Science.gov

Sample records for airborne multispectral thermal

  1. The new airborne Thermal Infrared Multispectral Scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.

    1983-01-01

    A new airborne Thermal Infrared Multispectral Scanner (TIMS) with six bands between 8 and 12 microns is briefly characterized, and some results of remote sensing experiments are reported. The instrument has an instantaneous field of view of 2.5 milliradians, a total field of view of 80 deg, and a NE Delta T of approximately 0.1-0.3 C depending on the band. In the TIMS image of Death Valley, silica-rich rocks were easily separable from the nonsilicates. The Eureka Quartzite stood out in sharp contrast to other Ordovician and Cambrian metasediments, and Tertiary volcanic rocks were easily separable from both. Also distinguishable were various units in the fan gravels.

  2. Multispectral thermal airborne TASI-600 data to study the Pompeii (IT) archaeological area

    NASA Astrophysics Data System (ADS)

    Palombo, Angelo; Pascucci, Simone; Pergola, Nicola; Pignatti, Stefano; Santini, Federico; Soldovieri, Francesco

    2016-04-01

    The management of archaeological areas refers to the conservation of the ruins/buildings and the eventual prospection of new areas having an archaeological potential. In this framework, airborne remote sensing is a well-developed geophysical tool for supporting the archaeological surveys of wide areas. The spectral regions applied in archaeological remote sensing spans from the VNIR to the TIR. In particular, the archaeological thermal imaging considers that materials absorb, emit, transmit, and reflect the thermal infrared radiation at different rate according to their composition, density and moisture content. Despite its potential, thermal imaging in archaeological applications are scarce. Among them, noteworthy are the ones related to the use of Landsat and ASTER [1] and airborne remote sensing [2, 3, 4 and 5]. In view of these potential in Cultural Heritage applications, the present study aims at analysing the usefulness of the high spatial resolution thermal imaging on the Pompeii archaeological park. To this purpose TASI-600 [6] airborne multispectral thermal imagery (32 channels from 8 to 11.5 nm with a spectral resolution of 100nm and a spatial resolution of 1m/pixel) was acquired on December the 7th, 2015. Airborne survey has been acquired to get useful information on the building materials (both ancient and of consolidation) characteristics and, whenever possible, to retrieve quick indicators on their conservation status. Thermal images will be, moreover, processed to have an insight of the critical environmental issues impacting the structures (e.g. moisture). The proposed study shows the preliminary results of the airborne deployments, the pre-processing of the multispectral thermal imagery and the retrieving of accurate land surface temperatures (LST). LST map will be analysed to describe the thermal pattern of the city of Pompeii and detect any thermal anomalies. As far as the ongoing TASI-600 sensors pre-processing, it will include: (a) radiometric

  3. High Spatial Resolution Airborne Multispectral Thermal Infrared Remote Sensing Data for Analysis of Urban Landscape Characteristics

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.; Arnold, James E. (Technical Monitor)

    2000-01-01

    We have used airborne multispectral thermal infrared (TIR) remote sensing data collected at a high spatial resolution (i.e., 10m) over several cities in the United States to study thermal energy characteristics of the urban landscape. These TIR data provide a unique opportunity to quantify thermal responses from discrete surfaces typical of the urban landscape and to identify both the spatial arrangement and patterns of thermal processes across the city. The information obtained from these data is critical to understanding how urban surfaces drive or force development of the Urban Heat Island (UHI) effect, which exists as a dome of elevated air temperatures that presides over cities in contrast to surrounding non-urbanized areas. The UHI is most pronounced in the summertime where urban surfaces, such as rooftops and pavement, store solar radiation throughout the day, and release this stored energy slowly after sunset creating air temperatures over the city that are in excess of 2-4'C warmer in contrast with non-urban or rural air temperatures. The UHI can also exist as a daytime phenomenon with surface temperatures in downtown areas of cities exceeding 38'C. The implications of the UHI are significant, particularly as an additive source of thermal energy input that exacerbates the overall production of ground level ozone over cities. We have used the Airborne Thermal and Land Applications Sensor (ATLAS), flown onboard a Lear 23 jet aircraft from the NASA Stennis Space Center, to acquire high spatial resolution multispectral TIR data (i.e., 6 bandwidths between 8.2-12.2 (um) over Huntsville, Alabama, Atlanta, Georgia, Baton Rouge, Louisiana, Salt Lake City, Utah, and Sacramento, California. These TIR data have been used to produce maps and other products, showing the spatial distribution of heating and cooling patterns over these cities to better understand how the morphology of the urban landscape affects development of the UHI. In turn, these data have been used

  4. Land surface temperature retrieved from airborne multispectral scanner mid-infrared and thermal-infrared data.

    PubMed

    Qian, Yong-Gang; Wang, Ning; Ma, Ling-Ling; Liu, Yao-Kai; Wu, Hua; Tang, Bo-Hui; Tang, Ling-Li; Li, Chuan-Rong

    2016-01-25

    Land surface temperature (LST) is one of the key parameters in the physics of land surface processes at local/global scales. In this paper, a LST retrieval method was proposed from airborne multispectral scanner data comparing one mid-infrared (MIR) channel and one thermal infrared (TIR) channel with the land surface emissivity given as a priori knowledge. To remove the influence of the direct solar radiance efficiently, a relationship between the direct solar radiance and water vapor content and the view zenith angle and solar zenith angle was established. Then, LST could be retrieved with a split-window algorithm from MIR/TIR data. Finally, the proposed algorithm was applied to the actual airborne flight data and validated with in situ measurements of land surface types in the Baotou site in China on 17 October 2014. The results demonstrate that the difference between the retrieved and in situ LST was less than 1.5 K. The bais, RMSE, and standard deviation of the retrieved LST were 0.156 K, 0.883 K, and 0.869 K, respectively, for samples. PMID:26832579

  5. Application of combined Landsat thematic mapper and airborne thermal infrared multispectral scanner data to lithologic mapping in Nevada

    USGS Publications Warehouse

    Podwysocki, M.H.; Ehmann, W.J.; Brickey, D.W.

    1987-01-01

    Future Landsat satellites are to include the Thematic Mapper (TM) and also may incorporate additional multispectral scanners. One such scanner being considered for geologic and other applications is a four-channel thermal-infrared multispectral scanner having 60-m spatial resolution. This paper discusses the results of studies using combined Landsat TM and airborne Thermal Infrared Multispectral Scanner (TIMS) digital data for lithologic discrimination, identification, and geologic mapping in two areas within the Basin and Range province of Nevada. Field and laboratory reflectance spectra in the visible and reflective-infrared and laboratory spectra in the thermal-infrared parts of the spectrum were used to verify distinctions made between rock types in the image data sets.

  6. Multispectral thermal airborne TASI-600 data to study the Pompeii (IT) archaeological area

    NASA Astrophysics Data System (ADS)

    Palombo, Angelo; Pascucci, Simone; Pergola, Nicola; Pignatti, Stefano; Santini, Federico; Soldovieri, Francesco

    2016-04-01

    The management of archaeological areas refers to the conservation of the ruins/buildings and the eventual prospection of new areas having an archaeological potential. In this framework, airborne remote sensing is a well-developed geophysical tool for supporting the archaeological surveys of wide areas. The spectral regions applied in archaeological remote sensing spans from the VNIR to the TIR. In particular, the archaeological thermal imaging considers that materials absorb, emit, transmit, and reflect the thermal infrared radiation at different rate according to their composition, density and moisture content. Despite its potential, thermal imaging in archaeological applications are scarce. Among them, noteworthy are the ones related to the use of Landsat and ASTER [1] and airborne remote sensing [2, 3, 4 and 5]. In view of these potential in Cultural Heritage applications, the present study aims at analysing the usefulness of the high spatial resolution thermal imaging on the Pompeii archaeological park. To this purpose TASI-600 [6] airborne multispectral thermal imagery (32 channels from 8 to 11.5 nm with a spectral resolution of 100nm and a spatial resolution of 1m/pixel) was acquired on December the 7th, 2015. Airborne survey has been acquired to get useful information on the building materials (both ancient and of consolidation) characteristics and, whenever possible, to retrieve quick indicators on their conservation status. Thermal images will be, moreover, processed to have an insight of the critical environmental issues impacting the structures (e.g. moisture). The proposed study shows the preliminary results of the airborne deployments, the pre-processing of the multispectral thermal imagery and the retrieving of accurate land surface temperatures (LST). LST map will be analysed to describe the thermal pattern of the city of Pompeii and detect any thermal anomalies. As far as the ongoing TASI-600 sensors pre-processing, it will include: (a) radiometric

  7. Airborne Thermal Infrared Multispectral Scanner (TIMS) images over disseminated gold deposits, Osgood Mountains, Humboldt County, Nevada

    NASA Technical Reports Server (NTRS)

    Krohn, M. Dennis

    1986-01-01

    The U.S. Geological Survey (USGS) acquired airborne Thermal Infrared Multispectral Scanner (TIMS) images over several disseminated gold deposits in northern Nevada in 1983. The aerial surveys were flown to determine whether TIMS data could depict jasperoids (siliceous replacement bodies) associated with the gold deposits. The TIMS data were collected over the Pinson and Getchell Mines in the Osgood Mountains, the Carlin, Maggie Creek, Bootstrap, and other mines in the Tuscarora Mountains, and the Jerritt Canyon Mine in the Independence Mountains. The TIMS data seem to be a useful supplement to conventional geochemical exploration for disseminated gold deposits in the western United States. Siliceous outcrops are readily separable in the TIMS image from other types of host rocks. Different forms of silicification are not readily separable, yet, due to limitations of spatial resolution and spectral dynamic range. Features associated with the disseminated gold deposits, such as the large intrusive bodies and fault structures, are also resolvable on TIMS data. Inclusion of high-resolution thermal inertia data would be a useful supplement to the TIMS data.

  8. Effectiveness of airborne multispectral thermal data for karst groundwater resources recognition in coastal areas

    NASA Astrophysics Data System (ADS)

    Pignatti, Stefano; Fusilli, Lorenzo; Palombo, Angelo; Santini, Federico; Pascucci, Simone

    2013-04-01

    Currently the detection, use and management of groundwater in karst regions can be considered one of the most significant procedures for solving water scarcity problems during periods of low rainfall this because groundwater resources from karst aquifers play a key role in the water supply in karst areas worldwide [1]. In many countries of the Mediterranean area, where karst is widespread, groundwater resources are still underexploited, while surface waters are generally preferred [2]. Furthermore, carbonate aquifers constitute a crucial thermal water resource outside of volcanic areas, even if there is no detailed and reliable global assessment of thermal water resources. The composite hydrogeological characteristics of karst, particularly directions and zones of groundwater distribution, are not up till now adequately explained [3]. In view of the abovementioned reasons the present study aims at analyzing the detection capability of high spatial resolution thermal remote sensing of karst water resources in coastal areas in order to get useful information on the karst springs flow and on different characteristics of these environments. To this purpose MIVIS [4, 5] and TASI-600 [6] airborne multispectral thermal imagery (see sensors' characteristics in Table 1) acquired on two coastal areas of the Mediterranean area interested by karst activity, one located in Montenegro and one in Italy, were used. One study area is located in the Kotor Bay, a winding bay on the Adriatic Sea surrounded by high mountains in south-western Montenegro and characterized by many subaerial and submarine coastal springs related to deep karstic channels. The other study area is located in Santa Cesarea (Italy), encompassing coastal cold springs, the main local source of high quality water, and also a noticeable thermal groundwater outflow. The proposed study shows the preliminary results of the two airborne deployments on these areas. The preprocessing of the multispectral thermal imagery

  9. Airborne multispectral and thermal remote sensing for detecting the onset of crop stress caused by multiple factors

    NASA Astrophysics Data System (ADS)

    Huang, Yanbo; Thomson, Steven J.

    2010-10-01

    Remote sensing technology has been developed and applied to provide spatiotemporal information on crop stress for precision management. A series of multispectral images over a field planted cotton, corn and soybean were obtained by a Geospatial Systems MS4100 camera mounted on an Air Tractor 402B airplane equipped with Camera Link in a Magma converter box triggered by Terraverde Dragonfly® flight navigation and imaging control software. The field crops were intentionally stressed by applying glyphosate herbicide via aircraft and allowing it to drift near-field. Aerial multispectral images in the visible and near-infrared bands were manipulated to produce vegetation indices, which were used to quantify the onset of herbicide induced crop stress. The vegetation indices normalized difference vegetation index (NDVI) and soil adjusted vegetation index (SAVI) showed the ability to monitor crop response to herbicide-induced injury by revealing stress at different phenological stages. Two other fields were managed with irrigated versus nonirrigated treatments, and those fields were imaged with both the multispectral system and an Electrophysics PV-320T thermal imaging camera on board an Air Tractor 402B aircraft. Thermal imagery indicated water stress due to deficits in soil moisture, and a proposed method of determining crop cover percentage using thermal imagery was compared with a multispectral imaging method. Development of an image fusion scheme may be necessary to provide synergy and improve overall water stress detection ability.

  10. MULTISPECTRAL THERMAL IMAGER - OVERVIEW

    SciTech Connect

    P. WEBER

    2001-03-01

    The Multispectral Thermal Imager satellite fills a new and important role in advancing the state of the art in remote sensing sciences. Initial results with the full calibration system operating indicate that the system was already close to achieving the very ambitious goals which we laid out in 1993, and we are confident of reaching all of these goals as we continue our research and improve our analyses. In addition to the DOE interests, the satellite is tasked about one-third of the time with requests from other users supporting research ranging from volcanology to atmospheric sciences.

  11. Multispectral thermal imaging

    SciTech Connect

    Weber, P.G.; Bender, S.C.; Borel, C.C.; Clodius, W.B.; Smith, B.W.; Garrett, A.; Pendergast, M.M.; Kay, R.R.

    1998-12-01

    Many remote sensing applications rely on imaging spectrometry. Here the authors use imaging spectrometry for thermal and multispectral signatures measured from a satellite platform enhanced with a combination of accurate calibrations and on-board data for correcting atmospheric distortions. The approach is supported by physics-based end-to-end modeling and analysis, which permits a cost-effective balance between various hardware and software aspects. The goal is to develop and demonstrate advanced technologies and analysis tools toward meeting the needs of the customer; at the same time, the attributes of this system can address other applications in such areas as environmental change, agriculture, and volcanology.

  12. Multispectral Thermal Imager: overview

    NASA Astrophysics Data System (ADS)

    Bell, W. Randy; Weber, Paul G.

    2001-08-01

    The Multispectral Thermal Imager, MTI, is a research and development project sponsored by the United States Department of Energy. The primary mission is to demonstrate advanced multispectral and thermal imaging from a satellite, including new technologies, data processing and analysis techniques. The MTI builds on the efforts of a number of earlier efforts, including Landsat, NASA remote sensing missions, and others, but the MTI incorporates a unique combination of attributes. The MTI satellite was launched on 12 March 2000 into a 580 km x 610 km, sun-synchronous orbit with nominal 1 am and 1 pm equatorial crossing times. The Air Force Space Test Program provided the Orbital Sciences Taurus launch vehicle. The satellite has a design lifetime of a year, with the goal of three years. The satellite and payload can typically observe six sites per day, with either one or two observations per site from nadir and off-nadir angles. Data are stored in the satellite memory and down-linked to a ground station at Sandia National Laboratory. Data are then forwarded to the Data Processing and Analysis Center at Los Alamos National Laboratory for processing, analysis and distribution to the MTI team and collaborators. We will provide an overview of the Project, a few examples of data products, and an introduction to more detailed presentations in this special session.

  13. Airborne multispectral detection of regrowth cotton fields

    NASA Astrophysics Data System (ADS)

    Westbrook, John K.; Suh, Charles P.-C.; Yang, Chenghai; Lan, Yubin; Eyster, Ritchie S.

    2015-01-01

    Effective methods are needed for timely areawide detection of regrowth cotton plants because boll weevils (a quarantine pest) can feed and reproduce on these plants beyond the cotton production season. Airborne multispectral images of regrowth cotton plots were acquired on several dates after three shredding (i.e., stalk destruction) dates. Linear spectral unmixing (LSU) classification was applied to high-resolution airborne multispectral images of regrowth cotton plots to estimate the minimum detectable size and subsequent growth of plants. We found that regrowth cotton fields can be identified when the mean plant width is ˜0.2 m for an image resolution of 0.1 m. LSU estimates of canopy cover of regrowth cotton plots correlated well (r2=0.81) with the ratio of mean plant width to row spacing, a surrogate measure of plant canopy cover. The height and width of regrowth plants were both well correlated (r2=0.94) with accumulated degree-days after shredding. The results will help boll weevil eradication program managers use airborne multispectral images to detect and monitor the regrowth of cotton plants after stalk destruction, and identify fields that may require further inspection and mitigation of boll weevil infestations.

  14. An algorithm for the estimation of bounds on the emissivity and temperatures from thermal multispectral airborne remotely sensed data

    NASA Technical Reports Server (NTRS)

    Jaggi, S.; Quattrochi, D.; Baskin, R.

    1992-01-01

    The effective flux incident upon the detectors of a thermal sensor, after it has been corrected for atmospheric effects, is a function of a non-linear combination of the emissivity of the target for that channel and the temperature of the target. The sensor system cannot separate the contribution from the emissivity and the temperature that constitute the flux value. A method that estimates the bounds on these temperatures and emissivities from thermal data is described. This method is then tested with remotely sensed data obtained from NASA's Thermal Infrared Multispectral Scanner (TIMS) - a 6 channel thermal sensor. Since this is an under-determined set of equations i.e. there are 7 unknowns (6 emissivities and 1 temperature) and 6 equations (corresponding to the 6 channel fluxes), there exist theoretically an infinite combination of values of emissivities and temperature that can satisfy these equations. Using some realistic bounds on the emissivities, bounds on the temperature are calculated. These bounds on the temperature are refined to estimate a tighter bound on the emissivity of the source. An error analysis is also carried out to quantitatively determine the extent of uncertainty introduced in the estimate of these parameters. This method is useful only when a realistic set of bounds can be obtained for the emissivities of the data. In the case of water the lower and upper bounds were set at 0.97 and 1.00 respectively. Five flights were flown in succession at altitudes of 2 km (low), 6 km (mid), 12 km (high), and then back again at 6 km and 2 km. The area selected with the Ross Barnett reservoir near Jackson, Mississippi. The mission was flown during the predawn hours of 1 Feb. 1992. Radiosonde data was collected for that duration to profile the characteristics of the atmosphere. Ground truth temperatures using thermometers and radiometers were also obtained over an area of the reservoir. The results of two independent runs of the radiometer data averaged

  15. Airborne system for testing multispectral reconnaissance technologies

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Doergeloh, Heinrich; Keil, Heiko; Wetjen, Wilfried

    1999-07-01

    There is an increasing demand for future airborne reconnaissance systems to obtain aerial images for tactical or peacekeeping operations. Especially Unmanned Aerial Vehicles (UAVs) equipped with multispectral sensor system and with real time jam resistant data transmission capabilities are of high interest. An airborne experimental platform has been developed as testbed to investigate different concepts of reconnaissance systems before their application in UAVs. It is based on a Dornier DO 228 aircraft, which is used as flying platform. Great care has been taken to achieve the possibility to test different kinds of multispectral sensors. Hence basically it is capable to be equipped with an IR sensor head, high resolution aerial cameras of the whole optical spectrum and radar systems. The onboard equipment further includes system for digital image processing, compression, coding, and storage. The data are RF transmitted to the ground station using technologies with high jam resistance. The images, after merging with enhanced vision components, are delivered to the observer who has an uplink data channel available to control flight and imaging parameters.

  16. Airborne Multispectral and Thermal Remote Sensing for Detecting the Onset of Crop Stress Caused by Multiple Factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing technology has been developed and applied to provide spatiotemporal information on crop stress for precision management. A series of multispectral images over a field planted cotton, corn and soybean were obtained by a Geospatial Systems MS4100 camera mounted on an Air Tractor 402B ai...

  17. Study on airborne multispectral imaging fusion detection technology

    NASA Astrophysics Data System (ADS)

    Ding, Na; Gao, Jiaobo; Wang, Jun; Cheng, Juan; Gao, Meng; Gao, Fei; Fan, Zhe; Sun, Kefeng; Wu, Jun; Li, Junna; Gao, Zedong; Cheng, Gang

    2014-11-01

    The airborne multispectral imaging fusion detection technology is proposed in this paper. In this design scheme, the airborne multispectral imaging system consists of the multispectral camera, the image processing unit, and the stabilized platform. The multispectral camera can operate in the spectral region from visible to near infrared waveband (0.4-1.0um), it has four same and independent imaging channels, and sixteen different typical wavelengths to be selected based on the different typical targets and background. The related experiments were tested by the airborne multispectral imaging system. In particularly, the camouflage targets were fused and detected in the different complex environment, such as the land vegetation background, the desert hot background and underwater. In the spectral region from 0.4 um to 1.0um, the three different characteristic wave from sixteen typical spectral are selected and combined according to different backgrounds and targets. The spectral image corresponding to the three characteristic wavelengths is resisted and fused by the image processing technology in real time, and the fusion video with typical target property is outputted. In these fusion images, the contrast of target and background is greatly increased. Experimental results confirm that the airborne multispectral imaging fusion detection technology can acquire multispectral fusion image with high contrast in real time, and has the ability of detecting and identification camouflage objects from complex background to targets underwater.

  18. Multispectral Airborne Laser Scanning for Automated Map Updating

    NASA Astrophysics Data System (ADS)

    Matikainen, Leena; Hyyppä, Juha; Litkey, Paula

    2016-06-01

    During the last 20 years, airborne laser scanning (ALS), often combined with multispectral information from aerial images, has shown its high feasibility for automated mapping processes. Recently, the first multispectral airborne laser scanners have been launched, and multispectral information is for the first time directly available for 3D ALS point clouds. This article discusses the potential of this new single-sensor technology in map updating, especially in automated object detection and change detection. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from a random forests analysis suggest that the multispectral intensity information is useful for land cover classification, also when considering ground surface objects and classes, such as roads. An out-of-bag estimate for classification error was about 3% for separating classes asphalt, gravel, rocky areas and low vegetation from each other. For buildings and trees, it was under 1%. According to feature importance analyses, multispectral features based on several channels were more useful that those based on one channel. Automatic change detection utilizing the new multispectral ALS data, an old digital surface model (DSM) and old building vectors was also demonstrated. Overall, our first analyses suggest that the new data are very promising for further increasing the automation level in mapping. The multispectral ALS technology is independent of external illumination conditions, and intensity images produced from the data do not include shadows. These are significant advantages when the development of automated classification and change detection procedures is considered.

  19. Laboratory and field portable system for calibrating airborne multispectral scanners

    SciTech Connect

    Kuhlow, W.W.

    1981-01-01

    Manufacturers of airborne multispectral scanners suggest procedures for calibration and alignment that are usually awkward and even questionable. For example, the procedures may require: separating the scanner from calibration and alignment sources by 100 feet or more, employing folding mirrors, tampering with the detectors after the procedures are finished, etc. Under the best of conditions such procedures require about three hours yielding questionable confidence in the results; under many conditions, however, procedures commonly take six to eight hours, yielding no satisfactory results. EG and G, Inc. has designed and built a calibration and alignment system for airborne scanners which solves those problems, permitting the procedures to be carried out in about two to three hours. This equipment can be quickly disassembled, transported with the scanner in all but the smallest single engine aircraft, and reassembled in a few hours. The subsystems of this equipment are commonly available from manufacturers of optical and electronic equipment. The other components are easily purchased, or fabricated. The scanner discussed is the Model DS-1260 digital line scanner manufactured by Daedalus Enterprises, Inc. It is a dual-sensor system which is operated in one of two combination of sensors: one spectrometer head (which provides simultaneous coverage in ten visible channels) and one thermal infrared detector, or simply two thermal infrared detectors.

  20. Sandia Multispectral Airborne Lidar for UAV Deployment

    SciTech Connect

    Daniels, J.W.; Hargis,Jr. P.J.; Henson, T.D.; Jordan, J.D.; Lang, A.R.; Schmitt, R.L.

    1998-10-23

    Sandia National Laboratories has initiated the development of an airborne system for W laser remote sensing measurements. System applications include the detection of effluents associated with the proliferation of weapons of mass destruction and the detection of biological weapon aerosols. This paper discusses the status of the conceptual design development and plans for both the airborne payload (pointing and tracking, laser transmitter, and telescope receiver) and the Altus unmanned aerospace vehicle platform. Hardware design constraints necessary to maintain system weight, power, and volume limitations of the flight platform are identified.

  1. Aerosol Remote Sensing Applications for Airborne Multiangle, Multispectral Shortwave Radiometers

    NASA Astrophysics Data System (ADS)

    von Bismarck, Jonas; Ruhtz, Thomas; Starace, Marco; Hollstein, André; Preusker, René; Fischer, Jürgen

    2010-05-01

    Aerosol particles have an important impact on the surface net radiation budget by direct scattering and absorption (direct aerosol effect) of solar radiation, and also by influencing cloud formation processes (semi-direct and indirect aerosol effects). To study the former, a number of multispectral sky- and sunphotometers have been developed at the Institute for Space Sciences of the Free University of Berlin in the past two decades. The latest operational developments were the multispectral aureole- and sunphotometer FUBISS-ASA2, the zenith radiometer FUBISS-ZENITH, and the nadir polarimeter AMSSP-EM, all designed for a flexible use on moving platforms like aircraft or ships. Currently the multiangle, multispectral radiometer URMS/AMSSP (Universal Radiation Measurement System/ Airborne Multispectral Sunphotometer and Polarimeter) is under construction for a Wing-Pod of the high altitude research aircraft HALO operated by DLR. The system is expected to have its first mission on HALO in 2011. The algorithms for the retrieval of aerosol and trace gas properties from the recorded multidirectional, multispectral radiation measurements allow more than deriving standard products, as for instance the aerosol optical depth and the Angstrom exponent. The radiation measured in the solar aureole contains information about the aerosol phasefunction and therefore allows conclusions about the particle type. Furthermore, airborne instrument operation allows vertically resolved measurements. An inversion algorithm, based on radiative transfer simulations and additionally including measured vertical zenith-radiance profiles, allows conclusions about the aerosol single scattering albedo and the relative soot fraction in aerosol layers. Ozone column retrieval is performed evaluating measurements from pixels in the Chappuis absorption band. A retrieval algorithm to derive the water-vapor column from the sunphotometer measurements is currently under development. Of the various airborne

  2. Airborne multisensor pod system (AMPS) data: Multispectral data integration and processing hints

    SciTech Connect

    Leary, T.J.; Lamb, A.

    1996-11-01

    The Department of Energy`s Office of Arms Control and Non-Proliferation (NN-20) has developed a suite of airborne remote sensing systems that simultaneously collect coincident data from a US Navy P-3 aircraft. The primary objective of the Airborne Multisensor Pod System (AMPS) Program is {open_quotes}to collect multisensor data that can be used for data research, both to reduce interpretation problems associated with data overload and to develop information products more complete than can be obtained from any single sensor.{close_quotes} The sensors are housed in wing-mounted pods and include: a Ku-Band Synthetic Aperture Radar; a CASI Hyperspectral Imager; a Daedalus 3600 Airborne Multispectral Scanner; a Wild Heerbrugg RC-30 motion compensated large format camera; various high resolution, light intensified and thermal video cameras; and several experimental sensors (e.g. the Portable Hyperspectral Imager of Low-Light Spectroscopy (PHILLS)). Over the past year or so, the Coastal Marine Resource Assessment (CAMRA) group at the Florida Department of Environmental Protection`s Marine Research Institute (FMRI) has been working with the Department of Energy through the Naval Research Laboratory to develop applications and products from existing data. Considerable effort has been spent identifying image formats integration parameters. 2 refs., 3 figs., 2 tabs.

  3. Michigan experimental multispectral mapping system: A description of the M7 airborne sensor and its performance

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.

    1974-01-01

    The development and characteristics of a multispectral band scanner for an airborne mapping system are discussed. The sensor operates in the ultraviolet, visual, and infrared frequencies. Any twelve of the bands may be selected for simultaneous, optically registered recording on a 14-track analog tape recorder. Multispectral imagery recorded on magnetic tape in the aircraft can be laboratory reproduced on film strips for visual analysis or optionally machine processed in analog and/or digital computers before display. The airborne system performance is analyzed.

  4. Estimating evapotranspiration of riparian vegetation using high resolution multispectral, thermal infrared and lidar data

    NASA Astrophysics Data System (ADS)

    Neale, Christopher M. U.; Geli, Hatim; Taghvaeian, Saleh; Masih, Ashish; Pack, Robert T.; Simms, Ronald D.; Baker, Michael; Milliken, Jeff A.; O'Meara, Scott; Witherall, Amy J.

    2011-11-01

    High resolution airborne multispectral and thermal infrared imagery was acquired over the Mojave River, California with the Utah State University airborne remote sensing system integrated with the LASSI imaging Lidar also built and operated at USU. The data were acquired in pre-established mapping blocks over a 2 day period covering approximately 144 Km of the Mojave River floodplain and riparian zone, approximately 1500 meters in width. The multispectral imagery (green, red and near-infrared bands) was ortho-rectified using the Lidar point cloud data through a direct geo-referencing technique. Thermal Infrared imagery was rectified to the multispectral ortho-mosaics. The lidar point cloud data was classified to separate ground surface returns from vegetation returns as well as structures such as buildings, bridges etc. One-meter DEM's were produced from the surface returns along with vegetation canopy height also at 1-meter grids. Two surface energy balance models that use remote sensing inputs were applied to the high resolution imagery, namely the SEBAL and the Two Source Model. The model parameterizations were slightly modified to accept high resolution imagery (1-meter) as well as the lidar-based vegetation height product, which was used to estimate the aerodynamic roughness length. Both models produced very similar results in terms of latent heat fluxes (LE). Instantaneous LE values were extrapolated to daily evapotranspiration rates (ET) using the reference ET fraction, with data obtained from a local weather station. Seasonal rates were obtained by extrapolating the reference ET fraction according to the seasonal growth habits of the different species. Vegetation species distribution and area were obtained from classification of the multispectral imagery. Results indicate that cottonwood and salt cedar (tamarisk) had the highest evapotranspiration rates followed by mesophytes, arundo, mesquite and desert shrubs. This research showed that high

  5. An airborne multispectral imaging system based on two consumer-grade cameras for agricultural remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...

  6. Comparison of different detection methods for citrus greening disease based on airborne multispectral and hyperspectral imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus greening or Huanglongbing (HLB) is a devastating disease spread in many citrus groves since first found in 2005 in Florida. Multispectral (MS) and hyperspectral (HS) airborne images of citrus groves in Florida were taken to detect citrus greening infected trees in 2007 and 2010. Ground truthi...

  7. Estimation of thermal flux and emissivity of the land surface from multispectral aircraft data

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.

    1989-01-01

    In order to evaluate the importance of surface thermal flux and emissivity variations on surface and boundary layer processes, a technique that uses thermal data from an airborne multispectral scanner to determine the surface skin temperature and thermal emissivity over a regional area has been developed. These values are used to estimate the total flux density emanating from the surface and at the top of the atmosphere. Data from the multispectral atmospheric mapping sensor (MAMS) collected during the First ISLSCP Field Experiment (FIFE) are used to develop the technique, and to show the time and space variability of the flux values. The ground truth data available during FIFE provide a unique resource to evaluate this technique.

  8. Evaluating the Potential of Multispectral Airborne LIDAR for Topographic Mapping and Land Cover Classification

    NASA Astrophysics Data System (ADS)

    Wichmann, V.; Bremer, M.; Lindenberger, J.; Rutzinger, M.; Georges, C.; Petrini-Monteferri, F.

    2015-08-01

    Recently multispectral LiDAR became a promising research field for enhanced LiDAR classification workflows and e.g. the assessment of vegetation health. Current analyses on multispectral LiDAR are mainly based on experimental setups, which are often limited transferable to operational tasks. In late 2014 Optech Inc. announced the first commercially available multispectral LiDAR system for airborne topographic mapping. The combined system makes synchronic multispectral LiDAR measurements possible, solving time shift problems of experimental acquisitions. This paper presents an explorative analysis of the first airborne collected data with focus on class specific spectral signatures. Spectral patterns are used for a classification approach, which is evaluated in comparison to a manual reference classification. Typical spectral patterns comparable to optical imagery could be observed for homogeneous and planar surfaces. For rough and volumetric objects such as trees, the spectral signature becomes biased by signal modification due to multi return effects. However, we show that this first flight data set is suitable for conventional geometrical classification and mapping procedures. Additional classes such as sealed and unsealed ground can be separated with high classification accuracies. For vegetation classification the distinction of species and health classes is possible.

  9. Calibrated and geocoded clutter from an airborne multispectral scanner

    NASA Astrophysics Data System (ADS)

    Heuer, Markus; Bruehlmann, Ralph; John, Marc-Andre; Schmid, Konrad J.; Hueppi, Rudolph; Koenig, Reto

    1999-07-01

    Robustness of automatic target recognition (ATR) to varying observation conditions and countermeasures is substantially increased by use of multispectral sensors. Assessment of such ATR systems is performed by captive flight tests and simulations (HWIL or complete modeling). Although the clutter components of a scene can be generated with specified statistics, clutter maps directly obtained from measurement are required for validation of a simulation. In addition, urban scenes have non-stationary characteristics and are difficult to simulate. The present paper describes a scanner, data acquisition and processing system used for the generation of realistic clutter maps incorporating infrared, passive and active millimeter wave channels. The sensors are mounted on a helicopter with coincident line-of-sight, enabling us to measure consistent clutter signatures under varying observation conditions. Position and attitude data from GPS and an inertial measurement unit, respectively, are used to geometrically correct the raw scanner data. After sensor calibration the original voltage signals are converted to physical units, i.e. temperatures and reflectivities, describing the clutter independently of the scanning sensor, thus allowing us the use of the clutter maps in tests of a priori unknown multispectral sensors. The data correction procedures are described and results are presented.

  10. Determining density of maize canopy. 2: Airborne multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.; Cipra, J. E.

    1971-01-01

    Multispectral scanner data were collected in two flights over a light colored soil background cover plot at an altitude of 305 m. Energy in eleven reflective wavelength band from 0.45 to 2.6 microns was recorded. Four growth stages of maize (Zea mays L.) gave a wide range of canopy densities for each flight date. Leaf area index measurements were taken from the twelve subplots and were used as a measure of canopy density. Ratio techniques were used to relate uncalibrated scanner response to leaf area index. The ratios of scanner data values for the 0.72 to 0.92 micron wavelength band over the 0.61 to 0.70 micron wavelength band were calculated for each plot. The ratios related very well to leaf area index for a given flight date. The results indicated that spectral data from maize canopies could be of value in determining canopy density.

  11. Evaluation of eelgrass beds mapping using a high-resolution airborne multispectral scanner

    USGS Publications Warehouse

    Su, H.; Karna, D.; Fraim, E.; Fitzgerald, M.; Dominguez, R.; Myers, J.S.; Coffland, B.; Handley, L.R.; Mace, T.

    2006-01-01

    Eelgrass (Zostera marina) can provide vital ecological functions in stabilizing sediments, influencing current dynamics, and contributing significant amounts of biomass to numerous food webs in coastal ecosystems. Mapping eelgrass beds is important for coastal water and nearshore estuarine monitoring, management, and planning. This study demonstrated the possible use of high spatial (approximately 5 m) and temporal (maximum low tide) resolution airborne multispectral scanner on mapping eelgrass beds in Northern Puget Sound, Washington. A combination of supervised and unsupervised classification approaches were performed on the multispectral scanner imagery. A normalized difference vegetation index (NDVI) derived from the red and near-infrared bands and ancillary spatial information, were used to extract and mask eelgrass beds and other submerged aquatic vegetation (SAV) in the study area. We evaluated the resulting thematic map (geocoded, classified image) against a conventional aerial photograph interpretation using 260 point locations randomly stratified over five defined classes from the thematic map. We achieved an overall accuracy of 92 percent with 0.92 Kappa Coefficient in the study area. This study demonstrates that the airborne multispectral scanner can be useful for mapping eelgrass beds in a local or regional scale, especially in regions for which optical remote sensing from space is constrained by climatic and tidal conditions. ?? 2006 American Society for Photogrammetry and Remote Sensing.

  12. Towards Automatic Single-Sensor Mapping by Multispectral Airborne Laser Scanning

    NASA Astrophysics Data System (ADS)

    Ahokas, E.; Hyyppä, J.; Yu, X.; Liang, X.; Matikainen, L.; Karila, K.; Litkey, P.; Kukko, A.; Jaakkola, A.; Kaartinen, H.; Holopainen, M.; Vastaranta, M.

    2016-06-01

    This paper describes the possibilities of the Optech Titan multispectral airborne laser scanner in the fields of mapping and forestry. Investigation was targeted to six land cover classes. Multispectral laser scanner data can be used to distinguish land cover classes of the ground surface, including the roads and separate road surface classes. For forest inventory using point cloud metrics and intensity features combined, total accuracy of 93.5% was achieved for classification of three main boreal tree species (pine, spruce and birch).When using intensity features - without point height metrics - a classification accuracy of 91% was achieved for these three tree species. It was also shown that deciduous trees can be further classified into more species. We propose that intensity-related features and waveform-type features are combined with point height metrics for forest attribute derivation in area-based prediction, which is an operatively applied forest inventory process in Scandinavia. It is expected that multispectral airborne laser scanning can provide highly valuable data for city and forest mapping and is a highly relevant data asset for national and local mapping agencies in the near future.

  13. Urban land use monitoring from computer-implemented processing of airborne multispectral data

    NASA Technical Reports Server (NTRS)

    Todd, W. J.; Mausel, P. W.; Baumgardner, M. F.

    1976-01-01

    Machine processing techniques were applied to multispectral data obtained from airborne scanners at an elevation of 600 meters over central Indianapolis in August, 1972. Computer analysis of these spectral data indicate that roads (two types), roof tops (three types), dense grass (two types), sparse grass (two types), trees, bare soil, and water (two types) can be accurately identified. Using computers, it is possible to determine land uses from analysis of type, size, shape, and spatial associations of earth surface images identified from multispectral data. Land use data developed through machine processing techniques can be programmed to monitor land use changes, simulate land use conditions, and provide impact statistics that are required to analyze stresses placed on spatial systems.

  14. Estimating Evapotranspiration over Heterogeneously Vegetated Surfaces using Large Aperture Scintillometer, LiDAR, and Airborne Multispectral Imagery

    NASA Astrophysics Data System (ADS)

    Geli, H. M.; Neale, C. M.; Pack, R. T.; Watts, D. R.; Osterberg, J.

    2011-12-01

    Estimates of evapotranspiration (ET) over heterogeneous areas is challenging especially in water-limited sparsely vegetated environments. New techniques such as airborne full-waveform LiDAR (Light Detection and Ranging) and high resolution multispectral and thermal imagery can provide enough detail of sparse canopies to improve energy balance model estimations as well as footprint analysis of scintillometer data. The objectives of this study were to estimate ET over such areas and develop methodologies for the use of these airborne data technologies. Because of the associated heterogeneity, this study was conducted over the Cibola National wildlife refuge, southern California on an area dominated with tamarisk (salt cedar) forest (90%) interspersed with arrowweed and bare soil (10%). A set of two large aperture scintillometers (LASs) were deployed over the area to provide estimates of sensible heat flux (HLAS). The LASs were distributed over the area in a way that allowed capturing different surface spatial heterogeneity. Bowen ratio systems were used to provide hydrometeorological variables and surface energy balance fluxes (SEBF) (i.e. Rn, G, H, and LE) measurements. Scintillometer-based estimates of HLAS were improved by considering the effect of the corresponding 3D footprint and the associated displacement height (d) and the roughness length (z0) following Geli et al. (2011). The LiDAR data were acquired using the LASSI Lidar developed at Utah State University (USU). The data was used to obtain 1-m spatial resolution DEM's and vegetation canopy height to improve the HLAS estimates. The BR measurements of Rn and G were combined with LAS estimates, HLAS, to provide estimates of LELASas a residual of the energy balance equation. A thermal remote sensing model namely the two source energy balance (TSEB) of Norman et al. (1995) was applied to provide spatial estimates of SEBF. Four airborne images at 1-4 meter spatial resolution acquired using the USU airborne

  15. Agricultural applications for thermal infrared multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Ochoa, M. C.; Hajek, B. F.

    1985-01-01

    The use of the Thermal Infrared Multispectral Scanner (TIMS) data in agricultural landscapes is discussed. The TIMS allows for narrow-band analysis in the 8.2-11.6 micron range at spatial resolutions down to 5 meters in cell size. A coastal plain region in SE Alabama was studied using the TIMS. The crop/plant vigor, canopy density, and thermal response changes for soils obtained from thermal imagery are examined. The application of TIMS data to hydrologic and topographic issues, inventory and conservation monitoring, and the enhancement and extraction of cartographic features is described.

  16. Multispectral airborne laser scanning - a new trend in the development of LiDAR technology

    NASA Astrophysics Data System (ADS)

    Bakuła, K.

    2015-12-01

    Airborne laser scanning (ALS) is the one of the most accurate remote sensing techniques for data acquisition where the terrain and its coverage is concerned. Modern scanners have been able to scan in two or more channels (frequencies of the laser) recently. This gives the rise to the possibility of obtaining diverse information about an area with the different spectral properties of objects. The paper presents an example of a multispectral ALS system - Titan by Optech - with the possibility of data including the analysis of digital elevation models accuracy and data density. As a result of the study, the high relative accuracy of LiDAR acquisition in three spectral bands was proven. The mean differences between digital terrain models (DTMs) were less than 0.03 m. The data density analysis showed the influence of the laser wavelength. The points clouds that were tested had average densities of 25, 23 and 20 points per square metre respectively for green (G), near-infrared (NIR) and shortwave-infrared (SWIR) lasers. In this paper, the possibility of the generation of colour composites using orthoimages of laser intensity reflectance and its classification capabilities using data from airborne multispectral laser scanning for land cover mapping are also discussed and compared with conventional photogrammetric techniques.

  17. Testing of Land Cover Classification from Multispectral Airborne Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Bakuła, K.; Kupidura, P.; Jełowicki, Ł.

    2016-06-01

    Multispectral Airborne Laser Scanning provides a new opportunity for airborne data collection. It provides high-density topographic surveying and is also a useful tool for land cover mapping. Use of a minimum of three intensity images from a multiwavelength laser scanner and 3D information included in the digital surface model has the potential for land cover/use classification and a discussion about the application of this type of data in land cover/use mapping has recently begun. In the test study, three laser reflectance intensity images (orthogonalized point cloud) acquired in green, near-infrared and short-wave infrared bands, together with a digital surface model, were used in land cover/use classification where six classes were distinguished: water, sand and gravel, concrete and asphalt, low vegetation, trees and buildings. In the tested methods, different approaches for classification were applied: spectral (based only on laser reflectance intensity images), spectral with elevation data as additional input data, and spectro-textural, using morphological granulometry as a method of texture analysis of both types of data: spectral images and the digital surface model. The method of generating the intensity raster was also tested in the experiment. Reference data were created based on visual interpretation of ALS data and traditional optical aerial and satellite images. The results have shown that multispectral ALS data are unlike typical multispectral optical images, and they have a major potential for land cover/use classification. An overall accuracy of classification over 90% was achieved. The fusion of multi-wavelength laser intensity images and elevation data, with the additional use of textural information derived from granulometric analysis of images, helped to improve the accuracy of classification significantly. The method of interpolation for the intensity raster was not very helpful, and using intensity rasters with both first and last return

  18. Identification of landslides in clay terrains using Airborne Thematic Mapper (ATM) multispectral imagery

    NASA Astrophysics Data System (ADS)

    Whitworth, Malcolm; Giles, David; Murphy, William

    2002-01-01

    The slopes of the Cotswolds Escarpment in the United Kingdom are mantled by extensive landslide deposits, including both relict and active features. These landslides pose a significant threat to engineering projects and have been the focus of research into the use of airborne remote sensing data sets for landslide mapping. Due to the availability of extensive ground investigation data, a test site was chosen on the slopes of the Cotswolds Escarpment above the village of Broadway, Worcestershire, United Kingdom. Daedalus Airborne Thematic Mapper (ATM) imagery was subsequently acquired by the UK Natural Environment Research Council (NERC) to provide high-resolution multispectral imagery of the Broadway site. This paper assesses the textural enhancement of ATM imagery as an image processing technique for landslide mapping at the Broadway site. Results of three kernel based textural measures, variance, mean euclidean distance (MEUC) and grey level co-occurrence matrix (GLCM) entropy are presented. Problems encountered during textural analysis, associated with the presence of dense woodland within the project area, are discussed and a solution using Principal Component Analysis (PCA) is described. Landslide features in clay dominated terrains can be identified through textural enhancement of airborne multispectral imagery. The kernel based textural measures tested in the current study were all able to enhance areas of slope instability within ATM imagery. Additionally, results from supervised classification of the combined texture-principal component dataset show that texture based image classification can accurately classify landslide regions and that by including a Principal Component image, woodland and landslide classes can be differentiated successfully during the classification process.

  19. A Multispectral Image Creating Method for a New Airborne Four-Camera System with Different Bandpass Filters

    PubMed Central

    Li, Hanlun; Zhang, Aiwu; Hu, Shaoxing

    2015-01-01

    This paper describes an airborne high resolution four-camera multispectral system which mainly consists of four identical monochrome cameras equipped with four interchangeable bandpass filters. For this multispectral system, an automatic multispectral data composing method was proposed. The homography registration model was chosen, and the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) were used to generate matching points. For the difficult registration problem between visible band images and near-infrared band images in cases lacking manmade objects, we presented an effective method based on the structural characteristics of the system. Experiments show that our method can acquire high quality multispectral images and the band-to-band alignment error of the composed multiple spectral images is less than 2.5 pixels. PMID:26205264

  20. Multispectral thermal infrared mapping of the 1 October 1988 Kupaianaha flow field, Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Realmuto, V.J.; Hon, K.; Kahle, A.B.; Abbott, E.A.; Pieri, D.C.

    1992-01-01

    Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10?? C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. In general, the emissivity of the flows varied systematically with age but the relationship between age and emissivity was not unique. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows. Such incipient alteration may have been the cause for virtually all of the emissivity variations observed on the flow field, the spectral anomalies representing areas where the acid attack was most intense. ?? 1992 Springer-Verlag.

  1. Enhancement of multispectral thermal infrared images - Decorrelation contrast stretching

    NASA Technical Reports Server (NTRS)

    Gillespie, Alan R.

    1992-01-01

    Decorrelation contrast stretching is an effective method for displaying information from multispectral thermal infrared (TIR) images. The technique involves transformation of the data to principle components ('decorrelation'), independent contrast 'stretching' of data from the new 'decorrelated' image bands, and retransformation of the stretched data back to the approximate original axes, based on the inverse of the principle component rotation. The enhancement is robust in that colors of the same scene components are similar in enhanced images of similar scenes, or the same scene imaged at different times. Decorrelation contrast stretching is reviewed in the context of other enhancements applied to TIR images.

  2. Processing of multispectral thermal IR data for geologic applications

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.; Madura, D. P.; Soha, J. M.

    1979-01-01

    Multispectral thermal IR data were acquired with a 24-channel scanner flown in an aircraft over the E. Tintic Utah mining district. These digital image data required extensive computer processing in order to put the information into a format useful for a geologic photointerpreter. Simple enhancement procedures were not sufficient to reveal the total information content because the data were highly correlated in all channels. The data were shown to be dominated by temperature variations across the scene, while the much more subtle spectral variations between the different rock types were of interest. The image processing techniques employed to analyze these data are described.

  3. Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes

    USGS Publications Warehouse

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.; Takekawa, John

    2016-01-01

    Airborne light detection and ranging (lidar) is a valuable tool for collecting large amounts of elevation data across large areas; however, the limited ability to penetrate dense vegetation with lidar hinders its usefulness for measuring tidal marsh platforms. Methods to correct lidar elevation data are available, but a reliable method that requires limited field work and maintains spatial resolution is lacking. We present a novel method, the Lidar Elevation Adjustment with NDVI (LEAN), to correct lidar digital elevation models (DEMs) with vegetation indices from readily available multispectral airborne imagery (NAIP) and RTK-GPS surveys. Using 17 study sites along the Pacific coast of the U.S., we achieved an average root mean squared error (RMSE) of 0.072 m, with a 40–75% improvement in accuracy from the lidar bare earth DEM. Results from our method compared favorably with results from three other methods (minimum-bin gridding, mean error correction, and vegetation correction factors), and a power analysis applying our extensive RTK-GPS dataset showed that on average 118 points were necessary to calibrate a site-specific correction model for tidal marshes along the Pacific coast. By using available imagery and with minimal field surveys, we showed that lidar-derived DEMs can be adjusted for greater accuracy while maintaining high (1 m) resolution.

  4. Multispectral glass transparent from visible to thermal infrared

    NASA Astrophysics Data System (ADS)

    Brehault, A.; Calvez, L.; Pain, T.; Adam, P.; Rollin, J.; Zhang, X. H.

    2014-06-01

    The thermal imaging market has experienced a strong growth during the recent years due to continued cost reduction of night vision devices. The development of uncooled focal plane detector arrays is the major reason for the cost reduction. Another reason is the continuous improvement of the optical solution. In this paper, we present a new multispectral material which responds to the increasing demand for optics operating simultaneously in the visible/SWIR (Short Wave InfraRed) and the thermal infrared region. The most important properties of some glasses from the GeS2-Ga2S3- CsCl system are highlighted in this study. A stable composition 15Ga2S3-75GeS2-10CsCl allowed the synthesis of a large glass without crystallization. The refractive index of this glass was precisely measured from 0.6 to 10.4μm by using the Littrow method. The chromatic dispersion was then calculated and compared with other multispectral materials.

  5. Development of a portable multispectral thermal infrared camera

    NASA Technical Reports Server (NTRS)

    Osterwisch, Frederick G.

    1991-01-01

    The purpose of this research and development effort was to design and build a prototype instrument designated the 'Thermal Infrared Multispectral Camera' (TIRC). The Phase 2 effort was a continuation of the Phase 1 feasibility study and preliminary design for such an instrument. The completed instrument designated AA465 has application in the field of geologic remote sensing and exploration. The AA465 Thermal Infrared Camera (TIRC) System is a field-portable multispectral thermal infrared camera operating over the 8.0 - 13.0 micron wavelength range. Its primary function is to acquire two-dimensional thermal infrared images of user-selected scenes. Thermal infrared energy emitted by the scene is collected, dispersed into ten 0.5 micron wide channels, and then measured and recorded by the AA465 System. This multispectral information is presented in real time on a color display to be used by the operator to identify spectral and spatial variations in the scenes emissivity and/or irradiance. This fundamental instrument capability has a wide variety of commercial and research applications. While ideally suited for two-man operation in the field, the AA465 System can be transported and operated effectively by a single user. Functionally, the instrument operates as if it were a single exposure camera. System measurement sensitivity requirements dictate relatively long (several minutes) instrument exposure times. As such, the instrument is not suited for recording time-variant information. The AA465 was fabricated, assembled, tested, and documented during this Phase 2 work period. The detailed design and fabrication of the instrument was performed during the period of June 1989 to July 1990. The software development effort and instrument integration/test extended from July 1990 to February 1991. Software development included an operator interface/menu structure, instrument internal control functions, DSP image processing code, and a display algorithm coding program. The

  6. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  7. Design study for Thermal Infrared Multispectral Scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Stanich, C. G.; Osterwisch, F. G.; Szeles, D. M.; Houtman, W. H.

    1981-01-01

    The feasibility of dividing the 8-12 micrometer thermal infrared wavelength region into six spectral bands by an airborne line scanner system was investigated. By combining an existing scanner design with a 6 band spectrometer, a system for the remote sensing of Earth resources was developed. The elements in the spectrometer include an off axis reflective collimator, a reflective diffraction grating, a triplet germanium imaging lens, a photoconductive mercury cadmium telluride sensor array, and the mechanical assembly to hold these parts and maintain their optical alignment across a broad temperature range. The existing scanner design was modified to accept the new spectrometer and two field filling thermal reference sources.

  8. Forest Stand Segmentation Using Airborne LIDAR Data and Very High Resolution Multispectral Imagery

    NASA Astrophysics Data System (ADS)

    Dechesne, Clément; Mallet, Clément; Le Bris, Arnaud; Gouet, Valérie; Hervieu, Alexandre

    2016-06-01

    Forest stands are the basic units for forest inventory and mapping. Stands are large forested areas (e.g., ≥ 2 ha) of homogeneous tree species composition. The accurate delineation of forest stands is usually performed by visual analysis of human operators on very high resolution (VHR) optical images. This work is highly time consuming and should be automated for scalability purposes. In this paper, a method based on the fusion of airborne laser scanning data (or lidar) and very high resolution multispectral imagery for automatic forest stand delineation and forest land-cover database update is proposed. The multispectral images give access to the tree species whereas 3D lidar point clouds provide geometric information on the trees. Therefore, multi-modal features are computed, both at pixel and object levels. The objects are individual trees extracted from lidar data. A supervised classification is performed at the object level on the computed features in order to coarsely discriminate the existing tree species in the area of interest. The analysis at tree level is particularly relevant since it significantly improves the tree species classification. A probability map is generated through the tree species classification and inserted with the pixel-based features map in an energetical framework. The proposed energy is then minimized using a standard graph-cut method (namely QPBO with α-expansion) in order to produce a segmentation map with a controlled level of details. Comparison with an existing forest land cover database shows that our method provides satisfactory results both in terms of stand labelling and delineation (matching ranges between 94% and 99%).

  9. Multispectral airborne imagery in the field reveals genetic determinisms of morphological and transpiration traits of an apple tree hybrid population in response to water deficit.

    PubMed

    Virlet, Nicolas; Costes, Evelyne; Martinez, Sébastien; Kelner, Jean-Jacques; Regnard, Jean-Luc

    2015-09-01

    Genetic studies of response to water deficit in adult trees are limited by low throughput of the usual phenotyping methods in the field. Here, we aimed at overcoming this bottleneck, applying a new methodology using airborne multispectral imagery and in planta measurements to compare a high number of individuals.An apple tree population, grafted on the same rootstock, was submitted to contrasting summer water regimes over two years. Aerial images acquired in visible, near- and thermal-infrared at three dates each year allowed calculation of vegetation and water stress indices. Tree vigour and fruit production were also assessed. Linear mixed models were built accounting for date and year effects on several variables and including the differential response of genotypes between control and drought conditions.Broad-sense heritability of most variables was high and 18 quantitative trait loci (QTLs) independent of the dates were detected on nine linkage groups of the consensus apple genetic map. For vegetation and stress indices, QTLs were related to the means, the intra-crown heterogeneity, and differences induced by water regimes. Most QTLs explained 15-20% of variance.Airborne multispectral imaging proved relevant to acquire simultaneous information on a whole tree population and to decipher genetic determinisms involved in response to water deficit. PMID:26208644

  10. Multispectral airborne imagery in the field reveals genetic determinisms of morphological and transpiration traits of an apple tree hybrid population in response to water deficit

    PubMed Central

    Virlet, Nicolas; Costes, Evelyne; Martinez, Sébastien; Kelner, Jean-Jacques; Regnard, Jean-Luc

    2015-01-01

    Genetic studies of response to water deficit in adult trees are limited by low throughput of the usual phenotyping methods in the field. Here, we aimed at overcoming this bottleneck, applying a new methodology using airborne multispectral imagery and in planta measurements to compare a high number of individuals. An apple tree population, grafted on the same rootstock, was submitted to contrasting summer water regimes over two years. Aerial images acquired in visible, near- and thermal-infrared at three dates each year allowed calculation of vegetation and water stress indices. Tree vigour and fruit production were also assessed. Linear mixed models were built accounting for date and year effects on several variables and including the differential response of genotypes between control and drought conditions. Broad-sense heritability of most variables was high and 18 quantitative trait loci (QTLs) independent of the dates were detected on nine linkage groups of the consensus apple genetic map. For vegetation and stress indices, QTLs were related to the means, the intra-crown heterogeneity, and differences induced by water regimes. Most QTLs explained 15−20% of variance. Airborne multispectral imaging proved relevant to acquire simultaneous information on a whole tree population and to decipher genetic determinisms involved in response to water deficit. PMID:26208644

  11. Multispectral airborne imagery in the field reveals genetic determinisms of morphological and transpiration traits of an apple tree hybrid population in response to water deficit.

    PubMed

    Virlet, Nicolas; Costes, Evelyne; Martinez, Sébastien; Kelner, Jean-Jacques; Regnard, Jean-Luc

    2015-09-01

    Genetic studies of response to water deficit in adult trees are limited by low throughput of the usual phenotyping methods in the field. Here, we aimed at overcoming this bottleneck, applying a new methodology using airborne multispectral imagery and in planta measurements to compare a high number of individuals.An apple tree population, grafted on the same rootstock, was submitted to contrasting summer water regimes over two years. Aerial images acquired in visible, near- and thermal-infrared at three dates each year allowed calculation of vegetation and water stress indices. Tree vigour and fruit production were also assessed. Linear mixed models were built accounting for date and year effects on several variables and including the differential response of genotypes between control and drought conditions.Broad-sense heritability of most variables was high and 18 quantitative trait loci (QTLs) independent of the dates were detected on nine linkage groups of the consensus apple genetic map. For vegetation and stress indices, QTLs were related to the means, the intra-crown heterogeneity, and differences induced by water regimes. Most QTLs explained 15-20% of variance.Airborne multispectral imaging proved relevant to acquire simultaneous information on a whole tree population and to decipher genetic determinisms involved in response to water deficit.

  12. Mapping of hydrothermally altered rocks using airborne multispectral scanner data, Marysvale, Utah, mining district

    USGS Publications Warehouse

    Podwysocki, M.H.; Segal, D.B.; Jones, O.D.

    1983-01-01

    Multispectral data covering an area near Marysvale, Utah, collected with the airborne National Aeronautics and Space Administration (NASA) 24-channel Bendix multispectral scanner, were analyzed to detect areas of hydrothermally altered, potentially mineralized rocks. Spectral bands were selected for analysis that approximate those of the Landsat 4 Thematic Mapper and which are diagnostic of the presence of hydrothermally derived products. Hydrothermally altered rocks, particularly volcanic rocks affected by solutions rich in sulfuric acid, are commonly characterized by concentrations of argillic minerals such as alunite and kaolinite. These minerals are important for identifying hydrothermally altered rocks in multispectral images because they have intense absorption bands centered near a wavelength of 2.2 ??m. Unaltered volcanic rocks commonly do not contain these minerals and hence do not have the absorption bands. A color-composite image was constructed using the following spectral band ratios: 1.6??m/2.2??m, 1.6??m/0.48??m, and 0.67??m/1.0??m. The particular bands were chosen to emphasize the spectral contrasts that exist for argillic versus non-argillic rocks, limonitic versus nonlimonitic rocks, and rocks versus vegetation, respectively. The color-ratio composite successfully distinguished most types of altered rocks from unaltered rocks. Some previously unrecognized areas of hydrothermal alteration were mapped. The altered rocks included those having high alunite and/or kaolinite content, siliceous rocks containing some kaolinite, and ash-fall tuffs containing zeolitic minerals. The color-ratio-composite image allowed further division of these rocks into limonitic and nonlimonitic phases. The image did not allow separation of highly siliceous or hematitically altered rocks containing no clays or alunite from unaltered rocks. A color-coded density slice image of the 1.6??m/2.2??m band ratio allowed further discrimination among the altered units. Areas

  13. Adaptive Restoration of Airborne Daedalus AADS1268 ATM Thermal Data

    SciTech Connect

    D. Yuan; E. Doak; P. Guss; A. Will

    2002-01-01

    To incorporate the georegistration and restoration processes into airborne data processing in support of U.S. Department of Energy's nuclear emergency response task, we developed an adaptive restoration filter for airborne Daedalus AADS1268 ATM thermal data based on the Wiener filtering theory. Preliminary assessment shows that this filter enhances the detectability of small weak thermal anomalies in AADS1268 thermal images.

  14. Adaptive restoration of airborne Daedalus AADS1268 ATM thermal data

    NASA Astrophysics Data System (ADS)

    Yuan, Ding; Doak, Edwin L.; Guss, Paul; Will, Alan

    2002-03-01

    To incorporate the georegistration and restoration processes into airborne data processing in support of DOE's nuclear emergency response task, we developed an adaptive restoration filter for airborne Daedalus AADS1268 ATM thermal data based on the Wiener filtering theory. Preliminary assessment shows that this filter enhances the detectability of small weak thermal anomalies in AADS1268 thermal images.

  15. Use of airborne multispectral video data for water quality evaluation in Sandy Hook, New Jersey

    NASA Astrophysics Data System (ADS)

    Bagheri, Sima; Stein, Matt

    1992-05-01

    A local mission of short duration was carried out to investigate the relationship between signals acquired by an airborne multispectral camera (MSC-02) developed by XYbion Corporation and in situ water sampling. The MSC-02 was used to produce video images in six spectral bands in the reflective and near-infrared region of the spectrum from which all below-surface hydrological signals originate. Images of halon-coated panels were obtained in all bands to calculate relative radiometric calibration functions. These functions were applied to corresponding spectral images to calculate relative radiances of both panel and estuarine water targets. These values were then input to regression equations to establish a correlation between water constituents (organic/inorganic) and MSC-02 signals indicating the degree of eutrophication in the estuary. It is hypothesized that if reliable relationships between MSC-02 data with fine spatial resolution and selected water quality parameters are obtained, then it would be possible to calibrate the concurrently acquired Landsat 5 thematic mapper (TM) data with coarser spatial resolution for monitoring of estuarine water quality.

  16. Simulated radiance profiles for automating the interpretation of airborne passive multi-spectral infrared images.

    PubMed

    Sulub, Yusuf; Small, Gary W

    2008-10-01

    Methodology is developed for simulating the radiance profiles acquired from airborne passive multispectral infrared imaging measurements of ground sources of volatile organic compounds (VOCs). The simulation model allows the superposition of pure-component laboratory spectra of VOCs onto spectral backgrounds that simulate those acquired during field measurements conducted with a downward-looking infrared line scanner mounted on an aircraft flying at an altitude of 2000-3000 ft (approximately 600-900 m). Wavelength selectivity in the line scanner is accomplished through the use of a multichannel Hg:Cd:Te detector with up to 16 integrated optical filters. These filters allow the detection of absorption and emission signatures of VOCs superimposed on the upwelling infrared background radiance within the instrumental field of view (FOV). By combining simulated radiance profiles containing analyte signatures with field-collected background signatures, supervised pattern recognition methods can be employed to train automated classifiers for use in detecting the signatures of VOCs during field measurements. The targeted application for this methodology is the use of the imaging system to detect releases of VOCs during emergency response scenarios. In the work described here, the simulation model is combined with piecewise linear discriminant analysis to build automated classifiers for detecting ethanol and methanol. Field data collected during controlled releases of ethanol, as well as during a methanol release from an industrial facility, are used to evaluate the methodology.

  17. The Need for High Spatial Resolution Multispectral Thermal Remote Sensing Data In Urban Heat Island Research

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    2006-01-01

    Although the study of the Urban Heat Island (UHI) effect dates back to the early 1800's when Luke Howard discovered London s heat island, it has only been with the advent of thermal remote sensing systems that the extent, characteristics, and impacts of the UHI have become to be understood. Analysis of the UHI effect is important because above all, this phenomenon can directly influence the health and welfare of urban residents. For example, in 1995, over 700 people died in Chicago due to heat-related causes. UHI s are characterized by increased temperature in comparison to rural areas and mortality rates during a heat wave increase exponentially with the maximum temperature, an effect that is exacerbated by the UHI. Aside from the direct impacts of the UHI on temperature, UHI s can produce secondary effects on local meteorology, including altering local wind patterns, increased development of clouds and fog, and increasing rates of precipitation either over, or downwind, of cities. Because of the extreme heterogeneity of the urban surface, in combination with the sprawl associated with urban growth, thermal infrared (TIR) remote sensing data have become of significant importance in understanding how land cover and land use characteristics affect the development and intensification of the UHI. TIR satellite data have been used extensively to analyze the surface temperature regimes of cities to help observe and measure the impacts of surface temperatures across the urban landscape. However, the spatial scales at which satellite TIR data are collected are for the most part, coarse, with the finest readily available TIR data collected by the Landsat ETM+ sensor at 60m spatial resolution. For many years, we have collected high spatial resolution (10m) data using an airborne multispectral TIR sensor over a number of cities across the United States. These high resolution data have been used to develop an understanding of how discrete surfaces across the urban environment

  18. Mapping playa evaporite minerals and associated sediments in Death Valley, California, with multispectral thermal infrared images

    USGS Publications Warehouse

    Crowley, J.K.; Hook, S.J.

    1996-01-01

    Efflorescent salt crusts and associated sediments in Death Valley, California, were studied with remote-sensing data acquired by the NASA thermal infrared multispectral scanner (TIMS). Nine spectral classes that represent a variety of surface materials were distinguished, including several classes that reflect important aspects of the playa groundwater chemistry and hydrology. Evaporite crusts containing abundant thenardite (sodium sulfate) were mapped along the northern and eastern margins of the Cottonball Basin, areas where the inflow waters are rich in sodium. Gypsum (calcium sulfate) crusts were more common in the Badwater Basin, particularly near springs associated with calcic groundwaters along the western basin margin. Evaporite-rich crusts generally marked areas where groundwater is periodically near the surface and thus able to replenish the crusts though capillary evaporation. Detrital silicate minerals were prevalent in other parts of the salt pan where shallow groundwater does not affect the surface composition. The surface features in Death Valley change in response to climatic variations on several different timescales. For example, salt crusts on low-lying mudflats form and redissolve during seasonal-to-interannual cycles of wetting and desiccation. In contrast, recent flooding and erosion of rough-salt surfaces in Death Valley probably reflect increased regional precipitation spanning several decades. Remote-sensing observations of playas can provide a means for monitoring changes in evaporite facies and for better understanding the associated climatic processes. At present, such studies are limited by the availability of suitable airborne scanner data. However, with the launch of the Earth Observing System (EOS) AM-1 Platform in 1998, multispectral visible/near-infrared and thermal infrared remote-sensing data will become globally available. Copyright 1996 by the American Geophysical Union.

  19. Biooptical variability in the Greenland Sea observed with the Multispectral Airborne Radiometer System (MARS)

    NASA Technical Reports Server (NTRS)

    Mueller, James L.; Trees, Charles C.

    1989-01-01

    A site-specific ocean color remote sensing algorithm was developed and used to convert Multispectral Airborne Radiometer System (MARS) spectral radiance measurements to chlorophyll-a concentration profiles along aircraft tracklines in the Greenland Sea. The analysis is described and the results given in graphical or tabular form. Section 2 describes the salient characteristics and history of development of the MARS instrument. Section 3 describes the analyses of MARS flight segments over consolidated sea ice, resulting in a set of altitude dependent ratios used (over water) to estimate radiance reflected by the surface and atmosphere from total radiance measured. Section 4 presents optically weighted pigment concentrations calculated from profile data, and spectral reflectances measured in situ from the top meter of the water column; this data was analyzed to develop an algorithm relating chlorophyll-a concentrations to the ratio of radiance reflectances at 441 and 550 nm (with a selection of coefficients dependent upon whether significant gelvin presence is implied by a low ratio of reflectances at 410 and 550 nm). Section 5 describes the scaling adjustments which were derived to reconcile the MARS upwelled radiance ratios at 410:550 nm and 441:550 nm to in situ reflectance ratios measured simultaneously on the surface. Section 6 graphically presents the locations of MARS data tracklines and positions of the surface monitoring R/V. Section 7 presents stick-plots of MARS tracklines selected to illustrate two-dimensional spatial variability within the box covered by each day's flight. Section 8 presents curves of chlorophyll-a concentration profiles derived from MARS data along survey tracklines. Significant results are summarized in Section 1.

  20. New, Flexible Applications with the Multi-Spectral Titan Airborne Lidar

    NASA Astrophysics Data System (ADS)

    Swirski, A.; LaRocque, D. P.; Shaker, A.; Smith, B.

    2015-12-01

    Traditional lidar designs have been restricted to using a single laser channel operating at one particular wavelength. Single-channel systems excel at collecting high-precision spatial (XYZ) data, with accuracies down to a few centimeters. However, target classification is difficult with spatial data alone, and single-wavelength systems are limited to the strengths and weaknesses of the wavelength they use. To resolve these limitations in lidar design, Teledyne Optech developed the Titan, the world's first multispectral lidar system, which uses three independent laser channels operating at 532, 1064, and 1550 nm. Since Titan collects 12 bit intensity returns for each wavelength separately, users can compare how strongly targets in the survey area reflect each wavelength. Materials such as soil, rock and foliage all reflect the wavelengths differently, enabling post-processing algorithms to identify the material of targets easily and automatically. Based on field tests in Canada, automated classification algorithms have combined this with elevation data to classify targets into six basic types with 78% accuracy. Even greater accuracy is possible with further algorithm enhancement and the use of an in-sensor passive imager such as a thermal, multispectral, CIR or RGB camera. Titan therefore presents an important new tool for applications such as land-cover classification and environmental modeling while maintaining lidar's traditional strengths: high 3D accuracy and day/night operation. Multispectral channels also enable a single lidar to handle both topographic and bathymetric surveying efficiently, which previously required separate specialized lidar systems operating at different wavelengths. On land, Titan can survey efficiently from 2000 m AGL with a 900 kHz PRF (300 kHz per channel), or up to 2500 m if only the infrared 1064 and 1550 nm channels are used. Over water, the 532 nm green channel penetrates water to collect seafloor returns while the infrared

  1. Design Considerations, Modeling and Analysis for the Multispectral Thermal Imager

    SciTech Connect

    Borel, C.C.; Clodius, W.B.; Cooke, B.J.; Smith, B.W.; Weber, P.G.

    1999-02-01

    The design of remote sensing systems is driven by the need to provide cost-effective, substantive answers to questions posed by our customers. This is especially important for space-based systems, which tend to be expensive, and which generally cannot be changed after they are launched. We report here on the approach we employed in developing the desired attributes of a satellite mission, namely the Multispectral Thermal Imager. After an initial scoping study, we applied a procedure which we call: "End-to-end modeling and analysis (EEM)." We began with target attributes, translated to observable signatures and then propagated the signatures through the atmosphere to the sensor location. We modeled the sensor attributes to yield a simulated data stream, which was then analyzed to retrieve information about the original target. The retrieved signature was then compared to the original to obtain a figure of merit: hence the term "end-to-end modeling and analysis." We base the EEM in physics to ensure high fidelity and to permit scaling. As the actual design of the payload evolves, and as real hardware is tested, we can update the EEM to facilitate trade studies, and to judge, for example, whether components that deviate from specifications are acceptable.

  2. Estimation of absolute water surface temperature based on atmospherically corrected thermal infrared multispectral scanner digital data

    NASA Technical Reports Server (NTRS)

    Anderson, James E.

    1986-01-01

    Airborne remote sensing systems, as well as those on board Earth orbiting satellites, sample electromagnetic energy in discrete wavelength regions and convert the total energy sampled into data suitable for processing by digital computers. In general, however, the total amount of energy reaching a sensor system located at some distance from the target is composed not only of target related energy, but, in addition, contains a contribution originating from the atmosphere itself. Thus, some method must be devised for removing or at least minimizing the effects of the atmosphere. The LOWTRAN-6 Program was designed to estimate atmospheric transmittance and radiance for a given atmospheric path at moderate spectral resolution over an operational wavelength region from 0.25 to 28.5 microns. In order to compute the Thermal Infrared Multispectral Scanner (TIMS) digital values which were recorded in the absence of the atmosphere, the parameters derived from LOWTRAN-6 are used in a correction equation. The TIMS data were collected at 1:00 a.m. local time on November 21, 1983, over a recirculating cooling pond for a power plant in southeastern Mississippi. The TIMS data were analyzed before and after atmospheric corrections were applied using a band ratioing model to compute the absolute surface temperature of various points on the power plant cooling pond. The summarized results clearly demonstrate the desirability of applying atmospheric corrections.

  3. An Algorithm to Atmospherically Correct Visible and Thermal Airborne Imagery

    NASA Technical Reports Server (NTRS)

    Rickman, Doug L.; Luvall, Jeffrey C.; Schiller, Stephen; Arnold, James E. (Technical Monitor)

    2000-01-01

    The program Watts implements a system of physically based models developed by the authors, described elsewhere, for the removal of atmospheric effects in multispectral imagery. The band range we treat covers the visible, near IR and the thermal IR. Input to the program begins with atmospheric pal red models specifying transmittance and path radiance. The system also requires the sensor's spectral response curves and knowledge of the scanner's geometric definition. Radiometric characterization of the sensor during data acquisition is also necessary. While the authors contend that active calibration is critical for serious analytical efforts, we recognize that most remote sensing systems, either airborne or space borne, do not as yet attain that minimal level of sophistication. Therefore, Watts will also use semi-active calibration where necessary and available. All of the input is then reduced to common terms, in terms of the physical units. From this it Is then practical to convert raw sensor readings into geophysically meaningful units. There are a large number of intricate details necessary to bring an algorithm or this type to fruition and to even use the program. Further, at this stage of development the authors are uncertain as to the optimal presentation or minimal analytical techniques which users of this type of software must have. Therefore, Watts permits users to break out and analyze the input in various ways. Implemented in REXX under OS/2 the program is designed with attention to the probability that it will be ported to other systems and other languages. Further, as it is in REXX, it is relatively simple for anyone that is literate in any computer language to open the code and modify to meet their needs. The authors have employed Watts in their research addressing precision agriculture and urban heat island.

  4. Airborne Multispectral LIDAR Data for Land-Cover Classification and Land/water Mapping Using Different Spectral Indexes

    NASA Astrophysics Data System (ADS)

    Morsy, S.; Shaker, A.; El-Rabbany, A.; LaRocque, P. E.

    2016-06-01

    Airborne Light Detection And Ranging (LiDAR) data is widely used in remote sensing applications, such as topographic and landwater mapping. Recently, airborne multispectral LiDAR sensors, which acquire data at different wavelengths, are available, thus allows recording a diversity of intensity values from different land features. In this study, three normalized difference feature indexes (NDFI), for vegetation, water, and built-up area mapping, were evaluated. The NDFIs namely, NDFIG-NIR, NDFIG-MIR, and NDFINIR-MIR were calculated using data collected at three wavelengths; green: 532 nm, near-infrared (NIR): 1064 nm, and mid-infrared (MIR): 1550 nm by the world's first airborne multispectral LiDAR sensor "Optech Titan". The Jenks natural breaks optimization method was used to determine the threshold values for each NDFI, in order to cluster the 3D point data into two classes (water and land or vegetation and built-up area). Two sites at Scarborough, Ontario, Canada were tested to evaluate the performance of the NDFIs for land-water, vegetation, and built-up area mapping. The use of the three NDFIs succeeded to discriminate vegetation from built-up areas with an overall accuracy of 92.51%. Based on the classification results, it is suggested to use NDFIG-MIR and NDFINIR-MIR for vegetation and built-up areas extraction, respectively. The clustering results show that the direct use of NDFIs for land-water mapping has low performance. Therefore, the clustered classes, based on the NDFIs, are constrained by the recorded number of returns from different wavelengths, thus the overall accuracy is improved to 96.98%.

  5. Lithologic analysis from multispectral thermal infrared data of the alkalic rock complex at Iron Hill, Colorado

    USGS Publications Warehouse

    Watson, K.; Rowan, L.C.; Bowers, T.L.; Anton-Pacheco, C.; Gumiel, P.; Miller, S.H.

    1996-01-01

    Airborne thermal-infrared multispectral scanner (TIMS) data of the Iron Hill carbonatite-alkalic igneous rock complex in south-central Colorado are analyzed using a new spectral emissivity ratio algorithm and confirmed by field examination using existing 1:24 000-scale geologic maps and petrographic studies. Color composite images show that the alkalic rocks could be clearly identified and that differences existed among alkalic rocks in several parts of the complex. An unsupervised classification algorithm defines four alkalic rock classes within the complex: biotitic pyroxenite, uncompahgrite, augitic pyroxenite, and fenite + nepheline syenite. Felsic rock classes defined in the surrounding country rock are an extensive class consisting of tuff, granite, and felsite, a less extensive class of granite and felsite, and quartzite. The general composition of the classes can be determined from comparisons of the TIMS spectra with laboratory spectra. Carbonatite rocks are not classified, and we attribute that to the fact that dolomite, the predominant carbonate mineral in the complex, has a spectral feature that falls between TIMS channels 5 and 6. Mineralogical variability in the fenitized granite contributed to the nonuniform pattern of the fenite-nepheline syenite class. The biotitic pyroxenite, which resulted from alteration of the pyroxenite, is spatially associated and appears to be related to narrow carbonatite dikes and sills. Results from a linear unmixing algorithm suggest that the detected spatial extent of the two mixed felsic rock classes was sensitive to the amount of vegetation cover. These results illustrate that spectral thermal infrared data can be processed to yield compositional information that can be a cost-effective tool to target mineral exploration, particularly in igneous terranes.

  6. GIS Meets Airborne MSS: Geospatial Applications of High-Resolution Multispectral Data

    SciTech Connect

    Albert Guber

    1999-07-27

    Bechtel Nevada operates and flies Daedalus multispectral scanners for funded project tasks at the Department of Energy's Remote Sensing Laboratory. Historically, processing and analysis of multispectral data has afforded scientists the opportunity to see natural phenomena not visible to the naked eye. However, only recently has a system, more specifically a Geometric Correction System, existed to automatically geo-reference these data directly into a Geographic Information (GIS) database. Now, analyses, performed previously in a nongeospatial environment, are integrated directly into an Arc/Info GIS. This technology is of direct benefit to environmental and emergency response applications.

  7. Comparison of airborne multispectral and hyperspectral imagery for estimating grain sorghum yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both multispectral and hyperspectral images are being used to monitor crop conditions and map yield variability, but limited research has been conducted to compare the differences between these two types of imagery for assessing crop growth and yields. The objective of this study was to compare airb...

  8. Airborne multispectral identification of individual cotton plants using consumer-grade cameras

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although multispectral remote sensing using consumer-grade cameras has successfully identified fields of small cotton plants, improvements to detection sensitivity are needed to identify individual or small clusters of plants. The imaging sensor of consumer-grade cameras are based on a Bayer patter...

  9. A comparison between satellite and airborne multispectral data for the assessment of Mangrove areas in the eastern Caribbean

    SciTech Connect

    Green, E.P.; Edwards, A.J.; Mumby, P.J.

    1997-06-01

    Satellite (SPOT XS and Landsat TM) and airborne multispectral (CASI) imagery was acquired from the Turks and Caicos Islands, British West Indies. The descriptive resolution and accuracy of each image type is compared for two applications: mangrove habitat mapping and the measurement of mangrove canopy characteristics (leaf area index and canopy closure). Mangroves could be separated from non-mangrove vegetation to an accuracy of only 57% with SPOT XS data but better discrimination could be achieved with either Landsat TM or CASI (in both cases accuracy was >90%). CASI data permitted a more accurate classification of different mangrove habitats than was possible using Landsat TM. Nine mangrove habitats could be mapped to an accuracy of 85% with the high-resolution airborne data compared to 31% obtained with TM. A maximum of three mangrove habitats were separable with Landsat TM: the accuracy of this classification was 83%. Measurement of mangrove canopy characteristics is achieved more accurately with CASI than with either satellite sensor, but high costs probably make it a less cost-effective option. The cost-effectiveness of each sensor is discussed for each application.

  10. Thermal Infrared Multispectral Scanner (TIMS): An investigator's guide to TIMS data

    NASA Technical Reports Server (NTRS)

    Palluconi, F. D.; Meeks, G. R.

    1985-01-01

    The Thermal Infrared Multispectral Scanner (TIMS) is a NASA aircraft scanner providing six channel spectral capability in the thermal infrared region of the electromagnetic spectrum. Operating in the atmospheric window region (8 to 12 micrometers) with a channel sensitivity of approximately 0.1 C, TIMS may be used whenever an accurate measure of the Earth's surface is needed. A description of this scanner is provided as well as a discussion of data acquisition and reduction.

  11. Simulation of LANDSAT multispectral scanner spatial resolution with airborne scanner data

    NASA Technical Reports Server (NTRS)

    Hlavka, C. A.

    1986-01-01

    A technique for simulation of low spatial resolution satellite imagery by using high resolution scanner data is described. The scanner data is convolved with the approximate point spread function of the low resolution data and then resampled to emulate low resolution imagery. The technique was successfully applied to Daedalus airborne scanner data to simulate a portion of a LANDSAT multispectra scanner scene.

  12. Comparison of multispectral airborne scanner reflectance images with ground surface reflectance measurements

    SciTech Connect

    Kollewe, M.; Bienlein, J.; Kollewe, T.; Spitzer, H.

    1996-11-01

    Simultaneously with an airborne data taking campaign near the city of Nurnberg (FRG), performed with an imaging 11-channel scanner of type Daedalus AADS 1268, ground reference measurements of reflectance spectra were conducted with a spectrally high resolving spectroradiometer of type IRIS at selected test sites. Based on a method developed reflectance images are calculated from the aerial raw data. Thus, physical quantities of the surfaces are generated, which are independent of illumination and registration conditions. The airborne scanner reflectance images are compared with ground reference reflectance measurements. The comparison yields deviations up to 35%. They can partially be explained by an inaccurate calibration of the airborne scanner. In addition, errors appear during calculation of the reflectances due to simplifying model assumptions and an inexact knowledge of the values of the model input parameters. It is shown that calibration of the airborne scanner data with the ground reference measurements improves the results, as compared to calibration based on laboratory testbench measurements. 8 refs., 4 figs., 1 tab.

  13. Target detection algorithm for airborne thermal hyperspectral data

    NASA Astrophysics Data System (ADS)

    Marwaha, R.; Kumar, A.; Raju, P. L. N.; Krishna Murthy, Y. V. N.

    2014-11-01

    Airborne hyperspectral imaging is constantly being used for classification purpose. But airborne thermal hyperspectral image usually is a challenge for conventional classification approaches. The Telops Hyper-Cam sensor is an interferometer-based imaging system that helps in the spatial and spectral analysis of targets utilizing a single sensor. It is based on the technology of Fourier-transform which yields high spectral resolution and enables high accuracy radiometric calibration. The Hypercam instrument has 84 spectral bands in the 868 cm-1 to 1280 cm-1 region (7.8 μm to 11.5 μm), at a spectral resolution of 6 cm-1 (full-width-half-maximum) for LWIR (long wave infrared) range. Due to the Hughes effect, only a few classifiers are able to handle high dimensional classification task. MNF (Minimum Noise Fraction) rotation is a data dimensionality reducing approach to segregate noise in the data. In this, the component selection of minimum noise fraction (MNF) rotation transformation was analyzed in terms of classification accuracy using constrained energy minimization (CEM) algorithm as a classifier for Airborne thermal hyperspectral image and for the combination of airborne LWIR hyperspectral image and color digital photograph. On comparing the accuracy of all the classified images for airborne LWIR hyperspectral image and combination of Airborne LWIR hyperspectral image with colored digital photograph, it was found that accuracy was highest for MNF component equal to twenty. The accuracy increased by using the combination of airborne LWIR hyperspectral image with colored digital photograph instead of using LWIR data alone.

  14. A thermal inertia model for soil water content retrieval using thermal and multispectral images

    NASA Astrophysics Data System (ADS)

    Maltese, A.; Minacapilli, M.; Cammalleri, C.; Ciraolo, G.; D'Asaro, F.

    2010-10-01

    Soil moisture is difficult to quantify because of its high spatial variability. Consequently, great efforts have been undertaken by the research community to develop practical remote sensing approaches to estimate the spatial distribution of surface soil moisture over large areas and with high spatial detail. Many methodologies have been developed using remote sensing data acquiring information in different parts of the electromagnetic spectrum. Conventional field measurement techniques (including gravimetric and time-domain reflectometry) are point-based, involve on-site operators, are time expensive and, in any case, do not provide exhaustive information on the spatial distribution of soil moisture because it strongly depends on pedology, soil roughness and vegetation cover. The technological development of imaging sensors acquiring in the visible (VIS), near infrared (NIR) and thermal infrared (TIR), renewed the research interest in setting up remote sensed based techniques aimed to retrieve soil water content variability in the soil-plant-atmosphere system (SPA). In this context different approaches have been widely applied at regional scale throughout synthetic indexes based on VIS, NIR and TIR spectral bands. A laboratory experiment has been carried out to verify a physically based model based on the remote estimation of the soil thermal inertia, P, to indirectly retrieve the soil surface water content, θ. The paper shows laboratory retrievals using simultaneously a FLIR A320G thermal camera, a six bands customized TETRACAM MCA II (Multiple Camera Array) multispectral camera working in the VIS/NIR part of the spectrum. Using these two type of sensors a set of VIS/NIR and TIR images were acquired as the main input dataset to retrieve the spatial variability of the thermal inertia values. Moreover, given that the accuracy of the proposed approach strongly depends on the accurate estimation of the soil thermal conductivity, a Decagon Device KD2 PRO thermal

  15. Estimating vegetation coverage in St. Joseph Bay, Florida with an airborne multispectral scanner

    NASA Technical Reports Server (NTRS)

    Savastano, K. J.; Faller, K. H.; Iverson, R. L.

    1984-01-01

    A four-channel multispectral scanner (MSS) carried aboard an aircraft was used to collect data along several flight paths over St. Joseph Bay, FL. Various classifications of benthic features were defined from the results of ground-truth observations. The classes were statistically correlated with MSS channel signal intensity using multivariate methods. Application of the classification measures to the MSS data set allowed computer construction of a detailed map of benthic features of the bay. Various densities of segrasses, various bottom types, and algal coverage were distinguished from water of various depths. The areal vegetation coverage of St. Joseph Bay was not significantly different from the results of a survey conducted six years previously, suggesting that seagrasses are a very stable feature of the bay bottom.

  16. Active/passive scanning. [airborne multispectral laser scanners for agricultural and water resources applications

    NASA Technical Reports Server (NTRS)

    Woodfill, J. R.; Thomson, F. J.

    1979-01-01

    The paper deals with the design, construction, and applications of an active/passive multispectral scanner combining lasers with conventional passive remote sensors. An application investigation was first undertaken to identify remote sensing applications where active/passive scanners (APS) would provide improvement over current means. Calibration techniques and instrument sensitivity are evaluated to provide predictions of the APS's capability to meet user needs. A preliminary instrument design was developed from the initial conceptual scheme. A design review settled the issues of worthwhile applications, calibration approach, hardware design, and laser complement. Next, a detailed mechanical design was drafted and construction of the APS commenced. The completed APS was tested and calibrated in the laboratory, then installed in a C-47 aircraft and ground tested. Several flight tests completed the test program.

  17. Multispectral thermal infrared mapping of sulfur dioxide plumes: A case study from the East Rift Zone of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Realmuto, V.J.; Sutton, A.J.; Elias, T.

    1997-01-01

    The synoptic perspective and rapid mode of data acquisition provided by remote sensing are well suited for the study of volcanic SO2 plumes. In this paper we describe a plume-mapping procedure that is based on image data acquired with NASA's airborne thermal infrared multispectral scanner (TIMS) and apply the procedure to TIMS data collected over the East Rift Zone of Kilauea Volcano, Hawaii, on September 30, 1988. These image data covered the Pu'u 'O'o and Kupaianaha vents and a skylight in the lava tube that was draining the Kupaianaha lava pond. Our estimate of the SO2 emission rate from Pu'u 'O'o (17 - 20 kg s-1) is roughly twice the average of estimates derived from correlation spectrometer (COSPEC) measurements collected 10 days prior to the TIMS overflight (10 kg s-1). The agreement between the TIMS and COSPEC results improves when we compare SO2 burden estimates, which are relatively independent of wind speed. We demonstrate the feasibility of mapping Pu'u 'O'o - scale SO2 plumes from space in anticipation of the 1998 launch of the advanced spaceborne thermal emission and reflectance radiometer (ASTER). Copyright 1997 by the American Geophysical Union.

  18. Discrimination techniques employing both reflective and thermal multispectral signals. [for remote sensor technology

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Crane, R. B.; Richardson, W.

    1973-01-01

    Recent improvements in remote sensor technology carry implications for data processing. Multispectral line scanners now exist that can collect data simultaneously and in registration in multiple channels at both reflective and thermal (emissive) wavelengths. Progress in dealing with two resultant recognition processing problems is discussed: (1) More channels mean higher processing costs; to combat these costs, a new and faster procedure for selecting subsets of channels has been developed. (2) Differences between thermal and reflective characteristics influence recognition processing; to illustrate the magnitude of these differences, some explanatory calculations are presented. Also introduced, is a different way to process multispectral scanner data, namely, radiation balance mapping and related procedures. Techniques and potentials are discussed and examples presented.

  19. Thermal Infrared Airborne Field Studies: Applications to the Mars Global Surveyor Thermal Emission Spectrometer

    NASA Astrophysics Data System (ADS)

    Herr, K.; Kirkland, L.; Keim, E.; Hackwell, J.

    2002-12-01

    A primary goal of the Mars exploration program is to reconnoiter the planet from orbit using infrared remote sensing. Currently the Global Surveyor Thermal Emission Spectrometer (TES) and the 2001 Mars Odyssey 9-band radiometer THEMIS provide this capability. Landing site selection and modeling of the geologic and climate history depend on accurate interpretations of these data sets. Interpretations use terrestrial analog remote sensing and laboratory studies. Until recently, there have been no airborne thermal infrared spectrometer ("hyspectral") data sets available to NASA researchers that are comparable to TES. As a result, studies relied on airborne multi-channel radiometer ("multispectral") measurements (e.g. TIMS, MASTER). A radiometer has the advantage that measurement of broad bands makes it easier to measure with higher sensitivity. However, radiometers lack the spectral resolution to investigate details of spectral signatures. This gap may be partially addressed using field samples collected and measured in the laboratory. However, that leaves questions unanswered about the field environment and potentially leaves important complicating issues undiscovered. Two questions that haunt thermal infrared remote sensing investigations of Mars are: (1) If a mineral is not detected in a given data set, how definitively should we state that it is not there? (2) When does the method provide quantitative mineral mapping? In order to address these questions, we began collaborating with Department of Defense (DoD) oriented researchers and drawing on the unique instrumentation they developed. Both Mars and DoD researchers have a common need to identify materials without benefit of ground truth. Such collaborations provide a fresh perspective as well as unique data. Our work addresses uncertainties in stand-off identification of solid phase surface materials when the identification must proceed without benefit of ground truth. We will report on the results applied to TES

  20. Assessing the application of an airborne intensified multispectral video camera to measure chlorophyll a in three Florida estuaries

    SciTech Connect

    Dierberg, F.E.; Zaitzeff, J.

    1997-08-01

    After absolute and spectral calibration, an airborne intensified, multispectral video camera was field tested for water quality assessments over three Florida estuaries (Tampa Bay, Indian River Lagoon, and the St. Lucie River Estuary). Univariate regression analysis of upwelling spectral energy vs. ground-truthed uncorrected chlorophyll a (Chl a) for each estuary yielded lower coefficients of determination (R{sup 2}) with increasing concentrations of Gelbstoff within an estuary. More predictive relationships were established by adding true color as a second independent variable in a bivariate linear regression model. These regressions successfully explained most of the variation in upwelling light energy (R{sup 2}=0.94, 0.82 and 0.74 for the Tampa Bay, Indian River Lagoon, and St. Lucie estuaries, respectively). Ratioed wavelength bands within the 625-710 nm range produced the highest correlations with ground-truthed uncorrected Chl a, and were similar to those reported as being the most predictive for Chl a in Tennessee reservoirs. However, the ratioed wavebands producing the best predictive algorithms for Chl a differed among the three estuaries due to the effects of varying concentrations of Gelbstoff on upwelling spectral signatures, which precluded combining the data into a common data set for analysis.

  1. Processing Of Multispectral Data For Identification Of Rocks

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.

    1990-01-01

    Linear discriminant analysis and supervised classification evaluated. Report discusses processing of multispectral remote-sensing imagery to identify kinds of sedimentary rocks by spectral signatures in geological and geographical contexts. Raw image data are spectra of picture elements in images of seven sedimentary rock units exposed on margin of Wind River Basin in Wyoming. Data acquired by Landsat Thematic Mapper (TM), Thermal Infrared Multispectral Scanner (TIMS), and NASA/JPL airborne synthetic-aperture radar (SAR).

  2. Multispectral thermal imager observations of the moon during total eclipse.

    SciTech Connect

    Lawson, S. L.; Rodger, A. P.; Bender, S. C.; Lucey, P. G.; Henderson, B. G.

    2003-01-01

    Lunar eclipse temperature measurements are sensitive to rock populations because surfaces with abundant exposed rock have much higher mean thermal inertias than surfaces dominated by fine powders . When the Moon passes into the I :arth's shadow, the abrupt reduction in insolation causes surfacc elements to cool at rates which are ILnctions oftheir thermal inertia . The rock population is a lunction of the exposure of a surface unit, originally composed of solid igneous rock or impact mclt, to the impact flux of modest sized projectiles. With time, a competent surface such as a lava flow field or an impact melt sheet will be comminuted by the impact flux reducing the ratio of coarse to fine particles . In principle, thermal measurements taken during lunar eclipse can be used as a measure of the relative age of surface units .

  3. Crop water-stress assessment using an airborne thermal scanner

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Jackson, R. D.; Reginato, R. J.; Idso, S. B.; Goettelman, R. C.

    1978-01-01

    An airborne thermal scanner was used to measure the temperature of a wheat crop canopy in Phoenix, Arizona. The results indicate that canopy temperatures acquired about an hour and a half past solar noon were well correlated with presunrise plant water tension, a parameter directly related to plant growth and development. Pseudo-colored thermal images reading directly in stress degree days, a unit indicative of crop irrigation needs and yield potential, were produced. The aircraft data showed significant within-field canopy temperature variability, indicating the superiority of the synoptic view provided by aircraft over localized ground measurements. The standard deviation between airborne and ground-acquired canopy temperatures was 2 C or less.

  4. MULTISPECTRAL THERMAL IMAGER SCIENCE, DATA PRODUCT AND GROUND DATA PROCESSING OVERVIEW.

    SciTech Connect

    J. SZYMANSKI; L. BALICK; ET AL

    2001-04-01

    The mission of the Multispectral Thermal Imager (MTI) satellite is to demonstrate the efficacy of highly accurate multispectral imaging for passive characterization of urban and industrial areas, as well as sites of environmental interest. The satellite makes top-of-atmosphere radiance measurements that are subsequently processed into estimates of surface properties such as vegetation health, temperatures, material composition and others. The system also provides simultaneous data for atmospheric characterization at high spatial resolution. To utilize these data the MTI science program has several coordinated components, including modeling, comprehensive ground-truth measurements, image acquisition planning, data processing and data analysis and interpretation . Algorithms have been developed to retrieve a multitude of physical quantities and these algorithms are integrated in a processing pipeline architecture that emphasizes automation, flexibility and programmability. This paper describes the MTI data products and ground processing, as well as the ''how to'' aspects of starting a data center from scratch.

  5. Capturing the Green River -- Multispectral airborne videography to evaluate the environmental impacts of hydropower operations

    SciTech Connect

    Snider, M.A.; Hayse, J.W.; Hlohowskyj, I.; LaGory, K.E.

    1996-02-01

    The 500-mile long Green River is the largest tributary of the Colorado River. From its origin in the Wind River Range mountains of western Wyoming to its confluence with the Colorado River in southeastern Utah, the Green River is vital to the arid region through which it flows. Large portions of the area remain near-wilderness with the river providing a source of recreation in the form of fishing and rafting, irrigation for farming and ranching, and hydroelectric power. In the late 1950`s and early 1960`s hydroelectric facilities were built on the river. One of these, Flaming Gorge Dam, is located just south of the Utah-Wyoming border near the town of Dutch John, Utah. Hydropower operations result in hourly and daily fluctuations in the releases of water from the dam that alter the natural stream flow below the dam and affect natural resources in and along the river corridor. In the present study, the authors were interested in evaluating the potential impacts of hydropower operations at Flaming Gorge Dam on the downstream natural resources. Considering the size of the area affected by the daily pattern of water release at the dam as well as the difficult terrain and limited accessibility of many reaches of the river, evaluating these impacts using standard field study methods was virtually impossible. Instead an approach was developed that used multispectral aerial videography to determine changes in the affected parameters at different flows, hydrologic modeling to predict flow conditions for various hydropower operating scenarios, and ecological information on the biological resources of concern to assign impacts.

  6. Diagnosis of cutaneous thermal burn injuries by multispectral imaging analysis

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Zawacki, B. E.

    1978-01-01

    Special photographic or television image analysis is shown to be a potentially useful technique to assist the physician in the early diagnosis of thermal burn injury. A background on the medical and physiological problems of burns is presented. The proposed methodology for burns diagnosis from both the theoretical and clinical points of view is discussed. The television/computer system constructed to accomplish this analysis is described, and the clinical results are discussed.

  7. Airborne multispectral and hyperspectral remote sensing: Examples of applications to the study of environmental and engineering problems

    SciTech Connect

    Bianchi, R.; Marino, C.M.

    1997-10-01

    The availability of a new aerial survey capability carried out by the CNR/LARA (National Research Council - Airborne Laboratory for the Environmental Research) by a new spectroradiometer AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) on board a CASA 212/200 aircraft, enable the scientists to obtain innovative data sets, for different approach to the definitions and the understanding of a variety of environmental and engineering problems. The 102 MIVIS channels spectral bandwidths are chosen to meet the needs of scientific research for advanced applications of remote sensing data. In such configuration MIVIS can offer significant contributions to problem solving in wide sectors such as geologic exploration, agricultural crop studies, forestry, land use mapping, idrogeology, oceanography and others. LARA in 1994-96 has been active over different test-sites in joint-venture with JPL, Pasadena, different European Institutions and Italian University and Research Institutes. These aerial surveys allow the national and international scientific community to approach the use of Hyperspectral Remote Sensing in environmental problems of very large interest. The sites surveyed in Italy, France and Germany include a variety of targets such as quarries, landfills, karst cavities areas, landslides, coastlines, geothermal areas, etc. The deployments gathered up to now more than 300 GBytes of MIVIS data in more than 30 hours of VLDS data recording. The purpose of this work is to present and to comment the procedures and the results at research and at operational level of the past campaigns with special reference to the study of environmental and engineering problems.

  8. Hydrological characterization of a riparian vegetation zone using high resolution multi-spectral airborne imagery

    NASA Astrophysics Data System (ADS)

    Akasheh, Osama Z.

    The Middle Rio Grande River (MRGR) is the main source of fresh water for the state of New Mexico. Located in an arid area with scarce local water resources, this has led to extensive diversions of river water to supply the high demand from municipalities and irrigated agricultural activities. The extensive water diversions over the last few decades have affected the composition of the native riparian vegetation by decreasing the area of cottonwood and coyote willow and increasing the spread of invasive species such as Tamarisk and Russian Olives, harmful to the river system, due to their high transpiration rates, which affect the river aquatic system. The need to study the river hydrological processes and their relation with its health is important to preserve the river ecosystem. To be able to do that a detailed vegetation map was produced using a Utah State University airborne remote sensing system for 286 km of river reach. Also a groundwater model was built in ArcGIS environment which has the ability to estimate soil water potential in the root zone and above the modeled water table. The Modified Penman-Monteith empirical equation was used in the ArcGIS environment to estimate riparian vegetation ET, taking advantage of the detailed vegetation map and spatial soil water potential layers. Vegetation water use per linear river reach was estimated to help decision makers to better manage and release the amount of water that keeps a sound river ecosystem and to support agricultural activities.

  9. The use of multispectral thermal infrared image data to estimate the sulfur dioxide flux from volcanoes: A case study from Mount Etna, Sicily, July 29, 1986

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J.; Abrams, Michael J.; Buongiorno, M. Fabrizia; Pieri, David C.

    1994-01-01

    We have found that image data acquired with NASA's airborne Thermal Infrared Multispectral Scanner (TIMS) can be used to make estimates of the SO2 content of volcanic plumes. TIMS image data are most applicable to the study of partially transparent SO2 plumes, such as those released during quiescent periods or nonexplosive eruptions. The estimation procedure is based on the LOWTRAN 7 radiative transfer code, which we use to model the radiance perceived by TIMS as it views the ground through an SO2 plume. The input to the procedure includes the altitudes of the aircraft and ground, the altitude and thickness of the SO2 plume, the emissivity of the ground, and altitude profiles of the atmospheric pressure, temperature, and relative humidity. We use the TIMS data to estimate both ground temperatures beneath a plume and SO2 concentrations within a plume. Applying our procedure to TIMS data acquired over Mount Etna, Sicily, on July 29, 1986, we estimate that the SO2 flux from the volcano was approximately 6700 t d(exp -1). The use of TIMS to study SO2 plumes represents a bridge between highly localized methods, such as correlation spectroscopy or direct sampling, and small-scale mapping techniques involving satellite instruments such as the Total Ozone Mapping Spectrometer or Microwave Limb Sounder. We require further airborne experiments to refine our estimation procedure. This refinement is a necessary preparation for the schedueled 1998 launch of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer, which will allow large-scale multispectral thermal infrared image data to be collected over virtually any volcano on Earth at least once every 16 days.

  10. The use of multispectral thermal infrared image data to estimate the sulfur dioxide flux from volcanoes: A case study from Mount Etna, Sicily, July 29, 1986

    SciTech Connect

    Realmuto, V.J.; Abrams, M.J.; Buongiorno, M.F.; Pieri, D.C. )

    1994-01-10

    The authors have found that image data acquired with NASA's airborne Thermal Infrared Multispectral Scanner (TIMS) can be used to make estimates of the SO[sub 2] content of volcanic plumes. TIMS image data are most applicable to the study of partially transparent SO[sub 2] plumes, such as those released during quiescent periods or nonexplosive eruptions. The estimation procedure is based on the LOWTRAN 7 radiative transfer code, which the authors use to model the radiance perceived by TIMS as it views the ground through an SO[sub 2] plume. The input to the procedure includes the altitudes of the aircraft and ground, the altitude and thickness of the SO[sub 2] plume, the emissivity of the ground, and altitude profiles of the atmospheric pressure, temperature, and relative humidity. They use the TIMS data to estimate both ground temperatures beneath a plume and SO[sub 2] concentrations within a plume. Applying this procedure to TIMS data acquired over Mount Etna, Sicily, on July 29, 1986, the authors estimate that the SO[sub 2] flux from the volcano was approximately 6700 t d[sup [minus]1]. The use of TIMS to study SO[sub 2] plumes represents a bridge between highly localized methods, such as correlation spectroscopy or direct sampling, and small-scale mapping techniques involving satellite instruments such as the Total Ozone Mapping Spectrometer or Microwave Limb Sounder. The authors require further airborne experiments to refine their estimation procedure. This refinement is a necessary preparation for the scheduled 1998 launch of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer, which will allow large-scale multispectral thermal infrared image data to be collected over virtually any volcano on Earth at least once every 16 days.

  11. Ground-based multispectral measurements for airborne data verification in non-operating open pit mine "Kremikovtsi"

    NASA Astrophysics Data System (ADS)

    Borisova, Denitsa; Nikolov, Hristo; Petkov, Doyno

    2013-10-01

    The impact of mining industry and metal production on the environment is presented all over the world. In our research we set focus on the impact of already non-operating ferrous "Kremikovtsi"open pit mine and related waste dumps and tailings which we consider to be the major factor responsible for pollution of one densely populated region in Bulgaria. The approach adopted is based on correct estimation of the distribution of the iron oxides inside open pit mines and the neighboring regions those considered in this case to be the key issue for the ecological state assessment of soils, vegetation and water. For this study the foremost source of data are those of airborne origin and those combined with ground-based in-situ and laboratory acquired data were used for verification of the environmental variables and thus in process of assessment of the present environmental status influenced by previous mining activities. The percentage of iron content was selected as main indicator for presence of metal pollution since it could be reliably identified by multispectral data used in this study and also because the iron compounds are widely spread in the most of the minerals, rocks and soils. In our research the number of samples from every source (air, field, lab) was taken in the way to be statistically sound and confident. In order to establish relationship between the degree of pollution of the soil and mulspectral data 40 soil samples were collected during a field campaign in the study area together with GPS measurements for two types of laboratory measurements: the first one, chemical and mineralogical analysis and the second one, non-destructive spectroscopy. In this work for environmental variables verification over large areas mulspectral satellite data from Landsat instruments TM/ETM+ and from ALI/OLI (Operational Land Imager) were used. Ground-based (laboratory and in-situ) spectrometric measurements were performed using the designed and constructed in Remote

  12. Analysis of testbed airborne multispectral scanner data from Superflux II. [Chesapeake Bay plume and James Shelf data

    NASA Technical Reports Server (NTRS)

    Bowker, D. E.; Hardesty, C. A.; Jobson, D. J.; Bahn, G. S.

    1981-01-01

    A test bed aircraft multispectral scanner (TBAMS) was flown during the James Shelf, Plume Scan, and Chesapeake Bay missions as part of the Superflux 2 experiment. Excellent correlations were obtained between water sample measurements of chlorophyll and sediment and TBAMS radiance data. The three-band algorithms used were insensitive to aircraft altitude and varying atmospheric conditions. This was particularly fortunate due to the hazy conditions during most of the experiments. A contour map of sediment, and also chlorophyll, was derived for the Chesapeake Bay plume along the southern Virginia-Carolina coastline. A sediment maximum occurs about 5 nautical miles off the Virginia Beach coast with a chlorophyll maximum slightly shoreward of this. During the James Shelf mission, a thermal anomaly (or front) was encountered about 50 miles from the coast. There was a minor variation in chlorophyll and sediment across the boundary. During the Chesapeake Bay mission, the Sun elevation increased from 50 degrees to over 70 degrees, interfering with the generation of data products.

  13. Application of airborne thermal imagery to surveys of Pacific walrus

    USGS Publications Warehouse

    Burn, D.M.; Webber, M.A.; Udevitz, M.S.

    2006-01-01

    We conducted tests of airborne thermal imagery of Pacific walrus to determine if this technology can be used to detect walrus groups on sea ice and estimate the number of walruses present in each group. In April 2002 we collected thermal imagery of 37 walrus groups in the Bering Sea at spatial resolutions ranging from 1-4 m. We also collected high-resolution digital aerial photographs of the same groups. Walruses were considerably warmer than the background environment of ice, snow, and seawater and were easily detected in thermal imagery. We found a significant linear relation between walrus group size and the amount of heat measured by the thermal sensor at all 4 spatial resolutions tested. This relation can be used in a double-sampling framework to estimate total walrus numbers from a thermal survey of a sample of units within an area and photographs from a subsample of the thermally detected groups. Previous methods used in visual aerial surveys of Pacific walrus have sampled only a small percentage of available habitat, resulting in population estimates with low precision. Results of this study indicate that an aerial survey using a thermal sensor can cover as much as 4 times the area per hour of flight time with greater reliability than visual observation.

  14. Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)

    SciTech Connect

    Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H.; Barhen, J.

    1997-04-01

    A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

  15. Exposure to airborne asbestos in thermal power plants in Mongolia

    PubMed Central

    Damiran, Naransukh; Silbergeld, Ellen K; Frank, Arthur L; Lkhasuren, Oyuntogos; Ochir, Chimedsuren; Breysse, Patrick N

    2015-01-01

    Background: Coal-fired thermal power plants (TPPs) in Mongolia use various types of asbestos-containing materials (ACMs) in thermal insulation of piping systems, furnaces, and other products. Objective: To investigate the occupational exposure of insulation workers to airborne asbestos in Mongolian power plants. Methods: Forty-seven air samples were collected from four power plants in Mongolia during the progress of insulation work. The samples were analyzed by phase contrast microscopy (PCM) and transmission electron microscopy (TEM). Results: The average phase contrast microscopy equivalent (PCME) asbestos fiber concentration was 0.93 f/cm3. Sixteen of the 41 personal and one of the area samples exceeded the United States Occupational Safety and Health Administration (US OSHA) short-term exposure limit of 1.0 f/cm3. If it is assumed that the short-term samples collected are representative of full-shift exposure, then the exposures are approximately 10 times higher than the US OSHA 8-hour permissible exposure limit of 0.1 f/cm3. Conclusion: Power plant insulation workers are exposed to airborne asbestos at concentrations that exceed the US OSHA Permissible Exposure Limit. Action to mitigate the risks should be taken in Mongolia. PMID:25730489

  16. Roof heat loss detection using airborne thermal infrared imagery

    NASA Astrophysics Data System (ADS)

    Kern, K.; Bauer, C.; Sulzer, W.

    2012-12-01

    As part of the Austrian and European attempt to reduce energy consumption and greenhouse gas emissions, thermal rehabilitation and the improvement of the energy efficiency of buildings became an important topic in research as well as in building construction and refurbishment. Today, in-situ thermal infrared measurements are routinely used to determine energy loss through the building envelope. However, in-situ thermal surveys are expensive and time consuming, and in many cases the detection of the amount and location of waste heat leaving building through roofs is not possible with ground-based observations. For some years now, a new generation of high-resolution thermal infrared sensors makes it possible to survey heat-loss through roofs at a high level of detail and accuracy. However, to date, comparable studies have mainly been conducted on buildings with uniform roof covering and provided two-dimensional, qualitative information. This pilot study aims to survey the heat-loss through roofs of the buildings of the University of Graz (Austria) campus by using high-resolution airborne thermal infrared imagery (TABI 1800 - Thermal Airborne Broadband imager). TABI-1800 acquires data in a spectral range from 3.7 - 4.8 micron, a thermal resolution of 0.05 °C and a spatial resolution of 0.6 m. The remote sensing data is calibrated to different roof coverings (e.g. clay shingle, asphalt shingle, tin roof, glass) and combined with a roof surface model to determine the amount of waste heat leaving the building and to identify hot spots. The additional integration of information about the conditions underneath the roofs into the study allows a more detailed analysis of the upward heat flux and is a significant improvement of existing methods. The resulting data set provides useful information to the university facility service for infrastructure maintenance, especially in terms of attic and roof insulation improvements. Beyond that, the project is supposed to raise public

  17. Thermal Infrared Spectral Imager for Airborne Science Applications

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2009-01-01

    An airborne thermal hyperspectral imager is under development which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution for lighter-than-air (LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of apparent emissivity for various known standard minerals (such as quartz). A comparison is made using data from the ASTER spectral library.

  18. INTERPRETATION OF THERMAL-INFRARED MULTISPECTRAL SCANNER IMAGES OF THE OSGOOD MOUNTAINS, NEVADA.

    USGS Publications Warehouse

    Krohn, M. Dennis

    1984-01-01

    Data from the Thermal-Infrared Multispectral Scanner (TIMS) were collected over the Osgood Mountains in northern Nevada midmorning on 27 August 1983. The area includes gold-producing properties of the Getchell Mine, the Prinson Mine, and a prospect being developed near Preble, Nevada. Tungsten-bearing tactite deposits, barite deposits, and some minor lead-zinc deposits are also present. The area was surveyed to determine if multichannel, mid-infrared data could detect the effects of hydrothermal alteration in the sediment-hosted disseminated gold deposits. Because the gold in the deposits is generally microscopic and the effects of alteration are difficult to observe, the deposits present a difficult challenge for geological remote sensing.

  19. A scan-angle correction for thermal infrared multispectral data using side lapping images

    USGS Publications Warehouse

    Watson, K.

    1996-01-01

    Thermal infrared multispectral scanner (TIMS) images, acquired with side lapping flight lines, provide dual angle observations of the same area on the ground and can thus be used to estimate variations in the atmospheric transmission with scan angle. The method was tested using TIMS aircraft data for six flight lines with about 30% sidelap for an area within Joshua Tree National Park, California. Generally the results correspond to predictions for the transmission scan-angle coefficient based on a standard atmospheric model although some differences were observed at the longer wavelength channels. A change was detected for the last pair of lines that may indicate either spatial or temporal atmospheric variation. The results demonstrate that the method provides information for correcting regional survey data (requiring multiple adjacent flight lines) that can be important in detecting subtle changes in lithology.

  20. Monitoring vegetation recovery patterns on Mount St. Helens using thermal infrared multispectral data

    NASA Technical Reports Server (NTRS)

    Langran, K. J.

    1985-01-01

    The eruptions of Mount St. Helens created new surfaces by stripping and implacing large volumes of eroded material and depositing tephra in the blast area and on the flanks of the mountain. Areas of major disturbance are those in the blast zone that were subject to debris avalanche, pyroclastic flows, mudflows, and blowdown and scorched timber; and those outside the blast zone that received extensive tephra deposits. These zones represent a spectrum of disturbance types and intensities that can be indexed by temperature, impact force, and depth of subsequent deposition. This paper describes an application of NASA's Thermal Infrared Multispectral Scanner (TIMS) in monitoring vegetation recovery patterns in disturbed areas. Preliminary study results indicate a significant correlation between measured effective radiant temperature and vegetated/nonvegetated areas, percent vegetation cover, and vegetation type.

  1. Temperature and emissivity separation and mineral mapping based on airborne TASI hyperspectral thermal infrared data

    NASA Astrophysics Data System (ADS)

    Cui, Jing; Yan, Bokun; Dong, Xinfeng; Zhang, Shimin; Zhang, Jingfa; Tian, Feng; Wang, Runsheng

    2015-08-01

    Thermal infrared remote sensing (8-12 μm) (TIR) has great potential for geologic remote sensing studies. TIR has been successfully used for terrestrial and planetary geologic studies to map surface materials. However, the complexity of the physics and the lack of hyperspectral data make the studies under-investigated. A new generation of commercial hyperspectral infrared sensors, known as Thermal Airborne Spectrographic Imager (TASI), was used for image analysis and mineral mapping in this study. In this paper, a combined method integrating normalized emissivity method (NEM), ratio algorithm (RATIO) and maximum-minimum apparent emissivity difference (MMD), being applied in multispectral data, has been modified and used to determine whether this method is suitable for retrieving emissivity from TASI hyperspectral data. MODTRAN 4 has been used for the atmospheric correction. The retrieved emissivity spectra matched well with the field measured spectra except for bands 1, 2, and 32. Quartz, calcite, diopside/hedenbergite, hornblende and microcline have been mapped by the emissivity image. Mineral mapping results agree with the dominant minerals identified by laboratory X-ray powder diffraction and spectroscopic analyses of field samples. Both of the results indicated that the atmospheric correction method and the combined temperature-emissivitiy method are suitable for TASI image. Carbonate skarnization was first found in the study area by the spatial extent of diopside. Chemical analyses of the skarn samples determined that the Au content was 0.32-1.74 g/t, with an average Au content of 0.73 g/t. This information provides an important resource for prospecting for skarn type gold deposits. It is also suggested that TASI is suitable for prospect and deposit scale exploration.

  2. Russian multispectral-hyperspectral airborne scanner for geological and environmental investigations - {open_quotes}Vesuvius-EC{close_quotes}

    SciTech Connect

    Yassinsky, G.I.; Shilin, B.V.

    1996-07-01

    Small variations of spectral characteristics in 0,3-14 microns band are of great significance in geological and environmental investigations. Multipurpose multispectral digital scanner with narrow field of view, high spectral resolution and radiometric calibration designed in Russia. Changeable modules permit to obtain parameters of the device for practical using.

  3. Thermally modulated porous silica multispectral filters and their application in remote imaging.

    PubMed

    Garcia Sega, Adrian; King, Brian H; Lee, Jessica Y; Sailor, Michael J; Miskelly, Gordon M

    2013-09-24

    We report a thermally tunable multispectral imaging filter based on reversible condensation of volatile organic fluids within a nanoporous one-dimensional photonic crystal. The photonic crystal (optical rugate filter) comprises oxidized porous silicon, prepared by electrochemical etch of silicon and subsequent air oxidation (porous silica rugate filter, pSiF). The reflectance spectrum of the pSiF is designed and constructed to match two of the red emission bands of the luminescent complex europium(III) tris-dipicolinate, [Eu(dpa)3](3-), which has been used as an indicator for anthrax spores. When the pSiF is fitted with a thermoelectric Peltier cooler/heater and sealed in a container with 2-propanol vapor, microcapillary effects drive the temperature-dependent condensation/evaporation of 2-propanol into/out of the porous nanostructure. Thermal cycling experiments show that the wavelengths of the spectral bands of the pSiF are reversibly tuned by ±35 nm for a temperature change of ±40 °C. Difference images of a UV-illuminated scene containing the [Eu(dpa)3](3-) target, obtained by reflection from pSiF that is continuously thermally cycled through the emission bands of the dye, show that the target can be discriminated from the background or from control targets with overlapping but dissimilar luminescence spectra. PMID:23968219

  4. Commercial Applications Multispectral Sensor System

    NASA Technical Reports Server (NTRS)

    Birk, Ronald J.; Spiering, Bruce

    1993-01-01

    NASA's Office of Commercial Programs is funding a multispectral sensor system to be used in the development of remote sensing applications. The Airborne Terrestrial Applications Sensor (ATLAS) is designed to provide versatility in acquiring spectral and spatial information. The ATLAS system will be a test bed for the development of specifications for airborne and spaceborne remote sensing instrumentation for dedicated applications. This objective requires spectral coverage from the visible through thermal infrared wavelengths, variable spatial resolution from 2-25 meters; high geometric and geo-location accuracy; on-board radiometric calibration; digital recording; and optimized performance for minimized cost, size, and weight. ATLAS is scheduled to be available in 3rd quarter 1992 for acquisition of data for applications such as environmental monitoring, facilities management, geographic information systems data base development, and mineral exploration.

  5. Evaluation of airborne thermal, magnetic, and electromagnetic characterization technologies

    SciTech Connect

    Josten, N.E.

    1992-03-01

    The identification of Buried Structures (IBS) or Aerial Surveillance Project was initiated by the US Department of Energy (DOE) Office of Technology Development to demonstrate airborne methods for locating and identifying buried waste and ordnance at the Idaho National Engineering Laboratory (INEL). Two technologies were demonstrated: (a) a thermal infrared imaging system built by Martin Marietta Missile Systems and (b) a magnetic and electromagnetic (EM) geophysical surveying system operated by EBASCO Environmental. The thermal system detects small differences in ground temperature caused by uneven heating and cooling of the ground by the sun. Waste materials on the ground can be detected when the temperature of the waste is different than the background temperature. The geophysical system uses conventional magnetic and EM sensors. These sensors detect disturbances caused by magnetic or conductive waste and naturally occurring magnetic or conductive features of subsurface soils and rock. Both systems are deployed by helicopter. Data were collected at four INEL sites. Tests at the Naval Ordnance Disposal Area (NODA) were made to evaluate capabilities for detecting ordnance on the ground surface. Tests at the Cold Simulated Waste Demonstration Pit were made to evaluate capabilities for detecting buried waste at a controlled site, where the location and depth of buried materials are known. Tests at the Subsurface Disposal Area and Stationary Low-Power Reactor-1 burial area were made to evaluate capabilities for characterizing hazardous waste at sites that are typical of DOE buried waste sites nationwide.

  6. Airborne remote sensing in precision viticolture: assessment of quality and quantity vineyard production using multispectral imagery: a case study in Velletri, Rome surroundings (central Italy)

    NASA Astrophysics Data System (ADS)

    Tramontana, Gianluca; Papale, Dario; Girard, Filippo; Belli, Claudio; Pietromarchi, Paolo; Tiberi, Domenico; Comandini, Maria C.

    2009-09-01

    During 2008 an experimental study aimed to investigate the capabilities of a new Airborne Remote sensing platform as an aid in precision viticulture was conducted. The study was carried out on 2 areas located in the town of Velletri, near Rome; the acquisitions were conducted on 07-08-2008 and on 09-09-2008, using ASPIS (Advanced Spectroscopic Imager System) the new airborne multispectral sensor, capable to acquire 12 narrow spectral bands (10 nm) located in the visible and near-infrared region. Several vegetation indices, for a total of 22 independent variables, were tested for the estimation of different oenological parameters. Anova test showed that several oenochemical parameters, such as sugars and acidity, differ according to the variety taken into consideration. The remotely sensed data were significantly correlated with the following oenochemical parameters: Leaf Surface Exposed (SFE) (correlation coefficient R2 ~ 0.8), wood pruning (R2 ~ 0.8), reducing sugars (R2 ~ 0.6 and Root Mean Square Error ~ 5g/l), total acidity (R2 ~ 0.6 and RMSE ~ 0.5 g/l), polyphenols (R2~ 0.9) and anthocyanins content (R2 ~ 0.89) in order to provide "prescriptives" thematic maps related to the oenological variables of interest, the relationships previously carried out have been applied to the vegetation indices.

  7. Analysis of Vegetation Within A Semi-Arid Urban Environment Using High Spatial Resolution Airborne Thermal Infrared Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Ridd, Merrill K.

    1998-01-01

    High spatial resolution (5 m) remote sensing data obtained using the airborne Thermal Infrared Multispectral Scanner (TIMS) sensor for daytime and nighttime have been used to measure thermal energy responses for 2 broad classes and 10 subclasses of vegetation typical of the Salt Lake City, Utah urban landscape. Polygons representing discrete areas corresponding to the 10 subclasses of vegetation types have been delineated from the remote sensing data and are used for analysis of upwelling thermal energy for day, night, and the change in response between day and night or flux, as measured by the TIMS. These data have been used to produce three-dimensional graphs of energy responses in W/ sq m for day, night, and flux, for each urban vegetation land cover as measured by each of the six channels of the TIMS sensor. Analysis of these graphs provides a unique perspective for both viewing and understanding thermal responses, as recorded by the TIMS, for selected vegetation types common to Salt Lake City. A descriptive interpretation is given for each of the day, night, and flux graphs along with an analysis of what the patterns mean in reference to the thermal properties of the vegetation types surveyed in this study. From analyses of these graphs, it is apparent that thermal responses for vegetation can be highly varied as a function of the biophysical properties of the vegetation itself, as well as other factors. Moreover, it is also seen where vegetation, particularly trees, has a significant influence on damping or mitigating the amount of thermal radiation upwelling into the atmosphere across the Salt Lake City urban landscape. Published by Elsevier Science Ltd.

  8. Ground truth measurements plan for the Multispectral Thermal Imager (MTI) satellite

    SciTech Connect

    Garrett, A.J.

    2000-01-03

    Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and the Savannah River Technology Center (SRTC) have developed a diverse group of algorithms for processing and analyzing the data that will be collected by the Multispectral Thermal Imager (MTI) after launch late in 1999. Each of these algorithms must be verified by comparison to independent surface and atmospheric measurements. SRTC has selected 13 sites in the continental U.S. for ground truth data collections. These sites include a high altitude cold water target (Crater Lake), cooling lakes and towers in the warm, humid southeastern US, Department of Energy (DOE) climate research sites, the NASA Stennis satellite Validation and Verification (V and V) target array, waste sites at the Savannah River Site, mining sites in the Four Corners area and dry lake beds in the southwestern US. SRTC has established mutually beneficial relationships with the organizations that manage these sites to make use of their operating and research data and to install additional instrumentation needed for MTI algorithm V and V.

  9. Cloud Remote Sensing with Sideways-Looks : Theory and First Results Using Multispectral Thermal Imager Data

    SciTech Connect

    Davis, A. B.

    2002-01-01

    In operational remote sensing, the implicit model for cloud geometry is a homogeneous plane-parallel slab of infinite horizontal extent. Each pixel is indeed processed as if it exchanged no radiant energy whatsoever with its neighbors. The shortcomings of this conceptual model have been well documented in the specialized literature but rarely mitigated. The worst-case scenario is probably high-resolution imagery where dense isolated clouds are visible, often both bright (reflective) and dark (transmissive) sides being apparent from the same satellite viewing angle: the low transmitted radiance could conceivably be interpreted in plane-parallel theory as no cloud at all. An alternative to the plane-parallel cloud model is introduced here that has the same appeal of being analytically tractable, at least in the diffusion limit: the spherical cloud. This new geometrical paradigm is applied to radiances from cumulus clouds captured by DOE's Multispectral Thermal Imager (MTI). Estimates of isolated cloud opacities are a necessary first step in correcting radiances from surface targets that are visible in the midst of a broken-cloud field. This type of advanced atmospheric correction is badly needed in remote sensing applications such as nonproliferation detection were waiting for a cloud-free look in the indefinite future is not a viable option.

  10. Optical assembly of a visible through thermal infrared multispectral imaging system

    SciTech Connect

    Henson, T.; Bender, S.; Byrd, D.; Rappoport, W.; Shen, G.Y.

    1998-06-01

    The Optical Assembly (OA) for the Multispectral Thermal Imager (MTI) program has been fabricated, assembled, and successfully tested for its performance. It represents a major milestone achieved towards completion of this earth observing E-O imaging sensor that is to be operated in low earth orbit. Along with its wide-field-of-view (WFOV), 1.82{degree} along-track and 1.38{degree} cross-track, and comprehensive on-board calibration system, the pushbroom imaging sensor employs a single mechanically cooled focal plane with 15 spectral bands covering a wavelength range from 0.45 to 10.7 {micro}m. The OA has an off-axis three-mirror anastigmatic (TMA) telescope with a 36-cm unobscured clear aperture. The two key performance criteria, 80% enpixeled energy in the visible and radiometric stability of 1% 1{sigma} in the visible/near-infrared (VNIR) and short wavelength infrared (SWIR), of 1.45% 1{sigma} in the medium wavelength infrared (MWIR), and of 0.53% 1{sigma} long wavelength infrared (LWIR), as well as its low weight (less than 49 kg) and volume constraint (89 cm x 44 cm x 127 cm) drive the overall design configuration of the OA and fabrication requirements.

  11. Mapping the distribution of vesicular textures on silicic lavas using the Thermal Infrared Multispectral Scanner

    NASA Technical Reports Server (NTRS)

    Ondrusek, Jaime; Christensen, Philip R.; Fink, Jonathan H.

    1993-01-01

    To investigate the effect of vesicularity on TIMS (Thermal Infrared Multispectral Scanner) imagery independent of chemical variations, we studied a large rhyolitic flow of uniform composition but textural heterogeneity. The imagery was recalibrated so that the digital number values for a lake in the scene matched a calculated ideal spectrum for water. TIMS spectra for the lava show useful differences in coarsely and finely vesicular pumice data, particularly in TIMS bands 3 and 4. Images generated by ratioing these bands accurately map out those areas known from field studies to be coarsely vesicular pumice. These texture-related emissivity variations are probably due to the larger vesicles being relatively deeper and separated by smaller septa leaving less smooth glass available to give the characteristic emission of the lava. In studies of inaccessible lava flows (as on Mars) areas of coarsely vesicular pumice must be identified and avoided before chemical variations can be interpreted. Remotely determined distributions of vesicular and glassy textures can also be related to the volatile contents and potential hazards associated with the emplacement of silicic lava flows on Earth.

  12. Ground-based analysis of volcanic ash plumes using a new multispectral thermal infrared camera approach

    NASA Astrophysics Data System (ADS)

    Williams, D.; Ramsey, M. S.

    2015-12-01

    Volcanic plumes are complex mixtures of mineral, lithic and glass fragments of varying size, together with multiple gas species. These plumes vary in size dependent on a number of factors, including vent diameter, magma composition and the quantity of volatiles within a melt. However, determining the chemical and mineralogical properties of a volcanic plume immediately after an eruption is a great challenge. Thermal infrared (TIR) satellite remote sensing of these plumes is routinely used to calculate the volcanic ash particle size variations and sulfur dioxide concentration. These analyses are commonly performed using high temporal, low spatial resolution satellites, which can only reveal large scale trends. What is lacking is a high spatial resolution study specifically of the properties of the proximal plumes. Using the emissive properties of volcanic ash, a new method has been developed to determine the plume's particle size and petrology in spaceborne and ground-based TIR data. A multispectral adaptation of a FLIR TIR camera has been developed that simulates the TIR channels found on several current orbital instruments. Using this instrument, data of volcanic plumes from Fuego and Santiaguito volcanoes in Guatemala were recently obtained Preliminary results indicate that the camera is capable of detecting silicate absorption features in the emissivity spectra over the TIR wavelength range, which can be linked to both mineral chemistry and particle size. It is hoped that this technique can be expanded to isolate different volcanic species within a plume, validate the orbital data, and ultimately to use the results to better inform eruption dynamics modelling.

  13. Remote Sensing of Liquid Water and Ice Cloud Optical Thickness and Effective Radius in the Arctic: Application of Airborne Multispectral MAS Data

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Yang, Ping; Arnold, G. Thomas; Gray, Mark A.; Riedi, Jerome C.; Ackerman, Steven A.; Liou, Kuo-Nan

    2003-01-01

    A multispectral scanning spectrometer was used to obtain measurements of the reflection function and brightness temperature of clouds, sea ice, snow, and tundra surfaces at 50 discrete wavelengths between 0.47 and 14.0 microns. These observations were obtained from the NASA ER-2 aircraft as part of the FIRE Arctic Clouds Experiment, conducted over a 1600 x 500 km region of the north slope of Alaska and surrounding Beaufort and Chukchi Seas between 18 May and 6 June 1998. Multispectral images of the reflection function and brightness temperature in 11 distinct bands of the MODIS Airborne Simulator (MAS) were used to derive a confidence in clear sky (or alternatively the probability of cloud), shadow, and heavy aerosol over five different ecosystems. Based on the results of individual tests run as part of the cloud mask, an algorithm was developed to estimate the phase of the clouds (water, ice, or undetermined phase). Finally, the cloud optical thickness and effective radius were derived for both water and ice clouds that were detected during one flight line on 4 June. This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS data in Alaska, is quite capable of distinguishing clouds from bright sea ice surfaces during daytime conditions in the high Arctic. Results of individual tests, however, make it difficult to distinguish ice clouds over snow and sea ice surfaces, so additional tests were added to enhance the confidence in the thermodynamic phase of clouds over the Beaufort Sea. The cloud optical thickness and effective radius retrievals used 3 distinct bands of the MAS, with the newly developed 1.62 and 2.13 micron bands being used quite successfully over snow and sea ice surfaces. These results are contrasted with a MODIS-based algorithm that relies on spectral reflectance at 0.87 and 2.13 micron.

  14. Documenting and Communicating the Dynamics of a Rapidly Changing Cryosphere Through the Use of Repeat Ground-Based, Airborne, and Space-Based Photography and Multispectral Imagery

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.

    2009-04-01

    Alaska supports thousands of glaciers, covering an area of about 75,000 square kilometers. Today, most large low elevation Alaskan glaciers are rapidly retreating and/or thinning in response to increasing temperature. Considering the breadth of Alaska's glacier cover, documenting the response of these glaciers to changing climate is only possible through a comprehensive collection and assessment of ground-based, airborne, and space-based photography and multispectral imagery. Pairing these data with historical imagery provides unequivocal visual evidence of changes within the glacier component of the Alaskan cryosphere. Since 1972, all Alaskan glaciers have been sequentially imaged with space-based multispectral sensors. Additionally, many Alaskan glaciers have been repeatedly photographed from the ground (beginning in 1893), from the air (beginning in 1926), and from space (beginning in the early 1960s). Analysis of this massive compilation of repeat photographs and multispectral images has been used to quantitatively and qualitatively determine the distribution, extent, and multiple decadal-scale behavior of glaciers throughout Alaska. These results have recently been published by the U.S. Geological Survey in "Glaciers of Alaska", Chapter K of the "Satellite Image Atlas of the Glaciers of the World", Professional Paper 1386-K. Additionally, a website ("Glacier and Landscape Change in Response to Changing Climate" - www.usgs.gov/global_change/glaciers/default.asp) has been developed to broadly communicate and distribute this information to the general public, scientists and engineers, the press, civil protection government agencies, and a multitude of other governmental and non-governmental agencies. This poster presents details about the new book and website. For the poster, several areas with extensive records of historic ground-based photography and space-based imagery were selected to demonstrate the effectiveness of this approach to communicate information

  15. Stress indicators based on airborne thermal imagery for field phenotyping a heterogeneous tree population for response to water constraints.

    PubMed

    Virlet, Nicolas; Lebourgeois, Valentine; Martinez, Sébastien; Costes, Evelyne; Labbé, Sylvain; Regnard, Jean-Luc

    2014-10-01

    As field phenotyping of plant response to water constraints constitutes a bottleneck for breeding programmes, airborne thermal imagery can contribute to assessing the water status of a wide range of individuals simultaneously. However, the presence of mixed soil-plant pixels in heterogeneous plant cover complicates the interpretation of canopy temperature. Moran's Water Deficit Index (WDI = 1-ETact/ETmax), which was designed to overcome this difficulty, was compared with surface minus air temperature (T s-T a) as a water stress indicator. As parameterization of the theoretical equations for WDI computation is difficult, particularly when applied to genotypes with large architectural variability, a simplified procedure based on quantile regression was proposed to delineate the Vegetation Index-Temperature (VIT) scatterplot. The sensitivity of WDI to variations in wet and dry references was assessed by applying more or less stringent quantile levels. The different stress indicators tested on a series of airborne multispectral images (RGB, near-infrared, and thermal infrared) of a population of 122 apple hybrids, under two irrigation regimes, significantly discriminated the tree water statuses. For each acquisition date, the statistical method efficiently delineated the VIT scatterplot, while the limits obtained using the theoretical approach overlapped it, leading to inconsistent WDI values. Once water constraint was established, the different stress indicators were linearly correlated to the stem water potential among a tree subset. T s-T a showed a strong sensitivity to evaporative demand, which limited its relevancy for temporal comparisons. Finally, the statistical approach of WDI appeared the most suitable for high-throughput phenotyping.

  16. Stress indicators based on airborne thermal imagery for field phenotyping a heterogeneous tree population for response to water constraints

    PubMed Central

    Virlet, Nicolas; Lebourgeois, Valentine; Martinez, Sébastien; Costes, Evelyne; Labbé, Sylvain; Regnard, Jean-Luc

    2014-01-01

    As field phenotyping of plant response to water constraints constitutes a bottleneck for breeding programmes, airborne thermal imagery can contribute to assessing the water status of a wide range of individuals simultaneously. However, the presence of mixed soil–plant pixels in heterogeneous plant cover complicates the interpretation of canopy temperature. Moran’s Water Deficit Index (WDI = 1–ETact/ETmax), which was designed to overcome this difficulty, was compared with surface minus air temperature (T s–T a) as a water stress indicator. As parameterization of the theoretical equations for WDI computation is difficult, particularly when applied to genotypes with large architectural variability, a simplified procedure based on quantile regression was proposed to delineate the Vegetation Index–Temperature (VIT) scatterplot. The sensitivity of WDI to variations in wet and dry references was assessed by applying more or less stringent quantile levels. The different stress indicators tested on a series of airborne multispectral images (RGB, near-infrared, and thermal infrared) of a population of 122 apple hybrids, under two irrigation regimes, significantly discriminated the tree water statuses. For each acquisition date, the statistical method efficiently delineated the VIT scatterplot, while the limits obtained using the theoretical approach overlapped it, leading to inconsistent WDI values. Once water constraint was established, the different stress indicators were linearly correlated to the stem water potential among a tree subset. T s–T a showed a strong sensitivity to evaporative demand, which limited its relevancy for temporal comparisons. Finally, the statistical approach of WDI appeared the most suitable for high-throughput phenotyping. PMID:25080086

  17. Stress indicators based on airborne thermal imagery for field phenotyping a heterogeneous tree population for response to water constraints.

    PubMed

    Virlet, Nicolas; Lebourgeois, Valentine; Martinez, Sébastien; Costes, Evelyne; Labbé, Sylvain; Regnard, Jean-Luc

    2014-10-01

    As field phenotyping of plant response to water constraints constitutes a bottleneck for breeding programmes, airborne thermal imagery can contribute to assessing the water status of a wide range of individuals simultaneously. However, the presence of mixed soil-plant pixels in heterogeneous plant cover complicates the interpretation of canopy temperature. Moran's Water Deficit Index (WDI = 1-ETact/ETmax), which was designed to overcome this difficulty, was compared with surface minus air temperature (T s-T a) as a water stress indicator. As parameterization of the theoretical equations for WDI computation is difficult, particularly when applied to genotypes with large architectural variability, a simplified procedure based on quantile regression was proposed to delineate the Vegetation Index-Temperature (VIT) scatterplot. The sensitivity of WDI to variations in wet and dry references was assessed by applying more or less stringent quantile levels. The different stress indicators tested on a series of airborne multispectral images (RGB, near-infrared, and thermal infrared) of a population of 122 apple hybrids, under two irrigation regimes, significantly discriminated the tree water statuses. For each acquisition date, the statistical method efficiently delineated the VIT scatterplot, while the limits obtained using the theoretical approach overlapped it, leading to inconsistent WDI values. Once water constraint was established, the different stress indicators were linearly correlated to the stem water potential among a tree subset. T s-T a showed a strong sensitivity to evaporative demand, which limited its relevancy for temporal comparisons. Finally, the statistical approach of WDI appeared the most suitable for high-throughput phenotyping. PMID:25080086

  18. Use of reflectance spectra of native plant species for interpreting airborne multispectral scanner data in the East Tintic Mountains, Utah.

    USGS Publications Warehouse

    Milton, N.M.

    1983-01-01

    Analysis of in situ reflectance spectra of native vegetation was used to interpret airborne MSS data. Representative spectra from three plant species in the E Tintic Mountains, Utah, were used to interpret the color components on a color ratio composite image made from MSS data in the visible and near-infrared regions. A map of plant communities was made from the color ratio composite image and field checked. -from Author

  19. Road Asphalt Pavements Analyzed by Airborne Thermal Remote Sensing: Preliminary Results of the Venice Highway

    PubMed Central

    Pascucci, Simone; Bassani, Cristiana; Palombo, Angelo; Poscolieri, Maurizio; Cavalli, Rosa

    2008-01-01

    This paper describes a fast procedure for evaluating asphalt pavement surface defects using airborne emissivity data. To develop this procedure, we used airborne multispectral emissivity data covering an urban test area close to Venice (Italy).For this study, we first identify and select the roads' asphalt pavements on Multispectral Infrared Visible Imaging Spectrometer (MIVIS) imagery using a segmentation procedure. Next, since in asphalt pavements the surface defects are strictly related to the decrease of oily components that cause an increase of the abundance of surfacing limestone, the diagnostic absorption emissivity peak at 11.2μm of the limestone was used for retrieving from MIVIS emissivity data the areas exhibiting defects on asphalt pavements surface.The results showed that MIVIS emissivity allows establishing a threshold that points out those asphalt road sites on which a check for a maintenance intervention is required. Therefore, this technique can supply local government authorities an efficient, rapid and repeatable road mapping procedure providing the location of the asphalt pavements to be checked.

  20. Summaries of the Seventh JPL Airborne Earth Science Workshop January 12-16, 1998. Volume 1; AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1998-01-01

    This publication contains the summaries for the Seventh JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 12-16, 1998. The main workshop is divided into three smaller workshops, and each workshop has a volume as follows: (1) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop; (2) Airborne Synthetic Aperture Radar (AIRSAR) Workshop; and (3) Thermal Infrared Multispectral Scanner (TIMS) Workshop. This Volume 1 publication contains 58 papers taken from the AVIRIS workshop.

  1. Use of Airborne Thermal Imagery to Detect and Monitor Inshore Oil Spill Residues During Darkness Hours.

    PubMed

    GRIERSON

    1998-11-01

    / Trials were conducted using an airborne video system operating in the visible, near-infrared, and thermal wavelengths to detect two known oil spill releases during darkness at a distance of 10 nautical miles from the shore in St. Vincent's Gulf, South Australia. The oil spills consisted of two 20-liter samples released at 2-h intervals, one sample consisted of paraffinic neutral material and the other of automotive diesel oil. A tracking buoy was sent overboard in conjunction with the release of sample 1, and its movement monitored by satellite relay. Both oil residues were overflown by a light aircraft equipped with thermal, visible, and infrared imagers at a period of approximately 1 h after the release of the second oil residue. Trajectories of the oil residue releases were also modeled and the results compared to those obtained by the airborne video and the tracking buoy. Airborne imagery in the thermal wavelengths successfully located and mapped both oil residue samples during nighttime conditions. Results from the trial suggest that the most advantageous technique would be the combined use of the tracking beacon to obtain an approximate location of the oil spill and the airborne imagery to ascertain its extent and characteristics.KEY WORDS: Airborne video; Thermal imagery; Global positioning; Oil-spill monitoring; Tracking beacon

  2. Airborne multispectral remote sensing data to estimate several oenological parameters in vineyard production. A case study of application of remote sensing data to precision viticulture in central Italy.

    NASA Astrophysics Data System (ADS)

    Tramontana, Gianluca; Girard, Filippo; Belli, Claudio; Comandini, Maria Cristina; Pietromarchi, Paolo; Tiberi, Domenico; Papale, Dario

    2010-05-01

    It is widely recognized that environmental differences within the vineyard, with respect to soils, microclimate, and topography, can influence grape characteristics and crop yields. Besides, the central Italy landscape is characterized by a high level of fragmentation and heterogeneity It requires stringent Remote sensing technical features in terms of spectral, geometric and temporal resolution to aimed at supporting applications for precision viticulture. In response to the needs of the Italian grape and wine industry for an evaluation of precision viticulture technologies, the DISAFRI (University of Tuscia) and the Agricultural Research Council - Oenological research unit (ENC-CRA) jointly carried out an experimental study during the year 2008. The study was carried out on 2 areas located in the town of Velletri, near Rome; for each area, two varieties (red and white grape) were studied: Nero d'Avola and Sauvignon blanc in first area , Merlot and Sauvignon blanc in second. Remote sensing data were acquired in different periods using a low cost multisensor Airborne remote sensing platform developed by DISAFRI (ASPIS-2 Advanced Spectroscopic Imager System). ASPIS-2, an evolution of the ASPIS sensor (Papale et al 2008, Sensors), is a multispectral sensor based on 4 CCD and 3 interferential filters per CCD. The filters are user selectable during the flight and in this way Aspis is able to acquire data in 12 bands in the visible and near infrared regions with a bandwidth of 10 or 20 nm. To the purposes of this study 7 spectral band were acquired and 15 vegetation indices calculated. During the ripeness period several vegetative and oenochemical parameters were monitored. Anova test shown that several oenochemical variables, such as sugars, total acidity, polyphenols and anthocyanins differ according to the variety taken into consideration. In order to evaluate the time autocorrelation of several oenological parameters value, a simple linear regression between

  3. Laser-Induced Thermal-Mechanical Damage Characteristics of Cleartran Multispectral Zinc Sulfide with Temperature-Dependent Properties

    NASA Astrophysics Data System (ADS)

    Peng, Yajing; Jiang, Yanxue; Yang, Yanqiang

    2015-01-01

    Laser-induced thermal-mechanical damage characteristics of window materials are the focus problems in laser weapon and anti-radiation reinforcement technology. Thermal-mechanical effects and damage characteristics are investigated for cleartran multispectral zinc sulfide (ZnS) thin film window materials irradiated by continuous laser using three-dimensional (3D) thermal-mechanical model. Some temperature-dependent parameters are introduced into the model. The temporal-spatial distributions of temperature and thermal stress are exhibited. The damage mechanism is analyzed. The influences of temperature effect of material parameters and laser intensity on the development of thermal stress and the damage characteristics are examined. The results show, the von Mises equivalent stress along the thickness direction is fluctuant, which originates from the transformation of principal stresses from compressive stress to tensile stress with the increase of depth from irradiated surface. The damage originates from the thermal stress but not the melting. The thermal stress is increased and the damage is accelerated by introducing the temperature effect of parameters or the increasing laser intensity.

  4. Visir-Sat - a Prospective Micro-Satellite Based Multi-Spectral Thermal Mission for Land Applications

    NASA Astrophysics Data System (ADS)

    Ruecker, G.; Menz, G.; Heinemann, S.; Hartmann, M.; Oertel, D.

    2015-04-01

    Current space-borne thermal infrared satellite systems aimed at land surface remote sensing retain some significant deficiencies, in particular in terms of spatial resolution, spectral coverage, number of imaging bands and temperature-emissivity separation. The proposed VISible-to-thermal IR micro-SATellite (VISIR-SAT) mission addresses many of these limitations, providing multi-spectral imaging data with medium-to-high spatial resolution (80m GSD from 800 km altitude) in the thermal infrared (up to 6 TIR bands, between 8 and 11μm) and in the mid infrared (1 or 2 MIR bands, at 4μm). These MIR/TIR bands will be co-registered with simultaneously acquired high spatial resolution (less than 30 m GSP) visible and near infrared multi-spectral imaging data. To enhance the spatial resolution of the MIR/TIR multi-spectral imagery during daytime, data fusion methods will be applied, such as the Multi-sensor Multi-resolution Technique (MMT), already successfully tested over agricultural terrain. This image processing technique will make generation of Land Surface Temperature (LST) EO products with a spatial resolution of 30 x 30 m2 possible. For high temperature phenomena such as vegetation- and peat-fires, the Fire Disturbance Essential Climate Variables (ECV) "Active fire location" and "Fire Radiative Power" will be retrieved with less than 100 m spatial resolution. Together with the effective fire temperature and the spatial extent even for small fire events the innovative system characteristics of VISIR-SAT go beyond existing and planned IR missions. The comprehensive and physically high-accuracy products from VISIR-SAT (e.g. for fire monitoring) may synergistically complement the high temperature observations of Sentinel-3 SLSTR in a unique way. Additionally, VISIR-SAT offers a very agile sensor system, which will be able to conduct intelligent and flexible pointing of the sensor's line-of-sight with the aim to provide global coverage of cloud free imagery every 5

  5. Use of airborne thermal imagery to detect and monitor inshore oil spill residues during darkness hours

    SciTech Connect

    Grierson, I.T.

    1998-11-01

    Trials were conducted using an airborne video system operating in the visible, near-infrared, and thermal wavelengths to detect two known oil spill releases during darkness at a distance of 10 nautical miles from the shore in St. Vincent`s Gulf, South Australia. The oil spills consisted of two 20-liter samples released at 2-h intervals, one sample consisted of paraffinic neutral material and the other of automotive diesel oil. A tracking buoy was sent overboard in conjunction with the release of sample 1, and its movement monitored by satellite relay. Both oil residues were overflown by a light aircraft equipped with thermal, visible, and infrared imagers at a period of approximately 1 h after the release of the second oil residue. Trajectories of the oil residue releases were also modeled and the results compared to those obtained by the airborne video and the tracking buoy. Airborne imagery in the thermal wavelengths successfully located and mapped both oil residue samples during nighttime conditions. Results from the trial suggest that the most advantageous technique would be the combined use of the tracking beacon to obtain an approximate location of the oil spill and the airborne imagery to ascertain its extent and characteristics.

  6. Quantitative estimation of granitoid composition from thermal infrared multispectral scanner (TIMS) data, Desolation Wilderness, northern Sierra Nevada, California

    NASA Technical Reports Server (NTRS)

    Sabine, Charles; Realmuto, Vincent J.; Taranik, James V.

    1994-01-01

    We have produced images that quantitatively depict modal and chemical parameters of granitoids using an image processing algorithm called MINMAP that fits Gaussian curves to normalized emittance spectra recovered from thermal infrared multispectral scanner (TIMS) radiance data. We applied the algorithm to TIMS data from the Desolation Wilderness, an extensively glaciated area near the northern end of the Sierra Nevada batholith that is underlain by Jurassic and Cretaceous plutons that range from diorite and anorthosite to leucogranite. The wavelength corresponding to the calculated emittance minimum lambda(sub min) varies linearly with quartz content, SiO2, and other modal and chemical parameters. Thematic maps of quartz and silica content derived from lambda(sub min) values distinguish bodies of diorite from surrounding granite, identify outcrops of anorthosite, and separate felsic, intermediate, and mafic rocks.

  7. Mapping variations in weight percent silica measured from multispectral thermal infrared imagery - Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico

    USGS Publications Warehouse

    Hook, S.J.; Dmochowski, J.E.; Howard, K.A.; Rowan, L.C.; Karlstrom, K.E.; Stock, J.M.

    2005-01-01

    Remotely sensed multispectral thermal infrared (8-13 ??m) images are increasingly being used to map variations in surface silicate mineralogy. These studies utilize the shift to longer wavelengths in the main spectral feature in minerals in this wavelength region (reststrahlen band) as the mineralogy changes from felsic to mafic. An approach is described for determining the amount of this shift and then using the shift with a reference curve, derived from laboratory data, to remotely determine the weight percent SiO2 of the surface. The approach has broad applicability to many study areas and can also be fine-tuned to give greater accuracy in a particular study area if field samples are available. The approach was assessed using airborne multispectral thermal infrared images from the Hiller Mountains, Nevada, USA and the Tres Virgenes-La Reforma, Baja California Sur, Mexico. Results indicate the general approach slightly overestimates the weight percent SiO2 of low silica rocks (e.g. basalt) and underestimates the weight percent SiO2 of high silica rocks (e.g. granite). Fine tuning the general approach with measurements from field samples provided good results for both areas with errors in the recovered weight percent SiO2 of a few percent. The map units identified by these techniques and traditional mapping at the Hiller Mountains demonstrate the continuity of the crystalline rocks from the Hiller Mountains southward to the White Hills supporting the idea that these ranges represent an essentially continuous footwall block below a regional detachment. Results from the Baja California data verify the most recent volcanism to be basaltic-andesite. ?? 2005 Elsevier Inc. All rights reserved.

  8. Thermal management of closed computer modules utilizing high density circuitry. [in Airborne Information Management System

    NASA Technical Reports Server (NTRS)

    Hoadley, A. W.; Porter, A. J.

    1990-01-01

    This paper presents data on a preliminary analysis of the thermal dynamic characteristics of the Airborne Information Management System (AIMS), which is a continuing design project at NASA Dryden. The analysis established the methods which will be applied to the actual AIMS boards as they become available. The paper also describes the AIMS liquid cooling system design and presents a thermodynamic computer model of the AIMS cooling system, together with an experimental validation of this model.

  9. Study of thermal insulation for airborne liquid hydrogen fuel tanks

    NASA Technical Reports Server (NTRS)

    Ruccia, F. E.; Lindstrom, R. S.; Lucas, R. M.

    1978-01-01

    A concept for a fail-safe thermal protection system was developed. From screening tests, approximately 30 foams, adhesives, and reinforcing fibers using 0.3-meter square liquid nitrogen cold plate, CPR 452 and Stafoam AA1602, both reinforced with 10 percent by weight of 1/16 inch milled OCF Style 701 Fiberglas, were selected for further tests. Cyclic tests with these materials in 2-inch thicknesses bonded on a 0.6-meter square cold plate with Crest 7410 adhesive systems, were successful. Zero permeability gas barriers were identified and found to be compatible with the insulating concept.

  10. Multispectral Thermal Imagery and Its Application to the Geologic Mapping of the Koobi Fora Formation, Northwestern Kenya

    SciTech Connect

    Green, Mary K.

    2005-12-01

    The Koobi Fora Formation in northwestern Kenya has yielded more hominin fossils dated between 2.1 and 1.2 Ma than any other location on Earth. This research was undertaken to discover the spectral signatures of a portion of the Koobi Fora Formation using imagery from the DOE's Multispectral Thermal Imager (MTI) satellite. Creation of a digital geologic map from MTI imagery was a secondary goal of this research. MTI is unique amongst multispectral satellites in that it co-collects data from 15 spectral bands ranging from the visible to the thermal infrared with a ground sample distance of 5 meters per pixel in the visible and 20 meters in the infrared. The map was created in two stages. The first was to correct the base MTI image using spatial accuracy assessment points collected in the field. The second was to mosaic various MTI images together to create the final Koobi Fora map. Absolute spatial accuracy of the final map product is 73 meters. The geologic classification of the Koobi Fora MTI map also took place in two stages. The field work stage involved location of outcrops of different lithologies within the Koobi Fora Formation. Field descriptions of these outcrops were made and their locations recorded. During the second stage, a linear spectral unmixing algorithm was applied to the MTI mosaic. In order to train the linear spectra unmixing algorithm, regions of interest representing four different classes of geologic material (tuff, alluvium, carbonate, and basalt), as well as a vegetation class were defined within the MTI mosaic. The regions of interest were based upon the aforementioned field data as well as overlays of geologic maps from the 1976 Iowa State mapping project. Pure spectra were generated for each class from the regions of interest, and then the unmixing algorithm classified each pixel according to relative percentage of classes found within the pixel based upon the pure spectra values. A total of four unique combinations of geologic classes

  11. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring.

    PubMed

    Allison, Robert S; Johnston, Joshua M; Craig, Gregory; Jennings, Sion

    2016-08-18

    For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context.

  12. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring

    PubMed Central

    Allison, Robert S.; Johnston, Joshua M.; Craig, Gregory; Jennings, Sion

    2016-01-01

    For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context. PMID:27548174

  13. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring.

    PubMed

    Allison, Robert S; Johnston, Joshua M; Craig, Gregory; Jennings, Sion

    2016-01-01

    For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context. PMID:27548174

  14. Integration of airborne optical and thermal imagery for archaeological subsurface structures detection: the Arpi case study (Italy)

    NASA Astrophysics Data System (ADS)

    Bassani, C.; Cavalli, R. M.; Fasulli, L.; Palombo, A.; Pascucci, S.; Santini, F.; Pignatti, S.

    2009-04-01

    The application of Remote Sensing data for detecting subsurface structures is becoming a remarkable tool for the archaeological observations to be combined with the near surface geophysics [1, 2]. As matter of fact, different satellite and airborne sensors have been used for archaeological applications, such as the identification of spectral anomalies (i.e. marks) related to the buried remnants within archaeological sites, and the management and protection of archaeological sites [3, 5]. The dominant factors that affect the spectral detectability of marks related to manmade archaeological structures are: (1) the spectral contrast between the target and background materials, (2) the proportion of the target on the surface (relative to the background), (3) the imaging system characteristics being used (i.e. bands, instrument noise and pixel size), and (4) the conditions under which the surface is being imaged (i.e. illumination and atmospheric conditions) [4]. In this context, just few airborne hyperspectral sensors were applied for cultural heritage studies, among them the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), the CASI (Compact Airborne Spectrographic Imager), the HyMAP (Hyperspectral MAPping) and the MIVIS (Multispectral Infrared and Visible Imaging Spectrometer). Therefore, the application of high spatial/spectral resolution imagery arise the question on which is the trade off between high spectral and spatial resolution imagery for archaeological applications and which spectral region is optimal for the detection of subsurface structures. This paper points out the most suitable spectral information useful to evaluate the image capability in terms of spectral anomaly detection of subsurface archaeological structures in different land cover contexts. In this study, we assess the capability of MIVIS and CASI reflectances and of ATM and MIVIS emissivities (Table 1) for subsurface archaeological prospection in different sites of the Arpi

  15. NASA Goddards LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.; Corp, Lawrence A.; Nelson, Ross F.; Middleton, Elizabeth M.; Morton, Douglas C.; McCorkel, Joel T.; Masek, Jeffrey G.; Ranson, Kenneth J.; Ly, Vuong; Montesano, Paul M.

    2013-01-01

    The combination of LiDAR and optical remotely sensed data provides unique information about ecosystem structure and function. Here, we describe the development, validation and application of a new airborne system that integrates commercial off the shelf LiDAR hyperspectral and thermal components in a compact, lightweight and portable system. Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager is a unique system that permits simultaneous measurements of vegetation structure, foliar spectra and surface temperatures at very high spatial resolution (approximately 1 m) on a wide range of airborne platforms. The complementary nature of LiDAR, optical and thermal data provide an analytical framework for the development of new algorithms to map plant species composition, plant functional types, biodiversity, biomass and carbon stocks, and plant growth. In addition, G-LiHT data enhance our ability to validate data from existing satellite missions and support NASA Earth Science research. G-LiHT's data processing and distribution system is designed to give scientists open access to both low- and high-level data products (http://gliht.gsfc.nasa.gov), which will stimulate the community development of synergistic data fusion algorithms. G-LiHT has been used to collect more than 6,500 km2 of data for NASA-sponsored studies across a broad range of ecoregions in the USA and Mexico. In this paper, we document G-LiHT design considerations, physical specifications, instrument performance and calibration and acquisition parameters. In addition, we describe the data processing system and higher-level data products that are freely distributed under NASA's Data and Information policy.

  16. Drift reduction in strapdown airborne gravimetry using a simple thermal correction

    NASA Astrophysics Data System (ADS)

    Becker, David; Nielsen, J. Emil; Ayres-Sampaio, Diogo; Forsberg, René; Becker, Matthias; Bastos, Luísa

    2015-11-01

    Previous work has shown, that strapdown airborne gravimeters can have a comparable or even superior performance in the higher frequency domain (resolution of few kilometres), compared to classical stable-platform air gravimeters using springs, such as the LaCoste and Romberg (LCR) S-gravimeter. However, the longer wavelengths (tens of kilometres and more) usually suffer from drifts of the accelerometers of the strapdown inertial measurement unit (IMU). In this paper, we analyse the drift characteristics of the QA2000 accelerometers, which are the most widely used navigation-grade IMU accelerometers. A large portion of these drifts is shown to come from thermal effects. A lab calibration procedure is used to derive a thermal correction, which is then applied to data from 18 out of 19 flights from an airborne gravity campaign carried out in Chile in October 2013. The IMU-derived gravity closure error can be reduced by 91 % on average, from 3.72 mGal/h to only 0.33 mGal/h (RMS), which is an excellent long-term performance for strapdown gravimetry. Also, the IMU results are compared to the LCR S-gravimeter, which is known to have an excellent long-term stability. Again, the thermal correction yields a significant reduction of errors, with IMU and LCR aerogravity results being consistent at the 2 mGal level.

  17. Design and modeling of spectral-thermal unmixing targets for airborne hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Clare, Phil

    2006-05-01

    Techniques to determine the proportions of constituent materials within a single pixel spectrum are well documented in the reflective (0.4-2.5μm) domain. The same capability is also desirable for the thermal (7-14μm) domain, but is complicated by the thermal contributions to the measured spectral radiance. Atmospheric compensation schemes for the thermal domain have been described along with methods for estimating the spectral emissivity from a spectral radiance measurement and hence the next stage to be tackled is the unmixing of thermal spectral signatures. In order to pursue this goal it is necessary to collect data of well-calibrated targets which will expose the limits of the available techniques and enable more robust methods to be designed. This paper describes the design of a set of ground targets for an airborne hyperspectral imager, which will test the effectiveness of available methods. The set of targets include panels to explore a number of difficult scenarios such as isothermal (different materials at identical temperature), isochromal (identical materials, but at differing temperatures), thermal adjacency and thermal point sources. Practical fabrication issues for heated targets and selection of appropriate materials are described. Mathematical modelling of the experiments has enabled prediction of at-sensor measured radiances which are used to assess the design parameters. Finally, a number of useful lessons learned during the fielding of these actual targets are presented to assist those planning future trials of thermal hyperspectral sensors.

  18. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1993-01-01

    This is volume 2 of a three volume set of publications that contain the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D.C. on October 25-29, 1993. The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on October 25-26. The summaries for this workshop appear in Volume 1. The Thermal Infrared Multispectral Scanner (TIMS) workshop, on October 27. The summaries for this workshop appear in Volume 2. The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on October 28-29. The summaries for this workshop appear in Volume 3.

  19. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5. The summaries are contained in Volumes 1, 2, and 3, respectively.

  20. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1993-01-01

    This publication contains the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D.C. on October 25-29, 1993. The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Spectrometer (AVIRIS) workshop, on October 25-26, whose summaries appear in Volume 1; The Thermal Infrared Multispectral Scanner (TIMS) workshop, on October 27, whose summaries appear in Volume 2; and The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on October 28-29, whose summaries appear in this volume, Volume 3.

  1. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; the summaries for this workshop appear in Volume 1; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; the summaries for this workshop appear in Volume 2; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5; the summaries for this workshop appear in Volume 3.

  2. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1995-01-01

    This publication is the first of three containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in this volume; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in Volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.

  3. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1995-01-01

    This publication is the second volume of the summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop on January 25-26. The summaries for this workshop appear in volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop on January 26. The summaries for this workshop appear in this volume.

  4. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1993-01-01

    This publication contains the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D. C. October 25-29, 1993 The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, October 25-26 (the summaries for this workshop appear in this volume, Volume 1); The Thermal Infrared Multispectral Scanner (TMIS) workshop, on October 27 (the summaries for this workshop appear in Volume 2); and The Airborne Synthetic Aperture Radar (AIRSAR) workshop, October 28-29 (the summaries for this workshop appear in Volume 3).

  5. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; the summaries for this workshop appear in Volume 1; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; the summaries for this workshop appear in Volume 2; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5; the summaries for this workshop appear in Volume 3.

  6. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1995-01-01

    This publication is the third containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in this volume; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.

  7. Performance evaluation of four directional emissivity analytical models with thermal SAIL model and airborne images.

    PubMed

    Ren, Huazhong; Liu, Rongyuan; Yan, Guangjian; Li, Zhao-Liang; Qin, Qiming; Liu, Qiang; Nerry, Françoise

    2015-04-01

    Land surface emissivity is a crucial parameter in the surface status monitoring. This study aims at the evaluation of four directional emissivity models, including two bi-directional reflectance distribution function (BRDF) models and two gap-frequency-based models. Results showed that the kernel-driven BRDF model could well represent directional emissivity with an error less than 0.002, and was consequently used to retrieve emissivity with an accuracy of about 0.012 from an airborne multi-angular thermal infrared data set. Furthermore, we updated the cavity effect factor relating to multiple scattering inside canopy, which improved the performance of the gap-frequency-based models.

  8. RECIPES FOR WRITING ALGORITHMS FOR ATMOSPHERIC CORRECTIONS AND TEMPERATURE/EMISSIVITY SEPARATIONS IN THE THERMAL REGIME FOR A MULTI-SPECTRAL SENSOR

    SciTech Connect

    C. BOREL; W. CLODIUS

    2001-04-01

    This paper discusses the algorithms created for the Multi-spectral Thermal Imager (MTI) to retrieve temperatures and emissivities. Recipes to create the physics based water temperature retrieval, emissivity of water surfaces are described. A simple radiative transfer model for multi-spectral sensors is developed. A method to create look-up-tables and the criterion of finding the optimum water temperature are covered. Practical aspects such as conversion from band-averaged radiances to brightness temperatures and effects of variations in the spectral response on the atmospheric transmission are discussed. A recipe for a temperature/emissivity separation algorithm when water surfaces are present is given. Results of retrievals of skin water temperatures are compared with in-situ measurements of the bulk water temperature at two locations are shown.

  9. The Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR): A High Speed, Multispectral, Thermal Instrument Development in Support of HyspIRI-TIR

    NASA Technical Reports Server (NTRS)

    Hook, Simon

    2011-01-01

    The Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR) is being developed as part of the risk reduction activities associated with the Hyperspectral Infrared Imager (HyspIRI). The HyspIRI mission was recommended by the National Research Council Decadal Survey and includes a visible shortwave infrared (SWIR) pushboom spectrometer and a multispectral whiskbroom thermal infrared (TIR) imager. Data from the HyspIRI mission will be used to address key science questions related to the Solid Earth and Carbon Cycle and Ecosystems focus areas of the NASA Science Mission Directorate. The HyspIRI TIR system will have 60m ground resolution, better than 200mK noise equivalent delta temperature (NEDT), 0.5C absolute temperature resolution with a 5-day repeat from LEO orbit. PHyTIR addresses the technology readiness level (TRL) of certain key subsystems of the TIR imager, primarily the detector assembly and scanning mechanism. PHyTIR will use Mercury Cadmium Telluride (MCT) technology at the focal plane and operate in time delay integration mode. A custom read out integrated circuit (ROIC) will provide the high speed readout hence allowing the high data rates needed for the 5 day repeat. PHyTIR will also demonstrate a newly developed interferometeric metrology system. This system will provide an absolute measurement of the scanning mirror to an order of magnitude better than conventional optical encoders. This will minimize the reliance on ground control points hence minimizing post-processing (e.g. geo-rectification computations).

  10. The Los Alamos Calibration Laboratory for multi-spectral and thermal imaging radiometer systems

    SciTech Connect

    Bender, S.; Maier, W.B. II; Byrd, D.; Holland, R.; Michaud, F.D.; Moore, S.; Luettgen, A.; Weber, P.

    1994-06-01

    Los Alamos National Laboratory is currently constructing a calibration laboratory to support the radiometric calibration of remote earth sensing instrumentation. This laboratory will consist of a calibration station contained within a vacuum chamber whose output interface plane will provide a radiometrically characterized collimated optical beam of 16in. diameter. This output beam is fed to a thermal vacuum chamber where sensors under test are to be housed. The station will contain reference sources suitable for calibration of detectors from the visible and near infrared (VIS/NIR) to the thermal infrared. Design goals for these sources include absolute radiometric accuracies of better than 1% (3{sigma}) for the thermal infrared up to 14 {mu}m and VIS/NIR wavelengths up to 0.9 {mu}m. For wavelengths between 0.9 {mu}m and 2.5 {mu}m, absolute accuracies of better than 3% are anticipated. Significant additional features of the calibration station design include: NIST support in the design and calibration of the radiometric sources, spectral characterization of the blackbody references, implementation of a vacuum compatible whitebody (integrating sphere) source, infrared resolution targets of variable contrast, and use of a scan mirror to duplicate target velocity vectors. This paper will provide an overview, description of the intended calibration station capability with further details provided in a companion paper also contained in these proceedings.

  11. Monitoring vegetation recovery patterns on Mount St. Helens using thermal infrared multispectral data

    NASA Technical Reports Server (NTRS)

    Langran, Kenneth J.

    1986-01-01

    The Mount St. Helens 1980 eruption offers an opportunity to study vegetation recovery rates and patterns in a perturbed ecosystem. The eruptions of Mount St. Helens created new surfaces by stripping and implacing large volumes of eroded material and depositing tephra in the blast area and on the flanks of the mountain. Areas of major disturbance are those in the blast zone that were subject to debris avalanche, pyroclastic flows, mudflows, and blowdown and scorched timber; and those outside the blast zone that received extensive tephra deposits. It was observed that during maximum daytime solar heating, surface temperatures of vegetated areas are cooler than surrounding nonvegetated areas, and that surface temperature varies with percent vegetation cover. A method of measuring the relationship between effective radiant temperature (ERT) and percent vegetation cover in the thermal infrared (8 to 12 microns) region of the electromagnetic spectrum was investigated.

  12. Detection of salmonid thermal refugia from airborne thermal infrared (TIR) imagery

    NASA Astrophysics Data System (ADS)

    Dugdale, S. J.; Bergeron, N.; Rousseau, M.

    2010-12-01

    During elevated summer temperatures, salmonid species seek out areas of cool, well-oxygenated river water to alleviate thermal stress. Collectively known as ‘thermal refugia’, these are of great significance to the ability of salmonids to survive increased water temperatures, and a better understanding of their spatial and temporal characteristics may aid mitigation strategies against the possible effects of climate change on rivers. However, thermal refugia are traditionally hard to detect, and their in-river abundance and spatial patterns are largely unknown. Although previous research has examined TIR imaging as a means to sense river temperatures, few have achieved a resolution amenable to the detection of small thermal anomalies typically used by salmonids, with the majority of literature focusing on the general application of thermal imaging to river temperature detection and analysis. From preliminary research, we note that riverine thermal anomalies (as viewed from TIR imagery) can comprise a number of different forms resulting from a diverse range of sources. Given that the structural, spatial and temporal dynamics of thermal refugia in gravel bed rivers are a presumably a function of the complex geomorphological processes within a catchment, the ability to discriminate multi-scale thermal refugia may aid our comprehension not only of the behaviour of salmonids during high temperature events, but also of the geomorphological phenomena that are fundamental in governing river temperature heterogeneity. Initial thermal infrared imagery acquired in August 2009 suggested that while it is possible to manually detect riverine temperature anomalies, the creation of a dedicated remote sensing platform capable of obtaining both TIR and RGB photography easily and with a resolution amenable to refugia detection would greatly aid our ability to discriminate true refugia from other thermal anomalies (false positives). To this end, we have developed a system able to

  13. Relative dating of Hawaiian lava flows using multispectral thermal infrared images - A new tool for geologic mapping of young volcanic terranes

    NASA Technical Reports Server (NTRS)

    Kahle, Anne B.; Gillespie, Alan R.; Abbott, Elsa A.; Abrams, Michael J.; Walker, Richard E.

    1988-01-01

    The weathering of Hawaiian basalts in arid and semiarid environments is accompanied by changes in their thermal infrared emittance spectra. The spectral differences can be measured and mapped with multispectral imaging systems. The differences appear to be related to the degree of development, preservation, and alteration of glassy crusts; the oxidation of iron; and the accretion of silica-rich surface veneers. Because the measurements are quantitative and in image format, they are useful for estimating relative ages in geologic mapping of lava flows. In Hawaii this technique is most diagnostic for distinguishing among sparsely vegetated flows less than 1.5 ka in age.

  14. Non-contact tissue perfusion and oxygenation imaging using a LED based multispectral and a thermal imaging system, first results of clinical intervention studies

    NASA Astrophysics Data System (ADS)

    Klaessens, John H. G. M.; Nelisse, Martin; Verdaasdonk, Rudolf M.; Noordmans, Herke Jan

    2013-03-01

    During clinical interventions objective and quantitative information of the tissue perfusion, oxygenation or temperature can be useful for the surgical strategy. Local (point) measurements give limited information and affected areas can easily be missed, therefore imaging large areas is required. In this study a LED based multispectral imaging system (MSI, 17 different wavelengths 370nm-880nm) and a thermo camera were applied during clinical interventions: tissue flap transplantations (ENT), local anesthetic block and during open brain surgery (epileptic seizure). The images covered an area of 20x20 cm, when doing measurements in an (operating) room, they turned out to be more complicated than laboratory experiments due to light fluctuations, movement of the patient and limited angle of view. By constantly measuring the background light and the use of a white reference, light fluctuations and movement were corrected. Oxygenation concentration images could be calculated and combined with the thermal images. The effectively of local anesthesia of a hand could be predicted in an early stage using the thermal camera and the reperfusion of transplanted skin flap could be imaged. During brain surgery, a temporary hyper-perfused area was witnessed which was probably related to an epileptic attack. A LED based multispectral imaging system combined with thermal imaging provide complementary information on perfusion and oxygenation changes and are promising techniques for real-time diagnostics during clinical interventions.

  15. Quantitative evaluation of water bodies dynamic by means of thermal infrared and multispectral surveys on the Venetian lagoon

    NASA Technical Reports Server (NTRS)

    Alberotanza, L.; Lechi, G. M.

    1977-01-01

    Surveys employing a two channel Daedalus infrared scanner and multispectral photography were performed. The spring waning tide, the velocity of the water mass, and the types of suspended matter were among the topics studied. Temperature, salinity, sediment transport, and ebb stream velocity were recorded. The bottom topography was correlated with the dynamic characteristics of the sea surface.

  16. An improved procedure for detection and enumeration of walrus signatures in airborne thermal imagery

    NASA Astrophysics Data System (ADS)

    Burn, Douglas M.; Udevitz, Mark S.; Speckman, Suzann G.; Benter, R. Bradley

    2009-10-01

    In recent years, application of remote sensing to marine mammal surveys has been a promising area of investigation for wildlife managers and researchers. In April 2006, the United States and Russia conducted an aerial survey of Pacific walrus ( Odobenus rosmarus divergens) using thermal infrared sensors to detect groups of animals resting on pack ice in the Bering Sea. The goal of this survey was to estimate the size of the Pacific walrus population. An initial analysis of the U.S. data using previously-established methods resulted in lower detectability of walrus groups in the imagery and higher variability in calibration models than was expected based on pilot studies. This paper describes an improved procedure for detection and enumeration of walrus groups in airborne thermal imagery. Thermal images were first subdivided into smaller 200 × 200 pixel "tiles." We calculated three statistics to represent characteristics of walrus signatures from the temperature histogram for each tile. Tiles that exhibited one or more of these characteristics were examined further to determine if walrus signatures were present. We used cluster analysis on tiles that contained walrus signatures to determine which pixels belonged to each group. We then calculated a thermal index value for each walrus group in the imagery and used generalized linear models to estimate detection functions (the probability of a group having a positive index value) and calibration functions (the size of a group as a function of its index value) based on counts from matched digital aerial photographs. The new method described here improved our ability to detect walrus groups at both 2 m and 4 m spatial resolution. In addition, the resulting calibration models have lower variance than the original method. We anticipate that the use of this new procedure will greatly improve the quality of the population estimate derived from these data. This procedure may also have broader applicability to thermal

  17. An improved procedure for detection and enumeration of walrus signatures in airborne thermal imagery

    USGS Publications Warehouse

    Burn, Douglas M.; Udevitz, Mark S.; Speckman, Suzann G.; Benter, R. Bradley

    2009-01-01

    In recent years, application of remote sensing to marine mammal surveys has been a promising area of investigation for wildlife managers and researchers. In April 2006, the United States and Russia conducted an aerial survey of Pacific walrus (Odobenus rosmarus divergens) using thermal infrared sensors to detect groups of animals resting on pack ice in the Bering Sea. The goal of this survey was to estimate the size of the Pacific walrus population. An initial analysis of the U.S. data using previously-established methods resulted in lower detectability of walrus groups in the imagery and higher variability in calibration models than was expected based on pilot studies. This paper describes an improved procedure for detection and enumeration of walrus groups in airborne thermal imagery. Thermal images were first subdivided into smaller 200 x 200 pixel "tiles." We calculated three statistics to represent characteristics of walrus signatures from the temperature histogram for each the. Tiles that exhibited one or more of these characteristics were examined further to determine if walrus signatures were present. We used cluster analysis on tiles that contained walrus signatures to determine which pixels belonged to each group. We then calculated a thermal index value for each walrus group in the imagery and used generalized linear models to estimate detection functions (the probability of a group having a positive index value) and calibration functions (the size of a group as a function of its index value) based on counts from matched digital aerial photographs. The new method described here improved our ability to detect walrus groups at both 2 m and 4 m spatial resolution. In addition, the resulting calibration models have lower variance than the original method. We anticipate that the use of this new procedure will greatly improve the quality of the population estimate derived from these data. This procedure may also have broader applicability to thermal infrared

  18. Thermal surveillance of Cascade Range volcanoes using ERTS-1 multispectral scanner, aircraft imaging systems, and ground-based data communication platforms

    NASA Technical Reports Server (NTRS)

    Friedman, J. D.; Frank, D. G.; Preble, D.; Painter, J. E.

    1973-01-01

    A combination of infrared images depicting areas of thermal emission and ground calibration points have proved to be particularly useful in plotting time-dependent changes in surface temperatures and radiance and in delimiting areas of predominantly convective heat flow to the earth's surface in the Cascade Range and on Surtsey Volcano, Iceland. In an integrated experiment group using ERTS-1 multispectral scanner (MSS) and aircraft infrared imaging systems in conjunction with multiple thermistor arrays, volcano surface temperatures are relayed daily to Washington via data communication platform (DCP) transmitters and ERTS-1. ERTS-1 MSS imagery has revealed curvilinear structures at Lassen, the full extent of which have not been previously mapped. Interestingly, the major surface thermal manifestations at Lassen are aligned along these structures, particularly in the Warner Valley.

  19. Identification of Thermally Driven Valley Wind From Ground Based and Airborne Measurements

    NASA Astrophysics Data System (ADS)

    Rampanelli, G.; de Franceschi, M.; Zardi, D.

    A peculiar valley wind, the so called Ora del Garda, has been adopted as a test case of thermally driven wind. The latter occurs on fair weather days, when it starts blowing during the late morning along the northern shore of Garda Lake as a typical lake breeze and thence channels in the Sarca Valley and Lakes Valley nearby, until it finally reaches, through an elevated saddle, the River Adige Valley, where it appears as a strong gusty wind. A statistical analysis of time series recorded by a network of meteorological ground station located in the above valleys allowed detailed identifi- cation of peculiar features. Further understanding has been gained from specific field observations including both ground based and airborne measurements performed with a light airplane within and above the valley boundary layer. A geostatistical analy- sis (kriging) of data allowed evaluation of vertical profiles at various locations. Deviations from the averaged vertical profile due to horizontal temperature gradients within the valley atmosphere were also evaluated and the underlying statistical struc- ture estimated in terms of suitable variogram function of the monitored variables. Fi- nally the procedure allowed an estimate potential temperature anomalies throughout the valley volume and the identification of basic thermal structures within the convec- tive boundary layer.

  20. Multispectral Photography

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Model II Multispectral Camera is an advanced aerial camera that provides optimum enhancement of a scene by recording spectral signatures of ground objects only in narrow, preselected bands of the electromagnetic spectrum. Its photos have applications in such areas as agriculture, forestry, water pollution investigations, soil analysis, geologic exploration, water depth studies and camouflage detection. The target scene is simultaneously photographed in four separate spectral bands. Using a multispectral viewer, such as their Model 75 Spectral Data creates a color image from the black and white positives taken by the camera. With this optical image analysis unit, all four bands are superimposed in accurate registration and illuminated with combinations of blue green, red, and white light. Best color combination for displaying the target object is selected and printed. Spectral Data Corporation produces several types of remote sensing equipment and also provides aerial survey, image processing and analysis and number of other remote sensing services.

  1. Sandia multispectral analyst remote sensing toolkit (SMART).

    SciTech Connect

    Post, Brian Nelson; Smith, Jody Lynn; Geib, Peter L.; Nandy, Prabal; Wang, Nancy Nairong

    2003-03-01

    This remote sensing science and exploitation work focused on exploitation algorithms and methods targeted at the analyst. SMART is a 'plug-in' to commercial remote sensing software that provides algorithms to enhance the utility of the Multispectral Thermal Imager (MTI) and other multispectral satellite data. This toolkit has been licensed to 22 government organizations.

  2. Analysis and Application of Airborne Thermal Data at the Local Level Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    Dudley-Murphy, Elizabeth A.

    1999-01-01

    Expanding cities are transforming periurban environments such as agricultural land, natural grasslands, forests, wetlands, and and land, into urban surfaces, such as asphalt and concrete. This transformation is part of a process defined as "urban heat island". The urban surfaces get much hotter during the daylight hours in the summer than the natural or vegetated environment. The heat builds up creating a dome effect over the city making it many degrees hotter than it's surrounding area. The impacts from this, which include higher usage of air conditioners, water, etc., are numerous and costly. As cities expand, this problem is exacerbated. It is necessary to incorporate better quality data into urban analysis and for establishing methods that systematically and objectively monitor growth and change due to increased urbanization. NASA initiated Project Atlanta in 1997 "as an interdisciplinary remote sensing study to observe and measure the growth and development of the urban heat island effect over Atlanta, and its associated impacts". This project has recently included Salt Lake City, among others, in the study of the development and effects of "urban heat islands". NASA has made available to Salt Lake City, high resolution, 10 meter, multispectral thermal data collected in June 1998. The data collection was part of a special NASA over-flight, a mission supported by the U.S. EPA in conjunction with their Urban Heat Island (UHI) Mitigation Initiative. Salt Lake City is one of three pilot cities selected to participate in this unique initiative. Hence, this project constitutes a rare opportunity to capitalize upon state-of-the-art NASA technology and link it to an urban community very concerned about rapid growth and development. This data will enhance existing data and be used for improving technical tools used to plan for Utah's future.

  3. Assessing stream temperature variations in the Pacific Northwest using airborne thermal infrared remote sensing

    NASA Astrophysics Data System (ADS)

    Tan, J.; Cherkauer, K. A.

    2010-12-01

    Stream temperature is an important indicator of water quality, and a significant concern for endangered cold-water fish species in the Pacific Northwest. Thermal-infrared (TIR) remote sensing allows for the observation of water temperatures in entire river systems in a relatively short space of time, as opposed to more traditional point-based in situ observing methods that can capture only localized water conditions. Point measurements can therefore miss important spatial patterns associated with various factors including exposure to solar radiation, urbanization, changes to riparian zone vegetation, and the presence of groundwater returns and springs. In this paper, we analyze moderate resolution TIR imagery collected from an airborne platform for the Green River in Washington State. Five-meter MODIS/ASTER (MASTER) imagery along the main channel of the Green River was acquired in multiple straight line passes with image overlaps occurring at time intervals of between 3 and 30 minutes on August 25 and 27, 2001. Overlaps of two adjacent images provide a detailed comparison of how stream temperature changes over relatively short time scales, while image captured from different days help identify persistent localized temperature differences. Trees and shrubs in the riparian zone increases shading of the stream and reduces along-stream increases in temperature compared to stream reaches with reduced shading, such as urban areas. Longitudinal profiles of stream temperature from upstream to downstream show that other factors, such as sandbars and cold-water seeps, also contribute to along-stream temperature variations.

  4. Airborne Thermal Remote Sensing for Estimation of Groundwater Discharge to a River.

    PubMed

    Liu, Chuankun; Liu, Jie; Hu, Yue; Wang, Heshun; Zheng, Chunmiao

    2016-05-01

    Traditional methods for studying surface water and groundwater interactions have usually been limited to point measurements, such as geochemical sampling and seepage measurement. A new methodology is presented for quantifying groundwater discharge to a river, by using river surface temperature data obtained from airborne thermal infrared remote sensing technology. The Hot Spot Analysis toolkit in ArcGIS was used to calculate the percentage of groundwater discharge to a river relative to the total flow of the river. This methodology was evaluated in the midstream of the Heihe River in the arid and semiarid northwest China. The results show that the percentage of groundwater discharge relative to the total streamflow was as high as 28%, which is in good agreement with the results from previous geochemical studies. The data analysis methodology used in this study is based on the assumption that the river water is fully mixed except in the areas of extremely low flow velocity, which could lead to underestimation of the amount of groundwater discharge. Despite this limitation, this remote sensing-based approach provides an efficient means of quantifying the surface water and groundwater interactions on a regional scale.

  5. Thermal resistance of naturally occurring airborne bacterial spores. [Viking spacecraft dry heat decontamination simulation

    NASA Technical Reports Server (NTRS)

    Puleo, J. R.; Bergstrom, S. L.; Peeler, J. T.; Oxborrow, G. S.

    1978-01-01

    Simulation of a heat process used in the terminal dry-heat decontamination of the Viking spacecraft is reported. Naturally occurring airborne bacterial spores were collected on Teflon ribbons in selected spacecraft assembly areas and subsequently subjected to dry heat. Thermal inactivation experiments were conducted at 105, 111.7, 120, 125, 130, and 135 C with a moisture level of 1.2 mg of water per liter. Heat survivors were recovered at temperatures of 135 C when a 30-h heating cycle was employed. Survivors were recovered from all cycles studied and randomly selected for identification. The naturally occurring spore population was reduced an average of 2.2 to 4.4 log cycles from 105 to 135 C. Heating cycles of 5 and 15 h at temperature were compared with the standard 30-h cycle at 111.7, 120, and 125 C. No significant differences in inactivation (alpha = 0.05) were observed between 111.7 and 120 C. The 30-h cycle differs from the 5- and 15-h cycles at 125 C. Thus, the heating cycle can be reduced if a small fraction (about 0.001 to 0.0001) of very resistant spores can be tolerated.

  6. Extracting Roof Parameters and Heat Bridges Over the City of Oldenburg from Hyperspectral, Thermal, and Airborne Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Bannehr, L.; Luhmann, Th.; Piechel, J.; Roelfs, T.; Schmidt, An.

    2011-09-01

    Remote sensing methods are used to obtain different kinds of information about the state of the environment. Within the cooperative research project HiReSens, funded by the German BMBF, a hyperspectral scanner, an airborne laser scanner, a thermal camera, and a RGB-camera are employed on a small aircraft to determine roof material parameters and heat bridges of house tops over the city Oldenburg, Lower Saxony. HiReSens aims to combine various geometrical highly resolved data in order to achieve relevant evidence about the state of the city buildings. Thermal data are used to obtain the energy distribution of single buildings. The use of hyperspectral data yields information about material consistence of roofs. From airborne laser scanning data (ALS) digital surface models are inferred. They build the basis to locate the best orientations for solar panels of the city buildings. The combination of the different data sets offers the opportunity to capitalize synergies between differently working systems. Central goals are the development of tools for the collection of heat bridges by means of thermal data, spectral collection of roofs parameters on basis of hyperspectral data as well as 3D-capture of buildings from airborne lasers scanner data. Collecting, analyzing and merging of the data are not trivial especially not when the resolution and accuracy is aimed in the domain of a few decimetre. The results achieved need to be regarded as preliminary. Further investigations are still required to prove the accuracy in detail.

  7. Tension zones of deep-seated rockslides revealed by thermal anomalies and airborne laser scan data

    NASA Astrophysics Data System (ADS)

    Baroň, Ivo; Bečkovský, David; Gajdošík, Juraj; Opálka, Filip; Plan, Lukas; Winkler, Gerhard

    2015-04-01

    Open cracks, tension fractures and crevice caves are important diagnostic features of gravitationally deformed slopes. When the cracks on the upper part of the slope open to the ground surface, they transfer relatively warm and buoyant air from the underground in cold seasons and thus could be detected by the infrared thermography (IRT) as warmer anomalies. Here we present two IRT surveys of deep-seated rockslides in Austria and the Czech Republic. We used thermal imaging cameras Flir and Optris, manipulated manually from the ground surface and also from unmanned aerial vehicle and piloted ultralight-plane platforms. The surveys were conducted during cold days of winter 2014/2015 and early in the morning to avoid the negative effect of direct sunshine. The first study site is the Bad Fischau rockslide in the southern part of the Vienna Basin (Austria). It was firstly identified by the morphostructural analysis of 1-m digital terrain model from the airborne laser scan data. The rockslide is superimposed on, and closely related to the active marginal faults of the Vienna basin, which is a pull apart structure. There is the 80-m-deep Eisenstein Show Cave situated in the southern lateral margin of the rockslide. The cave was originally considered to be purely of hydrothermal (hypogene) karstification; however its specific morphology and position within the detachment zone of the rockslide suggests its relation to gravitational slope-failure. The IRT survey revealed the Eisenstein Cave at the ground surface and also several other open cracks and possible cleft caves along the margins, headscarp, and also within the body of the rockslide. The second surveyed site was the Kněhyně rockslide in the flysch belt of the Outer Western Carpathians in the eastern Czech Republic. This deep-seated translational rockslide formed about eight known pseudokarst crevice caves, which reach up to 57 m in depth. The IRT survey recognized several warm anomalies indicating very deep

  8. Spectral stratigraphy: multispectral remote sensing as a stratigraphic tool, Wind River/Big Horn basin, Wyoming

    SciTech Connect

    Lang, H.R.; Paylor, E.D.

    1987-05-01

    Stratigraphic and structural analyses of the Wind River and Big Horn basins areas of central Wyoming are in progress. One result has been the development of a new approach to stratigraphic and structural analysis that uses photogeologic and spectral interpretation of multispectral image data to remotely characterize the attitude, thickness, and lithology of strata. New multispectral systems that have only been available since 1982 are used with topographic data to map upper paleozoic and Mesozoic strata exposed on the southern margin of the Bighorn Mountains. Thematic Mapper (TM) satellite data together with topographic data are used to map lithologic contacts, measure dip and strike, and develop a stratigraphic column that is correlated with conventional surface and subsurface sections. Aircraft-acquired Airborne Imaging Spectrometer and Thermal Infrared Multispectral Scanner data add mineralogical information to the TM column, including the stratigraphic distribution of quartz, calcite, dolomite, montmorillonite, and gypsum. Results illustrate an approach that has general applicability in other geologic investigations that could benefit from remotely acquired information about areal variations in attitude, sequence, thickness, and lithology of strata exposed at the Earth's surface. Application of their methods elsewhere is limited primarily by availability of multispectral and topographic data and quality of bedrock exposures.

  9. Comparing robust and physics-based sea surface temperature retrievals for high resolution, multi-spectral thermal sensors using one or multiple looks

    SciTech Connect

    Borel, C.C.; Clodius, W.B.; Szymanski, J.J.; Theiler, J.P.

    1999-04-04

    With the advent of multi-spectral thermal imagers such as EOS's ASTER high spatial resolution thermal imagery of the Earth's surface will soon be a reality. Previous high resolution sensors such as Landsat 5 had only one spectral channel in the thermal infrared and its utility to determine absolute sea surface temperatures was limited to 6-8 K for water warmer than 25 deg C. This inaccuracy resulted from insufficient knowledge of the atmospheric temperature and water vapor, inaccurate sensor calibration, and cooling effects of thin high cirrus clouds. The authors will present two studies of algorithms and compare their performance. The first algorithm they call robust since it retrieves sea surface temperatures accurately over a fairly wide range of atmospheric conditions using linear combinations of nadir and off-nadir brightness temperatures. The second they call physics-based because it relies on physics-based models of the atmosphere. It attempts to come up with a unique sea surface temperature which fits one set of atmospheric parameters.

  10. Assessing stream temperature variation in the Pacific Northwest using airborne thermal infrared remote sensing.

    PubMed

    Tan, Jing; Cherkauer, Keith A

    2013-01-30

    The objective of this paper is to evaluate the temporal and spatial variability of stream temperatures and how stream temperatures are affected by land use through the use of airborne thermal infrared (TIR) imagery. Both five-meter and fifteen-meter MODIS/ASTER (MASTER) imagery were acquired along the main channel of the Green-Duwamish River in Washington State, U.S. in multiple straight line passes with image overlaps occurring at time intervals of between 3 and 45 min. Five- and fifteen-meter data were collected on August 25th, 2001, with a few additional five-meter images collected on August 27th. Image overlaps were studied to evaluate the time dependence between acquisition time and observed water temperature. Temperature change between adjacent images over the course of a few minutes was found to be negligible, but became significant at times greater than 45 min, with an estimated increase in water temperature of 2-3 °C between the first and last image collected for the complete five-meter resolution survey. Images captured from different days help identify persistent localized temperature differences. While accounting for temperature changes that occurred during the acquisition process, we still found that average stream reach temperatures increased with urbanization, while variability decreased. The same occurred in the immediate presence of a reservoir. This study suggests that urbanization affects stream temperature not only through the removal of riparian zone vegetation, but also through changes to sources in in-stream variability including the presence of rocks, woody debris and sandbars.

  11. Influence of thermodynamic properties of a thermo-acoustic emitter on the efficiency of thermal airborne ultrasound generation.

    PubMed

    Daschewski, M; Kreutzbruck, M; Prager, J

    2015-12-01

    In this work we experimentally verify the theoretical prediction of the recently published Energy Density Fluctuation Model (EDF-model) of thermo-acoustic sound generation. Particularly, we investigate experimentally the influence of thermal inertia of an electrically conductive film on the efficiency of thermal airborne ultrasound generation predicted by the EDF-model. Unlike widely used theories, the EDF-model predicts that the thermal inertia of the electrically conductive film is a frequency-dependent parameter. Its influence grows non-linearly with the increase of excitation frequency and reduces the efficiency of the ultrasound generation. Thus, this parameter is the major limiting factor for the efficient thermal airborne ultrasound generation in the MHz-range. To verify this theoretical prediction experimentally, five thermo-acoustic emitter samples consisting of Indium-Tin-Oxide (ITO) coatings of different thicknesses (from 65 nm to 1.44 μm) on quartz glass substrates were tested for airborne ultrasound generation in a frequency range from 10 kHz to 800 kHz. For the measurement of thermally generated sound pressures a laser Doppler vibrometer combined with a 12 μm thin polyethylene foil was used as the sound pressure detector. All tested thermo-acoustic emitter samples showed a resonance-free frequency response in the entire tested frequency range. The thermal inertia of the heat producing film acts as a low-pass filter and reduces the generated sound pressure with the increasing excitation frequency and the ITO film thickness. The difference of generated sound pressure levels for samples with 65 nm and 1.44 μm thickness is in the order of about 6 dB at 50 kHz and of about 12 dB at 500 kHz. A comparison of sound pressure levels measured experimentally and those predicted by the EDF-model shows for all tested emitter samples a relative error of less than ±6%. Thus, experimental results confirm the prediction of the EDF-model and show that the model can

  12. The HYSPIRI Decadal Survey Mission: Update on the Mission Concept and Science Objectives for Global Imaging Spectroscopy and Multi-Spectral Thermal Measurements

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Hook, Simon J.; Middleton, Elizabeth; Turner, Woody; Ungar, Stephen; Knox, Robert

    2012-01-01

    The NASA HyspIRI mission is planned to provide global solar reflected energy spectroscopic measurement of the terrestrial and shallow water regions of the Earth every 19 days will all measurements downlinked. In addition, HyspIRI will provide multi-spectral thermal measurements with a single band in the 4 micron region and seven bands in the 8 to 12 micron region with 5 day day/night coverage. A direct broadcast capability for measurement subsets is also planned. This HyspIRI mission is one of those designated in the 2007 National Research Council (NRC) Decadal Survey: Earth Science and Applications from Space. In the Decadal Survey, HyspIRI was recognized as relevant to a range of Earth science and science applications, including climate: "A hyperspectral sensor (e.g., FLORA) combined with a multispectral thermal sensor (e.g., SAVII) in low Earth orbit (LEO) is part of an integrated mission concept [described in Parts I and II] that is relevant to several panels, especially the climate variability panel." The HyspIRI science study group was formed in 2008 to evaluate and refine the mission concept. This group has developed a series of HyspIRI science objectives: (1) Climate: Ecosystem biochemistry, condition & feedback; spectral albedo; carbon/dust on snow/ice; biomass burning; evapotranspiration (2) Ecosystems: Global plant functional types, physiological condition, and biochemistry including agricultural lands (3) Fires: Fuel status, fire frequency, severity, emissions, and patterns of recovery globally (4) Coral reef and coastal habitats: Global composition and status (5) Volcanoes: Eruptions, emissions, regional and global impact (6) Geology and resources: Global distributions of surface mineral resources and improved understanding of geology and related hazards These objectives are achieved with the following measurement capabilities. The HyspIRI imaging spectrometer provides: full spectral coverage from 380 to 2500 at 10 nm sampling; 60 m spatial sampling

  13. Pseudo-thermal bar in poorly salted autumnal waters of the Gulf of Finland from satellite-airborne SAR/ASAR/ALSAR survey

    NASA Astrophysics Data System (ADS)

    Melentyev, Vladimir; Bobylev, Leonid; Tsepelev, Valery; Melentyev, Konstantin; Bednov, Petr

    2010-05-01

    The thermal bar (TB) was disclosed at the end of XIX century by F.A. Forel - world-famed founder of limnology, who studied different processes in Lake Leman from point of view ecology and hydrobiology. Forel supposed that TB arises in temperate large lakes for short period in spring in presence windless calm weather. Well-directed investigations of TB were recommenced in the beginning 1950-s at the Institute of Lake Research Russian Academy of Sciences by Dr A.I. Tikhomirov who had described also specific features of this phenomenon in fall. At the end of 1960-s we began examination thermal and ice regime of fresh and saltish inland water bodies with using remote sensing including multi-spectral airborne-satellite SLR/SAR/ASAR/ALSAR survey. And as result the possibility revealing TB parameters in fall season by low-frequency radar (ALSAR) installed onboard research aircraft was fixed documentally in the Lake Ladoga [Melentyev et. al., 2002]. According to [Tikhomirov, 1959] TB represents convergence zone around temperature of maximum density of fresh water + 4 °C (3, 98 °C, really). This narrow vertical "curtain" appears in littoral in spring owing to heating coastal waters, in fall - due to its cooling. TB divides large lakes and artificial reservoirs on two unequal thermic zones - heat-active (HAZ) and heat-inert (HIZ) that has different stratification of water temperature. Possible existence of TB in poorly salted sea waters was predicted by outstanding Russian oceanographer professor N. Zubov. Obviously firstly it was disclosed but without explanation the physics by [Bychkova, 1987]. Our own sub-satellite studies onboard nuclear icebreaker "Jamal" in western Arctic in fall 1996 allows reveal the TB on saltish waters in north-eastern "corner" of the Yenisei Gulf in mixing zone of marine and river waters. Long-lived converged zone that we call as pseudo-thermal bar (PTB) was marked by stationary banding narrow continuous rough strip that could be destroyed by

  14. Comparison of Land Cover Information from LANDSAT Multispectral Scanner (MSS) and Airborne Thematic Mapper Simulator (TMS) Data for Hydrologic Applications. [Clinton River Basin, Michigan

    NASA Technical Reports Server (NTRS)

    Gervin, J. C.; Lu, Y. C.; Marcell, R. F.

    1985-01-01

    Thematic mapper simulator (TMS) data produced a more accurate and spatially contiguous classification than MSS for the Clinton River Basin in Michigan. While the accuracy of the 4-band TMS data set was as good as the 7-band, the 3-band TMS data sets were also better than the MSS. The combination of bands selected based on the transformed divergence technique provided one band in each of the major regions of the spectrum: visible (band 3), near IR (band 4), middle IR (band 5) and thermal IR (band 7). These results should be viewed with some caution, since the data are from a TMS rather than the actual TM and the MSS data were obtained in early summer while the TMS was flown in late summer. The higher accuracies for the developed categories (residential and commercial) should improve the predictions of runoff in flood forecasting models and of flood damage for damage calculation models appreciably.

  15. Remote detection of canopy water stress in coniferous forests using the NS001 Thematic Mapper Simulator and the thermal infrared multispectral scanner

    NASA Technical Reports Server (NTRS)

    Pierce, Lars L.; Running, Steven W.; Riggs, George A.

    1990-01-01

    Water stress was induced in two coniferous forest stands in West Germany by severing tree sapwood. Leaf water potential, Psi(L), measurements indicated that maximum, naturally occurring levels of water stress developed in the stressed plots while control plots exhibited natural diurnal trends. Images of each site were obtained with the Thematic Mapper Simulator (NS001) and the Thermal Infrared Multispectral Scanner (TIMS) 12 to 15 days after stress induction. NS001 bands 2 to 6, NS001 indices combining bands 4 and 6, and NS001 and TIMS thermal bands showed significant radiance differences between stressed and control plots when large differences in Psi(L) and relative water content (RWC) existed during the morning overflights at Munich. However, the NS001 and TIMS sensors could not detect the slightly smaller differences in Psi(L) and RWC during the Munich afternoon and Frankfurt overflights. The results suggest that routine detection of canopy water stress under operational conditions is difficult utilizing current sensor technology.

  16. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture

    NASA Astrophysics Data System (ADS)

    Elarab, Manal; Ticlavilca, Andres M.; Torres-Rua, Alfonso F.; Maslova, Inga; McKee, Mac

    2015-12-01

    Precision agriculture requires high-resolution information to enable greater precision in the management of inputs to production. Actionable information about crop and field status must be acquired at high spatial resolution and at a temporal frequency appropriate for timely responses. In this study, high spatial resolution imagery was obtained through the use of a small, unmanned aerial system called AggieAirTM. Simultaneously with the AggieAir flights, intensive ground sampling for plant chlorophyll was conducted at precisely determined locations. This study reports the application of a relevance vector machine coupled with cross validation and backward elimination to a dataset composed of reflectance from high-resolution multi-spectral imagery (VIS-NIR), thermal infrared imagery, and vegetative indices, in conjunction with in situ SPAD measurements from which chlorophyll concentrations were derived, to estimate chlorophyll concentration from remotely sensed data at 15-cm resolution. The results indicate that a relevance vector machine with a thin plate spline kernel type and kernel width of 5.4, having LAI, NDVI, thermal and red bands as the selected set of inputs, can be used to spatially estimate chlorophyll concentration with a root-mean-squared-error of 5.31 μg cm-2, efficiency of 0.76, and 9 relevance vectors.

  17. Infrared image processing devoted to thermal non-contact characterization-Applications to Non-Destructive Evaluation, Microfluidics and 2D source term distribution for multispectral tomography

    NASA Astrophysics Data System (ADS)

    Batsale, Jean-Christophe; Pradere, Christophe

    2015-11-01

    The cost of IR cameras is more and more decreasing. Beyond the preliminary calibration step and the global instrumentation, the infrared image processing is then one of the key step for achieving in very broad domains. Generally the IR images are coming from the transient temperature field related to the emission of a black surface in response to an external or internal heating (active IR thermography). The first applications were devoted to the so called thermal Non-Destructive Evaluation methods by considering a thin sample and 1D transient heat diffusion through the sample (transverse diffusion). With simplified assumptions related to the transverse diffusion, the in-plane diffusion and transport phenomena can be also considered. A general equation can be applied in order to balance the heat transfer at the pixel scale or between groups of pixels in order to estimate several fields of thermophysical properties (heterogeneous field of in-plane diffusivity, flow distributions, source terms). There is a lot of possible strategies to process the space and time distributed big amount of data (previous integral transformation of the images, compression, elimination of the non useful areas...), generally based on the necessity to analyse the derivative versus space and time of the temperature field. Several illustrative examples related to the Non-Destructive Evaluation of heterogeneous solids, the thermal characterization of chemical reactions in microfluidic channels and the design of systems for multispectral tomography, will be presented.

  18. Airborne measurements of cloud condensation nuclei using a new continuous-flow streamwise thermal-gradient CCN chamber

    NASA Astrophysics Data System (ADS)

    Roberts, G. C.; Nenes, A.; Vanreken, T.; Rissman, T.; Conant, W. C.; Varutbangkul, V.; Jonsson, H. H.; Flagan, R. C.; Seinfeld, J. H.; Ramanathan, V.

    2003-04-01

    A light-weight continuous-flow thermal gradient diffusion chamber was developed for autonomous operation in airborne studies employing a novel technique of generating a supersaturation along the streamwise axis of the instrument. A vertical cylindrical column, whose surfaces are wetted and exposed to an increasing temperature gradient along the vertical axis, constitutes the chamber volume. This design exploits the differences in diffusion between water vapor and heat to maintain a uniform supersaturation along the streamwise axis of the chamber, which maximizes the growth rate of activated droplets; thereby enhancing the performance of the instrument. The current CCN instrument provides measurements of CCN between 0.13% and 3% supersaturation at a sampling rate sufficient for airborne operation. We have successfully tested the instrument on airborne experiments during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) in July 2002. The results from the CRYSTAL-FACE campaign have yielded a remarkably good aerosol/CCN closure at 0.2 and 0.8% supersaturation. CCN concentrations were measured with a sampling resolution of 1Hz at a fixed supersaturation and compared to dry aerosol size distributions on one-minute intervals. An aerosol-cloud microphysical closure was also performed using the observed updraft velocity and below-cloud aerosol properties in a detailed adiabatic cloud activation model. The model accurately predicts the cloud drop concentration 100 m above cloud base in warm tropical cumulus.

  19. Airborne thermography applications in Argentina

    NASA Astrophysics Data System (ADS)

    Castro, Eduardo H.; Selles, Eduardo J.; Costanzo, Marcelo; Franco, Oscar; Diaz, Jose

    2002-03-01

    Forest fires in summer and sheep buried under the snow in winter have become important problems in the south of our country, in the region named Patagonia. We are studying to find a solution by means of an airborne imaging system whose construction we have just finished. It is a 12 channel multispectral airborne scanner system that can be mounted in a Guarani airplane or in a Learjet; the first is a non- pressurized aircraft for flight at low height and the second is a pressurized one for higher flights. The scanner system is briefly described. Their sensors can detect radiation from the ultra violet to the thermal infrared. The images are visualized in real time in a monitor screen and can be stored in the hard disc of the PC for later processing. The use of this scanner for some applications that include the prevention and fighting of forest fires and the study of the possibility of detection of sheep under snow in the Patagonia is now being accomplished. Theoretical and experimental results in fire detection and a theoretical model for studying the possibility of detection of the buried sheep are presented.

  20. Validation of Satellite Ammonia Retrievals using Airborne Hyperspectral Thermal-Infrared Spectrometry

    NASA Astrophysics Data System (ADS)

    Tratt, D. M.; Hall, J. L.; Chang, C. S.; Qian, J.; Clarisse, L.; Van Damme, M.; Clerbaux, C.; Hurtmans, D.; Coheur, P.

    2011-12-01

    We demonstrate the utility of a new airborne sensor with the requisite spatial, spectral, and radiometric resolution to characterize "point" sources of ammonia emission. Flights were conducted over California's San Joaquin Valley, which is a region of intensive agriculture and animal husbandry that has been identified as one of the single largest sources of atmospheric free ammonia worldwide. Airborne data acquisition operations were coordinated with daytime overpasses of the Infrared Atmospheric Sounding Interferometer (IASI) aboard the European Space Agency's MetOp-A platform. IASI is capable of measuring total columns of ammonia and the primary purpose of this investigation was to compare and validate the IASI ammonia product against high-spatial-resolution airborne retrievals acquired contemporaneously over the same footprint. The ~12-km pixel size of the IASI satellite measurements cannot resolve the local-scale variability of ammonia abundance and consequently cannot characterize the often compact source emissions. The nominal 2-m pixel size of the airborne data revealed variability of ammonia concentration at several different scales within the IASI footprint. At this pixel size, well-defined plumes issuing from individual dairy facilities could be imaged and their dispersion characteristics resolved. Retrieved ammonia concentrations in excess of 50 ppb were inferred for some of the strongest discrete plumes.

  1. Coastal survey with a multispectral video system

    NASA Astrophysics Data System (ADS)

    Niedrauer, Terren M.

    1991-09-01

    Xybion Corporation has developed an airborne multispectral measurement system (AMMS) as part of a small business innovative research contract with the Department of Commerce. The AMMS is a low-cost portable system that can provide multispectral data suitable for frequent measurement and mapping. It has been used for measurement of estuarine concentrations of chlorophyll and suspended sediments and mapping of submerged aquatic vegetation fields. Other applications include the identification of tree and plant species, the detection of crop stress, and the detection of man-made objects in a background of vegetation. The AMMS provides high spatial resolution multispectral image data in six user-defined bands in the 400- 900 nm wavelength region. The AMMS includes a highly innovative, computer-controlled, intensified, multispectral video camera (IMC), a spectroradiometer, a S-VHS VCR, and a portable IBM-PC-compatible computer system. An airborne trial over Cheseapeake Bay in June 1990 showed its ability to detect variations in water parameters. Simultaneous measurements from a ship provided sea-surface data, including continuous fluorometer readings, and discrete samples of chlorophyll, suspended sediments, and several other water parameters. Two spectroradiometers were included in the airborne equipment. One pointed downward to provide a high-resolution spectrum of a large water area under the plane. The other spectroradiometer measured downwelling irradiance. This allowed for conversion of the upwelling radiances measured by the IMC into reflectances. Calibrations for the IMC and the spectroradiometers were done before and after the trials. The results of this airborne trial are presented.

  2. Detection of coastal and submarine discharge on the Florida Gulf Coast with an airborne thermal-infrared mapping system

    USGS Publications Warehouse

    Raabe, Ellen; Stonehouse, David; Ebersol, Kristin; Holland, Kathryn; Robbins, Lisa

    2011-01-01

    Along the Gulf Coast of Florida north of Tampa Bay lies a region characterized by an open marsh coast, low topographic gradient, water-bearing limestone, and scattered springs. The Floridan aquifer system is at or near land surface in this region, discharging water at a consistent 70-72°F. The thermal contrast between ambient water and aquifer discharge during winter months can be distinguished using airborne thermal-infrared imagery. An airborne thermal-infrared mapping system was used to collect imagery along 126 miles of the Gulf Coast from Jefferson to Levy County, FL, in March 2009. The imagery depicts a large number of discharge locations and associated warm-water plumes in ponds, creeks, rivers, and nearshore waters. A thermal contrast of 6°F or more was set as a conservative threshold for identifying sites, statistically significant at the 99% confidence interval. Almost 900 such coastal and submarine-discharge locations were detected, averaging seven to nine per mile along this section of coast. This represents approximately one hundred times the number of previously known discharge sites in the same area. Several known coastal springs in Taylor and Levy Counties were positively identified with the imagery and were used to estimate regional discharge equivalent to one 1st-order spring, discharging 100 cubic feet per second or more, for every two miles of coastline. The number of identified discharge sites is a conservative estimate and may represent two-thirds of existing features due to low groundwater levels at time of overflight. The role of aquifer discharge in coastal and estuarine health is indisputable; however, mapping and quantifying discharge in a complex karst environment can be an elusive goal. The results of this effort illustrate the effectiveness of the instrument and underscore the influence of coastal springs along this stretch of the Florida coast.

  3. Influence of pre-existing topography on downflow lava discharge rates estimated from thermal infrared airborne data

    NASA Astrophysics Data System (ADS)

    Lombardo, V.

    2016-04-01

    Remote sensing thermal data of active lava flows allow the evaluation of effusion rates. This is made possible by a simple formula relating the lava effusion rate to the heat flux radiated per unit time from the surface of the flow. Due to the assumptions of the model, this formula implies that heat flux, surface temperature and lava temperature vary as a function of the flow thickness. These relationships, never verified or validated before, have been used by several authors as a proof of the weakness of the model. Here, multispectral infrared and visible imaging spectrometer (MIVIS) high spatial resolution (5-10 m) thermal data acquired during Etna's 2001 eruption were used to investigate downflow heat flux variations in the lava flow emitted from a vent located at 2100 m a.s.l. A high correlation between the downflow heat flux and the lava flow thickness (measured from a pre-existing digital elevation model) was found. Topography beneath the flow appears to play an important role both in lava emplacement mechanisms and flow dynamics. MIVIS-derived downflow effusion rates are consistent with the law of conservation of mass assessing the reliability of remote sensing techniques.

  4. Impact of atmospheric water vapor on the thermal infrared remote sensing of volcanic sufur dioxide emmisions: A case study from Pu'u 'O'o vent of Kilauea volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Realmuto, V. J.; Worden, H. M.

    2000-01-01

    The December 18, 1999, launch of NASA's Terra satellite put two multispectral thermal infrared imaging instruments into Earth orbit. Experiments with airborne instruments have demonstrated that the data from such instruments can be used to detect volcanic SO2 plumes and clouds.

  5. D Land Cover Classification Based on Multispectral LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    Multispectral Lidar System can emit simultaneous laser pulses at the different wavelengths. The reflected multispectral energy is captured through a receiver of the sensor, and the return signal together with the position and orientation information of sensor is recorded. These recorded data are solved with GNSS/IMU data for further post-processing, forming high density multispectral 3D point clouds. As the first commercial multispectral airborne Lidar sensor, Optech Titan system is capable of collecting point clouds data from all three channels at 532nm visible (Green), at 1064 nm near infrared (NIR) and at 1550nm intermediate infrared (IR). It has become a new source of data for 3D land cover classification. The paper presents an Object Based Image Analysis (OBIA) approach to only use multispectral Lidar point clouds datasets for 3D land cover classification. The approach consists of three steps. Firstly, multispectral intensity images are segmented into image objects on the basis of multi-resolution segmentation integrating different scale parameters. Secondly, intensity objects are classified into nine categories by using the customized features of classification indexes and a combination the multispectral reflectance with the vertical distribution of object features. Finally, accuracy assessment is conducted via comparing random reference samples points from google imagery tiles with the classification results. The classification results show higher overall accuracy for most of the land cover types. Over 90% of overall accuracy is achieved via using multispectral Lidar point clouds for 3D land cover classification.

  6. High-resolution satellite and airborne thermal infrared imaging of precursory unrest and 2009 eruption of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Wessels, Rick L.; Vaughan, R. Greg; Patrick, Matthew R.; Coombs, Michelle L.

    2013-01-01

    A combination of satellite and airborne high-resolution visible and thermal infrared (TIR) image data detected and measured changes at Redoubt Volcano during the 2008–2009 unrest and eruption. The TIR sensors detected persistent elevated temperatures at summit ice-melt holes as seismicity and gas emissions increased in late 2008 to March 2009. A phreatic explosion on 15 March was followed by more than 19 magmatic explosive events from 23 March to 4 April that produced high-altitude ash clouds and large lahars. Two (or three) lava domes extruded and were destroyed between 23 March and 4 April. After 4 April, the eruption extruded a large lava dome that continued to grow until at least early July 2009.

  7. Integration of visible-through microwave-range multispectral image data sets for geologic mapping

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Dietz, John B.

    1991-01-01

    Multispectral remote sensing data sets collected during the Geologic Remote Sensing Field Experiment (GRSFE) conducted during 1989 in the southwestern U.S. were used to produce thematic image maps showing details of the surface geology. LANDSAT TM (Thematic Mapper) images were used to map the distribution of clays, carbonates, and iron oxides. AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data were used to identify and map calcite, dolomite, sericite, hematite, and geothite, including mixtures. TIMS (Thermal Infrared Multispectral Scanner) data were used to map the distribution of igneous rock phases and carbonates based on their silica contents. AIRSAR (Airborne Synthetic Aperture Radar) data were used to map surface textures related to the scale of surface roughness. The AIRSAR also allowed identification of previously unmapped fault segments and structural control of lithology and minerology. Because all of the above data sets were geographically referenced, combination of different data types and direct comparison of the results with conventional field and laboratory data sets allowed improved geologic mapping of the test site.

  8. High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES)

    NASA Astrophysics Data System (ADS)

    Hulley, Glynn C.; Duren, Riley M.; Hopkins, Francesca M.; Hook, Simon J.; Vance, Nick; Guillevic, Pierre; Johnson, William R.; Eng, Bjorn T.; Mihaly, Jonathan M.; Jovanovic, Veljko M.; Chazanoff, Seth L.; Staniszewski, Zak K.; Kuai, Le; Worden, John; Frankenberg, Christian; Rivera, Gerardo; Aubrey, Andrew D.; Miller, Charles E.; Malakar, Nabin K.; Sánchez Tomás, Juan M.; Holmes, Kendall T.

    2016-06-01

    Currently large uncertainties exist associated with the attribution and quantification of fugitive emissions of criteria pollutants and greenhouse gases such as methane across large regions and key economic sectors. In this study, data from the airborne Hyperspectral Thermal Emission Spectrometer (HyTES) have been used to develop robust and reliable techniques for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution that permits direct attribution to sources. HyTES is a pushbroom imaging spectrometer with high spectral resolution (256 bands from 7.5 to 12 µm), wide swath (1-2 km), and high spatial resolution (˜ 2 m at 1 km altitude) that incorporates new thermal infrared (TIR) remote sensing technologies. In this study we introduce a hybrid clutter matched filter (CMF) and plume dilation algorithm applied to HyTES observations to efficiently detect and characterize the spatial structures of individual plumes of CH4, H2S, NH3, NO2, and SO2 emitters. The sensitivity and field of regard of HyTES allows rapid and frequent airborne surveys of large areas including facilities not readily accessible from the surface. The HyTES CMF algorithm produces plume intensity images of methane and other gases from strong emission sources. The combination of high spatial resolution and multi-species imaging capability provides source attribution in complex environments. The CMF-based detection of strong emission sources over large areas is a fast and powerful tool needed to focus on more computationally intensive retrieval algorithms to quantify emissions with error estimates, and is useful for expediting mitigation efforts and addressing critical science questions.

  9. Source Attribution of Methane Emission from Petroleum Production Operations using High-Resolution Airborne Thermal-Infrared Imaging Spectrometry

    NASA Astrophysics Data System (ADS)

    Tratt, D. M.; Buckland, K. N.; Young, S. J.; Riley, D.; Leifer, I.

    2012-12-01

    High spatio-spectral resolution airborne thermal-infrared (TIR) imaging spectrometry is shown to be effective in detecting and tracking gaseous emissions from petroleum production facilities. The high spatial resolution (1-2 m) of the sensor permits unequivocal trace-back of emission plumes to their source. The high spectral resolution (44 nm across the 7.5-13.5 μm TIR band) enables precise identification and discrimination of primary and subsidiary plume components through the application of spectral matched filtering and adaptive coherence estimation techniques. Operation in the TIR spectral region allows operations to be conducted throughout the diurnal cycle, since the measurement relies on observation of emissive radiation and the intrinsic thermal contrast between the fugitive plume gases and the underlying scene. Methane plumes associated with petroleum production operations and natural emissions have been identified in a variety of environmental settings. The accompanying figure shows a grayscale thermal image of a marine production platform off the California coast. A gas plume (identified as methane) being released from a venting boom is shown superimposed in false color.

  10. Mineralogic variability of the Kelso Dunes, Mojave Desert, California derived from Thermal Infrared Multispectral Scanner (TIMS) data

    NASA Technical Reports Server (NTRS)

    Ramsey, Michael S.; Howard, Douglas A.; Christensen, Philip R.; Lancaster, Nicholas

    1993-01-01

    Mineral identification and mapping of alluvial material using thermal infrared (TIR) remote sensing is extremely useful for tracking sediment transport, assessing the degree of weathering and locating sediment sources. As a result of the linear relation between a mineral's percentage in a given area (image pixel) and the depth of its diagnostic spectral features, TIR spectra can be deconvolved in order to ascertain mineralogic percentages. Typical complications such as vegetation, particle size and thermal shadowing are minimized upon examination of dunes. Actively saltating dunes contain little to no vegetation, are very well sorted and lack the thermal shadows that arise from rocky terrain. The primary focus of this work was to use the Kelso Dunes as a test location for an accuracy analysis of temperature/emissivity separation and linear unmixing algorithms. Accurate determination of ground temperature and component discrimination will become key products of future ASTER data. A decorrelation stretch of the TIMS image showed clear color variations within the active dunes. Samples collected from these color units were analyzed for mineralogy, grain size, and separated into endmembers. This analysis not only revealed that the dunes contained significant mineralogic variation, but were more immature (low quartz percentage) than previously reported. Unmixing of the TIMS data using the primary mineral endmembers produced unique variations within the dunes and may indicate near, rather than far, source locales for the dunes. The Kelso Dunes lie in the eastern Mojave Desert, California, approximately 95 km west of the Colorado River. The primary dune field is contained within a topographic basin bounded by the Providence, Granite Mountains, with the active region marked by three northeast trending linear ridges. Although active, the dunes appear to lie at an opposing regional wind boundary which produces little net movement of the crests. Previous studies have estimated

  11. Identifying trout refuges in the Indian and Hudson Rivers in northern New York through airborne thermal infrared remote sensing

    USGS Publications Warehouse

    Ernst, Anne G.; Baldigo, Barry P.; Calef, Fred J.; Freehafer, Douglas A.; Kremens, Robert L.

    2015-10-09

    The locations and sizes of potential cold-water refuges for trout were examined in 2005 along a 27-kilometer segment of the Indian and Hudson Rivers in northern New York to evaluate the extent of refuges, the effects of routine flow releases from an impoundment, and how these refuges and releases might influence trout survival in reaches that otherwise would be thermally stressed. This river segment supports small populations of brook trout (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Oncorhynchus mykiss) and also receives regular releases of reservoir-surface waters to support rafting during the summer, when water temperatures in both the reservoir and the river frequently exceed thermal thresholds for trout survival. Airborne thermal infrared imaging was supplemented with continuous, in-stream temperature loggers to identify potential refuges that may be associated with tributary inflows or groundwater seeps and to define the extent to which the release flows decrease the size of existing refuges. In general, the release flows overwhelmed the refuge areas and greatly decreased the size and number of the areas. Mean water temperatures were unaffected by the releases, but small-scale heterogeneity was diminished. At a larger scale, water temperatures in the upper and lower segments of the reach were consistently warmer than in the middle segment, even during passage of release waters. The inability of remote thermal infrared images to consistently distinguish land from water (in shaded areas) and to detect groundwater seeps (away from the shallow edges of the stream) limited data analysis and the ability to identify potential thermal refuge areas.

  12. Identifying trout refuges in the Indian and Hudson Rivers in northern New York through airborne thermal infrared remote sensing

    USGS Publications Warehouse

    Ernst, Anne G.; Baldigo, Barry P.; Calef, Fred J.; Freehafer, Douglas A.; Kremens, Robert L.

    2015-01-01

    The locations and sizes of potential cold-water refuges for trout were examined in 2005 along a 27-kilometer segment of the Indian and Hudson Rivers in northern New York to evaluate the extent of refuges, the effects of routine flow releases from an impoundment, and how these refuges and releases might influence trout survival in reaches that otherwise would be thermally stressed. This river segment supports small populations of brook trout (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Oncorhynchus mykiss) and also receives regular releases of reservoir-surface waters to support rafting during the summer, when water temperatures in both the reservoir and the river frequently exceed thermal thresholds for trout survival. Airborne thermal infrared imaging was supplemented with continuous, in-stream temperature loggers to identify potential refuges that may be associated with tributary inflows or groundwater seeps and to define the extent to which the release flows decrease the size of existing refuges. In general, the release flows overwhelmed the refuge areas and greatly decreased the size and number of the areas. Mean water temperatures were unaffected by the releases, but small-scale heterogeneity was diminished. At a larger scale, water temperatures in the upper and lower segments of the reach were consistently warmer than in the middle segment, even during passage of release waters. The inability of remote thermal infrared images to consistently distinguish land from water (in shaded areas) and to detect groundwater seeps (away from the shallow edges of the stream) limited data analysis and the ability to identify potential thermal refuge areas.

  13. Multispectral imaging using a single bucket detector

    PubMed Central

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Li, Ziwei; Fan, Jingtao; Chen, Feng; Dai, Qionghai

    2016-01-01

    Existing multispectral imagers mostly use available array sensors to separately measure 2D data slices in a 3D spatial-spectral data cube. Thus they suffer from low photon efficiency, limited spectrum range and high cost. To address these issues, we propose to conduct multispectral imaging using a single bucket detector, to take full advantage of its high sensitivity, wide spectrum range, low cost, small size and light weight. Technically, utilizing the detector’s fast response, a scene’s 3D spatial-spectral information is multiplexed into a dense 1D measurement sequence and then demultiplexed computationally under the single pixel imaging scheme. A proof-of-concept setup is built to capture multispectral data of 64 pixels × 64 pixels × 10 wavelength bands ranging from 450 nm to 650 nm, with the acquisition time being 1 minute. The imaging scheme holds great potentials for various low light and airborne applications, and can be easily manufactured as production-volume portable multispectral imagers. PMID:27103168

  14. Multispectral imaging using a single bucket detector

    NASA Astrophysics Data System (ADS)

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Li, Ziwei; Fan, Jingtao; Chen, Feng; Dai, Qionghai

    2016-04-01

    Existing multispectral imagers mostly use available array sensors to separately measure 2D data slices in a 3D spatial-spectral data cube. Thus they suffer from low photon efficiency, limited spectrum range and high cost. To address these issues, we propose to conduct multispectral imaging using a single bucket detector, to take full advantage of its high sensitivity, wide spectrum range, low cost, small size and light weight. Technically, utilizing the detector’s fast response, a scene’s 3D spatial-spectral information is multiplexed into a dense 1D measurement sequence and then demultiplexed computationally under the single pixel imaging scheme. A proof-of-concept setup is built to capture multispectral data of 64 pixels × 64 pixels × 10 wavelength bands ranging from 450 nm to 650 nm, with the acquisition time being 1 minute. The imaging scheme holds great potentials for various low light and airborne applications, and can be easily manufactured as production-volume portable multispectral imagers.

  15. Data products of NASA Goddard's LiDAR, hyperspectral, and thermal airborne imager (G-LiHT)

    NASA Astrophysics Data System (ADS)

    Corp, Lawrence A.; Cook, Bruce D.; McCorkel, Joel; Middleton, Elizabeth M.

    2015-06-01

    Scientists in the Biospheric Sciences Laboratory at NASA's Goddard Space Flight Center have undertaken a unique instrument fusion effort for an airborne package that integrates commercial off the shelf LiDAR, Hyperspectral, and Thermal components. G-LiHT is a compact, lightweight and portable system that can be used on a wide range of airborne platforms to support a number of NASA Earth Science research projects and space-based missions. G-LiHT permits simultaneous and complementary measurements of surface reflectance, vegetation structure, and temperature, which provide an analytical framework for the development of new algorithms for mapping plant species composition, plant functional types, biodiversity, biomass, carbon stocks, and plant growth. G-LiHT and its supporting database are designed to give scientists open access to the data that are needed to understand the relationship between ecosystem form and function and to stimulate the advancement of synergistic algorithms. This system will enhance our ability to design new missions and produce data products related to biodiversity and climate change. G-LiHT has been operational since 2011 and has been used to collect data for a number of NASA and USFS sponsored studies, including NASA's Carbon Monitoring System (CMS) and the American ICESat/GLAS Assessment of Carbon (AMIGA-Carb). These acquisitions target a broad diversity of forest communities and ecoregions across the United States and Mexico. Here, we will discuss the components of G-LiHT, their calibration and performance characteristics, operational implementation, and data processing workflows. We will also provide examples of higher level data products that are currently available.

  16. Field mapping for heat capacity mapping determinations: Ground support for airborne thermal surveys

    NASA Technical Reports Server (NTRS)

    Lyon, R. J. P.

    1976-01-01

    Thermal models independently derived by Watson, Outcalt, and Rosema were compared using similar input data and found to yield very different results. Each model has a varying degree of sensitivity to any specified parameter. Data collected at Pisgah Crater-Lavic Lake was re-examined to indicate serious discrepancy in results for thermal inertia from Jet Lab Propulsion Laboratory calculations, when made using the same orginal data sets.

  17. An airborne robotic platform for mapping thermal structure in surface water bodies

    NASA Astrophysics Data System (ADS)

    Thompson, S. E.; Chung, M.; Detweiler, C.; Ore, J. P.

    2015-12-01

    The significance of thermal heterogeneities in small surface water bodies as drivers of mixing and for habitat provision is increasingly recognized, yet obtaining three-dimensionally resolved observations of the thermal structure of lakes and rivers remains challenging. For relatively shallow water bodies, observations of water temperature from aerial platforms are attractive: they do not require shoreline access, they can be quickly and easily deployed and redeployed, facilitating repeated sampling, and they can rapidly move between measurement locations, allowing multiple measurements to be made during single flights. However, they are also subject to well-known limitations including payload, flight duration and operability, and their effectiveness as a mobile platform for thermal sensing is still poorly characterized. In this talk, I will introduce an aerial thermal sensing platform that enables water temperature measurements to be made and spatially located throughout a water column, and present preliminary results from initial field experiments comparing in-situ temperature observations to those made from the UAS platform. The results highlight the potential scalability of the platform to provide high-resolution 3D thermal mapping of a ~1 ha lake in 2-3 flights (circa 1 hour), sufficient to resolve diurnal variations. Operability constraints and key needs for further development are also identified.

  18. Physics for the Correction of a Calibrated Airborne Scanner, Visible to Thermal Bands

    NASA Technical Reports Server (NTRS)

    Rickman, Doug L.; Schiller, Stephen; Luvall, Jeffrey C.; Arnold, James E. (Technical Monitor)

    2000-01-01

    To use remote sensing modalities in a reproducible manner it is essential that extraneous phenomena be removed from the signal. For those interested in the surface of the Earth, airborne and satellite systems, which are sensitive in wavelengths ranging from the visible to the infrared are significantly degraded by the atmosphere. The authors have developed a series of mathematical models to describe and correct the degradation. The models are based directly on the physics of the systems and are computationally tractable. Modeling of the atmosphere is done using public domain code, loaded with data and configured using information form systems developed by Schiller and Luvall. The results of this are then integrated with a physical model of the sensor to permit reduction of data to geophysically meaningful units. The components of the overall modeling, the logic of the components, and the limitations of the approach are discussed. The authors are employing there technology on applications ranging from measurements of urban heat islands to precision agriculture.

  19. Evaluation of airborne thermal-infrared image data for monitoring aquatic habitats and cultural resources within the Grand Canyon

    USGS Publications Warehouse

    Davis, Philip A.

    2002-01-01

    This study examined thermal-infrared (TIR) image data acquired using the airborne Advanced Thematic Mapper (ATM) sensor in the afternoon of July 25th, 2000 over a portion of the Colorado River corridor to determine the capability of these 100-cm resolution data to address some biologic and cultural resource requirements for GCMRC. The requirements investigated included the mapping of warm backwaters that may serve as fish habitats and the detection (and monitoring) of archaeological structures and natural springs that occur on land. This report reviews the procedure for calibration of the airborne TIR data to obtain surface water temperatures and shows the results for various river reaches within the acquired river corridor. With respect to mapping warm backwater areas, our results show that TIR data need to be acquired with a gain setting that optimizes the range of temperatures found within the water to increase sensitivity of the resulting data to a level of 0.1 °C and to reduce scan-line noise. Data acquired within a two-hour window around maximum solar heating (1:30 PM) is recommended to provide maximum solar heating of the water and to minimize cooling effects of late-afternoon shadows. Ground-truth data within the temperature range of the warm backwaters are necessary for calibration of the TIR data. The ground-truth data need to be collected with good locational accuracy. The derived water-temperature data provide the capability for rapid, wide-area mapping of warm-water fish habitats using a threshold temperature for such habitats. The collected daytime TIR data were ineffective in mapping (detecting) both archaeological structures and natural springs (seeps). The inability of the daytime TIR data to detect archaeological structures is attributed to the low thermal sensitivity (0.3 °C) of the collected data. The detection of subtle thermal differences between geologic materials requires sensitivities of at least 0.1 °C, which can be obtained by most TIR

  20. A Field Evaluation of Airborne Techniques for Detection of Unexploded Ordnance

    SciTech Connect

    Bell, D.; Doll, W.E.; Hamlett, P.; Holladay, J.S.; Nyquist, J.E.; Smyre, J.; Gamey, T.J.

    1999-03-14

    US Defense Department estimates indicate that as many as 11 million acres of government land in the U. S. may contain unexploded ordnance (UXO), with the cost of identifying and disposing of this material estimated at nearly $500 billion. The size and character of the ordnance, types of interference, vegetation, geology, and topography vary from site to site. Because of size or composition, some ordnance is difficult to detect with any geophysical method, even under favorable soil and cultural interference conditions. For some sites, airborne methods may provide the most time and cost effective means for detection of UXO. Airborne methods offer lower risk to field crews from proximity to unstable ordnance, and less disturbance of sites that maybe environmentally sensitive. Data were acquired over a test site at Edwards AFB, CA using airborne magnetic, electromagnetic, multispectral and thermal sensors. Survey areas included sites where trenches might occur, and a test site in which we placed deactivated ordnance, ranging in size from small ''bomblets'' to large bombs. Magnetic data were then acquired with the Aerodat HM-3 system, which consists of three cesium magnetometers within booms extending to the front and sides of the helicopter, and mounted such that the helicopter can be flown within 3m of the surface. Electromagnetic data were acquired with an Aerodat 5 frequency coplanar induction system deployed as a sling load from a helicopter, with a sensor altitude of 15m. Surface data, acquired at selected sites, provide a comparison with airborne data. Multispectral and thermal data were acquired with a Daedelus AADS 1268 system. Preliminary analysis of the test data demonstrate the value of airborne systems for UXO detection and provide insight into improvements that might make the systems even more effective.

  1. Fast application multispectral camouflage appliques

    NASA Astrophysics Data System (ADS)

    Meeker, David L.; Hall, Kenneth G.

    1995-05-01

    With reconnaissance surveillance, and target acquisition systems becoming increasingly sophisticated in both sensor performance and processing capabilities, there exists a requirement to increase the camoufleur's ability to control and manipulate target signatures beyond those currently available. To assist in accomplishing this, a hybrid technology is required: one that combines the features of multispectral signature control, rapid deployment, and low cost. The WES fixed-facility CCD team is developing a suite of signature controlling materials termed 'Multispectral Camouflage Appliques' (MCSs). Due to the nature of this material, the spectral characteristics (e.g. emmissivity, radar scattering properties, UV-NIR reflectance, color) can be controlled with great latitude by the designer, by adding underlying material layers or external coatings. It is the ability of the designer to manipulate the fundamental characteristics of the MCA material that allows its uniqueness and maximum utility. THe first series of MCAs are composed of an adhesive-backed metal foil overlaid with a visual color coating that is transparent in the thermal IR wavelengths. The effect is that of a visual camouflage combined with a thermal mirror that reflects emissions of the natural surroundings. The 'peel and stick' adhesive backing provides a rapid method of applying MCAs to fixed and semimobile assets that would be beneficial to bare base and force projection msisions. Dual uses of this material include drug and border aerial surveillance as position markers that are visually disguised from ground observation but provide high contrast in thermal IR imaging systems by reflecting cold sky temperatures.

  2. Monitoring Geothermal Features in Yellowstone National Park with ATLAS Multispectral Imagery

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Berglund, Judith

    2000-01-01

    The National Park Service (NPS) must produce an Environmental Impact Statement for each proposed development in the vicinity of known geothermal resource areas (KGRAs) in Yellowstone National Park. In addition, the NPS monitors indicator KGRAs for environmental quality and is still in the process of mapping many geothermal areas. The NPS currently maps geothermal features with field survey techniques. High resolution aerial multispectral remote sensing in the visible, NIR, SWIR, and thermal spectral regions could enable YNP geothermal features to be mapped more quickly and in greater detail In response, Yellowstone Ecosystems Studies, in partnership with NASA's Commercial Remote Sensing Program, is conducting a study on the use of Airborne Terrestrial Applications Sensor (ATLAS) multispectral data for monitoring geothermal features in the Upper Geyser Basin. ATLAS data were acquired at 2.5 meter resolution on August 17, 2000. These data were processed into land cover classifications and relative temperature maps. For sufficiently large features, the ATLAS data can map geothermal areas in terms of geyser pools and hot springs, plus multiple categories of geothermal runoff that are apparently indicative of temperature gradients and microbial matting communities. In addition, the ATLAS maps clearly identify geyserite areas. The thermal bands contributed to classification success and to the computation of relative temperature. With masking techniques, one can assess the influence of geothermal features on the Firehole River. Preliminary results appear to confirm ATLAS data utility for mapping and monitoring geothermal features. Future work will include classification refinement and additional validation.

  3. Comparison of multispectral remote-sensing techniques for monitoring subsurface drain conditions. [Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Goettelman, R. C.; Grass, L. B.; Millard, J. P.; Nixon, P. R.

    1983-01-01

    The following multispectral remote-sensing techniques were compared to determine the most suitable method for routinely monitoring agricultural subsurface drain conditions: airborne scanning, covering the visible through thermal-infrared (IR) portions of the spectrum; color-IR photography; and natural-color photography. Color-IR photography was determined to be the best approach, from the standpoint of both cost and information content. Aerial monitoring of drain conditions for early warning of tile malfunction appears practical. With careful selection of season and rain-induced soil-moisture conditions, extensive regional surveys are possible. Certain locations, such as the Imperial Valley, Calif., are precluded from regional monitoring because of year-round crop rotations and soil stratification conditions. Here, farms with similar crops could time local coverage for bare-field and saturated-soil conditions.

  4. G-LiHT: Goddard's LiDAR, Hyperspectral and Thermal Airborne Imager

    NASA Technical Reports Server (NTRS)

    Cook, Bruce; Corp, Lawrence; Nelson, Ross; Morton, Douglas; Ranson, Kenneth J.; Masek, Jeffrey; Middleton, Elizabeth

    2012-01-01

    Scientists at NASA's Goddard Space Flight Center have developed an ultra-portable, low-cost, multi-sensor remote sensing system for studying the form and function of terrestrial ecosystems. G-LiHT integrates two LIDARs, a 905 nanometer single beam profiler and 1550 nm scanner, with a narrowband (1.5 nanometers) VNIR imaging spectrometer and a broadband (8-14 micrometers) thermal imager. The small footprint (approximately 12 centimeters) LIDAR data and approximately 1 meter ground resolution imagery are advantageous for high resolution applications such as the delineation of canopy crowns, characterization of canopy gaps, and the identification of sparse, low-stature vegetation, which is difficult to detect from space-based instruments and large-footprint LiDAR. The hyperspectral and thermal imagery can be used to characterize species composition, variations in biophysical variables (e.g., photosynthetic pigments), surface temperature, and responses to environmental stressors (e.g., heat, moisture loss). Additionally, the combination of LIDAR optical, and thermal data from G-LiHT is being used to assess forest health by sensing differences in foliage density, photosynthetic pigments, and transpiration. Low operating costs (approximately $1 ha) have allowed us to evaluate seasonal differences in LiDAR, passive optical and thermal data, which provides insight into year-round observations from space. Canopy characteristics and tree allometry (e.g., crown height:width, canopy:ground reflectance) derived from G-LiHT data are being used to generate realistic scenes for radiative transfer models, which in turn are being used to improve instrument design and ensure continuity between LiDAR instruments. G-LiHT has been installed and tested in aircraft with fuselage viewports and in a custom wing-mounted pod that allows G-LiHT to be flown on any Cessna 206, a common aircraft in use throughout the world. G-LiHT is currently being used for forest biomass and growth estimation

  5. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  6. Determination of airborne isocyanates generated during the thermal degradation of car paint in body repair shops.

    PubMed

    Boutin, Michel; Dufresne, André; Ostiguy, Claude; Lesage, Jacques

    2006-06-01

    Polyurethanes are widely used in car paint formulations. During thermal degradation, such polymeric systems can generate powerful asthmatic sensitizing agents named isocyanates. In body repair shops, the thermal degradation of car paint can occur during abrasive processes that generate enough heat to involve release of isocyanates in air. An environmental monitoring study was performed in two body repair training schools and in a body repair shop to evaluate the workers' exposure to isocyanates during cutting, grinding and orbital sanding operations. For sampling, cassettes containing two 1-(2-methoxyphenyl)piperazine (MOPIP)-coated glass fiber filters (MFs) ( approximately 5 mg of MOPIP per filter) and bubblers containing 15 ml of MOPIP solution in toluene (1.0 mg ml(-1)) backed at the outlet with cassettes containing two MFs were used. Tandem mass spectrometry was used to analyze the MOPIP derivatives of isocyanic acid (HNCO), all the linear aliphatic isocyanates ranging from methyl isocyanate (Me-i) to hexyl isocyanate, all the alkenyl isocyanates ranging from propylene isocyanate to hexylene isocyanate, 1,6-hexamethylene diisocyanate (HDI), trans- and cis-isophorone diisocyanate (IPDI), 2,4- and 2,6-toluene diisocyanate (TDI), 2,4'-; 2,2'- and 4,4'-methylenediphenyl diisocyanate (MDI), phenyl isocyanate (Ph-i) and p-toluene isocyanate (p-Tol-i). The instrumental detection limits (LOD) were in the 0.13-0.75 microg of NCO per m(3) range for 15 l air samples converted into 3 ml liquid samples. The isocyanate concentrations detected in the workers' breathing zone were in the 1.07-9.80 microg of NCO per m(3) range for cutting, 0.63-3.62 microg of NCO per m(3) range for grinding and 0-1.29 microg of NCO per m(3) range for sanding. However, a rapid decrease of the isocyanate concentration was observed while moving away from the emission source. Among the isocyanates detected the most abundant were the monomers (MDI, HDI, TDI and IPDI) and Me-i.

  7. Exposure to airborne isocyanates and other thermal degradation products at polyurethane-processing workplaces.

    PubMed

    Henriks-Eckerman, Maj-Len; Välimaa, Jarmo; Rosenberg, Christina; Peltonen, Kimmo; Engström, Kerstin

    2002-10-01

    The thermal degradation products of polyurethanes (PURs) and exposure to isocyanates were studied by stationary and personal measurements in five different occupational environments. Isocyanates were collected on glass fibre filters impregnated with 1-(2-methoxyphenyl)piperazine (2MP) and in impingers containing n-dibutylamine (DBA) in toluene. connected to a glass fibre postfilter. The derivatives formed were analysed by liquid chromatography: 2MP derivatives with UV and electrochemical detection and DBA derivatives with mass spectrometric detection. The release of aldehydes and other volatile organic compounds into the air was also studied. In a comparison of the two sampling methods, the 2MP method yielded about 20% lower concentrations for 4,4'-methylenediphenyl diisocyanate (MDI) than did the DBA method. In car repair shops, the median concentration of diisocyanates (given as NCO groups) in the breathing zone was 1.1 microg NCO m(-3) during grinding and 0.3 microg NCO m(-3) during welding, with highest concentrations of 1.7 and 16 pg NCO m(-3), respectively. High concentrations of MDI, up to 25 and 19 microg NCO m(-3), respectively, were also measured in the breathing zone during welding of district heating pipes and turning of a PUR-coated metal cylinder. During installation of PUR-coated floor covering, small amounts of aliphatic diisocyanates were detected in the air. A small-molecular monoisocyanate, methyl isocyanate, and isocyanic acid were detected only during welding and turning operations. The diisocyanate concentrations were in general higher near the emission source than in the workers' breathing zone. A sampling strategy to evaluate the risk of exposure to isocyanates is presented.

  8. Airborne thermal degradation products of polyurethene coatings in car repair shops.

    PubMed

    Karlsson, D; Spanne, M; Dalene, M; Skarping, G

    2000-10-01

    A methodology for workplace air monitoring of aromatic and aliphatic, mono- and polyisocyanates by derivatisation with di-n-butylamine (DBA) is presented. Air sampling was performed using midget impinger flasks containing 10 ml of 0.01 mol l(-1) DBA in toluene and a glass-fibre filter in series after the impinger flask, thereby providing the possibility of collecting and derivatising isocyanates in both the gas and particle phases. Quantification was made by LC-MS, monitoring the molecular ions [MH]+. Air samples taken with this method in car repair shops showed that many different isocyanates are formed during thermal decomposition of polyurethane (PUR) coatings. In addition to isocyanates such as hexamethylene (HDI), isophorone (IPDI), toluene (TDI) and methylenediphenyl diisocyanate (MDI), monoisocyanates such as methyl (MIC), ethyl (EIC), propyl (PIC), butyl (BIC) and phenyl isocyanate (PhI) were found. In many air samples the aliphatic monoisocyanates dominated. During cutting and welding operations, the highest levels of isocyanates were observed. In a single air sample from a welding operation in a car repair shop, the highest concentrations found were: MIC, 290; EIC, 60; PIC, 20; BIC, 9; PhI, 27; HDI, 105; IPDI, 39; MDI, 4; and 2,4-TDI and 2,6-TDI 140 microg m(-3). Monitoring the particle size distribution and concentration during grinding, welding and cutting operations showed that ultrafine particles (< 0.1 microm) were formed at high concentrations. Isocyanates with low volatility were mainly found in the particle phase, but isocyanates with a relatively high volatility such as TDI, were found in both the particle and gas phases.

  9. Active and passive multispectral scanner for earth resources applications: An advanced applications flight experiment

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.; Peterson, L. M.; Thomson, F. J.; Work, E. A.; Kriegler, F. J.

    1977-01-01

    The development of an experimental airborne multispectral scanner to provide both active (laser illuminated) and passive (solar illuminated) data from a commonly registered surface scene is discussed. The system was constructed according to specifications derived in an initial programs design study. The system was installed in an aircraft and test flown to produce illustrative active and passive multi-spectral imagery. However, data was not collected nor analyzed for any specific application.

  10. High spectral resolution airborne short wave infrared hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Wei, Liqing; Yuan, Liyin; Wang, Yueming; Zhuang, Xiaoqiong

    2016-05-01

    Short Wave InfraRed(SWIR) spectral imager is good at detecting difference between materials and penetrating fog and mist. High spectral resolution SWIR hyperspectral imager plays a key role in developing earth observing technology. Hyperspectral data cube can help band selections that is very important for multispectral imager design. Up to now, the spectral resolution of many SWIR hyperspectral imagers is about 10nm. A high sensitivity airborne SWIR hyperspectral imager with narrower spectral band will be presented. The system consists of TMA telescope, slit, spectrometer with planar blazed grating and high sensitivity MCT FPA. The spectral sampling interval is about 3nm. The IFOV is 0.5mrad. To eliminate the influence of the thermal background, a cold shield is designed in the dewar. The pixel number of spatial dimension is 640. Performance measurement in laboratory and image analysis for flight test will also be presented.

  11. Analysis of the thermal structure of the "Ora del Garda" wind from airborne and surface measurements

    NASA Astrophysics Data System (ADS)

    Laiti, L.; Zardi, D.; de Franceschi, M.

    2010-09-01

    Systems of daily-periodic valley winds typically develop in the Alps, driven by the interaction between the thermally forced motion of air masses and the complex orographic configuration. The occurrence of large lakes can mark these phenomena with local peculiarities. This study investigates a well known valley/lake breeze phenomenon, the so-called Ora del Garda. The latter is a diurnal wind originating in the late morning of sunny days on the northern shores of Lake Garda, channelling into the Sarca River Valley and the Lakes Valley nearby, and reaching, on days of greater intensity, the Adige River Valley, where it gets mixed with the local up-valley winds and produces a strong and gusty local flow. The Ora blows very regularly on sunny days under fair weather conditions, from late spring to early autumn, and marks local weather conditions in the area. In order to explore how the development of this wind affects the boundary layer processes in the valleys, and in particular temperature and humidity structures, three measurements campaigns were performed in 1998-1999, including flights of an instrumented light airplane. Each flight trajectory explored three or four sections along the valley at specific locations (namely over the lake coast, at half valley, at the end of the valley). By following spiralling paths on vertical planes oriented either along or cross valley, data allowing detailed pictures of atmospheric structure on these sections were collected. At the same time data from surface weather stations located both on the valley floor and on the sidewall slopes were collected and analysed. In particular measurements from radiometers allowed to monitor the evolution of the radiation forcing the valley wind. For each single section suitable analytical expressions for mean vertical temperature and humidity profiles were first inferred to determine the dominating vertical structure. Then the characteristic spatial scales of variability of local deviations from

  12. Land use classification utilizing remote multispectral scanner data and computer analysis techniques

    NASA Technical Reports Server (NTRS)

    Leblanc, P. N.; Johannsen, C. J.; Yanner, J. E.

    1973-01-01

    An airborne multispectral scanner was used to collect the visible and reflective infrared data. A small subdivision near Lafayette, Indiana was selected as the test site for the urban land use study. Multispectral scanner data were collected over the subdivision on May 1, 1970 from an altitude of 915 meters. The data were collected in twelve wavelength bands from 0.40 to 1.00 micrometers by the scanner. The results indicated that computer analysis of multispectral data can be very accurate in classifying and estimating the natural and man-made materials that characterize land uses in an urban scene.

  13. Multispectral photography for earth resources

    NASA Technical Reports Server (NTRS)

    Wenderoth, S.; Yost, E.; Kalia, R.; Anderson, R.

    1972-01-01

    A guide for producing accurate multispectral results for earth resource applications is presented along with theoretical and analytical concepts of color and multispectral photography. Topics discussed include: capabilities and limitations of color and color infrared films; image color measurements; methods of relating ground phenomena to film density and color measurement; sensitometry; considerations in the selection of multispectral cameras and components; and mission planning.

  14. Multispectral imaging for biometrics

    NASA Astrophysics Data System (ADS)

    Rowe, Robert K.; Corcoran, Stephen P.; Nixon, Kristin A.; Ostrom, Robert E.

    2005-03-01

    Automated identification systems based on fingerprint images are subject to two significant types of error: an incorrect decision about the identity of a person due to a poor quality fingerprint image and incorrectly accepting a fingerprint image generated from an artificial sample or altered finger. This paper discusses the use of multispectral sensing as a means to collect additional information about a finger that significantly augments the information collected using a conventional fingerprint imager based on total internal reflectance. In the context of this paper, "multispectral sensing" is used broadly to denote a collection of images taken under different polarization conditions and illumination configurations, as well as using multiple wavelengths. Background information is provided on conventional fingerprint imaging. A multispectral imager for fingerprint imaging is then described and a means to combine the two imaging systems into a single unit is discussed. Results from an early-stage prototype of such a system are shown.

  15. Multispectral imaging probe

    DOEpatents

    Sandison, David R.; Platzbecker, Mark R.; Descour, Michael R.; Armour, David L.; Craig, Marcus J.; Richards-Kortum, Rebecca

    1999-01-01

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector.

  16. Multispectral imaging probe

    DOEpatents

    Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.

    1999-07-27

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.

  17. Comparison of Hyperspectral and Multispectral Satellites for Discriminating Land Cover in Northern California

    NASA Astrophysics Data System (ADS)

    Clark, M. L.; Kilham, N. E.

    2015-12-01

    Land-cover maps are important science products needed for natural resource and ecosystem service management, biodiversity conservation planning, and assessing human-induced and natural drivers of land change. Most land-cover maps at regional to global scales are produced with remote sensing techniques applied to multispectral satellite imagery with 30-500 m pixel sizes (e.g., Landsat, MODIS). Hyperspectral, or imaging spectrometer, imagery measuring the visible to shortwave infrared regions (VSWIR) of the spectrum have shown impressive capacity to map plant species and coarser land-cover associations, yet techniques have not been widely tested at regional and greater spatial scales. The Hyperspectral Infrared Imager (HyspIRI) mission is a VSWIR hyperspectral and thermal satellite being considered for development by NASA. The goal of this study was to assess multi-temporal, HyspIRI-like satellite imagery for improved land cover mapping relative to multispectral satellites. We mapped FAO Land Cover Classification System (LCCS) classes over 22,500 km2 in the San Francisco Bay Area, California using 30-m HyspIRI, Landsat 8 and Sentinel-2 imagery simulated from data acquired by NASA's AVIRIS airborne sensor. Random Forests (RF) and Multiple-Endmember Spectral Mixture Analysis (MESMA) classifiers were applied to the simulated images and accuracies were compared to those from real Landsat 8 images. The RF classifier was superior to MESMA, and multi-temporal data yielded higher accuracy than summer-only data. With RF, hyperspectral data had overall accuracy of 72.2% and 85.1% with full 20-class and reduced 12-class schemes, respectively. Multispectral imagery had lower accuracy. For example, simulated and real Landsat data had 7.5% and 4.6% lower accuracy than HyspIRI data with 12 classes, respectively. In summary, our results indicate increased mapping accuracy using HyspIRI multi-temporal imagery, particularly in discriminating different natural vegetation types, such as

  18. Using airborne thermal infrared imagery and helicopter EM conductivity to locate mine pools and discharges in the Kettle Creek watershed, north-central Pennsylvania

    SciTech Connect

    Love, E.; Hammack, R.W.; Harbert, W.P.; Sams, J.I.; Veloski, G.A.; Ackman, T.E.

    2005-11-01

    The Kettle Creek watershed contains 50–100-year-old surface and underground coal mines that are a continuing source of acid mine drainage (AMD). To characterize the mining-altered hydrology of this watershed, an airborne reconnaissance was conducted in 2002 using airborne thermal infrared imagery (TIR) and helicopter-mounted electromagnetic (HEM) surveys. TIR uses the temperature differential between surface water and groundwater to locate areas where groundwater emerges at the surface. TIR anomalies located in the survey included seeps and springs, as well as mine discharges. In a follow-up ground investigation, hand-held GPS units were used to locate 103 of the TIR anomalies. Of the sites investigated, 26 correlated with known mine discharges, whereas 27 were previously unknown. Seven known mine discharges previously obscured from TIR imagery were documented. HEM surveys were used to delineate the groundwater table and also to locate mine pools, mine discharges, and groundwater recharge zones. These surveys located 12 source regions and flow paths for acidic, metal-containing (conductive) mine drainage; areas containing acid-generating mine spoil; and areas of groundwater recharge and discharge, as well as identifying potential mine discharges previously obscured from TIR imagery by nondeciduous vegetation. Follow-up ground-based electromagnetic surveys verified the results of the HEM survey. Our study suggests that airborne reconnaissance can make the remediation of large watersheds more efficient by focusing expensive ground surveys on small target areas.

  19. Using airborne thermal infrared imagery and helicopter EM conductivity to locate mine pools and discharges in the Kettle Creek watershed, north-central Pennsylvania

    SciTech Connect

    Love, E.; Hammack, R.; Harbert, W.; Sams, J.; Veloski, G.; Ackman, T.

    2005-12-01

    The Kettle Creek watershed contains 50-100-year-old surface and underground coal mines that are a continuing source of acid mine drainage (AMD). To characterize the mining-altered hydrology of this watershed, an airborne reconnaissance was conducted in 2002 using airborne thermal infrared imagery (TIR) and helicopter-mounted electromagnetic (HEM) surveys. TIR uses the temperature differential between surface water and groundwater to locate areas where groundwater emerges at the surface. TIR anomalies located in the survey included seeps and springs, as well as mine discharges. In a follow-up ground investigation, hand-held GPS units were used to locate 103 of the TIR anomalies. Of the sites investigated, 26 correlated with known mine discharges, whereas 27 were previously unknown. Seven known mine discharges previously obscured from TIR imagery were documented. HEM surveys were used to delineate the groundwater table and also to locate mine pools, mine discharges, and groundwater recharge zones. These surveys located 12 source regions and flow paths for acidic, metal-containing (conductive) mine drainage; areas containing acid-generating mine spoil; and areas of groundwater recharge and discharge, as well as identifying potential mine discharges previously obscured from TIR imagery by nondeciduous vegetation. Follow-up ground-based electromagnetic surveys verified the results of the HEM survey. Our study suggests that airborne reconnaissance can make the remediation of large watersheds more efficient by focusing expensive ground surveys on small target areas.

  20. Mapping Weathering and Alteration Minerals in the Comstock and Geiger Grade Areas using Visible to Thermal Infrared Airborne Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Vaughan, Greg R.; Calvin, Wendy M.

    2005-01-01

    To support research into both precious metal exploration and environmental site characterization a combination of high spatial/spectral resolution airborne visible, near infrared, short wave infrared (VNIR/SWIR) and thermal infrared (TIR) image data were acquired to remotely map hydrothermal alteration minerals around the Geiger Grade and Comstock alteration regions, and map the mineral by-products of weathered mine dumps in Virginia City. Remote sensing data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), SpecTIR Corporation's airborne hyperspectral imager (HyperSpecTIR), the MODIS-ASTER airborne simulator (MASTER), and the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) were acquired and processed into mineral maps based on the unique spectral signatures of image pixels. VNIR/SWIR and TIR field spectrometer data were collected for both calibration and validation of the remote data sets, and field sampling, laboratory spectral analyses and XRD analyses were made to corroborate the surface mineralogy identified by spectroscopy. The resulting mineral maps show the spatial distribution of several important alteration minerals around each study area including alunite, quartz, pyrophyllite, kaolinite, montmorillonite/muscovite, and chlorite. In the Comstock region the mineral maps show acid-sulfate alteration, widespread propylitic alteration and extensive faulting that offsets the acid-sulfate areas, in contrast to the larger, dominantly acid-sulfate alteration exposed along Geiger Grade. Also, different mineral zones within the intense acid-sulfate areas were mapped. In the Virginia City historic mining district the important weathering minerals mapped include hematite, goethite, jarosite and hydrous sulfate minerals (hexahydrite, alunogen and gypsum) located on mine dumps. Sulfate minerals indicate acidic water forming in the mine dump environment. While there is not an immediate threat to the community, there are clearly sources of

  1. Developing a semi/automated protocol to post-process large volume, High-resolution airborne thermal infrared (TIR) imagery for urban waste heat mapping

    NASA Astrophysics Data System (ADS)

    Rahman, Mir Mustafizur

    In collaboration with The City of Calgary 2011 Sustainability Direction and as part of the HEAT (Heat Energy Assessment Technologies) project, the focus of this research is to develop a semi/automated 'protocol' to post-process large volumes of high-resolution (H-res) airborne thermal infrared (TIR) imagery to enable accurate urban waste heat mapping. HEAT is a free GeoWeb service, designed to help Calgary residents improve their home energy efficiency by visualizing the amount and location of waste heat leaving their homes and communities, as easily as clicking on their house in Google Maps. HEAT metrics are derived from 43 flight lines of TABI-1800 (Thermal Airborne Broadband Imager) data acquired on May 13--14, 2012 at night (11:00 pm--5:00 am) over The City of Calgary, Alberta (˜825 km 2) at a 50 cm spatial resolution and 0.05°C thermal resolution. At present, the only way to generate a large area, high-spatial resolution TIR scene is to acquire separate airborne flight lines and mosaic them together. However, the ambient sensed temperature within, and between flight lines naturally changes during acquisition (due to varying atmospheric and local micro-climate conditions), resulting in mosaicked images with different temperatures for the same scene components (e.g. roads, buildings), and mosaic join-lines arbitrarily bisect many thousands of homes. In combination these effects result in reduced utility and classification accuracy including, poorly defined HEAT Metrics, inaccurate hotspot detection and raw imagery that are difficult to interpret. In an effort to minimize these effects, three new semi/automated post-processing algorithms (the protocol) are described, which are then used to generate a 43 flight line mosaic of TABI-1800 data from which accurate Calgary waste heat maps and HEAT metrics can be generated. These algorithms (presented as four peer-reviewed papers)---are: (a) Thermal Urban Road Normalization (TURN)---used to mitigate the microclimatic

  2. Comparison of preliminary results from Airborne Aster Simulator (AAS) with TIMS data

    NASA Technical Reports Server (NTRS)

    Kannari, Yoshiaki; Mills, Franklin; Watanabe, Hiroshi; Ezaka, Teruya; Narita, Tatsuhiko; Chang, Sheng-Huei

    1992-01-01

    The Japanese Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), being developed for a NASA EOS-A satellite, will have 3 VNIR, 6 SWIR, and 5 TIR (8-12 micron) bands. An Airborne ASTER Simulator (AAS) was developed for Japan Resources Observation System Organization (JAROS) by the Geophysical Environmental Research Group (GER) Corp. to research surface temperature and emission features in the MWIR/TIR, to simulate ASTER's TIR bands, and to study further possibility of MWIR/TIR bands. ASTER Simulator has 1 VNIR, 3 MWIR (3-5 microns), and 20 (currently 24) TIR bands. Data was collected over 3 sites - Cuprite, Nevada; Long Valley/Mono Lake, California; and Death Valley, California - with simultaneous ground truth measurements. Preliminary data collected by AAS for Cuprite, Nevada is presented and AAS data is compared with Thermal Infrared Multispectral Scanner (TIMS) data.

  3. Active airborne infrared laser system for identification of surface rock and minerals

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.; Shumate, M. S.; Nash, D. B.

    1984-01-01

    Emissivity and reflectivity in the thermal infrared spectral region (8-13 microns) may be used to discriminate among rocks and minerals. Although considerable success has been achieved in remote sensing classification of rock types based on emissivity measurements made with NASA's Thermal Infreared Multispectral Scanner (TIMS), classification based on reflectivity offers several advantages: much narrower bandwidths are used, higher signal to noise ratios are possible, and measurements are little affected by surface temperature. As a demonstration, an airborne CO2 laser instrument was flown along the margin of Death Valley, California. Measurements of spectral reflectance collected with this device were compared with emissivity measurements made with the TIMS. Data from either instrument provided the means for recognizing boundaries between geologic units including different rock types and fan surfaces of different ages.

  4. Polarimetric Multispectral Imaging Technology

    NASA Technical Reports Server (NTRS)

    Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.

    1993-01-01

    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.

  5. Wetlands mapping with spot multispectral scanner data

    SciTech Connect

    Mackey, H.E. Jr. ); Jensen, J.R. . Dept. of Geography)

    1989-01-01

    Government facilities such as the US Department of Energy's Savannah River Plant (SRP) near Aiken, South Carolina, often use remote sensing data to assist in environmental management. Airborne multispectral scanner (MSS) data have been acquired at SRP since 1981. Various types of remote sensing data have been used to map and characterize wetlands. Regional Landsat MSS and TM satellite data have been used for wetlands mapping by various government agencies and private organizations. Furthermore, SPOT MSS data are becoming available and provide opportunities for increased spacial resolution and temporal coverage for wetlands mapping. This paper summarizes the initial results from using five dates of SPOT MSS data from April through October, 1987, as a means to monitor seasonal wetland changes in freshwater wetlands of the SRP. 11 refs., 4 figs.

  6. Use of multispectral scanner images for assessment of hydrothermal alteration in the Marysvale, Utah, mining area.

    USGS Publications Warehouse

    Podwysocki, M.H.; Segal, D.B.; Abrams, M.J.

    1983-01-01

    Airborne multispectral scanner. A color composite image was constructed using the following spectral band ratios: 1.6/2.2 mu m, 1.6/0.48 mu m, and 0.67/1.0 mu m. The color ratio composite successfully distinguished most types of altered rocks from unaltered rocks; further division of altered rocks into ferric oxide-rich and -poor types.

  7. Multispectral observations of the surf zone

    NASA Astrophysics Data System (ADS)

    Schoonmaker, Jon S.; Dirbas, Joseph; Gilbert, Gary

    2003-09-01

    Airborne multispectral imagery was collected over various targets on the beach and in the water in an attempt to characterize the surf zone environment with respect to electro-optical system capabilities and to assess the utility of very low cost, small multispectral systems in mine counter measures (MCM) and intelligence, surveillance and reconnaissance applications. The data was collected by PAR Government Systems Corporation (PGSC) at the Army Corps of Engineers Field Research Facility at Duck North Carolina and on the beaches of Camp Pendleton Marine Corps Base in Southern California. PGSC flew the first two of its MANTIS (Mission Adaptable Narrowband Tunable Imaging Sensor) systems. Both MANTIS systems were flown in an IR - red - green - blue (700, 600, 550, 480 nm) configuration from altitudes ranging from 200 to 700 meters. Data collected has been lightly analyzed and a surf zone index (SZI) defined and calculated. This index allows mine hunting system performance measurements in the surf zone to be normalized by environmental conditions. The SZI takes into account water clarity, wave energy, and foam persistence.

  8. Multispectral imaging with type II superlattice detectors

    NASA Astrophysics Data System (ADS)

    Ariyawansa, Gamini; Duran, Joshua M.; Grupen, Matt; Scheihing, John E.; Nelson, Thomas R.; Eismann, Michael T.

    2012-06-01

    Infrared (IR) focal plane arrays (FPAs) with multispectral detector elements promise significant advantages for airborne threat warning, surveillance, and targeting applications. At present, the use of type II superlattice (T2SL) structures based on the 6.1Å-family materials (InAs, GaSb, and AlSb) has become an area of interest for developing IR detectors and their FPAs. The ability to vary the bandgap in the IR range, suppression of Auger processes, prospective reduction of Shockley-Read-Hall centers by improved material growth capabilities, and the material stability are a few reasons for the predicted dominance of the T2SL technology over presently leading HgCdTe and quantum well technologies. The focus of the work reported here is on the development of T2SL based dual-band IR detectors and their applicability for multispectral imaging. A new NpBPN detector designed for the detection of IR in the 3-5 and 8-12 μm atmospheric windows is presented; comparing its advantages over other T2SL based approaches. One of the key challenges of the T2SL dual-band detectors is the spectral crosstalk associated with the LWIR band. The properties of the state-of-the-art T2SLs (i.e., absorption coefficient, minority carrier lifetime and mobility, etc.) and the present growth limitations that impact spectral crosstalk are discussed.

  9. Lossless compression algorithm for multispectral imagers

    NASA Astrophysics Data System (ADS)

    Gladkova, Irina; Grossberg, Michael; Gottipati, Srikanth

    2008-08-01

    Multispectral imaging is becoming an increasingly important tool for monitoring the earth and its environment from space borne and airborne platforms. Multispectral imaging data consists of visible and IR measurements from a scene across space and spectrum. Growing data rates resulting from faster scanning and finer spatial and spectral resolution makes compression an increasingly critical tool to reduce data volume for transmission and archiving. Research for NOAA NESDIS has been directed to finding for the characteristics of satellite atmospheric Earth science Imager sensor data what level of Lossless compression ratio can be obtained as well as appropriate types of mathematics and approaches that can lead to approaching this data's entropy level. Conventional lossless do not achieve the theoretical limits for lossless compression on imager data as estimated from the Shannon entropy. In a previous paper, the authors introduce a lossless compression algorithm developed for MODIS as a proxy for future NOAA-NESDIS satellite based Earth science multispectral imagers such as GOES-R. The algorithm is based on capturing spectral correlations using spectral prediction, and spatial correlations with a linear transform encoder. In decompression, the algorithm uses a statistically computed look up table to iteratively predict each channel from a channel decompressed in the previous iteration. In this paper we present a new approach which fundamentally differs from our prior work. In this new approach, instead of having a single predictor for each pair of bands we introduce a piecewise spatially varying predictor which significantly improves the compression results. Our new algorithm also now optimizes the sequence of channels we use for prediction. Our results are evaluated by comparison with a state of the art wavelet based image compression scheme, Jpeg2000. We present results on the 14 channel subset of the MODIS imager, which serves as a proxy for the GOES-R imager. We

  10. Digital preprocessing and classification of multispectral earth observation data

    NASA Technical Reports Server (NTRS)

    Anuta, P. E.

    1976-01-01

    The development of airborne and satellite multispectral image scanning sensors has generated wide-spread interest in application of these sensors to earth resource mapping. These point scanning sensors permit scenes to be imaged in a large number of electromagnetic energy bands between .3 and 15 micrometers. The energy sensed in each band can be used as a feature in a computer based multi-dimensional pattern recognition process to aid in interpreting the nature of elements in the scene. Images from each band can also be interpreted visually. Visual interpretation of five or ten multispectral images simultaneously becomes impractical especially as area studied increases; hence, great emphasis has been placed on machine (computer) techniques for aiding in the interpretation process. This paper describes a computer software system concept called LARSYS for analysis of multivariate image data and presents some examples of its application.

  11. [In-flight absolute radiometric calibration of UAV multispectral sensor].

    PubMed

    Chen, Wei; Yan, Lei; Gou, Zhi-Yang; Zhao, Hong-Ying; Liu, Da-Ping; Duan, Yi-Ni

    2012-12-01

    Based on the data of the scientific experiment in Urad Front Banner for UAV Remote Sensing Load Calibration Field project, with the help of 6 hyperspectral radiometric targets with good Lambertian property, the wide-view multispectral camera in UAV was calibrated adopting reflectance-based method. The result reveals that for green, red and infrared channel, whose images were successfully captured, the linear correlation coefficients between the DN and radiance are all larger than 99%. In final analysis, the comprehensive error is no more than 6%. The calibration results demonstrate that the hyperspectral targets equipped by the calibration field are well suitable for air-borne multispectral load in-flight calibration. The calibration result is reliable and could be used in the retrieval of geophysical parameters.

  12. Wavelet-based multispectral face recognition

    NASA Astrophysics Data System (ADS)

    Liu, Dian-Ting; Zhou, Xiao-Dan; Wang, Cheng-Wen

    2008-09-01

    This paper proposes a novel wavelet-based face recognition method using thermal infrared (IR) and visible-light face images. The method applies the combination of Gabor and the Fisherfaces method to the reconstructed IR and visible images derived from wavelet frequency subbands. Our objective is to search for the subbands that are insensitive to the variation in expression and in illumination. The classification performance is improved by combining the multispectal information coming from the subbands that attain individually low equal error rate. Experimental results on Notre Dame face database show that the proposed wavelet-based algorithm outperforms previous multispectral images fusion method as well as monospectral method.

  13. Multispectral imaging and image processing

    NASA Astrophysics Data System (ADS)

    Klein, Julie

    2014-02-01

    The color accuracy of conventional RGB cameras is not sufficient for many color-critical applications. One of these applications, namely the measurement of color defects in yarns, is why Prof. Til Aach and the Institute of Image Processing and Computer Vision (RWTH Aachen University, Germany) started off with multispectral imaging. The first acquisition device was a camera using a monochrome sensor and seven bandpass color filters positioned sequentially in front of it. The camera allowed sampling the visible wavelength range more accurately and reconstructing the spectra for each acquired image position. An overview will be given over several optical and imaging aspects of the multispectral camera that have been investigated. For instance, optical aberrations caused by filters and camera lens deteriorate the quality of captured multispectral images. The different aberrations were analyzed thoroughly and compensated based on models for the optical elements and the imaging chain by utilizing image processing. With this compensation, geometrical distortions disappear and sharpness is enhanced, without reducing the color accuracy of multispectral images. Strong foundations in multispectral imaging were laid and a fruitful cooperation was initiated with Prof. Bernhard Hill. Current research topics like stereo multispectral imaging and goniometric multispectral measure- ments that are further explored with his expertise will also be presented in this work.

  14. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  15. Expanded IR glass map for multispectral optics designs

    NASA Astrophysics Data System (ADS)

    Bayya, Shyam; Gibson, Daniel; Nguyen, Vinh; Beadie, Guy; Sanghera, Jasbinder; Kotov, Mikhail

    2016-05-01

    This paper presents new multispectral IR glasses with transmission from 0.9 to > 14 μm in wavelength and refractive index from 2.38 to 2.17. These new glasses are designed to have comparable glass softening temperatures and compatible coefficients of thermal expansion to allow bonding and co-molding of multilayer optics. With large variation in their Abbe numbers and negative to near-zero dn/dT, optics made from these new glasses can significantly reduce the size/weight or complexity of the multispectral imaging systems for weight sensitive platforms.

  16. Evapotranspiration from Airborne Simulators as a Proxy Datasets for NASA's ECOSTRESS mission - A new Thermal Infrared Instrument on the International Space Station

    NASA Astrophysics Data System (ADS)

    Guillevic, P. C.; Hulley, G. C.; Hook, S. J.; Olioso, A.; Sanchez, J. M.; Drewry, D.; Running, S. W.; Fisher, J. B.

    2014-12-01

    Surface evapotranspiration (ET) represents the loss of water from the Earth's surface both by soil evaporation and vegetation transpiration processes. ET is a key climate variable linking the water, carbon, and energy cycles, and is very sensitive to changes in atmospheric forcing and soil water content. The response of ET to water and heat stress directly affects the surface energy balance and temperature which can be measured by thermal infrared remote sensing observations. The NASA ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) will be deployed in 2019 to address critical questions on plant-water dynamics, ecosystem productivity and future ecosystem changes with climate through an optimal combination of thermal infrared measurements in 5 spectral bands between 8-12 µm with pixel sizes of 38×57 m and an average revisit of 5 days over the contiguous United States at varying times of day. Two instruments capable of providing proxy datasets are the MODIS/ASTER (MASTER) airborne simulator and Hyperspectral Thermal Emissions Spectrometer (HyTES). This study is focused on estimating evapotranspiration using shortwave and thermal infrared remote sensing observations from these instruments. The thermal infrared data from MASTER/HyTES is used as a proxy dataset for ECOSTRESS to demonstrate the capability of the future spaceborne system to derive ET and water stress information from thermal based retrievals of land surface temperature. MASTER and HyTES data collected from 2004 to present over the Western United States at different seasons are used to test and evaluate different ET algorithms using ground-based measurements. Selected algorithms are 1) explicitly based on surface energy budget calculation or 2) based on the Penman-Monteith equation and use information on land surface temperature to estimate the surface resistance to convective fluxes. We use ground data from the Fluxnet and Ameriflux networks, and from permanent validation

  17. Thermal Infrared Airborne Hyperspectral Detection of Fumarolic Ammonia Venting on the Calipatria Fault in the Salton Sea Geothermal Field, Imperial County, California

    NASA Astrophysics Data System (ADS)

    Lynch, D. K.; Tratt, D. M.; Buckland, K. N.; Hall, J. L.; Kasper, B. P.; Martino, M. G.; Ortega, L. J.; Westberg, K. R.; Young, S. J.; Johnson, P. D.

    2009-12-01

    An airborne hyperspectral imaging survey was conducted along the Calipatria Fault in the vicinity of the Salton Sea in Southern California. In addition to strong thermal hotspots associated with active fumaroles along the fault, a number of discrete and distributed sources of ammonia were detected. Mullet Island, some recently exposed areas of sea floor, and a shallow-water fumarolic geothermal vent all indicated ammonia emissions, presumed to originate from the eutrophic reduction of nitrate fertilizer in agricultural runoff and the decay (oxidation) of organic matter, probably algae. All emission sources detected lay along the putative Calipatria Fault, one of a number of en echelon faults in the Brawley Seismic Zone that is part of the northern-most spreading center of the East Pacific Rise. The techniques developed during this field experiment suggest a potential methodology for monitoring certain of the toxic episodes that are a known source of mass aquatic fauna kills within the Salton Sea ecosystem. The imagery was acquired at ~0.05 micron spectral resolution across the 7.6-13.5 micron thermal-infrared spectral region with a ground sample distance of approximately 1 m using the SEBASS (Spatially Enhanced Broadband Array Spectrograph System) sensor.

  18. Analysis of multispectral and hyperspectral longwave infrared (LWIR) data for geologic mapping

    NASA Astrophysics Data System (ADS)

    Kruse, Fred A.; McDowell, Meryl

    2015-05-01

    Multispectral MODIS/ASTER Airborne Simulator (MASTER) data and Hyperspectral Thermal Emission Spectrometer (HyTES) data covering the 8 - 12 μm spectral range (longwave infrared or LWIR) were analyzed for an area near Mountain Pass, California. Decorrelation stretched images were initially used to highlight spectral differences between geologic materials. Both datasets were atmospherically corrected using the ISAC method, and the Normalized Emissivity approach was used to separate temperature and emissivity. The MASTER data had 10 LWIR spectral bands and approximately 35-meter spatial resolution and covered a larger area than the HyTES data, which were collected with 256 narrow (approximately 17nm-wide) spectral bands at approximately 2.3-meter spatial resolution. Spectra for key spatially-coherent, spectrally-determined geologic units for overlap areas were overlain and visually compared to determine similarities and differences. Endmember spectra were extracted from both datasets using n-dimensional scatterplotting and compared to emissivity spectral libraries for identification. Endmember distributions and abundances were then mapped using Mixture-Tuned Matched Filtering (MTMF), a partial unmixing approach. Multispectral results demonstrate separation of silica-rich vs non-silicate materials, with distinct mapping of carbonate areas and general correspondence to the regional geology. Hyperspectral results illustrate refined mapping of silicates with distinction between similar units based on the position, character, and shape of high resolution emission minima near 9 μm. Calcite and dolomite were separated, identified, and mapped using HyTES based on a shift of the main carbonate emissivity minimum from approximately 11.3 to 11.2 μm respectively. Both datasets demonstrate the utility of LWIR spectral remote sensing for geologic mapping.

  19. Multispectral scanner optical system

    NASA Technical Reports Server (NTRS)

    Stokes, R. C.; Koch, N. G. (Inventor)

    1980-01-01

    An optical system for use in a multispectral scanner of the type used in video imaging devices is disclosed. Electromagnetic radiation reflected by a rotating scan mirror is focused by a concave primary telescope mirror and collimated by a second concave mirror. The collimated beam is split by a dichroic filter which transmits radiant energy in the infrared spectrum and reflects visible and near infrared energy. The long wavelength beam is filtered and focused on an infrared detector positioned in a cryogenic environment. The short wavelength beam is dispersed by a pair of prisms, then projected on an array of detectors also mounted in a cryogenic environment and oriented at an angle relative to the optical path of the dispersed short wavelength beam.

  20. Multispectral Resource Sampler Workshop

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The utility of the multispectral resource sampler (MRS) was examined by users in the following disciplines: agriculture, atmospheric studies, engineering, forestry, geology, hydrology/oceanography, land use, and rangelands/soils. Modifications to the sensor design were recommended and the desired types of products and number of scenes required per month were indicated. The history, design, capabilities, and limitations of the MRS are discussed as well as the multilinear spectral array technology which it uses. Designed for small area inventory, the MRS can provide increased temporal, spectral, and spatial resolution, facilitate polarization measurement and atmospheric correction, and test onboard data compression techniques. The advantages of using it along with the thematic mapper are considered.

  1. Multispectral imaging radar

    NASA Technical Reports Server (NTRS)

    Porcello, L. J.; Rendleman, R. A.

    1972-01-01

    A side-looking radar, installed in a C-46 aircraft, was modified to provide it with an initial multispectral imaging capability. The radar is capable of radiating at either of two wavelengths, these being approximately 3 cm and 30 cm, with either horizontal or vertical polarization on each wavelength. Both the horizontally- and vertically-polarized components of the reflected signal can be observed for each wavelength/polarization transmitter configuration. At present, two-wavelength observation of a terrain region can be accomplished within the same day, but not with truly simultaneous observation on both wavelengths. A multiplex circuit to permit this simultaneous observation has been designed. A brief description of the modified radar system and its operating parameters is presented. Emphasis is then placed on initial flight test data and preliminary interpretation. Some considerations pertinent to the calibration of such radars are presented in passing.

  2. Multispectral Microimager for Astrobiology

    NASA Technical Reports Server (NTRS)

    Sellar, R. Glenn; Farmer, Jack D.; Kieta, Andrew; Huang, Julie

    2006-01-01

    A primary goal of the astrobiology program is the search for fossil records. The astrobiology exploration strategy calls for the location and return of samples indicative of environments conducive to life, and that best capture and preserve biomarkers. Successfully returning samples from environments conducive to life requires two primary capabilities: (1) in situ mapping of the mineralogy in order to determine whether the desired minerals are present; and (2) nondestructive screening of samples for additional in-situ testing and/or selection for return to laboratories for more in-depth examination. Two of the most powerful identification techniques are micro-imaging and visible/infrared spectroscopy. The design and test results are presented from a compact rugged instrument that combines micro-imaging and spectroscopic capability to provide in-situ analysis, mapping, and sample screening capabilities. Accurate reflectance spectra should be a measure of reflectance as a function of wavelength only. Other compact multispectral microimagers use separate LEDs (light-emitting diodes) for each wavelength and therefore vary the angles of illumination when changing wavelengths. When observing a specularly-reflecting sample, this produces grossly inaccurate spectra due to the variation in the angle of illumination. An advanced design and test results are presented for a multispectral microimager which demonstrates two key advances relative to previous LED-based microimagers: (i) acquisition of actual reflectance spectra in which the flux is a function of wavelength only, rather than a function of both wavelength and illumination geometry; and (ii) increase in the number of spectral bands to eight bands covering a spectral range of 468 to 975 nm.

  3. Multispectral system for perimeter protection of stationary and moving objects

    NASA Astrophysics Data System (ADS)

    Szustakowski, Mieczyslaw; Ciurapinski, Wieslaw M.; Zyczkowski, Marek; Palka, Norbert; Kastek, Mariusz; Dulski, Rafal; Bieszczad, Grzegorz; Sosnowski, Tomasz

    2009-09-01

    Introduction of a ground multispectral detection has changed organization and construction of perimeter security systems. The perimeter systems with linear zone sensors and cables have been replaced with a point arrangement of sensors with multispectral detection. Such multispectral sensors generally consist of an active ground radar, which scans the protected area with microwaves or millimeter waves, a thermal camera, which detects temperature contrast and a visible range camera. Connection of these three different technologies into one system requires methodology for selection of technical conditions of installation and parameters of sensors. This procedure enables us to construct a system with correlated range, resolution, field of view and object identification. The second technical problem connected with the multispectral system is its software, which helps couple the radar with the cameras. This software can be used for automatic focusing of cameras, automatic guiding cameras to an object detected by the radar, tracking of the object and localization of the object on the digital map as well as identification and alarming. In this paper two essential issues connected with multispectral system are described. We focus on methodology of selection of sensors parameters. We present usage of a spider-chart, which was adopted to the proposed methodology. Next, we describe methodology of automation of the system regarding an object detection, tracking, identification, localization and alarming.

  4. The Geologic Remote Sensing Field Experiment (GRSFE): The first geology multisensor airborne campaign

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.; Arvidson, Raymond E.

    1991-01-01

    The primary objective of the Geologic Remote Sensing Field Experiment (GRSFE) is to acquire relevant data for geological sites that can be used to test models for extraction of surface property information from remote sensing data for earth, Mars and Venus in support of the Earth Observing System (EOS), Mars Observer, and Magellan, respectively. Over forty scientists from eight universities and three NASA centers are participating in GRSFE which is co-sponsored by the NASA Planetary Geology and Geophysics Program and the NASA Geology Program. Highlights of the airborne campaign included the first simultaneous acquisition of Airborne Visible and Infrared Imaging Spectrometer (AVRIS) and Thermal Infrared Multispectral Scanner (TIMS) data on September 29, 1989, and acquisition of Advanced Solid-State Array Spectroradiometer (ASAS), Polarimetric Synthetic Aperture Radar (AIRSAR), and Airborne Terrain Laser Altimeter System (ATLAS) data all within three months of each other. The sites covered were Lunar Crater Volcanic Field and Fish Lake Valley in Nevada; and Cima Volcanic Field, Death Valley, and Ubehebe Crater in California. Coincident field measurements included meteorological and atmospheric measurements, visible/near-infrared and thermal spectra, and characterization of geology and vegetation cover. The GRSFE airborne and field data will be reduced to a suite of standard products and submitted, along with appropriate documentation, to the Planetary Data System (PDS) and the Pilot Land Data System (PLDS). These data will be used for a variety of investigations including paleoclimatic studies in the arid southwestern United States, and analysis of Magellan data. GRSFE data will also be used to support Mars Observer Laser Altimeter (MOLA) and Mars Rover Sample Return (MRSR) simulation studies.

  5. A note on the effect of reflected solar radiation on airborne and ground measurements in the thermal infrared

    NASA Technical Reports Server (NTRS)

    Whitehead, V. S.

    1971-01-01

    The magnitude of thermal solar radiation reflected from water surfaces is considered. It is shown both theoretically and by field observation that, for instruments with small fields of view, the reflected thermal solar radiation can contribute significantly to the measured energy. Comparison of thermal scanner data taken from aircraft at a 16 deg azimuth angle from the mirror point of the sun over the open ocean with data taken at a 164 deg anzimuth angle from the mirror point of the sun at the same angle from nadir is indicative of a difference of 2.8 K in the equivalent black body radiation temperature. Observations taken from a surface vessel into sunglint 80 deg from nadir are indicative of an equivalent black body radiation temperature that is 34 K warmer than the temperature obtained at a similar nadir angle away from the sunglint.

  6. MSS D Multispectral Scanner System

    NASA Technical Reports Server (NTRS)

    Lauletta, A. M.; Johnson, R. L.; Brinkman, K. L. (Principal Investigator)

    1982-01-01

    The development and acceptance testing of the 4-band Multispectral Scanners to be flown on LANDSAT D and LANDSAT D Earth resources satellites are summarized. Emphasis is placed on the acceptance test phase of the program. Test history and acceptance test algorithms are discussed. Trend data of all the key performance parameters are included and discussed separately for each of the two multispectral scanner instruments. Anomalies encountered and their resolutions are included.

  7. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  8. The Use of the Airborne Thermal/Visible Land Application Sensor (ATLAS) to Determine the Thermal Response Numbers for Urban Areas

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Rickman, Doug; Quattroch, Dale; Estes. Maury

    2007-01-01

    Although satellite data are very useful for analysis of the urban heat island effect at a coarse scale, they do not lend themselves to developing a better understanding of which surfaces across the city contribute or drive the development of the urban heat island effect. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., < 15m) to adequately resolve these surfaces and their attendant thermal energy regimes. Additionally, very fine scale spatial resolution thermal infrared data, such as that obtained from aircraft, are very useful for demonstrating to planning officials, policy makers, and the general populace the benefits of the urban forest. These benefits include mitigating the urban heat island effect, making cities more aesthetically pleasing and more habitable environments, and aid in overall cooling of the community. High spatial resolution thermal data are required to quantify how artificial surfaces within the city contribute to an increase in urban heating and the benefit of cool surfaces (e.g., surface coatings that reflect much of the incoming solar radiation as opposed to absorbing it thereby lowering urban temperatures). The TRN (thermal response number)(Luvall and Holbo 1989) is a technique using aircraft remotely sensed surface temperatures to quantify the thermal response of urban surfaces. The TRN was used to quantify the thermal response of various urban surface types ranging from completely vegetated surfaces to asphalt and concrete parking lots for several cities in the United States.

  9. An interactive lake survey program. [airborne multispectral sensor image processing

    NASA Technical Reports Server (NTRS)

    Smith, A. Y.

    1977-01-01

    Consideration is given to the development and operation of the interactive lake survey program developed by the Jet Propulsion Laboratory and the Environmental Protection Agency. The program makes it possible to locate, isolate, and store any number of water bodies on the basis of a given digital image. The stored information may be used to generate statistical analyses of each body of water including the lake surface area and the shoreline perimeter. The hardware includes a 360/65 host computer, a Ramtek G100B display controller, and a trackball cursor. The system is illustrated by the LAKELOC operation as it would be applied to a Landsat scene, noting the FARINA and STATUS programs. The water detection algorithm, which increases the accuracy with which water and land data may be separated, is discussed.

  10. A multispectral scanner survey of the Rocky Flats Environmental Technology Site and surrounding area, Golden, Colorado

    SciTech Connect

    Brewster, S.B. Jr.; Brickey, D.W.; Ross, S.L.; Shines, J.E.

    1997-04-01

    Aerial multispectral scanner imagery was collected of the Rocky Flats Environmental Technology Site in Golden, Colorado, on June 3, 5, 6, and 7, 1994, using a Daedalus AADS1268 multispectral scanner and coincident aerial color and color infrared photography. Flight altitudes were 4,500 feet (1372 meters) above ground level to match prior 1989 survey data; 2,000 feet (609 meters) above ground level for sitewide vegetation mapping; and 1,000 feet (304 meters) above ground level for selected areas of special interest. A multispectral survey was initiated to improve the existing vegetation classification map, to identify seeps and springs, and to generate ARC/INFO Geographic Information System compatible coverages of the vegetation and wetlands for the entire site including the buffer zone. The multispectral scanner imagery and coincident aerial photography were analyzed for the detection, identification, and mapping of vegetation and wetlands. The multispectral scanner data were processed digitally while the color and color infrared photography were manually photo-interpreted to define vegetation and wetlands. Several standard image enhancement techniques were applied to the multispectral scanner data to assist image interpretation. A seep enhancement was applied and a color composite consisting of multispectral scanner channels 11, 7, and 5 (thermal infrared, mid-infrared, and red bands, respectively) proved most useful for detecting seeps, seep zones, and springs. The predawn thermal infrared data were also useful in identifying and locating seeps. The remote sensing data, mapped wetlands, and ancillary Geographic Information System compatible data sets were spatially analyzed for seeps.

  11. Multispectral rock-type separation and classification.

    SciTech Connect

    Moya, Mary M.; Fogler, Robert Joseph; Paskaleva, Biliana; Hayat, Majeed M.

    2004-06-01

    This paper explores the possibility of separating and classifying remotely-sensed multispectral data from rocks and minerals onto seven geological rock-type groups. These groups are extracted from the general categories of metamorphic, igneous and sedimentary rocks. The study is performed under ideal conditions for which the data is generated according to laboratory hyperspectral data for the members, which are, in turn, passed through the Multi-spectral Thermal Imager (MTI) filters yielding 15 bands. The main challenge in separability is the small size of the training data sets, which initially did not permit direct application of Bayesian decision theory. To enable Bayseian classification, the original training data is linearly perturbed with the addition minerals, vegetation, soil, water and other valid impurities. As a result, the size of the training data is significantly increased and accurate estimates of the covariance matrices are achieved. In addition, a set of reduced (five) linearly-extracted canonical features that are optimal in providing the most important information about the data is determined. An alternative nonlinear feature-selection method is also employed based on spectral indices comprising a small subset of all possible ratios between bands. By applying three optimization strategies, combinations of two and three ratios are found that provide reliable separability and classification between all seven groups according to the Bhattacharyya distance. To set a benchmark to which the MTI capability in rock classification can be compared, an optimization strategy is performed for the selection of optimal multispectral filters, other than the MTI filters, and an improvement in classification is predicted.

  12. Multispectral bilateral video fusion.

    PubMed

    Bennett, Eric P; Mason, John L; McMillan, Leonard

    2007-05-01

    We present a technique for enhancing underexposed visible-spectrum video by fusing it with simultaneously captured video from sensors in nonvisible spectra, such as Short Wave IR or Near IR. Although IR sensors can accurately capture video in low-light and night-vision applications, they lack the color and relative luminances of visible-spectrum sensors. RGB sensors do capture color and correct relative luminances, but are underexposed, noisy, and lack fine features due to short video exposure times. Our enhanced fusion output is a reconstruction of the RGB input assisted by the IR data, not an incorporation of elements imaged only in IR. With a temporal noise reduction, we first remove shot noise and increase the color accuracy of the RGB footage. The IR video is then normalized to ensure cross-spectral compatibility with the visible-spectrum video using ratio images. To aid fusion, we decompose the video sources with edge-preserving filters. We introduce a multispectral version of the bilateral filter called the "dual bilateral" that robustly decomposes the RGB video. It utilizes the less-noisy IR for edge detection but also preserves strong visible-spectrum edges not in the IR. We fuse the RGB low frequencies, the IR texture details, and the dual bilateral edges into a noise-reduced video with sharp details, correct chrominances, and natural relative luminances. PMID:17491451

  13. Thermal Catalytic Oxidation of Airborne Contaminants by a Reactor Using Ultra-Short Channel Length, Monolithic Catalyst Substrates

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Tomes, K. M.; Tatara, J. D.

    2005-01-01

    Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.

  14. Improved Airborne System for Sensing Wildfires

    NASA Technical Reports Server (NTRS)

    McKeown, Donald; Richardson, Michael

    2008-01-01

    The Wildfire Airborne Sensing Program (WASP) is engaged in a continuing effort to develop an improved airborne instrumentation system for sensing wildfires. The system could also be used for other aerial-imaging applications, including mapping and military surveillance. Unlike prior airborne fire-detection instrumentation systems, the WASP system would not be based on custom-made multispectral line scanners and associated custom- made complex optomechanical servomechanisms, sensors, readout circuitry, and packaging. Instead, the WASP system would be based on commercial off-the-shelf (COTS) equipment that would include (1) three or four electronic cameras (one for each of three or four wavelength bands) instead of a multispectral line scanner; (2) all associated drive and readout electronics; (3) a camera-pointing gimbal; (4) an inertial measurement unit (IMU) and a Global Positioning System (GPS) receiver for measuring the position, velocity, and orientation of the aircraft; and (5) a data-acquisition subsystem. It would be necessary to custom-develop an integrated sensor optical-bench assembly, a sensor-management subsystem, and software. The use of mostly COTS equipment is intended to reduce development time and cost, relative to those of prior systems.

  15. Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications.

    PubMed

    Mei, Shuo-Jun; Liu, Cheng-Wei; Liu, Di; Zhao, Fu-Yun; Wang, Han-Qing; Li, Xiao-Hong

    2016-09-15

    The pedestrian level pollutant transport in street canyons with multiple aspect ratios (H/W) is numerically investigated in the present work, regarding of various unstable thermal stratification scenarios and plain surrounding. Non-isothermal turbulent wind flow, temperature field and pollutant spread within and above the street canyons are solved by the realizable k-ε turbulence model along with the enhanced wall treatment. One-vortex flow regime is observed for shallow canyons with H/W=0.5, whereas multi-vortex flow regime is observed for deep canyons with H/W=2.0. Both one-vortex and multi-vortex regimes could be observed for the street canyons with H/W=1.0, where the secondary vortex could be initiated by the flow separation and intensified by unstable thermal stratification. Air exchange rate (AER) and pollutant retention time are adopted to respectively evaluate the street canyon ventilation and pollutant removal performance. A second-order polynomial functional relationship is established between AER and Richardson number (Ri). Similar functional relationship could be established between retention time and Ri, and it is only valid for canyons with one-vortex flow regime. In addition, retention time could be prolonged abruptly for canyons with multi-vortex flow regime. Very weak secondary vortex is presented at the ground level of deep canyons with mild stratification, where pollutants are highly accumulated. However, with the decrease of Ri, pollutant concentration adjacent to the ground reduces accordingly. Present research could be applied to guide the urban design and city planning for enhancing pedestrian environment. PMID:27262984

  16. Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications.

    PubMed

    Mei, Shuo-Jun; Liu, Cheng-Wei; Liu, Di; Zhao, Fu-Yun; Wang, Han-Qing; Li, Xiao-Hong

    2016-09-15

    The pedestrian level pollutant transport in street canyons with multiple aspect ratios (H/W) is numerically investigated in the present work, regarding of various unstable thermal stratification scenarios and plain surrounding. Non-isothermal turbulent wind flow, temperature field and pollutant spread within and above the street canyons are solved by the realizable k-ε turbulence model along with the enhanced wall treatment. One-vortex flow regime is observed for shallow canyons with H/W=0.5, whereas multi-vortex flow regime is observed for deep canyons with H/W=2.0. Both one-vortex and multi-vortex regimes could be observed for the street canyons with H/W=1.0, where the secondary vortex could be initiated by the flow separation and intensified by unstable thermal stratification. Air exchange rate (AER) and pollutant retention time are adopted to respectively evaluate the street canyon ventilation and pollutant removal performance. A second-order polynomial functional relationship is established between AER and Richardson number (Ri). Similar functional relationship could be established between retention time and Ri, and it is only valid for canyons with one-vortex flow regime. In addition, retention time could be prolonged abruptly for canyons with multi-vortex flow regime. Very weak secondary vortex is presented at the ground level of deep canyons with mild stratification, where pollutants are highly accumulated. However, with the decrease of Ri, pollutant concentration adjacent to the ground reduces accordingly. Present research could be applied to guide the urban design and city planning for enhancing pedestrian environment.

  17. Multispectral image analysis for object recognition and classification

    NASA Astrophysics Data System (ADS)

    Viau, C. R.; Payeur, P.; Cretu, A.-M.

    2016-05-01

    Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to assist or automate decision-making processes. Advancements in sensor technologies now make it possible to capture and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum. Multispectral imaging has countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing and archeology. The development of advanced algorithms to process and extract salient information from the imagery is a critical component of the overall system performance. The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found objects in an office setting. A multispectral dataset (visual and thermal) was captured and features from the visual and thermal images were extracted and used to train support vector machine (SVM) classifiers. The SVM's class prediction ability was evaluated separately on the visual, thermal and multispectral testing datasets.

  18. Multispectral imaging method and apparatus

    DOEpatents

    Sandison, D.R.; Platzbecker, M.R.; Vargo, T.D.; Lockhart, R.R.; Descour, M.R.; Richards-Kortum, R.

    1999-07-06

    A multispectral imaging method and apparatus are described which are adapted for use in determining material properties, especially properties characteristic of abnormal non-dermal cells. A target is illuminated with a narrow band light beam. The target expresses light in response to the excitation. The expressed light is collected and the target's response at specific response wavelengths to specific excitation wavelengths is measured. From the measured multispectral response the target's properties can be determined. A sealed, remote probe and robust components can be used for cervical imaging. 5 figs.

  19. Multispectral imaging method and apparatus

    DOEpatents

    Sandison, David R.; Platzbecker, Mark R.; Vargo, Timothy D.; Lockhart, Randal R.; Descour, Michael R.; Richards-Kortum, Rebecca

    1999-01-01

    A multispectral imaging method and apparatus adapted for use in determining material properties, especially properties characteristic of abnormal non-dermal cells. A target is illuminated with a narrow band light beam. The target expresses light in response to the excitation. The expressed light is collected and the target's response at specific response wavelengths to specific excitation wavelengths is measured. From the measured multispectral response the target's properties can be determined. A sealed, remote probe and robust components can be used for cervical imaging

  20. Multispectral Focal Plane Assembly for Satellite Remote Sensing

    SciTech Connect

    Rienstra, J.; Ballard, M.

    1997-12-31

    Sandia National Laboratories and several subsystem contractors are developing technologies applicable to multispectral remote sensing from space. A proof of concept multispectral sensor system is under development. The objective of building this sensor is to demonstrate and evaluate multispectral imaging technologies for various applications. The three major subsystems making up the sensor are the focal plane assembly (FPA), the cryocooler, and the telescope. This paper covers the focal plane assembly, which is the basis of the sensor system. The focal plane assembly includes sensor chip assemblies, optical filters, and a vacuum enclosure with cold shielding. Linear detector arrays provide spatial resolution in the cross-track direction for a pushbroom imager configuration. The optical filters define 15 spectral bands in a range from 0.45 microns to 10.7 microns. All the detector arrays are mounted on a single focal plane and are designed to operate at 75 K. No beam splitters are used. The four spectral bands covering the visible to near infrared have roughly 2400 pixels each, and the remaining 11 spectral bands have roughly 600 pixels each. The average total rate of multispectral data from the FPA is approximately 15.4 megapixels per second. At the time this paper is being written, the multispectral focal plane assembly is in the fabrication phase. A thermal/mechanical mockup has been built and tested for the vibration environment and to determine the thermal load. Some of the sensor chip assemblies and filters have been built and tested. Several notable features of the design are covered in the paper as well as preliminary test data.

  1. Use of high spectral resolution airborne visible/infrared imaging spectrometer data for geologic mapping: An overview

    NASA Technical Reports Server (NTRS)

    Carrere, Veronique

    1991-01-01

    Specific examples of the use of AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) high spectral resolution data for mapping, alteration related to ore deposition and to hydrocarbon seepage, and alluvial fans are presented. Correction for atmospheric effects was performed using flat field correction, log residuals, and radiative transfer modeling. Minerals of interest (alunite, kaolinite, gypsum, carbonate iron oxides, etc.) were mapped based upon the wavelength position, depth and width of characteristic absorption features. Results were checked by comparing to existing maps, results from other sensors (Thematic Mapper (TM) and TIMS (Thermal Infrared Multispectral Scanner)), and laboratory spectra of samples collected in the field. Alteration minerals were identified and mapped. The signal to noise ratio of acquired AVIRIS data, long to 2.0 microns, was insufficient to map minerals of interest.

  2. Multispectral Thermal Imager (MTI) Payload Overview

    SciTech Connect

    Bender, S.C.; Brock, B.C.; Bullington, D.M.; Byrd, D.A.; Claassen, P.J.; Decker, M.L.; Henson, T.D.; Kay, R.R.; Kidner, R.E.; Lanes, C.E.; Little, C.; Marbach, K.D.; Rackley, N.G.; Rienstra, J.L.; Smith, B.W.; Taplin, R.B.; Weber, P.G.

    1999-07-07

    MTI is a comprehensive research and development project that includes up-front modeling and analysis, satellite system design, fabrication, assembly and testing, on-orbit operations, and experimentation and data analysis. The satellite is designed to collect radiometrically calibrated, medium resolution imagery in 15 spectral bands ranging from 0.45 to 10.70 pm. The payload portion of the satellite includes the imaging system components, associated electronics boxes, and payload support structure. The imaging system includes a three-mirror anastigmatic off-axis telescope, a single cryogenically cooled focal plane assembly, a mechanical cooler, and an onboard calibration system. Payload electronic subsystems include image digitizers, real-time image compressors, a solid state recorder, calibration source drivers, and cooler temperature and vibration controllers. The payload support structure mechanically integrates all payload components and provides a simple four point interface to the spacecraft bus. All payload components have been fabricated and tested, and integrated.

  3. Simultaneous determination of airborne carbonyls and aromatic hydrocarbons using mixed sorbent collection and thermal desorption-gas chromatography/mass spectrometric analysis.

    PubMed

    Chien, Yeh-Chung; Yin, Ko-Ghun

    2009-05-01

    Volatile organic chemicals (VOC) such as aromatics and carbonyls are ubiquitous, and have environmental and health significance. This work presents a novel analytical method for simultaneously monitoring airborne carbonyls compounds and aromatic hydrocarbons. Carbonyls were collected onto an adsorbent (Tenax TA, coated with pentafluorophenyl hydrazine (PFPH)) that reacted with carbonyl groups to form thermo-stable derivatives that are suitable for subsequent analysis by thermal-desorption and GC/MS. Aromatic hydrocarbons were collected onto Tenax TA that was packed in the same sampling tube, and analyzed using the same method as carbonyls. Six carbonyls (formaldehyde, acetaldehyde, benzaldehyde, acetone, methyl ethyl ketone and methyl isobutyl ketone) and five aromatics (benzene, toluene, ethylbenzene, xylenes and styrene) were evaluated following standard test protocols. Calibration ranges were 30-200 ng per tube for most test chemicals, and 200-1000 ng per tube for formaldehyde. The analytical precision was 7% or better, and the collection efficiency, tested using a static sampling bag, was between 94 and 98%. PFPH-coated Tenax TA (for collecting carbonyls) needs to be placed in the front section of the tube, and Tenax TA in the back section (for collecting aromatics). The method detection limits of the current method ranged between 0.2 and 25 ng per tube, which corresponded to sub- to 17.2 ppbv (for formaldehyde), based on a typical 6 l sample from a sampling rate of 25 ml/min. Samples were stable for at least ten days under ambient conditions. The proposed method was also tested in the field and proved satisfactory. The proposed method is simple, feasible and has an acceptable accuracy and precision. It can thus be adopted as a reference method for making relevant measurements. PMID:19436859

  4. Fully integrated surface-subsurface flow modelling of groundwater-lake interaction in an esker aquifer: Model verification with stable isotopes and airborne thermal imaging

    NASA Astrophysics Data System (ADS)

    Ala-aho, Pertti; Rossi, Pekka M.; Isokangas, Elina; Kløve, Bjørn

    2015-03-01

    Water resources management is moving towards integration, where groundwater (GW), surface water (SW) and related aquatic ecosystems are considered one management unit. Because of this paradigm shift, more information and new tools are needed to understand the ecologically relevant fluxes (water, heat, solutes) at the GW-SW interface. This study estimated the magnitude, temporal variability and spatial distribution of water fluxes at the GW-SW interface using a fully integrated hydrological modelling code (HydroGeoSphere). The model domain comprised a hydrologically complex esker aquifer in Northern Finland with interconnected lakes, streams and wetlands. The model was calibrated in steady state for soil hydraulic conductivity and anisotropy and it reproduced the hydraulic head and stream baseflow distribution throughout the aquifer in both transient and steady state modes. In a novel analysis, model outputs were compared with the locations and magnitude of GW discharge to lakes estimated using field techniques. Spatial occurrence of GW-lake interaction was interpreted from airborne thermal infrared imaging. The observed GW inflow locations coincided well with model nodes showing positive exchange flux between surface and subsurface domains. Order of magnitude of simulated GW inflow to lakes showed good agreement with flux values calculated with a stable water isotope technique. Finally, time series of GW inflow, extracted as model output, showed moderate annual variability and demonstrated different interannual inflow changes in seepage and drainage lakes of the aquifer. Overall, this study demonstrated the ability of a fully integrated numerical model to reproduce observed GW-SW exchange processes in a complex unconfined aquifer system. The model-based estimates obtained for GW influx magnitude and spatial distribution, along with information on GW quality can be used to estimate ecologically relevant fluxes in future water resources management.

  5. Estimating the relationship between urban 3D morphology and land surface temperature using airborne LiDAR and Landsat-8 Thermal Infrared Sensor data

    NASA Astrophysics Data System (ADS)

    Lee, J. H.

    2015-12-01

    Urban forests are known for mitigating the urban heat island effect and heat-related health issues by reducing air and surface temperature. Beyond the amount of the canopy area, however, little is known what kind of spatial patterns and structures of urban forests best contributes to reducing temperatures and mitigating the urban heat effects. Previous studies attempted to find the relationship between the land surface temperature and various indicators of vegetation abundance using remote sensed data but the majority of those studies relied on two dimensional area based metrics, such as tree canopy cover, impervious surface area, and Normalized Differential Vegetation Index, etc. This study investigates the relationship between the three-dimensional spatial structure of urban forests and urban surface temperature focusing on vertical variance. We use a Landsat-8 Thermal Infrared Sensor image (acquired on July 24, 2014) to estimate the land surface temperature of the City of Sacramento, CA. We extract the height and volume of urban features (both vegetation and non-vegetation) using airborne LiDAR (Light Detection and Ranging) and high spatial resolution aerial imagery. Using regression analysis, we apply empirical approach to find the relationship between the land surface temperature and different sets of variables, which describe spatial patterns and structures of various urban features including trees. Our analysis demonstrates that incorporating vertical variance parameters improve the accuracy of the model. The results of the study suggest urban tree planting is an effective and viable solution to mitigate urban heat by increasing the variance of urban surface as well as evaporative cooling effect.

  6. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  7. An aerial multispectral thermographic survey of the Oak Ridge Reservation for selected areas K-25, X-10, and Y-12, Oak Ridge, Tennessee

    SciTech Connect

    Ginsberg, I.W.

    1996-10-01

    During June 5-7, 1996, the Department of Energy`s Remote Sensing Laboratory performed day and night multispectral surveys of three areas at the Oak Ridge Reservation: K-25, X-10, and Y-12. Aerial imagery was collected with both a Daedalus DS1268 multispectral scanner and National Aeronautics and Space Administration`s Thermal Infrared Multispectral System, which has six bands in the thermal infrared region of the spectrum. Imagery from the Thermal Infrared Multispectral System was processed to yield images of absolute terrain temperature and of the terrain`s emissivities in the six spectral bands. The thermal infrared channels of the Daedalus DS1268 were radiometrically calibrated and converted to apparent temperature. A recently developed system for geometrically correcting and geographically registering scanner imagery was used with the Daedalus DS1268 multispectral scanner. The corrected and registered 12-channel imagery was orthorectified using a digital elevation model. 1 ref., 5 figs., 5 tabs.

  8. Multispectral Landsat images of Antartica

    SciTech Connect

    Lucchitta, B.K.; Bowell, J.A.; Edwards, K.L.; Eliason, E.M.; Fergurson, H.M.

    1988-01-01

    The U.S. Geological Survey has a program to map Antarctica by using colored, digitally enhanced Landsat multispectral scanner images to increase existing map coverage and to improve upon previously published Landsat maps. This report is a compilation of images and image mosaic that covers four complete and two partial 1:250,000-scale quadrangles of the McMurdo Sound region.

  9. Airborne thermography or infrared remote sensing.

    PubMed

    Goillot, C C

    1975-01-01

    Airborne thermography is part of the more general remote sensing activity. The instruments suitable for image display are infrared line scanners. A great deal of interest has developed during the past 10 years in airborne thermal remote sensing and many applications are in progress. Infrared scanners on board a satellite are used for observation of cloud cover; airborne infrared scanners are used for forest fire detection, heat budget of soils, detecting insect attack, diseases, air pollution damage, water stress, salinity stress on vegetation, only to cite some main applications relevant to agronomy. Using this system it has become possible to get a 'picture' of our thermal environment.

  10. Time-resolved multispectral imaging of combustion reaction

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Fréderick

    2015-05-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. This allows to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases such as carbon dioxide (CO2) selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge about spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using Telops MS-IR MW camera which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profile derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  11. Time-resolved multispectral imaging of combustion reactions

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Frédérick

    2015-10-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. These allow to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases, such as carbon dioxide (CO2), selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge of spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using a Telops MS-IR MW camera, which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profiles derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  12. Multispectral fluorescence imaging of atherosclerosis

    SciTech Connect

    Davenport, C.M.C.

    1992-01-01

    Multispectral fluorescence imaging is a new diagnostic technique with the potential to provide improved detection and classification of atherosclerotic disease. This technique involves imaging the fluorescence response of a tissue region through a tunable band-pass filtering device. The result is a set of image in which each individual image is composed of the fluorescence emission within a specified band of wavelengths. Multispectral imaging combined with angioscopic technology allows direct access to important spectral information and spatial attributes providing the potential for more informed clinical decisions about which, if any, treatment modality is indicated. In this dissertation, the system requirements for an angioscopic system with multispectral imaging capability are identified. This analysis includes a description of the necessary optical components and their characteristics as well as the experimental determination of spectral radiance values for the fluorescence response of human aorta specimens and the estimation of anticipated signal-to-noise ratios for the spectral images. Other issues investigated include the number of spectral images required to provide good classification potential and the best normalization method to be utilized. Finally, the potential utility of the information contained within a multispectral data set is demonstrated. Two methods of utilizing the multispectral data are presented. The first method involves generating a ratio-image from the ratio of the intensities of two spectrally filtered images. The second method consists of using histologically verified training data to train a projector and then applying that projector to a set of spectral images. The result provides improved contrast image. White-light images (generated using an incandescent light source), total-fluorescence images (the fluorescence response without spectral filtering), ratio-images, and optimized contrast images are compared. T

  13. Thermal Remote Sensing and the Thermodynamics of Ecosystems Development

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Kay, James J.; Fraser, Roydon F.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    Thermal remote sensing can provide environmental measuring tools with capabilities for measuring ecosystem development and integrity. Recent advances in applying principles of nonequilibrium thermodynamics to ecology provide fundamental insights into energy partitioning in ecosystems. Ecosystems are nonequilibrium systems, open to material and energy flows, which grow and develop structures and processes to increase energy degradation. More developed terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading its energy content). This can be measured by the effective surface temperature of the ecosystem on a landscape scale. A series of airborne thermal infrared multispectral scanner data were collected from several forested ecosystems ranging from a western US douglas-fir forest to a tropical rain forest in Costa Rica. Also measured were agriculture systems. These data were used to develop measures of ecosystem development and integrity based on surface temperature.

  14. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  15. Polarization controllable multispectral symmetry-breaking absorberin mid-infrared

    NASA Astrophysics Data System (ADS)

    Chen, Nan; Pitchappa, Prakash; Ho, Chong Pei; Hasan, Dihan; Kropelnicki, Piotr; Alioto, Massimo; Lee, Chengkuo

    2016-08-01

    The versatility of mid-infrared metamaterial absorbers along with the ease of fabrication has been widely used in thermal imaging, molecule sensing, and many other applications. Controllable multispectral absorption is highly required for small footprint, multi-purpose, and real-time sensing applications. In this paper, we present the polarization control of interchangeable multispectral absorption based on the dual-band metamaterial absorber in split mode. Large modulation depth of absorption is obtained during multi-band transition through polarization control. We perform theoretical and numerical analysis to explain the results by formulating an equivalent circuit for the asymmetric cross resonator. Thermal controllability is also demonstrated to show the reversible and repeatable manipulation of absorption intensity at a given wavelength. Moreover, we characterized the limitation of this device under extreme high temperature. This work offers a design methodology for interchangeable multispectral metamaterial absorber from a new perspective by adopting polarization of incident light as a control mechanism, and this will open up possibilities for many valuable applications in the future.

  16. Airborne Sensor Thermal Management Solution

    SciTech Connect

    Ng, K. K.

    2015-06-03

    The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft. The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft.

  17. Mapping giant reed along the Rio Grande using airborne and satellite imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Giant reed (Arundo donax L.) is a perennial invasive weed that presents a severe threat to agroecosystems and riparian areas in the Texas and Mexican portions of the Rio Grande Basin. The objective of this presentation is to give an overview on the use of aerial photography, airborne multispectral a...

  18. Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, six extrapolation methods have been compared for their ability to estimate daily crop evapotranspiration (ETd) from instantaneous latent heat flux estimates derived from digital airborne multispectral remote sensing imagery. Data used in this study were collected during an experiment...

  19. Multispectral polarized scene projector (MPSP)

    NASA Astrophysics Data System (ADS)

    Yu, Haiping; Wei, Hong; Guo, Lei; Wang, Shenggang; Li, Le; Lippert, Jack R.; Serati, Steve; Gupta, Neelam; Carlen, Frank R.

    2011-06-01

    This newly developed prototype Multispectral Polarized Scene Projector (MPSP), configured for the short wave infrared (SWIR) regime, can be used for the test & evaluation (T&E) of spectro-polarimetric imaging sensors. The MPSP system generates both static and video images (up to 200 Hz) with 512×512 spatial resolution with active spatial, spectral, and polarization modulation with controlled bandwidth. It projects input SWIR radiant intensity scenes from stored memory with user selectable wavelength (850-1650 nm) and bandwidth (12-100 nm), as well as polarization states (six different states) controllable on a pixel by pixel basis. The system consists of one spectrally tunable liquid crystal filter with variable bandpass, and multiple liquid crystal on silicon (LCoS) spatial light modulators (SLMs) for intensity control and polarization modulation. In addition to the spectro-polarimetric sensor test, the instrument also simulates polarized multispectral images of military scenes/targets for hardware-in-the loop (HIL) testing.

  20. Multispectral determination of vegetative cover in corn crop canopy

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.

    1972-01-01

    The relationship between different amounts of vegetative ground cover and the energy reflected by corn canopies was investigated. Low altitude photography and an airborne multispectral scanner were used to measure this reflected energy. Field plots were laid out, representing four growth stages of corn. Two plot locations were chosen-on a very dark and a very light surface soil. Color and color infrared photographs were taken from a vertical distance of 10 m. Estimates of ground cover were made from these photographs and were related to field measurements of leaf area index. Ground cover could be predicted from leaf area index measurements by a second order equation. Microdensitometry and digitzation of the three separated dye layers of color infrared film showed that the near infrared dye layer is most valuable in ground cover determinations. Computer analysis of the digitized photography provided an accurate method of determining precent ground cover.

  1. Gimbaled multispectral imaging system and method

    DOEpatents

    Brown, Kevin H.; Crollett, Seferino; Henson, Tammy D.; Napier, Matthew; Stromberg, Peter G.

    2016-01-26

    A gimbaled multispectral imaging system and method is described herein. In an general embodiment, the gimbaled multispectral imaging system has a cross support that defines a first gimbal axis and a second gimbal axis, wherein the cross support is rotatable about the first gimbal axis. The gimbaled multispectral imaging system comprises a telescope that fixed to an upper end of the cross support, such that rotation of the cross support about the first gimbal axis causes the tilt of the telescope to alter. The gimbaled multispectral imaging system includes optics that facilitate on-gimbal detection of visible light and off-gimbal detection of infrared light.

  2. Discriminating plant species across California's diverse ecosystems using airborne VSWIR and TIR imagery

    NASA Astrophysics Data System (ADS)

    Meerdink, S.; Roberts, D. A.; Roth, K. L.

    2015-12-01

    Accurate knowledge of the spatial distribution of plant species is required for many research and management agendas that track ecosystem health. Because of this, there is continuous development of research focused on remotely-sensed species classifications for many diverse ecosystems. While plant species have been mapped using airborne imaging spectroscopy, the geographic extent has been limited due to data availability and spectrally similar species continue to be difficult to separate. The proposed Hyperspectral Infrared Imager (HyspIRI) space-borne mission, which includes a visible near infrared/shortwave infrared (VSWIR) imaging spectrometer and thermal infrared (TIR) multi-spectral imager, would present an opportunity to improve species discrimination over a much broader scale. Here we evaluate: 1) the capability of VSWIR and/or TIR spectra to discriminate plant species; 2) the accuracy of species classifications within an ecosystem; and 3) the potential for discriminating among species across a range of ecosystems. Simulated HyspIRI imagery was acquired in spring/summer of 2013 spanning from Santa Barbara to Bakersfield, CA with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the MODIS/ASTER Airborne Simulator (MASTER) instruments. Three spectral libraries were created from these images: AVIRIS (224 bands from 0.4 - 2.5 µm), MASTER (8 bands from 7.5 - 12 µm), and AVIRIS + MASTER. We used canonical discriminant analysis (CDA) as a dimension reduction technique and then classified plant species using linear discriminant analysis (LDA). Our results show the inclusion of TIR spectra improved species discrimination, but only for plant species with emissivities departing from that of a gray body. Ecosystems with species that have high spectral contrast had higher classification accuracies. Mapping plant species across all ecosystems resulted in a classification with lower accuracies than a single ecosystem due to the complex nature of

  3. The 1994 TIMS airborne calibration experiment: Castaic Lake, California

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J.; Hook, Simon J.; Vandenbosch, Jeannette

    1995-01-01

    This summary describes the 9 March 1994 Thermal Infrared Multispectral Scanner (TIMS) airborne calibration experiment conducted at Castaic Lake, California. This experiment was a collaborative effort between the TIMS and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) science teams at the Jet Propulsion Laboratory (JPL). TIMS was flown on the NASA/Ames Research Center C130 with the new retractable air fence installed in the TIMS instrument bay. The purpose of this experiment was to determine if the fence would reduce the air turbulence in the TIMS instrument bay, thereby reducing the errors in calibration caused by wind-blast cooling of the blackbody reference sources internal to TIMS. Previous experiments have indicated that the wind blast effect could cause TIMS to over-estimate surface temperatures by more than 10 C. We have examined the TIMS data from twelve lines flown over Castaic Lake. Four of the lines were flown at an altitude of approximately 2.5 km (MSL), four at an altitude of approximately 6.7 km, and four at approximately 8.3 km. At each altitude there were flights with northern and southern headings, with the aircraft level and at a positive pitch (nose-up attitude). The suite of twelve flights was designed to subject the TIMS/air fence system to different wind conditions and air temperatures. The TIMS flights were supported by a ground-truth team, who measured lake surface temperatures from a boat, and an atmosphere characterization team, who launched an airsonde and measured solar irradiance with a Reagan Sun Photometer. The Reagan measurements were used to construct a time-series of estimates of the total abundance of water vapor in the atmospheric column. These estimates were used to constrain modifications of the airsonde water vapor profile measurements made when processing the TIMS data with a customized version of the MODTRAN radiative transfer code.

  4. Mapping surface alteration effects associated with hydrocarbon reservoirs at Gypsum Plain, Texas, and Cement, Oklahoma, using multispectral information

    SciTech Connect

    Carrerre, V.; Lang, H.R. ); Crawford, M.F. )

    1991-08-01

    Two test sites, Gypsum Plain, Texas, and Cement, Oklahoma, were selected to evaluate combined use of airborne visible/infrared imaging spectrometer (AVIRIS) and thermal infrared multispectral scanner (TIMS) for detection of alteration effects associated with hydrocarbon microseepage. Bleaching of redbuds, variations in carbonate cement, replacement of gypsum, exidation of iron, and changes in clay mineralogy may correlate spatially with oil and gas production and subsurface structures. Spectral features due to iron oxides, calcite, gypsum, smectite, and kaolinite can be mapped using AVIRIS image data, using various techniques such as ratios, scene-dependent log residuals, and scene-independent radioactive transfer approach using LOWTRAN7, and with TIMSA data using DSTRETCH. Poor signal-to-noise in the 2.0-2.4 {mu}m region limited the ability to map clay, gypsum, and carbonates both at Cement and Gypsum Plain, carbonate and quartz-rich sediments at Gypsum Plain, and differentiated soils developed on the Rush Spring Sandstone from soil derived from the Cloud Chief Formation at Cement. Combined spectral and photogeologic interpretation of coregistered AVIRIS, TIMS, and Landsat TM, and digital elevation data demonstrate the practical approaches for surface oil and gas exploration using presently operational commercial aircraft and future satellite systems.

  5. Joint spatio-spectral based edge detection for multispectral infrared imagery.

    SciTech Connect

    Krishna, Sanjay; Hayat, Majeed M.; Bender, Steven C.; Sharma, Yagya D.; Jang, Woo-Yong; Paskalva, Biliana S.

    2010-06-01

    Image segmentation is one of the most important and difficult tasks in digital image processing. It represents a key stage of automated image analysis and interpretation. Segmentation algorithms for gray-scale images utilize basic properties of intensity values such as discontinuity and similarity. However, it is possible to enhance edge-detection capability by means of using spectral information provided by multispectral (MS) or hyperspectral (HS) imagery. In this paper we consider image segmentation algorithms for multispectral images with particular emphasis on detection of multi-color or multispectral edges. More specifically, we report on an algorithm for joint spatio-spectral (JSS) edge detection. By joint we mean simultaneous utilization of spatial and spectral characteristics of a given MS or HS image. The JSS-based edge-detection approach, termed Spectral Ratio Contrast (SRC) edge-detection algorithm, utilizes the novel concept of matching edge signatures. The edge signature represents a combination of spectral ratios calculated using bands that enhance the spectral contrast between the two materials. In conjunction with a spatial mask, the edge signature give rise to a multispectral operator that can be viewed as a three-dimensional extension of the mask. In the extended mask, the third (spectral) dimension of each hyper-pixel can be chosen independently. The SRC is verified using MS and HS imagery from a quantum-dot in a well infrared (IR) focal plane array, and the Airborne Hyperspectral Imager.

  6. A multispectral scanner survey of the Tonopah Test Range, Nevada. Date of survey: August 1993

    SciTech Connect

    Brewster, S.B. Jr.; Howard, M.E.; Shines, J.E.

    1994-08-01

    The Multispectral Remote Sensing Department of the Remote Sensing Laboratory conducted an airborne multispectral scanner survey of a portion of the Tonopah Test Range, Nevada. The survey was conducted on August 21 and 22, 1993, using a Daedalus AADS1268 scanner and coincident aerial color photography. Flight altitudes were 5,000 feet (1,524 meters) above ground level for systematic coverage and 1,000 feet (304 meters) for selected areas of special interest. The multispectral scanner survey was initiated as part of an interim and limited investigation conducted to gather preliminary information regarding historical hazardous material release sites which could have environmental impacts. The overall investigation also includes an inventory of environmental restoration sites, a ground-based geophysical survey, and an aerial radiological survey. The multispectral scanner imagery and coincident aerial photography were analyzed for the detection, identification, and mapping of man-made soil disturbances. Several standard image enhancement techniques were applied to the data to assist image interpretation. A geologic ratio enhancement and a color composite consisting of AADS1268 channels 10, 7, and 9 (mid-infrared, red, and near-infrared spectral bands) proved most useful for detecting soil disturbances. A total of 358 disturbance sites were identified on the imagery and mapped using a geographic information system. Of these sites, 326 were located within the Tonopah Test Range while the remaining sites were present on the imagery but outside the site boundary. The mapped site locations are being used to support ongoing field investigations.

  7. Thermal Remote Sensing and the Thermodynamics of Ecosystem Development

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Rickman, Doug.; Fraser, Roydon F.

    2013-01-01

    Thermal remote sensing can provide environmental measuring tools with capabilities for measuring ecosystem development and integrity. Recent advances in applying principles of nonequilibrium thermodynamics to ecology provide fundamental insights into energy partitioning in ecosystems. Ecosystems are nonequilibrium systems, open to material and energy flows, which grow and develop structures and processes to increase energy degradation. More developed terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading its exergy content) and can be measured by the effective surface temperature of the ecosystem on a landscape scale. Ecosystems are viewed as open thermodynamic systems with a large gradient impressed on them by the exergy flux from the sun. Ecosystems, according to the restated second law, develop in ways that systematically increases their ability to degrade the incoming solar exergy, hence negating it's ability to set up even larger gradients. Thus it should be expected that more mature ecosystems degrade the exergy they capture more completely than a less developed ecosystem. The degree to which incoming solar exergy is degraded is a function of the surface temperature of the ecosystem. If a group of ecosystems receives the same amount of incoming radiation, we would expect that the most mature ecosystem would reradiate its energy at the lowest quality level and thus would have the lowest surface temperature (coldest black body temperature). Initial development work was done using NASA's airborne Thermal Infrared Multispectral Scanner (TIMS) followed by the use of a multispectral visible and thermal scanner- Airborne Thermal and Land Applications Sensor (ATLAS). Luvall and his coworkers have documented ecosystem energy budgets, including tropical forests, midlatitude varied ecosystems, and semiarid ecosystems. These data show that under similar environmental conditions (air temperature, relative humidity, winds, and solar

  8. Thermal Remote Sensing and the Thermodynamics of Ecosystem Development

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Rickman, Doug; Fraser, Roydon F.

    2013-01-01

    Thermal remote sensing can provide environmental measuring tools with capabilities for measuring ecosystem development and integrity. Recent advances in applying principles of nonequilibrium thermodynamics to ecology provide fundamental insights into energy partitioning in ecosystems. Ecosystems are nonequilibrium systems, open to material and energy flows, which grow and develop structures and processes to increase energy degradation. More developed terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading its exergy content) and can be measured by the effective surface temperature of the ecosystem on a landscape scale. Ecosystems are viewed as open thermodynamic systems with a large gradient impressed on them by the exergy flux from the sun. Ecosystems, according to the restated second law, develop in ways that systematically increases their ability to degrade the incoming solar exergy, hence negating it's ability to set up even larger gradients. Thus it should be expected that more mature ecosystems degrade the exergy they capture more completely than a less developed ecosystem. The degree to which incoming solar exergy is degraded is a function of the surface temperature of the ecosystem. If a group of ecosystems receives the same amount of incoming radiation, we would expect that the most mature ecosystem would reradiate its energy at the lowest quality level and thus would have the lowest surface temperature (coldest black body temperature). Initial development work was done using NASA's airborne Thermal Infrared Multispectral Scanner (TIMS) followed by the use of a multispectral visible and thermal scanner-Airborne Thermal and Land Applications Sensor (ATLAS). Luvall and his coworkers have documented ecosystem energy budgets, including tropical forests, midlatitude varied ecosystems, and semiarid ecosystems. These data show that under similar environmental conditions (air temperature, relative humidity, winds, and solar

  9. Thermal Remote Sensing and the Thermodynamics of Ecosystem Development

    NASA Astrophysics Data System (ADS)

    Luvall, J. C.; Rickman, D.; Fraser, R.

    2013-12-01

    Thermal remote sensing can provide environmental measuring tools with capabilities for measuring ecosystem development and integrity. Recent advances in applying principles of nonequilibrium thermodynamics to ecology provide fundamental insights into energy partitioning in ecosystems. Ecosystems are nonequilibrium systems, open to material and energy flows, which grow and develop structures and processes to increase energy degradation. More developed terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading its exergy content) and can be measured by the effective surface temperature of the ecosystem on a landscape scale. Ecosystems are viewed as open thermodynamic systems with a large gradient impressed on them by the exergy flux from the sun. Ecosystems, according to the restated second law, develop in ways that systematically increases their ability to degrade the incoming solar exergy, hence negating it's ability to set up even larger gradients. Thus it should be expected that more mature ecosystems degrade the exergy they capture more completely than a less developed ecosystem. The degree to which incoming solar exergy is degraded is a function of the surface temperature of the ecosystem. If a group of ecosystems receives the same amount of incoming radiation, we would expect that the most mature ecosystem would reradiate its energy at the lowest quality level and thus would have the lowest surface temperature (coldest black body temperature). Initial development work was done using NASA's airborne Thermal Infrared Multispectral Scanner (TIMS) followed by the use of a multispectral visible and thermal scanner- Airborne Thermal and Land Applications Sensor (ATLAS). Luvall and his co-workers have documented ecosystem energy budgets, including tropical forests, mid-latitude varied ecosystems, and semiarid ecosystems. These data show that under similar environmental conditions (air temperature, relative humidity, winds, and solar

  10. A multispectral sorting device for wheat kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A low-cost multispectral sorting device was constructed using three visible and three near-infrared light-emitting diodes (LED) with peak emission wavelengths of 470 nm (blue), 527 nm (green), 624 nm (red), 850 nm, 940 nm, and 1070 nm. The multispectral data were collected by rapidly (~12 kHz) blin...

  11. Multispectral Image Processing for Plants

    NASA Technical Reports Server (NTRS)

    Miles, Gaines E.

    1991-01-01

    The development of a machine vision system to monitor plant growth and health is one of three essential steps towards establishing an intelligent system capable of accurately assessing the state of a controlled ecological life support system for long-term space travel. Besides a network of sensors, simulators are needed to predict plant features, and artificial intelligence algorithms are needed to determine the state of a plant based life support system. Multispectral machine vision and image processing can be used to sense plant features, including health and nutritional status.

  12. Detection of Verticillium wilt of olive trees and downy mildew of opium poppy using hyperspectral and thermal UAV imagery

    NASA Astrophysics Data System (ADS)

    Calderón Madrid, Rocío; Navas Cortés, Juan Antonio; Montes Borrego, Miguel; Landa del Castillo, Blanca Beatriz; Lucena León, Carlos; Jesús Zarco Tejada, Pablo

    2014-05-01

    The present study explored the use of high-resolution thermal, multispectral and hyperspectral imagery as indicators of the infections caused by Verticillium wilt (VW) in olive trees and downy mildew (DM) in opium poppy fields. VW, caused by the soil-borne fungus Verticillium dahliae, and DM, caused by the biotrophic obligate oomycete Peronospora arborescens, are the most economically limiting diseases of olive trees and opium poppy, respectively, worldwide. V. dahliae infects the plant by the roots and colonizes its vascular system, blocking water flow and eventually inducing water stress. P. arborescens colonizes the mesophyll, appearing the first symptoms as small chlorotic leaf lesions, which can evolve to curled and thickened tissues and systemic infections that become deformed and necrotic as the disease develops. The work conducted to detect VW and DM infection consisted on the acquisition of time series of airborne thermal, multispectral and hyperspectral imagery using 2-m and 5-m wingspan electric Unmanned Aerial Vehicles (UAVs) in spring and summer of three consecutive years (2009 to 2011) for VW detection and on three dates in spring of 2009 for DM detection. Two 7-ha commercial olive orchards naturally infected with V. dahliae and two opium poppy field plots artificially infected by P. arborescens were flown. Concurrently to the airborne campaigns, olive orchards and opium poppy fields were assessed "in situ" to assess actual VW severity and DM incidence. Furthermore, field measurements were conducted at leaf and crown level. The field results related to VW detection showed a significant increase in crown temperature (Tc) minus air temperature (Ta) and a decrease in leaf stomatal conductance (G) as VW severity increased. This reduction in G was associated with a significant increase in the Photochemical Reflectance Index (PRI570) and a decrease in chlorophyll fluorescence. DM asymptomatic leaves showed significantly higher NDVI and lower green/red index

  13. Airborne remote sensing for geology and the environment; present and future

    USGS Publications Warehouse

    Watson, Ken; Knepper, Daniel H.

    1994-01-01

    In 1988, a group of leading experts from government, academia, and industry attended a workshop on airborne remote sensing sponsored by the U.S. Geological Survey (USGS) and hosted by the Branch of Geophysics. The purpose of the workshop was to examine the scientific rationale for airborne remote sensing in support of government earth science in the next decade. This report has arranged the six resulting working-group reports under two main headings: (1) Geologic Remote Sensing, for the reports on geologic mapping, mineral resources, and fossil fuels and geothermal resources; and (2) Environmental Remote Sensing, for the reports on environmental geology, geologic hazards, and water resources. The intent of the workshop was to provide an evaluation of demonstrated capabilities, their direct extensions, and possible future applications, and this was the organizational format used for the geologic remote sensing reports. The working groups in environmental remote sensing chose to present their reports in a somewhat modified version of this format. A final section examines future advances and limitations in the field. There is a large, complex, and often bewildering array of remote sensing data available. Early remote sensing studies were based on data collected from airborne platforms. Much of that technology was later extended to satellites. The original 80-m-resolution Landsat Multispectral Scanner System (MSS) has now been largely superseded by the 30-m-resolution Thematic Mapper (TM) system that has additional spectral channels. The French satellite SPOT provides higher spatial resolution for channels equivalent to MSS. Low-resolution (1 km) data are available from the National Oceanographic and Atmospheric Administration's AVHRR system, which acquires reflectance and day and night thermal data daily. Several experimental satellites have acquired limited data, and there are extensive plans for future satellites including those of Japan (JERS), Europe (ESA), Canada

  14. Evaluation of thermal remote sensing as a low-cost regional geothermal exploration technique in New Mexico. Final report

    SciTech Connect

    Inglis, M.; Budge, T.K.

    1985-03-01

    Airborne and satellite borne thermal infrared scanner data were analyzed for application in the exploration of geothermal resources in New Mexico. The location for this study was the East Mesa Geothermal Field near Las Cruces, New Mexico. Primary sensor was the Thermal Infrared Multispectral Scanner (TIMS) which obtained data at 10-meter resolution. Additional data for comparison came from the Heat Capacity Mapping Mission (HCMM) satellite which provided data at 600-meter resolution. These data were compared to the soils, vegetation, and geology of the area, as well as borehole temperature data in an attempt to explain temperature patterns and anomalies. Thermal infrared scanner data were found to be too sensitive to solar-induced temperature anomalies to directly reflect the presence of subsurface geothermal anomalies but may provide valuable supporting information for a geothermal exploration program. 15 refs., 16 figs., 3 tabs.

  15. MULTISCALE THERMAL-INFRARED MEASUREMENTS OF THE MAUNA LOA CALDERA, HAWAII

    SciTech Connect

    L. BALICK; A. GILLESPIE; ET AL

    2001-03-01

    Until recently, most thermal infrared measurements of natural scenes have been made at disparate scales, typically 10{sup {minus}3}-10{sup {minus}2} m (spectra) and 10{sup 2}-10{sup 3} m (satellite images), with occasional airborne images (10{sup 1} m) filling the gap. Temperature and emissivity fields are spatially heterogeneous over a similar range of scales, depending on scene composition. A common problem for the land surface, therefore, has been relating field spectral and temperature measurements to satellite data, yet in many cases this is necessary if satellite data are to be interpreted to yield meaningful information about the land surface. Recently, three new satellites with thermal imaging capability at the 10{sup 1}-10{sup 2} m scale have been launched: MTI, TERRA, and Landsat 7. MTI acquires multispectral images in the mid-infrared (3-5{micro}m) and longwave infrared (8-10{micro}m) with 20m resolution. ASTER and MODIS aboard TERRA acquire multispectral longwave images at 90m and 500-1000m, respectively, and MODIS also acquires multispectral mid-infrared images. Landsat 7 acquires broadband longwave images at 60m. As part of an experiment to validate the temperature and thermal emissivity values calculated from MTI and ASTER images, we have targeted the summit region of Mauna Loa for field characterization and near-simultaneous satellite imaging, both on daytime and nighttime overpasses, and compare the results to previously acquired 10{sup {minus}1} m airborne images, ground-level multispectral FLIR images, and the field spectra. Mauna Loa was chosen in large part because the 4x6km summit caldera, flooded with fresh basalt in 1984, appears to be spectrally homogeneous at scales between 10{sup {minus}1} and 10{sup 2} m, facilitating the comparison of sensed temperature. The validation results suggest that, with careful atmospheric compensation, it is possible to match ground measurements with measurements from space, and to use the Mauna Loa validation

  16. Multimodal tissue perfusion imaging using multi-spectral and thermographic imaging systems applied on clinical data

    NASA Astrophysics Data System (ADS)

    Klaessens, John H. G. M.; Nelisse, Martin; Verdaasdonk, Rudolf M.; Noordmans, Herke Jan

    2013-03-01

    Clinical interventions can cause changes in tissue perfusion, oxygenation or temperature. Real-time imaging of these phenomena could be useful for surgical strategy or understanding of physiological regulation mechanisms. Two noncontact imaging techniques were applied for imaging of large tissue areas: LED based multispectral imaging (MSI, 17 different wavelengths 370 nm-880 nm) and thermal imaging (7.5 to 13.5 μm). Oxygenation concentration changes were calculated using different analyzing methods. The advantages of these methods are presented for stationary and dynamic applications. Concentration calculations of chromophores in tissue require right choices of wavelengths The effects of different wavelength choices for hemoglobin concentration calculations were studied in laboratory conditions and consequently applied in clinical studies. Corrections for interferences during the clinical registrations (ambient light fluctuations, tissue movements) were performed. The wavelength dependency of the algorithms were studied and wavelength sets with the best results will be presented. The multispectral and thermal imaging systems were applied during clinical intervention studies: reperfusion of tissue flap transplantation (ENT), effectiveness of local anesthetic block and during open brain surgery in patients with epileptic seizures. The LED multispectral imaging system successfully imaged the perfusion and oxygenation changes during clinical interventions. The thermal images show local heat distributions over tissue areas as a result of changes in tissue perfusion. Multispectral imaging and thermal imaging provide complementary information and are promising techniques for real-time diagnostics of physiological processes in medicine.

  17. Oil slick studies using photographic and multispectral scanner data.

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Macintyre, W. G.; Penney, M. E.; Oberholtzer, J. D.

    1971-01-01

    Field studies of spills of Nos. 6 (Bunker C), 4, and 2 fuel oils and menhaden fish oil in the southern Chesapeake Bay have been supplemented with aerial photographic and multispectral scanner data. Thin films showed best in ultraviolet and blue bands and thick films in the green. Color film was effective for all thicknesses. Thermal infrared imagery provided clear detection, but required field temperature and thickness data to distinguish thickness/emissivity variations from temperature variations. Slick spreading rates agree with the theory of Fay (1969); further study of spreading is in progress.

  18. Cucumber disease diagnosis using multispectral images

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Li, Hongning; Shi, Junsheng; Yang, Weiping; Liao, Ningfang

    2009-07-01

    In this paper, multispectral imaging technique for plant diseases diagnosis is presented. Firstly, multispectral imaging system is designed. This system utilizes 15 narrow-band filters, a panchromatic band, a monochrome CCD camera, and standard illumination observing environment. The spectral reflectance and color of 8 Macbeth color patches are reproduced between 400nm and 700nm in the process. In addition, spectral reflectance angle and color difference is obtained through measurements and analysis of color patches using spectrometer and multispectral imaging system. The result shows that 16 narrow-bands multispectral imaging system realizes good accuracy in spectral reflectance and color reproduction. Secondly, a horticultural plant, cucumber' familiar disease are the researching objects. 210 multispectral samples are obtained by multispectral and are classified by BP artificial neural network. The classification accuracies of Sphaerotheca fuliginea, Corynespora cassiicola, Pseudoperonospora cubensis are 100%. Trichothecium roseum and Cladosporium cucumerinum are 96.67% and 90.00%. It is confirmed that the multispectral imaging system realizes good accuracy in the cucumber diseases diagnosis.

  19. The Use of Thermal Remote Sensing to Study Thermodynamics of Ecosystem Development

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Rickman, Doug L.; Arnold, James E. (Technical Monitor)

    2000-01-01

    Thermal remote sensing can provide environmental measuring tools with capabilities for measuring ecosystem development and integrity. Recent advances in applying principles of nonequilibrium thermodynamics to ecology provide fundamental insights into energy partitioning in ecosystems. Ecosystems are nonequilibrium systems, open to material and energy flows, which grow and develop structures and processes to increase energy degradation. More developed terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading its energy content). This can be measured by the effective surface temperature of the ecosystem on a landscape scale. A series of airborne thermal infrared multispectral scanner data were collected from several forested ecosystems ranging from a western US douglas-fir forest to a tropical rain forest in Costa Rica. These data were used to develop measures of ecosystem development and integrity based on surface temperature.

  20. Multi-spectral pyrometer for narrow space with high ambient temperature

    NASA Astrophysics Data System (ADS)

    Gao, Shan; Wang, Lixin; Feng, Chi; Xiao, Yihan; Daniel, Ketui

    2015-08-01

    A fiber-optic multi-spectral pyrometer with high spatial and temporal resolution has been applied to measure temperatures of the range from 700 to 1200 K. In a narrow space, the important problems in temperature measurement include the unknown emissivity on target surface and the thermal radiation from the high ambient temperature. This paper analyzed several critical issues affecting the multi-spectral pyrometer and calculated the corresponding model through genetic algorithm. The experiment result showed that this method has high accuracy and the measurement error is 0.44 %.

  1. Primer on Use of Multi-Spectral and Infra Red Imaging for On-Site Inspections

    SciTech Connect

    Henderson, J R

    2010-10-26

    The purpose of an On-Site Inspection (OSI) is to determine whether a nuclear explosion has occurred in violation of the Comprehensive Nuclear Test Ban Treaty (CTBT), and to gather information which might assist in identifying the violator (CTBT, Article IV, Paragraph 35) Multi-Spectral and Infra Red Imaging (MSIR) is allowed by the treaty to detect observables which might help reduce the search area and thus expedite an OSI and make it more effective. MSIR is permitted from airborne measurements, and at and below the surface to search for anomalies and artifacts (CTBT, Protocol, Part II, Paragraph 69b). The three broad types of anomalies and artifacts MSIR is expected to be capable of observing are surface disturbances (disturbed earth, plant stress or anomalous surface materials), human artifacts (man-made roads, buildings and features), and thermal anomalies. The purpose of this Primer is to provide technical information on MSIR relevant to its use for OSI. It is expected that this information may be used for general background information, to inform decisions about the selection and testing of MSIR equipment, to develop operational guidance for MSIR use during an OSI, and to support the development of a training program for OSI Inspectors. References are provided so readers can pursue a topic in more detail than the summary information provided here. The following chapters will provide more information on how MSIR can support an OSI (Section 2), a short summary what Multi-Spectral Imaging and Infra Red Imaging is (Section 3), guidance from the CTBT regarding the use of MSIR (Section 4), and a description of several nuclear explosion scenarios (Section 5) and consequent observables (Section 6). The remaining sections focus on practical aspects of using MSIR for an OSI, such as specification and selection of MSIR equipment, operational considerations for deployment of MISR equipment from an aircraft, and the conduct of field exercises to mature MSIR for an OSI

  2. CNR LARA Project: Evaluation of two years of airborne imaging spectrometry

    SciTech Connect

    Bianchi, R.; Cavalli, R.M.; Fiumi, L.; Marino, C.M.

    1996-10-01

    Since last July 1994 the Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument, acquired by CNR (Italian National Research Council) in the framework of its LARA (Airborne Laboratory for Environmental Studies) Project, has been intensively operative. A number of MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) deployments have been carried out in Italy and Europe in cooperation with national and international institutions on a variety of sites, including active volcanoes, coastlines, lagoons and ocean, vegetated and cultivated areas, oil polluted surfaces, waste discharges, and archeological sites. Two years of activity have shown the high system efficiency, from the survey to data preprocessing and dissemination. 12 refs., 3 figs.

  3. Assessment of Pen Branch delta and corridor vegetation changes using multispectral scanner data 1992--1994

    SciTech Connect

    1996-01-01

    Airborne multispectral scanner data were used to monitor natural succession of wetland vegetation species over a three-year period from 1992 through 1994 for Pen Branch on the Savannah River Site in South Carolina. Image processing techniques were used to identify and measure wetland vegetation communities in the lower portion of the Pen Branch corridor and delta. The study provided a reliable means for monitoring medium- and large-scale changes in a diverse environment. Findings from the study will be used to support decisions regarding remediation efforts following the cessation of cooling water discharge from K reactor at the Department of Energy`s Savannah River Site in South Carolina.

  4. Remote sensing techniques applied to multispectral recognition of the Aranjuez pilot zone

    NASA Technical Reports Server (NTRS)

    Lemos, G. L.; Salinas, J.; Rebollo, M.

    1977-01-01

    A rectangular (7 x 14 km) area 40 km S of Madrid was remote-sensed with a three-stage recognition process. Ground truth was established in the first phase, airborne sensing with a multispectral scanner and photographic cameras were used in the second phase, and Landsat satellite data were obtained in the third phase. Agronomic and hydrological photointerpretation problems are discussed. Color, black/white, and labeled areas are displayed for crop recognition in the land-use survey; turbidity, concentrations of pollutants and natural chemicals, and densitometry of the water are considered in the evaluation of water resources.

  5. Multispectral Scanner for Monitoring Plants

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2004-01-01

    A multispectral scanner has been adapted to capture spectral images of living plants under various types of illumination for purposes of monitoring the health of, or monitoring the transfer of genes into, the plants. In a health-monitoring application, the plants are illuminated with full-spectrum visible and near infrared light and the scanner is used to acquire a reflected-light spectral signature known to be indicative of the health of the plants. In a gene-transfer- monitoring application, the plants are illuminated with blue or ultraviolet light and the scanner is used to capture fluorescence images from a green fluorescent protein (GFP) that is expressed as result of the gene transfer. The choice of wavelength of the illumination and the wavelength of the fluorescence to be monitored depends on the specific GFP.

  6. Multispectral sensing of moisture stress

    NASA Technical Reports Server (NTRS)

    Olson, C. E., Jr.

    1970-01-01

    Laboratory reflectance data, and field tests with multispectral remote sensors provide support for this hypotheses that differences in moisture content and water deficits are closely related to foliar reflectance from woody plants. When these relationships are taken into account, automatic recognition techniques become more powerful than when they are ignored. Evidence is increasing that moisture relationships inside plant foliage are much more closely related to foliar reflectance characteristics than are external variables such as soil moisture, wind, and air temperature. Short term changes in water deficits seem to have little influence on foliar reflectance, however. This is in distinct contrast to significant short-term changes in foliar emittance from the same plants with changing wind, air temperature, incident radiation, or water deficit conditions.

  7. Application of multispectral scanner data to the study of an abandoned surface coal mine

    NASA Technical Reports Server (NTRS)

    Spisz, E. W.

    1978-01-01

    The utility of aircraft multispectral scanner data for describing the land cover features of an abandoned contour-mined coal mine is considered. The data were obtained with an 11 band multispectral scanner at an altitude of 1.2 kilometers. Supervised, maximum-likelihood statistical classifications of the data were made to establish land-cover classes and also to describe in more detail the barren surface features as they may pertain to the reclamation or restoration of the area. The scanner data for the surface-water areas were studied to establish the variability and range of the spectral signatures. Both day and night thermal images of the area are presented. The results of the study show that a high degree of statistical separation can be obtained from the multispectral scanner data for the various land-cover features.

  8. Galileo multispectral imaging of Earth.

    PubMed

    Geissler, P; Thompson, W R; Greenberg, R; Moersch, J; McEwen, A; Sagan, C

    1995-08-25

    Nearly 6000 multispectral images of Earth were acquired by the Galileo spacecraft during its two flybys. The Galileo images offer a unique perspective on our home planet through the spectral capability made possible by four narrowband near-infrared filters, intended for observations of methane in Jupiter's atmosphere, which are not incorporated in any of the currently operating Earth orbital remote sensing systems. Spectral variations due to mineralogy, vegetative cover, and condensed water are effectively mapped by the visible and near-infrared multispectral imagery, showing a wide variety of biological, meteorological, and geological phenomena. Global tectonic and volcanic processes are clearly illustrated by these images, providing a useful basis for comparative planetary geology. Differences between plant species are detected through the narrowband IR filters on Galileo, allowing regional measurements of variation in the "red edge" of chlorophyll and the depth of the 1-micrometer water band, which is diagnostic of leaf moisture content. Although evidence of life is widespread in the Galileo data set, only a single image (at approximately 2 km/pixel) shows geometrization plausibly attributable to our technical civilization. Water vapor can be uniquely imaged in the Galileo 0.73-micrometer band, permitting spectral discrimination of moist and dry clouds with otherwise similar albedo. Surface snow and ice can be readily distinguished from cloud cover by narrowband imaging within the sensitivity range of Galileo's silicon CCD camera. Ice grain size variations can be mapped using the weak H2O absorption at 1 micrometer, a technique which may find important applications in the exploration of the moons of Jupiter. The Galileo images have the potential to make unique contributions to Earth science in the areas of geological, meteorological and biological remote sensing, due to the inclusion of previously untried narrowband IR filters. The vast scale and near global

  9. Galileo multispectral imaging of Earth.

    PubMed

    Geissler, P; Thompson, W R; Greenberg, R; Moersch, J; McEwen, A; Sagan, C

    1995-08-25

    Nearly 6000 multispectral images of Earth were acquired by the Galileo spacecraft during its two flybys. The Galileo images offer a unique perspective on our home planet through the spectral capability made possible by four narrowband near-infrared filters, intended for observations of methane in Jupiter's atmosphere, which are not incorporated in any of the currently operating Earth orbital remote sensing systems. Spectral variations due to mineralogy, vegetative cover, and condensed water are effectively mapped by the visible and near-infrared multispectral imagery, showing a wide variety of biological, meteorological, and geological phenomena. Global tectonic and volcanic processes are clearly illustrated by these images, providing a useful basis for comparative planetary geology. Differences between plant species are detected through the narrowband IR filters on Galileo, allowing regional measurements of variation in the "red edge" of chlorophyll and the depth of the 1-micrometer water band, which is diagnostic of leaf moisture content. Although evidence of life is widespread in the Galileo data set, only a single image (at approximately 2 km/pixel) shows geometrization plausibly attributable to our technical civilization. Water vapor can be uniquely imaged in the Galileo 0.73-micrometer band, permitting spectral discrimination of moist and dry clouds with otherwise similar albedo. Surface snow and ice can be readily distinguished from cloud cover by narrowband imaging within the sensitivity range of Galileo's silicon CCD camera. Ice grain size variations can be mapped using the weak H2O absorption at 1 micrometer, a technique which may find important applications in the exploration of the moons of Jupiter. The Galileo images have the potential to make unique contributions to Earth science in the areas of geological, meteorological and biological remote sensing, due to the inclusion of previously untried narrowband IR filters. The vast scale and near global

  10. Study on multispectral imaging detection and recognition

    NASA Astrophysics Data System (ADS)

    Jun, Wang; Na, Ding; Gao, Jiaobo; Yu, Hu; Jun, Wu; Li, Junna; Zheng, Yawei; Fei, Gao; Sun, Kefeng

    2009-07-01

    Multispectral imaging detecting technology use target radiation character in spectral spatial distribution and relation between spectral and image to detect target and remote sensing measure. Its speciality is multi channel, narrow bandwidth, large amount of information, high accuracy. The ability of detecting target in environment of clutter, camouflage, concealment and beguilement is improved. At present, spectral imaging technology in the range of multispectral and hyperspectral develop greatly. The multispectral imaging equipment of unmanned aerial vehicle can be used in mine detection, information, surveillance and reconnaissance. Spectral imaging spectrometer operating in MWIR and LWIR has already been applied in the field of remote sensing and military in the advanced country. The paper presents the technology of multispectral imaging. It can enhance the reflectance, scatter and radiation character of the artificial targets among nature background. The targets among complex background and camouflage/stealth targets can be effectively identified. The experiment results and the data of spectral imaging is obtained.

  11. Remote sensing of clouds by multispectral sensors.

    PubMed

    Lindner, B L; Isaacs, R G

    1993-05-20

    A multispectral minimization approach that uses the wavelength dependence of the radiance rather than the magnitude of the radiance is advocated for the retrieval of cloud optical thickness, phase, and particle size by future sensors.

  12. Multispectral imaging with vertical silicon nanowires

    PubMed Central

    Park, Hyunsung; Crozier, Kenneth B.

    2013-01-01

    Multispectral imaging is a powerful tool that extends the capabilities of the human eye. However, multispectral imaging systems generally are expensive and bulky, and multiple exposures are needed. Here, we report the demonstration of a compact multispectral imaging system that uses vertical silicon nanowires to realize a filter array. Multiple filter functions covering visible to near-infrared (NIR) wavelengths are simultaneously defined in a single lithography step using a single material (silicon). Nanowires are then etched and embedded into polydimethylsiloxane (PDMS), thereby realizing a device with eight filter functions. By attaching it to a monochrome silicon image sensor, we successfully realize an all-silicon multispectral imaging system. We demonstrate visible and NIR imaging. We show that the latter is highly sensitive to vegetation and furthermore enables imaging through objects opaque to the eye. PMID:23955156

  13. Introducing a Low-Cost Mini-Uav for - and Multispectral-Imaging

    NASA Astrophysics Data System (ADS)

    Bendig, J.; Bolten, A.; Bareth, G.

    2012-07-01

    The trend to minimize electronic devices also accounts for Unmanned Airborne Vehicles (UAVs) as well as for sensor technologies and imaging devices. Consequently, it is not surprising that UAVs are already part of our daily life and the current pace of development will increase civil applications. A well known and already wide spread example is the so called flying video game based on Parrot's AR.Drone which is remotely controlled by an iPod, iPhone, or iPad (http://ardrone.parrot.com). The latter can be considered as a low-weight and low-cost Mini-UAV. In this contribution a Mini-UAV is considered to weigh less than 5 kg and is being able to carry 0.2 kg to 1.5 kg of sensor payload. While up to now Mini-UAVs like Parrot's AR.Drone are mainly equipped with RGB cameras for videotaping or imaging, the development of such carriage systems clearly also goes to multi-sensor platforms like the ones introduced for larger UAVs (5 to 20 kg) by Jaakkolla et al. (2010) for forestry applications or by Berni et al. (2009) for agricultural applications. The problem when designing a Mini-UAV for multi-sensor imaging is the limitation of payload of up to 1.5 kg and a total weight of the whole system below 5 kg. Consequently, the Mini-UAV without sensors but including navigation system and GPS sensors must weigh less than 3.5 kg. A Mini-UAV system with these characteristics is HiSystems' MK-Okto (www.mikrokopter.de). Total weight including battery without sensors is less than 2.5 kg. Payload of a MK-Okto is approx. 1 kg and maximum speed is around 30 km/h. The MK-Okto can be operated up to a wind speed of less than 19 km/h which corresponds to Beaufort scale number 3 for wind speed. In our study, the MK-Okto is equipped with a handheld low-weight NEC F30IS thermal imaging system. The F30IS which was developed for veterinary applications, covers 8 to 13 μm, weighs only 300 g

  14. Thermal Remote Sensing: A Powerful Tool in the Characterization of Landscapes on a Functional Basis

    NASA Technical Reports Server (NTRS)

    Jeffrey, Luvall C.; Kay, James; Fraser, Roydon

    1999-01-01

    Thermal remote sensing instruments can function as environmental measuring tools, with capabilities leading toward new directions in functional landscape ecology. Theoretical deduction and phenomenological observation leads us to believe that the second law of thermodynamics requires that all dynamically systems develop in a manner which dissipates gradients as rapidly as possible within the constraints of the system at hand. The ramification of this requirement is that dynamical systems will evolve dissipative structures which grow and complexify over time. This perspective has allowed us to develop a framework for discussing ecosystem development and integrity. In the context of this framework we have developed measures of development and integrity for ecosystems. One set of these measures is based on destruction of the exergy content of incoming solar energy. More developed ecosystems will be more effective at dissipating the solar gradient (destroying its exergy content). This can be measured by the effective surface temperature of the ecosystem on a landscape scale. These surface temperatures are measured using airborne thermal scanners such as the Thermal Infrared Multispectral Scanner (TIMS) and the Airborne Thermal/Visible Land Application Sensor(ATLAS) sensors. An analysis of agriculture and forest ecosystems will be used to illustrate the concept of ecological thermodynamics and the development of ecosystems.

  15. Multispectral palmprint recognition using a quaternion matrix.

    PubMed

    Xu, Xingpeng; Guo, Zhenhua; Song, Changjiang; Li, Yafeng

    2012-01-01

    Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR) illuminations were represented by a quaternion matrix, then principal component analysis (PCA) and discrete wavelet transform (DWT) were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%. PMID:22666049

  16. Multispectral Palmprint Recognition Using a Quaternion Matrix

    PubMed Central

    Xu, Xingpeng; Guo, Zhenhua; Song, Changjiang; Li, Yafeng

    2012-01-01

    Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR) illuminations were represented by a quaternion matrix, then principal component analysis (PCA) and discrete wavelet transform (DWT) were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%. PMID:22666049

  17. Moose (Alces alces) reacts to high summer temperatures by utilizing thermal shelters in boreal forests - an analysis based on airborne laser scanning of the canopy structure at moose locations.

    PubMed

    Melin, Markus; Matala, Juho; Mehtätalo, Lauri; Tiilikainen, Raisa; Tikkanen, Olli-Pekka; Maltamo, Matti; Pusenius, Jyrki; Packalen, Petteri

    2014-04-01

    The adaptation of different species to warming temperatures has been increasingly studied. Moose (Alces alces) is the largest of the ungulate species occupying the northern latitudes across the globe, and in Finland it is the most important game species. It is very well adapted to severe cold temperatures, but has a relatively low tolerance to warm temperatures. Previous studies have documented changes in habitat use by moose due to high temperatures. In many of these studies, the used areas have been classified according to how much thermal cover they were assumed to offer based on satellite/aerial imagery data. Here, we identified the vegetation structure in the areas used by moose under different thermal conditions. For this purpose, we used airborne laser scanning (ALS) data extracted from the locations of GPS-collared moose. This provided us with detailed information about the relationships between moose and the structure of forests it uses in different thermal conditions and we were therefore able to determine and differentiate between the canopy structures at locations occupied by moose during different thermal conditions. We also discovered a threshold beyond which moose behaviour began to change significantly: as day temperatures began to reach 20 °C and higher, the search for areas with higher and denser canopies during daytime became evident. The difference was clear when compared to habitat use at lower temperatures, and was so strong that it provides supporting evidence to previous studies, suggesting that moose are able to modify their behaviour to cope with high temperatures, but also that the species is likely to be affected by warming climate.

  18. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    NASA Technical Reports Server (NTRS)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  19. An airborne laser polarimeter system (ALPS) for terrestrial physics research

    NASA Technical Reports Server (NTRS)

    Kalshoven, James E., Jr.; Dabney, Philip W.

    1988-01-01

    The design of a multispectral polarized laser system for characterizing the depolarization properties of the earth's surface is described. Using a laser as the light source, this airborne system measures the Stokes parameters of the surface to simultaneously arrive at the polarization degree, azimuthal angle, and ellipticity for each wavelength. The technology will be studied for the feasibility of expansion of the sensor to do surface polarization imaging. The data will be used in support of solar polarization studies and to develop laser radiometry as a tool in environmental remote sensing.

  20. Comparison of Land Cover Information from LANDSAT MSS and Airborne TMS for Hydrological Applications: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Gervin, J. C.; Lu, Y. C.; Hallada, W. A.; Marcell, R. F.

    1982-01-01

    Land cover information for the Clinton River Basin (Michigan) derived from LANDSAT multispectral scanner (MSS) data was compared with that from airborne thematic mapper simulator (TMS) to investigate the probable capabilities of the thematic mapper (TM) launched aboard LANDSAT-4 in July 1982. The preliminary findings for one 7.5 minute topographic map, Mt. Clemens West, are reported. Significant improvements in land cover classification accuracy were obtained using TMS data as compared with MSS data. Overall mapping accuracy increased from 49 to 61 percent with an improvement from 71 to 84 percent in the residential category. A combination of four bands with one band in each major region of the spectrum (visible, near IR, middle IR and thermal IR) provided as good a discrimination of land cover as all seven TM bands. Based on the improved land cover classification accuracy of TM, TM data has the potential to provide more useful and effective input to US Army Corps of Engineers flood forecasting and flood damage prediction/assessment models.

  1. Characteristics of the Landsat Multispectral Data System

    USGS Publications Warehouse

    Taranik, James V.

    1978-01-01

    Landsat satellites were launched into orbit in 1972 and 1975. Additional Landsat satellites are planned for launch in 1978 and 1981. The satellites orbit the Earth at an altitude of approximately 900 km and each can obtain repetitive coverage of cloud-free areas every 18 days. A sun-synchronous orbit is used to insure repeatable illumination conditions. Repetitive satellite coverage allows optimal cover conditions for geologic applications to be identified. Seasonal variations in solar illumination must be analyzed to select the best Landsat data for geologic applications. Landsat data may be viewed in stereo where there is sufficient sidelap and sufficient topographic relief. Landsat-1 ceased operation on January 10, 1978. Landsat-2 detects, only solar radiation that is reflected from the Earth's surface in visible and near-visible wavelengths. The third Landsat will also detect emitted thermal radiation. The multispectral scanner (MSS) was the only sensing instrument used on the first two satellites. The MSS on Landsats-1 and -2 detect radiation which is reflected from a 79 m by 79 m area, and the data are formatted as if the measurement was made from a 56 m by 79 m area. The MSS integrates spectral response from all cover types within the 79 m by 79 m area. The integrated spectral signature often does not resemble the spectral signature from individual cover types, and the integrated signature is also modified by the atmosphere. Landsat-1 and -2 data are converted to 70 mm film and computer compatible tapes (CCT's) at Goddard Space Flight Center (GSFC); these are shipped to the EROS Data Center (EDC) for duplication and distribution to users. Landsat-C data will be converted to 241 mm-wide film and CCT's at EDC. Landsat-D data will be relayed from the satellite directly to geosynchronous satellites and then to the United States from any location on Earth.

  2. Multispectral Imaging from Mars PATHFINDER

    NASA Technical Reports Server (NTRS)

    Ferrand, William H.; Bell, James F., III; Johnson, Jeffrey R.; Bishop, Janice L.; Morris, Richard V.

    2007-01-01

    The Imager for Mars Pathfinder (IMP) was a mast-mounted instrument on the Mars Pathfinder lander which landed on Mars Ares Vallis floodplain on July 4, 1997. During the 83 sols of Mars Pathfinders landed operations, the IMP collected over 16,600 images. Multispectral images were collected using twelve narrowband filters at wavelengths between 400 and 1000 nm in the visible and near infrared (VNIR) range. The IMP provided VNIR spectra of the materials surrounding the lander including rocks, bright soils, dark soils, and atmospheric observations. During the primary mission, only a single primary rock spectral class, Gray Rock, was recognized; since then, Black Rock, has been identified. The Black Rock spectra have a stronger absorption at longer wavelengths than do Gray Rock spectra. A number of coated rocks have also been described, the Red and Maroon Rock classes, and perhaps indurated soils in the form of the Pink Rock class. A number of different soil types were also recognized with the primary ones being Bright Red Drift, Dark Soil, Brown Soil, and Disturbed Soil. Examination of spectral parameter plots indicated two trends which were interpreted as representing alteration products formed in at least two different environmental epochs of the Ares Vallis area. Subsequent analysis of the data and comparison with terrestrial analogs have supported the interpretation that the rock coatings provide evidence of earlier martian environments. However, the presence of relatively uncoated examples of the Gray and Black rock classes indicate that relatively unweathered materials can persist on the martian surface.

  3. Multi-spectral IR reflectography

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Bencini, Davide; Carcagnì, Pierluigi; Greco, Marinella; Mastroianni, Maria; Materazzi, Marzia; Pampaloni, Enrico; Pezzati, Luca

    2007-07-01

    A variety of scientific investigation methods applied to paintings are, by now, an integral part of the repair process, both to plan the restoration intervention and to monitor its various phases. Optical techniques are widely diffused and extremely well received in the field of painting diagnostics because of their effectiveness and safety. Among them infrared reflectography is traditionally employed in non-destructive diagnostics of ancient paintings to reveal features underlying the pictorial layer thanks to transparency characteristics to NIR radiation of the materials composing the paints. High-resolution reflectography was introduced in the 90s at the Istituto Nazionale di Ottica Applicata, where a prototype of an innovative scanner was developed, working in the 900-1700 nm spectral range. This technique was recently improved with the introduction of an optical head, able to acquire simultaneously the reflectogram and the color image, perfectly superimposing. In this work we present a scanning device for multi-spectral IR reflectography, based on contact-less and single-point measurement of the reflectance of painted surfaces. The back-scattered radiation is focused on square-shaped fiber bundle that carries the light to an array of 14 photodiodes equipped with pass-band filters so to cover the NIR spectral range from 800 to 2500 nm

  4. Detection in urban scenario using combined airborne imaging sensors

    NASA Astrophysics Data System (ADS)

    Renhorn, Ingmar; Axelsson, Maria; Benoist, Koen; Bourghys, Dirk; Boucher, Yannick; Briottet, Xavier; De Ceglie, Sergio; Dekker, Rob; Dimmeler, Alwin; Dost, Remco; Friman, Ola; Kåsen, Ingebjørg; Maerker, Jochen; van Persie, Mark; Resta, Salvatore; Schwering, Piet; Shimoni, Michal; Haavardsholm, Trym Vegard

    2012-06-01

    The EDA project "Detection in Urban scenario using Combined Airborne imaging Sensors" (DUCAS) is in progress. The aim of the project is to investigate the potential benefit of combined high spatial and spectral resolution airborne imagery for several defense applications in the urban area. The project is taking advantage of the combined resources from 7 contributing nations within the EDA framework. An extensive field trial has been carried out in the city of Zeebrugge at the Belgian coast in June 2011. The Belgian armed forces contributed with platforms, weapons, personnel (soldiers) and logistics for the trial. Ground truth measurements with respect to geometrical characteristics, optical material properties and weather conditions were obtained in addition to hyperspectral, multispectral and high resolution spatial imagery. High spectral/spatial resolution sensor data are used for detection, classification, identification and tracking.

  5. 1994-1995 CNR LARA project airborne hyperspectral campaigns

    SciTech Connect

    Bianchi, R.; Cavalli, R.M.; Fiumi, L.

    1996-08-01

    CNR established a new laboratory for airborne hyperspectral imaging devoted to environmental problems and since the end of last June 1994 the project (LARA Project) is fully operative to provide hyperspectral data to the national and international scientific community. The Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument, acquired by CNR (Italian National Research Council) in the framework of its LARA (Airborne Laboratory for Environmental Studies) Project, has been intensively operative. A number of MIVIS deployments have been carried out in Italy and Europe in cooperation with national and international institutions on a variety of sites, including active volcanoes, coastlines, lagoons and ocean, vegetated and cultivated areas, oil polluted surfaces, waste discharges, and archeological sites. One year of activity has shown the high system efficiency, from the survey to data preprocessing and dissemination.

  6. Modeling space-based multispectral imaging systems with DIRSIG

    NASA Astrophysics Data System (ADS)

    Brown, Scott D.; Sanders, Niek J.; Goodenough, Adam A.; Gartley, Michael

    2011-06-01

    The Landsat Data Continuity Mission (LDCM) focuses on a next generation global coverage, imaging system to replace the aging Landsat 5 and Landsat 7 systems. The major difference in the new system is the migration from the multi-spectral whiskbroom design employed by the previous generation of sensors to modular focal plane, multi-spectral pushbroom architecture. Further complicating the design shift is that the reflective and thermal acquisition capability is split across two instruments spatially separated on the satellite bus. One of the focuses of the science and engineering teams prior to launch is the ability to provide seamless data continuity with the historic Landsat data archive. Specifically, the challenges of registering and calibrating data from the new system so that long-term science studies are minimally impacted by the change in the system design. In order to provide the science and engineering teams with simulated pre-launch data, an effort was undertaken to create a robust end-to-end model of the LDCM system. The modeling environment is intended to be flexible and incorporate measured data from the actual system components as they were completed and integrated. The output of the modeling environment needs to include not only radiometrically robust imagery, but also the meta-data necessary to exercise the processing pipeline. This paper describes how the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model has been utilized to model space-based, multi-spectral imaging (MSI) systems in support of systems engineering trade studies. A mechanism to incorporate measured focal plane projections through the forward optics is described. A hierarchal description of the satellite system is presented including the details of how a multiple instrument platform is described and modeled, including the hierarchical management of temporally correlated jitter that allows engineers to explore impacts of different jitter sources on instrument

  7. Analysis of infrared hyperspectral measurements by the joint multispectral program

    NASA Astrophysics Data System (ADS)

    Stocker, Alan D.; Oshagan, Ara; Shaffer, William A.; Surette, Marc R.; McHugh, Martin J.; Schaum, Alan P.; Eismann, Michael T.; Ellis, Kenneth K.; Maxwell, Robert A.; Seldin, John H.

    1995-06-01

    A series of infrared hyperspectral field measurements was made at Wright Patterson Air Force Base and the U.S. Army White Sands Missile Range by the Joint Multispectral Program (JMSP) between November 1993 and June 1994. In these experiments, a highly sensitive Fourier transform spectrometer (FTS) was used to collect data from test panels, military and civilian vehicles, and various types of natural backgrounds. Post-collection data analyses are being conducted by the JMSP to assess the potential of thermal multispectral processing for detecting and classifying low-contrast ground targets in natural clutter environments. One target material of special interest is CARC paint, which is currently applied to U.S. Army vehicles in various colors to create woodland and desert camouflage patterns. CARC-painted test panels were observed in a wide variety of backgrounds and weather conditions during all of the JMSP experiments. It is shown here that certain fine-scale spectral features of this paint can support reliable two-color discrimination of CARC-coated test panels in different natural backgrounds, even under low contrast and high clutter conditions. The paper also examines environmental variations in two key parameters that determine spectral detectability; specifically, the observed target-background spectral contrast signature (which provides the required coloring), and the background spectral correlation (which provides for multiband clutter suppression).

  8. Unsupervised classification of remote multispectral sensing data

    NASA Technical Reports Server (NTRS)

    Su, M. Y.

    1972-01-01

    The new unsupervised classification technique for classifying multispectral remote sensing data which can be either from the multispectral scanner or digitized color-separation aerial photographs consists of two parts: (a) a sequential statistical clustering which is a one-pass sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. Applications of the technique using an IBM-7094 computer on multispectral data sets over Purdue's Flight Line C-1 and the Yellowstone National Park test site have been accomplished. Comparisons between the classification maps by the unsupervised technique and the supervised maximum liklihood technique indicate that the classification accuracies are in agreement.

  9. Optimal out-of-band correction for multispectral remote sensing.

    PubMed

    Chen, Wei

    2012-11-20

    In this paper, an optimal out-of-band (OOB) correction transform (OOBCT) for dealing with onboard Visible/Infrared Imaging Radiometer Suite (VIIRS) OOB effects is proposed. This paper addresses the OOB response issue without consideration of the impact of other error sources on the correction processing. The OOBCT matrix is derived by minimizing an objective function of error summation between the expected and realistic recovered band-averaged spectral radiances. Using the VIIRS filter transmittance functions for all multiband sensors obtained from prelaunch laboratory measurements and a simulated dataset obtained from Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) hyperspectral data, the OOBCT matrix is numerically computed. The processing of the OOB correction is straightforward and can be performed by a product between the OOBCT matrix and a measured multispectral image vector. The experimental results with both AVIRIS and Hyperspectral Imager for the Coastal Ocean datasets demonstrate that the ratios of average errors of recovered band-averaged spectral radiances divided by the measured radiances with the OOB responses are less than 4%. The average values of the relative errors for all pixels and bands indicate that the OOBCT method outperforms the works reported in literature.

  10. Radiometric Characterization of Hyperspectral Imagers using Multispectral Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Kurt, Thome; Leisso, Nathan; Anderson, Nikolaus; Czapla-Myers, Jeff

    2009-01-01

    The Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne and satellite based sensors. Often, ground-truth measurements at these test sites are not always successful due to weather and funding availability. Therefore, RSG has also automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor, This work studies the feasibility of determining the radiometric calibration of a hyperspectral imager using multispectral a imagery. The work relies on the Moderate Resolution Imaging Spectroradiometer (M0DIS) as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. Hyperion bands are compared to MODIS by band averaging Hyperion's high spectral resolution data with the relative spectral response of M0DlS. The results compare cross-calibration scenarios that differ in image acquisition coincidence, test site used for the calibration, and reference sensor. Cross-calibration results are presented that show agreement between the use of coincident and non-coincident image pairs within 2% in most brands as well as similar agreement between results that employ the different MODIS sensors as a reference.

  11. High-speed multispectral confocal imaging

    NASA Astrophysics Data System (ADS)

    Carver, Gary E.; Locknar, Sarah A.; Morrison, William A.; Farkas, Daniel L.

    2013-02-01

    A new approach for generating high-speed multispectral images has been developed. The central concept is that spectra can be acquired for each pixel in a confocal spatial scan by using a fast spectrometer based on optical fiber delay lines. This concept merges fast spectroscopy with standard spatial scanning to create datacubes in real time. The spectrometer is based on a serial array of reflecting spectral elements, delay lines between these elements, and a single element detector. The spatial, spectral, and temporal resolution of the instrument is described, and illustrated by multispectral images of laser-induced autofluorescence in biological tissues.

  12. High-speed multispectral confocal biomedical imaging

    PubMed Central

    Carver, Gary E.; Locknar, Sarah A.; Morrison, William A.; Krishnan Ramanujan, V.; Farkas, Daniel L.

    2014-01-01

    Abstract. A new approach for generating high-speed multispectral confocal images has been developed. The central concept is that spectra can be acquired for each pixel in a confocal spatial scan by using a fast spectrometer based on optical fiber delay lines. This approach merges fast spectroscopy with standard spatial scanning to create datacubes in real time. The spectrometer is based on a serial array of reflecting spectral elements, delay lines between these elements, and a single element detector. The spatial, spectral, and temporal resolution of the instrument is described and illustrated by multispectral images of laser-induced autofluorescence in biological tissues. PMID:24658777

  13. Coastal and estuarine applications of multispectral photography

    NASA Technical Reports Server (NTRS)

    Yost, E.; Wenderoth, S.

    1972-01-01

    An evaluation of multispectral photographic techniques for optical penetration of water in the northeastern United States and the Gulf of Mexico coastal waters is presented. The spectral band (493 to 543 nanom), when exposed to place the water mass at about unit density on the photographic emulsion, was found to provide the best water penetration, independent of altitude or time of day, as long as solar glitter from the surface of the water is avoided. An isoluminous color technique was perfected, which eliminates the dimension of brightness from a multispectral color presentation.

  14. Airborne remote sensing for Deepwater Horizon oil spill emergency response

    NASA Astrophysics Data System (ADS)

    Kroutil, Robert T.; Shen, Sylvia S.; Lewis, Paul E.; Miller, David P.; Cardarelli, John; Thomas, Mark; Curry, Timothy; Kudaraskus, Paul

    2010-08-01

    On April 28, 2010, the Environmental Protection Agency's (EPA) Airborne Spectral Photometric Environmental Collection Technology (ASPECT) aircraft was deployed to Gulfport, Mississippi to provide airborne remotely sensed air monitoring and situational awareness data and products in response to the Deepwater Horizon oil rig disaster. The ASPECT aircraft was released from service on August 9, 2010 after having flown over 75 missions that included over 250 hours of flight operation. ASPECT's initial mission responsibility was to provide air quality monitoring (i.e., identification of vapor species) during various oil burning operations. The ASPECT airborne wide-area infrared remote sensing spectral data was used to evaluate the hazard potential of vapors being produced from open water oil burns near the Deepwater Horizon rig site. Other significant remote sensing data products and innovations included the development of an advanced capability to correctly identify, locate, characterize, and quantify surface oil that could reach beaches and wetland areas. This advanced identification product provided the Incident Command an improved capability to locate surface oil in order to improve the effectiveness of oil skimmer vessel recovery efforts directed by the US Coast Guard. This paper discusses the application of infrared spectroscopy and multispectral infrared imagery to address significant issues associated with this national crisis. More specifically, this paper addresses the airborne remote sensing capabilities, technology, and data analysis products developed specifically to optimize the resources and capabilities of the Deepwater Horizon Incident Command structure personnel and their remediation efforts.

  15. The Topographic Evolution of Thermal Erosion Features: an investigation using an airborne LiDAR transect across a chronosequence of glacial deposits

    NASA Astrophysics Data System (ADS)

    Krieger, K. E.; Crosby, B. T.

    2010-12-01

    Numerous active thermal erosion features distributed across the Arctic provide insight into contemporary landscape response to warming climate. Constructing a conceptual model for how these recent features will evolve requires an extensive, high resolution topographic dataset containing features of varying maturity. We address this issue by characterizing features distributed across a chronosequence of glacial and proglacial deposits flanking the northern foothills of the Brooks Range, Alaska. The deposits range in age from less than 10 ka to more than 200 ka. They are composed of similar drift and outwash deposits and are underlain by continuous permafrost. In the summer of 2009, a LiDAR transect 12 km wide and 150 km long was flown across this chronosequence. The dataset reveals that the topographic evolution in the region is driven by numerous contemporaneous thermal erosion processes including gully thermokarsts, retrogressive thaw slumps, active layer detachments and solufluction. This unique, high resolution topographic data facilitates the detection, classification and characterization of the different thermal erosion features. With this extensive dataset, we are able to interpret the level of maturity of the features and their influence on surrounding hillslopes. Gully thermokarst features, most prevalent on the youngest landforms, begin as long, narrow (1-5 m wide) and steep-sided depressions in unchanneled, slightly convergent topography. As the feature evolves, the width of the depression broadens but the distinct boundaries with the adjacent hillslopes persist. The most mature gully features evolve into broad, planar ramps with hummocky surfaces that extend down convergent valley bottoms. Analysis across the chronosequence reveals that gully thermokarsts increase drainage density by enhancing convergent flow and mobilizing sediment from valley bottoms. Retrogressive thaw slumps are found throughout the study area along the banks of rivers and lakes, and

  16. Multispectral Photography: the obscure becomes the obvious

    ERIC Educational Resources Information Center

    Polgrean, John

    1974-01-01

    Commonly used in map making, real estate zoning, and highway route location, aerial photography planes equipped with multispectral cameras may, among many environmental applications, now be used to locate mineral deposits, define marshland boundaries, study water pollution, and detect diseases in crops and forests. (KM)

  17. Estimating noise and information for multispectral imagery

    NASA Astrophysics Data System (ADS)

    Aiazzi, Bruno; Alparone, Luciano; Barducci, Alessandro; Baronti, Stefano; Pippi, Ivan

    2002-03-01

    We focus on reliably estimating the information conveyed to a user by multispectral image data. The goal is establishing the extent to which an increase in spectral resolution can increase the amount of usable information. As a matter of fact, a trade- off exists between spatial and spectral resolution, due to physical constraints of sensors imaging with a prefixed SNR. After describing some methods developed for automatically estimating the variance of the noise introduced by multispectral imagers, lossless data compression is exploited to measure the useful information content of the multispectral data. In fact, the bit rate achieved by the reversible compression process takes into account both the contribution of the 'observation' noise, i.e., information regarded as statistical uncertainty, whose relevance is null to a user, and the intrinsic information of hypothetically noise free multispectral data. An entropic model of the image source is defined and, once the standard deviation of the noise, assumed to be white and Gaussian, has been preliminarily estimated, such a model is inverted to yield an estimate of the information content of the noise-free source from the code rate. Results of both noise and information assessment are reported and discussed on synthetic noisy images and on Landsat thematic mapper (TM) data.

  18. Multispectral laser imaging for advanced food analysis

    NASA Astrophysics Data System (ADS)

    Senni, L.; Burrascano, P.; Ricci, M.

    2016-07-01

    A hardware-software apparatus for food inspection capable of realizing multispectral NIR laser imaging at four different wavelengths is herein discussed. The system was designed to operate in a through-transmission configuration to detect the presence of unwanted foreign bodies inside samples, whether packed or unpacked. A modified Lock-In technique was employed to counterbalance the significant signal intensity attenuation due to transmission across the sample and to extract the multispectral information more efficiently. The NIR laser wavelengths used to acquire the multispectral images can be varied to deal with different materials and to focus on specific aspects. In the present work the wavelengths were selected after a preliminary analysis to enhance the image contrast between foreign bodies and food in the sample, thus identifying the location and nature of the defects. Experimental results obtained from several specimens, with and without packaging, are presented and the multispectral image processing as well as the achievable spatial resolution of the system are discussed.

  19. Multispectral analysis of limestone, dolomite, and granite, Mill Creek, Oklahoma

    NASA Technical Reports Server (NTRS)

    Rowan, L. C.; Watson, K.

    1970-01-01

    Spectral reflectance and thermal emission data were collected at the Mill Creek, Oklahoma test site during NASA missions 132 and 133 in June 1970. The data were collected by three aircraft flown several times during the diurnal cycle at altitudes of 150 to 17,000 m above mean terrain. Reflectance of the main rock types (limestone, dolomite, and granite) was determined from the data collected using a 12-channel multispectral scanner during mission 133 and from thermal infrared images recorded during mission 132 on an RS-7 scanner from 17,000 m above terrain. A preliminary rock recognition map was generated automatically using data collected from 900 m above terrain. The discrimination provided by the map is reasonably accurate. Misidentification occurred in areas of unusually high dolomite reflectivity. High altitude thermal infrared (10 to 12 micrometers) images show regional folds and faults distinguished by the presence of thermally contrasting materials. Linear and curvilinear structural features two to three times smaller than the nominal 17 m resolution could be detected.

  20. Application of an automatic thermal desorption-gas chromatography-mass spectrometry system for the analysis of polycyclic aromatic hydrocarbons in airborne particulate matter.

    PubMed

    Gil-Moltó, J; Varea, M; Galindo, N; Crespo, J

    2009-02-27

    The application of the thermal desorption (TD) method coupled with gas chromatography-mass spectrometry (GC-MS) to the analysis of aerosol organics has been the focus of many studies in recent years. This technique overcomes the main drawbacks of the solvent extraction approach such as the use of large amounts of toxic organic solvents and long and laborious extraction processes. In this work, the application of an automatic TD-GC-MS instrument for the determination of particle-bound polycyclic aromatic hydrocarbons (PAHs) is evaluated. This device offers the advantage of allowing the analysis of either gaseous or particulate organics without any modification. Once the thermal desorption conditions for PAH extraction were optimised, the method was verified on NIST standard reference material (SRM) 1649a urban dust, showing good linearity, reproducibility and accuracy for all target PAHs. The method has been applied to PM10 and PM2.5 samples collected on quartz fibre filters with low volume samplers, demonstrating its capability to quantify PAHs when only a small amount of sample is available. PMID:19150718

  1. Application of an automatic thermal desorption-gas chromatography-mass spectrometry system for the analysis of polycyclic aromatic hydrocarbons in airborne particulate matter.

    PubMed

    Gil-Moltó, J; Varea, M; Galindo, N; Crespo, J

    2009-02-27

    The application of the thermal desorption (TD) method coupled with gas chromatography-mass spectrometry (GC-MS) to the analysis of aerosol organics has been the focus of many studies in recent years. This technique overcomes the main drawbacks of the solvent extraction approach such as the use of large amounts of toxic organic solvents and long and laborious extraction processes. In this work, the application of an automatic TD-GC-MS instrument for the determination of particle-bound polycyclic aromatic hydrocarbons (PAHs) is evaluated. This device offers the advantage of allowing the analysis of either gaseous or particulate organics without any modification. Once the thermal desorption conditions for PAH extraction were optimised, the method was verified on NIST standard reference material (SRM) 1649a urban dust, showing good linearity, reproducibility and accuracy for all target PAHs. The method has been applied to PM10 and PM2.5 samples collected on quartz fibre filters with low volume samplers, demonstrating its capability to quantify PAHs when only a small amount of sample is available.

  2. Mars Airborne Prospecting Spectrometer

    NASA Astrophysics Data System (ADS)

    Steinkraus, J. M.; Wright, M. W.; Rheingans, B. E.; Steinkraus, D. E.; George, W. P.; Aljabri, A.; Hall, J. L.; Scott, D. C.

    2012-06-01

    One novel approach towards addressing the need for innovative instrumentation and investigation approaches is the integration of a suite of four spectrometer systems to form the Mars Airborne Prospecting Spectrometers (MAPS) for prospecting on Mars.

  3. Apparatus and method for automated monitoring of airborne bacterial spores

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    An apparatus and method for automated monitoring of airborne bacterial spores. The apparatus is provided with an air sampler, a surface for capturing airborne spores, a thermal lysis unit to release DPA from bacterial spores, a source of lanthanide ions, and a spectrometer for excitation and detection of the characteristic fluorescence of the aromatic molecules in bacterial spores complexed with lanthanide ions. In accordance with the method: computer-programmed steps allow for automation of the apparatus for the monitoring of airborne bacterial spores.

  4. Temperature monitoring along the Rhine River based on airborne thermal infrared remote sensing: qualitative results compared to satellite data and validation with in situ measurements

    NASA Astrophysics Data System (ADS)

    Fricke, Katharina; Baschek, Björn

    2014-10-01

    Water temperature is an important parameter of water quality and influences other physical and chemical parameters. It also directly influences the survival and growth of animal and plant species in river ecosystems. In situ measurements do not allow for a total spatial coverage of water bodies and rivers that is necessary for monitoring and research at the Federal Institute of Hydrology (BfG), Germany. Hence, the ability of different remote sensing products to identify and investigate water inflows and water temperatures in Federal waterways is evaluated within the research project 'Remote sensing of water surface temperature'. The research area for a case study is the Upper and Middle Rhine River from the barrage in Iffezheim to Koblenz. Satellite products (e. g. Landsat and ASTER imagery) can only be used for rivers at least twice as wide as the spatial resolution of the satellite images. They can help to identify different water bodies only at tributaries with larger inflow volume (Main and Mosel) or larger temperature differences between the inflow (e. g. from power plants working with high capacity) and the river water. To identify and investigate also smaller water inflows and temperature differences, thermal data with better ground and thermal resolution is required. An aerial survey of the research area was conducted in late October 2013. Data of the surface was acquired with two camera systems, a digital camera with R, G, B, and Near-IR channels, and a thermal imaging camera measuring the brightness temperature in the 8-12 m wavelength region (TIR). The resolution of the TIR camera allowed for a ground resolution of 4 m, covering the whole width of the main stream and larger branches. The RGB and NIR data allowed to eliminate land surface temperatures from the analysis and to identify clouds and shadows present during the data acquisition. By degrading the spatial resolution and adding sensor noise, artificial Landsat ETM+ and TIRS datasets were created

  5. A wavelet-based method for multispectral face recognition

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Zhang, Chaoyang; Zhou, Zhaoxian

    2012-06-01

    A wavelet-based method is proposed for multispectral face recognition in this paper. Gabor wavelet transform is a common tool for orientation analysis of a 2D image; whereas Hamming distance is an efficient distance measurement for face identification. Specifically, at each frequency band, an index number representing the strongest orientational response is selected, and then encoded in binary format to favor the Hamming distance calculation. Multiband orientation bit codes are then organized into a face pattern byte (FPB) by using order statistics. With the FPB, Hamming distances are calculated and compared to achieve face identification. The FPB algorithm was initially created using thermal images, while the EBGM method was originated with visible images. When two or more spectral images from the same subject are available, the identification accuracy and reliability can be enhanced using score fusion. We compare the identification performance of applying five recognition algorithms to the three-band (visible, near infrared, thermal) face images, and explore the fusion performance of combing the multiple scores from three recognition algorithms and from three-band face images, respectively. The experimental results show that the FPB is the best recognition algorithm, the HMM yields the best fusion result, and the thermal dataset results in the best fusion performance compared to other two datasets.

  6. An orbiting multispectral scanner for overland and oceanographic applications.

    NASA Technical Reports Server (NTRS)

    Peacock, K.; Withrington, R. J.

    1971-01-01

    Description of the major features of a multispectral scanner designed to perform overland and oceanographic surveys from space. The instrument uses an image plane conical scanner and contains independent spectrometers for land and ocean applications. The overland spectrometer has a spatial resolution of 200 ft and has six spectral bands in the atmospheric windows between 0.5 and 2.4 microns. The oceanographic spectrometer has a spatial resolution of 1200 ft and possesses 24 spectral bands equally spaced and in registration over the wavelength range from 0.4 to 0.8 micron. A thermal band of 600-ft resolution is used with a spectral range from 10.5 to 12.6 microns. The swath width of the scan is 100 nautical miles from an altitude of 500 nautical miles. The system has two modes of operation which are selectable by ground command. The six bands of overland data plus the thermal band data can be transmitted, or the 24 bands of oceanographic data plus data from two of the overland bands and the thermal band can be transmitted. The performance is described by the minimum detectable reflectance difference and the effects of sun angle and target reflectivity variations are discussed. The sensitivity is related to the variation of the ocean reflectivity in the presence of chlorophyll and to typical agricultural targets.

  7. Investigation related to multispectral imaging systems

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F.; Erickson, J. D.

    1974-01-01

    A summary of technical progress made during a five year research program directed toward the development of operational information systems based on multispectral sensing and the use of these systems in earth-resource survey applications is presented. Efforts were undertaken during this program to: (1) improve the basic understanding of the many facets of multispectral remote sensing, (2) develop methods for improving the accuracy of information generated by remote sensing systems, (3) improve the efficiency of data processing and information extraction techniques to enhance the cost-effectiveness of remote sensing systems, (4) investigate additional problems having potential remote sensing solutions, and (5) apply the existing and developing technology for specific users and document and transfer that technology to the remote sensing community.

  8. Information extraction techniques for multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Crane, R. B.; Turner, R. E.

    1972-01-01

    The applicability of recognition-processing procedures for multispectral scanner data from areas and conditions used for programming the recognition computers to other data from different areas viewed under different measurement conditions was studied. The reflective spectral region approximately 0.3 to 3.0 micrometers is considered. A potential application of such techniques is in conducting area surveys. Work in three general areas is reported: (1) Nature of sources of systematic variation in multispectral scanner radiation signals, (2) An investigation of various techniques for overcoming systematic variations in scanner data; (3) The use of decision rules based upon empirical distributions of scanner signals rather than upon the usually assumed multivariate normal (Gaussian) signal distributions.

  9. Multispectral device for help in diagnosis

    NASA Astrophysics Data System (ADS)

    Delporte, Céline; Ben Chouikha, Mohamed; Sautrot, Sylvie; Viénot, Françoise; Alquié, Georges

    2012-03-01

    In order to build biological tissues spectral characteristics database to be used in a multispectral imaging system a tissues optical characterization bench is developed and validated. Several biological tissue types have been characterized in vitro and ex vivo with our device such as beef, turkey and pork muscle and beef liver. Multispectral images obtained have been analyzed in order to study the dispersion of biological tissues spectral luminance factor. Tissue internal structure inhomogeneity was identified as a phenomenon contributing to the dispersion of spectral luminance factor. This dispersion of spectral luminance factor could be a characteristic of the tissue. A method based on envelope technique has been developed to identify and differentiate biological tissues in the same scene. This method applied to pork tissues containing muscle and fat gives detection rates of 59% for pork muscle and 14% for pork fat.

  10. Atmospheric effects in multispectral remote sensor data

    NASA Technical Reports Server (NTRS)

    Turner, R. E.

    1975-01-01

    The problem of radiometric variations in multispectral remote sensing data which occur as a result of a change in geometric and environmental factors is studied. The case of spatially varying atmospheres is considered and the effect of atmospheric scattering is analyzed for realistic conditions. Emphasis is placed upon a simulation of LANDSAT spectral data for agricultural investigations over the United States. The effect of the target-background interaction is thoroughly analyzed in terms of various atmospheric states, geometric parameters, and target-background materials. Results clearly demonstrate that variable atmospheres can alter the classification accuracy and that the presence of various backgrounds can change the effective target radiance by a significant amount. A failure to include these effects in multispectral data analysis will result in a decrease in the classification accuracy.

  11. Multi-spectral photoacoustic elasticity tomography

    PubMed Central

    Liu, Yubin; Yuan, Zhen

    2016-01-01

    The goal of this work was to develop and validate a spectrally resolved photoacoustic imaging method, namely multi-spectral photoacoustic elasticity tomography (PAET) for quantifying the physiological parameters and elastic modulus of biological tissues. We theoretically and experimentally examined the PAET imaging method using simulations and in vitro experimental tests. Our simulation and in vitro experimental results indicated that the reconstructions were quantitatively accurate in terms of sizes, the physiological and elastic properties of the targets. PMID:27699101

  12. Investigations in adaptive processing of multispectral data

    NASA Technical Reports Server (NTRS)

    Kriegler, F. J.; Horwitz, H. M.

    1973-01-01

    Adaptive data processing procedures are applied to the problem of classifying objects in a scene scanned by multispectral sensor. These procedures show a performance improvement over standard nonadaptive techniques. Some sources of error in classification are identified and those correctable by adaptive processing are discussed. Experiments in adaptation of signature means by decision-directed methods are described. Some of these methods assume correlation between the trajectories of different signature means; for others this assumption is not made.

  13. Multi-spectral photoacoustic elasticity tomography

    PubMed Central

    Liu, Yubin; Yuan, Zhen

    2016-01-01

    The goal of this work was to develop and validate a spectrally resolved photoacoustic imaging method, namely multi-spectral photoacoustic elasticity tomography (PAET) for quantifying the physiological parameters and elastic modulus of biological tissues. We theoretically and experimentally examined the PAET imaging method using simulations and in vitro experimental tests. Our simulation and in vitro experimental results indicated that the reconstructions were quantitatively accurate in terms of sizes, the physiological and elastic properties of the targets.

  14. Perceptual evaluation of color transformed multispectral imagery

    NASA Astrophysics Data System (ADS)

    Toet, Alexander; de Jong, Michael J.; Hogervorst, Maarten A.; Hooge, Ignace T. C.

    2014-04-01

    Color remapping can give multispectral imagery a realistic appearance. We assessed the practical value of this technique in two observer experiments using monochrome intensified (II) and long-wave infrared (IR) imagery, and color daylight (REF) and fused multispectral (CF) imagery. First, we investigated the amount of detail observers perceive in a short timespan. REF and CF imagery yielded the highest precision and recall measures, while II and IR imagery yielded significantly lower values. This suggests that observers have more difficulty in extracting information from monochrome than from color imagery. Next, we measured eye fixations during free image exploration. Although the overall fixation behavior was similar across image modalities, the order in which certain details were fixated varied. Persons and vehicles were typically fixated first in REF, CF, and IR imagery, while they were fixated later in II imagery. In some cases, color remapping II imagery and fusion with IR imagery restored the fixation order of these image details. We conclude that color remapping can yield enhanced scene perception compared to conventional monochrome nighttime imagery, and may be deployed to tune multispectral image representations such that the resulting fixation behavior resembles the fixation behavior corresponding to daylight color imagery.

  15. Development of a multispectral camera system

    NASA Astrophysics Data System (ADS)

    Sugiura, Hiroaki; Kuno, Tetsuya; Watanabe, Norihiro; Matoba, Narihiro; Hayashi, Junichiro; Miyake, Yoichi

    2000-05-01

    A highly accurate multispectral camera and the application software have been developed as a practical system to capture digital images of the artworks stored in galleries and museums. Instead of recording color data in the conventional three RGB primary colors, the newly developed camera and the software carry out a pixel-wise estimation of spectral reflectance, the color data specific to the object, to enable the practical multispectral imaging. In order to realize the accurate multispectral imaging, the dynamic range of the camera is set to 14 bits or over and the output bits to 14 bits so as to allow capturing even when the difference in light quantity between the each channel is large. Further, a small-size rotary color filter was simultaneously developed to keep the camera to a practical size. We have developed software capable of selecting the optimum combination of color filters available in the market. Using this software, n types of color filter can be selected from m types of color filter giving a minimum Euclidean distance or minimum color difference in CIELAB color space between actual and estimated spectral reflectance as to 147 types of oil paint samples.

  16. Image processing of underwater multispectral imagery

    USGS Publications Warehouse

    Zawada, D.G.

    2003-01-01

    Capturing in situ fluorescence images of marine organisms presents many technical challenges. The effects of the medium, as well as the particles and organisms within it, are intermixed with the desired signal. Methods for extracting and preparing the imagery for analysis are discussed in reference to a novel underwater imaging system called the low-light-level underwater multispectral imaging system (LUMIS). The instrument supports both uni- and multispectral collections, each of which is discussed in the context of an experimental application. In unispectral mode, LUMIS was used to investigate the spatial distribution of phytoplankton. A thin sheet of laser light (532 nm) induced chlorophyll fluorescence in the phytoplankton, which was recorded by LUMIS. Inhomogeneities in the light sheet led to the development of a beam-pattern-correction algorithm. Separating individual phytoplankton cells from a weak background fluorescence field required a two-step procedure consisting of edge detection followed by a series of binary morphological operations. In multispectral mode, LUMIS was used to investigate the bio-assay potential of fluorescent pigments in corals. Problems with the commercial optical-splitting device produced nonlinear distortions in the imagery. A tessellation algorithm, including an automated tie-point-selection procedure, was developed to correct the distortions. Only pixels corresponding to coral polyps were of interest for further analysis. Extraction of these pixels was performed by a dynamic global-thresholding algorithm.

  17. Airborne data acquisition techniques

    SciTech Connect

    Arro, A.A.

    1980-01-01

    The introduction of standards on acceptable procedures for assessing building heat loss has created a dilemma for the contractor performing airborne thermographic surveys. These standards impose specifications on instrumentation, data acquisition, recording, interpretation, and presentation. Under the standard, the contractor has both the obligation of compliance and the requirement of offering his services at a reasonable price. This paper discusses the various aspects of data acquisition for airborne thermographic surveys and various techniques to reduce the costs of this operation. These techniques include the calculation of flight parameters for economical data acquisition, the selection and use of maps for mission planning, and the use of meteorological forecasts for flight scheduling and the actual execution of the mission. The proper consideration of these factors will result in a cost effective data acquisition and will place the contractor in a very competitive position in offering airborne thermographic survey services.

  18. The Multispectral Imaging Science Working Group. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Cox, S. C. (Editor)

    1982-01-01

    The status and technology requirements for using multispectral sensor imagery in geographic, hydrologic, and geologic applications are examined. Critical issues in image and information science are identified.

  19. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  20. Airborne rain mapping radar

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Parks, G. S.; Li, F. K.; Im, K. E.; Howard, R. J.

    1988-01-01

    An airborne scanning radar system for remote rain mapping is described. The airborne rain mapping radar is composed of two radar frequency channels at 13.8 and 24.1 GHz. The radar is proposed to scan its antenna beam over + or - 20 deg from the antenna boresight; have a swath width of 7 km; a horizontal spatial resolution at nadir of about 500 m; and a range resolution of 120 m. The radar is designed to be applicable for retrieving rainfall rates from 0.1-60 mm/hr at the earth's surface, and for measuring linear polarization signatures and raindrop's fall velocity.

  1. Combination of multispectral remote sensing, variable rate technology and environmental modeling for citrus pest management.

    PubMed

    Du, Qian; Chang, Ni-Bin; Yang, Chenghai; Srilakshmi, Kanth R

    2008-01-01

    The Lower Rio Grande Valley (LRGV) of south Texas is an agriculturally rich area supporting intensive production of vegetables, fruits, grain sorghum, and cotton. Modern agricultural practices involve the combined use of irrigation with the application of large amounts of agrochemicals to maximize crop yields. Intensive agricultural activities in past decades might have caused potential contamination of soil, surface water, and groundwater due to leaching of pesticides in the vadose zone. In an effort to promote precision farming in citrus production, this paper aims at developing an airborne multispectral technique for identifying tree health problems in a citrus grove that can be combined with variable rate technology (VRT) for required pesticide application and environmental modeling for assessment of pollution prevention. An unsupervised linear unmixing method was applied to classify the image for the grove and quantify the symptom severity for appropriate infection control. The PRZM-3 model was used to estimate environmental impacts that contribute to nonpoint source pollution with and without the use of multispectral remote sensing and VRT. Research findings using site-specific environmental assessment clearly indicate that combination of remote sensing and VRT may result in benefit to the environment by reducing the nonpoint source pollution by 92.15%. Overall, this study demonstrates the potential of precision farming for citrus production in the nexus of industrial ecology and agricultural sustainability.

  2. A multispectral automatic target recognition application for maritime surveillance, search, and rescue

    NASA Astrophysics Data System (ADS)

    Schoonmaker, Jon; Reed, Scott; Podobna, Yuliya; Vazquez, Jose; Boucher, Cynthia

    2010-04-01

    Due to increased security concerns, the commitment to monitor and maintain security in the maritime environment is increasingly a priority. A country's coast is the most vulnerable area for the incursion of illegal immigrants, terrorists and contraband. This work illustrates the ability of a low-cost, light-weight, multi-spectral, multi-channel imaging system to handle the environment and see under difficult marine conditions. The system and its implemented detecting and tracking technologies should be organic to the maritime homeland security community for search and rescue, fisheries, defense, and law enforcement. It is tailored for airborne and ship based platforms to detect, track and monitor suspected objects (such as semi-submerged targets like marine mammals, vessels in distress, and drug smugglers). In this system, automated detection and tracking technology is used to detect, classify and localize potential threats or objects of interest within the imagery provided by the multi-spectral system. These algorithms process the sensor data in real time, thereby providing immediate feedback when features of interest have been detected. A supervised detection system based on Haar features and Cascade Classifiers is presented and results are provided on real data. The system is shown to be extendable and reusable for a variety of different applications.

  3. Analysis of multispectral signatures and investigation of multi-aspect remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Hieber, R. H.; Sarno, J. E.

    1974-01-01

    Two major aspects of remote sensing with multispectral scanners (MSS) are investigated. The first, multispectral signature analysis, includes the effects on classification performance of systematic variations found in the average signals received from various ground covers as well as the prediction of these variations with theoretical models of physical processes. The foremost effects studied are those associated with the time of day airborne MSS data are collected. Six data collection runs made over the same flight line in a period of five hours are analyzed, it is found that the time span significantly affects classification performance. Variations associated with scan angle also are studied. The second major topic of discussion is multi-aspect remote sensing, a new concept in remote sensing with scanners. Here, data are collected on multiple passes by a scanner that can be tilted to scan forward of the aircraft at different angles on different passes. The use of such spatially registered data to achieve improved classification of agricultural scenes is investigated and found promising. Also considered are the possibilities of extracting from multi-aspect data, information on the condition of corn canopies and the stand characteristics of forests.

  4. CNR LARA project, Italy: Airborne laboratory for environmental research

    NASA Technical Reports Server (NTRS)

    Bianchi, R.; Cavalli, R. M.; Fiumi, L.; Marino, C. M.; Pignatti, S.

    1995-01-01

    The increasing interest for the environmental problems and the study of the impact on the environment due to antropic activity produced an enhancement of remote sensing applications. The Italian National Research Council (CNR) established a new laboratory for airborne hyperspectral imaging, the LARA Project (Laboratorio Aero per Ricerche Ambientali - Airborne Laboratory for Environmental Research), equipping its airborne laboratory, a CASA-212, mainly with the Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument. MIVIS's channels, spectral bandwidths, and locations are chosen to meet the needs of scientific research for advanced applications of remote sensing data. MIVIS can make significant contributions to solving problems in many diverse areas such as geologic exploration, land use studies, mineralogy, agricultural crop studies, energy loss analysis, pollution assessment, volcanology, forest fire management and others. The broad spectral range and the many discrete narrow channels of MIVIS provide a fine quantization of spectral information that permits accurate definition of absorption features from a variety of materials, allowing the extraction of chemical and physical information of our environment. The availability of such a hyperspectral imager, that will operate mainly in the Mediterranean area, at the present represents a unique opportunity for those who are involved in environmental studies and land-management to collect systematically large-scale and high spectral-spatial resolution data of this part of the world. Nevertheless, MIVIS deployments will touch other parts of the world, where a major interest from the international scientific community is present.

  5. High Resolution Airborne Digital Imagery for Precision Agriculture

    NASA Technical Reports Server (NTRS)

    Herwitz, Stanley R.

    1998-01-01

    The Environmental Research Aircraft and Sensor Technology (ERAST) program is a NASA initiative that seeks to demonstrate the application of cost-effective aircraft and sensor technology to private commercial ventures. In 1997-98, a series of flight-demonstrations and image acquisition efforts were conducted over the Hawaiian Islands using a remotely-piloted solar- powered platform (Pathfinder) and a fixed-wing piloted aircraft (Navajo) equipped with a Kodak DCS450 CIR (color infrared) digital camera. As an ERAST Science Team Member, I defined a set of flight lines over the largest coffee plantation in Hawaii: the Kauai Coffee Company's 4,000 acre Koloa Estate. Past studies have demonstrated the applications of airborne digital imaging to agricultural management. Few studies have examined the usefulness of high resolution airborne multispectral imagery with 10 cm pixel sizes. The Kodak digital camera integrated with ERAST's Airborne Real Time Imaging System (ARTIS) which generated multiband CCD images consisting of 6 x 106 pixel elements. At the designated flight altitude of 1,000 feet over the coffee plantation, pixel size was 10 cm. The study involved the analysis of imagery acquired on 5 March 1998 for the detection of anomalous reflectance values and for the definition of spectral signatures as indicators of tree vigor and treatment effectiveness (e.g., drip irrigation; fertilizer application).

  6. Mapping Glacier Dynamics and Proglacial Wetlands with a Multispectral UAV at 5000m in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Wigmore, O.; Mark, B. G.

    2015-12-01

    The glaciers of the Cordillera Blanca, Peru are rapidly retreating as a result of rising temperatures, transforming the hydrology and impacting the socio-economic and environmental systems of the Rio Santa basin. Documenting the heterogeneous spatial patterns of these changes to understand processes of water storage and flow is hindered by technologic and logistic challenges. Highly complex topography, cloud cover and coarse spatial resolution limit the application of satellite data while airborne data collection remains costly and potentially dangerous. However, recent developments have made Unmanned Aerial Vehicle (UAV) technology a viable and potentially transformative method for studying glacier dynamics and proglacial hydrology. The extreme altitudes (4000-6700m) of the Cordillera Blanca limit the use of 'off the shelf' UAVs. Therefore we developed a low cost multispectral (visible, near-infrared and thermal infrared) multirotor UAV capable of conducting fully autonomous aerial surveys at elevations over 5000m within the glacial valleys of the Cordillera Blanca. Using this platform we have completed repeat aerial surveys (in 2014 and 2015) of the debris covered Llaca Glacier, generating highly accurate 10-20cm DEM's and 5cm orthomosaics using a structure from motion workflow. Analysis of these data reveals a highly dynamic system with some areas of the glacier losing as much as 16m of vertical elevation, while other areas have gained up to 5m of elevation over one year. The magnitude and direction of these changes appears to be associated with the presence of debris free ice faces and meltwater ponds. Additionally, we have mapped proglacial meadow and wetland systems. Thermal mosaics at 10-20cm resolution are providing novel insights into the hydrologic pathways of glacier meltwater including mapping the distribution of artesian springs that feed these wetland systems. The high spatial resolution of these UAV datasets facilitates a better understanding of the

  7. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  8. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  9. An investigative study of multispectral data compression for remotely-sensed images using vector quantization and difference-mapped shift-coding

    NASA Technical Reports Server (NTRS)

    Jaggi, S.

    1993-01-01

    A study is conducted to investigate the effects and advantages of data compression techniques on multispectral imagery data acquired by NASA's airborne scanners at the Stennis Space Center. The first technique used was vector quantization. The vector is defined in the multispectral imagery context as an array of pixels from the same location from each channel. The error obtained in substituting the reconstructed images for the original set is compared for different compression ratios. Also, the eigenvalues of the covariance matrix obtained from the reconstructed data set are compared with the eigenvalues of the original set. The effects of varying the size of the vector codebook on the quality of the compression and on subsequent classification are also presented. The output data from the Vector Quantization algorithm was further compressed by a lossless technique called Difference-mapped Shift-extended Huffman coding. The overall compression for 7 channels of data acquired by the Calibrated Airborne Multispectral Scanner (CAMS), with an RMS error of 15.8 pixels was 195:1 (0.41 bpp) and with an RMS error of 3.6 pixels was 18:1 (.447 bpp). The algorithms were implemented in software and interfaced with the help of dedicated image processing boards to an 80386 PC compatible computer. Modules were developed for the task of image compression and image analysis. Also, supporting software to perform image processing for visual display and interpretation of the compressed/classified images was developed.

  10. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  11. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  12. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  13. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  14. A multispectral method of determining sea surface temperatures

    NASA Technical Reports Server (NTRS)

    Shenk, W. E.

    1972-01-01

    A multispectral method for determining sea surface temperatures is discussed. The specifications of the equipment and the atmospheric conditions required for successful multispectral data acquisition are described. Examples of data obtained in the North Atlantic Ocean are presented. The differences between the actual sea surface temperatures and the equivalent blackbody temperatures as determined by a radiometer are plotted.

  15. Multispectral data compression through transform coding and block quantization

    NASA Technical Reports Server (NTRS)

    Ready, P. J.; Wintz, P. A.

    1972-01-01

    Transform coding and block quantization techniques are applied to multispectral aircraft scanner data, and digitized satellite imagery. The multispectral source is defined and an appropriate mathematical model proposed. The Karhunen-Loeve, Fourier, and Hadamard encoders are considered and are compared to the rate distortion function for the equivalent Gaussian source and to the performance of the single sample PCM encoder.

  16. Reproducible high-resolution multispectral image acquisition in dermatology

    NASA Astrophysics Data System (ADS)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  17. Extraction of topographic and spectral albedo information from multispectral images.

    USGS Publications Warehouse

    Eliason, P.T.; Soderblom, L.A.; Chavez, P.A., Jr.

    1981-01-01

    A technique has been developed to separate and extract spectral-reflectivity variations and topographic informaiton from multispectral images. The process is a completely closed system employing only the image data and can be applied to any digital multispectral data set. -from Authors

  18. Astronaut Jack Lousma works at Multispectral camera experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, works at the S190A multispectral camera experiment in the Multiple Docking Adapter (MDA), seen from a color television transmission made by a TV camera aboard the Skylab space station cluster in Earth orbit. Lousma later used a small brush to clean the six lenses of the multispectral camera.

  19. Measurement of water depth by multispectral ratio techniques

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.

    1970-01-01

    The technique for measuring the depth of water using a multispectral scanner is discussed. The procedure takes advantage of the absorption properties of different wavelengths of light. Making use of the property of the selected transmission of light at different wavelengths, an equation was developed relating the outputs of at least two channels of multispectral scanner to measure water depth.

  20. Fingerprint enhancement using a multispectral sensor

    NASA Astrophysics Data System (ADS)

    Rowe, Robert K.; Nixon, Kristin A.

    2005-03-01

    The level of performance of a biometric fingerprint sensor is critically dependent on the quality of the fingerprint images. One of the most common types of optical fingerprint sensors relies on the phenomenon of total internal reflectance (TIR) to generate an image. Under ideal conditions, a TIR fingerprint sensor can produce high-contrast fingerprint images with excellent feature definition. However, images produced by the same sensor under conditions that include dry skin, dirt on the skin, and marginal contact between the finger and the sensor, are likely to be severely degraded. This paper discusses the use of multispectral sensing as a means to collect additional images with new information about the fingerprint that can significantly augment the system performance under both normal and adverse sample conditions. In the context of this paper, "multispectral sensing" is used to broadly denote a collection of images taken under different illumination conditions: different polarizations, different illumination/detection configurations, as well as different wavelength illumination. Results from three small studies using an early-stage prototype of the multispectral-TIR (MTIR) sensor are presented along with results from the corresponding TIR data. The first experiment produced data from 9 people, 4 fingers from each person and 3 measurements per finger under "normal" conditions. The second experiment provided results from a study performed to test the relative performance of TIR and MTIR images when taken under extreme dry and dirty conditions. The third experiment examined the case where the area of contact between the finger and sensor is greatly reduced.

  1. Multispectral fingerprint imaging for spoof detection

    NASA Astrophysics Data System (ADS)

    Nixon, Kristin A.; Rowe, Robert K.

    2005-03-01

    Fingerprint systems are the most widespread form of biometric authentication. Used in locations such as airports and in PDA's and laptops, fingerprint readers are becoming more common in everyday use. As they become more familiar, the security weaknesses of fingerprint sensors are becoming better known. Numerous websites now exist describing in detail how to create a fake fingerprint usable for spoofing a biometric system from both a cooperative user and from latent prints. While many commercial fingerprint readers claim to have some degree of spoof detection incorporated, they are still generally susceptible to spoof attempts using various artificial fingerprint samples made from gelatin or silicone or other materials and methods commonly available on the web. This paper describes a multispectral sensor that has been developed to collect data for spoof detection. The sensor has been designed to work in conjunction with a conventional optical fingerprint reader such that all images are collected during a single placement of the finger on the sensor. The multispectral imaging device captures sub-surface information about the finger that makes it very difficult to spoof. Four attributes of the finger that are collected with the multispectral imager will be described and demonstrated in this paper: spectral qualities of live skin, chromatic texture of skin, sub-surface image of live skin, and blanching on contact. Each of these attributes is well suited to discriminating against particular kinds of spoofing samples. A series of experiments was conducted to demonstrate the capabilities of the individual attributes as well as the collective spoof detection performance.

  2. Digital rectification of ERTS multispectral imagery

    NASA Technical Reports Server (NTRS)

    Rifman, S. S.

    1973-01-01

    Rectified ERTS multispectral imagery have been produced utilizing all digital techniques, as the first step toward producing precision corrected imagery. Errors arising from attitude and ephemeris sources have been corrected, and the resultant image is represented in a meter/meter mapping utilizing an intensity resampling technique. Early results from available data indicate negligible degradation of the photometric and resolution properties of the source data as a consequence of the geometric correction process. Work utilizing ground control points to produce precision rectified imagery, and including photometric corrections resulting from available sensor calibration data, is currently in progress.

  3. SWNT Imaging Using Multispectral Image Processing

    NASA Astrophysics Data System (ADS)

    Blades, Michael; Pirbhai, Massooma; Rotkin, Slava V.

    2012-02-01

    A flexible optical system was developed to image carbon single-wall nanotube (SWNT) photoluminescence using the multispectral capabilities of a typical CCD camcorder. The built in Bayer filter of the CCD camera was utilized, using OpenCV C++ libraries for image processing, to decompose the image generated in a high magnification epifluorescence microscope setup into three pseudo-color channels. By carefully calibrating the filter beforehand, it was possible to extract spectral data from these channels, and effectively isolate the SWNT signals from the background.

  4. Multispectral imaging for diagnosis and treatment

    NASA Astrophysics Data System (ADS)

    Carver, Gary E.; Locknar, Sarah A.; Morrison, William A.; Farkas, Daniel L.

    2014-03-01

    A new approach for generating high-speed multispectral images has been previously reported by our team. The central concept is that spectra can be acquired for each pixel in a confocal spatial laser scan by using a fast spectrometer based on optical fiber delay lines. This method merges fast spectroscopy with standard spatial scanning to create image datacubes in real time. The datacubes can be analyzed to define regions of interest (ROIs) containing diseased tissue. Firmware and software have been developed for selectively scanning these ROIs with increased optical power. This enables real time image-guided laser treatment with a spatial resolution of a few microns.

  5. Multispectral scanner imagery for plant community classification.

    NASA Technical Reports Server (NTRS)

    Driscoll, R. S.; Spencer, M. M.

    1973-01-01

    Optimum channel selection among 12 channels of multispectral scanner imagery identified six as providing the best information for computerized classification of 11 plant communities and two nonvegetation classes. Intensive preprocessing of the spectral data was required to eliminate bidirectional reflectance effects of the spectral imagery caused by scanner view angle and varying geometry of the plant canopy. Generalized plant community types - forest, grassland, and hydrophytic systems - were acceptably classified based on ecological analysis. Serious, but soluble, errors occurred with attempts to classify specific community types within the grassland system. However, special clustering analyses provided for improved classification of specific grassland communities.

  6. Simultaneous multispectral imaging using lenslet arrays

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Jensen, James

    2013-03-01

    There is a need for small compact multispectral and hyperspectral imaging systems that simultaneously images in many spectral bands across the infrared spectral region from short to long-wave infrared. This is a challenge for conventional optics and usually requires large, costly and complex optical systems. However, with the advances in materials and photolithographic technology, Micro-Optical-Electrical-Machine-Systems (MOEMS) can meet these goals. In this paper Pacific Advanced Technology and ECBC will present the work that we are doing under a SBIR contract to the US Army using a MOEMS based diffractive optical lenslet array to perform simultaneous multispectral and hyperspectral imaging with relatively high spatial resolution. Under this program we will develop a proof of concept system that demonstrates how a diffractive optical (DO) lenslet array can image 1024 x 1024 pixels in 16 colors every frame of the camera. Each color image has a spatial resolution of 256 x 256 pixels with an IFOV of 1.7 mrads and FOV of 25 degrees. The purpose of this work is to simultaneously image multiple colors each frame and reduce the temporal changes between colors that are apparent in sequential multispectral imaging. Translating the lenslet array will collect hyperspectral image data cubes as will be explained later in this paper. Because the optics is integrated with the detector the entire multispectral/hyperspectral system can be contained in a miniature package. The spectral images are collected simultaneously allowing high resolution spectral-spatial-temporal information each frame of the camera. Thus enabling the implementation of spectral-temporal-spatial algorithms in real-time with high sensitivity for the detection of weak signals in a high background clutter environment with low sensitivity to camera motion. Using MOEMS actuation the DO lenslet array is translated along the optical axis to complete the full hyperspectral data cube in just a few frames of the

  7. Mapping soil types from multispectral scanner data.

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Zachary, A. L.

    1971-01-01

    Multispectral remote sensing and computer-implemented pattern recognition techniques were used for automatic ?mapping' of soil types. This approach involves subjective selection of a set of reference samples from a gray-level display of spectral variations which was generated by a computer. Each resolution element is then classified using a maximum likelihood ratio. Output is a computer printout on which the researcher assigns a different symbol to each class. Four soil test areas in Indiana were experimentally examined using this approach, and partially successful results were obtained.

  8. Multispectral imaging system for contaminant detection

    NASA Technical Reports Server (NTRS)

    Poole, Gavin H. (Inventor)

    2003-01-01

    An automated inspection system for detecting digestive contaminants on food items as they are being processed for consumption includes a conveyor for transporting the food items, a light sealed enclosure which surrounds a portion of the conveyor, with a light source and a multispectral or hyperspectral digital imaging camera disposed within the enclosure. Operation of the conveyor, light source and camera are controlled by a central computer unit. Light reflected by the food items within the enclosure is detected in predetermined wavelength bands, and detected intensity values are analyzed to detect the presence of digestive contamination.

  9. Multispectral-image fusion using neural networks

    NASA Astrophysics Data System (ADS)

    Kagel, Joseph H.; Platt, C. A.; Donaven, T. W.; Samstad, Eric A.

    1990-08-01

    A prototype system is being developed to demonstrate the use of neural network hardware to fuse multispectral imagery. This system consists of a neural network IC on a motherboard a circuit card assembly and a set of software routines hosted by a PC-class computer. Research in support of this consists of neural network simulations fusing 4 to 7 bands of Landsat imagery and fusing (separately) multiple bands of synthetic imagery. The simulations results and a description of the prototype system are presented. 1.

  10. Multispectral image fusion using neural networks

    NASA Technical Reports Server (NTRS)

    Kagel, J. H.; Platt, C. A.; Donaven, T. W.; Samstad, E. A.

    1990-01-01

    A prototype system is being developed to demonstrate the use of neural network hardware to fuse multispectral imagery. This system consists of a neural network IC on a motherboard, a circuit card assembly, and a set of software routines hosted by a PC-class computer. Research in support of this consists of neural network simulations fusing 4 to 7 bands of Landsat imagery and fusing (separately) multiple bands of synthetic imagery. The simulations, results, and a description of the prototype system are presented.

  11. Multispectral analysis of ocean dumped materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1977-01-01

    Remotely sensed data were collected in conjunction with sea-truth measurements in three experiments in the New York Bight. Pollution features of primary interest were ocean dumped materials, such as sewage sludge and acid waste. Sewage-sludge and acid-waste plumes, including plumes from sewage sludge dumped by the 'line-dump' and 'spot-dump' methods, were located, identified, and mapped. Previously developed quantitative analysis techniques for determining quantitative distributions of materials in sewage sludge dumps were evaluated, along with multispectral analysis techniques developed to identify ocean dumped materials. Results of these experiments and the associated data analysis investigations are presented and discussed.

  12. Multispectral analysis of ocean dumped materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1977-01-01

    Experiments conducted in the Atlantic coastal zone indicated that plumes resulting from ocean dumping of acid wastes and sewage sludge have unique spectral characteristics. Remotely sensed wide area synoptic coverage provided information on these pollution features that was not readily available from other sources. Aircraft remotely sensed photographic and multispectral scanner data were interpreted by two methods. First, qualitative analyses in which pollution features were located, mapped, and identified without concurrent sea truth and, second, quantitative analyses in which concurrently collected sea truth was used to calibrate the remotely sensed data and to determine quantitative distributions of one or more parameters in a plume.

  13. Design and fabrication of multispectral optics using expanded glass map

    NASA Astrophysics Data System (ADS)

    Bayya, Shyam; Gibson, Daniel; Nguyen, Vinh; Sanghera, Jasbinder; Kotov, Mikhail; Drake, Gryphon; Deegan, John; Lindberg, George

    2015-06-01

    As the desire to have compact multispectral imagers in various DoD platforms is growing, the dearth of multispectral optics is widely felt. With the limited number of material choices for optics, these multispectral imagers are often very bulky and impractical on several weight sensitive platforms. To address this issue, NRL has developed a large set of unique infrared glasses that transmit from 0.9 to > 14 μm in wavelength and expand the glass map for multispectral optics with refractive indices from 2.38 to 3.17. They show a large spread in dispersion (Abbe number) and offer some unique solutions for multispectral optics designs. The new NRL glasses can be easily molded and also fused together to make bonded doublets. A Zemax compatible glass file has been created and is available upon request. In this paper we present some designs, optics fabrication and imaging, all using NRL materials.

  14. A multisensor system for airborne surveillance of oil pollution

    NASA Technical Reports Server (NTRS)

    Edgerton, A. T.; Ketchal, R.; Catoe, C.

    1973-01-01

    The U.S. Coast Guard is developing a prototype airborne oil surveillance system for use in its Marine Environmental Protection Program. The prototype system utilizes an X-band side-looking radar, a 37-GHz imaging microwave radiometer, a multichannel line scanner, and a multispectral low light level system. The system is geared to detecting and mapping oil spills and potential pollution violators anywhere within a 25 nmi range of the aircraft flight track under all but extreme weather conditions. The system provides for false target discrimination and maximum identification of spilled materials. The system also provides an automated detection alarm, as well as a color display to achieve maximum coupling between the sensor data and the equipment operator.

  15. Multiresolution processing for fractal analysis of airborne remotely sensed data

    NASA Technical Reports Server (NTRS)

    Jaggi, S.; Quattrochi, D.; Lam, N.

    1992-01-01

    Images acquired by NASA's Calibrated Airborne Multispectral Scanner are used to compute the fractal dimension as a function of spatial resolution. Three methods are used to determine the fractal dimension: Shelberg's (1982, 1983) line-divider method, the variogram method, and the triangular prism method. A description of these methods and the result of applying these methods to a remotely-sensed image is also presented. The scanner data was acquired over western Puerto Rico in January, 1990 over land and water. The aim is to study impacts of man-induced changes on land that affect sedimentation into the near-shore environment. The data were obtained over the same area at three different pixel sizes: 10 m, 20 m, and 30 m.

  16. Modeling of estuarne chlorophyll a from an airborne scanner

    USGS Publications Warehouse

    Khorram, Siamak; Catts, Glenn P.; Cloern, James E.; Knight, Allen W.

    1987-01-01

    Near simultaneous collection of 34 surface water samples and airborne multispectral scanner data provided input for regression models developed to predict surface concentrations of estuarine chlorophyll a. Two wavelength ratios were employed in model development. The ratios werechosen to capitalize on the spectral characteristics of chlorophyll a, while minimizing atmospheric influences. Models were then applied to data previously acquired over the study area thre years earlier. Results are in the form of color-coded displays of predicted chlorophyll a concentrations and comparisons of the agreement among measured surface samples and predictions basedon coincident remotely sensed data. The influence of large variations in fresh-water inflow to the estuary are clearly apparent in the results. The synoptic view provided by remote sensing is another method of examining important estuarine dynamics difficult to observe from in situ sampling alone.

  17. [Development of multi-target multi-spectral high-speed pyrometer].

    PubMed

    Xiao, Peng; Dai, Jing-Min; Wang, Qing-Wei

    2008-11-01

    The plume temperature of a solid propellant rocket engine (SPRE) is a fundamental parameter in denoting combustion status. It is necessary to measure the temperature along both the axis and the radius of the engine. In order to measure the plume temperature distribution of a solid propellant rocket engine, the multi-spectral thermometry has been approved. Previously the pyrometer was developed in the Harbin Institute of Technology of China in 1999, which completed the measurement of SPRE plume temperature and its distribution with multi-spectral technique in aerospace model development for the first time. Following this experience, a new type of multi-target multi-spectral high-speed pyrometer used in the ground experiments of SPRE plume temperature measurement was developed. The main features of the instrument include the use of a dispersing prism and a photo-diode array to cover the entire spectral band of 0.4 to 1.1 microm. The optic fibers are used in order to collect and transmit the thermal radiation fluxes. The instrument can measure simultaneously the temperature and emissivity of eight spectra for six uniformly distributed points on the target surface, which are well defined by the hole on the field stop lens. A specially designed S/H (Sample/Hold) circuit, with 48 sample and hold units that were triggered with a signal, measures the multi-spectral and multi-target outputs. It can sample 48 signals with a less than 10ns time difference which is most important for the temperature calculation. PMID:19271529

  18. Analysis, testing, and operation of the MAGI thermal control system

    SciTech Connect

    Yi, Sonny; Hall, Jeffrey L.; Kasper, Brian P.

    2014-01-29

    The Aerospace Corporation has completed the development of the Mineral and Gas Identifier (MAGI) sensor - an airborne multi-spectral infrared instrument that is designed to discriminate surface composition and to detect gas emissions from the environment. Sensor performance was demonstrated in a series of flights aboard a Twin Otter aircraft in December 2011 as a stepping stone to a future satellite sensor design. To meet sensor performance requirements the thermal control system was designed to operate the HgCdTe focal plane array (FPA) at 50 K with a 1.79 W heat rejection load to a 44.7 K sink and the optical assembly at 100 K with a 7.5 W heat load to a 82.3 K sink. Two commercial off-theshelf (COTS) Sunpower Stirling cryocoolers were used to meet the instrument’s cooling requirements. A thermal model constructed in Thermal Desktop was used to run parametric studies that guided the mechanical design and sized the two cryocoolers. This paper discusses the development, validation, and operation of the MAGI thermal control system. Detailed energy balances and temperature predictions are presented for various test cases to demonstrate the utility and accuracy of the thermal model. Model inputs included measured values of heat lift as a function of input power and cold tip temperature for the two cryocoolers. These measurements were also used to make predictions of the cool-down behavior from ambient conditions. Advanced heater software was developed to meet unique requirements for both sensor cool-down rate and stability at the set point temperatures.

  19. Analysis, testing, and operation of the MAGI thermal control system

    NASA Astrophysics Data System (ADS)

    Yi, Sonny; Hall, Jeffrey L.; Kasper, Brian P.

    2014-01-01

    The Aerospace Corporation has completed the development of the Mineral and Gas Identifier (MAGI) sensor - an airborne multi-spectral infrared instrument that is designed to discriminate surface composition and to detect gas emissions from the environment. Sensor performance was demonstrated in a series of flights aboard a Twin Otter aircraft in December 2011 as a stepping stone to a future satellite sensor design. To meet sensor performance requirements the thermal control system was designed to operate the HgCdTe focal plane array (FPA) at 50 K with a 1.79 W heat rejection load to a 44.7 K sink and the optical assembly at 100 K with a 7.5 W heat load to a 82.3 K sink. Two commercial off-theshelf (COTS) Sunpower Stirling cryocoolers were used to meet the instrument's cooling requirements. A thermal model constructed in Thermal Desktop was used to run parametric studies that guided the mechanical design and sized the two cryocoolers. This paper discusses the development, validation, and operation of the MAGI thermal control system. Detailed energy balances and temperature predictions are presented for various test cases to demonstrate the utility and accuracy of the thermal model. Model inputs included measured values of heat lift as a function of input power and cold tip temperature for the two cryocoolers. These measurements were also used to make predictions of the cool-down behavior from ambient conditions. Advanced heater software was developed to meet unique requirements for both sensor cool-down rate and stability at the set point temperatures.

  20. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  1. Radiometric Characterization of IKONOS Multispectral Imagery

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Ryan, Robert E.; Kelly, Michelle; Holekamp, Kara; Zanoni, Vicki; Thome, Kurtis; Schiller, Stephen

    2002-01-01

    A radiometric characterization of Space Imaging's IKONOS 4-m multispectral imagery has been performed by a NASA funded team from the John C. Stennis Space Center (SSC), the University of Arizona Remote Sensing Group (UARSG), and South Dakota State University (SDSU). Both intrinsic radiometry and the effects of Space Imaging processing on radiometry were investigated. Relative radiometry was examined with uniform Antarctic and Saharan sites. Absolute radiometric calibration was performed using reflectance-based vicarious calibration methods on several uniform sites imaged by IKONOS, coincident with ground-based surface and atmospheric measurements. Ground-based data and the IKONOS spectral response function served as input to radiative transfer codes to generate a Top-of-Atmosphere radiance estimate. Calibration coefficients derived from each vicarious calibration were combined to generate an IKONOS radiometric gain coefficient for each multispectral band assuming a linear response over the full dynamic range of the instrument. These calibration coefficients were made available to Space Imaging, which subsequently adopted them by updating its initial set of calibration coefficients. IKONOS imagery procured through the NASA Scientific Data Purchase program is processed with or without a Modulation Transfer Function Compensation kernel. The radiometric effects of this kernel on various scene types was also investigated. All imagery characterized was procured through the NASA Scientific Data Purchase program.

  2. [Multispectral image compression algorithms for color reproduction].

    PubMed

    Liang, Wei; Zeng, Ping; Luo, Xue-mei; Wang, Yi-feng; Xie, Kun

    2015-01-01

    In order to improve multispectral images compression efficiency and further facilitate their storage and transmission for the application of color reproduction and so on, in which fields high color accuracy is desired, WF serial methods is proposed, and APWS_RA algorithm is designed. Then the WF_APWS_RA algorithm, which has advantages of low complexity, good illuminant stability and supporting consistent coior reproduction across devices, is presented. The conventional MSE based wavelet embedded coding principle is first studied. And then color perception distortion criterion and visual characteristic matrix W are proposed. Meanwhile, APWS_RA algorithm is formed by optimizing the. rate allocation strategy of APWS. Finally, combined above technologies, a new coding method named WF_APWS_RA is designed. Colorimetric error criterion is used in the algorithm and APWS_RA is applied on visual weighted multispectral image. In WF_APWS_RA, affinity propagation clustering is utilized to exploit spectral correlation of weighted image. Then two-dimensional wavelet transform is used to remove the spatial redundancy. Subsequently, error compensation mechanism and rate pre-allocation are combined to accomplish the embedded wavelet coding. Experimental results show that at the same bit rate, compared with classical coding algorithms, WF serial algorithms have better performance on color retention. APWS_RA preserves least spectral error and WF APWS_RA algorithm has obvious superiority on color accuracy.

  3. Multispectral multisensor image fusion using wavelet transforms

    USGS Publications Warehouse

    Lemeshewsky, George P.

    1999-01-01

    Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The performance of fusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the reduction in artifacts due to the SIDWT based fusion.

  4. Multi-spectral imaging of oxygen saturation

    NASA Astrophysics Data System (ADS)

    Savelieva, Tatiana A.; Stratonnikov, Aleksander A.; Loschenov, Victor B.

    2008-06-01

    The system of multi-spectral imaging of oxygen saturation is an instrument that can record both spectral and spatial information about a sample. In this project, the spectral imaging technique is used for monitoring of oxygen saturation of hemoglobin in human tissues. This system can be used for monitoring spatial distribution of oxygen saturation in photodynamic therapy, surgery or sports medicine. Diffuse reflectance spectroscopy in the visible range is an effective and extensively used technique for the non-invasive study and characterization of various biological tissues. In this article, a short review of modeling techniques being currently in use for diffuse reflection from semi-infinite turbid media is presented. A simple and practical model for use with a real-time imaging system is proposed. This model is based on linear approximation of the dependence of the diffuse reflectance coefficient on relation between absorbance and reduced scattering coefficient. This dependence was obtained with the Monte Carlo simulation of photon propagation in turbid media. Spectra of the oxygenated and deoxygenated forms of hemoglobin differ mostly in the red area (520 - 600 nm) and have several characteristic points there. Thus four band-pass filters were used for multi-spectral imaging. After having measured the reflectance, the data obtained are used for fitting the concentration of oxygenated and free hemoglobin, and hemoglobin oxygen saturation.

  5. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  6. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  7. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles.

  8. Mammalian airborne allergens.

    PubMed

    Aalberse, Rob C

    2014-01-01

    Historically, horse dandruff was a favorite allergen source material. Today, however, allergic symptoms due to airborne mammalian allergens are mostly a result of indoor exposure, be it at home, at work or even at school. The relevance of mammalian allergens in relation to the allergenic activity of house dust extract is briefly discussed in the historical context of two other proposed sources of house dust allergenic activity: mites and Maillard-type lysine-sugar conjugates. Mammalian proteins involved in allergic reactions to airborne dust are largely found in only 2 protein families: lipocalins and secretoglobins (Fel d 1-like proteins), with a relatively minor contribution of serum albumins, cystatins and latherins. Both the lipocalin and the secretoglobin family are very complex. In some instances this results in a blurred separation between important and less important allergenic family members. The past 50 years have provided us with much detailed information on the genomic organization and protein structure of many of these allergens. However, the complex family relations, combined with the wide range of post-translational enzymatic and non-enzymatic modifications, make a proper qualitative and quantitative description of the important mammalian indoor airborne allergens still a significant proteomic challenge. PMID:24925404

  9. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  10. Multispectral Imaging Systems for Airborne Remote Sensing to Support Agricultural Production Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing has shown promise as a tool for managing agricultural application and production. Earth-observing satellite systems have an advantage for large-scale analysis at regional levels but are limited in spatial resolution. High-resolution satellite systems have been available in recent year...

  11. Evaluating spectral measures derived from airborne multispectral imagery for detecting cotton root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivore, is one of the most destructive plant diseases occurring throughout the southwestern United States. This disease has plagued the cotton industry for more than 100 years, but effective practices for its control are still lacki...

  12. Mapping cotton root rot infestations over a 10-year interval with airborne multispectral imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the pathogen Phymatotrichopsis omnivora, is a very serious and destructive disease of cotton grown in the southwestern and south central U.S. Accurate information regarding temporal changes of cotton root rot infestations within fields is important for the management and c...

  13. Monitoring cotton root rot progression within a growing season using airborne multispectral imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the fungus Phymatotrichopsis omnivora, is a serious and destructive disease affecting cotton production in the southwestern United States. Accurate delineation of cotton root rot infections is important for cost-effective management of the disease. The objective of this st...

  14. Airborne multi-spectral remote sensing with ground truth for areawide pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientists and researchers have been developing, integrating, and evaluating multiple strategies and technologies into a systems approach for management of field crop insect pests. Remote sensing along with Global Positioning Systems, Geographic Information Systems, and variable rate technology are...

  15. Use of Airborne Multi-Spectral Imagery in Pest Management Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientists and researchers have been developing, integrating, and evaluating multiple strategies and technologies into a systems approach for management of field crop insect pests. Remote sensing along with Global Positioning Systems, Geographic Information Systems, and variable rate technology are...

  16. Airborne multispectral remote sensing with ground truth for areawide pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientists and engineers in areawide pest management programs have been developing, integrating, and evaluating multiple strategies and technologies into a systems approach for management of field crop insect pests. Remote sensing along with global positioning systems, geographic information system...

  17. Change detection of cotton root rot infection over a 10-year interval using airborne multispectral imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot is a very serious and destructive disease of cotton grown in the southwestern and south central United States. Accurate information regarding the spatial and temporal infections of the disease within fields is important for effective management and control of the disease. The objecti...

  18. Analysis of airborne multi-spectral imagery of an oil spill field trial

    SciTech Connect

    Kalnins, V.J.; Freemantle, J.R.; Brown, C.E.

    1996-12-31

    A field trial was conducted at Canadian Forces Base Petawawa in May 1993 by the Emergencies Science Division of Environment Canada to test the effectiveness of remote sensing systems to detect oil spills. Shallow test pools covered with various thicknesses and types of oil were overflown by a number of sensors. Imagery from one of the sensors used, the Multi-element Electro-optical Imaging Scanner (MEIS), has recently been transcribed from high density digital tape and analyzed. The MEIS sensor was flown on a Falcon 20 jet and collected data at 7 different wavelengths from 518 nm to 873 nm. Preliminary results show that one of the slicks, Hydraulic Fluid, can be readily identified by its distinctive color in the visible region. The oil slicks, at least under these very controlled conditions, presented unique spectral signatures which could be identified using normal image processing classification techniques.

  19. Estimating hourly crop ET using a two-source energy balance model and multispectral airborne imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient water use through improved irrigation scheduling is expected to moderate fast declining groundwater levels and improve sustainability of the Ogallala Aquifer. Thus, an accurate estimation of spatial actual evapotranspiration (ET) is needed for this purpose. Therefore, during 2007, the Bush...

  20. Mapping forest stand complexity for woodland caribou habitat assessment using multispectral airborne imagery

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Hu, B.; Woods, M.

    2014-11-01

    The decline of the woodland caribou population is a result of their habitat loss. To conserve the habitat of the woodland caribou and protect it from extinction, it is critical to accurately characterize and monitor its habitat. Conventionally, products derived from low to medium spatial resolution remote sensing data, such as land cover classification and vegetation indices are used for wildlife habitat assessment. These products fail to provide information on the structure complexities of forest canopies which reflect important characteristics of caribou's habitats. Recent studies have employed the LiDAR system (Light Detection And Ranging) to directly retrieve the three dimensional forest attributes. Although promising results have been achieved, the acquisition cost of LiDAR data is very high. In this study, utilizing the very high spatial resolution imagery in characterizing the structural development the of forest canopies was exploited. A stand based image texture analysis was performed to predict forest succession stages. The results were demonstrated to be consistent with those derived from LiDAR data.

  1. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  2. Infrared optical coatings for the EarthCARE Multispectral Imager.

    PubMed

    Hawkins, Gary; Woods, David; Sherwood, Richard; Djotni, Karim

    2014-10-20

    The Earth Cloud, Aerosol and Radiation Explorer mission (EarthCARE) Multispectral Imager (MSI) is a radiometric instrument designed to provide the imaging of the atmospheric cloud cover and the cloud top surface temperature from a sun-synchronous low Earth orbit. The MSI forms part of a suite of four instruments destined to support the European Space Agency Living Planet mission on-board the EarthCARE satellite payload to be launched in 2016, whose synergy will be used to construct three-dimensional scenes, textures, and temperatures of atmospheric clouds and aerosols. The MSI instrument contains seven channels: four solar channels to measure visible and short-wave infrared wavelengths, and three channels to measure infrared thermal emission. In this paper, we describe the optical layout of the infrared instrument channels, thin-film multilayer designs, the coating deposition method, and the spectral system throughput for the bandpass interference filters, dichroic beam splitters, lenses, and mirror coatings to discriminate wavelengths at 8.8, 10.8, and 12.0 μm. The rationale for the selection of thin-film materials, spectral measurement technique, and environmental testing performance are also presented.

  3. Infrared optical coatings for the EarthCARE Multispectral Imager.

    PubMed

    Hawkins, Gary; Woods, David; Sherwood, Richard; Djotni, Karim

    2014-10-20

    The Earth Cloud, Aerosol and Radiation Explorer mission (EarthCARE) Multispectral Imager (MSI) is a radiometric instrument designed to provide the imaging of the atmospheric cloud cover and the cloud top surface temperature from a sun-synchronous low Earth orbit. The MSI forms part of a suite of four instruments destined to support the European Space Agency Living Planet mission on-board the EarthCARE satellite payload to be launched in 2016, whose synergy will be used to construct three-dimensional scenes, textures, and temperatures of atmospheric clouds and aerosols. The MSI instrument contains seven channels: four solar channels to measure visible and short-wave infrared wavelengths, and three channels to measure infrared thermal emission. In this paper, we describe the optical layout of the infrared instrument channels, thin-film multilayer designs, the coating deposition method, and the spectral system throughput for the bandpass interference filters, dichroic beam splitters, lenses, and mirror coatings to discriminate wavelengths at 8.8, 10.8, and 12.0 μm. The rationale for the selection of thin-film materials, spectral measurement technique, and environmental testing performance are also presented. PMID:25402784

  4. Nightfire method to track volcanic eruptions from multispectral satellite images

    NASA Astrophysics Data System (ADS)

    Trifonov, Grigory; Zhizhin, Mikhail; Melnikov, Dmitry

    2016-04-01

    This work presents the first results of an application of the Nightfire hotspot algorithm towards volcano activity detection. Nightfire algorithm have been developed to play along with a Suomi-NPP polar satellite launched in 2011, which has a new generation multispectral VIIRS thermal sensor on board, to detect gas flares related to the upstream and downstream production of oil and natural gas. Simultaneously using of nighttime data in SWIR, MWIR, and LWIR sensor bands the algorithm is able to estimate the hotspot temperature, size and radiant heat. Four years of non-filtered observations have been accumulated in a spatio-temporal detection database, which currently totals 125 GB in size. The first part of this work presents results of retrospective cross-match of the detection database with the publicly available observed eruptions databases. The second part discusses how an approximate 3D shape of a lava lake could be modeled based on the apparent source size and satellite zenith angle. The third part presents the results of fusion Landsat-8 and Himawari-8 satellites data with the VIIRS Nightfire for several active volcanoes.

  5. Lattice algebra approach to multispectral analysis of ancient documents.

    PubMed

    Valdiviezo-N, Juan C; Urcid, Gonzalo

    2013-02-01

    This paper introduces a lattice algebra procedure that can be used for the multispectral analysis of historical documents and artworks. Assuming the presence of linearly mixed spectral pixels captured in a multispectral scene, the proposed method computes the scaled min- and max-lattice associative memories to determine the purest pixels that best represent the spectra of single pigments. The estimation of fractional proportions of pure spectra at each image pixel is used to build pigment abundance maps that can be used for subsequent restoration of damaged parts. Application examples include multispectral images acquired from the Archimedes Palimpsest and a Mexican pre-Hispanic codex.

  6. Multispectral Filter Arrays: Recent Advances and Practical Implementation

    PubMed Central

    Lapray, Pierre-Jean; Wang, Xingbo; Thomas, Jean-Baptiste; Gouton, Pierre

    2014-01-01

    Thanks to some technical progress in interferencefilter design based on different technologies, we can finally successfully implement the concept of multispectral filter array-based sensors. This article provides the relevant state-of-the-art for multispectral imaging systems and presents the characteristics of the elements of our multispectral sensor as a case study. The spectral characteristics are based on two different spatial arrangements that distribute eight different bandpass filters in the visible and near-infrared area of the spectrum. We demonstrate that the system is viable and evaluate its performance through sensor spectral simulation. PMID:25407904

  7. Eliminate background interference from latent fingerprints using ultraviolet multispectral imaging

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Xu, Xiaojing; Wang, Guiqiang

    2014-02-01

    Fingerprints are the most important evidence in crime scene. The technology of developing latent fingerprints is one of the hottest research areas in forensic science. Recently, multispectral imaging which has shown great capability in fingerprints development, questioned document detection and trace evidence examination is used in detecting material evidence. This paper studied how to eliminate background interference from non-porous and porous surface latent fingerprints by rotating filter wheel ultraviolet multispectral imaging. The results approved that background interference could be removed clearly from latent fingerprints by using multispectral imaging in ultraviolet bandwidth.

  8. Evaluation of 0.46- to 2.36-micrometre multispectral scanner images of the East Tintic mining district, Utah, for mapping hydrothermally altered rocks.

    USGS Publications Warehouse

    Rowan, L.C.; Kahle, A.B.

    1982-01-01

    Airborne multispectral scanner images recorded in the 0.46 to 2.36 micrometre region for the E Tintic mining district, Utah, were evaluated to determine their usefulness for distinguishing six types of hydrothermally altered rocks from a wide range of sedimentary and igneous rock types. The laboratory and field evaluation of a color ratio composite image, supported by in situ spectral reflectance measurements and an alteration map compiled from a published map, shows that silicified, argillized, and pyritized rocks can be mapped in detail utilizing an intense OH absorption band centered near 2.2 micrometre. This absorption band is absent or weak in most of the unaltered rocks. -from Authors

  9. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  10. Analysis of multispectral signatures of the shot

    NASA Astrophysics Data System (ADS)

    Kastek, Mariusz; Dulski, Rafał; Piątkowski, Tadeusz; Madura, Henryk; Bareła, Jarosław; Polakowski, Henryk

    2011-06-01

    The paper presents some practical aspects of sniper IR signature measurements. Description of particular signatures for sniper shot in typical scenarios has been presented. We take into consideration sniper activities in the open area as well as in urban environment. The measurements were made at field test ground. High precision laboratory measurements were also performed. Several infrared cameras were used during measurements to cover all measurement assumptions. Some of the cameras are measurement-class devices with high accuracy and frame rates. The registrations were simultaneously made in UV, NWIR, SWIR and LWIR spectral bands. The infrared cameras have possibilities to install optical filters for multispectral measurement. An ultra fast visual camera was also used for visible spectra registration. Exemplary sniper IR signatures for typical situation were presented. LWIR imaging spectroradiometer HyperCam was also used during the laboratory measurements and field experiments. The signatures collected by HyperCam were useful for the determination of spectral characteristics of shot.

  11. Multispectral tissue characterization for intestinal anastomosis optimization

    NASA Astrophysics Data System (ADS)

    Cha, Jaepyeong; Shademan, Azad; Le, Hanh N. D.; Decker, Ryan; Kim, Peter C. W.; Kang, Jin U.; Krieger, Axel

    2015-10-01

    Intestinal anastomosis is a surgical procedure that restores bowel continuity after surgical resection to treat intestinal malignancy, inflammation, or obstruction. Despite the routine nature of intestinal anastomosis procedures, the rate of complications is high. Standard visual inspection cannot distinguish the tissue subsurface and small changes in spectral characteristics of the tissue, so existing tissue anastomosis techniques that rely on human vision to guide suturing could lead to problems such as bleeding and leakage from suturing sites. We present a proof-of-concept study using a portable multispectral imaging (MSI) platform for tissue characterization and preoperative surgical planning in intestinal anastomosis. The platform is composed of a fiber ring light-guided MSI system coupled with polarizers and image analysis software. The system is tested on ex vivo porcine intestine tissue, and we demonstrate the feasibility of identifying optimal regions for suture placement.

  12. Multispectral Mapping of the Moon by Clementine

    NASA Technical Reports Server (NTRS)

    Eliason, Eric M.; McEwen, Alfred S.; Robinson, M.; Lucey, Paul G.; Duxbury, T.; Malaret, E.; Pieters, Carle; Becker, T.; Isbell, C.; Lee, E.

    1998-01-01

    One of the chief scientific objectives of the Clementine mission at the Moon was to acquire global multispectral mapping. A global digital map of the Moon in 11 spectral bandpasses and at a scale of 100 m/pixel is being produced at the U.S. Geological Survey in Flagstaff Arizona Near-global coverage was acquired with the UVVIS camera (central wavelengths of 415, 750, 900, 950, and 1000 nm) and the NIR camera (1102, 1248, 1499, 1996, 2620, and 2792 nary). We expect to complete processing of the UVVIS mosaics before the fall of 1998, and to complete the NIR mosaics a year later. The purpose of this poster is to provide an update on the processing and to show examples of the products or perhaps even a wall-sized display of color products from the UVVIS mosaics.

  13. A program system for efficient multispectral classification

    NASA Astrophysics Data System (ADS)

    Åkersten, S. I.

    Pixelwise multispectral classification is an important tool for analyzing remotely sensed imagery data. The computing time for performing this analysis becomes significantly large when large, multilayer images are analyzed. In the classical implementation of the supervised multispectral classification assuming gaussian-shaped multidimensional class-clusters, the computing time is furthermore approximately proportional to the square of the number of image layers. This leads to very appreciable CPU-times when large numbers of multispectral channels are used and/or temporal classification is performed. In order to decrease computer time, a classification program system has been implemented which has the following characteristics: (1) a simple one-dimensional box classifier, (2) a multidimensional box classifier, (3) a class-pivotal "canonical" classifier utilizing full maximum likelihood and making full use of within-class and between-class statistical characteristics, (4) a hybrid classifier (2 and 3 combined), and (5) a local neighbourhood filtering algorithm producing generalized classification results. The heart of the classifier is the class-pivotal canonical classifier. This algorithm is based upon an idea of Dye suggesting the use of linear transformations making possible a simultaneous evaluation of a measure of the pixel being likely not to belong to the candidate class as well as computing its full maximum likelihood ratio. In case it is more likely to be misclassified the full maximum likelihood evaluation can be truncated almost immediately, i.e. the candidate class can often be rejected using only one or two of the available transformed spectral features. The result of this is a classifier with CPU-time which is empirically shown to be linearly dependent upon the number of image layers. The use of the hybrid classifier lowers the CPU-time with another factor of 3-4. Furthermore, for certain problems like classifying water-non water a single spectral band

  14. Band selection procedure for multispectral scanners.

    PubMed

    Price, J C

    1994-05-20

    Advances in high spectral resolution sensors and in data handling capabilities are enabling development of greatly improved remote-sensing devices for resource monitoring, so that design trade-offs are required. A methodology for optimizing selection of spectral bands for multispectral instruments such as those on the LANDSAT series of satellites is described. The method is applied to a collection of laboratory and outdoor spectra of natural and artificial materials. These reflectance spectra represent the visible and near-infrared spectral ranges at high (0.01-μm) spectral resolution. For most natural materials 15-25 spectral bands appear to be sufficient to describe spectral variability, whereas description of minerals and some artificial substances may require double this number of bands.

  15. Analyzing High-Dimensional Multispectral Data

    NASA Technical Reports Server (NTRS)

    Lee, Chulhee; Landgrebe, David A.

    1993-01-01

    In this paper, through a series of specific examples, we illustrate some characteristics encountered in analyzing high- dimensional multispectral data. The increased importance of the second-order statistics in analyzing high-dimensional data is illustrated, as is the shortcoming of classifiers such as the minimum distance classifier which rely on first-order variations alone. We also illustrate how inaccurate estimation or first- and second-order statistics, e.g., from use of training sets which are too small, affects the performance of a classifier. Recognizing the importance of second-order statistics on the one hand, but the increased difficulty in perceiving and comprehending information present in statistics derived from high-dimensional data on the other, we propose a method to aid visualization of high-dimensional statistics using a color coding scheme.

  16. Common aperture multispectral sensor flight test program

    SciTech Connect

    Bird, R.S.; Kaufman, C.S.

    1996-11-01

    This paper will provide an overview of the Common Aperture Multispectral Sensor (CAMS) Hardware Demonstrator. CAMS is a linescanning sensor that simultaneously collected digital imagery over the Far-IR (8 to 12 {mu}m) and visible spectral (0.55 to 1.1 PM) spectral bands, correlated at the pixel level. CAMS was initially sponsored by the U.S. Naval Air System Commands F/A-18 program office (PMA-265). The current CAMS field tests are under the direction of Northrop-Grumman for the Defense Nuclear Agency (DNA) in support of the Follow-On Open Skies Sensor Evaluation Program (FOSEP) and are scheduled to be conducted in April 1996. 8 figs., 4 tabs.

  17. Spatial frequency analysis of multispectral data.

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    1972-01-01

    This paper presents the definitions of texture dependent features which can be obtained in terms of the spatial frequencies of small sections of remotely sensed multispectral data. The features are made independent of the direction of view by defining them as symmetric functions of the spatial frequencies sensed with various viewing directions. Several textural features are defined and experimental results indicating existence of signatures in these features are presented. Preliminary experiments have been performed on the classification of 60 samples, 10 from each of the following 6 categories - grass, trees, water, staked tomatoes, treated ground tomatoes, and untreated ground tomatoes. Classifications of the training samples using only one feature at a time indicate that several of the features yield classification efficiencies higher than 65%. The efficiency increases considerably when combinations of these features are used.

  18. Temporal analysis of multispectral scanner data.

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Wiegand, C. L.; Torline, R. J.

    1973-01-01

    Multispectral scanner reflectance data were sampled for bare soil, cotton, sorghum, corn, and citrus at four dates during a growing season (April, May, June, and July 1969) to develop a time-dependent signature for crop and soil discrimination. Discrimination tests were conducted for single-date and multidate formats using training and test data sets. For classifications containing several crops, the multidate or temporal approach improved discrimination compared with the single-date approach. The multidate approach also preserved recognition accuracy better in going from training fields to test fields than the single-date analysis. The spectral distinctiveness of bare soil versus vegetation resulted in essentially equal discrimination using single-date versus multidate data for those two categories.

  19. Multispectral image analysis of bruise age

    NASA Astrophysics Data System (ADS)

    Sprigle, Stephen; Yi, Dingrong; Caspall, Jayme; Linden, Maureen; Kong, Linghua; Duckworth, Mark

    2007-03-01

    The detection and aging of bruises is important within clinical and forensic environments. Traditionally, visual and photographic assessment of bruise color is used to determine age, but this substantially subjective technique has been shown to be inaccurate and unreliable. The purpose of this study was to develop a technique to spectrally-age bruises using a reflective multi-spectral imaging system that minimizes the filtering and hardware requirements while achieving acceptable accuracy. This approach will then be incorporated into a handheld, point-of-care technology that is clinically-viable and affordable. Sixteen bruises from elder residents of a long term care facility were imaged over time. A multi-spectral system collected images through eleven narrow band (~10 nm FWHM) filters having center wavelengths ranging between 370-970 nm corresponding to specific skin and blood chromophores. Normalized bruise reflectance (NBR)- defined as the ratio of optical reflectance coefficient of bruised skin over that of normal skin- was calculated for all bruises at all wavelengths. The smallest mean NBR, regardless of bruise age, was found at wavelength between 555 & 577nm suggesting that contrast in bruises are from the hemoglobin, and that they linger for a long duration. A contrast metric, based on the NBR at 460nm and 650nm, was found to be sensitive to age and requires further investigation. Overall, the study identified four key wavelengths that have promise to characterize bruise age. However, the high variability across the bruises imaged in this study complicates the development of a handheld detection system until additional data is available.

  20. The International SubMillimetre Airborne Radiometer (ISMAR) - First results from the STICCS and COSMIC campaigns

    NASA Astrophysics Data System (ADS)

    Mendrok, Jana; Eriksson, Patrick; Fox, Stuart; Brath, Manfred; Buehler, Stefan

    2016-04-01

    Multispectral millimeter- and submillimeter-wave observations bear the potential to measure properties of non-thin ice clouds like mass content and mean particle size. The next generation of European meteorological satellites, the MetOp-SG series, will carry the first satellite-borne submillimeter sounder, the Ice Cloud Imager (ICI). An airborne demonstrator, the International SubMillimetre Airborne Radiometer (ISMAR), is operated together with other remote sensing instruments and in-situ probes on the FAAM aircraft. Scientific measurements from two campaings in the North Atlantic region, STICCS and COSMIC, are available so far. Here we will introduce the ISMAR instrument, present the acquired measurements from the STICCS and COSMIC campaigns and show some first results. This will include estimation of instrument performance, first analysis of clear-sky and cloudy cases and discussion of selected features observed in the measurements (e.g. polarisation signatures).

  1. Application of the NASA airborne oceanographic lidar to the mapping of chlorophyll and other organic pigments

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1981-01-01

    Laser fluorosensing techniques used for the airborne measurement of chlorophyll a and other naturally occurring waterborne pigments are reviewed. Previous experiments demonstrating the utility of the airborne oceanographic lidar (AOL) for assessment of various marine parameters are briefly discussed. The configuration of the AOL during the NOAA/NASA Superflux experiments is described. The participation of the AOL in these experiments is presented and the preliminary results are discussed. The importance of multispectral receiving capability in a laser fluorosensing system for providing reproducible measurements over wide areas having spatial variations in water column transmittance properties is addressed. This capability minimizes the number of truthing points required and is usable even in shallow estuarine areas where resuspension of bottom sediment is common. Finally, problems encountered on the Superflux missions and the resulting limitations on the AOL data sets are addressed and feasible solutions to these problems are provided.

  2. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  3. Pre-Processor for Compression of Multispectral Image Data

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron

    2006-01-01

    A computer program that preprocesses multispectral image data has been developed to provide the Mars Exploration Rover (MER) mission with a means of exploiting the additional correlation present in such data without appreciably increasing the complexity of compressing the data.

  4. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE BYPRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This paper discusses the identification of organic disinfectant byproducts (DNPS) at a pilot plant in Evansville, IN, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high- and low-resolu...

  5. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BYPRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This paper discusses the identification of organic disinfection byproducts (DBPs) at a pilot plant in Evansville, IN, which uses chlorine dioxide as a primary disinfectant. Unconventional multispectral identification techniques (gas chromatography combined with high- and low reso...

  6. Multispectral Imaging for Determination of Astaxanthin Concentration in Salmonids

    PubMed Central

    Dissing, Bjørn S.; Nielsen, Michael E.; Ersbøll, Bjarne K.; Frosch, Stina

    2011-01-01

    Multispectral imaging has been evaluated for characterization of the concentration of a specific cartenoid pigment; astaxanthin. 59 fillets of rainbow trout, Oncorhynchus mykiss, were filleted and imaged using a rapid multispectral imaging device for quantitative analysis. The multispectral imaging device captures reflection properties in 19 distinct wavelength bands, prior to determination of the true concentration of astaxanthin. The samples ranged from 0.20 to 4.34 g per g fish. A PLSR model was calibrated to predict astaxanthin concentration from novel images, and showed good results with a RMSEP of 0.27. For comparison a similar model were built for normal color images, which yielded a RMSEP of 0.45. The acquisition speed of the multispectral imaging system and the accuracy of the PLSR model obtained suggest this method as a promising technique for rapid in-line estimation of astaxanthin concentration in rainbow trout fillets. PMID:21573000

  7. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  8. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  9. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  10. Digital computer processing of peach orchard multispectral aerial photography

    NASA Technical Reports Server (NTRS)

    Atkinson, R. J.

    1976-01-01

    Several methods of analysis using digital computers applicable to digitized multispectral aerial photography, are described, with particular application to peach orchard test sites. This effort was stimulated by the recent premature death of peach trees in the Southeastern United States. The techniques discussed are: (1) correction of intensity variations by digital filtering, (2) automatic detection and enumeration of trees in five size categories, (3) determination of unhealthy foliage by infrared reflectances, and (4) four band multispectral classification into healthy and declining categories.

  11. Fast Lossless Compression of Multispectral-Image Data

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew

    2006-01-01

    An algorithm that effects fast lossless compression of multispectral-image data is based on low-complexity, proven adaptive-filtering algorithms. This algorithm is intended for use in compressing multispectral-image data aboard spacecraft for transmission to Earth stations. Variants of this algorithm could be useful for lossless compression of three-dimensional medical imagery and, perhaps, for compressing image data in general.

  12. Application of multispectral systems for the diagnosis of plant diseases

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Liao, Ningfang; Wang, Guolong; Luo, Yongdao; Liang, Minyong

    2008-03-01

    Multispectral imaging technique combines space imaging and spectral detecting. It can obtain the spectral information and image information of object at the same time. Base on this concept, A new method proposed multispectral camera system to demonstrated plant diseases. In this paper, multispectral camera was used as image capturing device. It consists of a monochrome CCD camera and 16 narrow-band filters. The multispectral images of Macbeth 24 color patches are captured under the illumination of incandescent lamp in this experiment The 64 spectral reflectances of each color patches are calculated using Spline interpolation from 400 to 700nm in the process. And the color of the object is reproduced from the estimated spectral reflectance. The result for reproduction is contrast with the color signal using X-rite PULSE spectrophotometer. The average and maximum ΔΕ * ab are 9.23 and 12.81. It is confirmed that the multispectral system realizes the color reproduction of plant diseases from narrow-band multispectral image.

  13. Novel multispectral imaging microscope with applications to biomedicine

    NASA Astrophysics Data System (ADS)

    Zeng, Libo; Wu, Qiongshui; Ke, Hengyu; Zheng, Hong; Hu, Yaojun; Ding, Yi

    2005-03-01

    This paper describes a novel multispectral imaging microscope that can simultaneously record both spectral and spatial information of a sample, which can take advantage of spatial image processing and spectroscopic analysis techniques. A Liquid Crystal Tunable Filter device is used for fast wavelength selection and a cooled two-dimensional monochrome CCD for image detection. In order to acquire images that are not so dependent on imaging devices, a clever CCD exposure time control and a software based spectral and spatial calibration process is performed to diminish the influence of illumination, optic ununiformity, CCD"s spectral response curve and optic throughput property. A set of multispectral image processing and analysis software package is developed, which covers not only general image processing and analysis functions, and also provides powerful analysis tools for multispectral image data, including multispectral image acquisition, illumination and system response calibration, spectral analysis and etc. The combination of spatial and spectral analysis makes it an ideal tool for the applications to biomedicine. In this paper, two applications in biomedicine are also presented. One is medical image segmentation. Using multispectral imaging techniques, a mass of experiments on both marrow bone and cervical cell images showed that our segmentation results are highly satisfactory while with low computational cost. Another is biological imaging spectroscopic analysis in the study of pollen grains in rice. The results showed that the transmittance analysis of multispectral pollen images can accurately identify the pollen abortion stage of male-sterile rice, and can easily distinguish a variety of male sterile cytoplasm.

  14. Deriving Radiative Effects of Aerosol-Immersed Broken Cloud Fields from Multi-spectral Imagery

    NASA Astrophysics Data System (ADS)

    Schmidt, Sebastian

    2016-04-01

    Recently, significant progress has been made in the understanding of cloud inhomogeneity effects in shortwave passive remote sensing. Yet it has proven difficult to correct such effects on the pixel level using multi-spectral imagery alone, mainly because three-dimensional (3D) radiative transfer in cloud fields is a non-local phenomenon. As a result, estimates of irradiance - the fundamental climate variable - from space-or air-borne imagery continue to pose problems for complex cloud fields. The presence of aerosols in the vicinity of clouds exacerbates the prob- lem. I will show evidence from field experiments and 3D radiative transfer calculations that biases may exceed 40% at the pixel level at the MODIS spatial resolution, and that some of these effects "survive" spatial averaging. A new way to cope with this problem is the discovery that 3D effects manifest themselves as spectral perturba- tion in reflected radiances and in the associated irradiance fields throughout an inhomogeneous cloud domain. In parameterized form, these correlations between spatial cloud distribution and spectral signature can be used to de- rive first-order inhomogeneity corrections for irradiance fields - not on a pixel basis, but for populations of pixels within a cloud domain represented by probability density functions. I will present the first practical approach for using these new findings in a future proxy-3D algorithm for deriving irradiances below and above cloud-aerosol fields from multi-spectral imagers, and discuss the accuracy that can be expected from this simplified method to account for 3D effects in mixed aerosol-cloud scenes.

  15. Differentiating aquatic plant communities in a eutrophic river using hyperspectral and multispectral remote sensing

    USGS Publications Warehouse

    Tian, Y.Q.; Yu, Q.; Zimmerman, M.J.; Flint, S.; Waldron, M.C.

    2010-01-01

    This study evaluates the efficacy of remote sensing technology to monitor species composition, areal extent and density of aquatic plants (macrophytes and filamentous algae) in impoundments where their presence may violate water-quality standards. Multispectral satellite (IKONOS) images and more than 500 in situ hyperspectral samples were acquired to map aquatic plant distributions. By analyzing field measurements, we created a library of hyperspectral signatures for a variety of aquatic plant species, associations and densities. We also used three vegetation indices. Normalized Difference Vegetation Index (NDVI), near-infrared (NIR)-Green Angle Index (NGAI) and normalized water absorption depth (DH), at wavelengths 554, 680, 820 and 977 nm to differentiate among aquatic plant species composition, areal density and thickness in cases where hyperspectral analysis yielded potentially ambiguous interpretations. We compared the NDVI derived from IKONOS imagery with the in situ, hyperspectral-derived NDVI. The IKONOS-based images were also compared to data obtained through routine visual observations. Our results confirmed that aquatic species composition alters spectral signatures and affects the accuracy of remote sensing of aquatic plant density. The results also demonstrated that the NGAI has apparent advantages in estimating density over the NDVI and the DH. In the feature space of the three indices, 3D scatter plot analysis revealed that hyperspectral data can differentiate several aquatic plant associations. High-resolution multispectral imagery provided useful information to distinguish among biophysical aquatic plant characteristics. Classification analysis indicated that using satellite imagery to assess Lemna coverage yielded an overall agreement of 79% with visual observations and >90% agreement for the densest aquatic plant coverages. Interpretation of biophysical parameters derived from high-resolution satellite or airborne imagery should prove to be a

  16. Calibration Matters: Advances in Strapdown Airborne Gravimetry

    NASA Astrophysics Data System (ADS)

    Becker, D.

    2015-12-01

    Using a commercial navigation-grade strapdown inertial measurement unit (IMU) for airborne gravimetry can be advantageous in terms of cost, handling, and space consumption compared to the classical stable-platform spring gravimeters. Up to now, however, large sensor errors made it impossible to reach the mGal-level using such type IMUs as they are not designed or optimized for this kind of application. Apart from a proper error-modeling in the filtering process, specific calibration methods that are tailored to the application of aerogravity may help to bridge this gap and to improve their performance. Based on simulations, a quantitative analysis is presented on how much IMU sensor errors, as biases, scale factors, cross couplings, and thermal drifts distort the determination of gravity and the deflection of the vertical (DOV). Several lab and in-field calibration methods are briefly discussed, and calibration results are shown for an iMAR RQH unit. In particular, a thermal lab calibration of its QA2000 accelerometers greatly improved the long-term drift behavior. Latest results from four recent airborne gravimetry campaigns confirm the effectiveness of the calibrations applied, with cross-over accuracies reaching 1.0 mGal (0.6 mGal after cross-over adjustment) and DOV accuracies reaching 1.1 arc seconds after cross-over adjustment.

  17. Airborne lidar detection of subsurface oceanic scattering layers

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Wright, C. Wayne; Krabill, William B.; Buntzen, Rodney R.; Gilbert, Gary D.

    1988-01-01

    The airborne lidar detection and cross-sectional mapping of submerged oceanic scattering layers are reported. The field experiment was conducted in the Atlantic Ocean southeast of Assateague Island, VA. NASA's Airborne Oceanographic Lidar was operated in the bathymetric mode to acquire on-wavelength 532-nm depth-resolved backscatter signals from shelf/slope waters. Unwanted laser pulse reflection from the air-water interface was minimized by spatial filtering and off-nadir operation. The presence of thermal stratification over the shelf was verified by the deployment of airborne expendable bathythermographs. Optical beam transmission measurements acquired from a surface truthing vessel indicated the presence of a layer of turbid water near the sea floor over the inner portion of the shelf.

  18. Integrating optical satellite data and airborne laser scanning in habitat classification for wildlife management

    NASA Astrophysics Data System (ADS)

    Nijland, W.; Coops, N. C.; Nielsen, S. E.; Stenhouse, G.

    2015-06-01

    Wildlife habitat selection is determined by a wide range of factors including food availability, shelter, security and landscape heterogeneity all of which are closely related to the more readily mapped landcover types and disturbance regimes. Regional wildlife habitat studies often used moderate resolution multispectral satellite imagery for wall to wall mapping, because it offers a favourable mix of availability, cost and resolution. However, certain habitat characteristics such as canopy structure and topographic factors are not well discriminated with these passive, optical datasets. Airborne laser scanning (ALS) provides highly accurate three dimensional data on canopy structure and the underlying terrain, thereby offers significant enhancements to wildlife habitat mapping. In this paper, we introduce an approach to integrate ALS data and multispectral images to develop a new heuristic wildlife habitat classifier for western Alberta. Our method combines ALS direct measures of canopy height, and cover with optical estimates of species (conifer vs. deciduous) composition into a decision tree classifier for habitat - or landcover types. We believe this new approach is highly versatile and transferable, because class rules can be easily adapted for other species or functional groups. We discuss the implications of increased ALS availability for habitat mapping and wildlife management and provide recommendations for integrating multispectral and ALS data into wildlife management.

  19. Coastal and estuarine habitat mapping, using LIDAR height and intensity and multi-spectral imagery

    NASA Astrophysics Data System (ADS)

    Chust, Guillem; Galparsoro, Ibon; Borja, Ángel; Franco, Javier; Uriarte, Adolfo

    2008-07-01

    The airborne laser scanning LIDAR (LIght Detection And Ranging) provides high-resolution Digital Terrain Models (DTM) that have been applied recently to the characterization, quantification and monitoring of coastal environments. This study assesses the contribution of LIDAR altimetry and intensity data, topographically-derived features (slope and aspect), and multi-spectral imagery (three visible and a near-infrared band), to map coastal habitats in the Bidasoa estuary and its adjacent coastal area (Basque Country, northern Spain). The performance of high-resolution data sources was individually and jointly tested, with the maximum likelihood algorithm classifier in a rocky shore and a wetland zone; thus, including some of the most extended Cantabrian Sea littoral habitats, within the Bay of Biscay. The results show that reliability of coastal habitat classification was more enhanced with LIDAR-based DTM, compared with the other data sources: slope, aspect, intensity or near-infrared band. The addition of the DTM, to the three visible bands, produced gains of between 10% and 27% in the agreement measures, between the mapped and validation data (i.e. mean producer's and user's accuracy) for the two test sites. Raw LIDAR intensity images are only of limited value here, since they appeared heterogeneous and speckled. However, the enhanced Lee smoothing filter, applied to the LIDAR intensity, improved the overall accuracy measurements of the habitat classification, especially in the wetland zone; here, there were gains up to 7.9% in mean producer's and 11.6% in mean user's accuracy. This suggests that LIDAR can be useful for habitat mapping, when few data sources are available. The synergy between the LIDAR data, with multi-spectral bands, produced high accurate classifications (mean producer's accuracy: 92% for the 16 rocky habitats and 88% for the 11 wetland habitats). Fusion of the data enabled discrimination of intertidal communities, such as Corallina elongata

  20. Modeling for Airborne Contamination

    SciTech Connect

    F.R. Faillace; Y. Yuan

    2000-08-31

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift

  1. The correlation and quantification of airborne spectroradiometer data to turbidity measurements at Lake Powell, Utah

    NASA Technical Reports Server (NTRS)

    Merry, C. J.

    1979-01-01

    A water sampling program was accomplished at Lake Powell, Utah, during June 1975 for correlation to multispectral data obtained with a 500-channel airborne spectroradiometer. Field measurements were taken of percentage of light transmittance, surface temperature, pH and Secchi disk depth. Percentage of light transmittance was also measured in the laboratory for the water samples. Analyses of electron micrographs and suspended sediment concentration data for four water samples located at Hite Bridge, Mile 168, Mile 150 and Bullfrog Bay indicated differences in the composition and concentration of the particulate matter. Airborne spectroradiometer multispectral data were analyzed for the four sampling locations. The results showed that: (1) as the percentage of light transmittance of the water samples decreased, the reflected radiance increased; and (2) as the suspended sediment concentration (mg/l) increased, the reflected radiance increased in the 1-80 mg/l range. In conclusion, valuable qualitative information was obtained on surface turbidity for the Lake Powell water spectra. Also, the reflected radiance measured at a wavelength of 0.58 micron was directly correlated to the suspended sediment concentration.

  2. Multi-spectral synthetic image generation for ground vehicle identification training

    NASA Astrophysics Data System (ADS)

    May, Christopher M.; Pinto, Neil A.; Sanders, Jeffrey S.

    2016-05-01

    There is a ubiquitous and never ending need in the US armed forces for training materials that provide the warfighter with the skills needed to differentiate between friendly and enemy forces on the battlefield. The current state of the art in battlefield identification training is the Recognition of Combat Vehicles (ROC-V) tool created and maintained by the Communications - Electronics Research, Development and Engineering Center Night Vision and Electronic Sensors Directorate (CERDEC NVESD). The ROC-V training package utilizes measured visual and thermal imagery to train soldiers about the critical visual and thermal cues needed to accurately identify modern military vehicles and combatants. This paper presents an approach to augment the existing ROC-V imagery database with synthetically generated multi-spectral imagery that will allow NVESD to provide improved training imagery at significantly lower costs.

  3. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  4. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  5. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  6. Bandpass filter arrays patterned by photolithography for multispectral remote sensing

    NASA Astrophysics Data System (ADS)

    Bauer, T.; Thome, Heidi; Eisenhammer, Thomas

    2014-10-01

    Optical remote sensing of the earth from air and space typically utilizes several channels from visible (VIS), near infrared (NIR) up to the short wave infrared (SWIR) spectral region. Thin-film optical filters are applied to select these channels. Filter wheels and arrays of discrete stripe filters are standard configurations. To achieve compact and light weight camera designs multi-channel filter plates or assemblies can be mounted close to the electronic detectors. Optics Balzers has implemented a micro-structuring process based on a sequence of multiple coatings and photolithography on the same substrate. High-performance band pass filters are applied by plasma assisted evaporation (plasma IAD) with advance plasma source (APS) technology and optical broad-band monitoring (BBM). This technology has already proven for various multi spectral imager (MSI) configurations on fused silica, sapphire and other substrates for remote sensing application. The optical filter design and performance is limited by the maximum coating thickness micro-structurable by photolithographic lift-off processes and by thermal and radiation load on the photoresist mask during the process Recent progress in image resolution and sensor selectivity requires improvements of optical filter performance. Blocking in the UV and NIR and in between the spectral cannels, in-band transmission and filter edge steepness are subject of current development. Technological limits of the IAD coating accuracy can be overcome by more precise coating technologies like plasma assisted reactive magnetron sputtering (PARMS) and combination with optical broadband monitoring (BBM). We present an overview about concepts and technologies for band-pass filter arrays for multi-spectral imaging at Optics Balzers. Recent performance improvements of filter arrays made by micro-structuring will be presented.

  7. Multispectral Stokes polarimetry for dermatoscopic imaging

    NASA Astrophysics Data System (ADS)

    Castillejos, Y.; Martínez-Ponce, Geminiano; Mora-Nuñez, Azael; Castro-Sanchez, R.

    2015-12-01

    Most of skin pathologies, including melanoma and basal/squamous cell carcinoma, are related to alterations in external and internal order. Usually, physicians rely on their empirical expertise to diagnose these ills normally assisted with dermatoscopes. When there exists skin cancer suspicion, a cytology or biopsy is made, but both laboratory tests imply an invasive procedure. In this regard, a number of non-invasive optical techniques have been proposed recently to improve the diagnostic certainty and assist in the early detection of cutaneous cancer. Herein, skin optical properties are derived with a multispectral polarimetric dermatoscope using three different illumination wavelength intervals centered at 470, 530 and 635nm. The optical device consist of two polarizing elements, a quarter-wave plate and a linear polarizer, rotating at a different angular velocity and a CCD array as the photoreceiver. The modulated signal provided by a single pixel in the acquired image sequence is analyzed with the aim of computing the Stokes parameters. Changes in polarization state of selected wavelengths provide information about the presence of skin pigments such as melanin and hemoglobin species as well as collagen structure, among other components. These skin attributes determine the local physiology or pathology. From the results, it is concluded that optical polarimetry will provide additional elements to dermatologists in their diagnostic task.

  8. Compressive hyperspectral and multispectral imaging fusion

    NASA Astrophysics Data System (ADS)

    Espitia, Óscar; Castillo, Sergio; Arguello, Henry

    2016-05-01

    Image fusion is a valuable framework which combines two or more images of the same scene from one or multiple sensors, allowing to improve the resolution of the images and increase the interpretable content. In remote sensing a common fusion problem consists of merging hyperspectral (HS) and multispectral (MS) images that involve large amount of redundant data, which ignores the highly correlated structure of the datacube along the spatial and spectral dimensions. Compressive HS and MS systems compress the spectral data in the acquisition step allowing to reduce the data redundancy by using different sampling patterns. This work presents a compressed HS and MS image fusion approach, which uses a high dimensional joint sparse model. The joint sparse model is formulated by combining HS and MS compressive acquisition models. The high spectral and spatial resolution image is reconstructed by using sparse optimization algorithms. Different fusion spectral image scenarios are used to explore the performance of the proposed scheme. Several simulations with synthetic and real datacubes show promising results as the reliable reconstruction of a high spectral and spatial resolution image can be achieved by using as few as just the 50% of the datacube.

  9. Surface Emissivity Derived From Multispectral Satellite Data

    NASA Technical Reports Server (NTRS)

    Minnis, P.; Smith, W. L., Jr.; Young, D. F.

    1998-01-01

    Surface emissivity is critical for remote sensing of surface skin temperature and infrared cloud properties when the observed radiance is influenced by the surface radiation. It is also necessary to correctly compute the longwave flux from a surface at a given skin temperature. Surface emissivity is difficult to determine because skin temperature is an ill-defined parameter. The surface-emitted radiation may arise from a range of surface depths depending on many factors including soil moisture, vegetation, surface porosity, and heat capacity. Emissivity can be measured in the laboratory for pure surfaces. Transfer of laboratory measurements to actual Earth surfaces, however, is fraught with uncertainties because of their complex nature. This paper describes a new empirical approach for estimating surface skin temperature from a combination of brightness temperatures measured at different infrared wavelengths with satellite imagers. The method uses data from the new Geostationary Operational Environmental Satellite (GOES) imager to determine multispectral emissivities from the skin temperatures derived over the ARM Southern Great Plains domain.

  10. Cell metabolism, tumour diagnosis and multispectral FLIM

    NASA Astrophysics Data System (ADS)

    Rück, A.; Hauser, C.; Lorenz, S.; Mosch, S.; Rotte, S.; Kessler, M.; Kalinina, S.

    2013-02-01

    Fluorescence guided diagnosis of tumour tissue is in many cases insufficient, because false positive results are interfering with the outcome. Discrimination between tumour and inflammation could be therefore difficult. Improvement of fluorescence diagnosis through observation of cell metabolism could be the solution, which needs a detailed understanding of the origin of autofluorescence. However, a complex combination of fluorophores give rise to the emission signal. Also in PDD (photodynamic diagnosis) different photosensitizer metabolites contribute to the fluorescence signal. Therefore, the fluorescence decay in many cases does not show a simple monoexponential profile. In those cases a considerable improvement could be achieved when time-resolved and spectral-resolved techniques are simultaneously incorporated. The discussion will focus on the detection of NADH, FAD and 5-ALA induced porphyrins. With respect to NADH and FAD the discrimination between protein bound and free coenzyme was investigated with multispectral FLIM in normal oral keratinocytes and squamous carcinoma cells from different origin. The redox ratio, which can be correlated with the fluorescence lifetimes of NADH and FAD changed depending on the state of the cells. Most of the investigations were done in monolayer cell cultures. However, in order to get information from a more realistic in vivo situation additionally the chorioallantoismembrane (CAM) of fertilized eggs was used where tumour cells or biopsies were allowed to grow. The results of theses measurements will be discussed as well.

  11. Semantic segmentation of multispectral overhead imagery

    NASA Astrophysics Data System (ADS)

    Prasad, Lakshman; Pope, Paul A.; Sentz, Kari

    2016-05-01

    Land cover classification uses multispectral pixel information to separate image regions into categories. Image segmentation seeks to separate image regions into objects and features based on spectral and spatial image properties. However, making sense of complex imagery typically requires identifying image regions that are often a heterogeneous mixture of categories and features that constitute functional semantic units such as industrial, residential, or commercial areas. This requires leveraging both spectral classification and spatial feature extraction synergistically to synthesize such complex but meaningful image units. We present an efficient graphical model for extracting such semantically cohesive regions. We employ an initial hierarchical segmentation of images into features represented as nodes of an attributed graph that represents feature properties as well as their adjacency relations with other features. This provides a framework to group spectrally and structurally diverse features, which are nevertheless semantically cohesive, based on user-driven identifications of features and their contextual relationships in the graph. We propose an efficient method to construct, store, and search an augmented graph that captures nonadjacent vicinity relationships of features. This graph can be used to query for semantic notional units consisting of ontologically diverse features by constraining it to specific query node types and their indicated/desired spatial interaction characteristics. User interaction with, and labeling of, initially segmented and categorized image feature graph can then be used to learn feature (node) and regional (subgraph) ontologies as constraints, and to identify other similar semantic units as connected components of the constraint-pruned augmented graph of a query image.

  12. Study of a hybrid multispectral processor

    NASA Technical Reports Server (NTRS)

    Marshall, R. E.; Kriegler, F. J.

    1973-01-01

    A hybrid processor is described offering enough handling capacity and speed to process efficiently the large quantities of multispectral data that can be gathered by scanner systems such as MSDS, SKYLAB, ERTS, and ERIM M-7. Combinations of general-purpose and special-purpose hybrid computers were examined to include both analog and digital types as well as all-digital configurations. The current trend toward lower costs for medium-scale digital circuitry suggests that the all-digital approach may offer the better solution within the time frame of the next few years. The study recommends and defines such a hybrid digital computing system in which both special-purpose and general-purpose digital computers would be employed. The tasks of recognizing surface objects would be performed in a parallel, pipeline digital system while the tasks of control and monitoring would be handled by a medium-scale minicomputer system. A program to design and construct a small, prototype, all-digital system has been started.

  13. Multispectral glancing incidence X-ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1990-01-01

    A multispectral glancing incidence X-ray telescope is illustrated capable of broadband, high-resolution imaging of solar and stellar X-ray and extreme ultraviolet radiation sources which includes a primary optical system preferably of the Wolter I type having a primary mirror system (20, 22). The primary optical system further includes an optical axis (24) having a primary focus (F1) at which the incoming radiation is focused by the primary mirrors. A plurality of ellipsoidal mirrors (30a, 30b, 30cand 30d) are carried at an inclination to the optical axis behind the primary focus (F1). A rotating carrier (32) is provided on which the ellipsoidal mirrors are carried so that a desired one of the ellipsoidal mirrors may be selectively positioned in front of the incoming radiation beam (26). In the preferred embodiment, each of the ellipsoidal mirrors has an identical concave surface carrying a layered synthetic microstructure coating tailored to reflect a desired wavelength of 1.5 .ANG. or longer. Each of the identical ellipsoidal mirrors has a second focus (F2) at which a detector (16) is carried. Thus the different wavelength image is focused upon the detector irregardless of which mirror is positioned in front of the radiation beam. In this manner, a plurality of low wavelengths in a wavelength band generally less than 30 angstroms can be imaged with a high resolution.

  14. Object detection utilizing a linear retrieval algorithm for thermal infrared imagery

    SciTech Connect

    Ramsey, M.S.

    1996-11-01

    Thermal infrared (TIR) spectroscopy and remote sensing have been proven to be extremely valuable tools for mineralogic discrimination. One technique for sub-pixel detection and data reduction, known as a spectral retrieval or unmixing algorithm, will prove useful in the analysis of data from scheduled TIR orbital instruments. This study represents the first quantitative attempt to identify the limits of the model, specifically concentrating on the TIR. The algorithm was written and applied to laboratory data, testing the effects of particle size, noise, and multiple endmembers, then adapted to operate on airborne Thermal Infrared Multispectral Scanner data of the Kelso Dunes, CA, Meteor Crater, AZ, and Medicine Lake Volcano, CA. Results indicate that linear spectral unmixmg can produce accurate endmember detection to within an average of 5%. In addition, the effects of vitrification and textural variations were modeled. The ability to predict mineral or rock abundances becomes extremely useful in tracking sediment transport, decertification, and potential hazard assessment in remote volcanic regions. 26 refs., 3 figs.

  15. Optimal attributes for the object based detection of giant reed in riparian habitats: A comparative study between Airborne High Spatial Resolution and WorldView-2 imagery

    NASA Astrophysics Data System (ADS)

    Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.

    2014-10-01

    Giant reed is an aggressive invasive plant of riparian ecosystems in many sub-tropical and warm-temperate regions, including Mediterranean Europe. In this study we tested a set of geometric, spectral and textural attributes in an object based image analysis (OBIA) approach to map giant reed invasions in riparian habitats. Bagging Classification and Regression Tree were used to select the optimal attributes and to build the classification rules sets. Mapping accuracy was performed using landscape metrics and the Kappa coefficient to compare the topographical and geometric similarity between the giant reed patches obtained with the OBIA map and with a validation map derived from on-screen digitizing. The methodology was applied in two high spatial resolution images: an airborne multispectral imagery and the newly WorldView-2 imagery. A temporal coverage of the airborne multispectral images was radiometrically calibrated with the IR-Mad transformation and used to assess the influence of the phenological variability of the invader. We found that optimal attributes for giant reed OBIA detection are a combination of spectral, geometric and textural information, with different scoring selection depending on the spectral and spatial characteristics of the imagery. WorldView-2 showed higher mapping accuracy (Kappa coefficient of 77%) and spectral attributes, including the newly yellow band, were preferentially selected, although a tendency to overestimate the total invaded area, due to the low spatial resolution (2 m of pixel size vs. 50 cm) was observed. When airborne images were used, geometric attributes were primarily selected and a higher spatial detail of the invasive patches was obtained, due to the higher spatial resolution. However, in highly heterogeneous landscapes, the low spectral resolution of the airborne images (4 bands instead of the 8 of WorldView-2) reduces the capability to detect giant reed patches. Giant reed displays peculiar spectral and geometric

  16. The Multispectral Imaging Science Working Group. Volume 2: Working group reports

    NASA Technical Reports Server (NTRS)

    Cox, S. C. (Editor)

    1982-01-01

    Summaries of the various multispectral imaging science working groups are presented. Current knowledge of the spectral and spatial characteristics of the Earth's surface is outlined and the present and future capabilities of multispectral imaging systems are discussed.

  17. Personal Authentication Using Multifeatures Multispectral Palm Print Traits.

    PubMed

    Rajagopal, Gayathri; Manoharan, Senthil Kumar

    2015-01-01

    Biometrics authentication is an effective method for automatically recognizing a person's identity with high confidence. Multispectral palm print biometric system is relatively new biometric technology and is in the progression of being endlessly refined and developed. Multispectral palm print biometric system is a promising biometric technology for use in various applications including banking solutions, access control, hospital, construction, and forensic applications. This paper proposes a multispectral palm print recognition method with extraction of multiple features using kernel principal component analysis and modified finite radon transform. Finally, the images are classified using Local Mean K-Nearest Centroid Neighbor algorithm. The proposed method efficiently accommodates the rotational, potential deformations and translational changes by encoding the orientation conserving features. The proposed system analyses the hand vascular authentication using two databases acquired with touch-based and contactless imaging setup collected from multispectral Poly U palm print database and CASIA database. The experimental results clearly demonstrate that the proposed multispectral palm print authentication obtained better result compared to other methods discussed in the literature. PMID:26221628

  18. Personal Authentication Using Multifeatures Multispectral Palm Print Traits

    PubMed Central

    Rajagopal, Gayathri; Manoharan, Senthil Kumar

    2015-01-01

    Biometrics authentication is an effective method for automatically recognizing a person's identity with high confidence. Multispectral palm print biometric system is relatively new biometric technology and is in the progression of being endlessly refined and developed. Multispectral palm print biometric system is a promising biometric technology for use in various applications including banking solutions, access control, hospital, construction, and forensic applications. This paper proposes a multispectral palm print recognition method with extraction of multiple features using kernel principal component analysis and modified finite radon transform. Finally, the images are classified using Local Mean K-Nearest Centroid Neighbor algorithm. The proposed method efficiently accommodates the rotational, potential deformations and translational changes by encoding the orientation conserving features. The proposed system analyses the hand vascular authentication using two databases acquired with touch-based and contactless imaging setup collected from multispectral Poly U palm print database and CASIA database. The experimental results clearly demonstrate that the proposed multispectral palm print authentication obtained better result compared to other methods discussed in the literature. PMID:26221628

  19. Nondestructive prediction of pork freshness parameters using multispectral scattering images

    NASA Astrophysics Data System (ADS)

    Tang, Xiuying; Li, Cuiling; Peng, Yankun; Chao, Kuanglin; Wang, Mingwu

    2012-05-01

    Optical technology is an important and immerging technology for non-destructive and rapid detection of pork freshness. This paper studied on the possibility of using multispectral imaging technique and scattering characteristics to predict the freshness parameters of pork meat. The pork freshness parameters selected for prediction included total volatile basic nitrogen (TVB-N), color parameters (L *, a *, b *), and pH value. Multispectral scattering images were obtained from pork sample surface by a multispectral imaging system developed by ourselves; they were acquired at the selected narrow wavebands whose center wavelengths were 517,550, 560, 580, 600, 760, 810 and 910nm. In order to extract scattering characteristics from multispectral images at multiple wavelengths, a Lorentzian distribution (LD) function with four parameters (a: scattering asymptotic value; b: scattering peak; c: scattering width; d: scattering slope) was used to fit the scattering curves at the selected wavelengths. The results show that the multispectral imaging technique combined with scattering characteristics is promising for predicting the freshness parameters of pork meat.

  20. Low SWaP multispectral sensors using dichroic filter arrays

    NASA Astrophysics Data System (ADS)

    Dougherty, John; Varghese, Ron

    2015-06-01

    The benefits of multispectral imaging are well established in a variety of applications including remote sensing, authentication, satellite and aerial surveillance, machine vision, biomedical, and other scientific and industrial uses. However, many of the potential solutions require more compact, robust, and cost-effective cameras to realize these benefits. The next generation of multispectral sensors and cameras needs to deliver improvements in size, weight, power, portability, and spectral band customization to support widespread deployment for a variety of purpose-built aerial, unmanned, and scientific applications. A novel implementation uses micro-patterning of dichroic filters1 into Bayer and custom mosaics, enabling true real-time multispectral imaging with simultaneous multi-band image acquisition. Consistent with color image processing, individual spectral channels are de-mosaiced with each channel providing an image of the field of view. This approach can be implemented across a variety of wavelength ranges and on a variety of detector types including linear, area, silicon, and InGaAs. This dichroic filter array approach can also reduce payloads and increase range for unmanned systems, with the capability to support both handheld and autonomous systems. Recent examples and results of 4 band RGB + NIR dichroic filter arrays in multispectral cameras are discussed. Benefits and tradeoffs of multispectral sensors using dichroic filter arrays are compared with alternative approaches - including their passivity, spectral range, customization options, and scalable production.

  1. Airborne seeker evaluation and test system

    NASA Astrophysics Data System (ADS)

    Jollie, William B.

    1991-08-01

    The Airborne Seeker Evaluation Test System (ASETS) is an airborne platform for development, test, and evaluation of air-to-ground seekers and sensors. ASETS consists of approximately 10,000 pounds of equipment, including sixteen racks of control, display, and recording electronics, and a very large stabilized airborne turret, all carried by a modified C- 130A aircraft. The turret measures 50 in. in diameter and extends over 50 in. below the aircraft. Because of the low ground clearance of the C-130, a unique retractor mechanism was designed to raise the turret inside the aircraft for take-offs and landings, and deploy the turret outside the aircraft for testing. The turret has over 7 cubic feet of payload space and can accommodate up to 300 pounds of instrumentation, including missile seekers, thermal imagers, infrared mapping systems, laser systems, millimeter wave radar units, television cameras, and laser rangers. It contains a 5-axis gyro-stabilized gimbal system that will maintain a line of sight in the pitch, roll, and yaw axes to an accuracy better than +/- 125 (mu) rad. The rack-mounted electronics in the aircraft cargo bay can be interchanged to operate any type of sensor and record the data. Six microcomputer subsystems operate and maintain all of the system components during a test mission. ASETS is capable of flying at altitudes between 200 and 20,000 feet, and at airspeeds ranging from 100 to 250 knots. Mission scenarios can include air-to-surface seeker testing, terrain mapping, surface target measurement, air-to-air testing, atmospheric transmission studies, weather data collection, aircraft or missile tracking, background signature measurements, and surveillance. ASETS is fully developed and available to support test programs.

  2. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  3. Remote sensing of shorelines using data fusion of hyperspectral and multispectral imagery acquired from mobile and fixed platforms

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R.; Frystacky, Heather

    2012-06-01

    An optimized data fusion methodology is presented and makes use of airborne and vessel mounted hyperspectral and multispectral imagery acquired at littoral zones in Florida and the northern Gulf of Mexico. The results demonstrate the use of hyperspectral-multispectral data fusion anomaly detection along shorelines and in surface and subsurface waters. Hyperspectral imagery utilized in the data fusion analysis was collected using a 64-1024 channel, 1376 pixel swath width; temperature stabilized sensing system; an integrated inertial motion unit; and differential GPS. The imaging system is calibrated using dual 18 inch calibration spheres, spectral line sources, and custom line targets. Simultaneously collected multispectral three band imagery used in the data fusion analysis was derived either a 12 inch focal length large format camera using 9 inch high speed AGFA color negative film, a 12.3 megapixel digital camera or dual high speed full definition video cameras. Pushbroom sensor imagery is corrected using Kalman filtering and smoothing in order to correct images for airborne platform motions or motions of a small vessel. Custom software developed for the hyperspectral system and the optimized data fusion process allows for post processing using atmospherically corrected and georeferenced reflectance imagery. The optimized data fusion approach allows for detecting spectral anomalies in the resolution enhanced data cubes. Spectral-spatial anomaly detection is demonstrated using simulated embedded targets in actual imagery. The approach allows one to utilize spectral signature anomalies to identify features and targets that would otherwise not be possible. The optimized data fusion techniques and software has been developed in order to perform sensitivity analysis of the synthetic images in order to optimize the singular value decomposition model building process and the 2-D Butterworth cutoff frequency selection process, using the concept of user defined "feature

  4. Automated detection and mapping of crown discolouration caused by jack pine budworm with 2.5 m resolution multispectral imagery

    NASA Astrophysics Data System (ADS)

    Leckie, Donald G.; Cloney, Ed; Joyce, Steve P.

    2005-05-01

    Jack pine budworm ( Choristoneura pinus pinus (Free.)) is a native insect defoliator of mainly jack pine ( Pinus banksiana Lamb.) in North America east of the Rocky Mountains. Periodic outbreaks of this insect, which generally last two to three years, can cause growth loss and mortality and have an important impact ecologically and economically in terms of timber production and harvest. The jack pine budworm prefers to feed on current year needles. Their characteristic feeding habits cause discolouration or reddening of the canopy. This red colouration is used to map the distribution and intensity of defoliation that has taken place that year (current defoliation). An accurate and consistent map of the distribution and intensity of budworm defoliation (as represented by the red discolouration) at the stand and within stand level is desirable. Automated classification of multispectral imagery, such as is available from airborne and new high resolution satellite systems, was explored as a viable tool for objectively classifying current discolouration. Airborne multispectral imagery was acquired at a 2.5 m resolution with the Multispectral Electro-optical Imaging Sensor (MEIS). It recorded imagery in six nadir looking spectral bands specifically designed to detect discolouration caused by budworm and a near-infrared band viewing forward at 35° was also used. A 2200 nm middle infrared image was acquired with a Daedalus scanner. Training and test areas of different levels of discolouration were created based on field observations and a maximum likelihood supervized classification was used to estimate four classes of discolouration (nil-trace, light, moderate and severe). Good discrimination was achieved with an overall accuracy of 84% for the four discolouration levels. The moderate discolouration class was the poorest at 73%, because of confusion with both the severe and light classes. Accuracy on a stand basis was also good, and regional and within stand

  5. Rapid algal culture diagnostics for open ponds using multispectral image analysis.

    PubMed

    Murphy, Thomas E; Macon, Keith; Berberoglu, Halil

    2014-01-01

    This article presents a multispectral image analysis approach for probing the spectral backscattered irradiance from algal cultures. It was demonstrated how this spectral information can be used to measure algal biomass concentration, detect invasive species, and monitor culture health in real time. To accomplish this, a conventional RGB camera was used as a three band photodetector for imaging cultures of the green alga Chlorella sp. and the cyanobacterium Anabaena variabilis. A novel floating reference platform was placed in the culture, which enhanced the sensitivity of image color intensity to biomass concentration. Correlations were generated between the RGB color vector of culture images and the biomass concentrations for monocultures of each strain. These correlations predicted the biomass concentrations of independently prepared cultures with average errors of 22 and 14%, respectively. Moreover, the difference in spectral signatures between the two strains was exploited to detect the invasion of Chlorella sp. cultures by A. variabilis. Invasion was successfully detected for A. variabilis to Chlorella sp. mass ratios as small as 0.08. Finally, a method was presented for using multispectral imaging to detect thermal stress in A. variabilis. These methods can be extended to field applications to provide delay free process control feedback for efficient operation of large scale algae cultivation systems.

  6. Rapid algal culture diagnostics for open ponds using multispectral image analysis.

    PubMed

    Murphy, Thomas E; Macon, Keith; Berberoglu, Halil

    2014-01-01

    This article presents a multispectral image analysis approach for probing the spectral backscattered irradiance from algal cultures. It was demonstrated how this spectral information can be used to measure algal biomass concentration, detect invasive species, and monitor culture health in real time. To accomplish this, a conventional RGB camera was used as a three band photodetector for imaging cultures of the green alga Chlorella sp. and the cyanobacterium Anabaena variabilis. A novel floating reference platform was placed in the culture, which enhanced the sensitivity of image color intensity to biomass concentration. Correlations were generated between the RGB color vector of culture images and the biomass concentrations for monocultures of each strain. These correlations predicted the biomass concentrations of independently prepared cultures with average errors of 22 and 14%, respectively. Moreover, the difference in spectral signatures between the two strains was exploited to detect the invasion of Chlorella sp. cultures by A. variabilis. Invasion was successfully detected for A. variabilis to Chlorella sp. mass ratios as small as 0.08. Finally, a method was presented for using multispectral imaging to detect thermal stress in A. variabilis. These methods can be extended to field applications to provide delay free process control feedback for efficient operation of large scale algae cultivation systems. PMID:24265121

  7. A COMPARISON OF FOUR METHODS FOR DETERMINING PRECIPITABLE WATER VAPOR CONTENT FROM MULTI-SPECTRAL DATA

    SciTech Connect

    K. HIRSCH; ET AL

    2001-03-01

    Determining columnar water vapor is a fundamental problem in remote sensing. This measurement is important both for understanding atmospheric variability and also from removing atmospheric effects from remotely sensed data. Therefore discovering a reliable and if possible automated method for determining water vapor column abundance is important. There are two standard methods for determining precipitable water vapor during the daytime from multi-spectral data. The first method is the Continuum Interpolated Band Ratio (CIBR) (see for example King et al. 1996). This method assumes a baseline and measures the depth of a water vapor feature as compared to this baseline. The second method is the Atmospheric Pre-corrected Differential Absorption technique (APDA) (see Schlaepfer et al. 1998); this method accounts for the path radiance contribution to the top of atmosphere radiance measurement which is increasingly important at lower and lower reflectance values. We have also developed two methods of modifying CIBR. We use a simple curve fitting procedure to account for and remove any systematic errors due to low reflectance while still preserving the random spread of the CIBR values as a function of surface reflectance. We also have developed a two-dimensional look-up table for CIBR; CIBR using this technique is a function of both water vapor (as with all CIBR techniques) and surface reflectance. Here we use data recently acquired with the Multi-spectral Thermal Imager spacecraft (MTI) to compare these four methods of determining columnar water vapor content.

  8. Design of a multispectral digital colposcope

    NASA Astrophysics Data System (ADS)

    MacKinnon, N. B.; Cardeno, M.; Au, S.; MacAulay, C. E.; Pikkula, B. M.; Serachitopol, D.; Follen, M.; Park, S. Y.; Richards-Kortum, R.

    2007-02-01

    Measurement quality assurance plans for optical devices should be a mandatory part of grant funding submissions and should explicitly affect scoring during review. These should include calibration strategy, standards selection strategy, performance verification plan, performance validation plan and thorough preclinical performance validation. A multispectral digital colposcope (MDC) has been designed to collect image data from patients as part of an NIH sponsored clinical trial, based on a technology assessment model. Calibration strategy, standards selection and performance verification methods are presented that may be used as a template for smaller groups or more limited studies. With the MDC, red green and blue fluorescence images are captured under ultraviolet light excitation and red and green images are captured under blue light excitation. Red, green and blue reflectance images are captured under broadband white light illumination from a metal halide lamp in three modes - ordinary reflectance, and with polarized illumination in combination with parallel and cross-polarized filtered imaging. The highly automated system was designed to collect images of the cervix prior to and following the application of acetic acid. Three systems have been built and will be operated in clinics in Vancouver, Canada, Houston, Texas and other locations in the developed and developing world including Nigeria. The system is designed with a comprehensive set of calibration and performance verification standards, based on our experience with large scale multi-center spectroscopy clinical trials and measurements are made frequently prior to and following patient measurements. Automated performance verification procedures are being designed based on measurements made during pilot studies to facilitate larger clinical trials.

  9. A multi-sensor lidar, multi-spectral and multi-angular approach for mapping canopy height in boreal forest regions

    USGS Publications Warehouse

    Selkowitz, David J.; Green, Gordon; Peterson, Birgit E.; Wylie, Bruce

    2012-01-01

    Spatially explicit representations of vegetation canopy height over large regions are necessary for a wide variety of inventory, monitoring, and modeling activities. Although airborne lidar data has been successfully used to develop vegetation canopy height maps in many regions, for vast, sparsely populated regions such as the boreal forest biome, airborne lidar is not widely available. An alternative approach to canopy height mapping in areas where airborne lidar data is limited is to use spaceborne lidar measurements in combination with multi-angular and multi-spectral remote sensing data to produce comprehensive canopy height maps for the entire region. This study uses spaceborne lidar data from the Geosciences Laser Altimeter System (GLAS) as training data for regression tree models that incorporate multi-angular and multi-spectral data from the Multi-Angle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging SpectroRadiometer (MODIS) to map vegetation canopy height across a 1,300,000 km2 swath of boreal forest in Interior Alaska. Results are compared to in situ height measurements as well as airborne lidar data. Although many of the GLAS-derived canopy height estimates are inaccurate, applying a series of filters incorporating both data associated with the GLAS shots as well as ancillary data such as land cover can identify the majority of height estimates with significant errors, resulting in a filtered dataset with much higher accuracy. Results from the regression tree models indicate that late winter MISR imagery acquired under snow-covered conditions is effective for mapping canopy heights ranging from 5 to 15 m, which includes the vast majority of forests in the region. It appears that neither MISR nor MODIS imagery acquired during the growing season is effective for canopy height mapping, although including summer multi-spectral MODIS data along with winter MISR imagery does appear to provide a slight increase in the accuracy of resulting

  10. Airborne GLM Simulator (FEGS)

    NASA Astrophysics Data System (ADS)

    Quick, M.; Blakeslee, R. J.; Christian, H. J., Jr.; Stewart, M. F.; Podgorny, S.; Corredor, D.

    2015-12-01

    Real time lightning observations have proven to be useful for advanced warning and now-casting of severe weather events. In anticipation of the launch of the Geostationary Lightning Mapper (GLM) onboard GOES-R that will provide continuous real time observations of total (both cloud and ground) lightning, the Fly's Eye GLM Simulator (FEGS) is in production. FEGS is an airborne instrument designed to provide cal/val measurements for GLM from high altitude aircraft. It consists of a 5 x 5 array of telescopes each with a narrow passband filter to isolate the 777.4 nm neutral oxygen emission triplet radiated by lightning. The telescopes will measure the optical radiance emitted by lightning that is transmitted through the cloud top with a temporal resolution of 10 μs. When integrated on the NASA ER-2 aircraft, the FEGS array with its 90° field-of-view will observe a cloud top area nearly equal to a single GLM pixel. This design will allow FEGS to determine the temporal and spatial variation of light that contributes to a GLM event detection. In addition to the primary telescope array, the instrument includes 5 supplementary optical channels that observe alternate spectral emission features and will enable the use of FEGS for interesting lightning physics applications. Here we present an up-to-date summary of the project and a description of its scientific applications.

  11. Multispectral image visualization through first-order fusion.

    PubMed

    Socolinsky, Diego A; Wolff, Lawrence B

    2002-01-01

    We present a new formalism for the treatment and understanding of multispectral images and multisensor imagery based on first-order contrast information. Although little attention has been paid to the utility of multispectral contrast, we develop a theory for multispectral contrast that enables us to produce an optimal grayscale visualization of the first-order contrast of an image with an arbitrary number of bands. We demonstrate how our technique can reveal significantly more interpretive information to an image analyst, who can use it in a number of image understanding algorithms. Existing grayscale visualization strategies are reviewed. A variety of experimental results are presented to support the performance of the new method. PMID:18244686

  12. Changes of multispectral soil patterns with increasing crop canopy

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Baumgardner, M. F.

    1972-01-01

    Multispectral data and automatic data processing were used to map surface soil patterns and to follow the changes in multispectral radiation from a field of maize (Zea mays L.) during a period from seeding to maturity. Panchromatic aerial photography was obtained in early May 1970 and multispectral scanner missions were flown on May 6, June 30, August 11 and September 5, 1970 to obtain energy measurements in 13 wavelength bands. The orange portion of the visible spectrum was used in analyzing the May and June data to cluster relative radiance of the soils into eight different radiance levels. The reflective infrared spectral band was used in analyzing the August and September data to cluster maize into different spectral categories. The computer-produced soil patterns had a striking similarity to the soil pattern of the aerial photograph. These patterns became less distinct as the maize canopy increased.

  13. Characteristic variogram for land use in Multispectral Images

    NASA Astrophysics Data System (ADS)

    Mera, E.; Condal, A.; Rios, C.; Da Silva, L.

    2016-05-01

    In remote sensing is the concept of spectral signature in multispectral imagery to recognize different land uses in the area; This study proposes the existence of a characteristic variogram for land use in multispectral images. To test this idea we proceeded to work with a sector of a scene image of multispectral Landsat 7 ETM +, in 6 of their bands (1- 450nm to 520nm, 2 - 520nm to 600nm, 3 - 630nm to 690nm, 4 - 760nm to 900nm 5 - over 1550nm to 1.750nm and 7 - 2.080nm to 2.350nm), corresponding to two uses of urban land and agricultural, the omnidirectional variogram for each band was analyzed and modal variogram for each land use was established in the stripe set. Of the analyzed claims data for each land use is a model characteristic and modal cross variogram how their wavelengths.

  14. Compact multi-spectral imaging system for dermatology and neurosurgery

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke Jan; de Roode, Rowland; Verdaasdonk, Rudolf

    2007-03-01

    A compact multi-spectral imaging system is presented as diagnostic tool in dermatology and neurosurgery. Using an electronically tunable filter, a sensitive high resolution digital camera, 140 spectral images from 400 nm up to 720 nm are acquired in 40 s. Advanced image processing algorithms are used to enable interactive acquisition, viewing, image registration and image analysis. Experiments in the department of dermatology and neurosurgery show that multispectral imaging reveals much more detail than conventional medical photography or a surgical microscope, as images can be reprocessed to enhance the view on e.g. tumor boundaries. Using a hardware-based interactive registration algorithm, multi-spectral images can be aligned to correct for motion occurred during image acquisition or to compare acquisitions from different moments in time. The system shows to be a powerful diagnostics tool for medical imaging in the visual and near IR range.

  15. Filter selection based on light source for multispectral imaging

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Xu, Haisong

    2016-07-01

    In multispectral imaging, it is necessary to select a reduced number of filters to balance the imaging efficiency and spectral reflectance recovery accuracy. Due to the combined effect of filters and light source on reflectance recovery, the optimal filters are influenced by the employed light source in the multispectral imaging system. By casting the filter selection as an optimization issue, the selection of optimal filters corresponding to the employed light source proceeds with respect to a set of target samples utilizing one kind of genetic algorithms, regardless of the detailed spectral characteristics of the light source, filters, and sensor. Under three light sources with distinct spectral power distributions, the proposed filter selection method was evaluated on a filter-wheel based multispectral device with a set of interference filters. It was verified that the filters derived by the proposed method achieve better spectral and colorimetric accuracy of reflectance recovery than the conventional one under different light sources.

  16. Binocular depth acuity research to support the modular multi-spectral stereoscopic night vision goggle

    NASA Astrophysics Data System (ADS)

    Merritt, John O.; CuQlock-Knopp, V. Grayson; Paicopolis, Peter; Smoot, Jennifer; Kregel, Mark; Corona, Bernard

    2006-05-01

    This paper discusses the depth acuity research conducted in support of the development of a Modular Multi-Spectral Stereoscopic (M2S2) night vision goggle (NVG), a customizable goggle that lets the user select one of five goggle configurations: monocular thermal, monocular image intensifier (I2), binocular I2, binocular thermal, and binocular dual-waveband (thermal imagery to one eye and I2 imagery to the other eye). The motives for the development of this type of customizable goggle were (1) the need for an NVG that allows the simultaneous use of two wavebands, (2) the need for an alternative sensor fusion method to avoid the potential image degradation that may accompany digitally fused images, (3) a requirement to provide the observer with stereoscopic, dual spectrum views of a scene, and (4) the need to handle individual user preferences for sensor types and ocular configurations employed in various military operations. Among the increases in functionality that the user will have with this system is the ability to convert from a binocular I2 device (needed for detailed terrain analysis during off-road mobility) to a monocular thermal device (for increased situational awareness in the unaided eye during nights with full moon illumination). Results of the present research revealed potential depth acuity advantages that may apply to off-road terrain hazard detection for the binocular thermal configuration. The results also indicated that additional studies are needed to address ways to minimize binocular incompatibility for the dual waveband configuration.

  17. Multispectral Microscopic Imager (MMI): Multispectral Imaging of Geological Materials at a Handlens Scale

    NASA Astrophysics Data System (ADS)

    Farmer, J. D.; Nunez, J. I.; Sellar, R. G.; Gardner, P. B.; Manatt, K. S.; Dingizian, A.; Dudik, M. J.; McDonnell, G.; Le, T.; Thomas, J. A.; Chu, K.

    2011-12-01

    The Multispectral Microscopic Imager (MMI) is a prototype instrument presently under development for future astrobiological missions to Mars. The MMI is designed to be a arm-mounted rover instrument for use in characterizing the microtexture and mineralogy of materials along geological traverses [1,2,3]. Such geological information is regarded as essential for interpreting petrogenesis and geological history, and when acquired in near real-time, can support hypothesis-driven exploration and optimize science return. Correlated microtexure and mineralogy also provides essential data for selecting samples for analysis with onboard lab instruments, and for prioritizing samples for potential Earth return. The MMI design employs multispectral light-emitting diodes (LEDs) and an uncooled focal plane array to achieve the low-mass (<1kg), low-cost, and high reliability (no moving parts) required for an arm-mounted instrument on a planetary rover [2,3]. The MMI acquires multispectral, reflectance images at 62 μm/pixel, in which each image pixel is comprised of a 21-band VNIR spectrum (0.46 to 1.73 μm). This capability enables the MMI to discriminate and resolve the spatial distribution of minerals and textures at the microscale [2, 3]. By extending the spectral range into the infrared, and increasing the number of spectral bands, the MMI exceeds the capabilities of current microimagers, including the MER Microscopic Imager (MI); 4, the Phoenix mission Robotic Arm Camera (RAC; 5) and the Mars Science Laboratory's Mars Hand Lens Imager (MAHLI; 6). In this report we will review the capabilities of the MMI by highlighting recent lab and field applications, including: 1) glove box deployments in the Astromaterials lab at Johnson Space Center to analyze Apollo lunar samples; 2) GeoLab glove box deployments during the 2011 Desert RATS field trials in northern AZ to characterize analog materials collected by astronauts during simulated EVAs; 3) field deployments on Mauna Kea

  18. Airborne observed solar elevation and row direction effects on the near-IR/red ratio of cotton

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Jackson, R. D.; Goettelman, R. C.; Leroy, M. J. (Principal Investigator)

    1981-01-01

    An airborne multispectral scanner was used to obtain data over two adjacent cotton fields having rows perpendicular to one another, at three times of day (different solar elevations), and on two dates (different plant size). The near IR/red ratios were displayed in image form, so that within-field variations and differences between fields could be easily assessed. The ratio varied with changing Sun elevation for north-south oriented rows, but no variation was detected for east-west oriented rows.

  19. Use of digital multispectral videography to assess seagrass distribution in San Quintin Bay, Baja California, Mexico

    USGS Publications Warehouse

    Ward, D.H.; Tibbitts, T.L.; Morton, Alexandra; Carrera-Gonzalez, Eduardo; Kempka, R.

    2004-01-01

    Apparent threats to the spatial distribution of seagrass in San Quinti??n Bay prompted us to make a detailed assessment of habitats in the bay. Six coastal habitats and three seagrass subclasses were delineated using airborne digital multispectral videography (DMSV), Eelgrass, Zostera marina, was the predominant seagrass and covered 40% (1949 ha) of the areal extent of the bay in 1999. Eelgrass grew over a wide range of tidal depths from about -3.0 in mean lower low water (MLLW) to about 1.0 m MLLW, but greatest spatial extent occurred in intertidal areas -0.6 m to 1.0 m MLLW. Exposed-continuous (i.e., high density) eelgrass was the most abundant habitat in the bay. Widgeongrass, Ruppia maritima, was the only other seagrass present and covered 3% (136 ha) of the areal extent of the entire bay. Widgeongrass grew in single species stands in the upper intertidal (??? 0.4 MLLW) and intermixed with eelgrass at lower tidal depths. Overall accuracy of the six habitat classes and three subclasses in the DMSV map was relatively high at 84%. Our detailed map of San Quintin Bay can be used in future change detection analyses to monitor the health of seagrasses in the bay.

  20. Lossless compression of multispectral images using spectral information

    NASA Astrophysics Data System (ADS)

    Ma, Long; Shi, Zelin; Tang, Xusheng

    2009-10-01

    Multispectral images are available for different purposes due to developments in spectral imaging systems. The sizes of multispectral images are enormous. Thus transmission and storage of these volumes of data require huge time and memory resources. That is why compression algorithms must be developed. A salient property of multispectral images is that strong spectral correlation exists throughout almost all bands. This fact is successfully used to predict each band based on the previous bands. We propose to use spectral linear prediction and entropy coding with context modeling for encoding multispectral images. Linear prediction predicts the value for the next sample and computes the difference between predicted value and the original value. This difference is usually small, so it can be encoded with less its than the original value. The technique implies prediction of each image band by involving number of bands along the image spectra. Each pixel is predicted using information provided by pixels in the previous bands in the same spatial position. As done in the JPEG-LS, the proposed coder also represents the mapped residuals by using an adaptive Golomb-Rice code with context modeling. This residual coding is context adaptive, where the context used for the current sample is identified by a context quantization function of the three gradients. Then, context-dependent Golomb-Rice code and bias parameters are estimated sample by sample. The proposed scheme was compared with three algorithms applied to the lossless compression of multispectral images, namely JPEG-LS, Rice coding, and JPEG2000. Simulation tests performed on AVIRIS images have demonstrated that the proposed compression scheme is suitable for multispectral images.