevers from the substrate, inductively coupled plasma (ICP) cryogenic dry etching is utilized. By controlling the etching parameters (e.g., temperature, oxygen content, and duration), cantilever structures with thicknesses down to 10 - 20 μm are yielded. In the sensor characterization, the heating resistor is heated and generating thermal waves which induce thermal expansion and further cause mechanical bending strain in the out-of-plane direction. A resonant frequency of 114.08 +/- 0.04 kHz and a quality factor of 1302 +/- 267 are measured in air for a fabricated rectangular cantilever (500x100x13.5 μm3). Owing to its low power consumption of a few milliwatts, this electrothermal cantilever is suitable for replacing the current external piezoelectric stack actuator in the next generation of the miniaturized cantilever-based nanoparticle detector (CANTOR).

  12. Evaluation of Operational Procedures for Using a Time-Based Airborne Inter-arrival Spacing Tool

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa M.; Lohr, Gary W.; Abbott, Terence S.; Eischeid, Todd M.

    2002-01-01

    An airborne tool has been developed based on the concept of an aircraft maintaining a time-based spacing interval from the preceding aircraft. The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast (ADS-B) aircraft state data to compute a speed command for the ATAAS-equipped aircraft to obtain a required time interval behind another aircraft. The tool and candidate operational procedures were tested in a high-fidelity, full mission simulator with active airline subject pilots flying an arrival scenario using three different modes for speed control. The objectives of this study were to validate the results of a prior Monte Carlo analysis of the ATAAS algorithm and to evaluate the concept from the standpoint of pilot acceptability and workload. Results showed that the aircraft was able to consistently achieve the target spacing interval within one second (the equivalent of approximately 220 ft at a final approach speed of 130 kt) when the ATAAS speed guidance was autothrottle-coupled, and a slightly greater (4-5 seconds), but consistent interval with the pilot-controlled speed modes. The subject pilots generally rated the workload level with the ATAAS procedure as similar to that with standard procedures, and also rated most aspects of the procedure high in terms of acceptability. Although pilots indicated that the head-down time was higher with ATAAS, the acceptability of head-down time was rated high. Oculometer data indicated slight changes in instrument scan patterns, but no significant change in the amount of time spent looking out the window between the ATAAS procedure versus standard procedures.

  13. Oil Spill Detection along the Gulf of Mexico Coastline based on Airborne Imaging Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Arslan, M. D.; Filippi, A. M.; Guneralp, I.

    2013-12-01

    The Deepwater Horizon oil spill in the Gulf of Mexico between April and July 2010 demonstrated the importance of synoptic oil-spill monitoring in coastal environments via remote-sensing methods. This study focuses on terrestrial oil-spill detection and thickness estimation based on hyperspectral images acquired along the coastline of the Gulf of Mexico. We use AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) imaging spectrometer data collected over Bay Jimmy and Wilkinson Bay within Barataria Bay, Louisiana, USA during September 2010. We also employ field-based observations of the degree of oil accumulation along the coastline, as well as in situ measurements from the literature. As part of our proposed spectroscopic approach, we operate on atmospherically- and geometrically-corrected hyperspectral AVIRIS data to extract image-derived endmembers via Minimum Noise Fraction transform, Pixel Purity Index-generation, and n-dimensional visualization. Extracted endmembers are then used as input to endmember-mapping algorithms to yield fractional-abundance images and crisp classification images. We also employ Multiple Endmember Spectral Mixture Analysis (MESMA) for oil detection and mapping in order to enable the number and types of endmembers to vary on a per-pixel basis, in contast to simple Spectral Mixture Analysis (SMA). MESMA thus better allows accounting for spectral variabiltiy of oil (e.g., due to varying oil thicknesses, states of degradation, and the presence of different oil types, etc.) and other materials, including soils and salt marsh vegetation of varying types, which may or may not be affected by the oil spill. A decision-tree approach is also utilized for comparison. Classification results do indicate that MESMA provides advantageous capabilities for mapping several oil-thickness classes for affected vegetation and soils along the Gulf of Mexico coastline, relative to the conventional approaches tested. Oil thickness-mapping results from MESMA

  14. A comparison of airborne and ground-based radar observations with rain gages during the CaPE experiment

    NASA Technical Reports Server (NTRS)

    Satake, Makoto; Short, David A.; Iguchi, Toshio

    1992-01-01

    The vicinity of KSC, where the primary ground truth site of the Tropical Rainfall Measuring Mission (TRMM) program is located, was the focal point of the Convection and Precipitation/Electrification (CaPE) experiment in Jul. and Aug. 1991. In addition to several specialized radars, local coverage was provided by the C-band (5 cm) radar at Patrick AFB. Point measurements of rain rate were provided by tipping bucket rain gage networks. Besides these ground-based activities, airborne radar measurements with X- and Ka-band nadir-looking radars on board an aircraft were also recorded. A unique combination data set of airborne radar observations with ground-based observations was obtained in the summer convective rain regime of central Florida. We present a comparison of these data intending a preliminary validation. A convective rain event was observed simultaneously by all three instrument types on the evening of 27 Jul. 1991. The high resolution aircraft radar was flown over convective cells with tops exceeding 10 km and observed reflectivities of 40 to 50 dBZ at 4 to 5 km altitude, while the low resolution surface radar observed 35 to 55 dBZ echoes and a rain gage indicated maximum surface rain rates exceeding 100 mm/hr. The height profile of reflectivity measured with the airborne radar show an attenuation of 6.5 dB/km (two way) for X-band, corresponding to a rainfall rate of 95 mm/hr.

  15. A comparison of airborne and ground-based radar observations with rain gages during the CaPE experiment

    NASA Technical Reports Server (NTRS)

    Satake, Makoto; Short, David A.; Iguchi, Toshio

    1992-01-01

    The vicinity of KSC, where the primary ground truth site of the Tropical Rainfall Measuring Mission (TRMM) program is located, was the focal point of the Convection and Precipitation/Electrification (CaPE) experiment in July and Aug. 1991. In addition to several specialized radars, local coverage was provided by the C-band (5 cm) radar at Patrick AFB. Point measurements of rain rate were provided by tipping bucket rain gage networks. Besides these ground-based activities, airborne radar measurements with X- and Ka-band nadir-looking radars on board an aircraft were also recorded. A unique combination data set of airborne radar observations with ground-based observations was obtained in the summer convective rain regime of central Florida. We present a comparison of these data intending a preliminary validation. A convective rain event was observed simultaneously by all three instrument types on the evening of 27 July 1991. The high resolution aircraft radar was flown over convective cells with tops exceeding 10 km and observed reflectivities of 40 to 50 dBZ at 4 to 5 km altitude, while the low resolution surface radar observed 35 to 55 dBZ echoes and a rain gage indicated maximum surface rain rates exceeding 100 mm/hr. The height profile of reflectivity measured with the airborne radar show an attenuation of 6.5 dB/km (two way) for X-band, corresponding to a rainfall rate of 95 mm/hr.

  16. An oil film information retrieval method overcoming the influence of sun glitter, based on AISA+ airborne hyper-spectral image

    NASA Astrophysics Data System (ADS)

    Zhan, Yuanzeng; Mao, Tianming; Gong, Fang; Wang, Difeng; Chen, Jianyu

    2010-10-01

    As an effective survey tool for oil spill detection, the airborne hyper-spectral sensor affords the potentiality for retrieving the quantitative information of oil slick which is useful for the cleanup of spilled oil. But many airborne hyper-spectral images are affected by sun glitter which distorts radiance values and spectral ratios used for oil slick detection. In 2005, there's an oil spill event leaking at oil drilling platform in The South China Sea, and an AISA+ airborne hyper-spectral image recorded this event will be selected for studying in this paper, which is affected by sun glitter terribly. Through a spectrum analysis of the oil and water samples, two features -- "spectral rotation" and "a pair of fixed points" can be found in spectral curves between crude oil film and water. Base on these features, an oil film information retrieval method which can overcome the influence of sun glitter is presented. Firstly, the radiance of the image is converted to normal apparent reflectance (NormAR). Then, based on the features of "spectral rotation" (used for distinguishing oil film and water) and "a pair of fixed points" (used for overcoming the effect of sun glitter), NormAR894/NormAR516 is selected as an indicator of oil film. Finally, by using a threshold combined with the technologies of image filter and mathematic morphology, the distribution and relative thickness of oil film are retrieved.

  17. Designing Web-Based Science Lesson Plans That Use Problem-Based Learning To Inspire Middle School Kids: KaAMS (Kids as Airborne Mission Scientists).

    ERIC Educational Resources Information Center

    Koszalka, Tiffany A.; Grabowski, Barbara; Kim, Younghoon

    Problem-based learning (PBL) has great potential for inspiring K-12 learning. KaAMS (Kids as Airborne Mission Scientists), an example of PBL, was designed to help teachers inspire middle school students to learning science, math, technology, and geography. The children participate as scientists investigating environmental problems using NASA…

  18. Microparticles as potential biomarkers of cardiovascular disease.

    PubMed

    França, Carolina Nunes; Izar, Maria Cristina de Oliveira; Amaral, Jônatas Bussador do; Tegani, Daniela Melo; Fonseca, Francisco Antonio Helfenstein

    2015-02-01

    Primary prevention of cardiovascular disease is a choice of great relevance because of its impact on health. Some biomarkers, such as microparticles derived from different cell populations, have been considered useful in the assessment of cardiovascular disease. Microparticles are released by the membrane structures of different cell types upon activation or apoptosis, and are present in the plasma of healthy individuals (in levels considered physiological) and in patients with different pathologies. Many studies have suggested an association between microparticles and different pathological conditions, mainly the relationship with the development of cardiovascular diseases. Moreover, the effects of different lipid-lowering therapies have been described in regard to measurement of microparticles. The studies are still controversial regarding the levels of microparticles that can be considered pathological. In addition, the methodologies used still vary, suggesting the need for standardization of the different protocols applied, aiming at using microparticles as biomarkers in clinical practice. PMID:25626759

  19. Method for determining surface properties of microparticles

    DOEpatents

    Eisenthal, Kenneth B.

    2000-01-01

    Second harmonic generation (SHG), sum frequency generation (SFG) and difference frequency generation (DFG) can be used for surface analysis or characterization of microparticles having a non-metallic surface feature. The microparticles can be centrosymmetric or such that non-metallic molecules of interest are centrosymmetrically distributed inside and outside the microparticles but not at the surface of the microparticles where the asymmetry aligns the molecules. The signal is quadratic in incident laser intensity or proportional to the product of two incident laser intensities for SFG, it is sharply peaked at the second harmonic wavelength, quadratic in the density of molecules adsorbed onto the microparticle surface, and linear in microparticles density. In medical or pharmacological applications, molecules of interest may be of drugs or toxins, for example.

  20. In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications.

    PubMed

    Mori, Michela; Almeida, Patrick V; Cola, Michela; Anselmi, Giulia; Mäkilä, Ermei; Correia, Alexandra; Salonen, Jarno; Hirvonen, Jouni; Caramella, Carla; Santos, Hélder A

    2014-11-01

    The wound healing stands as very complex and dynamic process, aiming the re-establishment of the damaged tissue's integrity and functionality. Thus, there is an emerging need for developing biopolymer-based composites capable of actively promoting cellular proliferation and reconstituting the extracellular matrix. The aims of the present work were to prepare and characterize biopolymer-functionalized porous silicon (PSi) microparticles, resulting in the development of drug delivery microsystems for future applications in wound healing. Thermally hydrocarbonized PSi (THCPSi) microparticles were coated with both chitosan and a mixture of chondroitin sulfate/hyaluronic acid, and subsequently loaded with two antibacterial model drugs, vancomycin and resveratrol. The biopolymer coating, drug loading degree and drug release behavior of the modified PSi microparticles were evaluated in vitro. The results showed that both the biopolymer coating and drug loading of the THCPSi microparticles were successfully achieved. In addition, a sustained release was observed for both the drugs tested. The viability and proliferation profiles of a fibroblast cell line exposed to the modified THCPSi microparticles and the subsequent reactive oxygen species (ROS) production were also evaluated. The cytotoxicity and proliferation results demonstrated less toxicity for the biopolymer-coated THCPSi microparticles at different concentrations and time points comparatively to the uncoated counterparts. The ROS production by the fibroblasts exposed to both uncoated and biopolymer-coated PSi microparticles showed that the modified PSi microparticles did not induce significant ROS production at the concentrations tested. Overall, the biopolymer-based PSi microparticles developed in this study are promising platforms for wound healing applications. PMID:25305585

  1. Tunneling holes in microparticles to facilitate the transport of lithium ions for high volumetric density batteries.

    PubMed

    Zhu, Jian; Ng, K Y Simon; Deng, Da

    2015-09-14

    Microscale materials generally have a higher tap density than that of random nanoparticles. Therefore, microparticles have been attracting much attention for application as high volumetric density electrodes for lithium ion batteries. However, microparticles have much longer electrolyte diffusion and Li-ion migration length and less accessibility to the electrolyte than that of nanoparticles. Therefore, it will be interesting to tunnel-holes in the high volumetric density microparticles to facilitate the reversible storage of lithium ions. Here, tunnel-like holes were generated in microparticles to dramatically increase the accessibility of the active materials to facilitate the lithium ion transfer. A plausible formation mechanism to explain the generation of tunnel-like holes was proposed based on time-course experiments and intensive characterization. Impressively, the as-prepared microbeads with tunnels demonstrated dramatically improved performance compared to the solid microbeads without tunnels in lithium ion storage. The microparticles with tunnels could achieve comparable electrochemical performances to those nanoparticles reported in the literature, suggesting that microparticles, properly tuned, could be promising candidates as negative electrodes for lithium-ion batteries and worthy of further studies. We also directly measured the volumetric density of the microparticles. We would like to highlight that a superior volumetric capacity of 514 mA h cm(-3) has been achieved. We hope to promote more frequent use of the unit mA h cm(-3) in addition to the conventional unit mA h g(-1) in the battery community. PMID:26247159

  2. Polylactide-co-glycolide microparticles with surface adsorbed antigens as vaccine delivery systems.

    PubMed

    Singh, Manmohan; Kazzaz, Jina; Ugozzoli, Mildred; Malyala, Padma; Chesko, James; O'Hagan, Derek T

    2006-01-01

    Several groups have shown that vaccine antigens can be encapsulated within polymeric microparticles and can serve as potent antigen delivery systems. We have recently shown that an alternative approach involving charged polylactide co-glycolide (PLG) microparticles with surface adsorbed antigen(s) can also be used to deliver antigen into antigen presenting cell (APC). We have described the preparation of cationic and anionic PLG microparticles which have been used to adsorb a variety of agents, which include plasmid DNA, recombinant proteins and adjuvant active oligonucleotides. These PLG microparticles were prepared using a w/o/w solvent evaporation process in the presence of the anionic surfactants, including DSS (dioctyl sodium sulfosuccinate) or cationic surfactants, including CTAB (hexadecyl trimethyl ammonium bromide). Antigen binding to the charged PLG microparticles was influenced by several factors including electrostatic and hydrophobic interactions. These microparticle based formulations resulted in the induction of significantly enhanced immune responses in comparison to alum. The surface adsorbed microparticle formulation offers an alternative and novel way of delivering antigens in a vaccine formulation. PMID:16472100

  3. Dielectrophoresis of graded microparticles in suspensions

    NASA Astrophysics Data System (ADS)

    Lei, Dong; Ji-Ping, Huang; Wah, Yu Kin; Q, Gu G.

    2003-03-01

    Dielectrophoresis of graded microparticles in suspensions L. Dong, J. P. Huang, K. W. Yu and G. Q. Gu Department of Physics, The Chinese University of Hong Kong Shatin, NT, HK. Dielectrophoresis is an AC electrokinetic phenomenon that employs the difference in the electric polarizability of microparticles and the suspending media. Under the action of an external electric field, these particles polarize, and experience a force in a nonuniform field. The degree of polarizability can depend on the frequency of the applied AC field. In this work, we consider graded spherical particles in which the material properties can vary continuously in space. These inhomogeneous particles can be more useful and interesting than the homogeneous inclusions. A new theory has been established to study the effective properties of graded composite materials under externally applied field, namely, the differential effective dipole approximation (DEDA). The theory has been applied to two model dielectric profiles, namely, the power-law and linear profiles. Moreover, we have shown that these profiles actually admit exact solutions for the local electric field. We have compared the DEDA results with the exact results for the two model profiles and the agreement is excellent. Based on the DEDA, we investigate the DEP spectrum of a colloidal suspension of graded spherical particles, and compare the results with the DEP spectrum derived from the homogeneous particles.

  4. Review: the Multiple Roles of Monocytic Microparticles.

    PubMed

    Halim, Ahmad Tarmizi Abdul; Ariffin, Nur Azrah Fazera Mohd; Azlan, Maryam

    2016-08-01

    Monocytic microparticles (mMP) are microparticles derived from human monocytes either under in vivo or in vitro conditions. The size of mMP is between 0.1 and 1.0 μm. Apart from the size range, mMPs are also identified based on phosphatidylserine and CD14 expression on their surface, though this is not always the case. Monocytic MP are critical players in inflammation, endothelial cell function, and blood coagulation. They exhibit dual function by either helping the progression of such conditions or limiting it, depending on certain factors. Furthermore, the numbers of mMP are elevated in some autoimmune diseases, infectious diseases, and metabolic disorders. However, it is unknown whether mMP play an active role in these diseases or are simply biomarkers. The mechanism of mMP modulation is yet to be identified. In this review, we highlight the mechanism of mMP formation and the roles that they play in inflammation, blood coagulation, and different disease settings. PMID:27216803

  5. Model-based sensor rendering for a DIS multisensor airborne surveillance platform

    NASA Astrophysics Data System (ADS)

    Roberts, John D.; Santapietro, John J.

    1997-07-01

    This paper reports on the continuing development of a DIS- compliant model for an airborne platform carrying a multisensor payload. This payload consists of a moving target indicator (MTI) radar, a cooperative battlefield combat identification system (BCIS), and imaging sensors. The imaging sensors are a synthetic aperture radar (SAR) and a forward looking infrared (FLIR) imager. The entire platform model is an extension to the ModSAF environment. The sensor model code is fully portable and integrated as ModSAF libraries. Relevant emission protocol data units (PDU) are generated and transmitted. The overall simulation architecture and the MTI and BCIS models have been described in detail elsewhere. The current work concentrates on the development of real-time model-based imaging functions. The software tools which provide this capability are available both in the government- owned inventory and as commercial products. The purpose of the current activity is to investigate the feasibility of integrating software of this kind with the ModSAF environment in order to produce realistic target/scene rendering similar to those obtained by high-resolution imaging sensors. To this end, we investigated real-time scene generation using two approaches. The first, through integration of the IRMA software package developed and distributed by the USAF Wright Laboratories, Eglin AFB, and the second is by use of the commercial software package SensorVisionTM, which is marketed and distributed by Paradigm Solutions, Inc. Both of these produce scene renderings in user specified wavebands by combining entity state PDU information with terrain data. The scene model information is passed to rendering software to produce an IR or SAR rendering of the scene.

  6. Gravity for Detecting Caves: Airborne and Terrestrial Simulations Based on a Comprehensive Karstic Cave Benchmark

    NASA Astrophysics Data System (ADS)

    Braitenberg, Carla; Sampietro, Daniele; Pivetta, Tommaso; Zuliani, David; Barbagallo, Alfio; Fabris, Paolo; Rossi, Lorenzo; Fabbri, Julius; Mansi, Ahmed Hamdi

    2016-04-01

    Underground caves bear a natural hazard due to their possible evolution into a sink hole. Mapping of all existing caves could be useful for general civil usages as natural deposits or tourism and sports. Natural caves exist globally and are typical in karst areas. We investigate the resolution power of modern gravity campaigns to systematically detect all void caves of a minimum size in a given area. Both aerogravity and terrestrial acquisitions are considered. Positioning of the gravity station is fastest with GNSS methods the performance of which is investigated. The estimates are based on a benchmark cave of which the geometry is known precisely through a laser-scan survey. The cave is the Grotta Gigante cave in NE Italy in the classic karst. The gravity acquisition is discussed, where heights have been acquired with dual-frequency geodetic GNSS receivers and Total Station. Height acquisitions with non-geodetic low-cost receivers are shown to be useful, although the error on the gravity field is larger. The cave produces a signal of -1.5 × 10-5 m/s2, with a clear elliptic geometry. We analyze feasibility of airborne gravity acquisitions for the purpose of systematically mapping void caves. It is found that observations from fixed wing aircraft cannot resolve the caves, but observations from slower and low-flying helicopters or drones do. In order to detect the presence of caves the size of the benchmark cave, systematic terrestrial acquisitions require a density of three stations on square 500 by 500 m2 tiles. The question has a large impact on civil and environmental purposes, since it will allow planning of urban development at a safe distance from subsurface caves. The survey shows that a systematic coverage of the karst would have the benefit to recover the position of all of the greater existing void caves.

  7. Single immunization with a suboptimal antigen dose encapsulated into polyanhydride microparticles promotes high titer and avid antibody responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microparticle adjuvants based on biodegradable polyanhydrides were used to provide controlled delivery of a model antigen, ovalbumin (Ova), to mice. Ova was encapsulated into two different polyanhydride microparticle formulations to evaluate the influence of polymer chemistry on the nature and magn...

  8. Semi-physical Simulation of the Airborne InSAR based on Rigorous Geometric Model and Real Navigation Data

    NASA Astrophysics Data System (ADS)

    Changyong, Dou; Huadong, Guo; Chunming, Han; yuquan, Liu; Xijuan, Yue; Yinghui, Zhao

    2014-03-01

    Raw signal simulation is a useful tool for the system design, mission planning, processing algorithm testing, and inversion algorithm design of Synthetic Aperture Radar (SAR). Due to the wide and high frequent variation of aircraft's trajectory and attitude, and the low accuracy of the Position and Orientation System (POS)'s recording data, it's difficult to quantitatively study the sensitivity of the key parameters, i.e., the baseline length and inclination, absolute phase and the orientation of the antennas etc., of the airborne Interferometric SAR (InSAR) system, resulting in challenges for its applications. Furthermore, the imprecise estimation of the installation offset between the Global Positioning System (GPS), Inertial Measurement Unit (IMU) and the InSAR antennas compounds the issue. An airborne interferometric SAR (InSAR) simulation based on the rigorous geometric model and real navigation data is proposed in this paper, providing a way for quantitatively studying the key parameters and for evaluating the effect from the parameters on the applications of airborne InSAR, as photogrammetric mapping, high-resolution Digital Elevation Model (DEM) generation, and surface deformation by Differential InSAR technology, etc. The simulation can also provide reference for the optimal design of the InSAR system and the improvement of InSAR data processing technologies such as motion compensation, imaging, image co-registration, and application parameter retrieval, etc.

  9. Example of the assessment of data integration accuracy on the base of airborne and terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Warchoł, A.; Hejmanowska, B.

    2011-12-01

    Light detection and ranging (LiDAR) technology has changed conventional approach to the spatial data acquisition. Unusually amount of the measurements points with extremely high precision are now available from generally two platforms: airborne (Airborne Laser Scanner -ALS) and terrestrial (Terrestrial Laser Scanner -TLS). There are however some gaps in these products, in ALS -on vertical surfaces and in TLS -on horizontal one. The reason is that these laser systems register the same object from different points in space. Integration of the data obtained for airborne and terrestrial platforms can fulfill the gaps. The aim of the research presented in the paper was comparing the matched ALS and TLS data to the in-situ total station (TS) measurements. Different test areas were chosen: placed on horizontal, vertical or inclined surfaces and covered by grass or asphalt pavement. Point's positions obtained from ALS, TLS and TS measurements are analysed together. TS measurements are taken as a reference. ALS and TLS point position accuracy analysis based on these perpendicular distance from the plane defined by the nearest three non-collinear TS points. The discrepancies were further statistically analysed. In conclusion can be stated that some bias was observed in ALS data, they are below TLS and TS points as well. Besides more significant discrepancy between TS points are observed for ALS points in compare to the TLS one, confirming our expectations.

  10. Overview of the first Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment: conversion of a ground-based lidar for airborne applications

    NASA Astrophysics Data System (ADS)

    Howell, James N.; Hardesty, R. Michael; Rothermel, Jeffrey; Menzies, Robert T.

    1996-11-01

    The first Multi center Airborne Coherent Atmospheric Wind Sensor (MACAWS) field experiment demonstrated an airborne high energy TEA CO2 Doppler lidar system for measurement of atmospheric wind fields and aerosol structure. The system was deployed on the NASA DC-8 during September 1995 in a series of checkout flights to observe several important atmospheric phenomena, including upper level winds in a Pacific hurricane, marine boundary layer winds, cirrus cloud properties, and land-sea breeze structure. The instrument, with its capability to measure 3D winds and backscatter fields, promises to be a valuable tool for climate and global change, severe weather, and air quality research. In this paper, we describe the airborne instrument, assess its performance, discuss future improvements, and show some preliminary results from the September experiments.

  11. Mobilizing community-based health insurance to enhance awareness & prevention of airborne, vector-borne & waterborne diseases in rural India

    PubMed Central

    Panda, Pradeep; Chakraborty, Arpita; Dror, David M.

    2015-01-01

    Background & objectives: Despite remarkable progress in airborne, vector-borne and waterborne diseases in India, the morbidity associated with these diseases is still high. Many of these diseases are controllable through awareness and preventive practice. This study was an attempt to evaluate the effectiveness of a preventive care awareness campaign in enhancing knowledge related with airborne, vector-borne and waterborne diseases, carried out in 2011 in three rural communities in India (Pratapgarh and Kanpur-Dehat in Uttar Pradesh and Vaishali in Bihar). Methods: Data for this analysis were collected from two surveys, one done before the campaign and the other after it, each of 300 randomly selected households drawn from a larger sample of Self-Help Groups (SHGs) members invited to join community-based health insurance (CBHI) schemes. Results: The results showed a significant increase both in awareness (34%, p<0.001) and in preventive practices (48%, P=0.001), suggesting that the awareness campaign was effective. However, average practice scores (0.31) were substantially lower than average awareness scores (0.47), even in post-campaign. Awareness and preventive practices were less prevalent in vector-borne diseases than in airborne and waterborne diseases. Education was positively associated with both awareness and practice scores. The awareness scores were positive and significant determinants of the practice scores, both in the pre- and in the post-campaign results. Affiliation to CBHI had significant positive influence on awareness and on practice scores in the post-campaign period. Interpretation & conclusions: The results suggest that well-crafted health educational campaigns can be effective in raising awareness and promoting health-enhancing practices in resource-poor settings. It also confirms that CBHI can serve as a platform to enhance awareness to risks of exposure to airborne, vector-borne and waterborne diseases, and encourage preventive practices

  12. Comparison of different detection methods for citrus greening disease based on airborne multispectral and hyperspectral imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus greening or Huanglongbing (HLB) is a devastating disease spread in many citrus groves since first found in 2005 in Florida. Multispectral (MS) and hyperspectral (HS) airborne images of citrus groves in Florida were taken to detect citrus greening infected trees in 2007 and 2010. Ground truthi...

  13. Image-Based Airborne LiDAR Point Cloud Encoding for 3d Building Model Retrieval

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chen; Lin, Chao-Hung

    2016-06-01

    With the development of Web 2.0 and cyber city modeling, an increasing number of 3D models have been available on web-based model-sharing platforms with many applications such as navigation, urban planning, and virtual reality. Based on the concept of data reuse, a 3D model retrieval system is proposed to retrieve building models similar to a user-specified query. The basic idea behind this system is to reuse these existing 3D building models instead of reconstruction from point clouds. To efficiently retrieve models, the models in databases are compactly encoded by using a shape descriptor generally. However, most of the geometric descriptors in related works are applied to polygonal models. In this study, the input query of the model retrieval system is a point cloud acquired by Light Detection and Ranging (LiDAR) systems because of the efficient scene scanning and spatial information collection. Using Point clouds with sparse, noisy, and incomplete sampling as input queries is more difficult than that by using 3D models. Because that the building roof is more informative than other parts in the airborne LiDAR point cloud, an image-based approach is proposed to encode both point clouds from input queries and 3D models in databases. The main goal of data encoding is that the models in the database and input point clouds can be consistently encoded. Firstly, top-view depth images of buildings are generated to represent the geometry surface of a building roof. Secondly, geometric features are extracted from depth images based on height, edge and plane of building. Finally, descriptors can be extracted by spatial histograms and used in 3D model retrieval system. For data retrieval, the models are retrieved by matching the encoding coefficients of point clouds and building models. In experiments, a database including about 900,000 3D models collected from the Internet is used for evaluation of data retrieval. The results of the proposed method show a clear superiority

  14. Preliminary investigation on the design of biodegradable microparticles for ivermectin delivery: set up of formulation parameters.

    PubMed

    Dorati, Rosella; Genta, Ida; Colzani, Barbara; Tripodo, Giuseppe; Conti, Bice

    2015-01-01

    The aim was to design sterile biodegradable microparticulate drug delivery systems based on poly(dl-lactide) (PLA) and poly(ε-caprolactone) (PCL) and containing ivermectin (IVM), an antiparasitic drug, for subcutaneous administration in dogs. The drug delivery system should: (i) ensure a full 12-month protection upon single dose administration; (ii) be safe with particular attention regarding IVM dosage and its release, in order to prevent over dosage side effects. This preliminary work involves: polymer selection, evaluation of the effects of γ-irradiation on the polymers and IVM, investigation and set up of suitable microparticle preparation process and parameters, IVM-loaded microparticles in vitro release evaluation. Results of gel permeation chromatography analysis on the irradiated polymers and IVM mixtures showed that combination of IVM with the antioxidant α-tocopherol (TCP) reduces the damage extent induced by irradiation treatment, independently on the polymer type. Solvent evaporation process was successfully used for the preparation of PLA microparticles and appropriately modified; it was recognized as suitable for the preparation of PCL microparticles. Good process yields were achieved ranging from 76.08% to 94.72%; encapsulation efficiency was between 85.76% and 91.25%, independently from the polymer used. The type of polymer and the consequent preparation process parameters affected microparticle size that was bigger for PCL microparticles (480-800 µm) and solvent residual that was >500 ppm for PLA microparticles. In vitro release test showed significantly faster IVM release rates from PCL microparticles, with respect to PLA microparticles, suggesting that a combination of the polymers could be used to obtain the suitable drug release rate. PMID:24994001

  15. Electrostatically self-assembled biodegradable microparticles from pseudoproteins and polysaccharide: fabrication, characterization, and biological properties.

    PubMed

    Potuck, Alicia N; Weed, Beth L; Leifer, Cynthia A; Chu, C C

    2015-02-01

    Electrostatically self-assembling hybrid microparticles derived from novel cationic unsaturated arginine-based poly(ester amide) polymers (UArg-PEA) and anionic hyaluronic acid (HA) were fabricated into sub-micron-sized particles in aqueous medium with subsequent UV crosslinking treatment to stabilize the structure. These hybrid microparticles were characterized for size, charge, viscosity, chemical structure, morphology, and biological properties. Depending on the feed ratio of cationic UArg-PEA to anionic HA, the crosslinked microparticles formed spherical structures of 0.772-22.08 μm in diameter, whereas the uncrosslinked microparticles formed a core with an outer petal-like structure of 2.49-15 μm in diameter. It was discovered that the morphological structure of the self-assembled microparticles had a profound influence on their biological properties. At a 1:1 feed ratio of UArg-PEA to HA, the uncrosslinked microparticles showed no cytotoxicity toward NIH 3T3 fibroblasts at concentrations up to 20 μg/mL, and the crosslinked particles exhibited no cytotoxicity at concentrations up to 10 μg/mL. The UArg-PEA/HA hybrid microparticles exhibited a significantly lower macrophage-induced proinflammatory response (via TNF-α) than that from a pure hyaluronic acid control while retaining the beneficial anti-inflammatory IL-10 production by HA. The UArg-PEA/HA microparticles also stimulated size-dependent induction of arginase activity. Therefore, self-assembling these two types of biomaterials in a favorable nontoxic aqueous environment, having complementary biological properties like those of the currently reported UArg-PEA/HA hybrid microparticles, may provide a new class of biomaterials to improve the overall tissue microenvironment for promoting wound healing. PMID:25531946

  16. Resonant propulsion of a microparticle by a surface wave

    NASA Astrophysics Data System (ADS)

    Maslov, A. V.; Astratov, V. N.; Bakunov, M. I.

    2013-05-01

    We investigate the electromagnetic force experienced by a microparticle supporting high-quality whispering gallery modes that are excited by a surface wave. Our theoretical approach is based on an analytical representation of the solution of the scattering problem with a subsequent numerical treatment. It accounts rigorously for the interaction of the microparticle with the waveguiding surface and allows us to establish the balances of electromagnetic power and momentum flow for the system. We show that the resonant excitation of the whispering gallery modes and suppression of the transmitted surface wave lead to an almost complete transformation of the momentum flow of the initial surface wave into the propelling force on the microparticle. The validation of the momentum balance justifies the definition of the momentum flow of the surface wave as the ratio of carried power and phase velocity. A simple approximate relation between the propelling force and the power of the transmitted surface wave is also introduced. The transverse force can be either attractive or repulsive depending on the particle-to-surface distance, particle size, and operating frequencies, and it can significantly exceed the value of the propelling force. A comparison with a microparticle excited by a plane wave is also included.

  17. Validation of Distributed Soil Moisture: Airborne Polarimetric SAR vs. Ground-based Sensor Networks

    NASA Astrophysics Data System (ADS)

    Jagdhuber, T.; Kohling, M.; Hajnsek, I.; Montzka, C.; Papathanassiou, K. P.

    2012-04-01

    The knowledge of spatially distributed soil moisture is highly desirable for an enhanced hydrological modeling in terms of flood prevention and for yield optimization in combination with precision farming. Especially in mid-latitudes, the growing agricultural vegetation results in an increasing soil coverage along the crop cycle. For a remote sensing approach, this vegetation influence has to be separated from the soil contribution within the resolution cell to extract the actual soil moisture. Therefore a hybrid decomposition was developed for estimation of soil moisture under vegetation cover using fully polarimetric SAR data. The novel polarimetric decomposition combines a model-based decomposition, separating the volume component from the ground components, with an eigen-based decomposition of the two ground components into a surface and a dihedral scattering contribution. Hence, this hybrid decomposition, which is based on [1,2], establishes an innovative way to retrieve soil moisture under vegetation. The developed inversion algorithm for soil moisture under vegetation cover is applied on fully polarimetric data of the TERENO campaign, conducted in May and June 2011 for the Rur catchment within the Eifel/Lower Rhine Valley Observatory. The fully polarimetric SAR data were acquired in high spatial resolution (range: 1.92m, azimuth: 0.6m) by DLR's novel F-SAR sensor at L-band. The inverted soil moisture product from the airborne SAR data is validated with corresponding distributed ground measurements for a quality assessment of the developed algorithm. The in situ measurements were obtained on the one hand by mobile FDR probes from agricultural fields near the towns of Merzenhausen and Selhausen incorporating different crop types and on the other hand by distributed wireless sensor networks (SoilNet clusters) from a grassland test site (near the town of Rollesbroich) and from a forest stand (within the Wüstebach sub-catchment). Each SoilNet cluster

  18. Situational awareness sensor management of space-based EO/IR and airborne GMTI radar for road targets tracking

    NASA Astrophysics Data System (ADS)

    El-Fallah, A.; Zatezalo, A.; Mahler, R.; Mehra, R. K.; Pham, K.

    2010-04-01

    Dynamic sensor management of heterogeneous and distributed sensors presents a daunting theoretical and practical challenge. We present a Situational Awareness Sensor Management (SA-SM) algorithm for the tracking of ground targets moving on a road map. It is based on the previously developed information-theoretic Posterior Expected Number of Targets of Interest (PENTI) objective function, and utilizes combined measurements form an airborne GMTI radar, and a space-based EO/IR sensor. The resulting filtering methods and techniques are tested and evaluated. Different scan rates for the GMTI radar and the EO/IR sensor are evaluated and compared.

  19. Multiple-entity based classification of airborne laser scanning data in urban areas

    NASA Astrophysics Data System (ADS)

    Xu, S.; Vosselman, G.; Oude Elberink, S.

    2014-02-01

    There are two main challenges when it comes to classifying airborne laser scanning (ALS) data. The first challenge is to find suitable attributes to distinguish classes of interest. The second is to define proper entities to calculate the attributes. In most cases, efforts are made to find suitable attributes and less attention is paid to defining an entity. It is our hypothesis that, with the same defined attributes and classifier, accuracy will improve if multiple entities are used for classification. To verify this hypothesis, we propose a multiple-entity based classification method to classify seven classes: ground, water, vegetation, roof, wall, roof element, and undefined object. We also compared the performance of the multiple-entity based method to the single-entity based method. Features have been extracted, in most previous work, from a single entity in ALS data; either from a point or from grouped points. In our method, we extract features from three different entities: points, planar segments, and segments derived by mean shift. Features extracted from these entities are inputted into a four-step classification strategy. After ALS data are filtered into ground and non-ground points. Features generalised from planar segments are used to classify points into the following: water, ground, roof, vegetation, and undefined objects. This is followed by point-wise identification of the walls and roof elements using the contextual information of a building. During the contextual reasoning, the portion of the vegetation extending above the roofs is classified as a roof element. This portion of points is eventually re-segmented by the mean shift method and then reclassified. Five supervised classifiers are applied to classify the features extracted from planar segments and mean shift segments. The experiments demonstrate that a multiple-entity strategy achieves slightly higher overall accuracy and achieves much higher accuracy for vegetation, in comparison to the

  20. Formation of multilayered biopolymer microcapsules and microparticles in a multiphase microfluidic flow.

    PubMed

    Rondeau, Elisabeth; Cooper-White, Justin J

    2012-06-01

    This paper reports the development of a scalable continuous microfluidic-based method for the preparation of multilayered biopolymer microcapsules and microparticles, with a size range of 1 to 100 μm, in a single-layered polydimethylsiloxane-based device. This new approach has been utilised to produce polyethylene oxide (PEO)-based microparticles, layered with subsequent stage wise coatings of polylactide-based block copolymers and polyvinylpyrrolidone. The production process was shown to allow for on-chip encapsulation of protein and vitamin molecules in the biopolymer micro particles, without any further handling after collection from the device. We have studied the release profiles in the case of model molecules of distinctive molecular weights, namely, vitronectin, horse radish peroxidase, and vitamin B(12). We compared the release properties of the microparticles to those from macro-gels of the same materials prepared off-chip. The results indicated that the microparticles have definitively different molecular weight cut-off characteristics, likely due to a denser microstructure within the microparticles compared to the bulk hydrogels. This difference suggests that significant benefits may exist in the use of this method to produce layered biopolymer microparticles in achieving improved controlled release and encapsulation. PMID:22712036

  1. Biodiversity and concentrations of airborne fungi in large US office buildings from the BASE study

    NASA Astrophysics Data System (ADS)

    Tsai, Feng C.; Macher, Janet M.; Hung, Yun-Yi

    The Building Assessment Survey and Evaluation (BASE) study measured baseline concentrations of airborne fungi in 100 representative US office buildings in 1994-1998. Multiple samples for different sampling durations, sites, and times of the day were aggregated into building-wide indoor and outdoor average concentrations. Fungal concentrations were compared between locations (indoor vs. outdoor), sampling and analytical methods (culture vs. microscopy), and season (summer vs. winter). The arithmetic means (standard deviations) of the indoor/outdoor concentrations of culturable fungi and fungal spores were 100/680 (230/840) CFUm-3 and 270/6540 (1190/6780) sporem-3, respectively. Although fewer groups were observed indoors than outdoors, at lower average concentrations (except in two buildings), site-specific and building-wide indoor measurements had higher coefficients of variation. More groups were seen in summer, and aggregated concentrations tended to be higher than in winter except for culturable Aureobasidium spp. and Botrytis spp. outdoors and non-sporulating fungi in both locations. Rankings of the predominant fungi identified by both methods were similar, but overall indoor and outdoor spore concentrations were approximately 3 and 10 times higher, respectively, than concentrations of culturable fungi. In the 44 buildings with both measurements, the indoor and outdoor total culturable fungi to fungal spore ratios (total C/S ratios) were 1.27 and 0.25, with opposite seasonal patterns. The indoor C/S ratio was higher in summer than in winter (1.47 vs. 0.86; N=29 and 15, respectively), but the outdoor ratio was lower in summer (0.19 vs. 0.36, respectively). Comparison of the number of different fungal groups and individual occurrence in buildings and samples indicated that the outdoor environment and summer season were more diverse, but the proportional contributions of the groups were very similar suggesting that the indoor and outdoor environments were related

  2. Semi-automated based ground-truthing GUI for airborne imagery

    NASA Astrophysics Data System (ADS)

    Phan, Chung; Lydic, Rich; Moore, Tim; Trang, Anh; Agarwal, Sanjeev; Tiwari, Spandan

    2005-06-01

    Over the past several years, an enormous amount of airborne imagery consisting of various formats has been collected and will continue into the future to support airborne mine/minefield detection processes, improve algorithm development, and aid in imaging sensor development. The ground-truthing of imagery is a very essential part of the algorithm development process to help validate the detection performance of the sensor and improving algorithm techniques. The GUI (Graphical User Interface) called SemiTruth was developed using Matlab software incorporating signal processing, image processing, and statistics toolboxes to aid in ground-truthing imagery. The semi-automated ground-truthing GUI is made possible with the current data collection method, that is including UTM/GPS (Universal Transverse Mercator/Global Positioning System) coordinate measurements for the mine target and fiducial locations on the given minefield layout to support in identification of the targets on the raw imagery. This semi-automated ground-truthing effort has developed by the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD), Countermine Division, Airborne Application Branch with some support by the University of Missouri-Rolla.

  3. A Coordinated Ice-based and Airborne Snow and Ice Thickness Measurement Campaign on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Richter-Menge, J.; Farrell, S.; Elder, B. C.; Gardner, J. M.; Brozena, J. M.

    2011-12-01

    A rare opportunity presented itself in March 2011 when the Naval Research Laboratory (NRL) and NASA IceBridge teamed with scientists from the U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) to coordinate a multi-scale approach to mapping snow depth and sea ice thickness distribution in the Arctic. Ground-truth information for calibration/validation of airborne and CryoSat-2 satellite data were collected near a manned camp deployed in support of the US Navy's Ice Expedition 2011 (ICEX 2011). The ice camp was established at a location approximately 230 km north of Prudhoe Bay, Alaska, at the edge of the perennial ice zone. The suite of measurements was strategically organized around a 9-km-long survey line that covered a wide range of ice types, including refrozen leads, deformed and undeformed first year ice, and multiyear ice. A highly concentrated set of in situ measurements of snow depth and ice thickness were taken along the survey line. Once the survey line was in place, NASA IceBridge flew a dedicated mission along the survey line, collecting data with an instrument suite that included the Airborne Topographic Mapper (ATM), a high precision, airborne scanning laser altimeter; the Digital Mapping System (DMS), nadir-viewing digital camera; and the University of Kansas ultra-wideband Frequency Modulated Continuous Wave (FMCW) snow radar. NRL also flew a dedicated mission over the survey line with complementary airborne radar, laser and photogrammetric sensors (see Brozena et al., this session). These measurements were further leveraged by a series of CryoSat-2 under flights made in the region by the instrumented NRL and NASA planes, as well as US Navy submarine underpasses of the 9-km-long survey line to collect ice draft measurements. This comprehensive suite of data provides the full spectrum of sampling resolutions from satellite, to airborne, to ground-based, to submarine and will allow for a careful determination of

  4. Cell-derived microparticles and the lung.

    PubMed

    Nieri, Dario; Neri, Tommaso; Petrini, Silvia; Vagaggini, Barbara; Paggiaro, Pierluigi; Celi, Alessandro

    2016-09-01

    Cell-derived microparticles are small (0.1-1 μm) vesicles shed by most eukaryotic cells upon activation or during apoptosis. Microparticles carry on their surface, and enclose within their cytoplasm, molecules derived from the parental cell, including proteins, DNA, RNA, microRNA and phospholipids. Microparticles are now considered functional units that represent a disseminated storage pool of bioactive effectors and participate both in the maintenance of homeostasis and in the pathogenesis of diseases. The mechanisms involved in microparticle generation include intracellular calcium mobilisation, cytoskeleton rearrangement, kinase phosphorylation and activation of the nuclear factor-κB. The role of microparticles in blood coagulation and inflammation, including airway inflammation, is well established in in vitro and animal models. The role of microparticles in human pulmonary diseases, both as pathogenic determinants and biomarkers, is being actively investigated. Microparticles of endothelial origin, suggestive of apoptosis, have been demonstrated in the peripheral blood of patients with emphysema, lending support to the hypothesis that endothelial dysfunction and apoptosis are involved in the pathogenesis of the disease and represent a link with cardiovascular comorbidities. Microparticles also have potential roles in patients with asthma, diffuse parenchymal lung disease, thromboembolism, lung cancer and pulmonary arterial hypertension. PMID:27581826

  5. Functionalised alginate flow seeding microparticles for use in Particle Image Velocimetry (PIV).

    PubMed

    Varela, Sylvana; Balagué, Isaac; Sancho, Irene; Ertürk, Nihal; Ferrando, Montserrat; Vernet, Anton

    2016-01-01

    Alginate microparticles as flow seeding fulfil all the requirements that are recommended for the velocity measurements in Particle Image Velocimetry (PIV). These spherical microparticles offer the advantage of being environmentally friendly, having excellent seeding properties and they can be produced via a very simple process. In the present study, the performances of alginate microparticles functionalised with a fluorescent dye, Rhodamine B (RhB), for PIV have been studied. The efficacy of fluorescence is appreciated in a number of PIV applications since it can boost the signal-to-noise ratio. Alginate microparticles functionalised with RhB have high emission efficiency, desirable match with fluid density and controlled size. The study of the particles behaviour in strong acid and basic solutions and ammonia is also included. This type of particles can be used for measurements with PIV and Planar Laser Induced Fluorescence (PLIF) simultaneously, including acid-base reactions. PMID:26878165

  6. Serum Albumin-Alginate Microparticles Prepared by Transacylation: Relationship between Physicochemical, Structural and Functional Properties.

    PubMed

    Hadef, Imane; Rogé, Barbara; Edwards-Lévy, Florence

    2015-08-10

    Our laboratory develops a method of microencapsulation using a transacylation reaction in a water-in-oil (W/O) emulsion. The method is based on the creation of amide bonds between free amine functions of a protein (human serum albumin (HSA)) and ester groups of propylene glycol alginate (PGA) in the inner aqueous phase after alkalization. The aim of this work is to study the influence of physicochemical properties of HSA-PGA mixtures on microparticle characteristics. Microparticles were prepared varying the concentrations of PGA and HSA, then characterized (inner structure, size, swelling rate, release kinetics). PGA and each polymer mixture used in the microencapsulation procedure were examined in order to elucidate the mechanism of microstructure formation. It was found that the morphology and functional properties of HSA-alginate microparticles were related to the two polymer concentrations in the aqueous solution. Actually, the polymer concentration variations led to physicochemical changes, which affected the microparticle structure and functional properties. PMID:26121308

  7. Monitoring and Modeling Crop Health and Water Use via in-situ, Airborne and Space-based Platforms

    NASA Astrophysics Data System (ADS)

    McCabe, M. F.

    2014-12-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress, understanding the sustainable use of available water supplies is critical. Unfortunately, this need is all too often limited by a lack of reliable observations. Techniques that balance the demand for reliable ground-based data with the rapid retrieval of spatially distributed crop characteristics represent a needed line of research. Data from in-situ monitoring coupled with advances in satellite retrievals of key land surface variables, provide the information necessary to characterize many crop health and water use features, including evaporation, leaf-chlorophyll and other common vegetation indices. With developments in UAV and quadcopter solutions, the opportunity to bridge the spatio-temporal gap between satellite and ground based sensing now exists, along with the capacity for customized retrievals of crop information. While there remain challenges in the routine application of autonomous airborne systems, the state of current technology and sensor developments provide the capacity to explore the operational potential. While this presentation will focus on the multi-scale estimation of crop-water use and crop-health characteristics from satellite-based sensors, the retrieval of high resolution spatially distributed information from near-surface airborne and ground-based systems will also be examined.

  8. Capreomycin oleate microparticles for intramuscular administration: Preparation, in vitro release and preliminary in vivo evaluation.

    PubMed

    Cambronero-Rojas, Adrián; Torres-Vergara, Pablo; Godoy, Ricardo; von Plessing, Carlos; Sepúlveda, Jacqueline; Gómez-Gaete, Carolina

    2015-07-10

    Capreomycin sulfate (CS) is a second-line drug used for the treatment of multidrug-resistant tuberculosis (MDR-TB). The adverse effects profile and uncomfortable administration scheme of CS has led to the development of formulations based on liposomes and polymeric microparticles. However, as CS is a water-soluble peptide that does not encapsulate properly into hydrophobic particulate matrices, it was necessary to reduce its aqueous solubility by forming the pharmacologically active capreomycin oleate (CO) ion pair. The aim of this research was to develop a new formulation of CO for intramuscular injection, based on biodegradable microparticles that encapsulate CO in order to provide a controlled release of the drug with reduced local and systemic adverse effects. The CO-loaded microparticles prepared by spray drying or solvent emulsion-evaporation were characterized in their morphology, encapsulation efficiency, in vitro/in vivo kinetics and tissue tolerance. Through scanning electron microscopy it was confirmed that the microparticles were monodisperse and spherical, with an optimal size for intramuscular administration. The interaction between CO and the components of the microparticle matrix was confirmed on both formulations by X-ray powder diffraction and differential scanning calorimetry analyses. The encapsulation efficiencies for the spray-dried and emulsion-evaporation microparticles were 92% and 56%, respectively. The in vitro kinetics performed on both formulations demonstrated a controlled and continuous release of CO from the microparticles, which was successfully reproduced on an in vivo rodent model. The results of the histological analysis demonstrated that none of the formulations produced significant tissue damage on the site of injection. Therefore, the results suggest that injectable CO microparticles obtained by spray drying and solvent emulsion-evaporation could represent an interesting therapeutic alternative for the treatment of MDR

  9. Segmentation-based filtering and object-based feature extraction from airborne LiDAR point cloud data

    NASA Astrophysics Data System (ADS)

    Chang, Jie

    Three dimensional (3D) information about ground and above-ground features such as buildings and trees is important for many urban and environmental applications. Recent developments in Light Detection And Ranging (LiDAR) technology provide promising alternatives to conventional techniques for acquiring such information. The focus of this dissertation research is to effectively and efficiently filter massive airborne LiDAR point cloud data and to extract main above-ground features such as buildings and trees in the urban area. A novel segmentation algorithm for point cloud data, namely the 3D k mutual nearest neighborhood (kMNN) segmentation algorithm, was developed based on the improvement to the kMNN clustering algorithm by employing distances in 3D space to define mutual nearest neighborhoods. A set of optimization strategies, including dividing dataset into multiple blocks and small size grids, and using distance thresholds in x and y, were implemented to improve the efficiency of the segmentation algorithm. A segmentation based filtering method was then employed to filter the generated segments, which first generates segment boundaries using Voronoi polygon and dissolving operations, and then labels the segments as ground and above-ground based on their size and relative heights to the surrounding segments. An object-based feature extraction approach was also devised to extract buildings and trees from the above-ground segments based on object-level statistics derived, which were subject to a rule based classification system developed by either human experts or an inductive machine-learning algorithm. Case studies were conducted with four different LiDAR datasets to evaluate the effectiveness and efficiency of the proposed approaches. The proposed segmentation algorithm proved to be not only effective in separating ground and above-ground measurements into different segments, but also efficient in processing large datasets. The segmentation based filtering and

  10. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  11. Controlled release of an extract of Calendula officinalis flowers from a system based on the incorporation of gelatin-collagen microparticles into collagen I scaffolds: design and in vitro performance.

    PubMed

    Jiménez, Ronald A; Millán, Diana; Suesca, Edward; Sosnik, Alejandro; Fontanilla, Marta R

    2015-06-01

    Aiming to develop biological skin dresses with improved performance in the treatment of skin wounds, acellular collagen I scaffolds were modified with polymeric microparticles and the subsequent loading of a hydroglycolic extract of Calendula officinalis flowers. Microparticles made of gelatin-collagen were produced by a water-in-oil emulsion/cross-linking method. Thereafter, these microparticles were mixed with collagen suspensions at three increasing concentrations and the resulting mixtures lyophilized to make microparticle-loaded porous collagen scaffolds. Resistance to enzymatic degradation, ability to associate with the C. officinalis extract, and the extract release profile of the three gelatin-collagen microparticle-scaffold prototypes were assessed in vitro and compared to collagen scaffolds without microparticles used as control. Data indicated that the incorporation of gelatin-collagen microparticles increased the resistance of the scaffolds to in vitro enzymatic degradation, as well as their association with the C. officinalis flower extract. In addition, a sharp decrease in cytotoxicity, as well as more prolonged release of the extract, was attained. Overall results support the potential of these systems to develop innovative dermal substitutes with improved features. Furthermore, the gelatin-collagen mixture represents a low-cost and scalable alternative with high clinical transferability, especially appealing in developing countries. PMID:25787728

  12. Airborne Laser Scanning - based vegetation classification in grasslands: a feasibility study

    NASA Astrophysics Data System (ADS)

    Zlinszky, András; Vári, Ágnes; Deák, Balázs; Mücke, Werner; Székely, Balázs

    2013-04-01

    Airborne Laser Scanning is traditionally used for topography mapping, exploiting its ability to map terrain elevation under vegetation cover. Parallel to this, the application of ALS for vegetation classification and mapping of ecological variables is rapidly emerging. Point clouds surveyed by ALS provide accurate representations of vegetation structure and are therefore considered suitable for mapping vegetation classes as long as their vertical structure is characteristic. For this reason, most ALS-based vegetation mapping studies have been carried out in forests, with some rare applications for shrublands or tall grass vegetation such as reeds. The use of remote-sensing derived vegetation maps is widespread in ecological research and is also gaining importance in practical conservation. There is an increasing demand for reliable, high-resolution datasets covering large protected areas. ALS can provide both the coverage and the high resolution, and can prove to be an economical solution due to the potential for automatic processing and the wide range of uses that allows spreading costs. Grasslands have a high importance in nature conservation as due to the drastical land use changes (arable lands, afforestation, fragmentation by linear structures) in the last centuries the extent of these habitats have been considerably reduced. Among the habitat types protected by the Habitat Directive of the Natura 2000 system, several grassland habitat types (e.g. hay meadows, dry grasslands harbouring rare Orchid species) have special priority for conservation. For preserving these habitat types application of a proper management - including mowing or grazing - has a crucial role. Therefore not only the mapping of the locations of habitats but the way of management is needed for representing the natural processes. The objective of this study was to test the applicability of airborne laser scanning for ecological vegetation mapping in and around grasslands. The study site is

  13. Reliability and validity of expert assessment based on airborne and urinary measures of nickel and chromium exposure in the electroplating industry.

    PubMed

    Chen, Yu-Cheng; Coble, Joseph B; Deziel, Nicole C; Ji, Bu-Tian; Xue, Shouzheng; Lu, Wei; Stewart, Patricia A; Friesen, Melissa C

    2014-11-01

    The reliability and validity of six experts' exposure ratings were evaluated for 64 nickel-exposed and 72 chromium-exposed workers from six Shanghai electroplating plants based on airborne and urinary nickel and chromium measurements. Three industrial hygienists and three occupational physicians independently ranked the exposure intensity of each metal on an ordinal scale (1-4) for each worker's job in two rounds: the first round was based on responses to an occupational history questionnaire and the second round also included responses to an electroplating industry-specific questionnaire. The Spearman correlation (r(s)) was used to compare each rating's validity to its corresponding subject-specific arithmetic mean of four airborne or four urinary measurements. Reliability was moderately high (weighted kappa range=0.60-0.64). Validity was poor to moderate (r(s)=-0.37-0.46) for both airborne and urinary concentrations of both metals. For airborne nickel concentrations, validity differed by plant. For dichotomized metrics, sensitivity and specificity were higher based on urinary measurements (47-78%) than airborne measurements (16-50%). Few patterns were observed by metal, assessment round, or expert type. These results suggest that, for electroplating exposures, experts can achieve moderately high agreement and (reasonably) distinguish between low and high exposures when reviewing responses to in-depth questionnaires used in population-based case-control studies. PMID:24736099

  14. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  15. Precise mapping of annual river bed changes based on airborne laser bathymetry

    NASA Astrophysics Data System (ADS)

    Mandlburger, Gottfried; Wieser, Martin; Pfeifer, Norbert; Pfennigbauer, Martin; Steinbacher, Frank; Aufleger, Markus

    2014-05-01

    Airborne Laser Bathymtery (ALB) is a method for capturing relatively shallow water bodies from the air using a pulsed green laser (wavelength=532nm). While this technique was first used for mapping coastal waters only, recent progress in sensor technology has opened the field to apply ALB to running inland waters. Especially for alpine rivers the precise mapping of the channel topography is a challenging task as the flow velocities are often high and the area is difficult and/or dangerous to access by boat or by feet. Traditional mapping techniques like tachymetry or echo sounding fail in such situations while ALB provides, both, high spot position accuracy in the cm range and high spatial resolution in the dm range. Furthermore, state-of-the-art ALB systems allow simultaneous mapping of the river bed and the riparian area and, therefore, represent a comprehensive and efficient technology for mapping the entire floodplain area. The maximum penetration depth depends on, both, water turbidity and bottom reflectivity. Consequently, ALB provides the highest accuracy and resolution over bright gravel rivers with relatively clear water. We demonstrate the capability of ALB for precise mapping of river bed changes based on three flight campaigns in April, May and October 2013 at the River Pielach (Lower Austria) carried out with Riegl's VQ-820-G topo-bathymetric laser scanner. Operated at a flight height of 600m above ground with a pulse repetition rate of 510kHz (effective measurement rate 200kHz) this yielded a mean point spacing within the river bed of 20cm (i.e. point density: 25 points/m2). The positioning accuracy of the river bed points is approx. 2-5cm and depends on the overall ranging precision (20mm), the quality of the water surface model (derived from the ALB point cloud), and the signal intensity (decreasing with water depth). All in all, the obtained point cloud allowed the derivation of a dense grid model of the channel topography (0.25m cell size) for all

  16. Investigating Baseline, Alternative and Copula-based Algorithm for combining Airborne Active and Passive Microwave Observations in the SMAP Context

    NASA Astrophysics Data System (ADS)

    Montzka, C.; Lorenz, C.; Jagdhuber, T.; Laux, P.; Hajnsek, I.; Kunstmann, H.; Entekhabi, D.; Vereecken, H.

    2015-12-01

    The objective of the NASA Soil Moisture Active & Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments will be a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer (PLMR2) and the active L-band system F-SAR of DLR were flown simultaneously on the same platform on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e. all types of land cover and experimental monitoring sites with in situ sensors. Here, we used the obtained data sets as a test-bed for the analysis of three active-passive fusion techniques: A) The SMAP baseline algorithm: Disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture, B), the SMAP alternative algorithm: Estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter and C) Copula-based combination of active and passive microwave data. For method C empirical Copulas were generated and theoretical Copulas fitted both on the level of the raw products brightness temperature and backscatter as well as two soil moisture products. Results indicate that the regression parameters for method A and B are dependent on the radar vegetation index (RVI). Similarly, for method C the best performance was gained by generating separate Copulas for individual land use classes. For more in-depth analyses longer time series are necessary as can obtained by airborne campaigns, therefore, the methods will be applied to SMAP data.

  17. Aluminum silicide microparticles transformed from aluminum thin films by hypoeutectic interdiffusion

    PubMed Central

    2014-01-01

    Aluminum silicide microparticles with oxidized rough surfaces were formed on Si substrates through a spontaneous granulation process of Al films. This microparticle formation was caused by interdiffusion of Al and Si atoms at hypoeutectic temperatures of Al-Si systems, which was driven by compressive stress stored in Al films. The size, density, and the composition of the microparticles could be controlled by adjusting the annealing temperature, time, and the film thickness. High-density microparticles of a size around 10 μm and with an atomic ratio of Si/Al of approximately 0.8 were obtained when a 90-nm-thick Al film on Si substrate was annealed for 9 h at 550°C. The microparticle formation resulted in a rapid increase of the sheet resistance, which is a consequence of substantial consumption of Al film. This simple route to size- and composition-controllable microparticle formation may lay a foundation stone for the thermoelectric study on Al-Si alloy-based heterogeneous systems. PMID:24994964

  18. Furosemide Loaded Silica-Lipid Hybrid Microparticles: Formulation Development, in vitro and ex vivo Evaluation

    PubMed Central

    Sambaraj, Swapna; Ammula, Divya; Nagabandi, Vijaykumar

    2015-01-01

    Purpose: The main objective of the current research work was to formulate and evaluate furosemide loaded silica lipid hybrid microparticles for improved oral delivery. A novel silica-lipid hybrid microparticulate system is used for enhancing the oral absorption of low solubility and low permeability of (BCS Class IV) drugs. Silica-lipid hybrid microparticles include the drug solubilising effect of dispersed lipids and stabilizing effect of hydrophilic silica particles to increase drug solubilisation, which leads to enhanced oral bioavailability. Methods: The slica lipid hybrid (SLH) microparticles were composed of poorly soluble drug (furosemide), dispersion of oil phase (Soya bean oil and miglyol) in lecithin (Phospholipoid 90H), non-ionic surfactant (Polysorbate 80) and adsorbent (Aerosol 380). Saturation solubility studies were performed in different oils and surfactants with increased concentration of drug revealed increased solubility of furosemide. Results: In vitro dissolution studies conducted under simulated gastric medium revealed 2-4 fold increase in dissolution efficiencies for SLH microparticles compared to that of pure drug (furosemide) and marketed formulation Lasix®. Ex vivo studies showed enhanced lipid digestibility, which improved drug permeability. Solid-state characterization of SLH microparticles by X-ray powder diffraction and Fourier transform infrared spectroscopic analysis confirmed non-crystalline nature and more compatibility of furosemide in silica-lipid hybrid microparticles. Conclusion: It can be concluded that the role of lipids and hydrophilic silica based carrier highlighted in enhancing solubility and permeability, and hence the oral bioavailability of poorly soluble drugs. PMID:26504763

  19. In vitro dissolution methods for hydrophilic and hydrophobic porous silicon microparticles.

    PubMed

    Mönkäre, Juha; Riikonen, Joakim; Rauma, Elina; Salonen, Jarno; Lehto, Vesa-Pekka; Järvinen, Kristiina

    2011-01-01

    Porous silicon (PSi) is an innovative inorganic material that has been recently developed for various drug delivery systems. For example, hydrophilic and hydrophobic PSi microparticles have been utilized to improve the dissolution rate of poorly soluble drugs and to sustain peptide delivery. Previously, the well-plate method has been demonstrated to be a suitable in vitro dissolution method for hydrophilic PSi particles but it was not applicable to poorly wetting hydrophobic thermally hydrocarbonized PSi (THCPSi) particles. In this work, three different in vitro dissolution techniques, namely centrifuge, USP Apparatus 1 (basket) and well-plate methods were compared by using hydrophilic thermally carbonized PSi (TCPSi) microparticles loaded with poorly soluble ibuprofen or freely soluble antipyrine. All the methods showed a fast and complete or nearly complete release of both model compounds from the TCPSi microparticles indicating that all methods described in vitro dissolution equally. Based on these results, the centrifuge method was chosen to study the release of a peptide (ghrelin antagonist) from the THCPSi microparticles since it requires small sample amounts and achieves good particle suspendability. Sustained peptide release from the THCPSi microparticles was observed, which is in agreement with an earlier in vivo study. In conclusion, the centrifuge method was demonstrated to be a suitable tool for the evaluation of drug release from hydrophobic THCPSi particles, and the sustained peptide release from THCPSi microparticles was detected. PMID:24310498

  20. Holographic diagnostics of biological microparticles

    NASA Astrophysics Data System (ADS)

    Dyomin, Victor V.; Sokolov, Vladimir V.

    1996-05-01

    Problem of studies of biological microojects is actual one for ecology, medicine, biology. Holographic techniques are useful to solve the problem. The above microojects are transparent or semitransparent ones in a visible light rather often. The case of an optically soft particle, (that is of a particle whose substance has the refractive index close to that of the surrounding medium) is quite probable in biological water suspensions. Some peculiarities of holographing optically soft microparticles are analyzed in this paper. We propose a technique to calculate a light intensity distribution in the plane of a hologram and in the plane of a holographic image of a particle of an arbitrary shape at an arbitrary distance from the latter plane. The efficiency of the approach proposed is demonstrated by calculational results obtained analytically for some simple cases. In a more complicated cases the technique can make a basis for numerical computations. The method of determining of refractive index of transparent and semitransparent microparticles is proposed. We also present in this paper some experimental results on holographic detection of the water drops and such optically soft particles as ovums of helmints in human jaundice.

  1. Electrodynamic radioactivity detector for microparticles

    NASA Astrophysics Data System (ADS)

    Ward, T. L.; Davis, E. J.; Jenkins, R. W., Jr.; McRae, D. D.

    1989-03-01

    A new technique for the measurement of the radioactive decay of single microparticles has been demonstrated. Although the experiments were made with droplets of order 20 μm in diameter, microparticles in the range 0.1-100 μm can be accommodated. An electrodynamic balance and combination light-scattering photometer were used to measure the charge-loss rate and size of a charged microsphere suspended in a laser beam by superposed ac and dc electrical fields. The charged particle undergoes charge loss in the partially ionized gas atmosphere which results from radioactive decay of 14C-tagged compounds, and the rate of charge loss is proportional to the rate of decay here. The charge on a particle was determined by measuring the dc voltage necessary to stably suspend the particle against gravity while simultaneously determining the droplet size by light-scattering techniques. The parameters which affect the operation of the electrodynamic balance as a radioactivity detector are examined, and the limits of its sensitivity are explored. Radioactivity levels as low as 120 pCi have been measured, and it appears that by reducing the background contamination inside our balance activity levels on the order of 10 pCi can be detected. This new technique has application in the measurement of activity levels and source discrimination of natural and man-made aerosols and smokes and is also useful for studies involving specifically labeled radio-chemical probes.

  2. Relating urban airborne particle concentrations to shipping using carbon based elemental emission ratios

    NASA Astrophysics Data System (ADS)

    Johnson, Graham R.; Juwono, Alamsyah M.; Friend, Adrian J.; Cheung, Hing-Cho; Stelcer, Eduard; Cohen, David; Ayoko, Godwin A.; Morawska, Lidia

    2014-10-01

    This study demonstrates a novel method for testing the hypothesis that variations in primary and secondary particle number concentration (PNC) in urban air are related to residual fuel oil combustion at a coastal port lying 30 km upwind, by examining the correlation between PNC and airborne particle composition signatures chosen for their sensitivity to the elemental contaminants present in residual fuel oil. Residual fuel oil combustion indicators were chosen by comparing the sensitivity of a range of concentration ratios to airborne emissions originating from the port. The most responsive were combinations of vanadium and sulphur concentration ([S], [V]) expressed as ratios with respect to black carbon concentration ([BC]). These correlated significantly with ship activity at the port and with the fraction of time during which the wind blew from the port. The average [V] when the wind was predominantly from the port was 0.52 ng m-3 (87%) higher than the average for all wind directions and 0.83 ng m-3 (280%) higher than that for the lowest vanadium yielding wind direction considered to approximate the natural background. Shipping was found to be the main source of V impacting urban air quality in Brisbane. However, contrary to the stated hypothesis, increases in PNC related measures did not correlate with ship emission indicators or ship traffic. Hence at this site ship emissions were not found to be a major contributor to PNC compared to other fossil fuel combustion sources such as road traffic, airport and refinery emissions.

  3. A geobotanical investigation based on linear discriminant and profile analyses of airborne Thematic Mapper Simulator data

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew R.

    1987-01-01

    This paper discusses the application of linear discriminant and profile analyses to detailed investigation of an airborne Thematic Mapper Simulator (TMS) image collected over a geobotanical test site. The test site was located on the Keweenaw Peninsula of Michigan's Upper Peninsula, and remote sensing data collection coincided with the onset of leaf senescence in the regional deciduous flora. Linear discriminant analysis revealed that sites overlying soil geochemical anomalies were distinguishable from background sites by the reflectance and thermal emittance of the tree canopy imaged in the airborne TMS data. The correlation of individual bands with the linear discriminant function suggested that the TMS thermal Channel 7 (10.32-12.33 microns) contributed most, while TMS Bands 2 (0.53-0.60 microns), 3 (0.63-0.69 microns), and 5 (1.53-1.73 microns) contributed somewhat more modestly to the separation of anomalous and background sites imaged by the TMS. The observed changes in canopy reflectance and thermal emittance of the deciduous flora overlying geochemically anomalous areas are consistent with the biophysical changes which are known or presumed to occur as a result of injury induced in metal-stressed vegetation.

  4. An automated front-end monitor for anthrax surveillance systems based on the rapid detection of airborne endospores.

    PubMed

    Yung, Pun To; Lester, Elizabeth D; Bearman, Greg; Ponce, Adrian

    2007-11-01

    A fully automated anthrax smoke detector (ASD) has been developed and tested. The ASD is intended to serve as a cost effective front-end monitor for anthrax surveillance systems. The principle of operation is based on measuring airborne endospore concentrations, where a sharp concentration increase signals an anthrax attack. The ASD features an air sampler, a thermal lysis unit, a syringe pump, a time-gated spectrometer, and endospore detection chemistry comprised of dipicolinic acid (DPA)-triggered terbium ion (Tb(3+)) luminescence. Anthrax attacks were simulated using aerosolized Bacillus atrophaeus spores in fumed silica, and corresponding Tb-DPA intensities were monitored as a function of time and correlated to the number of airborne endospores collected. A concentration dependence of 10(2)-10(6) spores/mg of fumed silica yielded a dynamic range of 4 orders of magnitude and a limit of detection of 16 spores/L when 250 L of air were sampled. Simulated attacks were detected in less than 15 min. PMID:17514759

  5. Co-Registration Airborne LIDAR Point Cloud Data and Synchronous Digital Image Registration Based on Combined Adjustment

    NASA Astrophysics Data System (ADS)

    Yang, Z. H.; Zhang, Y. S.; Zheng, T.; Lai, W. B.; Zou, Z. R.; Zou, B.

    2016-06-01

    Aim at the problem of co-registration airborne laser point cloud data with the synchronous digital image, this paper proposed a registration method based on combined adjustment. By integrating tie point, point cloud data with elevation constraint pseudo observations, using the principle of least-squares adjustment to solve the corrections of exterior orientation elements of each image, high-precision registration results can be obtained. In order to ensure the reliability of the tie point, and the effectiveness of pseudo observations, this paper proposed a point cloud data constrain SIFT matching and optimizing method, can ensure that the tie points are located on flat terrain area. Experiments with the airborne laser point cloud data and its synchronous digital image, there are about 43 pixels error in image space using the original POS data. If only considering the bore-sight of POS system, there are still 1.3 pixels error in image space. The proposed method regards the corrections of the exterior orientation elements of each image as unknowns and the errors are reduced to 0.15 pixels.

  6. Association between first airborne cedar pollen level peak and pollinosis symptom onset: a web-based survey.

    PubMed

    Bando, Harumi; Sugiura, Hiroaki; Ohkusa, Yasushi; Akahane, Manabu; Sano, Tomomi; Jojima, Noriko; Okabe, Nobuhiko; Imamura, Tomoaki

    2015-01-01

    Cedar pollinosis in Japan affects nearly 25 % of Japanese citizens. To develop a treatment for cedar pollinosis, it is necessary to understand the relationship between the time of its occurrence and the amount of airborne cedar pollen. In the spring of 2009, we conducted daily Internet-based epidemiologic surveys, which included 1453 individuals. We examined the relationship between initial date of onset of pollinosis symptoms and daily amount of airborne cedar pollen to which subjects were exposed. Approximately 35.2 % of the subjects experienced the onset of pollinosis during a one-week interval in which the middle day coincided with the peak pollen count. The odds ratio for this one-week time interval was 4.03 (95 % confidence interval: 3.34-4.86). The predicted date of the cedar pollen peak can be used to determine the appropriate date for initiation of self-medication with anti-allergy drugs and thus avoid development of sustained and severe pollinosis. PMID:24720339

  7. Analysis of Snow Albedo, Grain Size and Radiative Forcing based on the Airborne Snow Observatory (ASO) Imaging Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    Seidel, F. C.; Painter, T. H.

    2013-12-01

    Climate is expected to be most vulnerable in mountainous and arctic regions where the atmosphere and the hydrosphere are directly linked to the cryosphere. A combination of modeling and large-scale observational efforts is required to investigate related scientific questions. NASA's Airborne Snow Observatory (ASO) at the Jet Propulsion Laboratory addresses some of these needs by establishing new quantitative observational capabilities in regional mapping of mountain snow properties. In addition, ASO's key products showed that we are able to achieve societal benefits by improving water resources management. We will show the first analysis of snow optical products (albedo, grain size, and radiative forcing) from the spring 2013 ASO campaign in the Sierra Nevada, CA, USA. In addition, we will present the retrieval methods used to derive these products based on airborne imaging spectroscopy, LiDAR, as well as radiative transfer models. The preliminary findings provide new important insights into the temporal and spatial aspects of Western US mountain snow and its melt.

  8. Airborne & Ground-based measurements of atmospheric CO2 using the 1.57-μm laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Sakaizawa, D.; Kawakami, S.; Nakajima, M.; Tanaka, T.; Miyamoto, Y.; Morino, I.; Uchino, O.; Asai, K.

    2009-12-01

    Greenhouse gases observing satellite (GOSAT) started the measurement of global CO2 abundances to reveal its continental inventory using two passive remote sensors. The goal that the sensor needs to be done is to achieve an 1% relative accuracy in order to reduce uncertainties of CO2 budget. Nevertheless, in the future global CO2 monitoring, more accurate measurement of global tropospheric CO2 abundances with the monthly regional scale are required to improve the knowledge of CO2 exchanges among the land, ocean, and atmosphere. In order to fulfill demands, a laser remote sensor, such as DIAL or laser absorption spectrometer (LAS), is a potential candidate of future space-based missions. Nowadays, those technologies are required to demonstrate an accuracy of the few-ppm level through airborne & ground-based measurements. We developed the prototype of the 1.57um LAS for a step of the next missions and perform it at the ground-based and airborne platform to show the properly validated performance in the framework of GOSAT validation. Our CO2 LAS is consisted of all optical fiber circuits & compact receiving /transmitting optics to achieve the portable, flexible and rigid system. The optical sources of on- and off-line are distributed feedback lasers, which are tuned at the strong and weak position of the R12 line in the (30012<-00001) absorption band. Their fiber coupled outputs are sinusoidal amplitude modulated by each EO devices with kHz rate and combined and amplified using an erbium doped fiber amplifier. Scattered signals from the hard target are collected by the 11cm receiving telescope and detected and stored into the laptop computer. After that, we evaluated the atmospheric CO2 density using the meteorological parameters and ratio between the on- and off-line signals. The resultant of the ground-based measurement of 3km optical length indicated that the statistical error of the path averaged atmospheric CO2 density is less than 2.8ppm with 25 minutes averaging

  9. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  10. An immunosensor based on magnetic relaxation switch and polystyrene microparticle-induced immune multivalency enrichment system for the detection of Pantoea stewartii subsp. Stewartii.

    PubMed

    Chen, Yi ping; Zou, Ming qiang; Wang, Da ning; Li, Yong liang; Xue, Qiang; Xie, Meng xia; Qi, Cai

    2013-05-15

    A rapid, sensitive, and simple immunosensor has been developed for the detection of Pantoea stewartii subsp. Stewartii (Pss). This immunosensor combines magnetic relaxation switch (MRS) assay with polystyrene microparticle-induced immune multivalency enrichment system. Comparing to conventional enzyme-linked immunosorbent assay (ELISA), the immunosensor developed in this study provides higher sensitivity and requires less analysis time. The detection limit of Pss obtained by immunosensor was determined to be 10(3)cfu/mL, 50 times lower than that by ELISA (5×10(4)cfu/mL), while the analysis time required by immunosensor is 30min much shorter than that by ELISA. The average recoveries studied with Pss at various spiking levels ranged from 85.5% to 93.4% with a relative standard deviation (RSD) below 6.0%. No cross-reaction with the other five strains was found, demonstrating a good specificity of Pss detection. The results showed that the MRS immunosensor combined with PS-induced immune multivalency enhancement system is a promising platform for the determination of large biological molecules due to its high sensitivity, specificity, homogeneity, and speed. PMID:23274190

  11. Refractory absorber/emitter using monolayer of ceramic microparticles

    NASA Astrophysics Data System (ADS)

    Dyachenko, P. N.; do Rosário, J. J.; Leib, E. W.; Petrov, A. Y.; Störmer, M.; Weller, H.; Vossmeyer, T.; Schneider, G. A.; Eich, M.

    2016-04-01

    We present a self-assembled refractory absorber/emitter without the necessity to structure the metallic surface itself, still retaining the feature of tailored optical properties for visible light emission and thermophotovoltaic (TPV) applications. We have demonstrated theoretically and experimentally that monolayers of zirconium dioxide (ZrO2) microparticles on a tungsten layer can be used as large area, efficient and thermally stable selective absorbers/emitters. The band edge of the absorption is based on critically coupled microsphere resonances. It can be tuned from visible to near-infrared range by varying the diameter of the microparticles. We demonstrated the optical functionality of the structure after annealing up to temperatures of 1000°C under vacuum conditions. In particular it opens up the route towards high efficiency TPV systems with emission matched to the photovoltaic cell.

  12. Identification of damage in buildings based on gaps in 3D point clouds from very high resolution oblique airborne images

    NASA Astrophysics Data System (ADS)

    Vetrivel, Anand; Gerke, Markus; Kerle, Norman; Vosselman, George

    2015-07-01

    Point clouds generated from airborne oblique images have become a suitable source for detailed building damage assessment after a disaster event, since they provide the essential geometric and radiometric features of both roof and façades of the building. However, they often contain gaps that result either from physical damage or from a range of image artefacts or data acquisition conditions. A clear understanding of those reasons, and accurate classification of gap-type, are critical for 3D geometry-based damage assessment. In this study, a methodology was developed to delineate buildings from a point cloud and classify the present gaps. The building delineation process was carried out by identifying and merging the roof segments of single buildings from the pre-segmented 3D point cloud. This approach detected 96% of the buildings from a point cloud generated using airborne oblique images. The gap detection and classification methods were tested using two other data sets obtained with Unmanned Aerial Vehicle (UAV) images with a ground resolution of around 1-2 cm. The methods detected all significant gaps and correctly identified the gaps due to damage. The gaps due to damage were identified based on the surrounding damage pattern, applying Gabor wavelets and a histogram of gradient orientation features. Two learning algorithms - SVM and Random Forests were tested for mapping the damaged regions based on radiometric descriptors. The learning model based on Gabor features with Random Forests performed best, identifying 95% of the damaged regions. The generalization performance of the supervised model, however, was less successful: quality measures decreased by around 15-30%.

  13. Enhanced Biological Functions of Human Mesenchymal Stem-Cell Aggregates Incorporating E-Cadherin-Modified PLGA Microparticles.

    PubMed

    Zhang, Yan; Mao, Hongli; Gao, Chao; Li, Suhua; Shuai, Qizhi; Xu, Jianbin; Xu, Ke; Cao, Lei; Lang, Ren; Gu, Zhongwei; Akaike, Toshihiro; Yang, Jun

    2016-08-01

    Mesenchymal stem cells (MSCs) have emerged as a promising source of multipotent cells for various cell-based therapies due to their unique properties, and formation of 3D MSC aggregates has been explored as a potential strategy to enhance therapeutic efficacy. In this study, poly(lactic-co-glycolic acid) (PLGA) microparticles modified with human E-cadherin fusion protein (hE-cad-PLGA microparticles) have been fabricated and integrated with human MSCs to form 3D cell aggregates. The results show that, compared with the plain PLGA, the hE-cad-PLGA microparticles distribute within the aggregates more evenly and further result in a more significant improvement of cellular proliferation and secretion of a series of bioactive factors due to the synergistic effects from the bioactive E-cadherin fragments and the PLGA microparticles. Meanwhile, the hE-cad-PLGA microparticles incorporated in the aggregates upregulate the phosphorylation of epidermal growth factor receptors and activate the AKT and ERK1/2 signaling pathways in the MSCs. Additionally, the E-cadherin/β-catenin cellular membrane complex in the MSCs is markedly stimulated by the hE-cad-PLGA microparticles. Therefore, engineering 3D cell aggregates with hE-cad-PLGA microparticles can be a promising method for ex vivo multipotent stem-cell expansion with enhanced biological functions and may offer a novel route to expand multipotent stem-cell-based clinical applications. PMID:27245478

  14. Urban land-cover classification based on airborne hyperspectral data and field observation

    NASA Astrophysics Data System (ADS)

    Yamazaki, Fumio; Hara, Konomi; Liu, Wen

    2014-10-01

    Using a dataset from the 2013 IEEE data fusion contest, a basic study to classify urban land-cover was carried out. The spectral reflectance characteristics of surface materials were investigated from the airborne hyperspectral (HS) data acquired by CASI-1500 imager over Houston, Texas, USA. The HS data include 144 spectral bands in the visible to near-infrared (380 nm to 1050 nm) regions. A multispectral (MS) image acquired by WorldView-2 satellite was also introduced in order to compare it with the HS image. A field measurement in the Houston's test site was carried out using a handheld spectroradiometer by the present authors. The reflectance of surface materials obtained by the measurement was also compared with the pseudo-reflectance of the HS data and they showed good agreement. Finally a principal component analysis was conducted for the HS and MS data and the result was discussed.

  15. Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A)

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Setzer, A.; Ward, D.; Tanre, D.; Holben, B. N.; Menzel, P.; Pereira, M. C.; Rasmussen, R.

    1992-01-01

    Results are presented on measurements of the trace gas and particulate matter emissions due to biomass burning during deforestation and grassland fires in South America, conducted as part of the Biomass Burning Airborne and Spaceborne Experiment in the Amazonas in September 1989. Field observations by an instrumented aircraft were used to estimate concentrations of O3, CO2, CO, CH4, and particulate matter. Fires were observed from satellite imagery, and the smoke optical thickness, particle size, and profiles of the extinction coefficient were measured from the aircraft and from the ground. Four smoke plumes were sampled, three vertical profiles were measured, and extensive ground measurements of smoke optical characteristics were carried out for different smoke types. The simultaneous measurements of the trace gases, smoke particles, and the distribution of fires were used to correlate biomass burning with the elevated levels of ozone.

  16. A microfluidics-based on-chip impinger for airborne particle collection.

    PubMed

    Mirzaee, I; Song, M; Charmchi, M; Sun, H

    2016-06-21

    Capturing airborne particles from air into a liquid is a critical process for the development of many sensors and analytical systems. A miniaturized airborne particle sampling device (microimpinger) has been developed in this research. The microimpinger relies on a controlled bubble generation process produced by driving air through microchannel arrays. The particles confined in the microscale bubbles are captured in the sampling liquid while the bubbles form, are released and travel in a millimetre-scale sealed liquid reservoir. The microchannel arrays in the impinger are fabricated using a soft-lithography method with polydimethylsiloxane (PDMS) as the structural material. To prevent air leakage at the connections, a PDMS-only sealing technique is successfully developed. The hydrophobicity of the microchannel surface is found to be critical for generating continuous and stable bubbles in the bubbling process. A Teflon layer is coated on the walls of a microchannel array by vapor deposition which effectively increases the hydrophobicity of the PDMS. The collection efficiency of the microimpinger is measured by counting different sizes of fluorescent polystyrene latex particles on polycarbonate membrane filters. Collection efficiencies above 90% are achieved. Furthermore, the particle capturing mechanisms during the injection, formation and rise of a single microbubble are investigated by a computational fluid dynamics (CFD) model. The Navier-Stokes equations are solved along with the use of the volume-of-fluid (VOF) method to capture the bubble deformations and the particles are tracked using a Lagrangian equation of motion. The model is also employed to study the effect of bubble size on the collection efficiency of the microimpinger. PMID:27185303

  17. Airborne Precision Spacing: A Trajectory-based Approach to Improve Terminal Area Operations

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan

    2006-01-01

    Airborne Precision Spacing has been developed by the National Aeronautics and Space Administration (NASA) over the past seven years as an attempt to benefit from the capabilities of the flight deck to precisely space their aircraft relative to another aircraft. This development has leveraged decades of work on improving terminal area operations, especially the arrival phase. With APS operations, the air traffic controller instructs the participating aircraft to achieve an assigned inter-arrival spacing interval at the runway threshold, relative to another aircraft. The flight crew then uses airborne automation to manage the aircraft s speed to achieve the goal. The spacing tool is designed to keep the speed within acceptable operational limits, promote system-wide stability, and meet the assigned goal. This reallocation of tasks with the controller issuing strategic goals and the flight crew managing the tactical achievement of those goals has been shown to be feasible through simulation and flight test. A precision of plus or minus 2-3 seconds is generally achievable. Simulations of long strings of arriving traffic show no signs of instabilities or compression waves. Subject pilots have rated the workload to be similar to current-day operations and eye-tracking data substantiate this result. This paper will present a high-level review of research results over the past seven years from a variety of tests and experiments. The results will focus on the precision and accuracy achievable, flow stability and some major sources of uncertainty. The paper also includes a summary of the flight crew s procedures and interface and a brief concept overview.

  18. Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program in New Zealand in 2014

    NASA Astrophysics Data System (ADS)

    Fritts, Dave; Smith, Ron; Taylor, Mike; Doyle, Jim; Eckermann, Steve; Dörnbrack, Andreas; Rapp, Markus; Williams, Biff; Bossert, Katrina; Pautet, Dominique

    2015-04-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, Tasmania, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements beginning in late May and extending beyond the airborne component. DEEPWAVE employed two aircraft, the NSF/NCAR GV and the German DLR Falcon. The GV carried the standard flight-level instruments, dropsondes, and the Microwave Temperature Profiler (MTP). It also hosted new airborne lidar and imaging instruments built specifically to allow quantification of gravity waves (GWs) from sources at lower altitudes (e.g., orography, convection, jet streams, fronts, and secondary GW generation) throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-100 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) was also developed for the GV, and together with additional IR "wing" cameras, imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar able to measure radial winds below the Falcon where aerosol backscatter was sufficient. Additional ground-based instruments included a 449 MHz boundary layer radar, balloons at multiple sites, two ground-based Rayleigh lidars, a second ground-based AMTM, a Fabry Perot interferometer measuring winds and temperatures at ~87 and 95 km, and a meteor radar measuring winds from ~80-100 km. DEEPWAVE performed 26 GV flights, 13 Falcon flights, and an extensive series of ground-based measurements whether or not the aircraft were flying. Together, these observed many diverse cases of GW forcing, propagation, refraction, and dissipation

  19. Trojan Microparticles for Drug Delivery

    PubMed Central

    Anton, Nicolas; Jakhmola, Anshuman; Vandamme, Thierry F.

    2012-01-01

    During the last decade, the US Food and Drug Administration (FDA) have regulated a wide range of products, (foods, cosmetics, drugs, devices, veterinary, and tobacco) which may utilize micro and nanotechnology or contain nanomaterials. Nanotechnology allows scientists to create, explore, and manipulate materials in nano-regime. Such materials have chemical, physical, and biological properties that are quite different from their bulk counterparts. For pharmaceutical applications and in order to improve their administration (oral, pulmonary and dermal), the nanocarriers can be spread into microparticles. These supramolecular associations can also modulate the kinetic releases of drugs entrapped in the nanoparticles. Different strategies to produce these hybrid particles and to optimize the release kinetics of encapsulated drugs are discussed in this review. PMID:24300177

  20. Comparison of Airborne and Ground-Based Function Allocation Concepts for NextGen Using Human-In-The-Loop Simulations

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Prevot, Thomas; Murdoch, Jennifer L.; Cabrall, Christopher D.; Homola, Jeffrey R.; Martin, Lynne H.; Mercer, Joey S.; Hoadley, Sherwood T.; Wilson, Sara R.; Hubbs, Clay E.; Chamberlain, James P.; Chartrand, Ryan C.; Consiglio, Maria C.; Palmer, Michael T.

    2010-01-01

    This paper presents an air/ground functional allocation experiment conducted by the National Aeronautics and Space Administration (NASA) using two human-in-the-Loop simulations to compare airborne and ground-based approaches to NextGen separation assurance. The approaches under investigation are two trajectory-based four-dimensional (4D) concepts; one referred to as "airborne trajectory management with self-separation" (airborne) the other as "ground-based automated separation assurance" (ground-based). In coordinated simulations at NASA's Ames and Langley Research Centers, the primary operational participants -controllers for the ground-based concept and pilots for the airborne concept - manage the same traffic scenario using the two different 4D concepts. The common scenarios are anchored in traffic problems that require a significant increase in airspace capacity - on average, double, and in some local areas, close to 250% over current day levels - in order to enable aircraft to safely and efficiently traverse the test airspace. The simulations vary common independent variables such as traffic density, sequencing and scheduling constraints, and timing of trajectory change events. A set of common metrics is collected to enable a direct comparison of relevant results. The simulations will be conducted in spring 2010. If accepted, this paper will be the first publication of the experimental approach and early results. An initial comparison of safety and efficiency as well as operator acceptability under the two concepts is expected.

  1. GTE: a new FFT based software to compute terrain correction on airborne gravity surveys in spherical approximation.

    NASA Astrophysics Data System (ADS)

    Capponi, Martina; Sampietro, Daniele; Sansò, Fernando

    2016-04-01

    The computation of the vertical attraction due to the topographic masses (Terrain Correction) is still a matter of study both in geodetic as well as in geophysical applications. In fact it is required in high precision geoid estimation by the remove-restore technique and it is used to isolate the gravitational effect of anomalous masses in geophysical exploration. This topographical effect can be evaluated from the knowledge of a Digital Terrain Model in different ways: e.g. by means of numerical integration, by prisms, tesseroids, polyedra or Fast Fourier Transform (FFT) techniques. The increasing resolution of recently developed digital terrain models, the increasing number of observation points due to extensive use of airborne gravimetry and the increasing accuracy of gravity data represents nowadays major issues for the terrain correction computation. Classical methods such as prism or point masses approximations are indeed too slow while Fourier based techniques are usually too approximate for the required accuracy. In this work a new software, called Gravity Terrain Effects (GTE), developed in order to guarantee high accuracy and fast computation of terrain corrections is presented. GTE has been thought expressly for geophysical applications allowing the computation not only of the effect of topographic and bathymetric masses but also those due to sedimentary layers or to the Earth crust-mantle discontinuity (the so called Moho). In the present contribution we summarize the basic theory of the software and its practical implementation. Basically the GTE software is based on a new algorithm which, by exploiting the properties of the Fast Fourier Transform, allows to quickly compute the terrain correction, in spherical approximation, at ground or airborne level. Some tests to prove its performances are also described showing GTE capability to compute high accurate terrain corrections in a very short time. Results obtained for a real airborne survey with GTE

  2. Dose-dependent protection against or exacerbation of disease by a polylactide glycolide microparticle-adsorbed, alphavirus-based measles virus DNA vaccine in rhesus macaques.

    PubMed

    Pan, Chien-Hsiung; Nair, Nitya; Adams, Robert J; Zink, M Christine; Lee, Eun-Young; Polack, Fernando P; Singh, Manmohan; O'Hagan, Derek T; Griffin, Diane E

    2008-04-01

    Measles remains an important cause of vaccine-preventable child mortality. Development of a low-cost, heat-stable vaccine for infants under the age of 6 months could improve measles control by facilitating delivery at the time of other vaccines and by closing a window of susceptibility prior to immunization at 9 months of age. DNA vaccines hold promise for development, but achieving protective levels of antibody has been difficult and there is an incomplete understanding of protective immunity. In the current study, we evaluated the use of a layered alphavirus DNA/RNA vector encoding measles virus H (SINCP-H) adsorbed onto polylactide glycolide (PLG) microparticles. In mice, antibody and T-cell responses to PLG-formulated DNA were substantially improved compared to those to naked DNA. Rhesus macaques received two doses of PLG/SINCP-H delivered either intramuscularly (0.5 mg) or intradermally (0.5 or 0.1 mg). Antibody and T-cell responses were induced but not sustained. On challenge, the intramuscularly vaccinated monkeys did not develop rashes and had lower viremias than vector-treated control monkeys. Monkeys vaccinated with the same dose intradermally developed rashes and viremia. Monkeys vaccinated intradermally with the low dose developed more severe rashes, with histopathologic evidence of syncytia and intense dermal and epidermal inflammation, eosinophilia, and higher viremia compared to vector-treated control monkeys. Protection after challenge correlated with gamma interferon-producing T cells and with early production of high-avidity antibody that bound wild-type H protein. We conclude that PLG/SINCP-H is most efficacious when delivered intramuscularly but does not provide an advantage over standard DNA vaccines for protection against measles. PMID:18287579

  3. Feasibility of Leadless Cardiac Pacing Using Injectable Magnetic Microparticles.

    PubMed

    Rotenberg, Menahem Y; Gabay, Hovav; Etzion, Yoram; Cohen, Smadar

    2016-01-01

    A noninvasive, effective approach for immediate and painless heart pacing would have invaluable implications in several clinical scenarios. Here we present a novel strategy that utilizes the well-known mechano-electric feedback of the heart to evoke cardiac pacing, while relying on magnetic microparticles as leadless mechanical stimulators. We demonstrate that after localizing intravenously-injected magnetic microparticles in the right ventricular cavity using an external electromagnet, the application of magnetic pulses generates mechanical stimulation that provokes ventricular overdrive pacing in the rat heart. This temporary pacing consistently managed to revert drug-induced bradycardia, but could only last up to several seconds in the rat model, most likely due to escape of the particles between the applied pulses using our current experimental setting. In a pig model with open chest, MEF-based pacing was induced by banging magnetic particles and has lasted for a longer time. Due to overheating of the electromagnet, we intentionally terminated the experiments after 2 min. Our results demonstrate for the first time the feasibility of external leadless temporary pacing, using injectable magnetic microparticles that are manipulated by an external electromagnet. This new approach can have important utilities in clinical settings in which immediate and painless control of cardiac rhythm is required. PMID:27091192

  4. Feasibility of Leadless Cardiac Pacing Using Injectable Magnetic Microparticles

    PubMed Central

    Rotenberg, Menahem Y.; Gabay, Hovav; Etzion, Yoram; Cohen, Smadar

    2016-01-01

    A noninvasive, effective approach for immediate and painless heart pacing would have invaluable implications in several clinical scenarios. Here we present a novel strategy that utilizes the well-known mechano-electric feedback of the heart to evoke cardiac pacing, while relying on magnetic microparticles as leadless mechanical stimulators. We demonstrate that after localizing intravenously-injected magnetic microparticles in the right ventricular cavity using an external electromagnet, the application of magnetic pulses generates mechanical stimulation that provokes ventricular overdrive pacing in the rat heart. This temporary pacing consistently managed to revert drug-induced bradycardia, but could only last up to several seconds in the rat model, most likely due to escape of the particles between the applied pulses using our current experimental setting. In a pig model with open chest, MEF-based pacing was induced by banging magnetic particles and has lasted for a longer time. Due to overheating of the electromagnet, we intentionally terminated the experiments after 2 min. Our results demonstrate for the first time the feasibility of external leadless temporary pacing, using injectable magnetic microparticles that are manipulated by an external electromagnet. This new approach can have important utilities in clinical settings in which immediate and painless control of cardiac rhythm is required. PMID:27091192

  5. The robustness and flexibility of an emulsion solvent evaporation method to prepare pH-responsive microparticles.

    PubMed

    Nilkumhang, Suchada; Basit, Abdul W

    2009-07-30

    A microparticle preparation method based on an emulsion of ethanol in liquid paraffin stabilised using sorbitan sesquioleate which produces enteric microparticles of excellent morphology, size and pH-sensitive drug release was assessed for its robustness to changes in formulation and processing parameters. Prednisolone and methacrylic acid and methyl methacrylate copolymer (Eudragit S) were the drug and polymer of choice. Emulsion solvent evaporation procedures are notoriously sensitive to changes in methodology and so emulsion stirring speed, drug loading, polymer concentration and surfactant (emulsifier) concentration were varied; microparticle size, encapsulation efficiency, yield and in vitro dissolution behaviour were assessed. The yield and encapsulation efficiency remained high under all stirring speeds, drug loadings and polymer concentrations. This suggests that the process is flexible and efficiency can be maintained. Surfactant concentration was an important parameter; above an optimum concentration resulted in poorly formed particles. All processing parameters affected particle size but this did not alter the acid resistance of the microparticles. At high pH values the smaller microparticles had the most rapid drug release. In conclusion, the microparticle preparation method was resistant to many changes in processing, although surfactant concentration was critical. Manipulation of particle size can be used to modify the drug release profiles without adversely affecting the gastro-resistant properties of these pH-responsive microparticles. PMID:19515519

  6. Chitosan microparticles: influence of the gelation process on the release profile and oral bioavailability of albendazole, a class II compound.

    PubMed

    Piccirilli, Gisela N; García, Agustina; Leonardi, Darío; Mamprin, María E; Bolmaro, Raúl E; Salomón, Claudio J; Lamas, María C

    2014-11-01

    Encapsulation of albendazole, a class II compound, into polymeric microparticles based on chitosan-sodium lauryl sulfate was investigated as a strategy to improve drug dissolution and oral bioavailability. The microparticles were prepared by spray drying technique and further characterized by means of X-ray powder diffractometry, infrared spectroscopy and scanning electron microscopy. The formation of a novel polymeric structure between chitosan and sodium lauryl sulfate, after the internal or external gelation process, was observed by infrared spectroscopy. The efficiency of encapsulation was found to be between 60 and 85% depending on the internal or external gelation process. Almost spherically spray dried microparticles were observed using scanning electron microscopy. In vitro dissolution results indicated that the microparticles prepared by internal gelation released 8% of the drug within 30 min, while the microparticles prepared by external gelation released 67% within 30 min. It was observed that the AUC and Cmax values of ABZ from microparticles were greatly improved, in comparison with the non-encapsulated drug. In conclusion, the release properties and oral bioavailability of albendazole were greatly improved by using spraydried chitosan-sodium lauryl sulphate microparticles. PMID:23971494

  7. Simulation of realistic EarthCARE spaceborne Doppler products from ARM ground-based, SPIDER airborne and CRM data

    NASA Astrophysics Data System (ADS)

    Sy, O. O.; Tanelli, S.; Takahashi, N.; Ohno, Y.; Horie, H.; Kollias, P.

    2011-12-01

    The Cloud-profiling radar on ESA and JAXA's future EarthCARE mission will be the first spaceborne Doppler radar to ever fly [1]. This W-band CPR, which operates at 94.05 GHz, should provide an unprecedented global coverage of vertical-velocity field distribution of the Earth's atmosphere, and therewith a better characterization of dynamic energy transfers in the atmosphere. Prior to EarthCARE's launch, one needs to simulate the Doppler products to be expected from such a CPR, viz. the radar reflectivity and the mean velocity. Our work addresses this need by using existing ground-based and airborne Doppler measurements to generate realistic EarthCARElike spaceborne data. The input to our algorithm consists of actual atmospheric Doppler measurements obtained either from ground-based ARM [2], or from an airborne platform such as SPIDER [3], the Japanese CPR from the National institute od Information and Communications Technologies (NICT). Several corrections are then applied to account for the spacecraft motion as well as the spaceborneantenna characteristics. The realism of the simulated products is also achieved in terms of spatial and temporal resolution. Further, the effects of random fluctuations, noise and finite temporal sampling are included. In addition to highlighting the peculiarities of the generation of Doppler products according to the source of the original input data, our paper will show the corrections that are applied to recover the mean-Doppler velocity, particularly in the presence of aliasing and non-uniform beam-filling contaminations. Several scenarii will be discussed to explore the added value of EarthCARE data at a finer spatial resolution.

  8. Tunneling holes in microparticles to facilitate the transport of lithium ions for high volumetric density batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Ng, K. Y. Simon; Deng, Da

    2015-08-01

    Microscale materials generally have a higher tap density than that of random nanoparticles. Therefore, microparticles have been attracting much attention for application as high volumetric density electrodes for lithium ion batteries. However, microparticles have much longer electrolyte diffusion and Li-ion migration length and less accessibility to the electrolyte than that of nanoparticles. Therefore, it will be interesting to tunnel-holes in the high volumetric density microparticles to facilitate the reversible storage of lithium ions. Here, tunnel-like holes were generated in microparticles to dramatically increase the accessibility of the active materials to facilitate the lithium ion transfer. A plausible formation mechanism to explain the generation of tunnel-like holes was proposed based on time-course experiments and intensive characterization. Impressively, the as-prepared microbeads with tunnels demonstrated dramatically improved performance compared to the solid microbeads without tunnels in lithium ion storage. The microparticles with tunnels could achieve comparable electrochemical performances to those nanoparticles reported in the literature, suggesting that microparticles, properly tuned, could be promising candidates as negative electrodes for lithium-ion batteries and worthy of further studies. We also directly measured the volumetric density of the microparticles. We would like to highlight that a superior volumetric capacity of 514 mA h cm-3 has been achieved. We hope to promote more frequent use of the unit mA h cm-3 in addition to the conventional unit mA h g-1 in the battery community.Microscale materials generally have a higher tap density than that of random nanoparticles. Therefore, microparticles have been attracting much attention for application as high volumetric density electrodes for lithium ion batteries. However, microparticles have much longer electrolyte diffusion and Li-ion migration length and less accessibility to the

  9. A new method for GPS-based wind speed determinations during airborne volcanic plume measurements

    USGS Publications Warehouse

    Doukas, Michael P.

    2002-01-01

    Begun nearly thirty years ago, the measurement of gases in volcanic plumes is today an accepted technique in volcano research. Volcanic plume measurements, whether baseline gas emissions from quiescent volcanoes or more substantial emissions from volcanoes undergoing unrest, provide important information on the amount of gaseous output of a volcano to the atmosphere. Measuring changes in gas emission rates also allows insight into eruptive behavior. Some of the earliest volcanic plume measurements of sulfur dioxide were made using a correlation spectrometer (COSPEC). The COSPEC, developed originally for industrial pollution studies, is an upward-looking optical spectrometer tuned to the ultraviolet absorption wavelength of sulfur dioxide (Millán and Hoff, 1978). In airborne mode, the COSPEC is mounted in a fixed-wing aircraft and flown back and forth just underneath a volcanic plume, perpendicular to the direction of plume travel (Casadevall and others, 1981; Stoiber and others, 1983). Similarly, for plumes close to the ground, the COSPEC can be mounted in an automobile and driven underneath a plume if a suitable road system is available (Elias and others, 1998). The COSPEC can also be mounted on a tripod and used to scan a volcanic plume from a fixed location on the ground, although the effectiveness of this configuration declines with distance from the plume (Kyle and others, 1990). In the 1990’s, newer airborne techniques involving direct sampling of volcanic plumes with infrared spectrometers and electrochemical sensors were developed in order to measure additional gases such as CO2 and H2S (Gerlach and others, 1997; Gerlach and others, 1999; McGee and others, 2001). These methods involve constructing a plume cross-section from several measurement traverses through the plume in a vertical plane. Newer instruments such as open-path Fourier transform infrared (FTIR) spectrometers are now being used to measure the gases in volcanic plumes mostly from fixed

  10. How Cities Breathe: Ground-Referenced, Airborne Hyperspectral Imaging Precursor Measurements To Space-Based Monitoring

    NASA Technical Reports Server (NTRS)

    Leifer, Ira; Tratt, David; Quattrochi, Dale; Bovensmann, Heinrich; Gerilowski, Konstantin; Buchwitz, Michael; Burrows, John

    2013-01-01

    Methane's (CH4) large global warming potential (Shindell et al., 2012) and likely increasing future emissions due to global warming feedbacks emphasize its importance to anthropogenic greenhouse warming (IPCC, 2007). Furthermore, CH4 regulation has far greater near-term climate change mitigation potential versus carbon dioxide CO2, the other major anthropogenic Greenhouse Gas (GHG) (Shindell et al., 2009). Uncertainties in CH4 budgets arise from the poor state of knowledge of CH4 sources - in part from a lack of sufficiently accurate assessments of the temporal and spatial emissions and controlling factors of highly variable anthropogenic and natural CH4 surface fluxes (IPCC, 2007) and the lack of global-scale (satellite) data at sufficiently high spatial resolution to resolve sources. Many important methane (and other trace gases) sources arise from urban and mega-urban landscapes where anthropogenic activities are centered - most of humanity lives in urban areas. Studying these complex landscape tapestries is challenged by a wide and varied range of activities at small spatial scale, and difficulty in obtaining up-to-date landuse data in the developed world - a key desire of policy makers towards development of effective regulations. In the developing world, challenges are multiplied with additional political access challenges. As high spatial resolution satellite and airborne data has become available, activity mapping applications have blossomed - i.e., Google maps; however, tap a minute fraction of remote sensing capabilities due to limited (three band) spectral information. Next generation approaches that incorporate high spatial resolution hyperspectral and ultraspectral data will allow detangling of the highly heterogeneous usage megacity patterns by providing diagnostic identification of chemical composition from solids (refs) to gases (refs). To properly enable these next generation technologies for megacity include atmospheric radiative transfer modeling

  11. Wavelet Based Analysis of Airborne Gravity Data For Interpretation of Geological Boundaries

    NASA Astrophysics Data System (ADS)

    Leblanc, George E.; Ferguson, Stephen

    Airborne gravimeters have only very recently been developed with the sensitivity necessary for useful exploration geophysics. In this study, an airborne gravimeter - an inertially-stabilized platform which converts accelerometer readings into gravity values - has been installed aboard the NRC's Convair 580 research aircraft and a survey performed over the Geological Survey of Canada's gravity test area. These data are used in a new wavelet transform methodology that quickly analyses and locates geological boundaries of various spatial extents within real aerogravity data. The raw aerogravity data were GPS corrected and then noise minimised - to reduce high frequency random noise - with a separate wavelet transform denoising algorithm. The multi-resolution nature of the wavelet transform was then used to investigate the presence of boundaries at various scales. Examination of each wavelet detail scale shows that there is a coherent and localizable signal that conforms to geological boundaries over the entire range of scales. However, the boundaries are more apparent in the lower wavelet scales (corresponding to higher frequencies). The location of the local maximum values of the wavelet coefficents on each wavelet level provides a means to quickly determine and evaluate regional and/or local boundaries. The boundaries that are determined as a function of wavelet scale are able to be well-localized with the wavelet transform, and provides a method to locate, in ground coordinates, the edges of the boundary. In this study it is clear that wavelet methodologies are very well suited to being used effectively with aerogravity data due to the non-stationary nature of these data. Using these same methods on the horizontal and vertical derivatives of the data can provide visually clearer boundary definition, however, thus far there has not been any new boundaries identified in the derivative data. It is also possible to draw potential structural information, such as general

  12. Airborne and Ground-Based Platforms for Data Collection in Small Vineyards: Examples from the UK and Switzerland

    NASA Astrophysics Data System (ADS)

    Green, David R.; Gómez, Cristina; Fahrentrapp, Johannes

    2015-04-01

    This paper presents an overview of some of the low-cost ground and airborne platforms and technologies now becoming available for data collection in small area vineyards. Low-cost UAV or UAS platforms and cameras are now widely available as the means to collect both vertical and oblique aerial still photography and airborne videography in vineyards. Examples of small aerial platforms include the AR Parrot Drone, the DJI Phantom (1 and 2), and 3D Robotics IRIS+. Both fixed-wing and rotary wings platforms offer numerous advantages for aerial image acquisition including the freedom to obtain high resolution imagery at any time required. Imagery captured can be stored on mobile devices such as an Apple iPad and shared, written directly to a memory stick or card, or saved to the Cloud. The imagery can either be visually interpreted or subjected to semi-automated analysis using digital image processing (DIP) software to extract information about vine status or the vineyard environment. At the ground-level, a radio-controlled 'rugged' model 4x4 vehicle can also be used as a mobile platform to carry a number of sensors (e.g. a Go-Pro camera) around a vineyard, thereby facilitating quick and easy field data collection from both within the vine canopy and rows. For the small vineyard owner/manager with limited financial resources, this technology has a number of distinct advantages to aid in vineyard management practices: it is relatively cheap to purchase; requires a short learning-curve to use and to master; can make use of autonomous ground control units for repetitive coverage enabling reliable monitoring; and information can easily be analysed and integrated within a GIS with minimal expertise. In addition, these platforms make widespread use of familiar and everyday, off-the-shelf technologies such as WiFi, Go-Pro cameras, Cloud computing, and smartphones or tablets as the control interface, all with a large and well established end-user support base. Whilst there are

  13. Fast in situ airborne and ground-based flux measurement of ammonia using a quantum cascade laser spectrometer

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Yu, X.; Hubbe, J.; Kluzek, C. D.; Tomlinson, J. M.; Fischer, M. L.; Reichl, K.; Gupta, M.

    2012-12-01

    A pair of new ammonia (NH3) spectrometers were developed based on off-axis integrated cavity output spectroscopy. These ammonia gas analyzers consist of an optical cell, a quantum-cascade laser, a HgCdTe detector, gas sampling system, electronics for control and data acquisition, and data-analysis software. The NH3 mixing ratio is determined from high-resolution NH3 absorption line shapes by tuning the laser wavelength over the fundamental vibration band near 9.6 μm. Excellent linearity is obtained in a wide range (0- 500 ppb) with a precision of 75 ppt (1σ in 1 second). The analyzers' 1/e response time to step changes in ammonia concentration are 2.4 Hz and 8.1 Hz for the airborne and flux instruments, respectively. Feasibility was demonstrated in airborne test flights in the troposphere on board of the Department of Energy (DOE) Gulfstream-1 (G-1) aircraft. Two research flights were conducted over Sunnyside, Washington. In the first test flight, the ammonia gas sensor was used to identify signatures of feedstock from local dairy farms with high vertical spatial resolution under low wind and stable atmospheric conditions. In the second flight, the NH3 spectrometer showed high sensitivity in capturing feedstock emission signals under windy and less stable conditions. Mixing ratios aloft were measured between 0.75 ppb above the boundary layer and 100 ppb over large feedlots. Eddy covariance estimates of NH3 flux from a manure slurry amendment were performed in a pasture near Two Rock, California from May 18, 2012 to July 5, 2012. Measurement spanned pasture conditions from forage growth, cut-to-ground, manure slurry amendment (estimated to be 95 ± 33% kg NH3-N ha-1) and re-growth. An exponential decay fit to the NH3 flux data after slurry amendment provides an estimate of cumulative emission of 6.6 ± 0.5 kg NH3-N ha-1 (or 7 ± 0.24% of the total applied nitrogen) as a result of the slurry amendment. These results demonstrate that the new ammonia spectrometers

  14. Field-Based and Airborne Hyperspectral Imaging for Applied Research in the State of Alaska

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Buchhorn, M.; Cristobal, J.; Kokaly, R. F.; Graham, P. R.; Waigl, C. F.; Hampton, D. L.; Werdon, M.; Guldager, N.; Bertram, M.; Stuefer, M.

    2015-12-01

    Hyperspectral imagery acquired using Hyspex VNIR-1800 and SWIR-384 camera systems have provided unique information on terrestrial and aquatic biogeochemical parameters, and diagnostic mineral properties in exposed outcrops in selected sites in the state of Alaska. The Hyspex system was configured for in-situ and field scanning by attaching it to a gimbal-mounted rotational stage on a robust tripod. Scans of vertical faces of vegetation and rock outcrops were made close to the campus of the University of Alaska Fairbanks, in an abandoned mine near Fairbanks, and on exposures of Orange Hill in Wrangell-St. Elias National Park. Atmospherically corrected integrated VNIR_SWIR spectra were extracted which helped to study varying nitrogen content in the vegetation, and helped to distinguish the various micas. Processed imagery helped to pull out carbonates, clays, sulfates, and alteration-related minerals. The same instrument was also mounted in airborne configuration on two different aircrafts, a DeHavilland Beaver and a Found Bush Hawk. Test flights were flown over urban and wilderness areas that presented a variety of landcover types. Processed imagery shows promise in mapping man-made surfaces, phytoplankton, and dissolved materials in inland water bodies. Sample data and products are available on the University of Alaska Fairbanks Hyperspectral Imaging Laboratory (HyLab) website at http://hyperspectral.alaska.edu.

  15. Rigorous Strip Adjustment of Airborne Laserscanning Data Based on the Icp Algorithm

    NASA Astrophysics Data System (ADS)

    Glira, P.; Pfeifer, N.; Briese, C.; Ressl, C.

    2015-08-01

    Airborne Laser Scanning (ALS) is an efficient method for the acquisition of dense and accurate point clouds over extended areas. To ensure a gapless coverage of the area, point clouds are collected strip wise with a considerable overlap. The redundant information contained in these overlap areas can be used, together with ground-truth data, to re-calibrate the ALS system and to compensate for systematic measurement errors. This process, usually denoted as strip adjustment, leads to an improved georeferencing of the ALS strips, or in other words, to a higher data quality of the acquired point clouds. We present a fully automatic strip adjustment method that (a) uses the original scanner and trajectory measurements, (b) performs an on-the-job calibration of the entire ALS multisensor system, and (c) corrects the trajectory errors individually for each strip. Like in the Iterative Closest Point (ICP) algorithm, correspondences are established iteratively and directly between points of overlapping ALS strips (avoiding a time-consuming segmentation and/or interpolation of the point clouds). The suitability of the method for large amounts of data is demonstrated on the basis of an ALS block consisting of 103 strips.

  16. Supervised and unsupervised MRF based 3D scene classification in multiple view airborne oblique images

    NASA Astrophysics Data System (ADS)

    Gerke, M.; Xiao, J.

    2013-10-01

    In this paper we develop and compare two methods for scene classification in 3D object space, that is, not single image pixels get classified, but voxels which carry geometric, textural and color information collected from the airborne oblique images and derived products like point clouds from dense image matching. One method is supervised, i.e. relies on training data provided by an operator. We use Random Trees for the actual training and prediction tasks. The second method is unsupervised, thus does not ask for any user interaction. We formulate this classification task as a Markov-Random-Field problem and employ graph cuts for the actual optimization procedure. Two test areas are used to test and evaluate both techniques. In the Haiti dataset we are confronted with largely destroyed built-up areas since the images were taken after the earthquake in January 2010, while in the second case we use images taken over Enschede, a typical Central European city. For the Haiti case it is difficult to provide clear class definitions, and this is also reflected in the overall classification accuracy; it is 73% for the supervised and only 59% for the unsupervised method. If classes are defined more unambiguously like in the Enschede area, results are much better (85% vs. 78%). In conclusion the results are acceptable, also taking into account that the point cloud used for geometric features is not of good quality and no infrared channel is available to support vegetation classification.

  17. Occupational exposure to airborne particles and other pollutants in an aviation base.

    PubMed

    Buonanno, Giorgio; Bernabei, Manuele; Avino, Pasquale; Stabile, Luca

    2012-11-01

    The occupational exposure to airborne particles and other pollutants in a high performance jet engine airport was investigated. Three spatial scales were considered: i) a downwind receptor site, ii) close to the airstrip, iii) personal monitoring. Particle number, surface area, mass concentrations and distributions were measured as well as inorganic and organic fractions, ionic fractions and Polycyclic Aromatic Hydrocarbons. Particle number distribution measured at a receptor site presents a mode of 80 nm and an average total concentration of 6.5 × 10(3) part. cm(-3); the chemical analysis shows that all the elements may be attributed to long-range transport from the sea. Particle number concentrations in the proximity of the airstrip show short term peaks during the working day mainly related to takeoff, landing and pre-flight operations of jet engines. Personal exposure of workers highlights a median number concentration of 2.5 × 10(4) part. cm(-3) and 1.7 × 10(4) part. cm(-3) for crew chief and hangar operator. PMID:22771354

  18. Comparison of Ground-Based and Airborne Function Allocation Concepts for NextGen Using Human-In-The-Loop Simulations

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Prevot, Thomas; Murdoch, Jennifer L.; Cabrall, Christopher D.; Homola, Jeffrey R.; Martin, Lynne H.; Mercer, Joey S.; Hoadley, Sherwood T.; Wilson, Sara R.; Hubbs, Clay E.; Chamberlain, James P.; Chartrand, Ryan C.; Consiglio, Maria C.; Palmer, Michael T.

    2010-01-01

    Investigation of function allocation for the Next Generation Air Transportation System is being conducted by the National Aeronautics and Space Administration (NASA). To provide insight on comparability of different function allocations for separation assurance, two human-in-the-loop simulation experiments were conducted on homogeneous airborne and ground-based approaches to four-dimensional trajectory-based operations, one referred to as ground-based automated separation assurance (groundbased) and the other as airborne trajectory management with self-separation (airborne). In the coordinated simulations at NASA s Ames and Langley Research Centers, controllers for the ground-based concept at Ames and pilots for the airborne concept at Langley managed the same traffic scenarios using the two different concepts. The common scenarios represented a significant increase in airspace demand over current operations. Using common independent variables, the simulations varied traffic density, scheduling constraints, and the timing of trajectory change events. Common metrics were collected to enable a comparison of relevant results. Where comparisons were possible, no substantial differences in performance or operator acceptability were observed. Mean schedule conformance and flight path deviation were considered adequate for both approaches. Conflict detection warning times and resolution times were mostly adequate, but certain conflict situations were detected too late to be resolved in a timely manner. This led to some situations in which safety was compromised and/or workload was rated as being unacceptable in both experiments. Operators acknowledged these issues in their responses and ratings but gave generally positive assessments of the respective concept and operations they experienced. Future studies will evaluate technical improvements and procedural enhancements to achieve the required level of safety and acceptability and will investigate the integration of

  19. Stress indicators based on airborne thermal imagery for field phenotyping a heterogeneous tree population for response to water constraints

    PubMed Central

    Virlet, Nicolas; Lebourgeois, Valentine; Martinez, Sébastien; Costes, Evelyne; Labbé, Sylvain; Regnard, Jean-Luc

    2014-01-01

    As field phenotyping of plant response to water constraints constitutes a bottleneck for breeding programmes, airborne thermal imagery can contribute to assessing the water status of a wide range of individuals simultaneously. However, the presence of mixed soil–plant pixels in heterogeneous plant cover complicates the interpretation of canopy temperature. Moran’s Water Deficit Index (WDI = 1–ETact/ETmax), which was designed to overcome this difficulty, was compared with surface minus air temperature (T s–T a) as a water stress indicator. As parameterization of the theoretical equations for WDI computation is difficult, particularly when applied to genotypes with large architectural variability, a simplified procedure based on quantile regression was proposed to delineate the Vegetation Index–Temperature (VIT) scatterplot. The sensitivity of WDI to variations in wet and dry references was assessed by applying more or less stringent quantile levels. The different stress indicators tested on a series of airborne multispectral images (RGB, near-infrared, and thermal infrared) of a population of 122 apple hybrids, under two irrigation regimes, significantly discriminated the tree water statuses. For each acquisition date, the statistical method efficiently delineated the VIT scatterplot, while the limits obtained using the theoretical approach overlapped it, leading to inconsistent WDI values. Once water constraint was established, the different stress indicators were linearly correlated to the stem water potential among a tree subset. T s–T a showed a strong sensitivity to evaporative demand, which limited its relevancy for temporal comparisons. Finally, the statistical approach of WDI appeared the most suitable for high-throughput phenotyping. PMID:25080086

  20. PITBUL: a physics-based modeling package for imaging and tracking of airborne targets for HEL applications including active illumination

    NASA Astrophysics Data System (ADS)

    Van Zandt, Noah R.; McCrae, Jack E.; Fiorino, Steven T.

    2013-05-01

    Aimpoint acquisition and maintenance is critical to high energy laser (HEL) system performance. This study demonstrates the development by the AFIT/CDE of a physics-based modeling package, PITBUL, for tracking airborne targets for HEL applications, including atmospheric and sensor effects and active illumination, which is a focus of this work. High-resolution simulated imagery of the 3D airborne target in-flight as seen from the laser position is generated using the HELSEEM model, and includes solar illumination, laser illumination, and thermal emission. Both CW and pulsed laser illumination are modeled, including the effects of illuminator scintillation, atmospheric backscatter, and speckle, which are treated at a first-principles level. Realistic vertical profiles of molecular and aerosol absorption and scattering, as well as optical turbulence, are generated using AFIT/CDE's Laser Environmental Effects Definition and Reference (LEEDR) model. The spatially and temporally varying effects of turbulence are calculated and applied via a fast-running wave optical method known as light tunneling. Sensor effects, for example blur, sampling, read-out noise, and random photon arrival, are applied to the imagery. Track algorithms, including centroid and Fitts correlation, as a part of a closed loop tracker are applied to the degraded imagery and scored, to provide an estimate of overall system performance. To gauge performance of a laser system against a UAV target, tracking results are presented as a function of signal to noise ratio. Additionally, validation efforts to date involving comparisons between simulated and experimental tracking of UAVs are presented.

  1. Airborne pollen-climate relationship based on discriminant analysis in Nam Co, Central Tibet and its palaeoenvironmental significance

    NASA Astrophysics Data System (ADS)

    Lyu, X.; Zhu, L.; Ma, Q.; Li, Q.

    2014-12-01

    Based on the airborne pollen data collected using a Burkard pollen trap, discriminant analysis were conducted to evaluate the relationship between two different atmospheric circulation systems, the Asia summer monsoon (ASM) and the Westerlies, in Nam Co basin, central Tibet. The whole year's samples could be classified into two groups using cluster analysis: one group was from May to September, another group was from October to April of next year, corresponding to monsoon period and non-monsoon period, respectively. The classification represents two different atmospheric circulation systems, ASM in monsoon period and the Westerlies in non-monsoon period. Discriminant analysis was performed. First, the whole year samples were divided into two a priori groups, group A is monsoon period (May-Sep.) and group B is non-monsoon period (Oct.-Apr.). Then percentage data of major pollen taxa were used to establish the discriminant functions, and then the samples were classified into predicted groups. The results of discriminant analysis show that 78.6% of the samples were cross-validated grouped correctly. Thus, airborne pollen assemblages can distinguish two different climate systems: monsoon period and non-monsoon period. According to the discriminant score, the group centroids of group A and group B were negative and positive, respectively. Therefore, we created the discriminant score as a new monsoon index (PDI, Pollen Discriminant Index), small PDI values represented enhanced summer monsoon climate. Using above result, we calculated the PDI of Nam Co NCL core, the PDI values can be coincided with Dryness (moisture indicator) and A/Cy ratio (temperature indicator).

  2. Stress indicators based on airborne thermal imagery for field phenotyping a heterogeneous tree population for response to water constraints.

    PubMed

    Virlet, Nicolas; Lebourgeois, Valentine; Martinez, Sébastien; Costes, Evelyne; Labbé, Sylvain; Regnard, Jean-Luc

    2014-10-01

    As field phenotyping of plant response to water constraints constitutes a bottleneck for breeding programmes, airborne thermal imagery can contribute to assessing the water status of a wide range of individuals simultaneously. However, the presence of mixed soil-plant pixels in heterogeneous plant cover complicates the interpretation of canopy temperature. Moran's Water Deficit Index (WDI = 1-ETact/ETmax), which was designed to overcome this difficulty, was compared with surface minus air temperature (T s-T a) as a water stress indicator. As parameterization of the theoretical equations for WDI computation is difficult, particularly when applied to genotypes with large architectural variability, a simplified procedure based on quantile regression was proposed to delineate the Vegetation Index-Temperature (VIT) scatterplot. The sensitivity of WDI to variations in wet and dry references was assessed by applying more or less stringent quantile levels. The different stress indicators tested on a series of airborne multispectral images (RGB, near-infrared, and thermal infrared) of a population of 122 apple hybrids, under two irrigation regimes, significantly discriminated the tree water statuses. For each acquisition date, the statistical method efficiently delineated the VIT scatterplot, while the limits obtained using the theoretical approach overlapped it, leading to inconsistent WDI values. Once water constraint was established, the different stress indicators were linearly correlated to the stem water potential among a tree subset. T s-T a showed a strong sensitivity to evaporative demand, which limited its relevancy for temporal comparisons. Finally, the statistical approach of WDI appeared the most suitable for high-throughput phenotyping. PMID:25080086

  3. Segmentation-based determination of terrain points from full-waveform airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Mücke, Werner; Hollaus, Markus; Briese, Christian

    2010-05-01

    Airborne laser scanning (ALS), also referred to as airborne LiDAR (light detection and ranging), is a widely-used method for the 3D sampling of the earth's surface. The resulting point cloud is often used to derive digital terrain models (DTM). As a preliminary step for this purpose, the point cloud has to be classified into the points belonging to terrain and those that do not. This process, which is also referred to as filtering, can be carried out even in vegetated areas, provided the fact ground echoes are present and can reliably be recognized. Especially the classification of dense lower vegetation poses problems for standard filtering algorithms. Points within these vegetation structures might be included in the terrain point cloud, causing the resulting DTM surface to run above the actual terrain and therefore being incorrect. The latest generation of ALS systems, the so-called full-waveform (FWF) scanners, provide 3D point clouds with extended information, which can support the process for terrain point classification. In contrast to conventional ALS hardware, which is able to detect one or more consecutive discrete echoes, FWF digitizers are capable of detecting and storing the whole emitted and backscattered signal, the so-called waveform. In order to obtain the single echoes, i.e. 3D points representing the backscattering surface, the recorded waveform has to be reconstructed and a decomposition algorithm has to be applied. During this echo detection process, not only the range from the scanner to the illuminated target, but also additional parameters can be derived. Apart from the amplitude, which is as well available in discrete ALS systems, the width of the backscattered echo, also referred to as echo width, is obtained. In this way, besides the acquisition of the geometry in terms of height measurements, the point cloud produced with FWF technology provides additional knowledge about the scanned surface that can be exploited for digital terrain

  4. Temperature and emissivity separation and mineral mapping based on airborne TASI hyperspectral thermal infrared data

    NASA Astrophysics Data System (ADS)

    Cui, Jing; Yan, Bokun; Dong, Xinfeng; Zhang, Shimin; Zhang, Jingfa; Tian, Feng; Wang, Runsheng

    2015-08-01

    Thermal infrared remote sensing (8-12 μm) (TIR) has great potential for geologic remote sensing studies. TIR has been successfully used for terrestrial and planetary geologic studies to map surface materials. However, the complexity of the physics and the lack of hyperspectral data make the studies under-investigated. A new generation of commercial hyperspectral infrared sensors, known as Thermal Airborne Spectrographic Imager (TASI), was used for image analysis and mineral mapping in this study. In this paper, a combined method integrating normalized emissivity method (NEM), ratio algorithm (RATIO) and maximum-minimum apparent emissivity difference (MMD), being applied in multispectral data, has been modified and used to determine whether this method is suitable for retrieving emissivity from TASI hyperspectral data. MODTRAN 4 has been used for the atmospheric correction. The retrieved emissivity spectra matched well with the field measured spectra except for bands 1, 2, and 32. Quartz, calcite, diopside/hedenbergite, hornblende and microcline have been mapped by the emissivity image. Mineral mapping results agree with the dominant minerals identified by laboratory X-ray powder diffraction and spectroscopic analyses of field samples. Both of the results indicated that the atmospheric correction method and the combined temperature-emissivitiy method are suitable for TASI image. Carbonate skarnization was first found in the study area by the spatial extent of diopside. Chemical analyses of the skarn samples determined that the Au content was 0.32-1.74 g/t, with an average Au content of 0.73 g/t. This information provides an important resource for prospecting for skarn type gold deposits. It is also suggested that TASI is suitable for prospect and deposit scale exploration.

  5. Second generation airborne 3D imaging lidars based on photon counting

    NASA Astrophysics Data System (ADS)

    Degnan, John J.; Wells, David; Machan, Roman; Leventhal, Edward

    2007-09-01

    The first successful photon-counting airborne laser altimeter was demonstrated in 2001 under NASA's Instrument Incubator Program (IIP). This "micro-altimeter" flew at altitudes up to 22,000 ft (6.7 km) and, using single photon returns in daylight, successfully recorded high resolution images of the underlying topography including soil, low-lying vegetation, tree canopies, water surfaces, man-made structures, ocean waves, and moving vehicles. The lidar, which operated at a wavelength of 532 nm near the peak of the solar irradiance curve, was also able to see the underlying terrain through trees and thick atmospheric haze and performed shallow water bathymetry to depths of a few meters over the Atlantic Ocean and Assawoman Bay off the Virginia coast. Sigma Space Corporation has recently developed second generation systems suitable for use in a small aircraft or mini UAV. A frequency-doubled Nd:YAG microchip laser generates few microjoule, subnanosecond pulses at fire rates up to 22 kHz. A Diffractive Optical Element (DOE) breaks the transmit beam into a 10x10 array of quasi-uniform spots which are imaged by the receive optics onto individual anodes of a high efficiency 10x10 GaAsP segmented anode microchannel plate photomultiplier. Each anode is input to one channel of a 100 channel, multistop timer demonstrated to have a 100 picosecond timing (1.5 cm range) resolution and an event recovery time less than 2 nsec. The pattern and frequency of a dual wedge optical scanner, synchronized to the laser fire rate, are tailored to provide contiguous coverage of a ground scene in a single overflight.

  6. [Estimating Leaf Area Index of Crops Based on Hyperspectral Compact Airborne Spectrographic Imager (CASI) Data].

    PubMed

    Tang, Jian-min; Liao, Qin-hong; Liu, Yi-qing; Yang, Gui-jun; Feng, Hai-kuanr; Wang, Ji-hua

    2015-05-01

    The fast estimation of leaf area index (LAI) is significant for learning the crops growth, monitoring the disease and insect, and assessing the yield of crops. This study used the hyperspectral compact airborne spectrographic imager (CASI) data of Zhangye city, in Heihe River basin, on July 7, 2012, and extracted the spectral reflectance accurately. The potential of broadband and red-edge vegetation index for estimating the LAI of crops was comparatively investigated by combined with the field measured data. On this basis, the sensitive wavebands for estimating the LAI of crops were selected and two new spectral indexes (NDSI and RSI) were constructed, subsequently, the spatial distribution of LAI in study area was analyzed. The result showed that broadband vegetation index NDVI had good effect for estimating the LAI when the vegetation coverage is relatively lower, the R2 and RMSE of estimation model were 0. 52, 0. 45 (p<0. 01) , respectively. For red-edge vegetation index, CIred edge took the different crop types into account fully, thus it gained the same estimation accuracy with NDVI. NDSI(569.00, 654.80) and RSI(597.60, 654.80) were constructed by using waveband combination algorithm, which has superior estimation results than NDVI and CIred edge. The R2 of estimation model used NDSI(569.00, 654.80) was 0. 77(p<0. 000 1), it mainly used the wavebands near the green peak and red valley of vegetation spectrum. The spatial distribution map of LAI was made according to the functional relationship between the NDSI(569.00, 654.80) and LAI. After analyzing this map, the LAI values were lower in the northwest of study area, this indicated that more fertilizer should be increased in this area. This study can provide technical support for the agricultural administrative department to learn the growth of crops quickly and make a suitable fertilization strategy. PMID:26415459

  7. Automated UAV-based mapping for airborne reconnaissance and video exploitation

    NASA Astrophysics Data System (ADS)

    Se, Stephen; Firoozfam, Pezhman; Goldstein, Norman; Wu, Linda; Dutkiewicz, Melanie; Pace, Paul; Naud, J. L. Pierre

    2009-05-01

    Airborne surveillance and reconnaissance are essential for successful military missions. Such capabilities are critical for force protection, situational awareness, mission planning, damage assessment and others. UAVs gather huge amount of video data but it is extremely labour-intensive for operators to analyse hours and hours of received data. At MDA, we have developed a suite of tools towards automated video exploitation including calibration, visualization, change detection and 3D reconstruction. The on-going work is to improve the robustness of these tools and automate the process as much as possible. Our calibration tool extracts and matches tie-points in the video frames incrementally to recover the camera calibration and poses, which are then refined by bundle adjustment. Our visualization tool stabilizes the video, expands its field-of-view and creates a geo-referenced mosaic from the video frames. It is important to identify anomalies in a scene, which may include detecting any improvised explosive devices (IED). However, it is tedious and difficult to compare video clips to look for differences manually. Our change detection tool allows the user to load two video clips taken from two passes at different times and flags any changes between them. 3D models are useful for situational awareness, as it is easier to understand the scene by visualizing it in 3D. Our 3D reconstruction tool creates calibrated photo-realistic 3D models from video clips taken from different viewpoints, using both semi-automated and automated approaches. The resulting 3D models also allow distance measurements and line-of- sight analysis.

  8. CLEC-2 expression is maintained on activated platelets and on platelet microparticles.

    PubMed

    Gitz, Eelo; Pollitt, Alice Y; Gitz-Francois, Jerney J; Alshehri, Osama; Mori, Jun; Montague, Samantha; Nash, Gerard B; Douglas, Michael R; Gardiner, Elizabeth E; Andrews, Robert K; Buckley, Christopher D; Harrison, Paul; Watson, Steve P

    2014-10-01

    The C-type lectin-like receptor CLEC-2 mediates platelet activation through a hem-immunoreceptor tyrosine-based activation motif (hemITAM). CLEC-2 initiates a Src- and Syk-dependent signaling cascade that is closely related to that of the 2 platelet ITAM receptors: glycoprotein (GP)VI and FcγRIIa. Activation of either of the ITAM receptors induces shedding of GPVI and proteolysis of the ITAM domain in FcγRIIa. In the present study, we generated monoclonal antibodies against human CLEC-2 and used these to measure CLEC-2 expression on resting and stimulated platelets and on other hematopoietic cells. We show that CLEC-2 is restricted to platelets with an average copy number of ∼2000 per cell and that activation of CLEC-2 induces proteolytic cleavage of GPVI and FcγRIIa but not of itself. We further show that CLEC-2 and GPVI are expressed on CD41+ microparticles in megakaryocyte cultures and in platelet-rich plasma, which are predominantly derived from megakaryocytes in healthy donors, whereas microparticles derived from activated platelets only express CLEC-2. Patients with rheumatoid arthritis, an inflammatory disease associated with increased microparticle production, had raised plasma levels of microparticles that expressed CLEC-2 but not GPVI. Thus, CLEC-2, unlike platelet ITAM receptors, is not regulated by proteolysis and can be used to monitor platelet-derived microparticles. PMID:25150298

  9. Microparticle entrapment for drug release from porous-surfaced bone implants.

    PubMed

    Wang, Dongwei; Liu, Qing; Xiao, Dongqin; Guo, Tailin; Ma, Yunqing; Duan, Ke; Wang, Jianxin; Lu, Xiong; Feng, Bo; Weng, Jie

    2015-01-01

    Metallic bone implants face interfacial concerns, such as infection and insufficient bone formation. Combination of drug-loaded microparticles with the implant surface is a promising approach to reducing the concerns. The present study reports a simple method for this purpose. Drug-loaded chitosan and alginate microparticles were separately prepared by emulsion methods. Dry microparticles were introduced into porous titanium (Ti) coatings on Ti discs, and induced to agglomerate in pores by wetting with water. Agglomerates were stably entrapped in the pores: 77-82% retained in the coating after immersion in a water bath for 7 d. Discs carrying drug-loaded microparticles showed a rapid release within 6 h and a subsequent slow release up to 1 d. After coculture with Staphylococcus epidermidis for 24 h, the discs formed inhibition zones, confirming antibacterial properties. These suggest that the microparticle entrapment-based method is a promising method for reducing some of the bone-implant interfacial concerns. PMID:26057256

  10. The use of airborne laser scanning to develop a pixel-based stratification for a verified carbon offset project

    PubMed Central

    2011-01-01

    Background The voluntary carbon market is a new and growing market that is increasingly important to consider in managing forestland. Monitoring, reporting, and verifying carbon stocks and fluxes at a project level is the single largest direct cost of a forest carbon offset project. There are now many methods for estimating forest stocks with high accuracy that use both Airborne Laser Scanning (ALS) and high-resolution optical remote sensing data. However, many of these methods are not appropriate for use under existing carbon offset standards and most have not been field tested. Results This paper presents a pixel-based forest stratification method that uses both ALS and optical remote sensing data to optimally partition the variability across an ~10,000 ha forest ownership in Mendocino County, CA, USA. This new stratification approach improved the accuracy of the forest inventory, reduced the cost of field-based inventory, and provides a powerful tool for future management planning. This approach also details a method of determining the optimum pixel size to best partition a forest. Conclusions The use of ALS and optical remote sensing data can help reduce the cost of field inventory and can help to locate areas that need the most intensive inventory effort. This pixel-based stratification method may provide a cost-effective approach to reducing inventory costs over larger areas when the remote sensing data acquisition costs can be kept low on a per acre basis. PMID:22004847

  11. Microparticle Fluorimetry and Energy Transfer

    NASA Astrophysics Data System (ADS)

    Folan, Lorcan Michael

    1987-12-01

    The primary aims of this dissertation were to develop an aerosol particle fluorimeter, utilize the instrument to investigate electronic energy transfer in individual microparticles (liquid droplets approximately 10 microns in radius) and develop an electromagnetic model to explain the observed energy transfer. A spectrometer for measuring the fluorescence emission fron a single trapped aerosol particle is described. This device consists of a particle generator, an electrodynamic levitator, and excitation source and detection optics and electronics. Provision is made to cool the sample chamber and fluorescence emission spectra can be obtained in real time. The fluorimeter was used to investigate energy transfer between donor-acceptor pairs of laser dyes. Energy transfer between the dyes was found to be enhanced in the levitated particles over the same material in bulk solution by more than a factor of 100. The concentration dependence of the particle energy transfer and characteristic features identified in the emission spectra indicate that the natural electromagnetic resonances of the particle mediate the energy transfer. A model calculation supports the experimental conclusions and yields good qualitative agreement with the observed energy transfer magnitude and concentration dependence.

  12. Circulating microparticles: square the circle

    PubMed Central

    2013-01-01

    Background The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. Results MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. Conclusions Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes. PMID:23607880

  13. Radon potential mapping of the Tralee-Castleisland and Cavan areas (Ireland) based on airborne gamma-ray spectrometry and geology.

    PubMed

    Appleton, J D; Doyle, E; Fenton, D; Organo, C

    2011-06-01

    The probability of homes in Ireland having high indoor radon concentrations is estimated on the basis of known in-house radon measurements averaged over 10 km × 10 km grid squares. The scope for using airborne gamma-ray spectrometer data for the Tralee-Castleisland area of county Kerry and county Cavan to predict the radon potential (RP) in two distinct areas of Ireland is evaluated in this study. Airborne data are compared statistically with in-house radon measurements in conjunction with geological and ground permeability data to establish linear regression models and produce radon potential maps. The best agreement between the percentage of dwellings exceeding the reference level (RL) for radon concentrations in Ireland (% > RL), estimated from indoor radon data, and modelled RP in the Tralee-Castleisland area is produced using models based on airborne gamma-ray spectrometry equivalent uranium (eU) and ground permeability data. Good agreement was obtained between the % > RL from indoor radon data and RP estimated from eU data in the Cavan area using terrain specific models. In both areas, RP maps derived from eU data are spatially more detailed than the published 10 km grid map. The results show the potential for using airborne radiometric data for producing RP maps. PMID:21617292

  14. Matrix-assisted relaxation in Fe(phen)2(NCS)2 spin-crossover microparticles, experimental and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Enachescu, Cristian; Tanasa, Radu; Stancu, Alexandru; Tissot, Antoine; Laisney, Jérôme; Boillot, Marie-Laure

    2016-07-01

    In this study, we present the influence of the embedding matrix on the relaxation of Fe(phen)2(NCS)2 (phen = 1,10-phenanthroline) spin-transition microparticles as revealed by experiments and provide an explanation within the framework of an elastic model based on a Monte-Carlo method. Experiments show that the shape of the high-spin → low-spin relaxation curves is drastically changed when the particles are dispersed in glycerol. This effect was considered in the model by means of interactions between the microparticles and the matrix. A faster start of the relaxation for microparticles embedded in glycerol is due to an initial positive local pressure acting on the edge spin-crossover molecules from the matrix side. This local pressure diminishes and eventually becomes negative during relaxation, as an effect of the decrease of the volume of spin-crossover microparticles from high-spin to low-spin.

  15. Agglomeration of microparticles in complex plasmas

    SciTech Connect

    Du, Cheng-Ran; Thomas, Hubertus M.; Ivlev, Alexei V.; Konopka, Uwe; Morfill, Gregor E.

    2010-11-15

    Agglomeration of highly charged microparticles was observed and studied in complex plasma experiments carried out in a capacitively coupled rf discharge. The agglomeration was caused by strong waves triggered in a particle cloud by decreasing neutral gas pressure. Using a high-speed camera during this unstable regime, it was possible to resolve the motion of individual microparticles and to show that the relative velocities of some particles were sufficiently high to overcome the mutual Coulomb repulsion and hence to result in agglomeration. After stabilizing the cloud again through the increase of the pressure, we were able to observe the aggregates directly with a long-distance microscope. We show that the agglomeration rate deduced from our experiments is in good agreement with theoretical estimates. In addition, we briefly discuss the mechanisms that can provide binding of highly charged microparticles in a plasma.

  16. [Building Change Detection Based on Multi-Level Rules Classification with Airborne LiDAR Data and Aerial Images].

    PubMed

    Gong, Yi-long; Yan, Li

    2015-05-01

    The present paper proposes a new building change detection method combining Lidar point cloud with aerial image, using multi-level rules classification algorithm, to solve building change detection problem between these two kinds of heterogeneous data. Then, a morphological post-processing method combined with area threshold is proposed. Thus, a complete building change detection processing flow that can be applied to actual production is proposed. Finally, the effectiveness of the building change detection method is evaluated, processing the 2010 airborne LiDAR point cloud data and 2009 high resolution aerial image of Changchun City, Jilin province, China; in addition, compared with the object-oriented building change detection method based on support vector machine (SVM) classification, more analysis and evaluation of the suggested method is given. Experiment results show that the performance of the proposed building change detection method is ideal. Its Kappa index is 0. 90, and correctness is 0. 87, which is higher than the object-oriented building change detection method based on SVM classification. PMID:26415454

  17. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  18. A survey of airborne HDI, HDI-based polyisocyanate and solvent concentrations in the manufacture and application of polyurethane coatings.

    PubMed

    Myer, H E; O'Block, S T; Dharmarajan, V

    1993-11-01

    This study summarizes the results of industrial hygiene surveys performed between 1979 and 1987 in paint manufacturing and application operations using polyurethane coatings containing hexamethylene diisocyanate (HDI) and HDI-based polyisocyanates (trade name Desmodur N). A total of 466 Desmodur N and 457 HDI samples were collected from 47 operations most of which were in application. The application surveys covered manufacture and refinishing of transportation vehicles, painting of large military and civilian equipment, industrial finishing operations, and maintenance and construction operations. The primary objective of the surveys was to assess the potential exposure to HDI and HDI-based polyisocyanate. In more than 60% of the surveys, concentrations of airborne organic solvents also were monitored. Isocyanates were sampled using toluene/nitroreagent in midget impingers, and solvents were collected using charcoal tubes. They were analyzed using high pressure liquid chromatography and gas chromatography, respectively. The data from these workplace situations show there is some potential for isocyanate overexposure of unprotected workers and that it is greater in spray than in nonspray operations. PMID:8256690

  19. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-03-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 μm) and angular range (180°) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  20. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2009-12-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer, CAR, and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 μm) and angular range (180°) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  1. Modeling of mean radiant temperature based on comparison of airborne remote sensing data with surface measured data

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Cheng; Chen, Chih-Yu; Matzarakis, Andreas; Liu, Jin-King; Lin, Tzu-Ping

    2016-06-01

    Assessment of outdoor thermal comfort is becoming increasingly important due to the urban heat island effect, which strongly affects the urban thermal environment. The mean radiant temperature (Tmrt) quantifies the effect of the radiation environment on humans, but it can only be estimated based on influencing parameters and factors. Knowledge of Tmrt is important for quantifying the heat load on human beings, especially during heat waves. This study estimates Tmrt using several methods, which are based on climatic data from a traditional weather station, microscale ground surface measurements, land surface temperature (LST) and light detection and ranging (LIDAR) data measured using airborne devices. Analytical results reveal that the best means of estimating Tmrt combines information about LST and surface elevation information with meteorological data from the closest weather station. The application in this method can eliminate the inconvenience of executing a wide range ground surface measurement, the insufficient resolution of satellite data and the incomplete data of current urban built environments. This method can be used to map a whole city to identify hot spots, and can be contributed to understanding human biometeorological conditions quickly and accurately.

  2. Collective and individual glycolytic oscillations in yeast cells encapsulated in alginate microparticles

    NASA Astrophysics Data System (ADS)

    Amemiya, Takashi; Obase, Kouhei; Hiramatsu, Naoki; Itoh, Kiminori; Shibata, Kenichi; Takinoue, Masahiro; Yamamoto, Tetsuya; Yamaguchi, Tomohiko

    2015-06-01

    Yeast cells were encapsulated into alginate microparticles of a few hundred micrometers diameter using a centrifuge-based droplet shooting device. We demonstrate the first experimental results of glycolytic oscillations in individual yeast cells immobilized in this way. We investigated both the individual and collective oscillatory behaviors at different cell densities. As the cell density increased, the amplitude of the individual oscillations increased while their period decreased, and the collective oscillations became more synchronized, with an order parameter close to 1 (indicating high synchrony). We also synthesized biphasic-Janus microparticles encapsulating yeast cells of different densities in each hemisphere. The cellular oscillations between the two hemispheres were entrained at both the individual and population levels. Such systems of cells encapsulated into microparticles are useful for investigating how cell-to-cell communication depends on the density and spatial distribution of cells.

  3. Recombinant human elastin-like magnetic microparticles for drug delivery and targeting.

    PubMed

    Ciofani, Gianni; Genchi, Giada Graziana; Guardia, Pablo; Mazzolai, Barbara; Mattoli, Virgilio; Bandiera, Antonella

    2014-05-01

    Bioinspired recombinant polypeptides represent a highly promising tool in biomedical research, being protein intrinsic constituents of both cells and their natural matrices. In this regard, a very interesting model is represented by polypeptides inspired by elastin, which naturally confers rubber-like elasticity to tissues, and is able to undergo wide deformations without rupture. In this paper, a microparticle system based on a recombinant human elastin-like polypeptide (HELP) is reported for drug delivery applications. HELP microparticles are prepared through a water-in-oil emulsion of an aqueous solution of recombinant polypeptide in isoctane, followed by enzymatic cross-linking. Superparamagnetic iron oxide nanoparticles are introduced in this system with the purpose of conferring magnetic properties to the microspheres, and thus controlling their targeting and tracking as drug vectors. The obtained microparticles are characterized in terms of morphology, structure, magnetic properties, drug release, and magnetic drivability, showing interesting and promising results for further biomedical applications. PMID:24318291

  4. A microfluidic chip using phenol formaldehyde resin for uniform-sized polycaprolactone and chitosan microparticle generation.

    PubMed

    Lin, Yung-Sheng; Yang, Chih-Hui; Wu, Chin-Tung; Grumezescu, Alexandru Mihai; Wang, Chih-Yu; Hsieh, Wan-Chen; Chen, Szu-Yu; Huang, Keng-Shiang

    2013-01-01

    This study develops a new solvent-compatible microfluidic chip based on phenol formaldehyde resin (PFR). In addition to its solvent-resistant characteristics, this microfluidic platform also features easy fabrication, organization, decomposition for cleaning, and reusability compared with conventional chips. Both solvent-dependent (e.g., polycaprolactone) and nonsolvent-dependent (e.g., chitosan) microparticles were successfully prepared. The size of emulsion droplets could be easily adjusted by tuning the flow rates of the dispersed/continuous phases. After evaporation, polycaprolactone microparticles ranging from 29.3 to 62.7 μm and chitosan microparticles ranging from 215.5 to 566.3 μm were obtained with a 10% relative standard deviation in size. The proposed PFR microfluidic platform has the advantages of active control of the particle size with a narrow size distribution as well as a simple and low cost process with a high throughput. PMID:23736788

  5. Fabrication and application of porous silicon multilayered microparticles in sustained drug delivery

    NASA Astrophysics Data System (ADS)

    Maniya, Nalin H.; Patel, Sanjaykumar R.; Murthy, Z. V. P.

    2015-09-01

    In the present study, the ability of porous silicon (PSi) based distributed Bragg reflector (DBR) microparticles for sustained and observable delivery of the antiviral agent acyclovir (ACV) is demonstrated. DBR was fabricated by electrochemical etching of single crystal silicon wafers and ultrasonic fractured to prepare microparticles. The hydrogen-terminated native surface of DBR microparticles was modified by thermal oxidation and thermal hydrosilylation. Particles were loaded with ACV and drug release experiments were conducted in phosphate buffered saline. Drug loading and surface chemistry of particles were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Drug release profiles from PSi DBR particles show sustained release behavior from all three studied surface chemistries. Drug release from particles was also monitored from change in color of particles.

  6. Collective and individual glycolytic oscillations in yeast cells encapsulated in alginate microparticles.

    PubMed

    Amemiya, Takashi; Obase, Kouhei; Hiramatsu, Naoki; Itoh, Kiminori; Shibata, Kenichi; Takinoue, Masahiro; Yamamoto, Tetsuya; Yamaguchi, Tomohiko

    2015-06-01

    Yeast cells were encapsulated into alginate microparticles of a few hundred micrometers diameter using a centrifuge-based droplet shooting device. We demonstrate the first experimental results of glycolytic oscillations in individual yeast cells immobilized in this way. We investigated both the individual and collective oscillatory behaviors at different cell densities. As the cell density increased, the amplitude of the individual oscillations increased while their period decreased, and the collective oscillations became more synchronized, with an order parameter close to 1 (indicating high synchrony). We also synthesized biphasic-Janus microparticles encapsulating yeast cells of different densities in each hemisphere. The cellular oscillations between the two hemispheres were entrained at both the individual and population levels. Such systems of cells encapsulated into microparticles are useful for investigating how cell-to-cell communication depends on the density and spatial distribution of cells. PMID:26117131

  7. Clear-Sky Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-2 Using Airborne Sunphotometer, Airborne In-Situ, Space-Borne, and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Livingston, John M.; Russell, Philip B.; Durkee, Philip A.; Jonsson, Haflidi H.; Collins, Donald R.; Flagan, Richard C.; Seinfeld, John H.; Gasso, Santiago; Hegg, Dean A.; Oestroem, Elisabeth; Voss, Kenneth J.; Gordon, Howard R.; Formenti, Paolo; Andreae, Meinrat O.

    2000-01-01

    We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (optical particle counter, nephelometer, and absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidar and sunphotometer measurements. During both days discussed here, vertical profiles flown in cloud-free air masses revealed 3 distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. A key result of this study is the achievement of closure between extinction or layer aerosol optical depth (AOD) computed from continuous in-situ aerosol size-distributions and composition and those measured with the airborne sunphotometer. In the dust, the agreement in layer AOD (lambda = 380-1060 nm) is 3-8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at lambda = 525 nm), but these differences are within the combined error bars of the measurements and computations.

  8. Airborne laser scanning based quantification of dead-ice melting in recently deglaciated terrain

    NASA Astrophysics Data System (ADS)

    Klug, C.; Sailer, R.; Schümberg, M.; Stötter, J.

    2012-04-01

    Dead-ice is explained as stagnant glacial ice, not influenced by glacier flow anymore. Whenever glaciers have negative mass balances and an accumulation of debris-cover on the surface, dead-ice may form. Although, there are numerous conceptual process-sediment-landform models for the melt-out of dead-ice bodies and areas of dead-ice environments at glacier margins are easily accessible, just a few quantitative studies of dead-ice melting have been carried out so far. Processes and rates of dead-ice melting are commonly believed to be controlled by climate and debris-cover properties, but there is still a lack of knowledge about this fact. This study has a focus on the quantification of process induced volumetric changes caused by dead-ice melting. The research for this project was conducted at Hintereisferner (Ötztal Alps, Austria), Gepatschferner (Ötztal Alps, Austria) and Schrankar (Stubai Alps, Austria), areas for which a good data basis of ALS (Airborne Laser Scanning) measurements is available. 'Hintereisferner' can be characterized as a typical high alpine environment in mid-latitudes, which ranges between approximately 2250 m and 3740 m a.s.l.. The Hintereisferner region has been investigated intensively since many decades. Two dead ice bodies at the orographic right side and one at the orographic left side of the Hintereisferner glacier terminus (approx. at 2500 m to 2550 m a.s.l.) were identified. Since 2001, ALS measurements have been carried out regularly at Hintereisferner resulting in a unique data record of 21 ALS flight campaigns, allowing long-term explorations of the two dead-ice areas. The second study area of 'Gepatschferner' in the Kaunertal ranges between 2060 m and 3520 m a.s.l. and is the second largest glacier of Austria. Near the glacier tongue at the orographic right side a significant dead ice body has formed. The ALS data used for quantification include a period of time of 4 years (2006 - 2010). 'Schrankar' is located in the Western

  9. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  10. Use of In Situ and Airborne Multiangle Data to Assess MODIS- and Landsat-based Estimates of Surface Albedo

    NASA Technical Reports Server (NTRS)

    Roman, Miguel O.; Gatebe, Charles K.; Shuai, Yanmin; Wang, Zhuosen; Gao, Feng; Masek, Jeff; Schaaf, Crystal B.

    2012-01-01

    The quantification of uncertainty of global surface albedo data and products is a critical part of producing complete, physically consistent, and decadal land property data records for studying ecosystem change. A current challenge in validating satellite retrievals of surface albedo is the ability to overcome the spatial scaling errors that can contribute on the order of 20% disagreement between satellite and field-measured values. Here, we present the results from an uncertain ty analysis of MODerate Resolution Imaging Spectroradiometer (MODIS) and Landsat albedo retrievals, based on collocated comparisons with tower and airborne multi-angular measurements collected at the Atmospheric Radiation Measurement Program s (ARM) Cloud and Radiation Testbed (CART) site during the 2007 Cloud and Land Surface Interaction Campaign (CLAS33 IC 07). Using standard error propagation techniques, airborne measurements obtained by NASA s Cloud Absorption Radiometer (CAR) were used to quantify the uncertainties associated with MODIS and Landsat albedos across a broad range of mixed vegetation and structural types. Initial focus was on evaluating inter-sensor consistency through assessments of temporal stability, as well as examining the overall performance of satellite-derived albedos obtained at all diurnal solar zenith angles. In general, the accuracy of the MODIS and Landsat albedos remained under a 10% margin of error in the SW(0.3 - 5.0 m) domain. However, results reveal a high degree of variability in the RMSE (root mean square error) and bias of albedos in both the visible (0.3 - 0.7 m) and near-infrared (0.3 - 5.0 m) broadband channels; where, in some cases, retrieval uncertainties were found to be in excess of 20%. For the period of CLASIC 07, the primary factors that contributed to uncertainties in the satellite-derived albedo values include: (1) the assumption of temporal stability in the retrieval of 500 m MODIS BRDF values over extended periods of cloud

  11. Controlled delivery of bovine serum albumin from carboxymethyl xanthan microparticles.

    PubMed

    Maiti, Sabyasachi; Ray, Somasree; Sa, Biswanath

    2009-01-01

    Bovine serum albumin (BSA)-loaded carboxymethyl xanthan (CMX) microparticles were prepared following gelation of sodium carboxymethyl xanthan (SCMX) gum with different concentrations (1-5%) of aluminium chloride (AlCl3). The microparticles prepared using 1% AlCl3 were subsequently coated with 0.5% aqueous solution of either SCMX gum or sodium alginate. Both uncoated and coated microparticles were characterized for entrapment efficiency, surface morphology, particle size, in vitro release and protein stability. The uncoated microparticles became non-spherical and the mean diameter was found to increase with increasing AlCl3 concentration. Higher concentration of AlCl3 decreased BSA entrapment efficiency of the uncoated microparticles from 86-61%. Furthermore, BSA entrapment in coated microparticles was found lower (78-79%) than uncoated microparticles prepared using 1% AlCl3. Although, the uncoated microparticles released almost half of its content in NaCl-HCl buffer solution (pH 1.2) in 2 h, the alginate and xanthan coated microparticles did not liberate a substantial amount of entrapped protein within the same period and prolonged the release in PBS solution (pH 7.4) up to 10 and 12 h, respectively. The microparticles released the protein via diffusion and swelling of the polymer matrix. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that BSA integrity was well retained in the CMX microparticles. PMID:19562833

  12. Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots

    PubMed Central

    Zubairova, Laily D.; Nabiullina, Roza M.; Nagaswami, Chandrasekaran; Zuev, Yuriy F.; Mustafin, Ilshat G.; Litvinov, Rustem I.; Weisel, John W.

    2015-01-01

    Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1–0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis. PMID:26635081

  13. Summary of flight tests of an airborne lighting locator system and comparison with ground-based measurements of precipitation and turbulence

    NASA Technical Reports Server (NTRS)

    Fisher, B. D.; Crabill, N. L.

    1981-01-01

    Data from an airborne lightning locator system and data relating to storm intensity obtained by ground-based Doppler radars and the S-band research radar are presented. When comparing lightning locations from the airborne lightning locator system with ground-based Doppler radar measurements of reflectivity and spectrum width, the lightning locations tended to be further from the aircraft position than the Doppler radar contours, but at the same relative bearing from the aircraft as the Doppler contours. The results also show that convective storms generate little or no lightning for a significant part of their life cycle, but can produce at least moderate turbulence. Therefore, it is concluded that a lack of lightning activity cannot be accepted as an inference of a corresponding lack of other hazards to the flight of aircraft through convective storms.

  14. Computer-based bioassay for evaluation of sensory irritation of airborne chemicals and its limit of detection.

    PubMed

    Alarie, Y

    1998-04-01

    We expanded a previously described rule-based computerized method to recognize the sensory irritating effect of airborne chemicals. Using 2-chlorobenzylchloride (CBC) as a sensory irritant, characteristic modifications of the normal breathing pattern of exposed mice were evaluated by measuring the duration of braking (TB) after inspiration and the resulting decrease in breathing frequency. From the measurement of TB, each breath was then classified as normal (N) or sensory irritation (S). Using increasing exposure concentrations, the classification S increased from < or = 2% (equivalent to sham-exposure) to 100% within a narrow exposure concentration range. The potency of CBC was then evaluated by calculating the concentration necessary to produce 50% of the breaths classified as S, i.e., S50. This approach is easier to use than obtaining RD50 (decrease in respiratory frequency by 50%) when high exposure concentrations are difficult to achieve. Detection limits were also established for this bioassay and experiments were conducted to obtain a level of response just around these limits, in order to delineate the practicality of using this bioassay at low exposure concentrations. Using this approach, sensory irritation was the only effect induced by CBC at low exposure concentrations. However, bronchoconstriction and pulmonary irritation were superimposed on this effect at higher exposure concentrations. PMID:9630013

  15. Using object-based analysis to derive surface complexity information for improved filtering of airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Yan, Menglong; Blaschke, Thomas; Tang, Hongzhao; Xiao, Chenchao; Sun, Xian; Zhang, Daobing; Fu, Kun

    2016-03-01

    Airborne laser scanning (ALS) is a technique used to obtain Digital Surface Models (DSM) and Digital Terrain Models (DTM) efficiently, and filtering is the key procedure used to derive DTM from point clouds. Generating seed points is an initial step for most filtering algorithms, whereas existing algorithms usually define a regular window size to generate seed points. This may lead to an inadequate density of seed points, and further introduce error type I, especially in steep terrain and forested areas. In this study, we propose the use of objectbased analysis to derive surface complexity information from ALS datasets, which can then be used to improve seed point generation.We assume that an area is complex if it is composed of many small objects, with no buildings within the area. Using these assumptions, we propose and implement a new segmentation algorithm based on a grid index, which we call the Edge and Slope Restricted Region Growing (ESRGG) algorithm. Surface complexity information is obtained by statistical analysis of the number of objects derived by segmentation in each area. Then, for complex areas, a smaller window size is defined to generate seed points. Experimental results show that the proposed algorithm could greatly improve the filtering results in complex areas, especially in steep terrain and forested areas.

  16. Comparison of field and airborne laser scanning based crown cover estimates across land cover types in Kenya

    NASA Astrophysics Data System (ADS)

    Heiskanen, J.; Korhonen, L.; Hietanen, J.; Heikinheimo, V.; Schafer, E.; Pellikka, P. K. E.

    2015-04-01

    Tree crown cover (CC) provides means for the continuous land cover characterization of complex tropical landscapes with multiple land uses and variable degrees of degradation. It is also a key parameter in the international forest definitions that are basis for monitoring global forest cover changes. Recently, airborne laser scanning (ALS) has emerged as a practical method for accurate CC mapping, but ALS derived CC estimates have rarely been assessed with field data in the tropics. Here, our objective was to compare the various field and ALS based CC estimates across multiple land cover types in the Taita Hills, Kenya. The field data was measured from a total of 178 sample plots (0.1 ha) in 2013 and 2014. The most accurate field measurement method, line intersect sampling using Cajanus tube, was used in 37 plots. Other methods included CC estimate based on the tree inventory data (144 plots), crown relascope (43 plots) and hemispherical photography (30 plots). Three ALS data sets, including two scanners and flying heights, were acquired concurrently with the field data collection. According to the results, the first echo cover index (FCI) from ALS data had good agreement with the most accurate field based CC estimates (RMSD 7.1% and 2.7% depending on the area and scan). The agreement with other field based methods was considerably worse. Furthermore, we observed that ALS cover indices were robust between the different scans in the overlapping area. In conclusion, our results suggest that ALS provides a reliable method for continuous CC mapping across tropical land cover types although dense shrub layer and tree-like herbaceous plants can cause overestimation of CC.

  17. Neutron Activated Samarium-153 Microparticles for Transarterial Radioembolization of Liver Tumour with Post-Procedure Imaging Capabilities

    PubMed Central

    Hashikin, Nurul Ab. Aziz; Yeong, Chai-Hong; Abdullah, Basri Johan Jeet; Ng, Kwan-Hoong; Chung, Lip-Yong; Dahalan, Rehir; Perkins, Alan Christopher

    2015-01-01

    Introduction Samarium-153 (153Sm) styrene divinylbenzene microparticles were developed as a surrogate for Yttrium-90 (90Y) microspheres in liver radioembolization therapy. Unlike the pure beta emitter 90Y, 153Sm possess both therapeutic beta and diagnostic gamma radiations, making it possible for post-procedure imaging following therapy. Methods The microparticles were prepared using commercially available cation exchange resin, Amberlite IR-120 H+ (620–830 μm), which were reduced to 20–40 μm via ball mill grinding and sieve separation. The microparticles were labelled with 152Sm via ion exchange process with 152SmCl3, prior to neutron activation to produce radioactive 153Sm through 152Sm(n,γ)153Sm reaction. Therapeutic activity of 3 GBq was referred based on the recommended activity used in 90Y-microspheres therapy. The samples were irradiated in 1.494 x 1012 n.cm-2.s-1 neutron flux for 6 h to achieve the nominal activity of 3.1 GBq.g-1. Physicochemical characterisation of the microparticles, gamma spectrometry, and in vitro radiolabelling studies were carried out to study the performance and stability of the microparticles. Results Fourier Transform Infrared (FTIR) spectroscopy of the Amberlite IR-120 resins showed unaffected functional groups, following size reduction of the beads. However, as shown by the electron microscope, the microparticles were irregular in shape. The radioactivity achieved after 6 h neutron activation was 3.104 ± 0.029 GBq. The specific activity per microparticle was 53.855 ± 0.503 Bq. Gamma spectrometry and elemental analysis showed no radioactive impurities in the samples. Radiolabelling efficiencies of 153Sm-Amberlite in distilled water and blood plasma over 48 h were excellent and higher than 95%. Conclusion The laboratory work revealed that the 153Sm-Amberlite microparticles demonstrated superior characteristics for potential use in hepatic radioembolization. PMID:26382059

  18. Comparison of Northern Ireland radon maps based on indoor radon measurements and geology with maps derived by predictive modelling of airborne radiometric and ground permeability data.

    PubMed

    Appleton, J D; Miles, J C H; Young, M

    2011-03-15

    Publicly available information about radon potential in Northern Ireland is currently based on indoor radon results averaged over 1-km grid squares, an approach that does not take into account the geological origin of the radon. This study describes a spatially more accurate estimate of the radon potential of Northern Ireland using an integrated radon potential mapping method based on indoor radon measurements and geology that was originally developed for mapping radon potential in England and Wales. A refinement of this method was also investigated using linear regression analysis of a selection of relevant airborne and soil geochemical parameters from the Tellus Project. The most significant independent variables were found to be eU, a parameter derived from airborne gamma spectrometry measurements of radon decay products in the top layer of soil and exposed bedrock, and the permeability of the ground. The radon potential map generated from the Tellus data agrees in many respects with the map based on indoor radon data and geology but there are several areas where radon potential predicted from the airborne radiometric and permeability data is substantially lower. This under-prediction could be caused by the radon concentration being lower in the top 30 cm of the soil than at greater depth, because of the loss of radon from the surface rocks and soils to air. PMID:21310464

  19. Positive association between concentration of phthalate metabolites in urine and microparticles in adolescents and young adults.

    PubMed

    Lin, Chien-Yu; Hsieh, Chia-Jung; Lo, Shyh-Chyi; Chen, Pau-Chung; Torng, Pao-Ling; Hu, Anren; Sung, Fung-Chang; Su, Ta-Chen

    2016-01-01

    Di-(2-ethylhexyl) phthalate (DEHP) has been used worldwide in various products for many years. In vitro studies have shown that exposure to DEHP and its metabolite mono(2-ethylhexyl) phthalate (MEHP) induces endothelial cell apoptosis. Moreover, exposure to DEHP had been linked to cardiovascular risk factors and cardiovascular diseases in epidemiological studies. Circulating microparticles have been known to be indicators of vascular injury. However, whether DEHP or its metabolites are independently associated with microparticles in humans remains unknown. From 2006 to 2008, we recruited 793 subjects (12-30years) from a population-based sample to participate in this cardiovascular disease prevention examination. Each participant was subjected to interviews and biological sample collection to determine the relationship between concentrations of DEHP metabolites MEHP, mono(ethyl-5-hydroxyhexyl) phthalate, and mono(2-ethly-5-oxoheyl) phthalate in urine and concentrations of endothelial microparticles (CD62E and CD31+/CD42a-), platelet microparticles (CD62P and CD31+/CD42a+), and CD14 in serum. Multiple linear regression analysis revealed that an ln-unit increase in MEHP concentration in urine was positively associated with an increase in serum microparticle counts/μL of 0.132 (±0.016) in CD31+/CD42a- (endothelial apoptosis marker), 0.117 (±0.023) in CD31+/CD42a+ (platelet apoptosis marker), and 0.026 (±0.007) in CD14 (monocyte, macrophage, and neutrophil activation marker). There was no association between DEHP metabolite concentration and CD62E or CD62P. In conclusion, a higher MEHP concentration in urine was associated with an increase in endothelial and platelet microparticles in this cohort of adolescents and young adults. Further studies are warranted to clarify the causal relationship between exposure to DEHP and atherosclerosis. PMID:27104673

  20. Emergent properties in experiments with active microparticles

    NASA Astrophysics Data System (ADS)

    Palacci, Jeremie

    Self-propelled micro-particles are intrinsically out-of-equilibrium. This renders their physics far richer than passive colloids and give rise to the emergence of complex phenomena e.g. collective behavior, swarming... I will present experimental demonstration of emergent properties beyond equilibrium.

  1. Encapsulation of Volatile Compounds in Silk Microparticles

    PubMed Central

    Elia, Roberto; Guo, Jin; Budijono, Stephanie; Normand, Valery; Benczédi, Daniel; Omenetto, Fiorenzo

    2015-01-01

    Various techniques have been employed to entrap fragrant oils within microcapsules or microparticles in the food, pharmaceutical, and chemical industries for improved stability and delivery. In the present work we describe the use of silk protein microparticles for encapsulating fragrant oils using ambient processing conditions to form an all-natural biocompatible matrix. These microparticles are stabilized via physical crosslinking, requiring no chemical agents, and are prepared with aqueous and ambient processing conditions using polyvinyl alcohol-silk emulsions. The particles were loaded with fragrant oils via direct immersion of the silk particles within an oil bath. The oil-containing microparticles were coated using alternating silk and polyethylene oxide layers to control the release of the oil from the microspheres. Particle morphology and size, oil loading capacity, release rates as well as silk-oil interactions and coating treatments were characterized. Thermal analysis demonstrated that the silk coatings can be tuned to alter both retention and release profiles of the encapsulated fragrance. These oil containing particles demonstrate the ability to adsorb and controllably release oils, suggesting a range of potential applications including cosmetic and fragrance utility. PMID:26568787

  2. Scaffold pore space modulation through intelligent design of dissolvable microparticles.

    PubMed

    Liebschner, Michael A K; Wettergreen, Matthew

    2012-01-01

    The goal of this area of research is to manipulate the pore space of scaffolds through the application of an intelligent design concept on dissolvable microparticles. To accomplish this goal, we developed an efficient and repeatable process for fabrication of microparticles from multiple materials using a combination of rapid prototyping (RP) and soft lithography. Phase changed 3D printing was used to create masters for PDMS molds. A photocrosslinkable polymer was then delivered into these molds to make geometrically complex 3D microparticles. This repeatable process has demonstrated to generate the objects with greater than 95% repeatability with complete pattern transfer. This process was illustrated for three different shapes of various complexities. The shapes were based on the extrusion of 2D shapes. This may allow simplification of the fabrication process in the future combined with a direct transfer of the findings. Altering the shapes of particles used for porous scaffold fabrication will allow for tailoring of the pore shapes, and therefore their biological function within a porous tissue engineering scaffold. Through permeation experiments, we have shown that the pore geometry may alter the permeability coefficient of scaffolds while influencing mechanical properties to a lesser extent. By selecting different porogen shapes, the nutrition transport and scaffold degradation can be significantly influenced with minimal effect on the mechanical integrity of the construct. In addition, the different shapes may allow a control of drug release by modifying their surface-to-volume ratio, which could modulate drug delivery over time. While soft lithography is currently used with photolithography, its high precision is offset by high cost of production. The employment of RP to a specific resolution offers a much less expensive alternative with increased throughput due to the speed of current RP systems. PMID:22692605

  3. Technical bases for plastic suit reduction factors against airborne tritium exposure

    SciTech Connect

    Edwards, T.

    1993-04-19

    Radiological Engineering was requested to provide bases for certain Tritium Stay Time Charts. These charts had evidently been developed by calculating stay times based upon unprotected exposure to HTO concentrations in air and applying correction factors according to the type of plastic suit being worn. No technical justification could be found for results given for 12 mil and 9 mil plastic suits. On the basis of available empirical data, the stay time charts were revised.

  4. Circulating Microparticles as Disease-Specific Biomarkers of Severity of Inflammation in Patients with Hepatitis C or Nonalcoholic Steatohepatitis

    PubMed Central

    Kornek, Miroslaw; Lynch, Michael; Mehta, Shruti H.; Lai, Michelle; Exley, Mark; Afdhal, Nezam H.; Schuppan, Detlef

    2012-01-01

    Background & Aims Microparticles released into the bloodstream upon activation or apoptosis of CD4+ and CD8+ T cells correlate with inflammation, determined by histologic analysis, in patients with chronic hepatitis C (CHC). Patients with nonalcoholic fatter liver (NAFL) or nonalcoholic steatohepatitis (NASH) can be differentiated from those with CHC based on activation of distinct sets of immune cells in the liver. Methods We compared profiles of circulating microparticles from patients with NAFL and NASH (n=67) to those with CHC (n=42), compared with healthy individuals (controls) using flow cytometry; the profiles were correlated with inflammation grade and fibrosis stage, based on histologic analyses. We assessed the ability of the profiles determine the severity of inflammation and fibrosis, based on serologic and histologic analyses. Results Patients with CHC had increased levels of microparticles from CD4+ and CD8+ T cells; the levels correlated with disease severity, based on histologic analysis and levels of alanine aminotransferase (ALT). Patients with NAFL or NASH had significant increases in numbers of microparticles from invariant natural killer T (iNKT) cells and macrophages/monocytes (CD14+), which mediate pathogenesis of NASH. Microparticles from CD14+ and iNKT cells correlated with levels of ALT and severity of NASH (based on histology). Levels of microparticles could differentiate between patients with NAFL or NASH and those with CHC, or either group of patients and controls (area under the receiver operating characteristic curves ranging from 0.56 to 0.99). Conclusions Quantification of immune cell microparticles from serum samples can be used to assess the extent and characteristics of hepatic inflammation in patients with chronic liver disease. PMID:22537612

  5. To enhancement illuminance efficiency of OLED by thin film included microparticle

    NASA Astrophysics Data System (ADS)

    Chiu, Chuang-Hung; Chien, Chao-Heng; Lee, Jen-Chi; Chien, Wei-Cheng

    2015-09-01

    An optical thin film was provided to address light illuminance efficiency of OLED up to 80%. A polymer material was used as a film base material which could avoid the influence of total reflection angle. One kinds of oxidized metal micro-particles was chosen to dope inside the optical thin film and to increase scattering and refractive effect.

  6. Reconstruction, Quantification, and Visualization of Forest Canopy Based on 3d Triangulations of Airborne Laser Scanning Point Data

    NASA Astrophysics Data System (ADS)

    Vauhkonen, J.

    2015-03-01

    Reconstruction of three-dimensional (3D) forest canopy is described and quantified using airborne laser scanning (ALS) data with densities of 0.6-0.8 points m-2 and field measurements aggregated at resolutions of 400-900 m2. The reconstruction was based on computational geometry, topological connectivity, and numerical optimization. More precisely, triangulations and their filtrations, i.e. ordered sets of simplices belonging to the triangulations, based on the point data were analyzed. Triangulating the ALS point data corresponds to subdividing the underlying space of the points into weighted simplicial complexes with weights quantifying the (empty) space delimited by the points. Reconstructing the canopy volume populated by biomass will thus likely require filtering to exclude that volume from canopy voids. The approaches applied for this purpose were (i) to optimize the degree of filtration with respect to the field measurements, and (ii) to predict this degree by means of analyzing the persistent homology of the obtained triangulations, which is applied for the first time for vegetation point clouds. When derived from optimized filtrations, the total tetrahedral volume had a high degree of determination (R2) with the stem volume considered, both alone (R2=0.65) and together with other predictors (R2=0.78). When derived by analyzing the topological persistence of the point data and without any field input, the R2 were lower, but the predictions still showed a correlation with the field-measured stem volumes. Finally, producing realistic visualizations of a forested landscape using the persistent homology approach is demonstrated.

  7. a Segment-Based Approach for DTM Derivation of Airborne LIDAR Data

    NASA Astrophysics Data System (ADS)

    Tang, Dejin; Zhou, Xiaoming; Jiang, Jie; Li, Caiping

    2016-06-01

    With the characteristics of LIDAR system, raw point clouds represent both terrain and non-terrain surface. In order to generate DTM, the paper introduces one improved filtering method based on the segment-based algorithms. The method generates segments by clustering points based on surface fitting and uses topological and geometric properties for classification. In the process, three major steps are involved. First, the whole datasets is split into several small overlapping tiles. For each tile, by removing wall and vegetation points, accurate segments are found. The segments from all tiles are assigned unique segment number. In the following step, topological descriptions for the segment distribution pattern and height jump between adjacent segments are identified in each tile. Based on the topology and geometry, segment-based filtering algorithm is performed for classification in each tile. Then, based on the spatial location of the segment in one tile, two confidence levels are assigned to the classified segments. The segments with low confidence level are because of losing geometric or topological information in one tile. Thus, a combination algorithm is generated to detect corresponding parts of incomplete segment from multiple tiles. Then another classification algorithm is performed for these segments. The result of these segments will have high confidence level. After that, all the segments in one tile have high confidence level of classification result. The final DTM will add all the terrain segments and avoid duplicate points. At the last of the paper, the experiment show the filtering result and be compared with the other classical filtering methods, the analysis proves the method has advantage in the precision of DTM. But because of the complicated algorithms, the processing speed is little slower, that is the future improvement which should been researched.

  8. High resolution mapping of the tropospheric NO2 distribution in three Belgian cities based on airborne APEX remote sensing

    NASA Astrophysics Data System (ADS)

    Tack, Frederik; Merlaud, Alexis; Fayt, Caroline; Danckaert, Thomas; Iordache, Daniel; Meuleman, Koen; Deutsch, Felix; Adriaenssens, Sandy; Fierens, Frans; Van Roozendael, Michel

    2015-04-01

    An approach is presented to retrieve tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) and to map the NO2 two dimensional distribution at high resolution, based on Airborne Prism EXperiment (APEX) observations. APEX, developed by a Swiss-Belgian consortium on behalf of ESA (European Space Agency), is a pushbroom hyperspectral imager with a high spatial (approximately 3 m at 5000 m ASL), spectral (413 to 2421 nm in 533 narrow, contiguous spectral bands) and radiometric (14-bit) resolution. VCDs are derived, following a similar approach as described in the pioneering work of Popp et al. (2012), based on (1) spectral calibration and spatial binning of the observed radiance spectra in order to improve the spectral resolution and signal-to-noise ratio, (2) Differential Optical Absorption Spectroscopy (DOAS) analysis of the pre-processed spectra in the visible wavelength region, with a reference spectrum containing low NO2 absorption, in order to quantify the abundance of NO2 along the light path, based on its molecular absorption structures and (3) radiative transfer modeling for air mass factor calculation in order to convert slant to vertical columns. This study will be done in the framework of the BUMBA (Belgian Urban NO2 Monitoring Based on APEX hyperspectral data) project. Dedicated flights with APEX mounted in a Dornier DO-228 airplane, operated by Deutsches Zentrum für Luft- und Raumfahrt (DLR), are planned to be performed in Spring 2015 above the three largest and most heavily polluted Belgian cities, i.e. Brussels, Antwerp and Liège. The retrieved VCDs will be validated by comparison with correlative ground-based and car-based DOAS observations. Main objectives are (1) to assess the operational capabilities of APEX to map the NO2 field over an urban area at high spatial and spectral resolution in a relatively short time and cost-effective way, and to characterise all aspects of the retrieval approach; (2) to use the APEX NO2 measurements

  9. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  10. Steroid/mucokinetic hybrid nanoporous microparticles for pulmonary drug delivery.

    PubMed

    Tewes, Frederic; Paluch, Krzysztof J; Tajber, Lidia; Gulati, Karan; Kalantri, Devesh; Ehrhardt, Carsten; Healy, Anne Marie

    2013-11-01

    In a number of pulmonary diseases, patients may develop abnormally viscous mucus reducing drug efficacy. To increase budesonide diffusion within lung fluid, we developed nanoporous microparticles (NPMPs) composed of budesonide and a mucokinetic, ambroxol hydrochloride, to be inhaled as a dry powder. Budesonide/ambroxol-HCl particles were formulated by spray drying and characterised by various physicochemicals methods. Aerodynamic properties were evaluated using a cascade impactor. Drugs apparent permeability coefficients were calculated across mucus producing Calu-3 cell monolayers cultivated at an air-liquid interface. Microparticles made only from budesonide and ambroxol-HCl had smooth surfaces. In the presence of ammonium carbonate ((NH4)2CO3), NPMPs were formulated, with significantly (P<0.05) superior aerodynamic properties (MMAD=1.87±0.22 μm and FPF=84.0±2.6%). The formation of nanopores and the increase in the specific surface area in the presence of (NH4)2CO3 were mainly attributed to the neutralisation of ambroxol-HCl to form ambroxol base. Thus, ambroxol base could behave in the same manner as budesonide and prompt nanoprecipitation when spray dried from an ethanol/water mix occurs. All formulations were amorphous, which should enhance dissolution rate and diffusion through lung fluid. These NPMPs were able to improve budesonide permeability across mucus producing Calu-3 cell monolayers (P<0.05) suggesting that they should be able to enhance budesonide diffusion in the lungs through viscous mucus. PMID:23563102

  11. Airborne and ground-based measurements of the trace gases and particles emitted from prescribed fires in the United States

    SciTech Connect

    Burling, Ian; Yokelson, Robert J.; Akagi, Sheryl; Urbanski, Shawn; Wold, Cyle E.; Griffith, David WT; Johnson, Timothy J.; Reardon, James; Weise, David

    2011-12-07

    We measured the emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous suggestions that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured the emissions in the convective smoke plume from our airborne platform at the same time the unlofted residual smoldering combustion emissions were measured with our ground-based platform after the flame front passed through. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including significant 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts of smoke that disperses at ground level, and we show that the normally-ignored unlofted emissions can also significantly impact estimates of total emissions. Preliminary evidence of large emissions of monoterpenes was seen in the residual smoldering spectra, but we have not yet quantified these emissions. These data should lead to an improved capacity to model the impacts of biomass burning in similar

  12. Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.; Kucera, Paul A.

    2004-01-01

    This report describes the work performed by the University of North Dakota (UND) under NASA Grant NAG5-11509, titled Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE. This work focused on the collection of data by two key platforms: the UND Citation II research aircraft and the NASA NPOL radar system. The CRYSTAL-FACE (C-F) mission addresses several key issues from the NASA Earth System Enterprise, including the variability of water in the atmosphere, the forcing provided by tropical cirrus and the response of the Earth system to this forcing. In situ measurements and radar observations of tropical convection, cirrus clouds and their environment are core elements of C-F. One of the primary issues that C-F is addressing is the relationship of tropical cirrus anvils to precipitating deep convection. The in situ measurements from C-F are being used to validate remote sensing of Earth-Atmosphere properties, increase our knowledge of upper tropospheric water vapor and its distribution, and increase our knowledge of tropical cirrus cloud morphology and composition. Radar measurements, especially polarimetric diversity observations available fiom the NASA NPOL radar, are providing essential information about the initiation, modulation, and dissipation of convective cores and the generation of associated anvils in tropical convection. Specifically, NPOL radar measurements contain information about convective intensity and its vertical structure for comparison with thermodynamic and kinematic environmental measurements observed from soundings. Because of the polarimetric diversity of MOL, statistics on bulk microphysical properties can be retrieved and compared to the other characteristics of convection and associated cirrus anvils. In summary, the central objectives of this proposal were to deploy the UND Citation research aircraft as an in situ sensing platform for this mission and to provide collaborative

  13. Airborne measurements of the impact of ground-based glaciogenic cloud seeding on orographic precipitation

    NASA Astrophysics Data System (ADS)

    Miao, Qun; Geerts, Bart

    2013-07-01

    Data from in situ probes and a vertically-pointing mm-wave Doppler radar aboard a research aircraft are used to study the cloud microphysical effect of glaciogenic seeding of cold-season orographic clouds. A previous study (Geerts et al., 2010) has shown that radar reflectivity tends to be higher during seeding periods in a shallow layer above the ground downwind of ground-based silver iodide (AgI) nuclei generators. This finding is based on seven flights, conducted over a mountain in Wyoming (the Unites States), each with a no-seeding period followed by a seeding period. In order to assess this impact, geographically fixed flight tracks were flown over a target mountain, both upwind and downwind of the AgI generators. This paper examines data from the same flights for further evidence of the cloud seeding impact. Composite radar data show that the low-level reflectivity increase is best defined upwind of the mountain crest and downwind of the point where the cloud base intersects the terrain. The main argument that this increase can be attributed to AgI seeding is that it is confined to a shallow layer near the ground where the flow is turbulent. Yet during two flights when clouds were cumuliform and coherent updrafts to flight level were recorded by the radar, the seeding impact was evident in the flight-level updrafts (about 610 m above the mountain peak) as a significant increase in the ice crystal concentration in all size bins. The seeding effect appears short-lived as it is not apparent just downwind of the crest.

  14. Optical fiber-based laser remote sensor for airborne measurement of wind velocity and turbulence.

    PubMed

    Spuler, Scott M; Richter, Dirk; Spowart, Michael P; Rieken, Kathrin

    2011-02-20

    We discuss an optical fiber-based continuous-wave coherent laser system for measuring the wind speed in undisturbed air ahead of an aircraft. The operational principles of the instrument are described, and estimates of performance are presented. The instrument is demonstrated as a single line of sight, and data from the inaugural test flight of August 2010 is presented. The system was successfully operated under various atmospheric conditions, including cloud and clear air up to 12 km (40,300 ft). PMID:21343963

  15. Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites

    NASA Astrophysics Data System (ADS)

    Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.

    2015-12-01

    Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.

  16. LIF-instrument for Airborne and Ground-Based Measurement of OH and HO2 Radicals in the Troposphere.

    NASA Astrophysics Data System (ADS)

    Broch, Sebastian; Bachner, Mathias; Dahlhoff, Knut; Holland, Frank; Hofzumahaus, Andreas; Jansen, Peter; Meier, Andreas; Raak, Dominik; Wolters, Jörg; Wahner, Andreas

    2010-05-01

    The radicals OH and HO2 (also named HOx) play an important role in the chemical degradation and transformation of most trace gases in the troposphere. The rate of these processes depends strongly on the magnitude of the radical concentrations. Due to their high reactivity, their concentrations are very low (sub pptv and pptv range) and exhibit a strong regional variability. Therefore exact measurement of HOx in different regions and at different altitudes in the troposphere are very important for the understanding and modelling of the self cleaning ability of the atmosphere. Here, we present the technical concept and results of laboratory test measurements of a new, mobile instrument for measurement of OH and HO2 radicals based on the proven laser induced fluorescence (LIF) technique (Holland et al., 1995, 2003; Schlosser et al., 2007, 2009). The instrument is planned to be used for ground-based field measurements, for airborne application on a Zeppelin (h = 0-2 km) and on the new German research aircraft HALO (Gulfstream V, h = 0-15 km). The setup of the new instrument is modular to allow different configurations for different applications and all components are newly designed to reduce weight, size and power requirement. For the implementation on HALO completely new air-inlet systems for OH and HO2 were developed at Forschungszentrum Jülich. The OH inlet is based on the shrouded-inlet design by Eisele et al. (1997). The design has been modified to reduce size and weight, and cope with the flight conditions and certification requirements of HALO. These are different than those for the original design, like higher speed, greater ceiling height and strength against bird strike. Compared to our ground-based measurement system, the aircraft inlet requires long inlet tubes which modify the detection sensitivity and possible interferences. Since the sensitivity of our instrument depends on ambient pressure, the OH inlet system is equipped with a calibration system

  17. Airborne and ground based lidar measurements of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  18. Quantifying greenhouse gas emissions from coal fires using airborne and ground-based methods

    USGS Publications Warehouse

    Engle, M.A.; Radke, L.F.; Heffern, E.L.; O'Keefe, J. M. K.; Smeltzer, C.D.; Hower, J.C.; Hower, J.M.; Prakash, A.; Kolker, A.; Eatwell, R.J.; ter, Schure A.; Queen, G.; Aggen, K.L.; Stracher, G.B.; Henke, K.R.; Olea, R.A.; Roman-Colon, Y.

    2011-01-01

    Coal fires occur in all coal-bearing regions of the world and number, conservatively, in the thousands. These fires emit a variety of compounds including greenhouse gases. However, the magnitude of the contribution of combustion gases from coal fires to the environment is highly uncertain, because adequate data and methods for assessing emissions are lacking. This study demonstrates the ability to estimate CO2 and CH4 emissions for the Welch Ranch coal fire, Powder River Basin, Wyoming, USA, using two independent methods: (a) heat flux calculated from aerial thermal infrared imaging (3.7-4.4td-1 of CO2 equivalent emissions) and (b) direct, ground-based measurements (7.3-9.5td-1 of CO2 equivalent emissions). Both approaches offer the potential for conducting inventories of coal fires to assess their gas emissions and to evaluate and prioritize fires for mitigation. ?? 2011.

  19. Low-cost lightweight airborne laser-based sensors for pipeline leak detection and reporting

    NASA Astrophysics Data System (ADS)

    Frish, Michael B.; Wainner, Richard T.; Laderer, Matthew C.; Allen, Mark G.; Rutherford, James; Wehnert, Paul; Dey, Sean; Gilchrist, John; Corbi, Ron; Picciaia, Daniele; Andreussi, Paolo; Furry, David

    2013-05-01

    Laser sensing enables aerial detection of natural gas pipeline leaks without need to fly through a hazardous gas plume. This paper describes adaptations of commercial laser-based methane sensing technology that provide relatively low-cost lightweight and battery-powered aerial leak sensors. The underlying technology is near-infrared Standoff Tunable Diode Laser Absorption Spectroscopy (sTDLAS). In one configuration, currently in commercial operation for pipeline surveillance, sTDLAS is combined with automated data reduction, alerting, navigation, and video imagery, integrated into a single-engine single-pilot light fixed-wing aircraft or helicopter platform. In a novel configuration for mapping landfill methane emissions, a miniaturized ultra-lightweight sTDLAS sensor flies aboard a small quad-rotor unmanned aerial vehicle (UAV).

  20. INNOSLAB-based single-frequency MOPA for airborne lidar detection of CO2 and methane

    NASA Astrophysics Data System (ADS)

    Löhring, Jens; Luttmann, Jörg; Kasemann, Raphael; Schlösser, Michael; Klein, Jürgen; Hoffmann, Hans-Dieter; Amediek, Axel; Büdenbender, Christian; Fix, Andreas; Wirth, Martin; Quatrevalet, Mathieu; Ehret, Gerhard

    2014-02-01

    For the CO2 and CH4 IPDA lidar CHARM-F two single frequency Nd:YAG based MOPA systems were developed. Both lasers are used for OPO/OPA-pumping in order to generate laser radiation at 1645 nm for CH4 detection and 1572 nm for CO2 detection. By the use of a Q-switched, injection seeded and actively length-stabilized oscillator and a one-stage INNOSLAB amplifier about 85 mJ pulse energy could be generated for the CH4 system. For the CO2 system the energy was boosted in second INNOSLAB-stage to about 150 mJ. Both lasers emit laser pulses of about 30 ns pulse duration at a repetition rate of 100 Hz.

  1. Autonomous and Remote-Controlled Airborne and Ground-Based Robotic Platforms for Adaptive Geophysical Surveying

    NASA Astrophysics Data System (ADS)

    Spritzer, J. M.; Phelps, G. A.

    2011-12-01

    Low-cost autonomous and remote-controlled robotic platforms have opened the door to precision-guided geophysical surveying. Over the past two years, the U.S. Geological Survey, Senseta, NASA Ames Research Center, and Carnegie Mellon University Silicon Valley, have developed and deployed small autonomous and remotely controlled vehicles for geophysical investigations. The purpose of this line of investigation is to 1) increase the analytical capability, resolution, and repeatability, and 2) decrease the time, and potentially the cost and map-power necessary to conduct near-surface geophysical surveys. Current technology has advanced to the point where vehicles can perform geophysical surveys autonomously, freeing the geoscientist to process and analyze the incoming data in near-real time. This has enabled geoscientists to monitor survey parameters; process, analyze and interpret the incoming data; and test geophysical models in the same field session. This new approach, termed adaptive surveying, provides the geoscientist with choices of how the remainder of the survey should be conducted. Autonomous vehicles follow pre-programmed survey paths, which can be utilized to easily repeat surveys on the same path over large areas without the operator fatigue and error that plague man-powered surveys. While initial deployments with autonomous systems required a larger field crew than a man-powered survey, over time operational experience costs and man power requirements will decrease. Using a low-cost, commercially available chassis as the base for autonomous surveying robotic systems promise to provide higher precision and efficiency than human-powered techniques. An experimental survey successfully demonstrated the adaptive techniques described. A magnetic sensor was mounted on a small rover, which autonomously drove a prescribed course designed to provide an overview of the study area. Magnetic data was relayed to the base station periodically, processed and gridded. A

  2. Nano-based chemical sensor array systems for uninhabited ground and airborne vehicles

    NASA Astrophysics Data System (ADS)

    Brantley, Christina; Ruffin, Paul B.; Edwards, Eugene

    2009-03-01

    In a time when homemade explosive devices are being used against soldiers and in the homeland security environment, it is becoming increasingly evident that there is an urgent need for high-tech chemical sensor packages to be mounted aboard ground and air vehicles to aid soldiers in determining the location of explosive devices and the origin of bio-chemical warfare agents associated with terrorist activities from a safe distance. Current technologies utilize relatively large handheld detection systems that are housed on sizeable robotic vehicles. Research and development efforts are underway at the Army Aviation & Missile Research, Development, and Engineering Center (AMRDEC) to develop novel and less expensive nano-based chemical sensors for detecting explosives and chemical agents used against the soldier. More specifically, an array of chemical sensors integrated with an electronics control module on a flexible substrate that can conform to and be surface-mounted to manned or unmanned vehicles to detect harmful species from bio-chemical warfare and other explosive devices is being developed. The sensor system under development is a voltammetry-based sensor system capable of aiding in the detection of any chemical agent and in the optimization of sensor microarray geometry to provide nonlinear Fourier algorithms to characterize target area background (e.g., footprint areas). The status of the research project is reviewed in this paper. Critical technical challenges associated with achieving system cost, size, and performance requirements are discussed. The results obtained from field tests using an unmanned remote controlled vehicle that houses a CO2/chemical sensor, which detects harmful chemical agents and wirelessly transmits warning signals back to the warfighter, are presented. Finally, the technical barriers associated with employing the sensor array system aboard small air vehicles will be discussed.

  3. Shape-Encoded Chitosan-Polyacrylamide Hybrid Hydrogel Microparticles with Controlled Macroporous Structures via Replica Molding for Programmable Biomacromolecular Conjugation.

    PubMed

    Kang, Eunae; Jung, Sukwon; Abel, John H; Pine, Allison; Yi, Hyunmin

    2016-05-31

    Polymeric hydrogel microparticle-based suspension arrays with shape-based encoding offer powerful alternatives to planar and bead-based arrays toward high throughput biosensing and medical diagnostics. We report a simple and robust micromolding technique for polyacrylamide- (PAAm-) based biopolymeric-synthetic hybrid microparticles with controlled 2D shapes containing a potent aminopolysaccharide chitosan as an efficient conjugation handle uniformly incorporated in PAAm matrix. A postfabrication conjugation approach utilizing amine-reactive chemistries on the chitosan shows stable incorporation and retained chemical reactivity of chitosan, readily tunable macroporous structures via simple addition of low content long-chain PEG porogens for improved conjugation capacity and kinetics, and one-pot biomacromolecular assembly via bioorthogonal click reactions with minimal nonspecific binding. We believe that the integrated fabrication-conjugation approach reported here could offer promising routes to programmable manufacture of hydrogel microparticle-based biomacromolecular conjugation and biofunctionalization platforms for a large range of applications. PMID:27191399

  4. Theoretical analysis of ferromagnetic microparticles in streaming liquid under the influence of external magnetic forces

    NASA Astrophysics Data System (ADS)

    Brandl, Martin; Mayer, Michael; Hartmann, Jens; Posnicek, Thomas; Fabian, Christian; Falkenhagen, Dieter

    2010-09-01

    The microsphere based detoxification system (MDS) is designed for high specific toxin removal in extracorporeal blood purification using functionalized microparticles. A thin wall hollow fiber membrane filter separates the microparticle-plasma suspension from the bloodstream. For patient safety, it is necessary to have a safety system to detect membrane ruptures that could lead to the release of microparticles into the bloodstream. A non-invasive optical detection system including a magnetic trap is developed to monitor the extracorporeal venous bloodstream for the presence of released microparticles. For detection, fluorescence-labeled ferromagnetic beads are suspended together with adsorbent particles in the MDS circuit. In case of a membrane rupture, the labeled particles would be released into the venous bloodstream and partly captured by the magnetic trap of the detector. A physical model based on fluidic, gravitational and magnetic forces was developed to simulate the motion and sedimentation of ferromagnetic particles in a magnetic trap. In detailed simulation runs, the concentrations of accumulated particles under different applied magnetic fields within the magnetic trap are shown. The simulation results are qualitatively compared with laboratory experiments and show excellent accordance. Additionally, the sensitivity of the particle detection system is proofed in a MDS laboratory experiment by simulation of a membrane rupture.

  5. Fabrication and evaluation of celecoxib microparticle surface modified by hydrophilic cellulose and surfactant.

    PubMed

    Ha, Eun-Sol; Ok, Jinsu; Noh, Jongmin; Jeong, Hee-Young; Choo, Gwang-Ho; Jung, Young-Suk; Baek, In-Hwan; Kim, Jeong-Soo; Cho, Wonkyung; Hwang, Sung-Joo; Kim, Min-Soo

    2015-01-01

    This study was undertaken to improve the solubility and dissolution of a poorly water-soluble drug, celecoxib, by surface modification with a hydrophilic polymer and a surfactant by using a spray-drying technique. Based on the preliminary solubility tests, hydroxypropylmethyl cellulose (HPMC) and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were selected as the polymer and the surfactant, respectively. A novel surface-modified celecoxib microparticle was successfully fabricated using a spray-drying process with water, HPMC, and TPGS, and without the use of an organic solvent. The physicochemical properties of the surface-modified celecoxib microparticle were characterized using scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), a particle size analyzer, and contact angle determination. The formulation with drug/HPMC/TPGS at the weight ratio of 1:0.5:1.5 was determined to be the most effective composition in the preparation of the surface-modified celecoxib microparticle, based on the results of wettability, solubility, and dissolution studies. We found that the surface modification of microparticles with HPMC and TPGS can be an effective formulation strategy for new dosage forms of poorly water-soluble active pharmaceutical ingredients (APIs) to provide higher solubility and dissolution. PMID:25451745

  6. Aerogel Microparticles from Oil-in-Oil Emulsion Systems.

    PubMed

    Gu, Senlong; Zhai, Chunhao; Jana, Sadhan C

    2016-06-01

    This paper reports preparation of polymer aerogel microparticles via sol-gel reactions inside micrometer size droplets created in an oil-in-oil emulsion system. The oil-in-oil emulsion system is obtained by dispersing in cyclohexane the droplets of the sols of polybenzoxazine (PBZ) or polyimide (PI) prepared in dimethylformamide. The sol droplets transform into harder gel microparticles due to sol-gel reactions. Finally, the aerogel microparticles are recovered using supercritical drying of the gel microparticles. The PBZ and PI aerogel microparticles prepared in this manner show mean diameter 32.7 and 40.0 μm, respectively, mesoporous internal structures, and surface area 55.4 and 512.0 m(2)/g, respectively. Carbonization of PBZ aerogel microparticles maintains the mesoporous internal structures but yields narrower pore size distribution. PMID:27183146

  7. Designed Stem Cell Aggregates: Enhanced Biological Functions of Human Mesenchymal Stem-Cell Aggregates Incorporating E-Cadherin-Modified PLGA Microparticles (Adv. Healthcare Mater. 15/2016).

    PubMed

    Zhang, Yan; Mao, Hongli; Gao, Chao; Li, Suhua; Shuai, Qizhi; Xu, Jianbin; Xu, Ke; Cao, Lei; Lang, Ren; Gu, Zhongwei; Akaike, Toshihiro; Yang, Jun

    2016-08-01

    E-cadherin-modified poly(lactic-co-glycolic acid) (hE-cad-PLGA) microparticles were fabricated and then mediated the 3D cell aggregates of human mesenchymal stem cells (MSCs) on page 1949 by Jun Yang and co-workers. The hE-cad-Fc matrix and the PLGA microparticles synergistically regulate the proliferation and bioactive factors secretions of MSCs by activating EGFR, AKT and ERK1/2 signaling pathways. The hE-cad-PLGA microparticles offer a novel route to expand multipotent stem cell-based clinical applications. PMID:27511954

  8. Spray-dried Eudragit® L100 microparticles containing ferulic acid: Formulation, in vitro cytoprotection and in vivo anti-platelet effect.

    PubMed

    Nadal, Jessica Mendes; Gomes, Mona Lisa Simionatto; Borsato, Débora Maria; Almeida, Martinha Antunes; Barboza, Fernanda Malaquias; Zawadzki, Sônia Faria; Kanunfre, Carla Cristine; Farago, Paulo Vitor; Zanin, Sandra Maria Warumby

    2016-07-01

    This paper aimed to obtain new spray-dried microparticles containing ferulic acid (FA) prepared by using a methacrylic polymer (Eudragit® L100). Microparticles were intended for oral use in order to provide a controlled release, and improved in vitro and in vivo biological effects. FA-loaded Eudragit® L100 microparticles were obtained by spray-drying. Physicochemical properties, in vitro cell-based effects, and in vivo platelet aggregation were investigated. FA-loaded Eudragit® L100 microparticles were successfully prepared by spray-drying. Formulations showed suitable encapsulation efficiency, i.e. close to 100%. Microparticles were of spherical and almost-spherical shape with a smooth surface and a mean diameter between 2 and 3μm. Fourier-transformed infrared spectra demonstrated no chemical bond between FA and polymer. X-ray diffraction and differential scanning calorimetry analyses indicated that microencapsulation led to drug amorphization. FA-loaded microparticles showed a slower dissolution rate than pure drug. The chosen formulation demonstrated higher in vitro cytoprotection, anti-inflammatory and immunomodulatory potential and also improved in vivo anti-platelet effect. These results support an experimental basis for the use of FA spray-dried microparticles as a feasible oral drug delivery carrier for the controlled release of FA and improved cytoprotective and anti-platelet effects. PMID:27127059

  9. Quantitative study of tectonic geomorphology along Haiyuan fault based on airborne LiDAR

    USGS Publications Warehouse

    Chen, Tao; Zhang, Pei Zhen; Liu, Jing; Li, Chuan You; Ren, Zhi Kun; Hudnut, Kenneth W.

    2014-01-01

    High-precision and high-resolution topography are the fundamental data for active fault research. Light detection and ranging (LiDAR) presents a new approach to build detailed digital elevation models effectively. We take the Haiyuan fault in Gansu Province as an example of how LiDAR data may be used to improve the study of active faults and the risk assessment of related hazards. In the eastern segment of the Haiyuan fault, the Shaomayin site has been comprehensively investigated in previous research because of its exemplary tectonic topographic features. Based on unprecedented LiDAR data, the horizontal and vertical coseismic offsets at the Shaomayin site are described. The measured horizontal value is about 8.6 m, and the vertical value is about 0.8 m. Using prior dating ages sampled from the same location, we estimate the horizontal slip rate as 4.0 ± 1.0 mm/a with high confidence and define that the lower bound of the vertical slip rate is 0.4 ± 0.1 mm/a since the Holocene. LiDAR data can repeat the measurements of field work on quantifying offsets of tectonic landform features quite well. The offset landforms are visualized on an office computer workstation easily, and specialized software may be used to obtain displacement quantitatively. By combining precious chronological results, the fundamental link between fault activity and large earthquakes is better recognized, as well as the potential risk for future earthquake hazards.

  10. CALIOPE airborne CO{sub 2} DIAL (CACDI) system design

    SciTech Connect

    Mietz, D.; Archuleta, B.; Archuleta, J.

    1997-09-01

    Los Alamos National Laboratory is currently developing an airborne CO{sub 2} Differential Absorption Lidar (DIAL) system based on second generation technology demonstrated last summer at NTS. The CALIOPE Airborne CO{sub 2} DIAL (CACDI) system requirements have been compiled based on the mission objectives and SONDIAL model trade studies. Subsystem designs have been developed based on flow down from these system requirements, as well as experience gained from second generation ground tests and N-ABLE (Non-proliferation AirBorne Lidar Experiments) airborne experiments. This paper presents the CACDI mission objectives, system requirements, the current subsystem design, and provides an overview of the airborne experimental plan.

  11. Object-Based Point Cloud Analysis of Full-Waveform Airborne Laser Scanning Data for Urban Vegetation Classification

    PubMed Central

    Rutzinger, Martin; Höfle, Bernhard; Hollaus, Markus; Pfeifer, Norbert

    2008-01-01

    Airborne laser scanning (ALS) is a remote sensing technique well-suited for 3D vegetation mapping and structure characterization because the emitted laser pulses are able to penetrate small gaps in the vegetation canopy. The backscattered echoes from the foliage, woody vegetation, the terrain, and other objects are detected, leading to a cloud of points. Higher echo densities (>20 echoes/m2) and additional classification variables from full-waveform (FWF) ALS data, namely echo amplitude, echo width and information on multiple echoes from one shot, offer new possibilities in classifying the ALS point cloud. Currently FWF sensor information is hardly used for classification purposes. This contribution presents an object-based point cloud analysis (OBPA) approach, combining segmentation and classification of the 3D FWF ALS points designed to detect tall vegetation in urban environments. The definition tall vegetation includes trees and shrubs, but excludes grassland and herbage. In the applied procedure FWF ALS echoes are segmented by a seeded region growing procedure. All echoes sorted descending by their surface roughness are used as seed points. Segments are grown based on echo width homogeneity. Next, segment statistics (mean, standard deviation, and coefficient of variation) are calculated by aggregating echo features such as amplitude and surface roughness. For classification a rule base is derived automatically from a training area using a statistical classification tree. To demonstrate our method we present data of three sites with around 500,000 echoes each. The accuracy of the classified vegetation segments is evaluated for two independent validation sites. In a point-wise error assessment, where the classification is compared with manually classified 3D points, completeness and correctness better than 90% are reached for the validation sites. In comparison to many other algorithms the proposed 3D point classification works on the original measurements

  12. The preservation of living cells with biocompatible microparticles

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Zhu, Yingnan; Xu, Tong; Pan, Chao; Cai, Nana; Huang, He; Zhang, Lei

    2016-07-01

    Biomedical applications of living cells have rapidly expanded in many fields such as toxic detection, drug screening, and regenerative medicine, etc. Efficient methods to support cell survival and maintain activity in vitro have become increasingly important. However, traditional cryopreservation for living cell-based applications is limited by several problems. Here, we report that magnetic hydrogel microparticles can physically assemble into a 3D environment for efficient cell preservation in physiological conditions, avoiding any chemical reactions that would damage the cells. Two representative cell lines (loosely and firmly adherent) were tested to evaluate the versatility of this method. The results showed that cell longevity was significantly extended to at least 15 days, while the control cell samples without microparticles quickly died within 3 days. Moreover, after preservation, cells can be easily retrieved by applying a magnet to separate the magnetic particles. This strategy can also inhibit cell over-proliferation while avoiding the use of temperature extremes or toxic cryoprotectants that are essential in cryopreservation.

  13. Microparticle of drug and nanoparticle: a biosynthetic route

    PubMed Central

    Sarkar, Sounik; Dasgupta, Anjan Kr

    2015-01-01

    Microparticles (MPs) have great potentiality in material science- based applications. Their use in biology is however limited to clinics and has rarely been exploited in the pharmaceutical context. Unlike nanoparticles (NPs), they are amenable to routine detection by flow cytometry and confocal microscopy. Though MPs can constitute a wide variety of materials, including ceramics, glass, polymers, and metals and can be synthesized by chemical process but wet processes for the preparation of microparticles have rarely been attemped. In this paper, a thrombotic route is shown to successfully generate biocompatible MP of a model anticancer drug (doxorubicin hydrochloride). Synthesis of MPs from platelets and drug loading in to these MPs was confirmed by flow cytometry and confocal microscopy. Human cervical cancer cell line (HeLa) was treated with these drug-loaded MPs to investigate whether the loaded MPs have the capacity to deliver drug to the cancer cells. In addition, Magnetic force microscopy was used to detect the preparation of MPs loaded with magnetic NPs. The efficiency of the drug-loaded MPs in inducing cytotoxicity in cancer cell line, shown to be significantly higher than the free drug itself. The drug-loaded MP is shown to have a much higher cytotoxic propensity than the free drug applied at comparable doses. The thrombotic approach can also be applied to synthesize MP containing NPs which in turn can lead to generate a wide variety of new biocompatible materials. PMID:26516592

  14. The preservation of living cells with biocompatible microparticles.

    PubMed

    Yang, Jing; Zhu, Yingnan; Xu, Tong; Pan, Chao; Cai, Nana; Huang, He; Zhang, Lei

    2016-07-01

    Biomedical applications of living cells have rapidly expanded in many fields such as toxic detection, drug screening, and regenerative medicine, etc. Efficient methods to support cell survival and maintain activity in vitro have become increasingly important. However, traditional cryopreservation for living cell-based applications is limited by several problems. Here, we report that magnetic hydrogel microparticles can physically assemble into a 3D environment for efficient cell preservation in physiological conditions, avoiding any chemical reactions that would damage the cells. Two representative cell lines (loosely and firmly adherent) were tested to evaluate the versatility of this method. The results showed that cell longevity was significantly extended to at least 15 days, while the control cell samples without microparticles quickly died within 3 days. Moreover, after preservation, cells can be easily retrieved by applying a magnet to separate the magnetic particles. This strategy can also inhibit cell over-proliferation while avoiding the use of temperature extremes or toxic cryoprotectants that are essential in cryopreservation. PMID:27189861

  15. Flow cytometric measurement of microparticles: pitfalls and protocol modifications.

    PubMed

    Shah, Mona D; Bergeron, Angela L; Dong, Jing-Fei; López, José A

    2008-08-01

    Upon activation, many cells shed components of their plasma membranes as microparticles. Depending on the methods of preparation and analyses, microparticle counts may vary significantly between laboratories, making data analyses and clinical correlations challenging. To assess how variations in sample preparation affect microparticle measurements, blood samples from 13 healthy, adult volunteers were labeled with Annexin V, cell-specific antibodies, and antibodies against tissue factor (TF). Data were acquired and analysed using an EPICS XL-MCL flow cytometer. Annexin V(+) monocyte-, platelet-, endothelial-, or erythrocyte-derived microparticles accounted for 10.4%, 38.5%, 43.8%, and 7.3% of the total number of microparticles (13.7 +/- 3.0 x 10(3)/ml of whole blood), respectively. A similar distribution of cell types was seen for TF(+) microparticles (6.3 +/- 2.6 x 10(3)/ml of whole blood). No statistical difference was noted in microparticle distribution using either 19- or 21-gauge needles. Elevated levels of platelet- and erythrocyte-derived microparticles were detected in heparin and PPACK-anticoagulated samples as compared to samples anticoagulated with ACD or sodium citrate (P < 0.05, student's t-test). Additional centrifugation was critical for removing platelet contamination, which significantly affected microparticle counts. Finally, Annexin V(+) and TF(+) microparticles were significantly reduced upon sample storage at low temperatures. Microparticle levels are significantly affected by variations in sample preparation and storage. These results illustrate the need to standardize assay protocols in order to obtain consistent measurements. Our studies further optimize sample preparation for microparticle detection. PMID:18791943

  16. Magnetic microparticles for harvesting Dunaliella tertiolecta microalgae

    NASA Astrophysics Data System (ADS)

    Manousakis, Emmanouil; Manariotis, Ioannis D.

    2016-04-01

    Microalgae based biofuels have been considered as a sustainable alternative to traditional fuels due to the higher biomass yield and lipid productivity, and the ability to be cultivated in non arable land making them not antagonistic with food supply chain. Due to the dilute nature of algal cultures and the small size of algae cells, the cost of microalgae harvesting is so far a bottleneck in microalgal based biofuel production. It is estimated that the algal recovery cost is at least 20-30% of the total biomass production cost. Various processes have been employed for the recovery of microalgal biomass, which include centrifugation, gravity separation, filtration, flocculation, and flotation. Recently, magnetophoric harvesting has received increased attention for algal separation, although it has been first applied for algal removal since the mid of 1970s. The magnetic separation process is based on bringing in contact the algal cells with the magnetic particles, and separating them from the liquid by an external magnetic force. The aim of this work was to investigate the harvesting of microalgae cells using Fe3O4 magnetic microparticles (MPs). Dunaliella tertiolecta was selected as a representative for marine microalgae. D. tertiolecta was cultivated under continuous artificial light, in 20 L flasks. Fe3O4 MPs were prepared by microwave irradiation of FeSO4 7H2O in an alkaline solution. Numerous batch and flow-through experiments were conducted in order to investigate the effect of the magnetic material addition on microalgae removal. Batch experiments were conducted examining different initial algal and MPs concentration, and algal culture volume. Flow-through experiments were conducted in a laboratory scale column made of Plexiglass. External magnetic field was applied by arranging at various points across the column length NdFeB magnets. Algal removal in flow-through experiments ranged from 70 to 85% depending on the initial MPs concentration and the hydraulic

  17. Platelet-derived microparticles - an updated perspective.

    PubMed

    Siljander, Pia R M

    2011-01-01

    Platelet-derived microparticles (PMP) are a heterogeneous population of vesicles (< 1 mm) generated from the plasma membrane upon platelet activation by various stimuli. They are a discrete population differing from the exosomes which originate from the intracellular multivesicular bodies. PMP also differ from the microparticles derived from megakaryocytes despite the presence of several identical surface markers on the latter. The molecular properties and the functional roles of the PMP are beginning to be elucidated by the rapidly evolving research interest, but novel questions are simultaneously raised. This updated perspective discusses the most recent highlights in the PMP research in context with the methodological problems and the paradoxical role of the PMP in health and disease. PMID:21193112

  18. Gastrointestinal transition and anti-diabetic effect of Isabgol husk microparticles containing gliclazide.

    PubMed

    Sharma, Vipin Kumar; Mazumder, Bhaskar

    2014-05-01

    Isabgol husk with sodium alginate was formulated into gliclazide loaded microparticles which were characterized for particle size, swelling index, entrapment efficiency, in vitro release, release kinetics, stability, hypoglycemic effect, surface morphology, and gastrointestinal transition. The particle size in different formulations varied from 752.83 ± 0.630 to 872.03 ± 0.293 μm. It was analyzed by dissolution study that up to 98% of loaded gliclazide was released in simulated intestinal fluid (SIF, pH 7.4) within 8h. The formulations containing sodium alginate and Isabgol husk-sodium alginate showed bioequivalency with marketed sustained release tablets (Glizid MR 60(®)) in terms of release pattern. The drug maintained its integrity in terms of functional groups after fabrication in formulations as observed by FTIR analysis. The hypoglycemic effect of gliclazide loaded Isabgol husk-sodium alginate microparticles was found to be 37 ± 6.356% in terms of changes of blood glucose level from base glucose level (100%) in diabetic condition after 24h of oral administration and it was more than marketed conventional tablets (95.5 ± 3.286%). The retention of microparticles was observed in small intestine up to 10h during whole body X-ray imaging. The study revealed that microparticles composing of Isabgol husk may have the potential for regulating blood glucose level in diabetic animals with controlled release of gliclazide. PMID:24530641

  19. Formulations for modulation of protein release from large-size PLGA microparticles for tissue engineering.

    PubMed

    Qodratnama, Roozbeh; Serino, Lorenzo Pio; Cox, Helen C; Qutachi, Omar; White, Lisa J

    2015-02-01

    In this study we present an approach to pre-program lysozyme release from large size (100-300 μm) poly(DL-lactic acid-co-glycolic acid) (PLGA) microparticles. This approach involved blending in-house synthesized triblock copolymers with a PLGA 85:15. In this work it is demonstrated that the lysozyme release rate and the total release are related to the mass of triblock copolymer present in polymer formulation. Two triblock copolymers (PLGA-PEG1500-PLGA and PLGA-PEG1000-PLGA) were synthesized and used in this study. In a like-for-like comparison, these two triblock copolymers appeared to have similar effects on the release of lysozyme. It was shown that blending resulted in the increase of the total lysozyme release and shortened the release period (70% release within 30 days). These results demonstrated that blending PLGA-PEG-PLGA triblock copolymer with PLGA 85:15 can be used as a method to pre-program protein release from microparticles. These microparticles with modulated protein release properties may be used to create microparticle-based tissue engineering constructs with pre-programmed release properties. PMID:25492193

  20. Preparation and chemical stability of iron-nitride-coated iron microparticles

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Liu, Shixiong

    2007-01-01

    Iron-nitride-coated iron microparticles were prepared by nitridation of the surface of iron microparticles with ammonia gas at a temperature of 510 °C. The phases, composition, morphology, magnetic properties, and chemical stability of the particles were studied. The phases were α-Fe, ɛ-Fe 3N, and γ-Fe 4N. The composition varied from the core to the surface, with 99.8 wt% Fe in the core, and 93.8 wt% Fe and 6 wt% N in the iron-nitride coating. The thickness of the iron-nitride coating was about 0.28 μm. The chemical stability of the microparticles was greatly improved, especially the corrosion resistance in corrosive aqueous media. The saturation magnetization and the coercive force were 17.1×10 3 and 68 kA/m, respectively. It can be concluded that iron-nitride-coated iron microparticles will be very useful in many fields, such as water-based magnetorheological fluids and polishing fluids.

  1. Light-scattering flow cytometry for identification and characterization of blood microparticles

    NASA Astrophysics Data System (ADS)

    Konokhova, Anastasiya I.; Yurkin, Maxim A.; Moskalensky, Alexander E.; Chernyshev, Andrei V.; Tsvetovskaya, Galina A.; Chikova, Elena D.; Maltsev, Valeri P.

    2012-05-01

    We describe a novel approach to study blood microparticles using the scanning flow cytometer, which measures light scattering patterns (LSPs) of individual particles. Starting from platelet-rich plasma, we separated spherical microparticles from non-spherical plasma constituents, such as platelets and cell debris, based on similarity of their LSP to that of sphere. This provides a label-free method for identification (detection) of microparticles, including those larger than 1 μm. Next, we rigorously characterized each measured particle, determining its size and refractive index including errors of these estimates. Finally, we employed a deconvolution algorithm to determine size and refractive index distributions of the whole population of microparticles, accounting for largely different reliability of individual measurements. Developed methods were tested on a blood sample of a healthy donor, resulting in good agreement with literature data. The only limitation of this approach is size detection limit, which is currently about 0.5 μm due to used laser wavelength of 0.66 μm.

  2. Gentamicin-loaded poly(lactic-co-glycolic acid) microparticles for the prevention of maxillofacial and orthopedic implant infections.

    PubMed

    Flores, Claudia; Degoutin, Stephanie; Chai, Feng; Raoul, Gwenael; Hornez, Jean-Chritophe; Martel, Bernard; Siepmann, Juergen; Ferri, Joel; Blanchemain, Nicolas

    2016-07-01

    Trauma and orthopedic surgery can cause infections as any open surgical procedures. Such complications occur in only1 to 5% of the cases, but the treatment is rather complicated due to bacterial biofilm formation and limited drug access to the site of infection upon systemic administration. An interesting strategy to overcome this type of complications is to prevent bacterial proliferation and biofilm formation via the local and controlled release of antibiotic drugs from the implant itself. Obviously, the incorporation of the drug into the implant should not affect the latter's biological and mechanical properties. In this context, we optimized the preparation process for gentamicin-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles, which can be incorporated in the macropores of calcium phosphate-based bone substitutes. Microparticles were prepared using a double emulsion solvent extraction/evaporation technique. The processing parameters were optimized in order to provide an average microparticle size of about 60μm, allowing for incorporation inside the macropores (100μm) of the hydroxyapatite scaffold. Gentamicin-loaded PLGA microparticles showed a sustained release for 25-30days and a rapid antibacterial activity due to a burst effect, the extent of which was controlled by the initial loading of the microparticles. SEM pictures revealed a highly porous microparticle structure, which can help to reduce the micro environmental pH drop and autocatalytic effects. The biological evaluation showed the cytocompatibility and non-hemolytic property of the microparticles, and the antibacterial activity against Staphylococcus aureus under the given conditions. PMID:27127034

  3. Optimal attributes for the object based detection of giant reed in riparian habitats: A comparative study between Airborne High Spatial Resolution and WorldView-2 imagery

    NASA Astrophysics Data System (ADS)

    Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.

    2014-10-01

    Giant reed is an aggressive invasive plant of riparian ecosystems in many sub-tropical and warm-temperate regions, including Mediterranean Europe. In this study we tested a set of geometric, spectral and textural attributes in an object based image analysis (OBIA) approach to map giant reed invasions in riparian habitats. Bagging Classification and Regression Tree were used to select the optimal attributes and to build the classification rules sets. Mapping accuracy was performed using landscape metrics and the Kappa coefficient to compare the topographical and geometric similarity between the giant reed patches obtained with the OBIA map and with a validation map derived from on-screen digitizing. The methodology was applied in two high spatial resolution images: an airborne multispectral imagery and the newly WorldView-2 imagery. A temporal coverage of the airborne multispectral images was radiometrically calibrated with the IR-Mad transformation and used to assess the influence of the phenological variability of the invader. We found that optimal attributes for giant reed OBIA detection are a combination of spectral, geometric and textural information, with different scoring selection depending on the spectral and spatial characteristics of the imagery. WorldView-2 showed higher mapping accuracy (Kappa coefficient of 77%) and spectral attributes, including the newly yellow band, were preferentially selected, although a tendency to overestimate the total invaded area, due to the low spatial resolution (2 m of pixel size vs. 50 cm) was observed. When airborne images were used, geometric attributes were primarily selected and a higher spatial detail of the invasive patches was obtained, due to the higher spatial resolution. However, in highly heterogeneous landscapes, the low spectral resolution of the airborne images (4 bands instead of the 8 of WorldView-2) reduces the capability to detect giant reed patches. Giant reed displays peculiar spectral and geometric

  4. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    PubMed Central

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  5. Airborne radioactive contamination monitoring

    SciTech Connect

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  6. Spectral combination of land-based, airborne, shipborne and altimeter-derived gravity values: examples in Taiwan and Tahiti

    NASA Astrophysics Data System (ADS)

    Hwang, Cheinway

    2016-04-01

    Taiwan and Tahiti are bordered by seas and are islands with mountain ranges up to 4000 m height. The gravity fields here are rough due to the geodynamic processes that create the islands. On and around the two islands, gravity data have been collected by land gravimeters in relative gravity networks (point-wise), by airborne and shipborne (along-track) methods and by transformations from sea surface heights (altimeter-derived). Typically, network-adjusted land gravity values have accuracies of few tens of micro gals and contain the full gravity spectrum. Airborne gravity values are obtained by filtering original one-HZ along-track gravity values collected at varying flight altitudes that are affected by aircraft dynamics, GPS positioning error and gravimeter error. At a 5000-m flight height, along-track airborne gravity has a typical spatial resolution of 4 km and an accuracy of few mgal. Shipborne gravity is similar to airborne gravity, but with higher spatial resolutions because of ship's lower speed. Altimeter-derived gravity has varying spatial resolutions and accuracies, depending on altimeter data, processing method and extent of waveform interference. Using the latest versions of Geosat/GM, ERS-1/GM, ENVISAT, Jason-1/GM, Cryosat-2 and SARAL altimeter data, one can achieve accuracies at few mgal. The synergy of the four kinds of gravity datasets is made by the band-limited least-squares collocation, which best integrates datasets of different accuracies and spatial resolutions. The method uses the best contributions from a DEM, a global gravity model, available gravity datasets to form an optimal gravity grid. We experiment with different optimal spherical harmonic degrees of EGM08 for use around the two islands. For Tahiti, the optimal degree is 1500. New high-resolution gravity and geoid grids are constructed for the two islands and can be used in future geophysical and geodetic studies.

  7. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  8. Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data

    NASA Astrophysics Data System (ADS)

    Gwenzi, David; Lefsky, Michael A.; Suchdeo, Vijay P.; Harding, David J.

    2016-08-01

    The next planned spaceborne lidar mission is the Ice, Cloud and land Elevation Satellite 2 (ICESat-2), which will use the Advanced Topographic Laser Altimeter System (ATLAS) sensor, a photon counting technique. To pre-validate the capability of this mission for studying three dimensional vegetation structure in savannas, we assessed the potential of the measurement approach to estimate canopy height in an oak savanna landscape. We used data from the Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne photon counting lidar sensor developed by NASA's Goddard Space Flight Center. ATLAS-like data was generated using the MATLAS simulator, which adjusts MABEL data's detected number of signal and noise photons to that expected from the ATLAS instrument. Transects flown over the Tejon ranch conservancy in Kern County, California, USA were used for this work. For each transect we chose to use data from the near infrared channel that had the highest number of photons. We segmented each transect into 50 m, 25 m and 14 m long blocks and aggregated the photons in each block into a histogram based on their elevation values. We then used an automated algorithm to identify cut off points where the cumulative density of photons from the highest elevation indicates the presence of the canopy top and likewise where such cumulative density from the lowest elevation indicates the mean terrain elevation. MABEL derived height metrics were moderately correlated to discrete return lidar (DRL) derived height metrics (r2 and RMSE values ranging from 0.60 to 0.73 and 2.9 m to 4.4 m respectively) but MATLAS simulation resulted in more modest correlations with DRL indices (r2 ranging from 0.5 to 0.64 and RMSE from 3.6 m to 4.6 m). Simulations also indicated that the expected number of signal photons from ATLAS will be substantially lower, a situation that reduces canopy height estimation precision especially in areas of low density vegetation cover. On the basis of the simulated

  9. The Continuous wavelet in airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liu, L.

    2013-12-01

    Airborne gravimetry is an efficient method to recover medium and high frequency band of earth gravity over any region, especially inaccessible areas, which can measure gravity data with high accuracy,high resolution and broad range in a rapidly and economical way, and It will play an important role for geoid and geophysical exploration. Filtering methods for reducing high-frequency errors is critical to the success of airborne gravimetry due to Aircraft acceleration determination based on GPS.Tradiontal filters used in airborne gravimetry are FIR,IIR filer and so on. This study recommends an improved continuous wavelet to process airborne gravity data. Here we focus on how to construct the continuous wavelet filters and show their working principle. Particularly the technical parameters (window width parameter and scale parameter) of the filters are tested. Then the raw airborne gravity data from the first Chinese airborne gravimetry campaign are filtered using FIR-low pass filter and continuous wavelet filters to remove the noise. The comparison to reference data is performed to determinate external accuracy, which shows that continuous wavelet filters applied to airborne gravity in this thesis have good performances. The advantages of the continuous wavelet filters over digital filters are also introduced. The effectiveness of the continuous wavelet filters for airborne gravimetry is demonstrated through real data computation.

  10. Functional polymeric microparticles engineered from controllable microfluidic emulsions.

    PubMed

    Wang, Wei; Zhang, Mao-Jie; Chu, Liang-Yin

    2014-02-18

    Functional polymeric microparticles with typical sizes of 1-1000 μm have received considerable attention for many applications. Especially in biomedical fields, polymeric microparticles with advanced functions such as targeted delivery, controlled encapsulation, or "capture and release" show great importance as delivery systems for active molecules and drugs, as imaging agents for analytics and diagnostics, as microreactors for confined bioreactions, and more. Generally, the functions of these microparticles rely on both their structures and the properties of their component materials. Thus, creating unique structures from functional materials provides an important strategy for developing advanced functional polymeric microparticles. Several methods, such as dispersion polymerization, precipitation polymerization, copolymer self-assembly, and phase-separated polymer precipitation can be used to make functional microparticles, but each has limitations, for example, their limited control over the particle size and structure. Using emulsions as templates, however, allows precise control over the size, shape, composition, and structure of the resulting microparticles by tuning those of the emulsions via specific emulsification techniques. Microfluidic methods offer excellent control of emulsion droplets, thereby providing a powerful platform for continuous, reproducible, scalable production of polymeric microparticles with unprecedented control over their monodispersity, structures, and compositions. This approach provides broad opportunities for producing polymeric microparticles with novel structure-property combinations and elaborately designed functions. In this Account, we highlight recent efforts in microfluidic fabrication of advanced polymeric microparticles with well-designed functions for potential biomedical applications, and we describe the development of microfluidic techniques for producing monodisperse and versatile emulsion templates. We begin by

  11. Ground-based multispectral measurements for airborne data verification in non-operating open pit mine "Kremikovtsi"

    NASA Astrophysics Data System (ADS)

    Borisova, Denitsa; Nikolov, Hristo; Petkov, Doyno

    2013-10-01

    The impact of mining industry and metal production on the environment is presented all over the world. In our research we set focus on the impact of already non-operating ferrous "Kremikovtsi"open pit mine and related waste dumps and tailings which we consider to be the major factor responsible for pollution of one densely populated region in Bulgaria. The approach adopted is based on correct estimation of the distribution of the iron oxides inside open pit mines and the neighboring regions those considered in this case to be the key issue for the ecological state assessment of soils, vegetation and water. For this study the foremost source of data are those of airborne origin and those combined with ground-based in-situ and laboratory acquired data were used for verification of the environmental variables and thus in process of assessment of the present environmental status influenced by previous mining activities. The percentage of iron content was selected as main indicator for presence of metal pollution since it could be reliably identified by multispectral data used in this study and also because the iron compounds are widely spread in the most of the minerals, rocks and soils. In our research the number of samples from every source (air, field, lab) was taken in the way to be statistically sound and confident. In order to establish relationship between the degree of pollution of the soil and mulspectral data 40 soil samples were collected during a field campaign in the study area together with GPS measurements for two types of laboratory measurements: the first one, chemical and mineralogical analysis and the second one, non-destructive spectroscopy. In this work for environmental variables verification over large areas mulspectral satellite data from Landsat instruments TM/ETM+ and from ALI/OLI (Operational Land Imager) were used. Ground-based (laboratory and in-situ) spectrometric measurements were performed using the designed and constructed in Remote

  12. Tuning drug loading and release properties of diatom silica microparticles by surface modifications.

    PubMed

    Bariana, Manpreet; Aw, Moom Sinn; Kurkuri, Mahaveer; Losic, Dusan

    2013-02-25

    Diatomaceous earth (DE), or diatomite silica microparticles originated from fossilized diatoms are a potential substitute for its silica-based synthetic counterparts to address limitations in conventional drug delivery. This study presents the impact of engineered surface chemistry of DE microparticles on their drug loading and release properties. Surface modifications with four silanes, including 3-aminopropyltriethoxy silane (APTES), methoxy-poly-(ethylene-glycol)-silane (mPEG-silane), 7-octadecyltrichlorosilane (OTS), 3-(glycidyloxypropyl)trimethoxysilane (GPTMS) and two phosphonic acids, namely 2-carboxyethyl-phosphonic acid (2 CEPA) and 16-phosphono-hexadecanoic acid (16 PHA) were explored in order to tune drug loading and release characteristics of water insoluble (indomethacin) and water soluble drugs (gentamicin). Successful grafting of these functional groups with different interfacial properties was confirmed using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Thermogravimetric analysis (TGA) was applied to determine the amount of loaded drugs and UV-spectrophotometry to analyse in vitro drug release from modified DE microparticles. Differences in drug release time (13-26 days) and loading capacity (14-24%) were observed depending on functional groups on the surface of DE microparticles. It was found that hydrophilic surfaces, due to the presence of polar carboxyl, amine or hydrolyzed epoxy group, favor extended release of indomethacin, while the hydrophobic DE surface modified by organic hydrocarbons gives a better sustained release profile for gentamicin. This work demonstrates that by changing surface functionalities on DE microparticles, it is possible to tune their drug loading and release characteristics for both hydrophobic and hydrophilic drugs and therefore achieve optimal drug delivery performance. PMID:23287775

  13. Backscatter Modeling at 2.1 Micron Wavelength for Space-Based and Airborne Lidars Using Aerosol Physico-Chemical and Lidar Datasets

    NASA Technical Reports Server (NTRS)

    Srivastava, V.; Rothermel, J.; Jarzembski, M. A.; Clarke, A. D.; Cutten, D. R.; Bowdle, D. A.; Spinhirne, J. D.; Menzies, R. T.

    1999-01-01

    Space-based and airborne coherent Doppler lidars designed for measuring global tropospheric wind profiles in cloud-free air rely on backscatter, beta from aerosols acting as passive wind tracers. Aerosol beta distribution in the vertical can vary over as much as 5-6 orders of magnitude. Thus, the design of a wave length-specific, space-borne or airborne lidar must account for the magnitude of 8 in the region or features of interest. The SPAce Readiness Coherent Lidar Experiment under development by the National Aeronautics and Space Administration (NASA) and scheduled for launch on the Space Shuttle in 2001, will demonstrate wind measurements from space using a solid-state 2 micrometer coherent Doppler lidar. Consequently, there is a critical need to understand variability of aerosol beta at 2.1 micrometers, to evaluate signal detection under varying aerosol loading conditions. Although few direct measurements of beta at 2.1 micrometers exist, extensive datasets, including climatologies in widely-separated locations, do exist for other wavelengths based on CO2 and Nd:YAG lidars. Datasets also exist for the associated microphysical and chemical properties. An example of a multi-parametric dataset is that of the NASA GLObal Backscatter Experiment (GLOBE) in 1990 in which aerosol chemistry and size distributions were measured concurrently with multi-wavelength lidar backscatter observations. More recently, continuous-wave (CW) lidar backscatter measurements at mid-infrared wavelengths have been made during the Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment in 1995. Using Lorenz-Mie theory, these datasets have been used to develop a method to convert lidar backscatter to the 2.1 micrometer wavelength. This paper presents comparison of modeled backscatter at wavelengths for which backscatter measurements exist including converted beta (sub 2.1).

  14. Retrieval of Vegetation Structure and Carbon Balance Parameters Using Ground-Based Lidar and Scaling to Airborne and Spaceborne Lidar Sensors

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Ni-Meister, W.; Woodcock, C. E.; Li, X.; Jupp, D. L.; Culvenor, D.

    2006-12-01

    This research uses a ground-based, upward hemispherical scanning lidar to retrieve forest canopy structural information, including tree height, mean tree diameter, basal area, stem count density, crown diameter, woody biomass, and green biomass. These parameters are then linked to airborne and spaceborne lidars to provide large-area mapping of structural and biomass parameters. The terrestrial lidar instrument, Echidna(TM), developed by CSIRO Australia, allows rapid acquisition of vegetation structure data that can be readily integrated with downward-looking airborne lidar, such as LVIS (Laser Vegetation Imaging Sensor), and spaceborne lidar, such as GLAS (Geoscience Laser Altimeter System) on ICESat. Lidar waveforms and vegetation structure are linked for these three sensors through the hybrid geometric-optical radiative-transfer (GORT) model, which uses basic vegetation structure parameters and principles of geometric optics, coupled with radiative transfer theory, to model scattering and absorption of light by collections of individual plant crowns. Use of a common model for lidar waveforms at ground, airborne, and spaceborne levels facilitates integration and scaling of the data to provide large-area maps and inventories of vegetation structure and carbon stocks. Our research plan includes acquisition of Echidna(TM) under-canopy hemispherical lidar scans at North American test sites where LVIS and GLAS data have been or are being acquired; analysis and modeling of spatially coincident lidar waveforms acquired by the three sensor systems; linking of the three data sources using the GORT model; and mapping of vegetation structure and carbon-balance parameters at LVIS and GLAS resolutions based on Echidna(TM) measurements.

  15. Highly Loaded, Sustained-Release Microparticles of Curcumin for Chemoprevention

    PubMed Central

    SHAHANI, KOMAL; PANYAM, JAYANTH

    2014-01-01

    Curcumin, a dietary polyphenol, has preventive and therapeutic potential against several diseases. Because of the chronic nature of many of these diseases, sustained-release dosage forms of curcumin could be of significant clinical value. However, extreme lipophilicity and instability of curcumin are significant challenges in its formulation development. The objectives of this study were to fabricate an injectable microparticle formulation that can sustain curcumin release over a 1-month period and to determine its chemopreventive activity in a mouse model. Microparticles were fabricated using poly(D, L-lactide-co-glycolide) polymer. Conventional emulsion solvent evaporation method of preparing microparticles resulted in crystallization of curcumin outside of microparticles and poor entrapment (~1%, w/w loading). Rapid solvent removal using vacuum dramatically increased drug entrapment (~38%, w/w loading; 76% encapsulation efficiency). Microparticles sustained curcumin release over 4 weeks in vitro, and drug release rate could be modulated by varying the polymer molecular weight and/or composition. A single subcutaneous dose of microparticles sustained curcumin liver concentration for nearly a month in mice. Hepatic glutathione-s-transferase and cyclooxygenase-2 activities, biomarkers for chemoprevention, were altered following treatment with curcumin microparticles. The results of these studies suggest that sustained-release microparticles of curcumin could be a novel and effective approach for cancer chemoprevention. PMID:21547911

  16. Airborne Lidar-Based Estimates of Tropical Forest Structure in Complex Terrain: Opportunities and Trade-Offs for REDD+

    NASA Technical Reports Server (NTRS)

    Leitold, Veronika; Keller, Michael; Morton, Douglas C.; Cook, Bruce D.; Shimabukuro, Yosio E.

    2015-01-01

    Background: Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography present a challenge for lidar remote sensing. Results: We compared digital terrain models (DTM) derived from airborne lidar data from a mountainous region of the Atlantic Forest in Brazil to 35 ground control points measured with survey grade GNSS receivers. The terrain model generated from full-density (approx. 20 returns/sq m) data was highly accurate (mean signed error of 0.19 +/-0.97 m), while those derived from reduced-density datasets (8/sq m, 4/sq m, 2/sq m and 1/sq m) were increasingly less accurate. Canopy heights calculated from reduced-density lidar data declined as data density decreased due to the inability to accurately model the terrain surface. For lidar return densities below 4/sq m, the bias in height estimates translated into errors of 80-125 Mg/ha in predicted aboveground biomass. Conclusions: Given the growing emphasis on the use of airborne lidar for forest management, carbon monitoring, and conservation efforts, the results of this study highlight the importance of careful survey planning and consistent sampling for accurate quantification of aboveground biomass stocks and dynamics. Approaches that rely primarily on canopy height to estimate aboveground biomass are sensitive to DTM errors from variability in lidar sampling density.

  17. CIRCULATING MICROPARTICLES IN PATIENTS WITH ANTIPHOSPHOLIPID ANTIBODIES: CHARACTERIZATION AND ASSOCIATIONS

    PubMed Central

    Chaturvedi, Shruti; Cockrell, Erin; Espinola, Ricardo; Hsi, Linda; Fulton, Stacey; Khan, Mohammad; Li, Liang; Fonseca, Fabio; Kundu, Suman; McCrae, Keith R.

    2014-01-01

    The antiphospholipid syndrome is characterized by venous or arterial thrombosis and/or recurrent fetal loss in the presence of circulating antiphospholipid antibodies. These antibodies cause activation of endothelial and other cell types leading to the release of microparticles with procoagulant and pro-inflammatory properties. The aims of this study were to characterize the levels of endothelial cell, monocyte, platelet derived, and tissue factor-bearing microparticles in patients with antiphospholipid antibodies, to determine the association of circulating microparticles with anticardiolipin and anti-β2-glycoprotein antibodies, and to define the cellular origin of microparticles that express tissue factor. Microparticle content within citrated blood from 47 patients with antiphospholipid antibodies and 144 healthy controls was analyzed within 2 hours of venipuncture. Levels of Annexin-V, CD105 and CD144 (endothelial derived), CD41 (platelet derived) and tissue factor positive microparticles were significantly higher in patients than controls. Though levels of CD14 (monocyte-derived) microparticles in patient plasma were not significantly increased, increased levels of CD14 and tissue factor positive microparticles were observed in patients. Levels of microparticles that stained for CD105 and CD144 showed a positive correlation with IgG (R = 0.60, p=0.006) and IgM anti-beta2-glycoprotein I antibodies (R=0.58, p=0.006). The elevation of endothelial and platelet derived microparticles in patients with APS and their correlation with anti-β2-glycoprotein I antibodies suggests a chronic state of vascular cell activation in these individuals and an important role for β2-glycoprotein I in development of the pro-thrombotic state associated with antiphospholipid antibodies. PMID:25467081

  18. Circulating microparticles in patients with antiphospholipid antibodies: characterization and associations.

    PubMed

    Chaturvedi, Shruti; Cockrell, Erin; Espinola, Ricardo; Hsi, Linda; Fulton, Stacey; Khan, Mohammad; Li, Liang; Fonseca, Fabio; Kundu, Suman; McCrae, Keith R

    2015-01-01

    The antiphospholipid syndrome is characterized by venous or arterial thrombosis and/or recurrent fetal loss in the presence of circulating antiphospholipid antibodies. These antibodies cause activation of endothelial and other cell types leading to the release of microparticles with procoagulant and pro-inflammatory properties. The aims of this study were to characterize the levels of endothelial cell, monocyte or platelet derived, and tissue factor-bearing microparticles in patients with antiphospholipid antibodies, to determine the association of circulating microparticles with anticardiolipin and anti-β2-glycoprotein antibodies, and to define the cellular origin of microparticles that express tissue factor. Microparticle content within citrated blood from 47 patients with antiphospholipid antibodies and 144 healthy controls was analyzed within 2hours of venipuncture. Levels of Annexin-V, CD105 and CD144 (endothelial derived), CD41 (platelet derived) and tissue factor positive microparticles were significantly higher in patients than controls. Though levels of CD14 (monocyte-derived) microparticles in patient plasma were not significantly increased, increased levels of CD14 and tissue factor positive microparticles were observed in patients. Levels of microparticles that stained for CD105 and CD144 showed a positive correlation with IgG (R=0.60, p=0.006) and IgM anti-beta2-glycoprotein I antibodies (R=0.58, p=0.006). The elevation of endothelial and platelet derived microparticles in patients with antiphospholipid antibodies and their correlation with anti-β2-glycoprotein I antibodies suggests a chronic state of vascular cell activation in these individuals and an important role for β2-glycoprotein I in development of the pro-thrombotic state associated with antiphospholipid antibodies. PMID:25467081

  19. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  20. Rapid and selective concentration of microparticles in an optoelectrofluidic platform.

    PubMed

    Hwang, Hyundoo; Park, Je-Kyun

    2009-01-21

    We demonstrate rapid manipulation and selective concentration of microparticles using AC electrokinetics such as dielectrophoresis (DEP) and AC electro-osmosis (ACEO) in an optoelectrofluidic platform based on a liquid crystal display (LCD). When 10 V bias at 10 kHz was applied to the optoelectrofluidic device, only the 1 microm-diameter polystyrene particles were concentrated into the projected LCD image patterns and closely packed, forming the crystalline structure by ACEO flow, while the 6 microm-diameter particles were repelled by negative DEP forces. We have characterized this frequency-dependency of the optoelectrofluidic particle behavior according to the particle diameter. On the basis of these results, we can rapidly concentrate the 1 microm-diameter particles and separate them from the 6 microm particles, by applying an AC signal of 10 kHz frequency. This novel technique can be applied to rapidly concentrate, separate and pattern micro-/nanoparticles in many biological and chemical applications. PMID:19107274

  1. Noncontact charge measurement of moving microparticles contacting dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Nesterov, Alexander; Löffler, Felix; König, Kai; Trunk, Ulrich; Leibe, Klaus; Felgenhauer, Thomas; Stadler, Volker; Bischoff, Ralf; Breitling, Frank; Lindenstruth, Volker; Hausmann, Michael

    2007-07-01

    In this study examples for a noncontact procedure that allow the description of instant electric charging of moving microparticles that contact dielectric surfaces, for instance, of a flow hose are presented. The described principle is based on the measurement of induced currents in grounded metal wire probes, as moving particles pass close to the probe. The feasibility of the approach was tested with laser printer toner particles of a given size for different basic particle flow and charging conditions. An analytic description for the induced currents was developed and compared to observed effects in order to interpret the results qualitatively. The implementation of the presented procedure can be applied to transparent and nontransparent particle containers and flow lines of complex geometry which can be composed from the presented basic flow stream configurations.

  2. Quality analysis of selective microparticle deposition on electrically programmable surfaces

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Löffler, F.; König, K.; Fernandez, S.; Nesterov-Müller, A.; Breitling, F.; Bischoff, F. R.; Stadler, V.; Hausmann, M.; Lindenstruth, V.

    2010-07-01

    Image processing and pattern analysis can evaluate the deposition quality of triboelectrically charged microparticles on charged surfaces. The image processing method presented in this paper aims at controlling the quality of peptide arrays generated by particle based solid phase Merrifield combinatorial peptide synthesis. Incorrectly deposited particles are detected before the amino acids therein are coupled to the growing peptide. The calibration of the image acquisition is performed in a supervised training step in which all parameters of the quality analyzing algorithm are learnt given one representative image. Then, the correct deposition pattern is determined by a linear support vector machine. Knowing the pattern, contaminated areas can be detected by comparing the pattern with the actual deposition. Taking into account the resolution of the image acquisition system and its magnification factor, the number and size of contaminating particles can be calculated out of the number of connected foreground pixels.

  3. Retroreflective Janus Microparticle as a Nonspectroscopic Optical Immunosensing Probe.

    PubMed

    Han, Yong Duk; Kim, Hyo-Sop; Park, Yoo Min; Chun, Hyeong Jin; Kim, Jae-Ho; Yoon, Hyun C

    2016-05-01

    We developed retroreflective Janus microparticles (RJPs) as a novel optical immunosensing probe for use in a nonspectroscopic retroreflection-based immunoassay. By coating the metals on the hemispherical surface of silica particles, highly reflective RJPs were fabricated. On the basis of the retroreflection principle, the RJPs responded to polychromatic white light sources, in contrast to conventional optical probes, which require specific monochromatic light. The retroreflection signals from RJPs were distinctively recognized as shining dots, which can be intuitively counted using a digital camera setup. Using the developed retroreflective immunosensing system, cardiac troponin I, a specific biomarker of acute myocardial infarction, was detected with high sensitivity. On the basis of the demonstrated features of the retroreflective immunosensing platform, we expect that our approach may be applied for various point-of-care-testing applications. PMID:27079154

  4. Magnetophoresis of diamagnetic microparticles in a weak magnetic field.

    PubMed

    Zhu, Gui-Ping; Hejiazan, Majid; Huang, Xiaoyang; Nguyen, Nam-Trung

    2014-12-21

    Magnetic manipulation is a promising technique for lab-on-a-chip platforms. The magnetic approach can avoid problems associated with heat, surface charge, ionic concentration and pH level. The present paper investigates the migration of diamagnetic particles in a ferrofluid core stream that is sandwiched between two diamagnetic streams in a uniform magnetic field. The three-layer flow is expanded in a circular chamber for characterisation based on imaging of magnetic nanoparticles and fluorescent microparticles. A custom-made electromagnet generates a uniform magnetic field across the chamber. In a relatively weak uniform magnetic field, the diamagnetic particles in the ferrofluid move and spread across the chamber. Due to the magnetization gradient formed by the ferrofluid, diamagnetic particles undergo negative magnetophoresis and move towards the diamagnetic streams. The effects of magnetic field strength and the concentration of diamagnetic particles are studied in detail. PMID:25325774

  5. Concentration of microparticles and bubbles in standing waves.

    PubMed

    Ostrovsky, Lev

    2015-12-01

    This paper studies the collective dynamics of microparticles in plane and cylindrical resonators. Based on the known results regarding the motion of a single particle under the action of acoustic radiation force, concentration and separation of particles in standing waves are investigated. As an example, spherical particles (cells) with a slightly larger density and sound speed than those in ambient fluid are considered. Initial particle distribution is assumed to be almost homogeneous at the considered intervals. The formation of concentration peaks in plane standing waves and on the axis of a cylindrical system is demonstrated; additional concentration along the axis is possible. The possibility of an opposite process, i.e., keeping particles stirred by periodic change of acoustic wavelength, is confirmed as well. Distribution and separation of microbubbles of different sizes in a standing wave is also studied. Examples of available experimental data illustrating the relevance of the theory are given. PMID:26723317

  6. Complex-shaped three-dimensional multi-compartmental microparticles generated by diffusional and Marangoni microflows in centrifugally discharged droplets

    PubMed Central

    Hayakawa, Masayuki; Onoe, Hiroaki; Nagai, Ken H.; Takinoue, Masahiro

    2016-01-01

    We report a versatile method for the generation of complex-shaped three-dimensional multi-compartmental (3D-MC) microparticles. Complex-shaped microparticles have recently received much attention for potential application in self-assemblies, micromachines, and biomedical and environmental engineering. Here, we have developed a method based on 3D nonequilibrium-induced microflows (Marangoni and diffusional flows) of microdroplets that are discharged from the tip of a thin capillary in a simple centrifugal microfluidic device. The microparticle shapes can be tuned by the partial dissolution of specific compartments and by the deformation of the precursor microdroplets by manipulating the 3D microflows. We believe that this method will have wide applications in nano- and microscience and technologies. PMID:26861767

  7. Complex-shaped three-dimensional multi-compartmental microparticles generated by diffusional and Marangoni microflows in centrifugally discharged droplets

    NASA Astrophysics Data System (ADS)

    Hayakawa, Masayuki; Onoe, Hiroaki; Nagai, Ken H.; Takinoue, Masahiro

    2016-02-01

    We report a versatile method for the generation of complex-shaped three-dimensional multi-compartmental (3D-MC) microparticles. Complex-shaped microparticles have recently received much attention for potential application in self-assemblies, micromachines, and biomedical and environmental engineering. Here, we have developed a method based on 3D nonequilibrium-induced microflows (Marangoni and diffusional flows) of microdroplets that are discharged from the tip of a thin capillary in a simple centrifugal microfluidic device. The microparticle shapes can be tuned by the partial dissolution of specific compartments and by the deformation of the precursor microdroplets by manipulating the 3D microflows. We believe that this method will have wide applications in nano- and microscience and technologies.

  8. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  9. Validation of fascod3 and modtran3: comparison of model calculations with ground-based and airborne interferometer observations under clear-sky conditions.

    PubMed

    Wang, J; Anderson, G P; Revercomb, H E; Knuteson, R O

    1996-10-20

    The validation of fascod3 and modtran3 against ground-based and airborne high-resolution Michelson interferometer measurements under clear-sky conditions is presented. Important considerations including water vapor continuum, frequency-dependent sea surface emissivity in the IR window region, and spectral resolution of modtran3 in the comparison of model calculations with high-resolution interferometer measurements are discussed. Our results indicate that it is not adequate to assume sea surface emissivity of 1.0 [?(ν) = 1.0] or a constant in the simulation of upwelling radiance observed by the airborne Michelson interferometer. The use of spectral emissivity (frequency-dependent emissivity) leads to much better agreement between model calculations and interferometer measurements in the IR window region from 750.0 to 1050.0 cm(-1). This could have important implications for the retrieval of sea surface temperature, thin cirrus properties, and aerosol parameters because of the sea surface emissivity of 1.0 assumption commonly used by many researchers. Comparisons of modtran3 calculations with interferometer measurements show that the agreement might not be adequate at the nominal resolution of 2.0 cm(-1), and further spectral degradation might be necessary to improve the agreement between measurements and modtran3 calculations. modtran should be used with caution for relatively high spectral resolution remote-sensing applications. PMID:21127618

  10. Column-integrated aerosol optical properties from ground-based spectroradiometer measurements at Barrax (Spain) during the Digital Airborne Imaging Spectrometer Experiment (DAISEX) campaigns

    NASA Astrophysics Data System (ADS)

    Pedrós, Roberto; Martinez-Lozano, Jose A.; Utrillas, Maria P.; Gómez-Amo, José L.; Tena, Fernando

    2003-09-01

    The Digital Airborne Imaging Spectrometer Experiment (DAISEX) was carried out for the European Space Agency (ESA) in order to develop the potential of spaceborne imaging spectroscopy for a range of different scientific applications. DAISEX involved simultaneous data acquisitions using different airborne imaging spectrometers over test sites in southeast Spain (Barrax) and the Upper Rhine valley (Colmar, France, and Hartheim, Germany). This paper presents the results corresponding to the column-integrated aerosol optical properties from ground-based spectroradiometer measurements over the Barrax area during the DAISEX campaign days in the years 1998, 1999, and 2000. The instruments used for spectral irradiance measurements were two Licor 1800 and one Optronic OL-754 spectroradiometers. The analysis of the spectral aerosol optical depth in the visible range shows in all cases the predominance of the coarse-particle mode over the fine-particle mode. The analysis of the back trajectories of the air masses indicates a predominance of marine-type aerosols in the lower atmospheric layers in all cases. Overall, the results obtained show that during the DAISEX there was a combination of maritime aerosols with smaller continental aerosols.

  11. Ecosystem Mapping Approaches Based on Vegetation Structure Using NEON Prototype Airborne LiDAR and Field Data

    NASA Astrophysics Data System (ADS)

    Krause, K.; Emery, W. J.; Barnett, D.; Petroy, S. B.; Meier, C. L.; Wessman, C. A.

    2014-12-01

    Remote sensing is a powerful tool for measuring the current state of vegetation and monitoring changes over time with repeated data collections. Airborne Light Detection and Ranging (LiDAR) data is especially well suited for mapping 3D vegetation structure. In 2010, the National Ecological Observatory Network (NEON) contracted LiDAR and hyperspectral airborne data collections over the Ordway-Swisher Biological Station (OSBS). Ground truth campaigns were also conducted in 2010, 2011, and 2014 including structural measurements and generation of species lists for a set of ground validation plots. The vegetation communities at OSBS can be characterized by the Florida Natural Areas Inventory (FNAI) classification system, with a large area of the property belonging to the Sandhill community. For this study, classification algorithm training locations are hand selected for each FNAI community type using photo-interpretation. A series of LiDAR metrics are calculated on the discrete return point clouds and derived digital elevation (DEM) and canopy height models (CHM). A decision tree classification algorithm is run using R package "rpart". A main goal of the project is to relate the LiDAR metrics used by the decision tree to direct canopy structural quantities. For instance, the canopy 75th minus the 50th percentile height in the LiDAR point clouds are related to the uniformity and light penetration in the upper canopy. A prototype of the decision tree achieved a classification accuracy of 89% on the training data itself, suggesting that some locations in different FNAI vegetation communities have similar structure and could not be distinguished in the LiDAR metrics used. An improved decision tree is currently under development which will include more training locations and more LiDAR metrics as input features. Results from this improved model will be presenting using the NEON ground truth locations as an independent and quantitative validation measure of the decision tree

  12. Quantitation of microparticles released from coated-platelets.

    PubMed

    Dale, G L; Remenyi, G; Friese, P

    2005-09-01

    Dual agonist stimulation of platelets with thrombin and convulxin results in generation of coated-platelets, a sub-population of cells known formerly as COAT-platelets (collagen and thrombin). Coated-platelets retain several procoagulant proteins on their surface and express phosphatidylserine (PS). In this report, we utilize a new methodology to demonstrate that coated-platelets also release microparticles. Platelets were prelabeled with 2.5 microm Bodipy-maleimide and then stimulated with convulxin plus thrombin. Microparticles, 0.3-0.5 microm in diameter, were observed by fluorescence confocal microscopy. Confocal microscopy was also used to demonstrate that microparticles were positive for glycoprotein IIb/IIIa, glycoprotein Ib, CD9, and PS, but negative for fibrinogen and thrombospondin. Furthermore, microparticles released from Bodipy-labeled platelets were observed by flow cytometry, and activation with convulxin plus thrombin produced 15 +/- 5 microparticles per coated-platelet. In contrast, platelets stimulated with thrombin or convulxin alone produced few microparticles. Phenylarsine oxide and diamide, both of which potentiate the mitochondrial permeability transition pore and coated-platelet production, significantly increased the number of microparticles released per coated-platelet. PMID:16102115

  13. Electrospray of multifunctional microparticles for image-guided drug delivery

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Yan, Yan; Mena, Joshua; Sun, Jingjing; Letson, Alan; Roberts, Cynthia; Zhou, Chuanqing; Chai, Xinyu; Ren, Qiushi; Xu, Ronald

    2012-03-01

    Anti-VEGF therapies have been widely explored for the management of posterior ocular disease, like neovascular age-related macular degeneration (AMD). Loading anti-VEGF therapies in biodegradable microparticles may enable sustained drug release and improved therapeutic outcome. However, existing microfabrication processes such as double emulsification produce drug-loaded microparticles with low encapsulation rate and poor antibody bioactivity. To overcome these limitations, we fabricate multifunctional microparticles by both single needle and coaxial needle electrospray. The experimental setup for the process includes flat-end syringe needles (both single needle and coaxial needle), high voltage power supplies, and syringe pumps. Microparticles are formed by an electrical field between the needles and the ground electrode. Droplet size and morphology are controlled by multiple process parameters and material properties, such as flow rate and applied voltage. The droplets are collected and freezing dried to obtain multifunctional microparticles. Fluorescent beads encapsulated poly(DL-lactide-co-glycolide) acid (PLGA) microparticles are injected into rabbits eyes through intravitreal injection to test the biodegradable time of microparticles.

  14. Chitosan microparticles for sustaining the topical delivery of minoxidil sulphate.

    PubMed

    Gelfuso, Guilherme Martins; Gratieri, Taís; Simão, Patrícia Sper; de Freitas, Luís Alexandre Pedro; Lopez, Renata Fonseca Vianna

    2011-01-01

    Given the hypothesis that microparticles can penetrate the skin barrier along the transfollicular route, this work aimed to obtain and characterise chitosan microparticles loaded with minoxidil sulphate (MXS) and to study their ability to sustain the release of the drug, attempting a further application utilising them in a targeted delivery system for the topical treatment of alopecia. Chitosan microparticles, containing different proportions of MXS/polymer, were prepared by spray drying and were characterised by yield, encapsulation efficiency, size and morphology. Microparticles selected for further studies showed high encapsulation efficiency (∼82%), a mean diameter of 3.0 µm and a spherical morphology without porosities. When suspended in an ethanol/water solution, chitosan microparticles underwent instantaneous swelling, increasing their mean diameter by 90%. Release studies revealed that the chitosan microparticles were able to sustain about three times the release rate of MXS. This feature, combined with suitable size, confers to these microparticles the potential to target and improve topical therapy of alopecia with minoxidil. PMID:21824068

  15. Charged polylactide co-glycolide microparticles as antigen delivery systems.

    PubMed

    Singh, Manmohan; Kazzaz, Jina; Ugozzoli, Mildred; Chesko, James; O'Hagan, Derek T

    2004-04-01

    Polymeric microparticles with encapsulated antigens have become well-established in the last decade as potent antigen delivery systems and adjuvants, with experience being reported from many groups. However, the authors have recently shown that an alternative approach involving charged polylactide co-glycolide (PLG) microparticles with surface adsorbed antigen(s) can also be used to deliver antigen into antigen-presenting cell populations. The authors have described the preparation of cationic and anionic PLG microparticles that have been used to adsorb a variety of agents, to include plasmid DNA, recombinant proteins and adjuvant active oligonucleotides. These novel PLG microparticles were prepared using a w/o/w solvent evaporation process in the presence of the anionic surfactants, such as dioctyl sodium sulfosuccinate, or cationic surfactants, such as hexadecyl trimethyl ammonium bromide. Antigen binding to the charged PLG microparticles was influenced by both electrostatic interaction and other mechanisms, including hydrophobic interactions. Adsorption of antigens to microparticles resulted in the induction of significantly enhanced immune responses in comparison with alternative approaches. The surface adsorbed microparticle formulation offers an alternative way of delivering antigens as a vaccine formulation. PMID:15102598

  16. In vivo biocompatibility of the PLGA microparticles in parotid gland

    PubMed Central

    Cantín, Mario; Miranda, Patricio; Suazo Galdames, Iván; Zavando, Daniela; Arenas, Patricia; Velásquez, Luis; Vilos, Cristian

    2013-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microparticles are used in various disorders for the controlled or sustained release of drugs, with the management of salivary gland pathologies possible using this technology. There is no record of the response to such microparticles in the glandular parenchyma. The purpose of this study was to assess the morphological changes in the parotid gland when injected with a single dose of PLGA microparticles. We used 12 adult female Sprague Dawley rats (Rattus norvegicus) that were injected into their right parotid gland with sterile vehicle solution (G1, n=4), 0.5 mg PLGA microparticles (G2, n=4), and 0.75 mg PLGA microparticles (G3, n=4); the microparticles were dissolved in a sterile vehicle solution. The intercalar and striated ducts lumen, the thickness of the acini and the histology aspect in terms of the parenchyma organization, cell morphology of acini and duct system, the presence of polymeric residues, and inflammatory response were determined at 14 days post-injection. The administration of the compound in a single dose modified some of the morphometric parameters of parenchyma (intercalar duct lumen and thickness of the glandular acini) but did not induce tissue inflammatory response, despite the visible presence of polymer waste. This suggests that PLGA microparticles are biocompatible with the parotid tissue, making it possible to use intraglandular controlled drug administration. PMID:24228103

  17. Expert system-based mineral mapping in northern Death Valley, California/Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Lefkoff, A. B.; Dietz, J. B.

    1993-01-01

    Integrated analysis of imaging spectrometer data and field spectral measurements were used in conjunction with conventional geologic field mapping to characterize bedrock and surficial geology at the northern end of Death Valley, California and Nevada. A knowledge-based expert system was used to automatically produce image maps showing the principal surface mineralogy from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. Linear spectral unmixing of the AVIRIS data allowed further determination of relative mineral, abundances and identification of mineral assemblages and mixtures. The imaging spectrometer data show the spatial distribution of spectrally distinct minerals occurring both as primary rockforming minerals and as alteration and weathering products. Field spectral measurements were used to verify the mineral maps and field mapping was used to extend the remote sensing results. Geographically referenced image maps produced from these data form new base maps from which to develop improved understanding of the processes of deposition and erosion affecting the present land surface.

  18. Microwave-synthesized magnetic chitosan microparticles for the immobilization of yeast cells.

    PubMed

    Safarik, Ivo; Pospiskova, Kristyna; Maderova, Zdenka; Baldikova, Eva; Horska, Katerina; Safarikova, Mirka

    2015-01-01

    An extremely simple procedure has been developed for the immobilization of Saccharomyces cerevisiae cells on magnetic chitosan microparticles. The magnetic carrier was prepared using an inexpensive, simple, rapid, one-pot process, based on the microwave irradiation of chitosan and ferrous sulphate at high pH. Immobilized yeast cells have been used for sucrose hydrolysis, hydrogen peroxide decomposition and the adsorption of selected dyes. PMID:24753015

  19. Devices for monitoring content of microparticles and bacterium in injection solutions in pharmaceutical production

    NASA Astrophysics Data System (ADS)

    Bilyi, Olexander I.; Getman, Vasyl B.; Konyev, Fedir A.; Sapunkov, Olexander; Sapunkov, Pavlo G.

    2001-06-01

    The devices for monitoring of parameters of efficiency of water solutions filtration, which are based on the analysis of scattered light by microparticles are considered in this article. The efficiency of using of devices in pharmaceutics in technological processes of manufacturing medical injection solutions is shown. The examples of monitoring of contents of bacterial cultures Pseudomonas aeruginosa, Escherichia coli, and Micrococcus luteus in water solutions of glucose are indicated.

  20. Solid lipid budesonide microparticles for controlled release inhalation therapy.

    PubMed

    Mezzena, Matteo; Scalia, Santo; Young, Paul M; Traini, Daniela

    2009-12-01

    A solid lipid microparticle system containing budesonide was prepared by oil in water emulsification followed by spray drying. The solid lipid system was studied in terms of morphology, particle size distribution, crystallinity, thermal properties, aerosol performance, and dissolution/diffusion release. The microparticle system was also compared to conventional spray-dried crystalline and amorphous budesonide samples. The particle size distributions of the crystalline, amorphous, and solid lipid microparticles, measured by laser diffraction, were similar; however, the microparticle morphology was more irregular than the spray-dried drug samples. The thermal response of the solid lipid microparticles suggested polymorphic transition and melting of the lipid, glycerol behenate (at approximately 48 degrees C and approximately 72 degrees C). No budesonide melting or crystallisation peaks were observed, suggesting that the budesonide was integrated into the matrix. X-ray powder diffraction patterns of the crystalline and amorphous budesonide were consistent with previous studies while the solid lipid microparticles showed two peaks, at approximately 21.3 and 23.5 2theta suggesting the metastable sub-alpha and primarily beta' form. Analysis of the in vitro diffusion/dissolution of the formulations was studied using a flow through model and curves analysed using difference/similarity factors and fitted using the Higuchi model. Regression analysis of this data set indicated differences in the t (0.5), where values of 49.7, 35.3, and 136.9 min were observed for crystalline, amorphous, and the solid lipid microparticles, respectively. The aerosol performance (<5 microm), measured by multistage liquid impinger, was 29.5%, 27.3%, and 21.1 +/- 0.6% for the crystalline, amorphous, and the solid lipid microparticles, respectively. This study has shown that solid lipid microparticles may provide a useful approach to controlled release respiratory therapy. PMID:19908147

  1. Clear-Sky Closure Studies of Tropospheric Aerosol and Water Vapor During ACE-2 Using Airborne Sunphotometer, Airborne In-Situ, Space-Borne, and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Collins, Donald R.; Gasso, Santiago; Oestroem, Elisabeth; Powell, Donna M.; Welton, Ellsworth J.; Durkee, Philip A.; Livingston, John M.; Russell, Philip B.; Flagan, Richard C.; Seinfeld, John H.; Hegg, Dean A.; Noone, Kevin J.; Voss, Kenneth J.; Gordon, Howard R.; Reagan, John A.; Spinhirne, James D.

    2000-01-01

    We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (a differential mobility analyzer, three optical particle counters, three nephelometers, and one absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidars. A wide range of aerosol types was encountered throughout the ACE-2 area, including background Atlantic marine, European pollution-derived, and (although less frequently than expected) African mineral dust. During the two days discussed here, vertical profiles flown in cloud free air masses revealed three distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. Based on size-resolved composition information we have established an aerosol model that allows us to compute optical properties of the ambient aerosol using the optical particle counter results. In the dust, the agreement in layer AOD (lambda=380-1060 nm) is 3-8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at lambda=525 nm), but these differences are within the combined error bars of the measurements and computations. Aerosol size-distribudon closure based on in-situ size distributions and inverted sunphotometer extinction spectra has been achieved in the MBL (total surface area and volume agree within 0.2, and 7%, respectively) but not in the dust layer. The fact that the three nephelometers operated at three different relative humidities (RH) allowed to parameterize hygroscopic growth and to therefore estimate optical properties at ambient RH. The parameters derived for different aerosol types are themselves useful for the aerosol modeling

  2. Airborne and ground-based Fourier transform spectrometers for meteorology: HIS, AERI, and the new AERI-UAV

    NASA Astrophysics Data System (ADS)

    Revercomb, Henry E.; Smith, William L.; Best, Fred A.; Giroux, Jean; LaPorte, Daniel D.; Knuteson, Robert O.; Werner, Mark W.; Anderson, Jim R.; Ciganovich, N. N.; Cline, Richard W.; Ellington, Scott D.; Dedecker, Ralph G.; Dirkx, T. P.; Garcia, Raymond K.; Howell, H. Benjamin

    1996-11-01

    Broadband IR high spectral resolution observations of atmospheric emission provide key meteorological information related to atmospheric state parameters, cloud and surface spectral properties, and processes influencing radiative budgets and regional climate. Fourier transform spectroscopy (FTS), or Michelson interferometry, has proven to be an exceptionally effective approach for making these IR spectral observations with the high radiometric accuracy necessary for weather and climate applications, and are currently developing a new airborne instrument for use on an unmanned aerospace vehicle (UAV). These include the high- resolution interferometer sounder aircraft instrument developed for the NASA high altitude ER2, the atmospheric emitted radiance interferometer (AERI) and the new AERI-UAV for application in the DOE atmospheric radiation measurement program. This paper focuses on the design of the AERI-UAV which is novel in many respects. The efforts will help speed the day when this valuable instrumentation is used to improve remote sensing and radiative budget observations from space.

  3. Levee crest elevation profiles derived from airborne lidar-based high resolution digital elevation models in south Louisiana

    USGS Publications Warehouse

    Palaseanu-Lovejoy, Monica; Thatcher, Cindy A.; Barras, John A.

    2014-01-01

    This study explores the feasibility of using airborne lidar surveys to derive high-resolution digital elevation models (DEMs) and develop an automated procedure to extract levee longitudinal elevation profiles for both federal levees in Atchafalaya Basin and local levees in Lafourche Parish. Generally, the use of traditional manual surveying methods to map levees is a costly and time consuming process that typically produces cross-levee profiles every few hundred meters, at best. The purpose of our paper is to describe and test methods for extracting levee crest elevations in an efficient, comprehensive manner using high resolution lidar generated DEMs. In addition, the vertical uncertainty in the elevation data and its effect on the resultant estimate of levee crest heights is addressed in an assessment of whether the federal levees in our study meet the USACE minimum height design criteria.

  4. Airborne/Space-Based Doppler Lidar Wind Sounders Sampling the PBL and Other Regions of Significant Beta and U Inhomogeneities

    NASA Technical Reports Server (NTRS)

    Emmitt, Dave

    1998-01-01

    This final report covers the period from April 1994 through March 1998. The proposed research was organized under four main tasks. Those tasks were: (1) Investigate the vertical and horizontal velocity structures within and adjacent to thin and subvisual cirrus; (2) Investigate the lowest 1 km of the PBL and develop algorithms for processing pulsed Doppler lidar data obtained from single shots into regions of significant inhomogeneities in Beta and U; (3) Participate in OSSEs including those designed to establish shot density requirements for meso-gamma scale phenomena with quasi-persistent locations (e.g., jets, leewaves, tropical storms); and (4) Participate in the planning and execution of an airborne mission to measure winds with a pulsed CO2 Doppler lidar. Over the four year period of this research contract, work on all four tasks has yielded significant results which have led to 38 professional presentations (conferences and publications) and have been folded into the science justification for an approved NASA space mission, SPARCLE (SPAce Readiness Coherent Lidar Experiment), in 2001. Also this research has, through Task 4, led to a funded proposal to work directly on a NASA field campaign, CAMEX III, in which an airborne Doppler wind lidar will be used to investigate the cloud-free circulations near tropical storms. Monthly progress reports required under this contract are on file. This final report will highlight major accomplishments, including some that were not foreseen in the original proposal. The presentation of this final report includes this written document as well as material that is better presented via the internet (web pages). There is heavy reference to appended papers and documents. Thus, the main body of the report will serve to summarize the key efforts and findings.

  5. Fabrication of dielectrophoretic microfluidic chips using a facile screen-printing technique for microparticle trapping

    NASA Astrophysics Data System (ADS)

    Wee, Wei Hong; Li, Zedong; Hu, Jie; Adib Kadri, Nahrizul; Xu, Feng; Li, Fei; Pingguan-Murphy, Belinda

    2015-10-01

    Trapping of microparticles finds wide applications in numerous fields. Microfluidic chips based on a dielectrophoresis (DEP) technique hold several advantages for trapping microparticles, such as fast result processing, a small amount of sample required, high spatial resolution, and high accuracy of target selection. There is an unmet need to develop DEP microfluidic chips on different substrates for different applications in a low cost, facile, and rapid way. This study develops a new facile method based on a screen-printing technique for fabrication of electrodes of DEP chips on three types of substrates (i.e. polymethyl-methacrylate (PMMA), poly(ethylene terephthalate) and A4 paper). The fabricated PMMA-based DEP microfluidic chip was selected as an example and successfully used to trap and align polystyrene microparticles in a suspension and cardiac fibroblasts in a cell culture solution. The developed electrode fabrication method is compatible with different kinds of DEP substrates, which could expand the future application field of DEP microfluidic chips, including new forms of point-of care diagnostics and trapping circulating tumor cells.

  6. Multifunctional Hydrogel Microparticles by Polymer-Assisted Photolithography.

    PubMed

    Li, Bin; He, Muhan; Ramirez, Lisa; George, Justin; Wang, Jun

    2016-02-17

    Although standard lithography has been the most common technique in micropatterning, ironically it has not been adopted to produce multifunctional hydrogel microparticles, which are highly useful for bioassays. We address this issue by developing a negative photoresist-like polymer system, which is basically comprised of polyethylene glycol (PEG) triacrylate as cross-linking units and long-chain polyvinylpyrrolidone (PVP) as the supporting scaffold. We leverage standard lithography to manufacture multilayer microparticles that are intrinsically hydrophilic, low-autofluorescent, and chemically reactive. The versatility of the microparticles is demonstrated to be color-encoded, pore-controllable, bioactive, and potentially used as a DNA bioassay. PMID:26821173

  7. Photocatalytic degradation of RhB and TNT and photocatalytic water splitting with CZTS microparticles

    NASA Astrophysics Data System (ADS)

    Shinde, S. S.

    2015-07-01

    Cu2ZnSnS4 (CZTS) is a main candidate material for solar energy conversion through both photovoltaics and photocatalysis based on environmentally friendly elements and with a direct band gap of 1.5 eV. We report the synthesis of quasi Cu2ZnSnS4 microparticles with unprecedented narrow size distributions. The structural, morphological and core level analysis has been carried out by XRD, SEM and XPS techniques. These microparticles have shown excellent photocatalytic activity toward degradation of Rhodamine B dye (RhB) and TNT under visible light. The extent of mineralization has been analyzed by COD and TOC values. Photocatalytic water splitting for H2 generation has also been reported.

  8. Microparticle manipulation in optical lattices

    NASA Astrophysics Data System (ADS)

    Mu, Weiqiang

    With the interference of several coherent beams, a periodical potential is produced for the particles trapped inside. The theoretical calculations show that the optical force applied on the particle in such optical lattice is in sinusoidal form. The force amplitudes vary greatly depending on the ratio of the particle size to the spacing of the optical lattice. A setup is constructed to demonstrate this dependence with two different methods: equipartition theorem and hydrodynamic-drag method. Based on this size dependence we develop an approach that allows tunable, size-dependent force selection of a subset of particles from an ensemble containing mixed particles. Combining a universal constant force with the sinusoidal optical force, a tilted washboard potential can be formed for the trapped particle. The diffusion of a particle over the barrier in this tilted washboard potential is briefly discussed. When the washboard potential oscillates, some interesting phenomena will happen: at high oscillation frequency, the particle's movement depends only on the oscillating amplitude; at low frequency, there are some combinations of the oscillation frequency and amplitude that induce the enhanced movement of the particle. This enhancement is first experimentally demonstrated with our setup. By implanting a single laser tweezers into the interferometric optical tweezers, we succeed in dynamically assembling designer colloidal lattices on the background of the interferometric optical tweezers. This new technique provides a flexible tool to design 2-d colloidal lattices.

  9. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  10. Detection and Quantification of Microparticles from Different Cellular Lineages Using Flow Cytometry. Evaluation of the Impact of Secreted Phospholipase A2 on Microparticle Assessment

    PubMed Central

    Rousseau, Matthieu; Belleannee, Clemence; Duchez, Anne-Claire; Cloutier, Nathalie; Levesque, Tania; Jacques, Frederic; Perron, Jean; Nigrovic, Peter A.; Dieude, Melanie; Hebert, Marie-Josee; Gelb, Michael H.; Boilard, Eric

    2015-01-01

    Microparticles, also called microvesicles, are submicron extracellular vesicles produced by plasma membrane budding and shedding recognized as key actors in numerous physio(patho)logical processes. Since they can be released by virtually any cell lineages and are retrieved in biological fluids, microparticles appear as potent biomarkers. However, the small dimensions of microparticles and soluble factors present in body fluids can considerably impede their quantification. Here, flow cytometry with improved methodology for microparticle resolution was used to detect microparticles of human and mouse species generated from platelets, red blood cells, endothelial cells, apoptotic thymocytes and cells from the male reproductive tract. A family of soluble proteins, the secreted phospholipases A2 (sPLA2), comprises enzymes concomitantly expressed with microparticles in biological fluids and that catalyze the hydrolysis of membrane phospholipids. As sPLA2 can hydrolyze phosphatidylserine, a phospholipid frequently used to assess microparticles, and might even clear microparticles, we further considered the impact of relevant sPLA2 enzymes, sPLA2 group IIA, V and X, on microparticle quantification. We observed that if enriched in fluids, certain sPLA2 enzymes impair the quantification of microparticles depending on the species studied, the source of microparticles and the means of detection employed (surface phosphatidylserine or protein antigen detection). This study provides analytical considerations for appropriate interpretation of microparticle cytofluorometric measurements in biological samples containing sPLA2 enzymes. PMID:25587983

  11. Preparation and in vitro evaluation of salbutamol-loaded lipid microparticles for sustained release pulmonary therapy.

    PubMed

    Scalia, Santo; Salama, Rania; Young, Paul; Traini, Daniela

    2012-01-01

    The aim of this study was to prepare lipid microparticles (LMs) loaded with the polar bronchodilator agent salbutamol, and designed for sustained release pulmonary delivery. The microparticles were produced by melt emulsification followed by a sonication step, using different biocompatible lipid carriers (tristearin, stearic acid and glyceryl behenate) and phosphatidylcholine as the surfactant. The use of salbutamol free base, rather than salbutamol sulphate, was necessary to obtain the incorporation of the drug in the lipid particle matrix. The prolonged release of salbutamol base was achieved only by the glyceryl behenate microparticles (40.9% of encapsulated drug being released after 8 h). The salbutamol loading was 4.2% ± 0.1 and the mass median diameter, determined by laser diffraction, ranged from 4.8 to 5.4 µm. The sustained release of LMs were formulated as a carrier-free dry powder for inhalation and exhibited a fine particle fraction of 17.3% ± 2.2, as measured by multi-stage liquid impinger. PMID:22208706

  12. Ciprofloxacin-Loaded Inorganic-Organic Composite Microparticles To Treat Bacterial Lung Infection.

    PubMed

    Tewes, Frederic; Brillault, Julien; Lamy, Barbara; O'Connell, Peter; Olivier, Jean-Christophe; Couet, William; Healy, Anne Marie

    2016-01-01

    Ciprofloxacin (CIP) is an antibiotic that has been clinically trialed for the treatment of lung infections by aerosolization. However, CIP is rapidly systemically absorbed after lung administration, increasing the risk for subtherapeutic pulmonary concentrations and resistant bacteria selection. In the presence of calcium, CIP forms complexes that reduce its oral absorption. Such complexation may slow down CIP absorption from the lung thereby maintaining high concentration in this tissue. Thus, we developed inhalable calcium-based inorganic-organic composite microparticles to sustain CIP within the lung. The aerodynamics and micromeritic properties of the microparticles were characterized. FTIR and XRD analysis suggest that the inorganic component of the particles comprised amorphous calcium carbonate and amorphous calcium formate, and that CIP and calcium interact in a 1:1 stoichiometry in the particles. CIP was completely released from the microparticles within 7 h, with profiles showing a slight dependence on pH (5 and 7.4) compared to the dissolution of pure CIP. Transport studies of CIP across Calu-3 cell monolayers, in the presence of various calcium concentrations, showed a decrease of up to 84% in CIP apparent permeability. The apparent minimum inhibitory concentration of CIP against Pseudomonas aeruginosa and Staphylococcus aureus was not changed in the presence of the same calcium concentration. These results indicate that the designed particles should provide sustained levels of CIP with therapeutic effect in the lung. With these microparticles, it should be possible to control CIP pharmacokinetics within the lung, based on controlled CIP release from the particles and reduced apparent permeability across the epithelial barrier due to the cation-CIP interaction. PMID:26641021

  13. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  14. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  15. Effect of surface temperature on microparticle-surface adhesion

    NASA Astrophysics Data System (ADS)

    Vallabh, Chaitanya Krishna Prasad; Stephens, James D.; Cetinkaya, Cetin

    2015-07-01

    The effect of surface temperature on the adhesion properties of the bond between a substrate and a single micro-particle is investigated in a non-contact/non-invasive manner by monitoring the rolling/rocking motion dynamics of acoustically excited single microparticles. In the current work, a set of experiments were performed to observe the change in the rocking resonance frequency of the particles with the change of surface temperature. At various substrate surface temperature levels, the work-of-adhesion values of the surface-particle bond are evaluated from the resonance frequencies of the rocking motion of a set of microparticles driven by an orthogonal ultrasonic surface acoustic wave field. The dependence of adhesion bonds of a microparticle and the substrate on the surface temperature has been clearly demonstrated by the performed experiments. It was also observed and noted that the relative humidity plays a vital role in the rolling behavior of particles.

  16. Enhancement of laminar convective heat transfer using microparticle suspensions

    NASA Astrophysics Data System (ADS)

    Zhu, Jiu Yang; Tang, Shiyang; Yi, Pyshar; Baum, Thomas; Khoshmanesh, Khashayar; Ghorbani, Kamran

    2016-04-01

    This paper investigates the enhancement of convective heat transfer within a sub-millimetre diameter copper tube using Al2O3, Co3O4 and CuO microparticle suspensions. Experiments are conducted at different particle concentrations of 1.0, 2.0 and 5.0 wt% and at various flow rates ranging from 250 to 1000 µl/min. Both experimental measurements and numerical analyses are employed to obtain the convective heat transfer coefficient. The results indicate a significant enhancement in convective heat transfer coefficient due to the implementation of microparticle suspensions. For the case of Al2O3 microparticle suspension with 5.0 wt% concentration, a 20.3 % enhancement in convective heat transfer coefficient is obtained over deionised water. This is comparable to the case of Al2O3 nanofluid at the same concentration. Hence, there is a potential for the microparticle suspensions to be used for cooling of compact integrated systems.

  17. Nitric oxide regulates neutrophil migration through microparticle formation.

    PubMed

    Nolan, Sarah; Dixon, Rachel; Norman, Keith; Hellewell, Paul; Ridger, Victoria

    2008-01-01

    The role of nitric oxide (NO) in regulating neutrophil migration has been investigated. Human neutrophil migration to interleukin (IL)-8 (1 nmol/L) was measured after a 1-hour incubation using a 96-well chemotaxis plate assay. The NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME) significantly (P < 0.001) enhanced IL-8-induced migration by up to 45%. Anti-CD18 significantly (P < 0.001) inhibited both IL-8-induced and L-NAME enhanced migration. Antibodies to L-selectin or PSGL-1 had no effect on IL-8-induced migration but prevented the increased migration to IL-8 induced by L-NAME. L-NAME induced generation of neutrophil-derived microparticles that was significantly (P < 0.01) greater than untreated neutrophils or D-NAME. This microparticle formation was dependent on calpain activity and superoxide production. Only microparticles from L-NAME and not untreated or D-NAME-treated neutrophils induced a significant (P < 0.01) increase in IL-8-induced migration and transendothelial migration. Pretreatment of microparticles with antibodies to L-selectin (DREG-200) or PSGL-1 (PL-1) significantly (P < 0.001) inhibited this effect. The ability of L-NAME-induced microparticles to enhance migration was found to be dependent on the number of microparticles produced and not an increase in microparticle surface L-selectin or PSGL-1 expression. These data show that NO can modulate neutrophil migration by regulating microparticle formation. PMID:18079439

  18. Mist Ejection of Silicon Microparticle Using a Silicon Nozzle

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yoshinori; Murakami, Takaaki; Yoshida, Yukihisa; Itoh, Toshihiro

    The novel mist-jet technology using a silicon nozzle and a silicon reflector has been developed. Ejection of water mist containing the silicon microparticles is demonstrated. Impurities of the silicon microparticles ejected on the substrate are analyzed. It has been verified for the first time that the contamination is reduced by the silicon head. The silicon pattern drawn by the head is successfully formed.

  19. Numerical Simulations of the Digital Microfluidic Manipulation of Single Microparticles.

    PubMed

    Lan, Chuanjin; Pal, Souvik; Li, Zhen; Ma, Yanbao

    2015-09-01

    Single-cell analysis techniques have been developed as a valuable bioanalytical tool for elucidating cellular heterogeneity at genomic, proteomic, and cellular levels. Cell manipulation is an indispensable process for single-cell analysis. Digital microfluidics (DMF) is an important platform for conducting cell manipulation and single-cell analysis in a high-throughput fashion. However, the manipulation of single cells in DMF has not been quantitatively studied so far. In this article, we investigate the interaction of a single microparticle with a liquid droplet on a flat substrate using numerical simulations. The droplet is driven by capillary force generated from the wettability gradient of the substrate. Considering the Brownian motion of microparticles, we utilize many-body dissipative particle dynamics (MDPD), an off-lattice mesoscopic simulation technique, in this numerical study. The manipulation processes (including pickup, transport, and drop-off) of a single microparticle with a liquid droplet are simulated. Parametric studies are conducted to investigate the effects on the manipulation processes from the droplet size, wettability gradient, wetting properties of the microparticle, and particle-substrate friction coefficients. The numerical results show that the pickup, transport, and drop-off processes can be precisely controlled by these parameters. On the basis of the numerical results, a trap-free delivery of a hydrophobic microparticle to a destination on the substrate is demonstrated in the numerical simulations. The numerical results not only provide a fundamental understanding of interactions among the microparticle, the droplet, and the substrate but also demonstrate a new technique for the trap-free immobilization of single hydrophobic microparticles in the DMF design. Finally, our numerical method also provides a powerful design and optimization tool for the manipulation of microparticles in DMF systems. PMID:26241832

  20. Microparticles as biomarkers of venous thromboembolic events.

    PubMed

    Campello, Elena; Spiezia, Luca; Radu, Claudia M; Simioni, Paolo

    2016-07-01

    Microparticles (MPs) are small (0.1-1.0 μm) membrane vesicles constitutively released from the surface of cells after activation and apoptosis. The clinical research on MPs is hampered by the limitations of the currently available detection methods. A correlation between MPs and venous thromboembolism (VTE) has been observed. The effects of MPs on thrombogenesis involve the exposure of phosphatidylserine, the vehiculation of tissue factor, and MP-induced intercellular cross-talk between inflammation and coagulation. This review will focus on the potential role of plasma MPs as biomarkers in detecting acute unprovoked VTE, predicting VTE occurrence in high-risk situations (mainly cancer), and ultimately, we will discuss currently available studies on the prognostic role of MPs to guide primary and secondary VTE prevention protocols. PMID:27338783

  1. Analysis of Tissue Factor Positive Microparticles

    PubMed Central

    Key, Nigel S.

    2010-01-01

    There has recently been intense interest in the clinical measurement of tissue factor (TF)-positive microparticles (MPs) in clinical disease states. This interest has been driven by the demonstration of an putative role for circulating TF-positive MPs in animal models of thrombus propagation. Both immunological and functional assays for MP-TF have been described. While each approach has its own advantages and drawbacks, neither has yet been truly established as the ‘gold standard’. Heterogeneity of TF-bearing MPs, such as the variable co-expression of surface phosphatidylserine, may determine not only their procoagulant potential, but also additional properties including rate of clearance from the circulation. PMID:20189224

  2. Innovation in detection of microparticles and exosomes.

    PubMed

    van der Pol, E; Coumans, F; Varga, Z; Krumrey, M; Nieuwland, R

    2013-06-01

    Cell-derived or extracellular vesicles, including microparticles and exosomes, are abundantly present in body fluids such as blood. Although such vesicles have gained strong clinical and scientific interest, their detection is difficult because many vesicles are extremely small with a diameter of less than 100 nm, and, moreover, these vesicles have a low refractive index and are heterogeneous in both size and composition. In this review, we focus on the relatively high throughput detection of vesicles in suspension by flow cytometry, resistive pulse sensing, and nanoparticle tracking analysis, and we will discuss their applicability and limitations. Finally, we discuss four methods that are not commercially available: Raman microspectroscopy, micro nuclear magnetic resonance, small-angle X-ray scattering (SAXS), and anomalous SAXS. These methods are currently being explored to study vesicles and are likely to offer novel information for future developments. PMID:23809109

  3. Microparticle assembly and contact line dynamics

    NASA Astrophysics Data System (ADS)

    Ghosh, Moniraj

    This thesis addresses three topics. First, microparticle assembly on solid surfaces from an evaporative suspension is studied. It is well known that microparticles collect near three phase contact lines owing to evaporative fluxes. In a dip coating configuration, if the evaporative flux and plate withdrawal velocity U are matched, large colloidal crystals form. Here, I investigate the consequences of varying the plate withdrawal rate, and find that periodic striped patterns emerge which depend strongly on U. The stripes form when three phase contact lines "jump", or recede rapidly, upon detaching from well-wet particle aggregates on less wet substrates. Stripe width, spacing and height change abruptly at a transition velocity which can be related to a Landau-Levich transition in the flow. The second part of my thesis is a numerical simulation of drop spreading and retraction as a function of drop scale. The drop moves over a thin liquid film, and drop motion is initiated by an impulsive change in surface wettability. Owing to the presence of the film, these simulations require no closure condition at the 'apparent' contact line. Rather, relationships emerge between the contact line velocity and the dynamic contact angle. For nanoscopic drops, molecular effects dominate the drop motion. For drops an order of magnitude larger than the thin film, regimes emerge in which drops move according to Tanner's law, a relationship derived for macroscopic drops. Drop retraction is considerably more rapid than spreading owing to rapid dewetting events near the contact line. This thesis concludes with a discussion of a technique for creating multifunctional surfaces presenting discrete patches of several proteins. The technique relies on microcontact printing (microCP) to define active regions, and the use of a microfluidics device to deliver proteins to those regions. The surfaces are used to capture cells from a suspension, to sort cells from a mixed suspension, and to study

  4. Persistence, distribution, and impact of distinctly segmented microparticles on cochlear health following in vivo infusion.

    PubMed

    Ross, Astin M; Rahmani, Sahar; Prieskorn, Diane M; Dishman, Acacia F; Miller, Josef M; Lahann, Joerg; Altschuler, Richard A

    2016-06-01

    Delivery of pharmaceuticals to the cochleae of patients with auditory dysfunction could potentially have many benefits from enhancing auditory nerve survival to protecting remaining sensory cells and their neuronal connections. Treatment would require platforms to enable drug delivery directly to the cochlea and increase the potential efficacy of intervention. Cochlear implant recipients are a specific patient subset that could benefit from local drug delivery as more candidates have residual hearing; and since residual hearing directly contributes to post-implantation hearing outcomes, it requires protection from implant insertion-induced trauma. This study assessed the feasibility of utilizing microparticles for drug delivery into cochlear fluids, testing persistence, distribution, biocompatibility, and drug release characteristics. To allow for delivery of multiple therapeutics, particles were composed of two distinct compartments; one containing polylactide-co-glycolide (PLGA), and one composed of acetal-modified dextran and PLGA. Following in vivo infusion, image analysis revealed microparticle persistence in the cochlea for at least 7 days post-infusion, primarily in the first and second turns. The majority of subjects maintained or had only slight elevation in auditory brainstem response thresholds at 7 days post-infusion compared to pre-infusion baselines. There was only minor to limited loss of cochlear hair cells and negligible immune response based on CD45+ immunolabling. When Piribedil-loaded microparticles were infused, Piribedil was detectable within the cochlear fluids at 7 days post-infusion. These results indicate that segmented microparticles are relatively inert, can persist, release their contents, and be functionally and biologically compatible with cochlear function and therefore are promising vehicles for cochlear drug delivery. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1510-1522, 2016. PMID:26841263

  5. Two-dimensional spatial manipulation of microparticles in continuous flows in acoustofluidic systems

    PubMed Central

    Gao, Lu; Wyatt Shields, C.; Johnson, Leah M.; Graves, Steven W.; Yellen, Benjamin B.; López, Gabriel P.

    2015-01-01

    We report a modeling and experimental study of techniques to acoustically focus particles flowing through a microfluidic channel. Our theoretical model differs from prior works in that we solve an approximate 2-D wave transmission model that accounts for wave propagation in both the solid and fluid phases. Our simulations indicate that particles can be effectively focused at driving frequencies as high as 10% off of the resonant condition. This conclusion is supported by experiments on the acoustic focusing of particles in nearly square microchannels, which are studied for different flow rates, driving frequencies and placements of the lead zirconate titanate transducer, either underneath the microchannel or underneath a parallel trough. The relative acoustic potential energy and the resultant velocity fields for particles with positive acoustic contrast coefficients are estimated in the 2-D limit. Confocal microscopy was used to observe the spatial distribution of the flowing microparticles in three dimensions. Through these studies, we show that a single driving frequency from a single piezoelectric actuator can induce the 2-D concentration of particles in a microchannel with a nearly square cross section, and we correlate these behaviors with theoretical predictions. We also show that it is possible to control the extent of focusing of the microparticles, and that it is possible to decouple the focusing of microparticles in the vertical direction from the lateral direction in rectangular channels with anisotropic cross sections. This study provides guidelines to design and operate microchip-based acoustofluidic devices for precise control over the spatial arrangement of microparticles for applications such as flow cytometry and cellular sorting. PMID:25713687

  6. Airborne Raman Lidar and its Applications for Atmospheric Process Studies

    NASA Astrophysics Data System (ADS)

    Wang, Zhien; Wechsler, Perry J.; Mahon, Nick; Wu, Decheng; Liu, Bo; Burkhart, Matthew; Glover, Brent; Kuestner, William; Welch, Wayne; Thomson, Andrew

    2016-06-01

    Although ground-base Raman lidars are widely used for atmospheric observations, the capabilities of airborne Raman lidar is not fully explored. Here we presented two recently developed airborne Raman lidar systems for the studies of atmospheric boundary layer process, aerosols, and clouds. The systems are briefly introduced. Observation examples are presented to illustrate the unique observational capabilities of airborne Raman lidar and their applications for atmospheric process studies.

  7. A two-photon laser-induced fluorescence field instrument for ground-based and airborne measurements of atmospheric NO

    NASA Technical Reports Server (NTRS)

    Bradshaw, J. D.; Rodgers, M. O.; Sandholm, S. T.; Kesheng, S.; Davis, D. D.

    1985-01-01

    This paper reports on a new two-photon laser-induced fluorescence (TP-LIF) sensor capable of making routine measurements at the few parts per trillion volume level. This direct spectroscopic detection method has been demonstrated to be a reliable instrument while performing both on the ground and in the air. As currently designed it is unique in being 'signal' rather than 'signal-to-noise' limited. The latter characteristic enables the TP-LIF sensor to make atmospheric measurements of NO under environmental conditions that might normally be considered unsuitable for a laser technique. These include clouds, rain, and, in general, high-atmospheric-aerosol loading conditions. Of special interest is the insensitivity of the TP-LIF NO instrument to changes in pressure while operating in the troposphere. This characteristic has enabled this sensor to be used to record real-time altitude profiles of NO. Future improvements should make possible two measurement opportunities: (1) NO flux measurements via the airborne eddy-correlation method and (2) nitrogen isotopic distribution measurements (e.g., (N-15)(0-16) versus (N-14)(0-16) as a means of identifying specific NO(x) sources.

  8. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land and Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; Starr, D. OC. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-POL) radar from two field experiments are used to evaluate the Surface ref'ercnce technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in vxo deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at. the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and dry ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level, and that the data are not readil explained in terms of a gamma function raindrop size distribution.

  9. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; O'C.Starr, D. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-Pol) radar from two field experiments are used to evaluate the surface reference technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in two deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and (dry) ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level.

  10. Spectrum correction algorithm for detectors in airborne radioactivity monitoring equipment NH-UAV based on a ratio processing method

    NASA Astrophysics Data System (ADS)

    Cao, Ye; Tang, Xiao-Bin; Wang, Peng; Meng, Jia; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2015-10-01

    The unmanned aerial vehicle (UAV) radiation monitoring method plays an important role in nuclear accidents emergency. In this research, a spectrum correction algorithm about the UAV airborne radioactivity monitoring equipment NH-UAV was studied to measure the radioactive nuclides within a small area in real time and in a fixed place. The simulation spectra of the high-purity germanium (HPGe) detector and the lanthanum bromide (LaBr3) detector in the equipment were obtained using the Monte Carlo technique. Spectrum correction coefficients were calculated after performing ratio processing techniques about the net peak areas between the double detectors on the detection spectrum of the LaBr3 detector according to the accuracy of the detection spectrum of the HPGe detector. The relationship between the spectrum correction coefficient and the size of the source term was also investigated. A good linear relation exists between the spectrum correction coefficient and the corresponding energy (R2=0.9765). The maximum relative deviation from the real condition reduced from 1.65 to 0.035. The spectrum correction method was verified as feasible.

  11. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles.

    PubMed

    Walid Rezanoor, Md; Dutta, Prashanta

    2016-03-01

    Electrorotation is widely used for characterization of biological cells and materials using a rotating electric field. Generally, multiphase AC electric fields and quadrupolar electrode configuration are needed to create a rotating electric field for electrorotation. In this study, we demonstrate a simple method to rotate dielectrophoretically trapped microparticles using a stationary AC electric field. Coplanar interdigitated electrodes are used to create a linearly polarized nonuniform AC electric field. This nonuniform electric field is employed for dielectrophoretic trapping of microparticles as well as for generating electroosmotic flow in the vicinity of the electrodes resulting in rotation of microparticles in a microfluidic device. The rotation of barium titanate microparticles is observed in 2-propanol and methanol solvent at a frequency below 1 kHz. A particle rotation rate as high as 240 revolutions per minute is observed. It is demonstrated that precise manipulation (both rotation rate and equilibrium position) of the particles is possible by controlling the frequency of the applied electric field. At low frequency range, the equilibrium positions of the microparticles are observed between the electrode edge and electrode center. This method of particle manipulation is different from electrorotation as it uses induced AC electroosmosis instead of electric torque as in the case of electrorotation. Moreover, it has been shown that a microparticle can be rotated along its own axis without any translational motion. PMID:27014394

  12. Guiding and trapping microparticles in an extended surface field

    NASA Astrophysics Data System (ADS)

    Garces-Chavez, Veneranda; Spalding, Gabriel C.; Dholakia, Kishan

    2004-10-01

    We made use of near-field photonic forces in order to manipulate and trap microparticles in an extended area above a solid surface. Structures in evanescent field were created either by imaging a Ronchi ruler (fringe structure) or by focusing five beams (spot structure) at the top of a prism. The surface field couples to microparticles in close proximity, where the near-field wave can be converted to a propagating wave, via photon tunnelling across the gap from prism to microparticles. Due to transverse optical gradients and radiation pressure, microparticles immersed in water were laterally trapped and longitudinally guided along the direction of the evanescent waves. By splitting the laser beam into two equal counterpropagating beams, another evanescent wave was created exactly with the same structure in the opposite direction to the first one. We use this geometry we demonstrate stably trap of thousand of microparticles over an area of about a millimetre squared. Red blood and yeast cells were also individually trapped in an array of potential wells. We believe this is the first demonstration of guiding and, separately, trapped in unison multiple microparticles on a surface.

  13. Risedronate-loaded Eudragit S100 microparticles formulated into tablets.

    PubMed

    Velasquez, Aline A; Mattiazzi, Juliane; Ferreira, Luana M; Pohlmann, Lauren; Silva, Cristiane B; Rolim, Clarice M B; Cruz, Letícia

    2014-05-01

    Risedronate, an anti-osteoporotic drug, is associated with low patient compliance due to the upper gastrointestinal side-effects and stringent dosing regimes. This study aimed to prepare and characterize risedronate-loaded Eudragit® S100 microparticles and develop a final dosage form by the compression of microparticles using direct tableting excipients. Microparticles were prepared by spray-drying and presented yield of 54%, encapsulation efficiency higher than 90%, mean diameter of 3.3 µm, moisture content around 8% and exhibited spherical shape and poor flowability. At pH 1.2, 23% of risedronate was released from microparticles in 120 min, while at pH 6.8 the drug took 90 min to reach 99.5%. Microparticles were compressed into tablets using microcrystalline cellulose, magnesium stearate, colloidal silicon dioxide and 2 polyvinylpyrrolidone concentrations (5% and 15%). Tablets presented low variations in weight, thickness and drug content. Besides, the formulations showed sufficient hardness, low friability and disintegrated in less than 15 min. In acid medium, no more than 16% of the drug was released in 120 min, while in intestinal medium the formulations prolonged the risedronate release for 240 min. Finally, the developed tableted microparticles can be considered a promising dosage form for oral risedronate administration. PMID:23506303

  14. Calcium carbonate microparticle growth controlled by a conjugate drug-copolymer and crystallization time.

    PubMed

    Doroftei, Florica; Damaceanu, Mariana Dana; Simionescu, Bogdan C; Mihai, Marcela

    2014-04-01

    The influence of crystallization reaction time on CaCO3 microparticle growth from supersaturate aqueous solutions, in the presence of a conjugate drug-copolymer, has been investigated. The polymer conjugate, P(NVP-MA-Ox), is based on poly(N-vinylpyrrolidone-co-maleic anhydride) as the support and 2-amino-5-(4-methoxyphenyl)-1,3,4-oxadiazole as the drug. The microparticles are characterized by optical, scanning and transmission electron microscopy, dynamic light scattering, X-ray diffraction, flow particle image analysis and particle charge density. X-ray diffraction (XRD) investigations showed that calcite polymorph content increased with an increase in crystallization time, even if the electrostatic interactions between Ca(2+) and polyanionic sites of P(NVP-MA-Ox) structure conduct to an increased vaterite phase stability. The strong particle size increase after 6 h of ageing can be ascribed to partially vaterite recrystallization and adsorption of nano-scaled calcite crystallite nuclei at microparticles surfaces. The pH stability of the particles was shown by zeta potential changes and their adsorption capacity as a function of their composition, and characteristics were tested using methylene blue. The sorption capacity of composite materials was strongly influenced by the ratio between polymorphs in the composites, and increased with the increase of calcite content and ageing time. PMID:24675592

  15. Pressure sensitive microparticle adhesion through biomimicry of the pollen-stigma interaction.

    PubMed

    Lin, Haisheng; Qu, Zihao; Meredith, J Carson

    2016-03-21

    Many soft biomimetic synthetic adhesives, optimized to support macroscopic masses (∼kg), have been inspired by geckos, insects and other animals. Far less work has investigated bioinspired adhesion that is tuned to micro- and nano-scale sizes and forces. However, such adhesive forces are extremely important in the adhesion of micro- and nanoparticles to surfaces, relevant to a wide range of industrial and biological systems. Pollens, whose adhesion is critical to plant reproduction, are an evolutionary-optimized system for biomimicry to engineer tunable adhesion between particles and micro-patterned soft matter surfaces. In addition, the adhesion of pollen particles is relevant to topics as varied as pollinator ecology, transport of allergens, and atmospheric phenomena. We report the first observation of structurally-derived pressure-sensitive adhesion of a microparticle by using the sunflower pollen and stigma surfaces as a model. This strong, pressure-sensitive adhesion results from interlocking between the pollen's conical spines and the stigma's receptive papillae. Inspired by this behavior, we fabricated synthetic polymeric patterned surfaces that mimic the stigma surface's receptivity to pollen. These soft mimics allow the magnitude of the pressure-sensitive response to be tuned by adjusting the size and spacing of surface features. These results provide an important new insight for soft material adhesion based on bio-inspired principles, namely that ornamented microparticles and micro-patterned surfaces can be designed with complementarity that enable a tunable, pressure-sensitive adhesion on the microparticle size and length scale. PMID:26883733

  16. From The Cover: Poly- amino ester-containing microparticles enhance the activity of nonviral genetic vaccines

    NASA Astrophysics Data System (ADS)

    Little, Steven R.; Lynn, David M.; Ge, Qing; Anderson, Daniel G.; Puram, Sidharth V.; Chen, Jianzhu; Eisen, Herman N.; Langer, Robert

    2004-06-01

    Current nonviral genetic vaccine systems are less effective than viral vaccines, particularly in cancer systems where epitopes can be weakly immunogenic and antigen-presenting cell processing and presentation to T cells is down-regulated. A promising nonviral delivery method for genetic vaccines involves microencapsulation of antigen-encoding DNA, because such particles protect plasmid payloads and target them to phagocytic antigen-presenting cells. However, conventional microparticle formulations composed of poly lactic-co-glycolic acid take too long to release encapsulated payload and fail to induce high levels of target gene expression. Here, we describe a microparticle-based DNA delivery system composed of a degradable, pH-sensitive poly- amino ester and poly lactic-co-glycolic acid. These formulations generate an increase of 3-5 orders of magnitude in transfection efficiency and are potent activators of dendritic cells in vitro. When used as vaccines in vivo, these microparticle formulations, unlike conventional formulations, induce antigen-specific rejection of transplanted syngenic tumor cells.

  17. Microfluidic preparation of dual stimuli-responsive microparticles and light-directed clustering.

    PubMed

    Lone, Saifullah; Kim, Sung Hoon; Nam, Seong Won; Park, Sungsu; Cheong, In Woo

    2010-12-01

    We present a simple fabrication of photo- and thermoresponsive microparticles with a narrow size distribution in the PDMS-based microfluidic device. The monodisperse water-in-oil (W/O) droplets of poly(N-isopropylacrylamide-co-spironaphthoxazine methacryloyl) (PNIPA-SPO) were formed at the T-junction channel of the device by adjusting the flow conditions of two immiscible solutions. Subsequently, the droplets were polymerized downstream of the channel under 365 nm UV irradiation in the presence of 2,2'-diethoxyacetophenone (DEAP, photoinitiator) and N,N'-methylenebisacrylamide (MBA, monomer and cross-linker). Being photosensitive, the polymerized microparticles progressively change their color when subjected to UV-vis irradiation. Above the LCST of the copolymer, the microparticles exhibited volume shrinkage accompanied by color deterioration. In addition, the UV light-driven clustering of the PNIPA-SPO copolymer was observed within the W/O droplet in the absence of photoinitiator, which contributed to variable microstructures from Janus to acorn-like and snowman-like morphologies. This work is the first attempt to unveil the photocontrolled asymmetric particle morphology by using the photoresponsive polymer. PMID:21033759

  18. Effects of Antibiotic Physicochemical Properties on their Release Kinetics from Biodegradable Polymer Microparticles

    PubMed Central

    Shah, Sarita R.; Henslee, Allan M.; Spicer, Patrick P.; Yokota, Shun; Petrichenko, Sophia; Allahabadi, Sachin; Bennett, George N.; Wong, Mark E.; Kasper, F. Kurtis; Mikos, Antonios G.

    2014-01-01

    Purpose This study investigated the effects of the physicochemical properties of antibiotics on the morphology, loading efficiency, size, release kinetics, and antibiotic efficacy of loaded poly(DL-lactic-co-glycolic acid) (PLGA) microparticles (MPs) at different loading percentages. Methods Cefazolin, ciprofloxacin, clindamycin, colistin, doxycycline, and vancomycin were loaded at 10 and 20 weight percent into PLGA MPs using a water-in-oil-in water double emulsion fabrication protocol. Microparticle morphology, size, loading efficiency, release kinetics, and antibiotic efficacy were assessed. Results The results from this study demonstrate that the chemical nature of loaded antibiotics, especially charge and molecular weight, influence the incorporation into and release of antibiotics from PLGA MPs. Drugs with molecular weights less than 600 Da displayed biphasic release while those with molecular weights greater than 1000 Da displayed triphasic release kinetics. Large molecular weight drugs also had a longer delay before release than smaller molecular weight drugs. The negatively charged antibiotic cefazolin had lower loading efficiency than positively charged antibiotics. Microparticle size appeared to be mainly controlled by fabrication parameters, and partition and solubility coefficients did not appear to have an obvious effect on loading efficiency or release. Released antibiotics maintained their efficacy against susceptible strains over the duration of release. Duration of release varied between 17–49 days based on the type of antibiotic loaded. Conclusions The data from this study indicate that the chemical nature of antibiotics affects properties of antibiotic-loaded PLGA MPs and allows for general prediction of loading and release kinetics. PMID:24874603

  19. Toolsets for Airborne Data

    Atmospheric Science Data Center

    2015-04-02

    article title:  Toolsets for Airborne Data     View larger image The ... limit of detection values. Prior to accessing the TAD Web Application ( https://tad.larc.nasa.gov ) for the first time, users must ...

  20. Geodetic Imaging Lidar: Applications for high-accuracy, large area mapping with NASA's upcoming high-altitude waveform-based airborne laser altimetry Facility

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Rabine, D.; Hofton, M. A.; Citrin, E.; Luthcke, S. B.; Misakonis, A.; Wake, S.

    2015-12-01

    Full waveform laser altimetry has demonstrated its ability to capture highly-accurate surface topography and vertical structure (e.g. vegetation height and structure) even in the most challenging conditions. NASA's high-altitude airborne laser altimeter, LVIS (the Land Vegetation, and Ice Sensor) has produced high-accuracy surface maps over a wide variety of science targets for the last 2 decades. Recently NASA has funded the transition of LVIS into a full-time NASA airborne Facility instrument to increase the amount and quality of the data and to decrease the end-user costs, to expand the utilization and application of this unique sensor capability. Based heavily on the existing LVIS sensor design, the Facility LVIS instrument includes numerous improvements for reliability, resolution, real-time performance monitoring and science products, decreased operational costs, and improved data turnaround time and consistency. The development of this Facility instrument is proceeding well and it is scheduled to begin operations testing in mid-2016. A comprehensive description of the LVIS Facility capability will be presented along with several mission scenarios and science applications examples. The sensor improvements included increased spatial resolution (footprints as small as 5 m), increased range precision (sub-cm single shot range precision), expanded dynamic range, improved detector sensitivity, operational autonomy, real-time flight line tracking, and overall increased reliability and sensor calibration stability. The science customer mission planning and data product interface will be discussed. Science applications of the LVIS Facility include: cryosphere, territorial ecology carbon cycle, hydrology, solid earth and natural hazards, and biodiversity.

  1. The airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven; Schall, Harold; Shattuck, Paul

    2007-05-01

    The Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the current program status.

  2. Microparticles: Facile and High-Throughput Synthesis of Functional Microparticles with Quick Response Codes (Small 24/2016).

    PubMed

    Ramirez, Lisa Marie S; He, Muhan; Mailloux, Shay; George, Justin; Wang, Jun

    2016-06-01

    Microparticles carrying quick response (QR) barcodes are fabricated by J. Wang and co-workers on page 3259, using a massive coding of dissociated elements (MiCODE) technology. Each microparticle can bear a special custom-designed QR code that enables encryption or tagging with unlimited multiplexity, and the QR code can be easily read by cellphone applications. The utility of MiCODE particles in multiplexed DNA detection and microtagging for anti-counterfeiting is explored. PMID:27306741

  3. Simulating imaging spectrometer data of a mixed old-growth forest: A parameterization of a 3D radiative transfer model based on airborne and terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Schneider, F. D.; Leiterer, R.; Morsdorf, F.; Gastellu-Etchegorry, J.; Lauret, N.; Pfeifer, N.; Schaepman, M. E.

    2013-12-01

    Remote sensing offers unique potential to study forest ecosystems by providing spatially and temporally distributed information that can be linked with key biophysical and biochemical variables. The estimation of biochemical constituents of leaves from remotely sensed data is of high interest revealing insight on photosynthetic processes, plant health, plant functional types, and speciation. However, the scaling of observations at the canopy level to the leaf level or vice versa is not trivial due to the structural complexity of forests. Thus, a common solution for scaling spectral information is the use of physically-based radiative transfer models. The discrete anisotropic radiative transfer model (DART), being one of the most complete coupled canopy-atmosphere 3D radiative transfer models, was parameterized based on airborne and in-situ measurements. At-sensor radiances were simulated and compared with measurements from an airborne imaging spectrometer. The study was performed on the Laegern site, a temperate mixed forest characterized by steep slopes, a heterogeneous spectral background, and deciduous and coniferous trees at different development stages (dominated by beech trees; 47°28'42.0' N, 8°21'51.8' E, 682 m asl, Switzerland). It is one of the few studies conducted on an old-growth forest. Particularly the 3D modeling of the complex canopy architecture is crucial to model the interaction of photons with the vegetation canopy and its background. Thus, we developed two forest reconstruction approaches: 1) based on a voxel grid, and 2) based on individual tree detection. Both methods are transferable to various forest ecosystems and applicable at scales between plot and landscape. Our results show that the newly developed voxel grid approach is favorable over a parameterization based on individual trees. In comparison to the actual imaging spectrometer data, the simulated images exhibit very similar spatial patterns, whereas absolute radiance values are

  4. Endothelial Dysfunction Caused by Circulating Microparticles from Patients with Metabolic Syndrome

    PubMed Central

    Agouni, Abdelali; Lagrue-Lak-Hal, Anne Hélène; Ducluzeau, Pierre Henri; Mostefai, Hadj Ahmed; Draunet-Busson, Catherine; Leftheriotis, Georges; Heymes, Christophe; Martinez, Maria Carmen; Andriantsitohaina, Ramaroson

    2008-01-01

    Microparticles are membrane vesicles that are released during cell activation and apoptosis. Elevated levels of microparticles occur in many cardiovascular diseases; therefore, we characterized circulating microparticles from both metabolic syndrome (MS) patients and healthy patients. We evaluated microparticle effects on endothelial function; however, links between circulating microparticles and endothelial dysfunction have not yet been demonstrated. Circulating microparticles and their cellular origins were examined by flow cytometry of blood samples from patients and healthy subjects. Microparticles were used either to treat human endothelial cells in vitro or to assess endothelium function in mice after intravenous injection. MS patients had increased circulating levels of microparticles compared with healthy patients, including microparticles from platelet, endothelial, erythrocyte, and procoagulant origins. In vitro treatment of endothelial cells with microparticles from MS patients reduced both nitric oxide (NO) and superoxide anion production, resulting in protein tyrosine nitration. These effects were associated with enhanced phosphorylation of endothelial NO synthase at the site of inhibition. The reduction of O2− was linked to both reduced expression of p47phox of NADPH oxidase and overexpression of extracellular superoxide dismutase. The decrease in NO production was triggered by nonplatelet-derived microparticles. In vivo injection of MS microparticles into mice impaired endothelium-dependent relaxation and decreased endothelial NO synthase expression. These data provide evidence that circulating microparticles from MS patients influence endothelial dysfunction. PMID:18772329

  5. Simulation tests to assess occupational exposure to airborne asbestos from artificially weathered asphalt-based roofing products.

    PubMed

    Sheehan, Patrick; Mowat, Fionna; Weidling, Ryan; Floyd, Mark

    2010-11-01

    Historically, asbestos-containing roof cements and coatings were widely used for patching and repairing leaks. Although fiber releases from these materials when newly applied have been studied, there are virtually no useful data on airborne asbestos fiber concentrations associated with the repair or removal of weathered roof coatings and cements, as most studies involve complete tear-out of old roofs, rather than only limited removal of the roof coating or cement during a repair job. This study was undertaken to estimate potential chrysotile asbestos fiber exposures specific to these types of roofing products following artificially enhanced weathering. Roof panels coated with plastic roof cement and fibered roof coating were subjected to intense solar radiation and daily simulated precipitation events for 1 year and then scraped to remove the weathered materials to assess chrysotile fiber release and potential worker exposures. Analysis of measured fiber concentrations for hand scraping of the weathered products showed 8-h time-weighted average concentrations that were well below the current Occupational Safety and Health Administration permissible exposure limit for asbestos. There was, however, visibly more dust and a few more fibers collected during the hand scraping of weathered products compared to the cured products previously tested. There was a notable difference between fibers released from weathered and cured roofing products. In weathered samples, a large fraction of chrysotile fibers contained low concentrations of or essentially no magnesium and did not meet the spectral, mineralogical, or morphological definitions of chrysotile asbestos. The extent of magnesium leaching from chrysotile fibers is of interest because several researchers have reported that magnesium-depleted chrysotile fibers are less toxic and produce fewer mesothelial tumors in animal studies than normal chrysotile fibers. PMID:20923966

  6. Functionality Based Detection of Airborne Engineered Nanoparticles in Quasi Real Time: A New Type of Detector and a New Metric

    PubMed Central

    Neubauer, Nicole

    2013-01-01

    A new type of detector which we call the Catalytic Activity Aerosol Monitor (CAAM) was investigated towards its capability to detect traces of commonly used industrial catalysts in ambient air in quasi real time. Its metric is defined as the catalytic activity concentration (CAC) expressed per volume of sampled workplace air. We thus propose a new metric which expresses the presence of nanoparticles in terms of their functionality - in this case a functionality of potential relevance for damaging effects - rather than their number, surface, or mass concentration in workplace air. The CAAM samples a few micrograms of known or anticipated airborne catalyst material onto a filter first and then initiates a chemical reaction which is specific to that catalyst. The concentration of specific gases is recorded using an IR sensor, thereby giving the desired catalytic activity. Due to a miniaturization effort, the laboratory prototype is compact and portable. Sensitivity and linearity of the CAAM response were investigated with catalytically active palladium and nickel nano-aerosols of known mass concentration and precisely adjustable primary particle size in the range of 3–30nm. With the miniature IR sensor, the smallest detectable particle mass was found to be in the range of a few micrograms, giving estimated sampling times on the order of minutes for workplace aerosol concentrations typically reported in the literature. Tests were also performed in the presence of inert background aerosols of SiO2, TiO2, and Al2O3. It was found that the active material is detectable via its catalytic activity even when the particles are attached to a non-active background aerosol. PMID:23504803

  7. Characterizing Geology and Mineralization at High Latitudes in Alaska Using Airborne and Field-Based Imaging Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Hoefen, T. M.; Kokaly, R. F.; Graham, G. E.; Kelley, K. D.; Buchhorn, M.; Johnson, M. R.; Hubbard, B. E.; Goldfarb, R. J.; Prakash, A.

    2015-12-01

    Passive optical remote sensing of high latitude regions faces many challenges including a short acquisition season and poor illumination. Identification of surface minerals can be complicated by steep terrain and vegetation cover. In July 2014, the HyMap* imaging spectrometer was flown over two study areas in Alaska. Contemporaneously, field spectra and samples of geologic units were collected, including altered and unaltered parts of intrusions hosting mid-Cretaceous porphyry copper deposits at Orange Hill and Bond Creek in the eastern Alaska Range. The HyMap radiance data were converted to surface reflectance using a radiative transfer correction program and reflectance spectra of calibration sites. Reflectance data were analyzed with the Material Identification and Characterization Algorithm (MICA), a module of USGS PRISM (Processing Routines in IDL for Spectroscopic Measurements; speclab.cr.usgs.gov). Large areas of abundant epidote/chlorite, muscovite/illite, calcite, kaolinite, montmorillonite, and (or) pyrophyllite were mapped, which are minerals typically formed during alteration of host rocks surrounding porphyry copper deposits. A map showing the wavelength position of the muscovite/illite absorption feature was made. Shifts in wavelength position have been related to the aluminum composition of micas and areas of high metal concentrations in past studies. In July 2015, rock and spectral sampling was continued in areas with surface exposures of copper- and molybdenum-bearing sulfides. Also, high-spatial resolution (~6 cm pixel size) imaging spectrometer data were collected at the Orange Hill deposit using the University of Alaska, Fairbanks (UAF) HySpex imaging spectrometer (www.hyperspectral.alaska.edu). Laboratory, field, and airborne spectra are being examined to define indicators of mineralization. The study results will be used to assess the effectiveness of spectroscopic remote sensing for geologic mapping and exploration targeting in Alaska and

  8. Effect of particle size on the biodistribution of nano- and microparticles following intra-articular injection in mice.

    PubMed

    Pradal, Julie; Maudens, Pierre; Gabay, Cem; Seemayer, Christian Alexander; Jordan, Olivier; Allémann, Eric

    2016-02-10

    Intra-articular (IA) injection of extended drug release forms based on biodegradable microparticles holds promise for the treatment of joint diseases. However, the fate of microparticles following intra-articular injection is controversial and has not been thoroughly investigated. The aim of this work was therefore to evaluate the biodistribution of fluorescent poly(lactic acid) particles of different sizes after IA injection in arthritic or healthy mice. Regardless of the inflammatory status of the joint, 300 nm-nanoparticles leaked from the joint. Due to inflammation and related increase of vascular permeability, 3 μm-microparticles that were retained in the non-inflamed synovial membrane leaked from the inflamed joint. Complete retention of 10 μm-microparticles was observed independently of the joint inflammatory status. Embedding particles in a hyaluronic acid gel prolonged the retention of the formulations only in inflamed joints. Depending on particle's size, formulations were preferentially eliminated by blood vessels or lymphatic pathways. Poly(lactic acid) particles of 3 μm were biocompatible and retained in knee joints at least for 6 weeks. This work highlights the need to deliver hyaluronic acid-embedded particles of at least 3 μm to guarantee their retention in inflamed joints. These results will contribute to the rational design of long-lasting formulations to treat acute and chronic joint diseases. PMID:26685724

  9. A new method for the production of gelatin microparticles for controlled protein release from porous polymeric scaffolds.

    PubMed

    Ozkizilcik, Asya; Tuzlakoglu, Kadriye

    2014-03-01

    Tissue engineering using scaffolds and growth factors is a crucial approach in bone regeneration and repair. The combination of bioactive agents carrying microparticles with porous scaffolds can be an efficient solution when controlled release of bio-signalling molecules is required. The present study was based on a recent approach using a biodegradable scaffold and protein-loaded microparticles produced in an innovative manner in which protein loss is minimized during the loading process. Bovine serum albumin (BSA)-loaded gelatin microparticles were obtained by grinding freeze-dried membranes of gelatin and BSA. Porous scaffolds (250-355 µm pore size) produced from a polyactide (PLLA) and polycaprolactone (PCL) blend by salt leaching/supercritical CO₂ methods were used for the experiments. Gelatin microparticles containing three different BSA amounts were incorporated into the porous scaffolds by using a surfactant. In vitro release profiles showed up to 90% protein loading efficiency. This novel method appears to be an effective approach for producing particles that can minimize protein loss during the loading process. PMID:22499408

  10. ENHANCED GENE DELIVERY IN PORCINE VASCULATURE TISSUE FOLLOWING INCORPORATION OF ADENO-ASSOCIATED VIRUS NANOPARTICLES INTO POROUS SILICON MICROPARTICLES

    PubMed Central

    McConnell, Kellie I.; Rhudy, Jessica; Yokoi, Kenji; Gu, Jianhua; Mack, Aaron; Suh, Junghae; La Francesca, Saverio; Sakamoto, Jason; Serda, Rita E.

    2014-01-01

    There is an unmet clinical need to increase lung transplant successes, patient satisfaction and to improve mortality rates. We offer the development of a nanovector-based solution that will reduce the incidence of lung ischemic reperfusion injury (IRI) leading to graft organ failure through the successful ex vivo treatment of the lung prior to transplantation. The innovation is in the integrated application of our novel porous silicon (pSi) microparticles carrying adeno-associated virus (AAV) nanoparticles, and the use of our ex vivo lung perfusion/ventilation system for the modulation of pro-inflammatory cytokines initiated by ischemic pulmonary conditions prior to organ transplant that often lead to complications. Gene delivery of anti-inflammatory agents to combat the inflammatory cascade may be a promising approach to prevent IRI following lung transplantation. The rationale for the device is that the microparticle will deliver a large payload of virus to cells and serve to protect the AAV from immune recognition. The microparticle-nanoparticle hybrid device was tested both in vitro on cell monolayers and ex vivo using either porcine venous tissue or a pig lung transplantation model, which recapitulates pulmonary IRI that occurs clinically post-transplantation. Remarkably, loading AAV vectors into pSi microparticles increases gene delivery to otherwise non-permissive endothelial cells. PMID:25180449

  11. Agglomerated oral dosage forms of artemisinin/β-cyclodextrin spray-dried primary microparticles showing increased dissolution rate and bioavailability.

    PubMed

    Balducci, Anna Giulia; Magosso, Enrico; Colombo, Gaia; Sonvico, Fabio; Khan, Nurzalina Abdul Karim; Yuen, Kah Hay; Bettini, Ruggero; Colombo, Paolo; Rossi, Alessandra

    2013-09-01

    Artemisinin, a poorly water-soluble antimalarial drug, presents a low and erratic bioavailability upon oral administration. The aim of this work was to study an agglomerated powder dosage form for oral administration of artemisinin based on the artemisinin/β-cyclodextrin primary microparticles. These primary microparticles were prepared by spray-drying a water-methanol solution of artemisinin/β-cyclodextrin. β-Cyclodextrin in spray-dried microparticles increased artemisinin water apparent solubility approximately sixfold. The thermal analysis evidenced a reduction in the enthalpy value associated with drug melting, due to the decrease in drug crystallinity. The latter was also evidenced by powder X-ray diffraction analysis, while (13)C-NMR analysis indicated the partial complexation with β-cyclodextrin. Agglomerates obtained by sieve vibration of spray-dried artemisinin/β-cyclodextrin primary microparticles exhibited free flowing and close packing properties compared with the non-flowing microparticulate powder. The in vitro dissolution rate determination of artemisinin from the agglomerates showed that in 10 min about 70% of drug was released from the agglomerates, whereas less than 10% of artemisinin was dissolved from raw material powder. Oral administration of agglomerates in rats yielded higher artemisinin plasma levels compared to those of pure drug. In the case of the agglomerated powder, a 3.2-fold increase in drug fraction absorbed was obtained. PMID:23703233

  12. Selective Cell Targeting with Light-Absorbing Microparticles and Nanoparticles

    PubMed Central

    Pitsillides, Costas M.; Joe, Edwin K.; Wei, Xunbin; Anderson, R. Rox; Lin, Charles P.

    2003-01-01

    We describe a new method for selective cell targeting based on the use of light-absorbing microparticles and nanoparticles that are heated by short laser pulses to create highly localized cell damage. The method is closely related to chromophore-assisted laser inactivation and photodynamic therapy, but is driven solely by light absorption, without the need for photochemical intermediates (particularly singlet oxygen). The mechanism of light-particle interaction was investigated by nanosecond time-resolved microscopy and by thermal modeling. The extent of light-induced damage was investigated by cell lethality, by cell membrane permeability, and by protein inactivation. Strong particle size dependence was found for these interactions. A technique based on light to target endogenous particles is already being exploited to treat pigmented cells in dermatology and ophthalmology. With exogenous particles, phamacokinetics and biodistribution studies are needed before the method can be evaluated against photodynamic therapy for cancer treatment. However, particles are unique, unlike photosensitizers, in that they can remain stable and inert in cells for extended periods. Thus they may be particularly useful for prelabeling cells in engineered tissue before implantation. Subsequent irradiation with laser pulses will allow control of the implanted cells (inactivation or modulation) in a noninvasive manner. PMID:12770906

  13. Solid lipid microparticles (SLM) containing juniper oil as anti-acne topical carriers: preliminary studies.

    PubMed

    Gavini, Elisabetta; Sanna, Vanna; Sharma, Reeta; Juliano, Claudia; Usai, Marianna; Marchetti, Mauro; Karlsen, Jan; Giunchedi, Paolo

    2005-01-01

    Solid lipid microparticles (SLM) were used as carriers of juniper oil and proposed for the topical treatment of acne vulgare. The formulations were obtained by the o/w emulsification method. Compritol and Precirol were employed as lipidic materials. Emulsions containing 1.5% (w/w) of lipophilic phase (lipid and oil) and two different lipid to oil ratios (1:1 and 2:1) were prepared. Blank particles were also prepared, as a comparison. The SLM were characterized in terms of encapsulation efficiency, size, and morphology. The particle size stability in aqueous dispersions was monitored over one month. Evaporation of volatile compounds of oil from microparticles by weight loss was investigated. The qualitative composition of Juniper oil before and after the encapsulation process was determined by gas chromatography (GC) and gas chromatography/mass spectrum (GC/MS) analyses. The antimicrobial activity of the oil encapsulated into the lipid microparticles against P. acnes was studied as contact time assay and compared to the activity of the oil not encapsulated. The emulsification method here described was a good technique for the encapsulation of essential oils. Percentage yields of production and encapsulation efficiencies were higher for Compritol preparations than for these prepared using Precirol. All preparations were characterized by similar particle size distributions (dvs about 3-4 microm) regardless of lipid type and lipid to oil ratios. Microscopy observations showed that the microparticles in aqueous dispersions had almost spherical shape, independently from their composition. The scanning electron microscopy (SEM) analyses showed that when the particles were dried, they had an irregular shape and a rough surface. The SLM dispersions based on Compritol revealed particle size stability over the investigated period of 30 days. In contrast, an increase of the mean dimensions in the preparations containing Precirol was observed. A low loss of volatile oil

  14. Microparticles as a new analytical method to study liquid crystal colloids

    NASA Astrophysics Data System (ADS)

    Zhang, Ke

    The research described in this dissertation was conducted in a special manner: analyzing the properties of liquid crystals from the observation of microparticle behaviors. The sizes of the particles are ideal as they are large enough to be visible by microscopy (visible, IR and Raman) and are small enough to sense the motion of surrounding liquid crystal molecules. The shape and surface properties of the particles determine their interactions with the surrounding liquid crystal molecules, including surface anchoring, defects generation and etc. The behavior of individual microparticle is the result of orientational and translational motions of neighboring liquid crystal molecules and is closely related to the external field (eg. temperature gradient or electric field) acting on the liquid crystal host. Based on this strategy, a series of experiments were designed to study microparticle behaviors in a moving NI interface with/without patterned electric field. As a result, particle drag, attraction and pumping effects were observed for the first time. The analysis of these effects lead to the discovery that the moving NI interface has a meniscus shape and nonuniform director distribution. The minimum of free energy defines the preferable position of the particle is at the vertex of the curved interface, which is the origin of interesting particle drag and attraction effects. When a patterned electric field is applied, the NI interface is greatly deformed and strong hydrodynamic flows are generated. The polymer microparticles follow the hydrodynamic flow around the deformed NI interface and are pumped into the nematic phase. While these fascinating microparticle behaviors led us to explore the nature of liquid crystals, they also can be transferred to novel methods to fabricate and modulate guest phase structures in liquid crystals. It was found that varying interface velocities, electric field geometry and amplitude, and particle nature allow us to delicately control

  15. Elemental analyses of hypervelocity microparticle impact sites on Interplanetary Dust Experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, Jim J.; Brownlee, D. E.

    1993-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to break down the 0.4 or 1.0 micron thick SIO2 insulator layer separating the silicon base (the ne