Science.gov

Sample records for airborne organic contaminants

  1. Airborne trace organic contaminant removal using thermally regenerable multi-media layered sorbents

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Holtsnider, John T.

    1991-01-01

    A cyclic two-step process is described which forms the basis for a simple and highly efficient air purification technology. Low molecular weight organic vapors are removed from contaminated airstreams by passage through an optimized sequence of sorbent media layers. The contaminant loaded sorbents are subsequently regenerated by thermal desorption into a low volume inert gas environment. A mixture of airborne organic contaminants consisting of acetone, 2-butanone, ethyl acetate, Freon-113 and methyl chloroform has been quantitatively removed from breathing quality air using this technique. The airborne concentrations of all contaminants have been reduced from initial Spacecraft Maximum Allowable Concentration (SMAC) levels to below the analytical limits of detection. No change in sorption efficiency was observed through multiple cycles of contaminant loading and sorbent regeneration via thermal desorption.

  2. Low pressure drop filtration of airborne molecular organic contaminants using open-channel networks

    NASA Astrophysics Data System (ADS)

    Dallas, Andrew J.; Joriman, Jon; Ding, Lefei; Weineck, Gerald; Seguin, Kevin

    2007-03-01

    Airborne molecular contamination (AMC) continues to play a very decisive role in the performance of many microelectronic devices and manufacturing processes. Besides airborne acids and bases, airborne organic contaminants such as 1-methyl-2-pyrrolidinone (NMP), hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), perfluoroalkylamines and condensables are of primary concern in these applications. Currently, the state of the filtration industry is such that optimum filter life and removal efficiency for organics is offered by granular carbon filter beds. However, the attributes that make packed beds of activated carbon extremely efficient also impart issues related to elevated filter weight and pressure drop. Most of the lower pressure drop AMC filters currently offered are quite expensive and are simply pleated combinations of various adsorptive and reactive media. On the other hand, low pressure drop filters, such as those designed as open-channel networks (OCN's), offer good filter life and removal efficiency with the additional benefits of significant reductions in overall filter weight and pressure drop. Equally important for many applications, the OCN filters can reconstruct the airflow so as to enhance the operation of a tool or process. For tool mount assemblies and fan filter units (FFUs) this can result in reduced fan and blower speeds, which subsequently can provide reduced vibration and energy costs. Additionally, these low pressure drop designs can provide a cost effective way of effectively removing AMC in full fab (or HVAC) filtration applications without significantly affecting air-handling requirements. Herein, we will present a new generation of low pressure drop OCN filters designed for the removal of airborne organics in a wide range of applications.

  3. Deposition and accumulation of airborne organic contaminants in Yosemite National Park, Calfornia

    USGS Publications Warehouse

    Mast, Alisa M.; Alvarez, David A.; Zaugg, Steven D.

    2012-01-01

    Deposition and accumulation of airborne organic contaminants in Yosemite National Park were examined by sampling atmospheric deposition, lichen, zooplankton, and lake sediment at different elevations. Passive samplers were deployed in high-elevation lakes to estimate surface-water concentrations. Detected compounds included current-use pesticides chlorpyrifos, dacthal, and endosulfans and legacy compounds chlordane, dichlorodiphenyltrichloroethane-related compounds, dieldrin, hexachlorobenzene, and polychlorinated biphenyls. Concentrations in snow were similar among sites and showed little variation with elevation. Endosulfan concentrations in summer rain appeared to coincide with application rates in the San Joaquin Valley. More than 70% of annual pesticide inputs from atmospheric deposition occurred during the winter, largely because most precipitation falls as snow. Endosulfan and chlordane concentrations in lichen increased with elevation, indicating that mountain cold-trapping might be an important control on accumulation of these compounds. By contrast, chlorpyrifos concentrations were inversely correlated with elevation, indicating that distance from source areas was the dominant control. Sediment concentrations were inversely correlated with elevation, possibly because of the organic carbon content of sediments but also perhaps the greater mobility of organic contaminants at lower elevations. Surface-water concentrations inferred from passive samplers were at sub-parts-per-trillion concentrations, indicating minimal exposure to aquatic organisms from the water column. Concentrations in sediment generally were low, except for dichlorodiphenyldichloroethane in Tenaya Lake, which exceeded sediment guidelines for protection of benthic organisms.

  4. Deposition and accumulation of airborne organic contaminants in Yosemite National Park, California.

    PubMed

    Mast, M Alisa; Alvarez, David A; Zaugg, Steven D

    2012-03-01

    Deposition and accumulation of airborne organic contaminants in Yosemite National Park were examined by sampling atmospheric deposition, lichen, zooplankton, and lake sediment at different elevations. Passive samplers were deployed in high-elevation lakes to estimate surface-water concentrations. Detected compounds included current-use pesticides chlorpyrifos, dacthal, and endosulfans and legacy compounds chlordane, dichlorodiphenyltrichloroethane-related compounds, dieldrin, hexachlorobenzene, and polychlorinated biphenyls. Concentrations in snow were similar among sites and showed little variation with elevation. Endosulfan concentrations in summer rain appeared to coincide with application rates in the San Joaquin Valley. More than 70% of annual pesticide inputs from atmospheric deposition occurred during the winter, largely because most precipitation falls as snow. Endosulfan and chlordane concentrations in lichen increased with elevation, indicating that mountain cold-trapping might be an important control on accumulation of these compounds. By contrast, chlorpyrifos concentrations were inversely correlated with elevation, indicating that distance from source areas was the dominant control. Sediment concentrations were inversely correlated with elevation, possibly because of the organic carbon content of sediments but also perhaps the greater mobility of organic contaminants at lower elevations. Surface-water concentrations inferred from passive samplers were at sub-parts-per-trillion concentrations, indicating minimal exposure to aquatic organisms from the water column. Concentrations in sediment generally were low, except for dichlorodiphenyldichloroethane in Tenaya Lake, which exceeded sediment guidelines for protection of benthic organisms. PMID:22189687

  5. Airborne radioactive contamination monitoring

    SciTech Connect

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  6. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  7. ORGANIC CONTAMINANTS

    EPA Science Inventory

    Organic pollutants may constitute the most widespread waste loadings into the waters of Lake Superior. There are essentially three categories of organic contaminants. The first grouping consists of those organic compounds that readily degrade biologically or chemically. The secon...

  8. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT (WACAP): ASSESSING DEPOSITION AND IMPACTS OF PERSISTENT ORGANIC POLLUTANTS AND METALS IN SEVEN NATIONAL PARKS IN THE WESTERN UNITED STATES

    EPA Science Inventory

    Airborne contaminants, especially those that biomagnify in the food chain, can pose serious health threats to wildlife and humans. Biological effects of airborne contaminants include impacts on reproductive success, growth, behavior, disease, and survival. In response to concer...

  9. Active airborne contamination control using electrophoresis

    SciTech Connect

    Veatch, B.D.

    1994-06-01

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ``cold,`` or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications.

  10. Comprehensive analysis of airborne contaminants from recent Spacelab missions

    NASA Technical Reports Server (NTRS)

    Matney, M. L.; Boyd, J. F.; Covington, P. A.; Leano, H. J.; Pierson, D. L.; Limero, T. F.; James, J. T.

    1993-01-01

    The Shuttle experiences unique air contamination problems because of microgravity and the closed environment. Contaminant build-up in the closed atmosphere and the lack of a gravitational settling mechanism have produced some concern in previous missions about the amount of solid and volatile airborne contaminants in the Orbiter and Spacelab. Degradation of air quality in the Orbiter/Spacelab environment, through processes such as chemical contamination, high solid-particulate levels, and high microbial levels, may affect crew performance and health. A comprehensive assessment of the Shuttle air quality was undertaken during STS-40 and STS-42 missions, in which a variety of air sampling and monitoring techniques were employed to determine the contaminant load by characterizing and quantitating airborne contaminants. Data were collected on the airborne concentrations of volatile organic compounds, microorganisms, and particulate matter collected on Orbiter/Spacelab air filters. The results showed that STS-40/42 Orbiter/Spacelab air was toxicologically safe to breathe, except during STS-40 when the Orbiter Refrigerator/Freezer unit was releasing noxious gases in the middeck. On STS-40, the levels of airborne bacteria appeared to increase as the mission progressed; however, this trend was not observed for the STS-42 mission. Particulate matter in the Orbiter/Spacelab air filters was chemically analyzed in order to determine the source of particles. Only small amounts of rat hair and food bar (STS-40) and traces of soiless medium (STS-42) were detected in the Spacelab air filters, indicating that containment for Spacelab experiments was effective.

  11. Migration of Contaminated Soil and Airborne Particulates to Indoor Dust

    PubMed Central

    Layton, David W.; Beamer, Paloma I.

    2009-01-01

    We have developed a modeling and measurement framework for assessing transport of contaminated soils and airborne particulates into a residence, their subsequent distribution indoors via resuspension and deposition processes, and removal by cleaning and building exhalation of suspended particles. The model explicitly accounts for the formation of house dust as a mixture of organic matter (OM) such as shed skin cells and organic fibers, soil tracked-in on footwear, and particulate matter (PM) derived from the infiltration of outdoor air. We derived formulas for use with measurements of inorganic contaminants, crustal tracers, OM, and PM to quantify selected transport parameters. Application of the model to residences in the U.S. Midwest indicates that As in ambient air can account for nearly 60% of the As input to floor dust, with soil track-in representing the remainder. Historic data on Pb contamination in Sacramento, CA, was used to reconstruct sources of Pb in indoor dust, showing that airborne Pb was likely the dominant source in the early 1980s. However, as airborne Pb levels declined due to the phase out of leaded gasoline, soil resuspension and track-in eventually became the primary sources of Pb in house dust. PMID:19924944

  12. Spacecraft Maximum Allowable Concentrations for Airborne Contaminants

    NASA Technical Reports Server (NTRS)

    James, John T.

    2008-01-01

    The enclosed table lists official spacecraft maximum allowable concentrations (SMACs), which are guideline values set by the NASA/JSC Toxicology Group in cooperation with the National Research Council Committee on Toxicology (NRCCOT). These values should not be used for situations other than human space flight without careful consideration of the criteria used to set each value. The SMACs take into account a number of unique factors such as the effect of space-flight stress on human physiology, the uniform good health of the astronauts, and the absence of pregnant or very young individuals. Documentation of the values is given in a 5 volume series of books entitled "Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants" published by the National Academy Press, Washington, D.C. These books can be viewed electronically at http://books.nap.edu/openbook.php?record_id=9786&page=3. Short-term (1 and 24 hour) SMACs are set to manage accidental releases aboard a spacecraft and permit risk of minor, reversible effects such as mild mucosal irritation. In contrast, the long-term SMACs are set to fully protect healthy crewmembers from adverse effects resulting from continuous exposure to specific air pollutants for up to 1000 days. Crewmembers with allergies or unusual sensitivity to trace pollutants may not be afforded complete protection, even when long-term SMACs are not exceeded. Crewmember exposures involve a mixture of contaminants, each at a specific concentration (C(sub n)). These contaminants could interact to elicit symptoms of toxicity even though individual contaminants do not exceed their respective SMACs. The air quality is considered acceptable when the toxicity index (T(sub grp)) for each toxicological group of compounds is less than 1, where T(sub grp), is calculated as follows: T(sub grp) = C(sub 1)/SMAC(sub 1) + C(sub 2/SMAC(sub 2) + ...+C(sub n)/SMAC(sub n).

  13. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants. Volume 2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Aeronautics and Space Administration (NASA) is aware of the potential toxicological hazards to humans that might be associated with prolonged spacecraft missions. Despite major engineering advances in controlling the atmosphere within spacecraft, some contamination of the air appears inevitable. NASA has measured numerous airborne contaminants during space missions. As the missions increase in duration and complexity, ensuring the health and well-being of astronauts traveling and working in this unique environment becomes increasingly difficult. As part of its efforts to promote safe conditions aboard spacecraft, NASA requested the National Research Council (NRC) to develop guidelines for establishing spacecraft maximum allowable concentrations (SMACs) for contaminants, and to review SMACs for various space-craft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the subcommittee. In response to NASA's request, the NRC organized the Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants within the Committee On Toxicology (COT). In the first phase of its work, the subcommittee developed the criteria and methods for preparing SMACs for spacecraft contaminants. The subcommittee's report, entitled Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants, was published in 1992. The executive summary of that report is reprinted as Appendix A of this volume. In the second phase of the study, the Subcommittee on Spacecraft Maximum Allowable Concentrations reviewed reports prepared by NASA scientists and contractors recommending SMACs for approximately 35 spacecraft contaminants. The subcommittee sought to determine whether the SMAC reports were consistent with the 1992 guidelines. Appendix B of this volume contains the SMAC reports for 12 chemical contaminants that have been reviewed for

  14. Organic contaminant separator

    DOEpatents

    Del Mar, Peter; Hemberger, Barbara J.

    1991-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a polyolefin tube having an internal diameter of from about 0.01 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the tube, (b) passing a solvent through the tube, said solvent capable of separating the adhered organic contaminant from the tube. Further, a chromatographic apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a polyolefin tube having an internal diameter of from about 0.01 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the tube is disclosed.

  15. INTERNATIONAL SYMPOSIUM IN ARCTIC EFFECTS OF AIRBORNE CONTAMINANTS

    EPA Science Inventory

    The International Symposium on the Ecological Effects of Arctic Airborne Contaminants was structured to bring together researchers from throughout the world, particularly from the eight arctic countries, to share their ideas on the known and potential ecological effects of airbor...

  16. Determining the performance of a commercial air purification system for reducing airborne contamination using model micro-organisms: a new test methodology.

    PubMed

    Griffiths, W D; Bennett, A; Speight, S; Parks, S

    2005-11-01

    The performance of a duct-mounted air disinfection system, designed to reduce airborne pathogens in the hospital environment, was determined using a new testing methodology. The methodology places the equipment in a test duct, a microbial aerosol is generated and then sampled simultaneously before and after the test system. This allows a percentage efficiency value to be calculated. The air disinfection system is a novel chemical-coated filter and ultraviolet (UV) radiation air purification system, operating at a flow rate of 500 m(3)/h, against aerosols of MS2 phage and Mycobacterium vaccae (surrogates of viral and mycobactericidal pathogens). A three UV lamp system was effective against airborne phages, removing an average of 97.34% of the aerosolized challenge. With the UV component switched off, the average efficiency dropped to 61.46%. This demonstrates that the chemical-coated filter component plays a more significant role than the UV radiation in destroying phages. When six UV lamps were used, the system was able to remove mycobacteria with an efficiency exceeding 99.99%. This test methodology can be used to assess manufacturers' claims of efficacy of equipment against airborne micro-organisms in the hospital environment. PMID:16009462

  17. The Western Airborne Contaminant Assessment Project (WACAP): An interdisciplinary evaluation of the impacts of airborne contaminants in Western U.S. National Parks

    EPA Science Inventory

    The Western Airborne Contaminants Assessment Project (WACAP) was initiated in 2002 by the National Park Service to determine if airborne contaminants were having an impact on remote western ecosystems. Multiple sample media (snow, water, sediment, fish and terrestrial vegetation...

  18. Analysis of Membrane Lipids of Airborne Micro-Organisms

    NASA Technical Reports Server (NTRS)

    MacNaughton, Sarah

    2006-01-01

    A method of characterization of airborne micro-organisms in a given location involves (1) large-volume filtration of air onto glass-fiber filters; (2) accelerated extraction of membrane lipids of the collected micro-organisms by use of pressurized hot liquid; and (3) identification and quantitation of the lipids by use of gas chromatography and mass spectrometry. This method is suitable for use in both outdoor and indoor environments; for example, it can be used to measure airborne microbial contamination in buildings ("sick-building syndrome"). The classical approach to analysis of airborne micro-organisms is based on the growth of cultureable micro-organisms and does not provide an account of viable but noncultureable micro-organisms, which typically amount to more than 90 percent of the micro-organisms present. In contrast, the present method provides an account of all micro-organisms, including cultureable, noncultureable, aerobic, and anaerobic ones. The analysis of lipids according to this method makes it possible to estimate the number of viable airborne micro-organisms present in the sampled air and to obtain a quantitative profile of the general types of micro-organisms present along with some information about their physiological statuses.

  19. Airborne molecular contamination: quality criterion for laser and optical components

    NASA Astrophysics Data System (ADS)

    Otto, Michael

    2015-02-01

    Airborne molecular contaminations (AMCs) have been recognized as a major problem in semiconductor fabrication. Enormous technical and financial efforts are made to remove or at least reduce these contaminations in production environments to increase yield and process stability. It can be shown that AMCs from various sources in laser devices have a negative impact on quality and lifetime of lasers and optical systems. Outgassing of organic compounds, especially condensable compounds were identified as the main source for deterioration of optics. These compounds can lead to hazing on surfaces of optics, degradation of coating, reducing the signal transmission or the laser signal itself and can enhance the probability of laser failure and damage. Sources of organic outgassing can be molding materials, resins, seals, circuit boards, cable insulation, coatings, paints and others. Critical compounds are siloxanes, aromatic amines and high boiling aromatic hydrocarbons like phthalates which are used as softeners in plastic materials. Nowadays all sensitive assembly steps are performed in controlled cleanroom environments to reduce risks of contamination. We will demonstrate a high efficient air filter concept to remove AMCs for production environments with special AMC filters and methods for the qualification and monitoring of these environments. Additionally, we show modern techniques and examples for the pre-qualification of materials. For assembled components, we provide sampling concepts for a routine measurement for process, component and product qualification. A careful selection of previously tested and certified materials and components is essential to guarantee the quality of lasers and optical devices.

  20. Organic contaminant separator

    DOEpatents

    Del Mar, P.

    1993-12-28

    A process is presented of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube. The solvent is capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus is presented for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium. The apparatus includes a composite tube comprised of a blend of a polyolefin and a polyester. The composite tube has an internal diameter of from about 0.1 to about 2.0 millimeters and has sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube. 2 figures.

  1. Organic contaminant separator

    DOEpatents

    Del Mar, Peter

    1993-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  2. Organic contaminant separator

    DOEpatents

    Mar, Peter D.

    1994-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  3. Organic contaminant separator

    DOEpatents

    Del Mar, Peter

    1995-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  4. Occupational exposure to airborne contaminants during offshore oil drilling.

    PubMed

    Kirkhus, Niels E; Thomassen, Yngvar; Ulvestad, Bente; Woldbæk, Torill; Ellingsen, Dag G

    2015-07-01

    The aim was to study exposure to airborne contaminants in oil drillers during ordinary work. Personal samples were collected among 65 drill floor workers on four stationary and six moveable rigs in the Norwegian offshore sector. Air concentrations of drilling mud were determined based on measurements of the non-volatile mud components Ca and Fe. The median air concentration of mud was 140 μg m(-3). Median air concentrations of oil mist (180 μg m(-3)), oil vapour (14 mg m(-3)) and organic carbon (46 μg m(-3)) were also measured. All contaminants were detected in all work areas (drill floor, shaker area, mud pits, pump room, other areas). The highest air concentrations were measured in the shaker area, but the differences in air concentrations between working areas were moderate. Oil mist and oil vapour concentrations were statistically higher on moveable rigs than on stationary rigs, but after adjusting for differences in mud temperature the differences between rig types were no longer of statistical significance. Statistically significant positive associations were found between mud temperature and the concentrations of oil mist (Spearman's R = 0.46) and oil vapour (0.39), and between viscosity of base oil and oil mist concentrations. Use of pressure washers was associated with higher air concentrations of mud. A series of 18 parallel stationary samples showed a high and statistically significant association between concentrations of organic carbon and oil mist (r = 0.98). This study shows that workers are exposed to airborne non-volatilized mud components. Air concentrations of volatile mud components like oil mist and oil vapour were low, but were present in all the studied working areas. PMID:26020723

  5. AIRBORNE CONTAMINANTS IN WESTERN NORTH AMERICAN NATIONAL PARKS--WHAT WE KNOW AND WANT TO LEARN

    EPA Science Inventory

    The National Park Service initiated the Western Airborne Contaminants Assessment Project (WACAP) in 2002 to determine if airborne contaminants from regional or distant sources have an impact on remote (typically high elevation) western ecosystems, including Alaska. Eight Nationa...

  6. Airborne contamination during blow-fill-seal pharmaceutical production.

    PubMed

    Whyte, W; Matheis, W; Dean-Netcher, M; Edwards, A

    1998-01-01

    The routes of airborne contamination, during Blow-Fill-Seal (BFS) production, were studied using tracer gas, particles and bacteria. The prevention of airborne contamination, by the air shower at the point of fill, was effective (> 99.2% efficient). However, microbe-carrying particles could gain access, by deposition or air exchange, when the containers were cut open and before they shuttled under the protection of the air shower. The use of SF6 tracer gas demonstrated that when the air shower was not on, 50% of the air within the containers came from the area round the machine. When the air shower was switched on, only about 5% of the air came from the surroundings. Airborne microbial contamination of containers is in proportion to: the number of airborne microbes around the machine, the time the container is open, the neck area and the amount of air left within the container. The likely microbial contamination rate can be calculated from a model incorporating these variables. Microbial contamination of containers during BFS manufacturing is normally very low, but by increasing the naturally occurring bacteria in the air of the production rooms by about 100-fold, it was possible to verify the accuracy of this model. The contamination model agrees well with the observation that microbial contamination levels of between 1 in 10(5) and in 10(7) will be found when small containers (< 10 ml) are filled in conventionally ventilated rooms. To achieve similar contamination rates when filling of larger bottles, it is likely that unidirectional flow, or barrier technology will be required. PMID:9691671

  7. REMOVAL OF ORGANIC CONTAMINANTS

    EPA Science Inventory

    This research program was performed with the overall objectives of obtaining relevant design parameters and capital and operating costs of both adsorption and various aeration techniques for the removal of specific organic contaminants from the City of Glen Cove's drinking water ...

  8. Monitoring Groundwater Contaminant Plumes Using Airborne Geophysical Data

    NASA Astrophysics Data System (ADS)

    Robinson, Martin; Oftendinger, Ulrich; Ruffell, Alastair; Cowan, Marie; Cassidy, Rachel; Comte, Jean-Christophe; Wilson, Christopher; Desissa, Mohammednur

    2013-04-01

    Under the European Union Water Framework Directive, Member States are required to assess water quality across both surface water and groundwater bodies. Subsurface pollution plumes, originating from a variety of sources, pose a significant direct risk to water quality. The monitoring and characterisation of groundwater contaminant plumes is generally invasive, time consuming and expensive. In particular, adequately capturing the contaminant plume with monitoring installations, when the extent of the feature is unknown and the presence of contamination is only evident from indirect observations, can be prohibitively expensive. This research aims to identify the extent and nature of subsurface contaminant plumes using airborne geophysical survey data. This data was collected across parts of the island of Ireland within the scope of the original Tellus and subsequent Tellus Border projects. The rapid assessment of the airborne electro-magnetic (AEM) data allowed the identification of several sites containing possible contaminant plumes. These AEM anomalies were assessed through the analysis of existing site data and field site inspections, with areas of interest being examined for metallic structures that could affect the AEM data. Electrical resistivity tomography (ERT), ground penetrating radar (GPR) and ground-based electro-magnetic (EM) surveys were performed to ground-truth existing airborne data and to confirm the extent and nature of the affected area identified using the airborne data. Groundwater and surface water quality were assessed using existing field site information. Initial results collected from a landfill site underlain by basalt have indicated that the AEM data, coupled with ERT and GPR, can successfully be used to locate possible plumes and help delineate their extent. The analysis of a range of case study sites exhibiting different geological and environmental settings will allow for the development of a consistent methodology for examining the

  9. Phytovolatilization of Organic Contaminants.

    PubMed

    Limmer, Matt; Burken, Joel

    2016-07-01

    Plants can interact with a variety of organic compounds, and thereby affect the fate and transport of many environmental contaminants. Volatile organic compounds may be volatilized from stems or leaves (direct phytovolatilization) or from soil due to plant root activities (indirect phytovolatilization). Fluxes of contaminants volatilizing from plants are important across scales ranging from local contaminant spills to global fluxes of methane emanating from ecosystems biochemically reducing organic carbon. In this article past studies are reviewed to clearly differentiate between direct- and indirect-phytovolatilization and we discuss the plant physiology driving phytovolatilization in different ecosystems. Current measurement techniques are also described, including common difficulties in experimental design. We also discuss reports of phytovolatilization in the literature, finding that compounds with low octanol-air partitioning coefficients are more likely to be phytovolatilized (log KOA < 5). Reports of direct phytovolatilization at field sites compare favorably to model predictions. Finally, future research needs are presented that could better quantify phytovolatilization fluxes at field scale. PMID:27249664

  10. Airborne trace contaminants of possible interest in CELSS

    NASA Technical Reports Server (NTRS)

    Garavelli, J. S.

    1986-01-01

    One design goal of Closed Ecological Life Support Systems (CELSS) for long duration space missions is to maintain an atmosphere which is healthy for all the desirable biological species and not deleterious to any of the mechanical components in that atmosphere. CELESS design must take into account the interactions of at least six major components; (1) humans and animals, (2) higher plants, (3) microalgae, (4) bacteria and fungi, (5) the waste processing system, and (6) other mechanical systems. Each of these major components can be both a source and a target of airborne trace contaminants in a CELSS. A range of possible airborne trace contaminants is discussed within a chemical classification scheme. These contaminants are analyzed with respect to their probable sources among the six major components and their potential effects on those components. Data on airborne chemical contaminants detected in shuttle missions is presented along with this analysis. The observed concentrations of several classes of compounds, including hydrocarbons, halocarbons, halosilanes, amines and nitrogen oxides, are considered with respect to the problems which they present to CELSS.

  11. Comparison of different hand-drying methods: the potential for airborne microbe dispersal and contamination.

    PubMed

    Best, E L; Redway, K

    2015-03-01

    Efficient washing and drying of hands is important in prevention of the transfer of micro-organisms. However, knowledge surrounding the potential for microbial contamination according to hand-drying methods is limited. This study assessed the potential for airborne microbe dispersal during hand drying by four methods (paper towels, roller towel, warm air and jet air dryer) using three different models. The jet air dryer dispersed liquid from users' hands further and over a greater range (up to 1.5m) than the other drying methods (up to 0.75 m), demonstrating the differing potential risks for airborne microbe dissemination, particularly if handwashing is suboptimal. PMID:25586988

  12. Airborne soil organic particles generated by precipitation

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.; Piens, Dominique S.; China, Swarup; Kovarik, Libor; Keiluweit, Marco; Arey, Bruce W.; Gilles, Mary K.; Laskin, Alexander

    2016-06-01

    Airborne organic particles play a critical role in Earth's climate, public health, air quality, and hydrological and carbon cycles. However, sources and formation mechanisms for semi-solid and solid organic particles are poorly understood and typically neglected in atmospheric models. Laboratory evidence suggests that fine particles can be formed from impaction of mineral surfaces by droplets. Here, we use chemical imaging of particles collected following rain events in the Southern Great Plains, Oklahoma, USA and after experimental irrigation to show that raindrop impaction of soils generates solid organic particles. We find that after rain events, sub-micrometre solid particles, with a chemical composition consistent with soil organic matter, contributed up to 60% of atmospheric particles. Our irrigation experiments indicate that intensive water impaction is sufficient to cause ejection of airborne soil organic particles from the soil surface. Chemical imaging and micro-spectroscopy analysis of particle physico-chemical properties suggest that these particles may have important impacts on cloud formation and efficiently absorb solar radiation. We suggest that raindrop-induced formation of solid organic particles from soils may be a widespread phenomenon in ecosystems such as agricultural systems and grasslands where soils are exposed to strong, episodic precipitation events.

  13. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants. Volume 3

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Aeronautics and Space Administration (NASA) is aware of the potential toxicological hazards to humans that might be associated with prolonged spacecraft missions. Despite major engineering advances in controlling the atmosphere within spacecraft, some contamination of the air appears inevitable. NASA has measured numerous airborne contaminants during space missions. As the missions increase in duration and complexity, ensuring the health and well-being of astronauts traveling and working in this unique environment becomes increasingly difficult. As part of its efforts to promote safe conditions aboard spacecraft, NASA requested the National Research Council (NRC) to develop guidelines for establishing Spacecraft Maximum Allowable Concentrations (SMAC's) for contaminants, and to review SMAC's for various spacecraft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the subcommittee. In response to this request, the NRC first developed criteria and methods for preparing SMAC's for spacecraft contaminants, published in its 1992 report Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants. Since then, the Subcommittee on Spacecraft Maximum Allowable Concentrations has been reviewing NASA's documentation of chemical-specific SMAC's as described in the Introduction to this volume. This report is the third volume in the series Spacecraft Maximum Allowable Concentrations for Space Station Contaminants. The first volume was published in 1994 and the second in 1996.

  14. The fate of airborne polycyclic organic matter.

    PubMed Central

    Nielsen, T; Ramdahl, T; Bjørseth, A

    1983-01-01

    Biological tests have shown that a significant part of the mutagenicity of organic extracts of collected airborne particulate matter is not due to polycyclic aromatic hydrocarbons (PAH). It is possible that part of these unknown compounds are transformation products of PAH. This survey focuses on the reaction of PAH in the atmosphere with other copollutants, such as nitrogen oxides, sulfur oxides, ozone and free radicals and their reaction products. Photochemically induced reactions of PAH are also included. The reactivity of particle-associated PAH is discussed in relation to the chemical composition and the physical properties of the carrier. Recommendations for future work are given. PMID:6825615

  15. Inversion of Airborne Contaminants in a Regional Model

    SciTech Connect

    Akcelik, V.; Biros, G.; Draganescu, A.; Ghattas, O.; Hill, J.; van Bloemen Waanders, B.; /SLAC /Pennsylvania U. /Texas U. /Sandia

    2007-01-10

    We are interested in a DDDAS problem of localization of airborne contaminant releases in regional atmospheric transport models from sparse observations. Given measurements of the contaminant over an observation window at a small number of points in space, and a velocity field as predicted for example by a mesoscopic weather model, we seek an estimate of the state of the contaminant at the beginning of the observation interval that minimizes the least squares misfit between measured and predicted contaminant field, subject to the convection-diffusion equation for the contaminant. Once the ''initial'' conditions are estimated by solution of the inverse problem, we issue predictions of the evolution of the contaminant, the observation window is advanced in time, and the process repeated to issue a new prediction, in the style of 4D-Var. We design an appropriate numerical strategy that exploits the spectral structure of the inverse operator, and leads to efficient and accurate resolution of the inverse problem. Numerical experiments verify that high resolution inversion can be carried out rapidly for a well-resolved terrain model of the greater Los Angeles area.

  16. Airborne Contaminants in the TE Lab: How to Reduce Your Exposure.

    ERIC Educational Resources Information Center

    Zeimet, Denis E.; Merrell, Wayne L.

    1995-01-01

    Details the dangers from airborne contaminants in technology education laboratories and ways to protect students from them, including ventilation, acceptable limits, and guidelines for using respirators. (SK)

  17. Direct evaluation of airborne contamination in chemically amplified resist films

    NASA Astrophysics Data System (ADS)

    Yamashita, Yoshio; Taguchi, Takao; Watanabe, Takeo

    1995-06-01

    Airborne contamination in chemically amplified resist films was evaluated by monitoring deprotection reaction using an IR spectrometer. T-BOC protected (20, 50 and 100 mol%) m- and p-cresol novolak resins and triphenyltriflate were used as a matrix polymer and a photoacid generator (PAG), respectively. Three levels of clean environments whose base contaminant (NH4+) concentrations were 50 - 80, 5 - 10 and less than 1 ppb, were prepared for the experiments. In order to determine the delay effects precisely, other processes including baking, exposure, and storage during process intervals were conducted in a base-free environment. The PEB delay effect as well as radiation sensitivity without delay depended on the t-BOC content, and the best results were obtained at 50% and 25 - 50% t- BOC contents in m-cresol novolak and p-cresol novolak systems, respectively.

  18. 30 CFR 57.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and use shall meet the following minimum requirements: (a) Respirators approved by NIOSH under 42 CFR... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Control of exposure to airborne contaminants... Underground § 57.5005 Control of exposure to airborne contaminants. Control of employee exposure to...

  19. Water Protects Graphitic Surface from Airborne Hydrocarbon Contamination.

    PubMed

    Li, Zhiting; Kozbial, Andrew; Nioradze, Nikoloz; Parobek, David; Shenoy, Ganesh Jagadeesh; Salim, Muhammad; Amemiya, Shigeru; Li, Lei; Liu, Haitao

    2016-01-26

    The intrinsic wettability of graphitic materials, such as graphene and graphite, can be readily obscured by airborne hydrocarbon within 5-20 min of ambient air exposure. We report a convenient method to effectively preserve a freshly prepared graphitic surface simply through a water treatment technique. This approach significantly inhibits the hydrocarbon adsorption rate by a factor of ca. 20×, thus maintaining the intrinsic wetting behavior for many hours upon air exposure. Follow-up characterization shows that a nanometer-thick ice-like water forms on the graphitic surface, which remains stabilized at room temperature for at least 2-3 h and thus significantly decreases the adsorption of airborne hydrocarbon on the graphitic surface. This method has potential implications in minimizing hydrocarbon contamination during manufacturing, characterization, processing, and storage of graphene/graphite-based devices. As an example, we show that a water-treated graphite electrode maintains a high level of electrochemical activity in air for up to 1 day. PMID:26673269

  20. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants. Volume 3

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report, prepared by the Committee on Toxicology of the National Research Council's Board on Environmental Studies and Toxicology, is in response to a request from NASA for guidelines to develop spacecraft maximum allowable concentrations (SMACs) for space-station contaminants. SMACs are used to provide guidance on allowable chemical exposures during normal operations and emergency situations. Short-term SMACs refer to concentrations of airborne substances (such as gas, vapor, or aerosol) that will not compromise the performance of specific tasks during emergency conditions lasting up to 24 hours. Long-term SMACs are intended to avoid adverse health effects (either immediate or delayed) and to avoid degradation in crew performance with continuous exposure in a closed space-station environment for as long as 180 days.

  1. Movement of airborne contaminants in a hospital isolation room

    PubMed Central

    Eames, I.; Shoaib, D.; Klettner, C. A.; Taban, V.

    2009-01-01

    We analyse the characteristics of a force-ventilated isolation room, and the contributions to transport caused by the movement of people and doors opening/closing. The spread of fine droplets and particles can be understood, to leading order, by considering the movement of passive contaminants. A scaled (1:10) model of an isolation room (with water instead of air) was used to analyse the dilution of a passive contaminant (food dye), released either instantaneously or at a constant rate. The high level of turbulence, typical of isolation rooms, ensures that the dye concentration is uniform within the model room and mixing is perfect, and the measured mean concentration can be predicted theoretically. In a second series of experiments, the exchange generated by a door opening/closing is measured for different opening angles. A dipolar vortex is generated at the tip of the door which moves into the centre of the room, with a large coherent structure moving along the wall. The exchange volume is comparable to the swept volume of the door. Larger droplets and particles do not move passively. Their movement within a turbulent flow is studied by combining a Lagrangian model of particle movement with a kinematic simulation of a pseudo turbulent flow. The results show that while the mean fall velocity of particles is largely unchanged, turbulence significantly enhances horizontal and vertical dispersion. The horizontal spread as a function of the level of turbulence and droplet properties is estimated. The conclusions from both studies are brought together and discussed in the context of the airborne spread of contaminants within a general hospital room. PMID:19815576

  2. Spacecraft maximum allowable concentrations for selected airborne contaminants, volume 1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    As part of its efforts to promote safe conditions aboard spacecraft, NASA requested the National Research Council (NRC) to develop guidelines for establishing spacecraft maximum allowable concentrations (SMAC's) for contaminants, and to review SMAC's for various spacecraft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the subcommittee. In response to NASA's request, the NRC organized the Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants within the Committee on Toxicology (COT). In the first phase of its work, the subcommittee developed the criteria and methods for preparing SMAC's for spacecraft contaminants. The subcommittee's report, entitled Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants, was published in 1992. The executive summary of that report is reprinted as Appendix A of this volume. In the second phase of the study, the Subcommittee on Spacecraft Maximum Allowable Concentrations reviewed reports prepared by NASA scientists and contractors recommending SMAC's for 35 spacecraft contaminants. The subcommittee sought to determine whether the SMAC reports were consistent with the 1992 guidelines. Appendix B of this volume contains the first 11 SMAC reports that have been reviewed for their application of the guidelines developed in the first phase of this activity and approved by the subcommittee.

  3. 30 CFR 56.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: (a) Respirators approved by NIOSH under 42 CFR part 84 which are applicable and suitable for the... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Control of exposure to airborne contaminants... Air Quality and Physical Agents Air Quality § 56.5005 Control of exposure to airborne...

  4. Organic contamination of LDEF

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1992-01-01

    A brown stain of varying thickness was present on most of the exterior surface of the retrieved Long Duration Exposure Facility (LDEF). Tape lifts of Earth-end LDEF surfaces taken in Feb. 1990 showed that the surface particle cleanliness immediately after retrieval was very good, but faint footprints of the tape strips on the tested surfaces indicated a very faint film was removed by the tape. Solvent wipes of these surfaces showed that the stain was not amenable to standard organic solvent removal. Infrared spectra of optical windows from tray E5 and scrapings indicate that the film is primarily of organic composition, but is not similar to the oil that seeped from tray C12. Very dark and heavy deposits of the stain are present at openings and vents to the interior of the LDEF. Heavy brown and blue-green deposits are present in the interior of LDEF where sunlight penetrated through cracks and vent openings. Photographs of the deintegrated LDEF graphically show the stain distribution. The exterior of the LDEF had significant areas painted with a white polyurethane paint for thermal control, and almost all of the interior was painted with a black polyurethane paint for thermal control. The brown staining of the LDEF is consistent with long-term outgassing of hydrocarbons from these paints followed by rapid solar-ultraviolet-induced polymerization of the outgassed hydrocarbons when the outgassed molecules stuck to surfaces exposed to sunlight.

  5. Organic contamination of LDEF

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1991-01-01

    A brown stain of varying thickness was present on most of the exterior surface of the retrieved Long Duration Exposure Facility (LDEF). Tape lifts of Earth-end LDEF surfaces taken showed that the surface particle cleanliness immediately after retrieval was very good, but faint footprints of the tape strips on the tested surfaces indicated a very faint film was removed by the tape. Solvent wipes of these surfaces showed that the stain was not amenable to standard organic solvent removal. Infrared spectra of optical windows from tray E5 show that the organic film is hydrocarbon in composition, but is not similar to the oil that seeped from tray C12. Very dark and heavy deposits of the stain is present at openings and vents to the interior of LDEF. Heavy brown and blue-green deposits are present in the interior of LDEF where sunlight penetrated through cracks and vent openings. The exterior of LDEF had significant areas painted with a white polyurethane paint for thermal control, and almost all of the interior was painted with a black polyurethane paint. Brown staining is consistent with outgassing of hydrocarbons from these paints by rapid solar UV induced polymerization of the outgassed hydrocarbons when they hit sunlight exposed areas.

  6. Destruction of problematic airborne contaminants by hydrogen reduction using a Catalytically Active, Regenerable Sorbent (CARS)

    NASA Technical Reports Server (NTRS)

    Thompson, John O.; Akse, James R.

    1993-01-01

    Thermally regenerable sorbent beds were demonstrated to be a highly efficient means for removal of toxic airborne trace organic contaminants aboard spacecraft. The utilization of the intrinsic weight savings available through this technology was not realized since many of the contaminants desorbed during thermal regeneration are poisons to the catalytic oxidizer or form highly toxic oxidation by-products in the Trace Contaminant Control System (TCCS). Included in this class of compounds are nitrogen, sulfur, silicon, and halogen containing organics. The catalytic reduction of these problematic contaminants using hydrogen at low temperatures (200-300 C) offers an attractive route for their destruction since the by-products of such reactions, hydrocarbons and inorganic gases, are easily removed by existing technology. In addition, the catalytic oxidizer can be operated more efficiently due to the absence of potential poisons, and any posttreatment beds can be reduced in size. The incorporation of the catalyst within the sorbent bed further improves the system's efficiency. The demonstration of this technology provides the basis for an efficient regenerable TCCS for future NASA missions and can be used in more conventional settings to efficiently remove environmental pollutants.

  7. Potential Marine Organisms Affecting Airborne Primary Organic Matter

    NASA Astrophysics Data System (ADS)

    Aller, J. Y.; Alpert, P. A.; Knopf, D. A.

    2012-12-01

    The oceans cover 70% of earth with the marine environment contributing ~50% of the global biomass. Particularly during periods of high biological activity associated with phytoplankton blooms, primary emitted aerosol particles dominated by organic compounds in the submicron size range, are ejected from surface waters increasing in concentration exponentially with overlying wind speeds. This is significant for clouds and climate particularly over nutrient rich polar seas, where seawater concentrations of biogenic particles can reach 109 cells per ml during spring phytoplankton blooms, and even 106 cells per ml in winter when empty frustules and fragments of diatoms are resuspensed from shallow shelf sediments by strong winds, and mix with living pico- and nanoplankton in surface sea waters. This organic aerosol fraction can have a significant impact on the ability of ocean derived aerosol to act as cloud condensation nuclei. It has been shown that small insoluble organic particles are aerosolized from the sea surface microlayer (SML) via bubble bursting. The exact composition and complexity of the SML varies spatially and temporally but includes phytoplankton cells, microorganisms, organic debris, and a complex mixture of proteins, polysaccharides, humic-type material and waxes, microgels and colloidal nanogels, and strong surface active lipids. The specific chemical composition is dependent on the fractionation of organic matter which originates from in-situ production, from underlying water and even from atmospheric deposition. These conditions will most likely determine the nature of the organic and biogenic material. Here we review the types, sizes, and properties of ocean-derived particles and organic material which present potential candidates for airborne biogenic and organic particles.

  8. Potential airborne release from soil-working operations in a contaminated area

    SciTech Connect

    Sutter, S.L.

    1980-08-01

    Experiments were performed to provide an indication of how much material could be made airborne during soil-working operations in a contaminated area. Approximately 50 kg of contaminated soil were collected, dried, and mixed, and particle size distribution and /sup 137/Cs content were characterized. In four experiments performed in a 2 ft x 2 ft wind tunnel at the Radioactive Aerosol Release Test Facility, soil was pumped into an airstream moving at 3.2, 10.4, 15.2, and 20 mph. These experiments were designed to maximize airborne releases by fluidizing the soil as it was pumped into the wind tunnel. Thus the airborne releases should represent upper limit values for soil-working operations. Airborne concentration and particle size samples were collected and all of the material deposited downstream was collected to calculate a mass balance. The fraction airborne was calculated using these measurements.

  9. Instruments Sniff Organic Surface Contaminants

    NASA Technical Reports Server (NTRS)

    Adler-Golden, Steven; Matthew, Michael W.

    1995-01-01

    Portable instruments detecting both nonvolatile and volatile organic surface contaminants in real time developed. Instruments easy to use: operate under ordinary ambient atmospheric conditions, without need to use messy liquid solvents or install and remove witness plates, and without need to cut specimens from surfaces to be inspected. Principle of detection involves sweeping pure, activated gas across surface spot inspected, then monitoring light emitted at wavelengths characteristic of excited molecules formed by chemical reactions between activated gas and contaminants. Gas activated by dc discharge, radio-frequency induction, microwave radiation, laser beam, hot filaments, or any other suitable means that excites some of gas molecules.

  10. 30 CFR 57.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and use shall meet the following minimum requirements: (a) Respirators approved by NIOSH under 42 CFR... MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Air Quality-Surface and... airborne contaminants shall be, insofar as feasible, by prevention of contamination, removal by...

  11. 30 CFR 57.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., and use shall meet the following minimum requirements: (a) Respirators approved by NIOSH under 42 CFR... MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Air Quality-Surface and... airborne contaminants shall be, insofar as feasible, by prevention of contamination, removal by...

  12. 30 CFR 57.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and use shall meet the following minimum requirements: (a) Respirators approved by NIOSH under 42 CFR... MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Air Quality-Surface and... airborne contaminants shall be, insofar as feasible, by prevention of contamination, removal by...

  13. Overview of the risk of respiratory cancer from airborne contaminants.

    PubMed Central

    Speizer, F E

    1986-01-01

    This overview on defining risk of respiratory cancer from airborne pollutants summarizes broad issues related to a number of the environmental agents that are discussed in the articles that follow. Lung cancer kills more than 100,000 people annually and is the major form of cancer in both sexes in middle age. Cigarette smoking is the major cause of respiratory cancer and must be taken into account in any study of the effect of an environmental agent on the risk of respiratory cancer, particularly at relatively low levels of excess risk (RR greater than 1.0 but less than 2.0). The agents considered in this series all have the potential for widespread community exposures, either because there is widespread long-term exposure (passive smoking), the agents are direct byproducts of energy consumption (organic particles), have ubiquitous production and use patterns (formaldehyde and fibers), or occur widely in natural settings (radon). Several issues--measurement of exposure, latency, confounding factors and bias, extrapolation from animals to humans, population at risk, and attributable risk--must be considered for each agent. A further issue related to exposure estimates is the relationship of exposure to actual dose. Understanding exposure some 25 to 40 years in the past is important because of the prolonged latency period in the development of respiratory cancers. To the degree that these agents act synergistically with smoking, the reduction of smoking or of exposure to these agents may have greater public health consequences than would be anticipated from the directly measured attributable risk of each of these agents separately. PMID:3830117

  14. LEAVES AS INDICATORS OF EXPOSURE TO AIRBORNE VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    The concentration of volatile organic compounds (VOCs) in leaves is primarily a product of airborne exposures and dependent upon bioconcentration factors and release rates. The bioconcentration factors for VOCs in grass are found to be related to their partitioning between octan...

  15. 30 CFR 56.5001 - Exposure limits for airborne contaminants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asbestos standard found in 29 CFR 1910.1001, Appendix A, or a method at least equivalent to that method in... centimeter of air (f/cc). (ii) Excursion limit. No miner shall be exposed at any time to airborne concentrations of asbestos in excess of 1 fiber per cubic centimeter of air (f/cc) as averaged over a...

  16. 30 CFR 56.5001 - Exposure limits for airborne contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asbestos standard found in 29 CFR 1910.1001, Appendix A, or a method at least equivalent to that method in... centimeter of air (f/cc). (ii) Excursion limit. No miner shall be exposed at any time to airborne concentrations of asbestos in excess of 1 fiber per cubic centimeter of air (f/cc) as averaged over a...

  17. 30 CFR 57.5001 - Exposure limits for airborne contaminants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... contrast microscopy (PCM) using the OSHA Reference Method in OSHA's asbestos standard found in 29 CFR 1910... full-shift airborne concentration of 0.1 fiber per cubic centimeter of air (f/cc). (ii) Excursion limit... cubic centimeter of air (f/cc) as averaged over a sampling period of 30 minutes. (3) Measurement...

  18. 30 CFR 57.5001 - Exposure limits for airborne contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... contrast microscopy (PCM) using the OSHA Reference Method in OSHA's asbestos standard found in 29 CFR 1910... full-shift airborne concentration of 0.1 fiber per cubic centimeter of air (f/cc). (ii) Excursion limit... cubic centimeter of air (f/cc) as averaged over a sampling period of 30 minutes. (3) Measurement...

  19. 30 CFR 56.5001 - Exposure limits for airborne contaminants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asbestos standard found in 29 CFR 1910.1001, Appendix A, or a method at least equivalent to that method in... centimeter of air (f/cc). (ii) Excursion limit. No miner shall be exposed at any time to airborne concentrations of asbestos in excess of 1 fiber per cubic centimeter of air (f/cc) as averaged over a...

  20. 30 CFR 56.5001 - Exposure limits for airborne contaminants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asbestos standard found in 29 CFR 1910.1001, Appendix A, or a method at least equivalent to that method in... centimeter of air (f/cc). (ii) Excursion limit. No miner shall be exposed at any time to airborne concentrations of asbestos in excess of 1 fiber per cubic centimeter of air (f/cc) as averaged over a...

  1. Mass Spectrometer for Airborne Micro-Organisms

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Bacteria and other micro-organisms identified continously with aid of new technique for producing samples for mass spectrometer. Technique generates aerosol of organisms and feeds to spectrometer. Given species of organism produces characteristic set of peaks in mass spectrum and thereby identified. Technique useful for monitoring bacterial makeup in environmental studies and in places where cleanliness is essential, such as hospital operating rooms, breweries, and pharmaceutical plants.

  2. Dermal Uptake from Airborne Organics as an Important Route of Human Exposure to E-Waste Combustion Fumes.

    PubMed

    Wu, Chen-Chou; Bao, Lian-Jun; Tao, Shu; Zeng, Eddy Y

    2016-07-01

    Skin absorption of gaseous organic contaminants is an important and relevant mechanism in human exposure to such contaminants, but has not been adequately examined. This article demonstrates that dermal uptake from airborne contaminants could be recognized as a significant exposure route for local residents subjecting to combustion fume from e-waste recycling activities. It is particularly true for organic pollutants which have high dermal penetration rates and large skin-air partition coefficients, such as low molecular weight plasticizers and flame retardants. PMID:26937778

  3. Forced-air warming: a source of airborne contamination in the operating room?

    PubMed Central

    Albrecht, Mark; Gauthier, Robert; Leaper, David

    2009-01-01

    Forced-air-warming (FAW) is an effective and widely used means for maintaining surgical normothermia, but FAW also has the potential to generate and mobilize airborne contamination in the operating room. We measured the emission of viable and non-viable forms of airborne contamination from an arbitrary selection of FAW blowers (n=25) in the operating room. A laser particle counter measured particulate concentrations of the air near the intake filter and in the distal hose airstream. Filtration efficiency was calculated as the reduction in particulate concentration in the distal hose airstream relative to that of the intake. Microbial colonization of the FAW blower's internal hose surfaces was assessed by culturing the microorganisms recovered through swabbing (n=17) and rinsing (n=9) techniques. Particle counting revealed that 24% of FAW blowers were emitting significant levels of internally generated airborne contamination in the 0.5 to 5.0 µm size range, evidenced by a steep decrease in FAW blower filtration efficiency for particles 0.5 to 5.0 µm in size. The particle size-range-specific reduction in efficiency could not be explained by the filtration properties of the intake filter. Instead, the reduction was found to be caused by size-range-specific particle generation within the FAW blowers. Microorganisms were detected on the internal air path surfaces of 94% of FAW blowers. The design of FAW blowers was found to be questionable for preventing the build-up of internal contamination and the emission of airborne contamination into the operating room. Although we did not evaluate the link between FAW and surgical site infection rates, a significant percentage of FAW blowers with positive microbial cultures were emitting internally generated airborne contamination within the size range of free floating bacteria and fungi (<4 µm) that could, conceivably, settle onto the surgical site. PMID:21808690

  4. 30 CFR 56.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of contamination, removal by exhaust ventilation, or by dilution with uncontaminated air. However...: (a) Respirators approved by NIOSH under 42 CFR part 84 which are applicable and suitable for the... Air Quality and Physical Agents Air Quality § 56.5005 Control of exposure to airborne...

  5. 30 CFR 56.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of contamination, removal by exhaust ventilation, or by dilution with uncontaminated air. However...: (a) Respirators approved by NIOSH under 42 CFR part 84 which are applicable and suitable for the... Air Quality and Physical Agents Air Quality § 56.5005 Control of exposure to airborne...

  6. 30 CFR 57.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Control of exposure to airborne contaminants. 57.5005 Section 57.5005 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation, Physical...

  7. 30 CFR 56.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Control of exposure to airborne contaminants. 56.5005 Section 56.5005 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Air Quality and Physical Agents Air Quality...

  8. Contamination of raw poultry meat by airborne listeria originating from a floor drain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry processing plants can become colonized with Listeria resulting in long term residence in floor drains. Earlier work showed that an inadvertent two second water spray into a contaminated floor drain causes airborne dissemination of low numbers of Listeria cells. The objective of the current...

  9. 30 CFR 56.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of contamination, removal by exhaust ventilation, or by dilution with uncontaminated air. However...: (a) Respirators approved by NIOSH under 42 CFR part 84 which are applicable and suitable for the... Air Quality and Physical Agents Air Quality § 56.5005 Control of exposure to airborne...

  10. Assessment of SRS radiological liquid and airborne contaminants and pathways

    SciTech Connect

    Jannik, G.T.

    1997-04-01

    This report compiles and documents the radiological critical-contaminant/critical-pathway analysis performed for SRS. The analysis covers radiological releases to the atmosphere and to surface water, which are the principal media that carry contaminants off site. During routine operations at SRS, limited amounts of radionuclides are released to the environment through atmospheric and/or liquid pathways. These releases potentially result in exposure to offsite people. Though the groundwater beneath an estimated 5 to 10 percent of SRS has been contaminated by radionuclides, there is no evidence that groundwater contaminated with these constituents has migrated offsite (Arnett, 1996). Therefore, with the notable exception of radiological source terms originating from shallow surface water migration into site streams, onsite groundwater was not considered as a potential exposure pathway to offsite people.

  11. Spacecraft maximum allowable concentrations for selected airborne contaminants. Volume 2

    SciTech Connect

    1996-04-01

    The Subcommittee on Spacecraft Maximum Allowable Concentrations (SMAC) reviewed reports prepared by NASA scientists nd contractors recommending SMACs for approximately 35 spacecraft contaminants. The subcommittee sought to determine whether the SMAC reports were consistent with the 1992 guidelines. Appendix B of this volume contains the SMAC reports for 12 chemical contaminants that have been reviewed for their application of the guidelines developed in the first phase of this activity and approved by the subcommittee. This report is the second volume in the series.

  12. Airborne soil organic particles generated by precipitation

    DOE PAGESBeta

    Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.; Piens, Dominique S.; China, Swarup; Kovarik, Libor; Keiluweit, Marco; Arey, Bruce W.; Gilles, Mary K.; Laskin, Alexander

    2016-05-02

    Airborne organic particles play a critical role in Earth’s climate1, public health2, air quality3, and hydrological and carbon cycles4. However, sources and formation mechanisms for semi-solid and solid organic particles5 are poorly understood and typically neglected in atmospheric models6. Laboratory evidence suggests that fine particles can be formed from impaction of mineral surfaces by droplets7. Here, we use chemical imaging of particles collected following rain events in the Southern Great Plains, Oklahoma, USA and after experimental irrigation to show that raindrop impaction of soils generates solid organic particles. We find that after rain events, sub-micrometre solid particles, with a chemicalmore » composition consistent with soil organic matter, contributed up to 60% of atmospheric particles. Our irrigation experiments indicate that intensive water impaction is sufficient to cause ejection of airborne soil organic particles from the soil surface. Chemical imaging and micro-spectroscopy analysis of particle physico-chemical properties suggest that these particles may have important impacts on cloud formation and efficiently absorb solar radiation. Lastly, we suggest that raindrop-induced formation of solid organic particles from soils may be a widespread phenomenon in ecosystems such as agricultural systems and grasslands where soils are exposed to strong, episodic precipitation events8.« less

  13. Concentration and Emission of Airborne Contaminants in a Laboratory Animal Facility Housing Rabbits

    PubMed Central

    Ooms, Tara G; Artwohl, James E; Conroy, Lorraine M; Schoonover, Todd M; Fortman, Jeffrey D

    2008-01-01

    Characterization of animal housing conditions can determine the frequency of bedding and cage changes, which are not standardized from facility to facility. Rabbits produce noticeable odors, and their excreta can scald and stain cages. Our facility wanted to document measurable airborne contaminants in a laboratory rabbit room in which excreta pans were changed weekly and cages changed biweekly. Contaminants included particulate, endotoxin, ammonia, carbon dioxide, and a rabbit salivary protein as a marker for rabbit allergen. Concentrations were measured daily over a 2-wk period in a laboratory animal facility to determine whether they increased over time and on days considered to be the dirtiest. Except for ammonia, concentrations of all airborne contaminants did not differ between clean and dirty days. Concentrations were lower than occupational health exposure guidelines for all contaminants studied, including ammonia. After measurement of concentration, a model was applied to calculate mean emission factors in this rabbit room. Examples of emission factor utilization to determine airborne contaminant concentration in rabbit rooms under various environmental conditions and housing densities are provided. PMID:18351721

  14. Fate of Airborne Contaminants in Okefenokee National Wildlife Refuge

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.

    1997-01-01

    Designation of Okefenokee National Wildlife Refuge as a Class I Air Quality Area (given the highest level of protection possible from air pollutants under the Clean Air Act Amendments of 1977) affords mandatory protection of the Refuge's airshed through the permit-review process for planned developments. Rainfall is the major source of water to the swamp, and potential impacts from developments to the airshed are high. To meet management needs for baseline information, chemical contributions from atmospheric deposition and partitioning of anions and cations, with emphasis on mercury and lead, in the various matrices of the Swamp were determined between July 1993 and April 1995. Chemistry of rainfall was determined on an event basis from one site located at Refuge Headquarters. Field samples of surface water, pore water, floc and sediment were collected from four locations on the Refuge: Chesser Prairie, Chase Prairie, Durden Prairie, and the Narrows. A sediment core sample was collected from the Refuge interior at Bluff Lake for aging of mercury deposition. Rainfall was acidic (pH 4.8) with sulfate concentrations averaging 1.2 mg/L and nitrate averaging 0.8 mg/L. Lead in rainfall averaged 1 ?g/L and total and methylmercury concentrations were 11.7 ng/L and 0.025 ng/L, respectively. The drought of 1993 followed by heavy rains during the fall and winter caused a temporary alteration in the cycling and availability of trace-elements within the different matrices of the Swamp. Surface water was acidic (pH 3.8 to 4.1), dilute (specific conductance 35-60 ?S/cm), and highly organic (DOC 35-50 mg/L). Sediment and floc were also highly organic (>90%). Total mercury averaged 3.6 ng/L in surface water, 9.0 ng/L in pore water and about 170 ng/g in floc and sediments. Mercury bioaccumulated in the biota of the Refuge: fish fillets (Centrarchus macropterus, Esox niger, Lepomus gulosus and Amia calva) had >2 ?g/g dry weight, alligators (Alligator mississippiensis) >4 ?g/g dry

  15. Evaluation of source model coupled computational fluid dynamics (CFD) simulation of the dispersion of airborne contaminants in a work environment.

    PubMed

    Salim, S M; Viswanathan, Shekar; Ray, Madhumita Bhowmick

    2006-12-01

    Dispersion of airborne contaminants in indoor air was evaluated employing physical measurement, empirical models, and computer simulation methods. Field data collected from a tray of evaporating solvent in the laboratory were compared with computational fluid dynamics (CFD) simulations coupled with evaporation models. The results indicated that mathematical models of evaporation can be coupled with CFD simulations to produce reasonable qualitative predictions of airborne contaminant levels. The airflow pattern within a room is primarily determined by the room layout and the position of the air supply diffusers. Variations in ventilation rate did not alter the airflow pattern, thus generating a characteristic concentration profile of the airborne contaminants. PMID:17050350

  16. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants. Volume 5

    NASA Technical Reports Server (NTRS)

    2008-01-01

    To protect space crews from air contaminants, NASA requested that the National Research Council (NRC) provide guidance for developing spacecraft maximum allowable concentrations (SMACs) and review NASA's development of exposure guidelines for specific chemicals. The NRC convened the Committee on Spacecraft Exposure Guidelines to address this task. The committee published Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants (NRC 1992). The reason for the review of chemicals in Volume 5 is that many of them have not been examined for more than 10 years, and new research necessitates examining the documents to ensure that they reflect current knowledge. New knowledge can be in the form of toxicologic data or in the application of new approaches for analysis of available data. In addition, because NASA anticipates longer space missions beyond low Earth orbit, SMACs for 1,000-d exposures have also been developed.

  17. EVALUATION OF BIOAEROSOL COMPONENTS, GENERATION FACTORS, AND AIRBORNE TRANSPORT ASSOCIATED WITH LIME TREATMENT OF CONTAMINATED SEDIMENT

    EPA Science Inventory

    Lime treatment has been used in contaminated sediment management activities for many purposes such as dewatering, improvement of physical properties, and reducing contaminant mobility. Exothermic volatilization of volatile organic compounds from lime-treated sediment is well kno...

  18. Occupational Exposure Assessment of Airborne Chemical Contaminants Among Professional Ski Waxers

    PubMed Central

    Freberg, Baard Ingegerdsson; Olsen, Raymond; Daae, Hanne Line; Hersson, Merete; Thorud, Syvert; Ellingsen, Dag G.; Molander, Paal

    2014-01-01

    Background: Ski waxes are applied onto the skis to improve the performance. They contain different chemical substances, e.g. perfluoro-n-alkanes. Due to evaporation and sublimation processes as well as mechanically generated dust, vapours, fumes, and particulates can contaminate the workroom atmosphere. The number of professional ski waxers is increasing, but occupational exposure assessments among professional ski waxers are lacking. Objectives: The aim was to assess exposure to airborne chemical contaminants among professional ski waxers. It was also a goal to construct a ventilation system designed for ski waxing work operations. Methods: Forty-five professional ski waxers were included. Personal measurements of the inhalable and the respirable aerosol mass fractions were executed in 36 different waxing cabins using Conical Inhalable Sampler cassettes equipped with 37-mm PVC filters (5 µm) and Casella respirable cyclones equipped with 37-mm PVC filters (0.8 µm), respectively. Volatile organic components were collected using Anasorb CSC charcoal tubes. To examine time trends in exposure patterns, stationary real-time measurements of the aerosol mass fractions were conducted using a direct-reading Respicon® sampler. Results: Mean aerosol particle mass concentrations of 3.1 mg·m−3 (range: 0.2–12.0) and 6.2 mg·m−3 (range: 0.4–26.2) were measured in the respirable and inhalable aerosol mass fractions, respectively. Real-time aerosol sampling showed large variations in particle concentrations, with peak exposures of ~10 and 30 mg·m−3 in the respirable and the inhalable aerosol particle mass fractions, respectively. The custom-made ventilation system reduced the concentration of all aerosol mass fractions by more than 90%. PMID:24607772

  19. Seasonal Variability in Airborne Biotic Contaminants in Swine Confinement Buildings

    PubMed Central

    Kumari, Priyanka; Choi, Hong L.

    2014-01-01

    Little is known about the seasonal dynamics of biotic contaminants in swine confinement buildings (SCBs). The biotic contaminants of seven SCBs were monitored during one visit in the winter and one during the summer. Paired-end Illumina sequencing of the 16S rRNA gene, V3 region, was used to examine seasonal shifts in bacterial community composition and diversity. The abundances of 16S rRNA genes and six tetracycline resistance genes (tetB, tetH, tetZ, tetO, tetQ, and tetW) were also quantified using real-time PCR. Bacterial abundances, community composition and diversity all showed strong seasonal patterns defined by winter peaks in abundance and diversity. Microclimatic variables of SCBs, particularly air speed, PM2.5 and total suspended particles (TSP) were found significantly correlated to abundances, community composition, and diversity of bacterial bioaerosols. Seasonal fluctuations were also observed for four tetracycline resistance genes, tetH, tetO, tetQ, and tetW. The frequency of occurrences of these resistance genes were significantly higher in samples collected during winter and was also significantly correlated with air speed, PM2.5 and TSP. Overall, our results indicate that biotic contaminants in SCBs exhibit seasonal trends, and these could be associated with the microclimatic variables of SCBs. The correlations established in the current study could be helpful in establishing better management strategies to minimize the potential health impacts on both livestock and humans working in this environment. PMID:25393011

  20. EVIDENCE OF AIRBORNE CONTAMINATION OF WESTERN NORTH AMERICAN MOUNTAIN ECOSYSTEMS

    EPA Science Inventory

    There is emerging evidence that mountain ecosystems in the western USA are receiving deposition of persistent bioaccumulative toxicants with origins in North America and elsewhere in the Northern Hemisphere. The toxic materials include metals and organic compounds. Of particula...

  1. Ecotoxicology of organic contaminants to amphibians

    USGS Publications Warehouse

    Sparling, D.W.

    2000-01-01

    The effects of organic contaminants on amphibians are poorly known but of considerable interest. These contaminants include the highly toxic dioxins and furans as well as PCBs, PAHs and organochlorine pesticides. Although these compounds may have lower acute toxicity than dioxins and furans, they have been implicated in several problems associated with genotoxicity, endocrine disruption, malformations and reduced growth. There is evidence that amphibian tadpoles bioaccumulate these organic compounds and may have biological concentrating factors ranging in the hundreds. This chapter reviews what is known about the effects and concentrations of organic contaminants in amphibians and provides recommendations for further research

  2. Photocatalytic Degradation of Organic Contaminants in Water

    EPA Science Inventory

    Photocatalytic treatment of organics, including regulated and contaminants of emerging concern, has been an important area of this field. Details are provided on the mechanism of degradation, reaction intermediates, kinetics, and nanointerfacial adsorption phenomena. The degradat...

  3. Method for testing earth samples for contamination by organic contaminants

    DOEpatents

    Schabron, J.F.

    1996-10-01

    Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants. 2 figs.

  4. Method for testing earth samples for contamination by organic contaminants

    DOEpatents

    Schabron, John F.

    1996-01-01

    Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants.

  5. Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units.

    PubMed

    Booth, Timothy F; Kournikakis, Bill; Bastien, Nathalie; Ho, Jim; Kobasa, Darwyn; Stadnyk, Laurie; Li, Yan; Spence, Mel; Paton, Shirley; Henry, Bonnie; Mederski, Barbara; White, Diane; Low, Donald E; McGeer, Allison; Simor, Andrew; Vearncombe, Mary; Downey, James; Jamieson, Frances B; Tang, Patrick; Plummer, Frank

    2005-05-01

    Severe acute respiratory syndrome (SARS) is characterized by a risk of nosocomial transmission; however, the risk of airborne transmission of SARS is unknown. During the Toronto outbreaks of SARS, we investigated environmental contamination in SARS units, by employing novel air sampling and conventional surface swabbing. Two polymerase chain reaction (PCR)-positive air samples were obtained from a room occupied by a patient with SARS, indicating the presence of the virus in the air of the room. In addition, several PCR-positive swab samples were recovered from frequently touched surfaces in rooms occupied by patients with SARS (a bed table and a television remote control) and in a nurses' station used by staff (a medication refrigerator door). These data provide the first experimental confirmation of viral aerosol generation by a patient with SARS, indicating the possibility of airborne droplet transmission, which emphasizes the need for adequate respiratory protection, as well as for strict surface hygiene practices. PMID:15809906

  6. Long-term airborne contamination studied by attic dust in an industrial area: Ajka, Hungary

    NASA Astrophysics Data System (ADS)

    Völgyesi, P.; Jordan, G.; Szabo, Cs.

    2012-04-01

    Heavy industrial activities such as mining, metal industry, coal fired power plants have produced large amount of by-products and wide-spread pollution, particularly in the period of centrally dictated economy after WWII, in Hungary. Several studies suggest that significant amount of these pollutants have been deposited in the urban environment. Nowadays, more than half of the world's population is living in urban areas and people spend almost 80% of their lives indoors in developed countries increasing human health risk due to contamination present in urban dwellings. Attic dust sampling was applied to determine the long-term airborne contamination load in the industrial town of Ajka (Hungary). There has been a high industrial activity in Ajka since the end of the 19th century. In addition to aluminum and alumina industry, coal mining, coal fired power plant and glass industry sites, generated numerous waste heaps which act as multi-contamination sources in the area. In October 2010 the Ajka red mud tailings pond failed and caused an accidental regional contamination of international significance. The major objective of this research was to study and map the spatial distribution of heavy metal contamination in airborne attic dust samples. At 27 sampling sites 30 attic dust samples were collected. Sampling strategy followed a grid-based stratified random sampling design. In each cell a house for attic dust sample collection was selected that was located the closest to a randomly generated point in the grid cell. The project area covers a 8x8 grid of 1x1 km cells with a total area of 64 km2. In order to represent long-term industrial pollution, houses with attics kept intact for at least 30-40 years were selected for sampling. Sampling included the collection of background samples remotely placed from the industrialized urban area. The concentration of the major and toxic elements (Al, Ca, Fe, K, Mg, Mn, Na, P, S, and As, Ba, Cd, Co, Cr, Cu, Li, Mo, Ni, Pb, Se, Sn

  7. Understanding and controlling airborne organic compounds in the indoor environment: mass transfer analysis and applications.

    PubMed

    Zhang, Y; Xiong, J; Mo, J; Gong, M; Cao, J

    2016-02-01

    Mass transfer is key to understanding and controlling indoor airborne organic chemical contaminants (e.g., VVOCs, VOCs, and SVOCs). In this study, we first introduce the fundamentals of mass transfer and then present a series of representative works from the past two decades, focusing on the most recent years. These works cover: (i) predicting and controlling emissions from indoor sources, (ii) determining concentrations of indoor air pollutants, (iii) estimating dermal exposure for some indoor gas-phase SVOCs, and (iv) optimizing air-purifying approaches. The mass transfer analysis spans the micro-, meso-, and macroscales and includes normal mass transfer modeling, inverse problem solving, and dimensionless analysis. These representative works have reported some novel approaches to mass transfer. Additionally, new dimensionless parameters such as the Little number and the normalized volume of clean air being completely cleaned in a given time period were proposed to better describe the general process characteristics in emissions and control of airborne organic compounds in the indoor environment. Finally, important problems that need further study are presented, reflecting the authors' perspective on the research opportunities in this area. PMID:25740682

  8. Computerized Mathematical Models of Spray Washout of Airborne Contaminants (Radioactivity) in Containment Vessels.

    2003-05-23

    Version 01 Distribution is restricted to the United States Only. SPIRT predicts the washout of airborne contaminants in containment vessels under postulated loss-of-coolant accident (LOCA) conditions. SPIRT calculates iodine removal constants (lambdas) for post-LOCA containment spray systems. It evaluates the effect of the spectrum of drop sizes emitted by the spray nozzles, the effect of drop coalescence, and the precise solution of the time-dependent diffusion equation. STEAM-67 routines are included for calculating the properties ofmore » steam and water according to the 1967 ASME Steam Tables.« less

  9. Organic contaminants in onsite wastewater treatment systems

    USGS Publications Warehouse

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  10. Monitoring airborne biotic contaminants in the indoor environment of pig and poultry confinement buildings.

    PubMed

    Hong, Pei-Ying; Li, Xiangzhen; Yang, Xufei; Shinkai, Takumi; Zhang, Yuanhui; Wang, Xinlei; Mackie, Roderick I

    2012-06-01

    Given the growing concerns over human and animal health issues related to confined animal feeding operations, an in-depth examination is required to monitor for airborne bacteria and associated antibiotic resistance genes. Our 16S rRNA-based pyrosequencing revealed that the airborne microbial community skewed towards a higher abundance of Firmicutes (> 59.2%) and Bacteroidetes (4.2-31.4%) within the confinement buildings, while the office environment was predominated by Proteobacteria (55.2%). Furthermore, bioaerosols in the confinement buildings were sporadically associated with genera of potential pathogens, and these genera were more frequently observed in the bioaerosols of pig and layer hen confinement than the turkey confinement buildings and office environment. High abundances of tetracycline resistance genes (9.55 × 10(2) to 1.69 × 10(6) copies ng(-1) DNA) were also detected in the bioaerosols sampled from confinement buildings. Bacterial lineages present in the poultry bioaerosols clustered apart from those present in the pig bioaerosols and among the different phases of pig production, suggesting that different livestock as well as production phase were associated with a distinct airborne microbial community. By understanding the diversity of biotic contaminants associated with the different confinement buildings, this study facilitates the implementation of better management strategies to minimize potential health impacts on both livestock and humans working in this environment. PMID:22414212

  11. Solubility Enhanced Oxidation of Hydrophobic Organic Contaminants

    NASA Astrophysics Data System (ADS)

    Boving, T. B.; Eberle, D. E.; Ball, R.

    2012-12-01

    In-situ chemical oxidation (ISCO) is a remediation technique considered to be effective at overcoming some of the limitations of conventional subsurface treatment processes for volatile and semi-volatile organic contaminants (VOC, SVOC). ISCO reactions occur predominately in the aqueous phase and as a result, contaminant availability is a major limiting factor, i.e. contaminants with higher aqueous solubility's are typically more accessible for oxidation than more hydrophobic, sorbed compounds. The purpose of this study was to determine the feasibility of a new integrated desorption-oxidation process for the remediation of contaminated waters and sediments. Specifically, this study examined the potential of using hydroxypropyl-β-cyclodextrin (HPCD), a modified cyclic sugar, and a blend of oxidants commercially known as OxyZone® (U.S. patent No. 7,667,087) for the remediation of polycyclic aromatic hydrocarbons (PAH). Laboratory scale batch experiments confirmed prior studies that HPCD increases the aqueous concentration of these contaminants, making a greater mass of contaminant available for subsequent oxidation. When exposed to the same amount of oxidant, the mass of PAH destroyed increased linearly with increasing HPCD concentration. Relative to PAH saturated solutions without HPCD, 11 times more PAH mass was destroyed when a PAH saturated 15 g/L HPCD solution was treated with the same mass of oxidant. Destruction of the aqueous phase contaminants followed first order exponential decay kinetics in both deionized water and HPCD solutions. However, the destruction of complexed PAH was slower than for uncomplexed PAH. The cause of this is likely due to the preferential destruction of the HPCD molecule by the oxidant, followed by the subsequent oxidation of the PAH. The destruction of the cyclodextrin was minimized by modifying the oxidant formulation. Overall, these findings establish the potential of utilizing HPCD and OxyZone® as an integrated desorption

  12. Organic Contamination Standards for Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Pugel, D. E.; Conley, Catharine

    Collecting samples from Mars and bringing them to Earth for study has long been an objective of planetary exploration, among other reasons because this allows for the application of the most sensitive instruments to detect biosignatures and other indications of possible Mars life. Understanding terrestrial contamination that could be introduced into Mars samples and confound life detection measurements is an essential aspect of the investigative process. Defining quantitative limits on terrestrial organic contamination is necessary for planetary protection purposes, to ensure high confidence in a putative detection of `Mars life' or possible biohazards in samples after return to Earth. As reported here, NASA's Office of Planetary Protection is initiating a process to establish appropriate limits and controls on organic contamination introduced into Mars samples that will be collected and cached by the Mars 2020 mission for possible future return to Earth.

  13. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings.

    PubMed

    Normand, Anne-Cécile; Ranque, Stéphane; Cassagne, Carole; Gaudart, Jean; Sallah, Kankoé; Charpin, Denis-André; Piarroux, Renaud

    2016-03-01

    Many ailments can be linked to exposure to indoor airborne fungus. However, obtaining a precise measurement of airborne fungal levels is complicated partly due to indoor air fluctuations and non-standardized techniques. Electrostatic dust collector (EDC) sampling devices have been used to measure a wide range of airborne analytes, including endotoxins, allergens, β-glucans, and microbial DNA in various indoor environments. In contrast, viable mold contamination has only been assessed in highly contaminated environments such as farms and archive buildings. This study aimed to assess the use of EDCs, compared with repeated air-impactor measurements, to assess airborne viable fungal flora in moderately contaminated indoor environments. Indoor airborne fungal flora was cultured from EDCs and daily air-impaction samples collected in an office building and a daycare center. The quantitative fungal measurements obtained using a single EDC significantly correlated with the cumulative measurement of nine daily air impactions. Both methods enabled the assessment of fungal exposure, although a few differences were observed between the detected fungal species and the relative quantity of each species. EDCs were also used over a 32-month period to monitor indoor airborne fungal flora in a hospital office building, which enabled us to assess the impact of outdoor events (e.g. ground excavations) on the fungal flora levels on the indoor environment. In conclusion, EDC-based measurements provided a relatively accurate profile of the viable airborne flora present during a sampling period. In particular, EDCs provided a more representative assessment of fungal levels compared with single air-impactor sampling. The EDC technique is also simpler than performing repetitive air-impaction measures over the course of several consecutive days. EDC is a versatile tool for collecting airborne samples and was efficient for measuring mold levels in indoor environments. PMID:26491105

  14. Environmental contamination and airborne microbial counts: a role for hydroxyl radical disinfection units?

    PubMed

    Wong, V; Staniforth, K; Boswell, T C

    2011-07-01

    Environmental contamination is thought to play a role in the spread of infection in hospitals and there has been increased interest in novel air disinfection systems in preventing infection. In this study the efficacy of a hydroxyl radical air disinfection system (Inov8 unit) in reducing the number of airborne bacteria was assessed in a clinical setting. Environmental contamination was assessed using settle plates and air samples in three settings: (1) non-clinical room; (2) non-clinical room with defined activity; and (3) single intensive care unit cubicle. A comparison of air counts and environmental contamination rates was made with the Inov8 units on and off. The Inov8 unit produced an overall reduction in both air sample and settle plate counts in each setting (P<0.001, Wilcoxon signed-rank test). There was a mean reduction in air sample counts of 26%, 39% and 55% for settings 1, 2 and 3 respectively. The corresponding reductions in settle plate counts were 35%, 62% and 54%. These results suggest that this type of novel air disinfection may have a role in improving air quality and reducing environmental contamination within clinical isolation rooms. Further work is required to assess the effect on specific pathogens, and to establish whether this will reduce the risks of patients and/or healthcare workers acquiring such pathogens from the environment. PMID:21497944

  15. Airborne Transmission of Melioidosis to Humans from Environmental Aerosols Contaminated with B. pseudomallei

    PubMed Central

    Lin, Hsi-Hsun; Liu, Pei-Ju; Ni, Wei-Fan; Hsueh, Pei-Tan; Liang, Shih-Hsiung; Chen, Chialin; Chen, Ya-Lei

    2015-01-01

    Melioidosis results from an infection with the soil-borne pathogen Burkholderia pseudomallei, and cases of melioidosis usually cluster after rains or a typhoon. In an endemic area of Taiwan, B. pseudomallei is primarily geographically distributed in cropped fields in the northwest of this area, whereas melioidosis cases are distributed in a densely populated district in the southeast. We hypothesized that contaminated cropped fields generated aerosols contaminated with B. pseudomallei, which were carried by a northwesterly wind to the densely populated southeastern district. We collected soil and aerosol samples from a 72 km2 area of land, including the melioidosis-clustered area and its surroundings. Aerosols that contained B. pseudomallei-specific TTSS (type III secretion system) ORF2 DNA were well distributed in the endemic area but were rare in the surrounding areas during the rainy season. The concentration of this specific DNA in aerosols was positively correlated with the incidence of melioidosis and the appearance of a northwesterly wind. Moreover, the isolation rate in the superficial layers of the contaminated cropped field in the northwest was correlated with PCR positivity for aerosols collected from the southeast over a 2-year period. According to pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) analyses, PFGE Type Ia (ST58) was the predominant pattern linking the molecular association among soil, aerosol and human isolates. Thus, the airborne transmission of melioidosis moves from the contaminated soil to aerosols and/or to humans in this endemic area. PMID:26061639

  16. Airborne Transmission of Melioidosis to Humans from Environmental Aerosols Contaminated with B. pseudomallei.

    PubMed

    Chen, Pei-Shih; Chen, Yao-Shen; Lin, Hsi-Hsun; Liu, Pei-Ju; Ni, Wei-Fan; Hsueh, Pei-Tan; Liang, Shih-Hsiung; Chen, Chialin; Chen, Ya-Lei

    2015-06-01

    Melioidosis results from an infection with the soil-borne pathogen Burkholderia pseudomallei, and cases of melioidosis usually cluster after rains or a typhoon. In an endemic area of Taiwan, B. pseudomallei is primarily geographically distributed in cropped fields in the northwest of this area, whereas melioidosis cases are distributed in a densely populated district in the southeast. We hypothesized that contaminated cropped fields generated aerosols contaminated with B. pseudomallei, which were carried by a northwesterly wind to the densely populated southeastern district. We collected soil and aerosol samples from a 72 km2 area of land, including the melioidosis-clustered area and its surroundings. Aerosols that contained B. pseudomallei-specific TTSS (type III secretion system) ORF2 DNA were well distributed in the endemic area but were rare in the surrounding areas during the rainy season. The concentration of this specific DNA in aerosols was positively correlated with the incidence of melioidosis and the appearance of a northwesterly wind. Moreover, the isolation rate in the superficial layers of the contaminated cropped field in the northwest was correlated with PCR positivity for aerosols collected from the southeast over a 2-year period. According to pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) analyses, PFGE Type Ia (ST58) was the predominant pattern linking the molecular association among soil, aerosol and human isolates. Thus, the airborne transmission of melioidosis moves from the contaminated soil to aerosols and/or to humans in this endemic area. PMID:26061639

  17. Airborne flux measurements of biogenic volatile organic compounds over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  18. FIELD ACTIVITIES AND PRELIMINARY RESULTS FROM THE INVESTIGATION OF WESTERN AIRBORNE CONTAMINANTS IN TWO HIGH ELEVATION WATERSHEDS OF ROCKY MOUNTAIN NATIONAL PARK

    EPA Science Inventory

    The National Park Service initiated the Western Airborne Contaminants Assessment Project (WACAP) in 2002 to determine if airborne contaminants from long-range transport and/or regional sources are having an impact on remote western ecosystems, including AK. Rocky Mountain Nation...

  19. [Determination of airborne and surface contamination with cyclophosphamide at the Masaryk Memorial Cancer Institute, Brno, Czech Republic].

    PubMed

    Gorná, Lucie; Odráska, Pavel; Dolezalová, Lenka; Piler, Pavel; Oravec, Michal; Bláha, Ludek

    2011-02-01

    Manipulation with cytotoxic drugs (CDs) during the preparation and administration of chemotherapy to cancer patients can potentially lead to contamination of working areas and consequently to occupational exposure of hospital staff. This study aimed to assess the potential of inhalation and dermal contact with CDs. For this purpose, distribution of the marker drug (cyclophosphamide, CP) in the working environment of the Masaryk Memorial Cancer Institute (Czech Republic) was studied. The study determined airborne and surface contamination of the hospital pharmacy and the outpatient clinic. Determination of airborne contamination was based on active stationary sampling of air using a PTFE filter, an impinger filled with distilled water and two solid sorbent tubes (Anasorb 708 and Strata-X) as sampling devices. Surface contamination was determined by the wipe sampling method. The airborne contamination was rare and the concentrations were many times lower than the maximal value calculated from the vapour pressure (0.36 mg/m3 at 20 degrees C). Detectable airborne CP was found in Strata-X samples collected at the outpatient clinic (n = 5, all samples positive at concentrations from 0.3 to 4.3 ng/m3). Surface contamination was determined at 75% of wipe samples (n = 65) with a median concentration of 750 ng/m2. In conclusion, inhalation of CDs seems to be of low importance at our hospital, which is up to the standard specified by current legislation (drug preparation performed in a clean room equipped with negative pressure isolators). The main proportion of contamination was present on the surfaces at all workplaces studied. Consequently, attention should be given to the elimination of the sources of surface contamination and to the prevention of dermal contact with contaminated material. PMID:21650015

  20. Trueness, Precision, and Detectability for Sampling and Analysis of Organic Species in Airborne Particulate Matter

    EPA Science Inventory

    Recovery. precision, limits of detection and quantitation, blank levels, calibration linearity, and agreement with certified reference materials were determined for two classes of organic components of airborne particulate matter, polycyclic aromatic hydrocarbons and hopanes usin...

  1. Presence of airborne contaminants in the wildlife of northern Québec.

    PubMed

    Langlois, C; Langis, R

    1995-01-15

    As part of the environmental impact studies of the Great Whale and the Nottaway-Broadback-Rupert (NBR) hydroelectric projects, Hydro-Québec collected data on the occurrence and levels of several contaminants present in wildlife from both regions between 1989 and 1991. The analyses performed included metals (mercury, arsenic, selenium, cadmium, lead, nickel and copper), polychlorinated biphenyls (PCBs as arochlors or the sum of 20-40 congeners) and organochlorine pesticides such as hexachlorobenzene (HCB), DDT, DDE, hexachlorocyclohexane (HCH), chlordane, mirex and dieldrin. Species sampled included fish (freshwater and marine), birds (waterfowl, gull and ptarmigan), terrestrial mammals (marten, mink and hare) and marine mammals (freshwater and marine seals, belugas). Most laboratory analyses were carried out on both muscle and liver tissues, but some were conducted on other tissues as well: feathers, eggs and blubber. The results indicate that numerous airborne contaminants were present in the wildlife of both the Great Whale and the NBR study areas and that their level of contamination was similar to that of other northern environments. Total mercury in muscle was high in piscivorous fish, birds and mammals (terrestrial and marine). We observed significant levels of cadmium and lead in the livers of some herbivorous terrestrial animals, such as ptarmigans and hares. Among the organochlorine contaminants analyzed, levels of PCBs and DDE in piscivorous birds (mergansers and loons) and in marine mammals (seals and belugas) were high. For some contaminants, such as mercury, cadmium, lead, PCBs and DDE, the levels observed in some species or tissues could be considered worrisome with regard to public health, if those species or tissues constitute an important part of traditional native diets. PMID:7892577

  2. Metal and Metalloid Contaminants in Airborne Dust Associated with Mining Operations

    NASA Astrophysics Data System (ADS)

    Betterton, E. A.; Csavina, J. L.; Field, J. P.; Landázuri, A. C.; Felix Villar, O.; Rine, K. P.; Sáez, A.; Pence, J.; Shayan, H.; Russell, M.

    2011-12-01

    Mining operations are potential sources of airborne metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, with potential deleterious effects on human health and ecology. In this work, we report the size-resolved chemical characterization of atmospheric aerosols sampled near an inactive Superfund site and at an active mining and smelting site in Arizona. Aerosols were characterized with 10-stage (0.054 to 18 μm aerodynamic diameter) multiple orifice uniform deposit impactors (MOUDI), Dustrack monitors, and total suspended particulate (TSP) collectors. The MOUDI results show that arsenic and lead concentrations follow a bimodal distribution, with maxima centered at approximately 0.3 and 7.0 μm aerodynamic diameter. We hypothesize that the sub-micron arsenic and lead are the product of condensation and coagulation of smelting vapors. In the coarse size, contaminants are thought to originate as aeolian dust from mine tailings and other sources.

  3. Removal of organic contaminants from lithographic materials

    NASA Astrophysics Data System (ADS)

    Lytle, Wayne M.

    One of the critical issues still facing the implementation of extreme ultraviolet lithography (EUVL) into mainstream manufacturing for integrated circuit (IC) production is cleanliness. EUV photons at 13.5 nm are easily absorbed by many species, including dust, thin-film layers, and other debris present in the path of the photons. Carrying out EUVL inside a vacuum helps reduce the amount of photon loss for illumination, however contamination in the sys- tem is unavoidable, especially due to carbon growth on the multilayer mirror collectors and to soft defects in the form of organic contamination on the mask. Traditional cleaning methods employ the use of wet chemicals to etch contamination off of a surface, however this is limited in the sub-micron range of contaminant particles due to lack of transport of sufficient liquid chemical to the surface in order to achieve satisfactory particle removal. According to the International Technology Roadmap for Semiconductors (ITRS), the photomask must be particle free at inspection below 30 nm. However, when analyzing the ability of traditional methods to meet the cleaning needs set forth by the ITRS, these methods fall short and often add more contamination to the surface targeted for cleaning. With that in mind, a new cleaning method is being developed to supplant these traditional methods. Preliminary research into a plasma-based method to clean organic contaminants from lithographic materials constructed an experimental device that demonstrated the removal of both polystyrene latex nanoparticles (representing hydrocarbon contamination) in the range of 30 nm to 500 nm, as well as the removal of 30 nm carbon film layers on silicon wafers. This research, called the Plasma-Assisted Cleaning by Metastable Atomic Neutralization (PACMAN) process is being developed with semiconductor manufacturing cleaning in mind. A model of the helium metastable density within the processing chamber has been developed in addition to

  4. Impact of Organic Contamination on Some Aquatic Organisms

    PubMed Central

    Yasser, El-Nahhal; Shawkat, El-Najjar; Samir, Afifi

    2015-01-01

    Background: Contamination of water systems with organic compounds of agricultural uses pose threats to aquatic organisms. Carbaryl, chlorpyrifos, and diuron were considered as model aquatic pollutants in this study. The main objective of this study was to characterize the toxicity of organic contamination to two different aquatic organisms. Materials and Methods: Low concentrations (0.0–60 µmol/L) of carbaryl, diuron and very low concentration (0.0–0.14 µmol/L) of chlorpyrifos and their mixtures were tested against fish and Daphnia magna. Percentage of death and immobilization were taken as indicators of toxicity. Results: Toxicity results to fish and D. magna showed that chlorpyrifos was the most toxic compound (LC50 to fish and D. magna are 0.08, and 0.001 µmol/L respectively), followed by carbaryl (LC50 to fish and D. magna are 43.19 and 0.031 µmol/L), while diuron was the least toxic one (LC50 values for fish and D. magna are 43.48 and 32.11 µmol/L respectively). Mixture toxicity (binary and tertiary mixtures) showed antagonistic effects. Statistical analysis showed a significant difference among mixture toxicities to fish and D. magma. Conclusion: Fish and D. magam were sensitive to low concentrations. These data suggest potent threats to aquatic organisms from organic contamination. PMID:26862260

  5. Case studies in organic contaminant hydrogeology

    NASA Astrophysics Data System (ADS)

    Baker, John A.

    1989-07-01

    The effective management of domestic solid waste and hazardous, toxic, and radioactive waste is a major problem in the area of environmental geology and water sciences over the world. This series of case studies of organic contaminants from both solid and hazardous waste disposal facilities provides examples of these problems. The facilities were investigated to determine risks and liabilities before acquisition, to determine the site hydrogeologic conditions for design of appropriate groundwater monitoring plans, and/or to determine the potential for groundwater contamination. The results of these studies and investigations by Waste Management Inc. (WMI) and its consultants have shown certain relationships in the distribution of organic pollutants to the different geologic and hydrogeologic charac teristics of each facility. In each of the case studies, all 129 priority pollutants were analyzed in private wells and/or monitoring wells at the request of regulatory agencies. The 31 volatile organic compounds (VOCs) of the priority pollutant list were the majority of the organic compounds detected and these data are evaluated in each case study. The case studies are on disposal facilities located in glacial tills, carbonaceous weathered clay soils, weathered shale, limestone bedrock, dolomite bedrock, and alluvial and sedimentary deposits. A brief discussion of groundwater quality impacts and remedial measures also is included.

  6. Low pressure drop airborne molecular contaminant filtration using open-channel networks

    NASA Astrophysics Data System (ADS)

    Dallas, Andrew J.; Ding, Lefei; Joriman, Jon; Zastera, Dustin; Seguin, Kevin; Empson, James

    2006-03-01

    Airborne molecular contamination (AMC) continues to play a very decisive role in the performance of many microelectronic devices and manufacturing processes. Currently, the state of the filtration industry is such that optimum filter life and removal efficiency for AMC is offered by granular filter beds. However, the attributes that make packed beds of adsorbents extremely efficient also impart issues related to elevated filter weight and pressure drop. Most of the low pressure drop AMC filters currently offered tend to be quiet costly and contaminant nonspecific. Many of these low pressure drop filters are simply pleated combinations of various adsorptive and reactive media. On the other hand, low pressure drop filters, such as those designed as open-channel networks (OCNs), can still offer good filter life and removal efficiency, with the additional benefits of significant reductions in overall filter weight and pressure drop. Equally important for many applications, the OCN filters can reconstruct the airflow so as to enhance the operation of a tool or process. For tool mount assemblies and full fan unit filters this can result in reduced fan and blower speeds, which subsequently can provide reduced vibration and energy costs. Additionally, these low pressure drop designs can provide a cost effective way of effectively removing AMC in full fab (or HVAC) filtration applications without significantly affecting air-handling requirements. Herein, we will present a new generation of low pressure drop OCN filters designed for AMC removal in a wide range of applications.

  7. Competitive sorption of organic contaminants in chalk

    NASA Astrophysics Data System (ADS)

    Graber, E. R.; Borisover, M.

    2003-12-01

    In the Negev desert, Israel, a chemical industrial complex is located over fractured Eocene chalk formations where transfer of water and solutes between fracture voids and matrix pores affects migration of contaminants in the fractures due to diffusion into the chalk matrix. This study tests sorption and sorption competition between contaminants in the chalk matrix to make it possible to evaluate the potential for contaminant attenuation during transport in fractures. Single solute sorption isotherms on chalk matrix material for five common contaminants ( m-xylene, ametryn, 1,2-dichloroethane, phenanthrene, and 2,4,6-tribromophenol) were found to be nonlinear, as confirmed in plots of Kd versus initial solution concentration. Over the studied concentration ranges, m-xylene Kd varied by more than a factor of 100, ametryn Kd by a factor of 4, 1,2-dichloroethane Kd by more than a factor of 3, phenanthrene Kd by about a factor of 2, and 2,4,6-tribromophenol Kd by a factor of 10. It was earlier found that sorption is to the organic matter component of the chalk matrix and not to the mineral phases (Chemosphere 44 (2001) 1121). Nonlinear sorption isotherms indicate that there is at least some finite sorption domain. Bi-solute competition experiments with 2,4,6-tribromophenol as the competitor were designed to explore the nature of the finite sorption domain. All of the isotherms in the bi-solute experiments are more linear than in the single solute experiments, as confirmed by smaller variations in Kd as a function of initial solution concentration. For both m-xylene and ametryn, there is a small nonlinear component or domain that was apparently not susceptible to competition by 2,4,6-tribromophenol. The nonlinear sorption domain(s) is best expressed at low solution concentrations. Inert-solvent-normalized single and bi-solute sorption isotherms demonstrate that ametryn undergoes specific force interactions with the chalk sorbent. The volume percent of phenanthrene

  8. A rapidly deployable chemical sensing network for the real-time monitoring of toxic airborne contaminant releases in urban environments

    NASA Astrophysics Data System (ADS)

    Lepley, Jason J.; Lloyd, David R.

    2010-04-01

    We present findings of the DYCE project, which addresses the needs of military and blue light responders in providing a rapid, reliable on-scene analysis of the dispersion of toxic airborne contaminants following their malicious or accidental release into a rural, urban or industrial environment. We describe the development of a small network of ad-hoc deployable chemical and meteorological sensors capable of identifying and locating the source of the contaminant release, as well as monitoring and estimating the dispersion characteristics of the plume. We further present deployment planning methodologies to optimize the data gathering mission given a constrained asset base.

  9. Organics in water contamination analyzer, phase 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The requirements which would result in identifying the components of an automatic analytical system for the analysis of specific organic compounds in the space station potable water supply are defined. The gas chromatographic system for such an analysis is limited to commercially available off-the-shelf hardware and includes the sample inlet, an ionization detector, capillary columns as well as computerized compound identification. The sampling system will be a special variation of the purge and trap Tenax mode using six-port valves and a 500 microliter water sample. Capillary columns used for the separating of contaminants will be bonded phase fused silica with a silicone stationary phase. Two detectors can be used: photoionization and far ultraviolet, since they are sensitive and compatible with capillary columns. A computer system evaluation and program with the principle of compound identification based on the retention index is presented.

  10. Use of direct versus indirect preparation data for assessing risk associated with airborne exposures at asbestos-contaminated sites.

    PubMed

    Goldade, Mary Patricia; O'Brien, Wendy Pott

    2014-01-01

    At asbestos-contaminated sites, exposure assessment requires measurement of airborne asbestos concentrations; however, the choice of preparation steps employed in the analysis has been debated vigorously among members of the asbestos exposure and risk assessment communities for many years. This study finds that the choice of preparation technique used in estimating airborne amphibole asbestos exposures for risk assessment is generally not a significant source of uncertainty. Conventionally, the indirect preparation method has been less preferred by some because it is purported to result in false elevations in airborne asbestos concentrations, when compared to direct analysis of air filters. However, airborne asbestos sampling in non-occupational settings is challenging because non-asbestos particles can interfere with the asbestos measurements, sometimes necessitating analysis via indirect preparation. To evaluate whether exposure concentrations derived from direct versus indirect preparation techniques differed significantly, paired measurements of airborne Libby-type amphibole, prepared using both techniques, were compared. For the evaluation, 31 paired direct and indirect preparations originating from the same air filters were analyzed for Libby-type amphibole using transmission electron microscopy. On average, the total Libby-type amphibole airborne exposure concentration was 3.3 times higher for indirect preparation analysis than for its paired direct preparation analysis (standard deviation = 4.1), a difference which is not statistically significant (p = 0.12, two-tailed, Wilcoxon signed rank test). The results suggest that the magnitude of the difference may be larger for shorter particles. Overall, neither preparation technique (direct or indirect) preferentially generates more precise and unbiased data for airborne Libby-type amphibole concentration estimates. The indirect preparation method is reasonable for estimating Libby-type amphibole exposure and

  11. 40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant level goals for organic contaminants. 141.50 Section 141.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant...

  12. Contamination of anaesthetic machines with pathogenic organisms.

    PubMed

    Baillie, J K; Sultan, P; Graveling, E; Forrest, C; Lafong, C

    2007-12-01

    Hospital-acquired infections are commonly resistant to antibiotics and cause substantial morbidity and mortality in susceptible populations. Although there is no direct contact between the anaesthetic machine's controls and the patient, there is considerable potential for colonising organisms to be carried between the anaesthetic machine and the patient on the anaesthetist's hands. We performed two cross-sectional studies of bacterial contamination on anaesthetic machines before and after a simple intervention. Without warning, during theatre sessions, bacterial cultures were obtained from anaesthetic equipment. A new departmental policy of cleaning anaesthetic equipment with detergent wipes between cases was then introduced. Six weeks later, again without warning, a further set of cultures was taken. There was significant reduction in the proportion of cultures containing pathogenic bacteria (from 14/78 cultures (18%; 95% CI 9.4-26.5%) before the intervention to 5/77 cultures (6%; 95% CI 1.0-12%) after the intervention (p = 0.03)). The intervention was quick, easy and enthusiastically taken up by the majority of staff. We conclude that cleaning of anaesthetic equipment between cases should become routine practice. PMID:17991263

  13. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOEpatents

    Donaldson, T.L.; Wilson, J.H.

    1993-09-21

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing. 2 figures.

  14. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOEpatents

    Donaldson, Terrence L.; Wilson, James H.

    1993-01-01

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing.

  15. Sick building syndrome: Acute illness among office workers--the role of building ventilation, airborne contaminants and work stress

    SciTech Connect

    Letz, G.A. )

    1990-05-01

    Outbreaks of acute illness among office workers have been reported with increasing frequency during the past 10-15 years. In the majority of cases, hazardous levels of airborne contaminants have not been found. Generally, health complaints have involved mucous membrane and respiratory tract irritation and nonspecific symptoms such as headache and fatigue. Except for rare examples of hypersensitivity pneumonitis related to microbiologic antigens, there have been no reports of serious morbidity or permanent sequelae. However, the anxiety, lost work time, decreased productivity and resources spent in investigating complaints has been substantial. NIOSH has reported on 446 Health Hazards Evaluations that were done in response to indoor air complaints. This data base is the source of most of the published accounts of building-related illness. Their results are summarized here with a discussion of common pollutants (tobacco smoke, formaldehyde, other organic volatiles), and the limitations of the available industrial hygiene and epidemiologic data. There has been one large scale epidemiologic survey of symptoms among office workers. The results associate risk of symptoms to building design and characteristics of the heating/air-conditioning systems, consistent with the NIOSH experience. Building construction since the 1970s has utilized energy conservation measures such as improved insulation, reduced air exchange, and construction without opening windows. These buildings are considered airtight and are commonly involved in episodes of building-associated illness in which no specific etiologic agent can be identified. After increasing the percentage of air exchange or correcting specific deficiencies found in the heating/air-conditioning systems, the health complaints often resolve, hence, the term tight building syndrome or sick building syndrome.

  16. PRINCIPALS OF ORGANIC CONTAMINANT BEHAVIOR DURING ARTIFICIAL RECHARGE

    EPA Science Inventory

    The behavior of a variety of organic contaminants having low molecular weight has been observed during groundwater recharge with reclaimed water. The evidence is site-specific, but is believed to have broader implications regarding the general behavior of organic contaminants in ...

  17. Method for treatment of soils contaminated with organic pollutants

    DOEpatents

    Wickramanayake, Godage B.

    1993-01-01

    A method for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil to decompose the organic compounds. The soil may be treated in situ or may be removed for treatment and refilled.

  18. Monitoring personal, indoor, and outdoor exposures to metals in airborne particulate matter: Risk of contamination during sampling, handling and analysis

    NASA Astrophysics Data System (ADS)

    Rasmussen, Pat E.; Wheeler, Amanda J.; Hassan, Nouri M.; Filiatreault, Alain; Lanouette, Monique

    Rigorous sampling and quality assurance protocols are required for the reliable measurement of personal, indoor and outdoor exposures to metals in fine particulate matter (PM 2.5). Testing of five co-located replicate air samplers assisted in identifying and quantifying sources of contamination of filters in the laboratory and in the field. A field pilot study was conducted in Windsor, Ont., Canada to ascertain the actual range of metal content that may be obtained on filter samples using low-flow (4 L min -1) 24-h monitoring of personal, indoor and outdoor air. Laboratory filter blanks and NIST certified reference materials were used to assess contamination, instrument performance, accuracy and precision of the metals determination. The results show that there is a high risk of introducing metal contamination during all stages of sampling, handling and analysis, and that sources and magnitude of contamination vary widely from element to element. Due to the very small particle masses collected on low-flow 24-h filter samples (median 0.107 mg for a sample volume of approximately 6 m 3) the contribution of metals from contamination commonly exceeds the content of the airborne particles being sampled. Thus, the use of field blanks to ascertain the magnitude and variability of contamination is critical to determine whether or not a given element should be reported. The results of this study were incorporated into standard operating procedures for a large multiyear personal, indoor and outdoor air monitoring campaign in Windsor.

  19. PHYTOREMEDIATION OF ORGANIC AND NUTRIENT CONTAMINANTS

    EPA Science Inventory

    Phytoremediation, the use of vegetation for the in situ treatment of contaminated soils and sediments, is an emerging technology that promises effective and inexpensive cleanup of certain hazardous waste sites. otential applications of phytoremediation would be bioremediation of ...

  20. Aqueous adsorption and removal of organic contaminants by carbon nanotubes.

    PubMed

    Yu, Jin-Gang; Zhao, Xiu-Hui; Yang, Hua; Chen, Xiao-Hong; Yang, Qiaoqin; Yu, Lin-Yan; Jiang, Jian-Hui; Chen, Xiao-Qing

    2014-06-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future. PMID:24657369

  1. Organic Contamination Baseline Study on NASA JSC Astromaterial Curation Gloveboxes

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Allton, J. H.; Allen, C. C.; Burkett, P. J.

    2013-01-01

    Future planned sample return missions to carbon-rich asteroids and Mars in the next two decades will require strict handling and curation protocols as well as new procedures for reducing organic contamination. After the Apollo program, astromaterial collections have mainly been concerned with inorganic contamination [1-4]. However, future isolation containment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study was orchestrated to establish the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs.

  2. Inorganic and organic contaminants in Alaskan shorebird eggs.

    PubMed

    Saalfeld, David T; Matz, Angela C; McCaffery, Brian J; Johnson, Oscar W; Bruner, Phil; Lanctot, Richard B

    2016-05-01

    Many shorebird populations throughout North America are thought to be declining, with potential causes attributed to habitat loss and fragmentation, reduced prey availability, increased predation, human disturbance, and increased exposure to environmental pollutants. Shorebirds may be particularly vulnerable to contaminant exposure throughout their life cycle, as they forage primarily on invertebrates in wetlands, where many contaminants accumulate disproportionately in the sediments. Therefore, it is important to document and monitor shorebird populations thought to be at risk and assess the role that environmental contaminants may have on population declines. To investigate potential threats and provide baseline data on shorebird contaminant levels in Alaskan shorebirds, contaminant concentrations were evaluated in shorebird eggs from 16 species residing in seven geographic distinct regions of Alaska. Similar to previous studies, low levels of most inorganic and organic contaminants were found, although concentrations of several inorganic and organic contaminants were higher than those of previous studies. For example, elevated strontium levels were observed in several species, especially black oystercatcher (Haematopus bachmani) sampled in Prince William Sound, Alaska. Additionally, contaminant concentrations varied among species, with significantly higher concentrations of inorganic contaminants found in eggs of pectoral sandpiper (Calidris melanotos), semipalmated sandpiper (Calidris pusilla), black oystercatcher, and bar-tailed godwit (Limosa lapponica). Similarly, significantly higher concentrations of some organic contaminants were found in the eggs of American golden plover (Pluvialis dominica), black-bellied plover (Pluvialis squatarola), pacific golden plover (Pluvialis fulva), bar-tailed godwit, and semipalmated sandpiper. Despite these elevated levels, current concentrations of contaminants in shorebird eggs suggest that breeding environments are

  3. REVERSE OSMOSIS TREATMENT TO CONTROL INORGANIC AND VOLATILE ORGANIC CONTAMINATION

    EPA Science Inventory

    Because of the versatility of reverse osmosis for removing a wide range of contaminants, U.S. EPA (Drinking Water Research Division) has been conducting laboratory and field studies to determine its effectiveness on specific inorganic and organic contaminants of concern to the wa...

  4. REDUCTIVE DEHALOGENATION OF ORGANIC CONTAMINANTS IN SOILS AND GROUND WATER

    EPA Science Inventory

    Introduction and large scale production of synthetic halogenated organic chemicals over the last 50 years has resulted in a group of contaminants which tend to persist in the environment and resist both biotic and abiotic degradation. The low solubility of these types of contamin...

  5. Recoverable electroluminescence from a contaminated organic/organic interface in an organic light-emitting diode

    NASA Astrophysics Data System (ADS)

    Liao, L. S.; Klubek, K. P.; Madathil, J. K.; Tang, C. W.; Giesen, D. J.

    2010-01-01

    An organic/organic interface, like an electrode/organic interface in an organic light-emitting diode (OLED), can be severely affected by ambient contamination. However, we surprisingly found that the contaminated surface or interface can be "cured" by depositing a thin interfacial layer containing a strong reducing agent onto the contaminated surface before finishing the fabrication of the device. For example, in comparison with a regular OLED, an OLED having a 5-min ambient exposure to the light-emitting layer/electron-transporting layer interface drops its initial electroluminescence (EL) intensity by 50%. The decreased EL intensity due to the 5-min ambient exposure can be fully recovered and the improved operational stability can be realized after curing the contaminated interface using a thin Li interfacial layer. The experimental results provide a useful method to cope with the interfacial contamination in OLEDs during a manufacturing process. In addition, our results support the failure mechanism of an Alq-based OLED suggested by [Papadimitrakopoulos et al., Chem. Mater. 8, 1363 (1996)].

  6. A Comprehensive Analysis of Organic Contaminant Adsorption by Clays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macroscopic studies of nonionic organic contaminant (NOC) sorption by clays have revealed many important clues regarding factors that influence sorption affinity, and enabled the development of structural hypotheses for operative adsorption mechanisms. Integrating this understanding with knowledge g...

  7. Recent Discoveries and the Ultimate Fate of Organic Contaminants

    EPA Science Inventory

    With very few exceptions, the common organic contaminants in soils, sediments, and ground water can be transformed or entirely degraded by oxidation or reduction reactions that are either carried through direct involvement with microorganisms, or indirectly through abiotic reacti...

  8. SEQUESTRATION OF HYDROPHOBIC ORGANIC CONTAMINANTS BY GEOSORBENTS. (R822626)

    EPA Science Inventory

    The chemical interactions of hydrophobic organic contaminants (HOCs) with soils and sediments (geosorbents) may result in strong binding and slow subsequent release rates that significantly affect remediation rates and endpoints. The underlying physical and chemical phenomena ...

  9. ELECTROCHEMICAL DEGRADATION OF ORGANIC CONTAMINANTS IN WATER AND SEDIMENTS

    EPA Science Inventory

    Electrochemical degradation (ECD) utilizes high redox potential at the anode and low redox potential at the cathode to oxidize and/or reduce organic and inorganic contaminants. EDC of Trichloroethylene (TCE), although theoretically possible, has not been experimentally proven. Th...

  10. USING ZERO-VALENT METAL NANOPARTICLES TO REMEDIATE ORGANIC CONTAMINANTS

    EPA Science Inventory

    The transport of organic contaminants down the soil profile constitutes a serious threat to the quality of ground water. Zero-valent metals are considered innocuous abiotic agents capable of mediating decontamination processes in terrestrial systems. In this investigation, ze...

  11. Geltape method for measurement of work related surface contamination with cobalt containing dust: correlation between surface contamination and airborne exposure.

    PubMed Central

    Poulsen, O M; Olsen, E; Christensen, J M; Vinzent, P; Petersen, O H

    1995-01-01

    OBJECTIVES--The geltape method is a new method for optical measurement of total amount of dust on surfaces. The objectives were to study the potential applicability of this method to measurements of work related cobalt exposure during painting of plates with cobalt dye. METHODS--Consecutive series of work related geltape prints were taken from surfaces inside and outside the ventilation cabins of two plate painters during two full working days. The amount of dust picked up by the geltapes was measured optically with a field monitor. Also, personal air samples were collected on filters at the different work processes. In the laboratory the contents of cobalt on the geltape prints and the filters were measured with inductive coupled plasma atomic emission spectroscopy. RESULTS--The key results were: (a) when the geltape prints were taken from surfaces inside the cabins the optically measured area of the geltapes covered with total dust (area (%)) correlated well with the chemically measured amount of cobalt present on the geltapes. Linear correlation coefficient (R2) was 0.91 for geltape prints taken on the floor and 0.94 for prints taken on the ceiling; (b) the cumulative airborne cobalt exposure, calculated from data on work related exposure by personal sampling, correlated with the area (%) of geltape prints taken from the ceiling of the cabin (R2 = 0.98); (c) the geltape method could be used to distinguish both between work processes with different levels of cobalt exposure, and between plate painters subjected to significant differences in airborne cobalt exposure. CONCLUSION--The geltape method could produce measures of the work related exposures as well as whole day exposure for cobalt. The geltape results correlated with measurements of personal airborne cobalt exposure. In this industry the profile of exposure is well-defined in time, and it seems reasonable to apply this fast and low cost method in routine exposure surveillance to obtain a more detailed

  12. Genotoxicity of organic extracts of airborne particles in somatic cells of Drosophila melanogaster.

    PubMed

    Delgado-Rodríguez, A; Ortíz-Marttelo, R; Villalobos-Pietrini, R; Gómez-Arroyo, S; Graf, U

    1999-07-01

    Complex mixtures extracted from air filters exposed for 24 h in two sessions (27 July and 02 August 1991) and at two locations (Merced, downtown, and Pedregal de San Angel, south-west) in Mexico City were analysed. The organic extracts were from airborne particles equal or smaller than 10 microns (PM10), and from total suspended particles (TSP). These organic extracts were assayed in the somatic mutation and recombination test (SMART) in wings of Drosophila melanogaster using two different crosses as well as in the Salmonella/microsome assay using strain TA98 with and without S9 fraction. The presence of polycyclic aromatic hydrocarbons (PAH) in the extracts was determined by gas chromatography. The genotoxic activities observed in the two test systems were comparable with the indirect mutagens producing greater response than the direct mutagens. The quantities of particulate matter as well as the genotoxic activities were higher on 02 August than on 27 July 1991 for both locations. The amounts of airborne particles and the resulting genotoxic activities were higher at Merced than at Pedregal. In both biological systems, PM10 were more genotoxic than TSP. These results demonstrate the sensitivity of the Drosophila wing SMART-which is an in vivo eukaryotic genotoxicity assay-as a biological monitor of environmental pollution related to airborne particles. PMID:10377966

  13. Laser surface cleaning of organic contaminants

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Liu, Z.; Vilar, R.; Yi, X.-S.

    1999-08-01

    Laser surface cleaning process has been a useful and efficient technique for various industrial applications. The removal of photoresist contaminants on silicon wafers was investigated with a krypton fluoride (KrF) excimer laser, and the irradiated area was characterized using a profilometer, a scanning electronic microscopy (SEM), an Auger electron spectroscopy (AES) and a Fourier transition infrared spectroscopy (FT-IR). It was found that there exist an optimal number of pulses to remove the contaminant from the substrate surface without any laser-induced damage, depending on the laser density on the surface. A model to predict the optimal number of pulses, which agrees well with Beer-Lambert's law, is proposed and proved to be operable.

  14. Detection of organic contamination on surfaces by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Guyt, Jaco M.; Van Eesbeek, Marc; Van Papendrecht, G.

    2002-09-01

    Organic contamination control at ESA is based on the infrared spectroscopy method described in the PSS-01-705. The method is used to verify the organic contamination levels during integration and thermal vacuum tests. The detection limits are in the 10-8 g/cm2 range or below, depending on the equipment and sampling method. Quantification is performed with common space contaminants, with the possibility to include a new calibration standard when a specific contaminant is occurring more often. Sampling is done with witness sensors of 15 cm2 or infrared transparent windows to verify the cleanliness after specific events. When no witness sensor has been used, solvent compatible surfaces can be analyzed by a solvent wash or by wiping the surface using dry or wetted tissues. Calibration curves with detection limits are presented, with an examples of a contamination event found on a retrieved space hardware.

  15. Interactions of organic contaminants with mineral-adsorbed surfactants

    USGS Publications Warehouse

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  16. Dissolved Organic Matter and Emerging Contaminants in Urban Stream Ecosystems

    NASA Astrophysics Data System (ADS)

    Kaushal, S. S.; Findlay, S.; Groffman, P.; Belt, K.; Delaney, K.; Sides, A.; Walbridge, M.; Mayer, P.

    2009-05-01

    We investigated the effects of urbanization on the sources, bioavailability and forms of natural and anthropogenic organic matter found in streams located in Maryland, U.S.A. We found that the abundance, biaoavailability, and enzymatic breakdown of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved organic phosphorus (DOP) increased in streams with increasing watershed urbanization suggesting that organic nutrients may represent a growing form of nutrient loading to coastal waters associated with land use change. Organic carbon, nitrogen, and phosphorus in urban streams were elevated several-fold compared to forest and agricultural streams. Enzymatic activities of stream microbes in organic matter decomposition were also significantly altered across watershed land use. Chemical characterization suggested that organic matter in urban streams originated from a variety of sources including terrestrial, sewage, and in-stream transformation. In addition, a characterization of emerging organic contaminants (polyaromatic cyclic hydrocarbons, organochlorine pesticides, and polybrominated diphenyl ether flame retardents), showed that organic contaminants and dissolved organic matter increase with watershed urbanization and fluctuate substantially with changing climatic conditions. Elucidating the emerging influence of urbanization on sources, transport, and in-stream transformation of organic nutrients and contaminants will be critical in unraveling the changing role of organic matter in urban degraded and restored stream ecosystems.

  17. Treating contaminated organics using the DETOX process

    SciTech Connect

    Elsberry, K.D.; Dhooge, P.M.

    1993-05-01

    Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. This paper describes the results of bench-scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for designing a prototype waste treatment unit. Apparent organic reaction rate orders and the dependence of apparent reaction rate on solution composition and the contact area were measured for vacuum pump oil scintillation fluids, and trichloroethylene. Reaction rate was superior in chloride-based solutions and was proportional to the contact area above about 2% w/w loading of organic. Oxidations in a 4-liter volume, mixed bench-top reactor have given destruction efficiencies of 99.9999 + % for common organics. Reaction rates achieved in the mixed bench-top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10 to 100 + grams of organic per liter-hour. Results are also presented on the solvation efficiency of DETOX for mercury, cerium, and neodymium, and for removal/destruction of organics sorbed on vermiculite. The next stage of development will be converting the bench-top unit to continuous processing.

  18. Indoor air condensate as a novel matrix for monitoring inhalable organic contaminants.

    PubMed

    Roll, Isaac B; Halden, Rolf U; Pycke, Benny F G

    2015-05-15

    With the population of developed nations spending nearly 90% of their time indoors, indoor air quality (IAQ) is a critical indicator of human health risks from inhalation of airborne contaminants. We present a novel approach for qualitative monitoring of IAQ through the collection and analysis of indoor air condensate discharged from heat exchangers of heating, ventilation, and air conditioning (HVAC) systems. Condensate samples were collected from six suburban homes and one business in Maricopa County, Arizona, concentrated via solid-phase extraction, analyzed for 10 endocrine disrupting chemicals (EDCs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and screened for additional organic compounds by gas chromatography-mass spectrometry (GC-MS). All 10 EDCs were detected in at least one of the sampled buildings. More than 100 additional compounds were detected by GC-MS, of which 40 were tentatively identified using spectral database searches. Twelve compounds listed as designated chemicals for biomonitoring by the California Environmental Contaminant Biomonitoring Program were detected. Microfiltration of condensate samples prior to extraction had no discernable effect on contaminant concentration, suggesting that contaminants were freely dissolved or associated with inhalable, submicron particles. This study is the first to document the utility of HVAC condensate for the qualitative assessment of indoor air for pollutants. PMID:25706557

  19. Multimedia transport of organic contaminants and exposure modeling

    SciTech Connect

    Layton, D.W.; McKone, T.E.

    1988-01-01

    Human exposures to organic contaminants in the environment are a complex function of human factors, physicochemical properties of the contaminants, and characteristics of the environmental media in which the contaminants reside. One subject of interest in the screening of organic chemicals for the purpose of identifying exposure pathways of potential concern is the relationship between exposures and contaminant properties. To study such relationships, a multimedia environmental model termed GEOTOX is used to predict the equilibrium partitioning and transport of ''reference'' organic chemicals between compartments representing different media (i.e., soil layers, ground water, air, biota, etc.) of a contaminated landscape. Reference chemicals, which are added to the surface soil of a landscape, are defined by properties consisting of the Henry's law constant, soil water-soil organic carbon partition coefficient, and bioconcentration factors. The steady-state concentrations of the chemical in the GEOTOX compartments are then used to estimate lifetime exposures (in mg/kg-d) to the compartments for individuals living in the contaminated landscape. Exposure pathways addressed include ingestion, inhalation, and dermal absorption. Local sensitivity analyses are performed to determine which chemical and landscape properties have the greatest effect on the exposure estimates. 9 refs., 4 figs., 3 tabs.

  20. Method for detecting organic contaminants in water supplies

    DOEpatents

    Dooley, Kirk J.; Barrie, Scott L.; Buttner, William J.

    1999-01-01

    A system for detecting organic contaminants in water supplies. A sampling unit is employed which includes a housing having at least one opening therein and a tubular member positioned within the housing having a central passageway surrounded by a side wall. The side wall is made of a composition designed to absorb the contaminants. In use, the sampling unit is immersed in a water supply. The water supply contacts the tubular member through the opening in the housing, with any contaminants being absorbed into the side wall of the tubular member. A carrier gas is then passed through the central passageway of the tubular member. The contaminants will diffuse out of the side wall and into the central passageway where they will subsequently combine with the carrier gas, thereby yielding a gaseous product. The gaseous product is then analyzed to determine the amount and type of contaminants therein.

  1. Method for detecting organic contaminants in water supplies

    DOEpatents

    Dooley, K.J.; Barrie, S.L.; Buttner, W.J.

    1999-08-24

    A system is described for detecting organic contaminants in water supplies. A sampling unit is employed which includes a housing having at least one opening therein and a tubular member positioned within the housing having a central passageway surrounded by a side wall. The side wall is made of a composition designed to absorb the contaminants. In use, the sampling unit is immersed in a water supply. The water supply contacts the tubular member through the opening in the housing, with any contaminants being absorbed into the side wall of the tubular member. A carrier gas is then passed through the central passageway of the tubular member. The contaminants will diffuse out of the side wall and into the central passageway where they will subsequently combine with the carrier gas, thereby yielding a gaseous product. The gaseous product is then analyzed to determine the amount and type of contaminants therein. 5 figs.

  2. Bioavailability of sediment-bound contaminants to marine organisms

    SciTech Connect

    Brown, B. |

    1993-09-01

    The bioavailability of sediment-bound contaminants to marine organisms indicates that there exists a potential for transfer of these contaminants through marine food webs to commercial fisheries products consumed by humans. However, there has been relatively little effort to combine and synthesize data on chemical/biological interactions between benthic animals and seagrasses and the sediments in which they reside on the one hand, and on the chemistry of bioaccumulation on the other. This report provides a conceptual basis for an approach to bioavailability and biomagnification of sediment-bound contaminants that reviews biological and chemical approaches.

  3. Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer

    PubMed Central

    Navarro, Maria A.; Atlas, Elliot L.; Saiz-Lopez, Alfonso; Rodriguez-Lloveras, Xavier; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Filus, Michal; Harris, Neil R. P.; Meneguz, Elena; Ashfold, Matthew J.; Manning, Alistair J.; Cuevas, Carlos A.; Schauffler, Sue M.; Donets, Valeria

    2015-01-01

    Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the NASA Airborne Tropical Tropopause Experiment campaigns. We combine aircraft observations and a chemistry−climate model to quantify the total bromine loading injected to the stratosphere. Surprisingly, despite differences in vertical transport between the Eastern and Western Pacific, VSLBr (organic + inorganic) contribute approximately similar amounts of bromine [∼6 (4−9) parts per thousand] to the stratospheric input at the tropical tropopause. These levels of bromine cause substantial ozone depletion in the lower stratosphere, and any increases in future abundances (e.g., as a result of aquaculture) will lead to larger depletions. PMID:26504212

  4. Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer.

    PubMed

    Navarro, Maria A; Atlas, Elliot L; Saiz-Lopez, Alfonso; Rodriguez-Lloveras, Xavier; Kinnison, Douglas E; Lamarque, Jean-Francois; Tilmes, Simone; Filus, Michal; Harris, Neil R P; Meneguz, Elena; Ashfold, Matthew J; Manning, Alistair J; Cuevas, Carlos A; Schauffler, Sue M; Donets, Valeria

    2015-11-10

    Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the NASA Airborne Tropical Tropopause Experiment campaigns. We combine aircraft observations and a chemistry-climate model to quantify the total bromine loading injected to the stratosphere. Surprisingly, despite differences in vertical transport between the Eastern and Western Pacific, VSLBr (organic + inorganic) contribute approximately similar amounts of bromine [∼6 (4-9) parts per trillion] [corrected] to the stratospheric input at the tropical tropopause. These levels of bromine cause substantial ozone depletion in the lower stratosphere, and any increases in future abundances (e.g., as a result of aquaculture) will lead to larger depletions. PMID:26504212

  5. Detecting and Quantifying Organic Contaminants in Sediments with NMR

    NASA Astrophysics Data System (ADS)

    Fay, E. L.; Knight, R. J.

    2015-12-01

    Nuclear magnetic resonance (NMR) methods have the potential to detect and monitor free-phase organic contaminants in sediments, both in the laboratory and in the field. NMR directly detects signal from hydrogen-bearing fluids; the signal amplitude is proportional to the total amount of hydrogen present, while the signal decay rate provides information about fluid properties and interactions with the surrounding sediments. Contrasting relaxation times (T2) or diffusion coefficients (D) allow the separation of water signal from contaminant signal. In this work, we conduct a laboratory study to assess the use of NMR measurements to detect and quantify diesel, gasoline, crude oil, and tri-chloroethylene in sediments. We compare the T2 distributions for sediments containing only water, only contaminant, and both water and contaminant, confirming that the identification and quantification of contaminants using T2 data alone is limited by overlapping water and contaminant T2 distributions in some sediments. We leverage the contrast between the diffusion coefficient of water and that of diesel and crude oil to separate contaminant signal from water signal in D-T2 maps. D-T2 distributions are measured both using a pulsed gradient method and a static gradient method similar to methods used with logging tools, allowing us to compare the ability of each method to quantify diesel and crude oil when water is also present. There is the potential to apply these methods to characterize and monitor contaminated sites using commercially available NMR logging tools.

  6. Effect of Ventilation on Occupational Exposure to Airborne Biological Contaminants in an Isolation Room

    PubMed Central

    Jafari, Mohammad Javad; Omidi, Leila; Jafari, Mina; Tabarsi, Payam; Salehpour, Soussan; Amiri, Zohre

    2015-01-01

    Background: Airborne pathogens play an important role in a hospital air quality. Respiratory infections are the most common occupational disease among the health care staff. The aim of this study was to determine the effect of ventilation system parameters and patient bed arrangements on concentration of airborne pathogens in indoor air of an isolation room. Materials and Methods: A single-bed room was considered in which a patient diagnosed with tuberculosis had been admitted. Five different ventilation types, each at four different capacities were installed in the room while two different locations for the patient’s bed were assessed. A direct-impact sampling method (blood agar plate) was used in order to determine the intensity of the bio-aerosols in indoor air of the isolation room. Results: The results showed that when the air was supplied through a circular vent located on the northern wall and the vented air was exhausted via a linear vent located on the southern wall, the average concentration of the bio-aerosols in the air, (with 12 air changes per hour) was reduced to 25 colonies per cubic meter (cfu/m3) (in the range of 25–88 cfu/m3 and a 95 percent confidence interval). In accordance with the analysis applied upon the two different locations of the bed, no significant difference was observed (P>0.05). Conclusion: Installation of ventilation systems as determined by the study is recommended for tuberculosis isolation rooms. PMID:26528369

  7. Oxygen Ion Cleaning Of Organic Contaminants

    NASA Astrophysics Data System (ADS)

    Deguchi, T. J.; Sasaki, G. R.; Champetier, R. J.

    1987-06-01

    An experiment using low energy oxygen ions to clean organic films from bare aluminum mirrors was performed. Film removal was determined by measuring the reflectance of the mirrors in the ultraviolet region of the spectrum. The results of this study show that complete removal of hydrocarbon films is obtainable. This method may not be fully effective in removing silicon-based polymers. The removal rate for a hydrocarbon oil contami nant was determined to be 2.1 X 10-14 Å/ion.

  8. Bacterial contamination in a modern operating suite. 3. Importance of floor contamination as a source of airborne bacteria.

    PubMed Central

    Hambraeus, A.; Bengtsson, S.; Laurell, G.

    1978-01-01

    The redispersal factor for bacteria-carrying particles from a contaminated floor was determined after mopping, blowing and walking activity. Walking gave the highest redispersal factor, 3.5 X 10(-3) m-1, which was three times higher than for blowing and 17 times higher than for mopping. The mean die-away rate for the bacteria-carrying particles used was 1.9/h without ventilation and 14.3/h with ventilation. It was calculated that in the operating rooms less than 15% of the bacteria found in the air were redispersed floor bacteria. PMID:632559

  9. Apparatus for treatment of soils contaminated with organic pollutants

    DOEpatents

    Wickramanayake, Godage B.

    1993-01-01

    An apparatus for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil in a manner adapted to decompose the organic compounds; one embodiment of the apparatus comprises a means to supply ozone as a gas-ozone mixture, a stability means to treat ozone obtained from the supply and distribution means to apply the stabilized gas-ozone to soil. The soil may be treated in situ or may be removed for treatment and refilled.

  10. ToF-SIMS Applications in Microelectronics: Quantification of Organic Surface Contamination

    NASA Astrophysics Data System (ADS)

    Trouiller, C.; Signamarcheix, T.; Juhel, M.; Petitdidier, S.; Fontaine, H.; Veillerot, M.; Kwakman, L. F. Tz.; Wyon, C.

    2005-09-01

    An overview of our main Time-Of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) applications is first given that highlights the strengths but also reveals some development needs for this technique especially where it comes to contaminants quantification. In this work, as a step towards better quantified data, we have elaborated a method to quantify Airborne Molecular Contamination (AMC) on Silicon. For this a protocol using liquid nitrogen sample cooling was set up to reduce the desorption of the most volatile species under the Ultra High Vacuum (UHV) of the ToF-SIMS analysis chamber and thus to enable a more stable, reliable and representative measurement. Using this protocol for the ToF-SIMS analysis and a careful analytical sequence, good correlation between Wafer Thermal Desorption Gas Chromatography Mass Spectroscopy (W-TDGCMS) and ToF-SIMS results on wafers exposed for varying time under the clean-room air flow containing 2,2,4-trimethyl 1,3-pentanediol diisobutyrate (TXIB) and Phthalates — two main organic clean-room contaminants — is obtained. Relative Sensitivity Factors (RSF) are deduced. With the used measurement setups, the ToF-SIMS low detection limits (DL) lie around 1E11 - 1E12 atoms Carbon/cm2 (atC/cm2) depending on species and are comparable to that of W-TDGCMS at 1E11 atC/cm2.

  11. DISTRIBUTIONS OF AIRBORNE AGRICULTURAL CONTAMINANTS RELATIVE TO AMPHIBIAN POPULATIONS IN THE SOUTHERN SIERRA NEVADA, CA

    EPA Science Inventory

    The Sierra Nevada mountain range lies adjacent to one of the heaviest pesticide use areas in the USA, the Central Valley of California. Because of this proximity, concern has arisen that agricultural pesticides, in addition to other contaminants, are adversely affecting the natur...

  12. Source apportionment of airborne particulate matter using organic compounds as tracers

    SciTech Connect

    Schauer, J.J.; Rogge, W.F.; Hildemann, L.M.

    1995-12-31

    A chemical mass balance receptor model based on organic compounds has been developed that relates source contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in Southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline powered vehicle exhaust, plus emissions from food cooking and wood smoke with smaller contributions from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates and nitrates present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source origin.

  13. REMOVAL OF VOLATILE ORGANIC CONTAMINANTS FROM GROUND WATER

    EPA Science Inventory

    Because ground water is a source of potable water for millions of people, an economical means of removing volatile organic contaminants is essential. Laboratory, pilot-scale and full-scale studies are being carried out in the United States of America to determine the effect of va...

  14. STABLE CHLORINE ISOTOPE ANALYSIS OF CHLORINATED ORGANIC CONTAMINANTS

    EPA Science Inventory

    The biogeochemical cycling of chlorinated organic contaminants in the environment is often difficult to understand because of the complex distributions of these compounds and variability of sources. To address these issues from an isotopic perspective, we have measured the, 37Cl...

  15. Modeling Human Exposure Levels to Airborne Volatile Organic Compounds by the Hebei Spirit Oil Spill

    PubMed Central

    Kim, Jong Ho; Kwak, Byoung Kyu; Ha, Mina; Cheong, Hae-Kwan

    2012-01-01

    Objectives The goal was to model and quantify the atmospheric concentrations of volatile organic compounds (VOCs) as the result of the Hebei Spirit oil spill, and to predict whether the exposure levels were abnormally high or not. Methods We developed a model for calculating the airborne concentration of VOCs that are produced in an oil spill accident. The model was applied to a practical situation, namely the Hebei Spirit oil spill. The accuracy of the model was verified by comparing the results with previous observation data. The concentrations were compared with the currently used air quality standards. Results Evaporation was found to be 10- to 1,000-fold higher than the emissions produced from a surrounding industrial complex. The modeled concentrations for benzene failed to meet current labor environmental standards, and the concentration of benzene, toluene, ortho- meta- para-xylene were higher than the values specified by air quality standards and guideline values on the ocean. The concentrations of total VOCs were much higher than indoor environmental criteria for the entire Taean area for a few days. Conclusions The extent of airborne exposure was clearly not the same as that for normal conditions. PMID:22468262

  16. Induction of sister chromatid exchanges and bacterial revertants by organic extracts of airborne particles. [Humans

    SciTech Connect

    Lockard, J.M.; Viau, C.J.; Lee-Stephens, C.; Caldwell, J.C.; Wojciechowski, J.P.; Enoch, H.G.; Sabharwal, P.S.

    1981-01-01

    The genotoxicities of organic extracts of airborne particles have been studied extensively in the Salmonella/mammalian microsome (Ames) test, but in few other bioassays. In these studies, we tested benzene-acetone extracts of particulate pollutants collected in Lexington, Kentucky, for capacity to induce increases in sister chromatid exchanges (SCE) in human lumphocytes and V79 cells, as well as in the Ames assay. Extracts induced linear dose-related increases in SCE in human lumphocytes and in bacterial revertants.However, variable responses were observed in SCE assays in V79 cells with and without activation by rat liver S9 or feeder layers of irradiated Syrian hamster fetal cells. We conclude that the SCE assay in human lumphocytes may be a useful indicator of the potential risks to humans of airborne particulate pollutants, as it utilizes human cells recently taken from the host, is rapid and economical, and requires small quantities of test materials. However, thorough studies of the quantitative relationships between SCE induction and mutagenicity in human cells are needed.

  17. Experimental investigation of airborne contaminant transport by a human wake moving in a ventilated aircraft cabin

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane B.

    The air ventilation system in jetliners provides a comfortable and healthy environment for passengers. Unfortunately, the increase in global air traffic has amplified the risks presented by infectious aerosols or noxious material released during flight. Inside the cabin, air typically flows continuously from overhead outlets into sidewall exhausts in a circular pattern that minimizes secondary flow between adjacent seat rows. However, disturbances frequently introduced by individuals walking along an aisle may alter air distribution, and contribute to spreading of contaminants. Numerical simulation of these convoluted transient flow phenomena is difficult and complex, and experimental assessment of contaminant distribution in real cabins often impractical. A fundamental experimental study was undertaken to examine the transport phenomena, to validate computations and to improve air monitoring systems. A finite moving body was modeled in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body diameter) of the order of 10,000. An experimental facility was designed and constructed to permit measurements of the ventilation and wake velocity fields using particle image velocimetry (PIV). Contaminant migration was imaged using the planar laser induced fluorescence (PLIF) technique. The effect of ventilation was estimated by comparison with a companion baseline study. Results indicate that the evolution of a downwash predominant behind finite bodies of small aspect ratio is profoundly perturbed by the ventilation flow. The reorganization of vortical structures in the near-wake leads to a shorter longitudinal recirculation region. Furthermore, mixing in the wake is modified and contaminant is observed to convect to higher vertical locations corresponding to seated passenger breathing level.

  18. Temporal trends in organic contaminant bioaccumulation in Boston Harbor

    SciTech Connect

    Hall, M.P.; Connor, M.S.; Downey, P.C.

    1995-12-31

    Since 1987 the MWRA has used in situ caged mussels (Mytilus edulis) to assess organic contaminant (PAHs, PCBs, organochlorine pesticides) bioaccumulation resulting from the primary treatment discharge of its Deer Island POTW. Results indicate a substantial reduction in many contaminants, most notably the Low Molecular Weight (petrogenic) PAHs which are clearly associated with the Deer Island discharge. NOAA `Mussel Watch` and other fish tissue contaminant data are used to support the observation of these decreases. Effluent water quality data and concurrent mussel body burden data from dirty and clean control sites are used to interpret the trends and elucidate the contamination sources. During the same time frame histopathological analyses of winter flounder collected in proximity to the Deer Island discharge have shown a marked reduction in liver lesions and other contaminant related diseases. More recently (since 1992) slight elevations in chlordane, dieldrin, and total DDTs have been noted in mussel, flounder, and lobster tissue collected from Boston Harbor and Massachusetts Bay. The authors discuss the possibility that remobilization of contaminants from the sediments may be a source of this apparent increase.

  19. Biochar: a green sorbent to sequester acidic organic contaminants

    NASA Astrophysics Data System (ADS)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2015-04-01

    Biochar is a carbon rich product of biomass pyrolysis that exhibits a high sorption potential towards a wide variety of inorganic and organic contaminants. Because it is a valuable soil additive and a potential carbon sink that can be produced from renewable resources, biochar has gained growing attention for the development of more sustainable remediation strategies. A lot of research efforts have been dedicated to the sorption of hydrophobic contaminants and metals to biochar. Conversely, the understanding of the sorption of acidic organic contaminants remains limited, and questions remain on the influence of biochar characteristics (e.g. ash content) on the sorption behaviour of acidic organic contaminants. To address this knowledge gap, sorption batch experiments were conducted with a series of structurally similar acidic organic contaminants covering a range of dissociation constant (2,4-D, MCPA, 2,4-DB and triclosan). The sorbents selected for experimentation included a series of 10 biochars covering a range of characteristics, multiwalled carbon nanotubes as model for pure carbonaceous phases, and an activated carbon as benchmark. Overall, sorption coefficient [L/kg] covered six orders of magnitude and generally followed the order 2,4-D < MCPA < 2,4-DB < triclosan. Combining comprehensive characterization of the sorbents with the sorption dataset allowed the discussion of sorption mechanisms and driving factors of sorption. Statistical analysis suggests that (i) partitioning was the main driver for sorption to sorbents with small specific surface area (< 25 m²/g), whereas (ii) specific mechanisms dominated sorption to sorbents with larger specific surface area. Results showed that factors usually not considered for the sorption of neutral contaminants play an important role for the sorption of organic acids. The pH dependent lipophilicity ratio (i.e. D instead of Kow), ash content and ionic strength are key factors influencing the sorption of acidic organic

  20. The impact of wafering on organic and inorganic surface contaminations

    NASA Astrophysics Data System (ADS)

    Meyer, S.; Wahl, S.; Timmel, S.; Köpge, R.; Jang, B.-Y.

    2016-08-01

    Beside the silicon feedstock material, the crystallization process and the cell processing itself, the wafer sawing process can strongly determine the final solar cell quality. Especially surface contamination is introduced in this process step because impurities from sawing meet with a virgin silicon surface which is highly reactive until the oxide layer is formed. In this paper we quantitatively analysed both, the organic and inorganic contamination on wafer surfaces and show that changes of process parameters during wafering may cause dramatic changes in surface purity. We present powerful techniques for the monitoring of wafer surface quality which is essential for the production of high efficiency and high quality solar cells.

  1. Photocatalytic: oxidation of volatile organic compounds present in airborne environment adjacent to sewage treatment plants.

    PubMed

    Raillard, C; Héquet, V; Le Cloirec, P; Legrand, J

    2004-01-01

    Emissions of volatile organic compounds (VOCs) from wastewater in municipal sewage or industrial wastewater treatment plants are often overlooked as sources of exposure to hazardous substances. The impact of such emissions on local airborne environments represents a growing source of scientific, toxicological and public health interest. Actually, VOCs are suspected to be quite dangerous for human health. Some of them belong to the family of odorous compounds and can cause serious annoyance in the neighbourhood of the emission sources. A way to remove VOCs released from sewers and wastewater treatment facilities could be to degrade them by photocatalytic oxidation. TiO2-based photocatalysts are known to be efficient for this kind of application. In the present work TiO2 P25 Degussa was deposited on glass supports. These materials were tested for the degradation of butanone-2 in a photocatalytic reactor. The influence of water vapour (relative humidity) was shown using the Langmuir-Hinshelwood kinetic model. PMID:14979545

  2. Assessment of oxidative DNA damage formation by organic complex mixtures from airborne particles PM(10).

    PubMed

    Gábelová, Alena; Valovicová, Zuzana; Lábaj, Juraj; Bacová, Gabriela; Binková, Blanka; Farmer, Peter B

    2007-07-01

    The free radical generating activity of airborne particulate matter (PM(10)) has been proposed as a primary mechanism in biological activity of ambient air pollution. In an effort to determine the impact of the complex mixtures of extractable organic matter (EOM) from airborne particles on oxidative damage to DNA, the level of 8-oxo-2'-deoxyguanosine (8-oxodG), the most prevalent and stable oxidative lesion, was measured in the human metabolically competent cell line Hep G2. Cultured cells were exposed to equivalent EOM concentrations (5-150microg/ml) and oxidative DNA damage was analyzed using a modified single cell gel electrophoresis (SCGE), which involves the incubation of whole cell DNA with repair specific DNA endonuclease, which cleaves oxidized DNA at the sites of 8-oxodG. EOMs were extracted from PM(10) collected daily (24h intervals) in three European cities: Prague (Czech Republic, two monitoring sites, Libus and Smíchov), Kosice (Slovak Republic) and Sofia (Bulgaria) during 3-month sampling periods in the winter and summer seasons. No substantial time- and dose-dependent increase of oxidative DNA lesions was detected in EOM-treated cells with the exception of the EOM collected at the monitoring site Kosice, summer sampling. In this case, 2h cell exposure to EOM resulted in a slight but significant increase of oxidative DNA damage at three from total of six concentrations. The mean 8-oxodG values at these concentrations ranged from 15.3 to 26.1 per 10(6) nucleotides with a value 3.5 per 10(6) nucleotides in untreated cells. B[a]P, the positive control, induced a variable but insignificant increase of oxidative DNA damage in Hep G2 cell (approximately 1.6-fold increase over control value). Based on these data we believe that EOM samples extracted from airborne particle PM(10) play probably only a marginal role in oxidative stress generation and oxidative lesion formation to DNA. However, adsorbed organic compounds can undergo various interactions

  3. Characterisation of airborne particles and associated organic components produced from incense burning.

    PubMed

    Chuang, Hsiao-Chi; Jones, Tim; Chen, Yang; Bell, Jennifer; Wenger, John; BéruBé, Kelly

    2011-12-01

    Airborne particles generated from the burning of incense have been characterized in order to gain an insight into the possible implications for human respiratory health. Physical characterization performed using field-emission scanning electron microscopy showed incense particulate smoke mainly consisted of soot particles with fine and ultrafine fractions in various aggregated forms. A range of organic compounds present in incense smoke have been identified using derivatisation reactions coupled with gas chromatography-mass spectrometry analysis. A total of 19 polar organic compounds were positively identified in the samples, including the biomass burning markers levoglucosan, mannosan and galactosan, as well as a number of aromatic acids and phenols. Formaldehyde was among 12 carbonyl compounds detected and predominantly associated with the gas phase, whereas six different quinones were also identified in the incense particulate smoke. The nano-structured incense soot particles intermixed with organics (e.g. formaldehyde and quinones) could increase the oxidative capacity. When considering the worldwide prevalence of incense burning and resulting high respiratory exposures, the oxygenated organics identified in this study have significant human health implications, especially for susceptible populations. PMID:21769554

  4. Reducing Organic Contamination in NASA JSC Astromaterial Curation Facility

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Allen, C. C.; Allton, J. H.

    2013-01-01

    Future robotic and human spaceflight missions to the Moon, Mars, asteroids and comets will require handling and storing astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. Much was learned from the rigorous attempts to minimize and monitor organic contamination during Apollo, but it was not adequate for current analytical requirements; thus [1]. OSIRIS-REx, Hayabusa-2, and future Mars sample return will require better protocols for reducing organic contamination. Future isolation con-tainment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study established the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs [2, 3]. After standard ultra-pure water (UPW) cleaning, the majority of organic contaminates found were hydrocarbons, plasticizers, silicones, and solvents. Hydro-carbons loads (> C7) ranged from 1.9 to 11.8 ng/cm2 for TD-GC-MS wafer exposure analyses and 5.0 to 19.5 ng/L for TD-GC-MS adsorbent tube exposure. Plasticizers included < 0.6 ng/cm2 of DBP, DEP, TXIB, and DIBP. Silicones included < 0.5 ng/cm2 of cyclo(Me2SiO)x (x = 6, 8, 9, 10) and siloxane. Solvents included < 1.0 ng/cm2 of 2-cyclohexen-1-one, 3,5,5-trimethyl- (Isopho-rone), N-formylpiperidine, and 2-(2-butoxyethoxy) ethanol. In addition, DBF, rubber/polymer additive was found at < 0.2 ng/cm2 and caprolactam, nylon-6 at < 0.6 ng/cm2. Reducing Organics: The Apollo program was the last sam-ple return mission to place high-level organic requirements and biological containment protocols on a curation facility. The high vacuum complex F-201 glovebox in the Lunar Receiving Labora-tory used ethyl alcohol (190 proof), 3:1 benzene/methanol (nano grade solution), and heat sterilization at 130degC for 48 hours to reduce organic

  5. Characterization of Organic Contamination in Semiconductor Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Nutsch, A.; Beckhoff, B.; Bedana, G.; Borionetti, G.; Codegoni, D.; Grasso, S.; Guerinoni, G.; Leibold, A.; Müller, M.; Otto, M.; Pfitzner, L.; Polignano, M.-L.; De Simone, D.; Frey, L.

    2009-09-01

    The impact of organic contamination on wafer surfaces on the functionality of nanostructures and advanced microelectronics becomes crucial as the continuously shrinking feature sizes become similar to the dimensions of molecules and clusters of molecules. Especially, manufacturing of highly integrated circuits requires clean surfaces as processes might cause defects involving for example carbon and sulfur. The approach to study organic contamination on wafer samples using different analytical tools enables the detection of the whole range of organic compounds including non-volatile and volatile ones. For the studies the methods used were synchrotron radiation based Near Edge X-ray Absorption Fine Structure (NEXAFS) in the soft X-Ray range at the absorption edges of light elements (e.g. C, N, O, F) combined with reference-free Total-reflection X-Ray Fluorescence (TXRF) analysis, Thermal Desorption Gas Chromatography Mass Spectrometry (TD-GCMS), and Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS). TOF-SIMS analysis of the surfaces of wafers from the lithography process after ashing showed sulfur compounds related to resist residues not identified by TD-GCMS. The source of the sulfur is assumed to be a photo acid generator of the resist. It was proven by TD-GCMS and TXRF-NEXAFS that final clean and packaging were the process steps during which detectable organic contamination was transferred to the wafer surface during wafer manufacturing. Multi-criteria evaluation of the TXRF NEXAFS spectra was used to compare the results with TD-GCMS. The TXRF-NEXAFS results are in good agreement with the TD-GCMS results. The advantage of TXRF-NEXAFS and TOF-SIMS are the sensitivity for organic contaminants that are not detectable by TD-GCMS, due to their high boiling point and low vapor pressures.

  6. Inclusion of emerging organic contaminants in groundwater monitoring plans.

    PubMed

    Lamastra, Lucrezia; Balderacchi, Matteo; Trevisan, Marco

    2016-01-01

    Groundwater is essential for human life and its protection is a goal for the European policies. All the anthropogenic activities could impact on water quality. •Conventional pollutants and more than 700 emerging pollutants, resulting from point and diffuse source contamination, threat the aquatic ecosystem.•Policy-makers and scientists will have to cooperate to create an initial groundwater emerging pollutant priority list, to answer at consumer demands for safety and to the lack of conceptual models for emerging pollutants in groundwater.•Among the emerging contaminants and pollutants this paper focuses on organic wastewater contaminants (OWCs) mainly released into the environment by domestic households, industry, hospitals and agriculture. This paper starts from the current regulatory framework and from the literature overview to explain how the missing conceptual model for OWCs could be developed.•A full understanding of the mechanisms leading to the contamination and the evidence of the contamination must be the foundation of the conceptual model. In this paper carbamazepine, galaxolide and sulfamethozale, between the OWCs, are proposed as "environmental tracers" to identify sources and pathways ofcontamination/pollution. PMID:27366676

  7. Report of the Organic Contamination Science Steering Group

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Beaty, D. W.; Anderson, M. S.; Aveni, G.; Bada, J. L.; Clemett, S. J.; DesMaris, D. J.; Douglas, S.; Dworkin, J. P.; Kern, R. G.

    2004-01-01

    The exploration of the possible emergence and duration of life on Mars from landed platforms requires attention to the quality of measurements that address these objectives. In particular, the potential impact of terrestrial contamination on the measurement of reduced carbon with sensitive in situ instruments must be addressed in order to reach definitive conclusions regarding the source of organic molecules. Following the recommendation of the Mars Exploration Program Analysis Group (MEPAG) at its September 2003 meeting [MEPAG, 2003], the Mars Program Office at NASA Headquarters chartered the Organic Contamination Science Steering Group (OCSSG) to address this issue. The full report of the six week study of the OCSSG can be found on the MEPAG web site [1]. The study was intended to define the contamination problem and to begin to suggest solutions that could provide direction to the engineering teams that design and produce the Mars landed systems. Requirements set by the Planetary Protection Policy in effect for any specific mission do not directly address this question of the potential interference from terrestrial contaminants during in situ measurements.

  8. Bibliography on contaminants and solubility of organic compounds in oxygen

    NASA Technical Reports Server (NTRS)

    Ordin, P. M. (Compiler)

    1975-01-01

    A compilation of a number of document citations is presented which contains information on contaminants in oxygen. Topics covered include contaminants and solubility of organic compounds in oxygen, reaction characteristics of organic compounds with oxygen, and sampling and detection limits of impurities. Each citation in the data bank contains many items of information about the document. Some of the items are title, author, abstract, corporate source, description of figures pertinent to hazards or safety, key references, and descriptors (keywords) by which the document can be retrieved. Each citation includes an evaluation of the technical contents as to being good/excellent, acceptable, or poor. The descriptors used to define the contents of the documents and subsequently used in the computerized search operations were developed for the cryogenic fluid safety by experts in the cryogenics field.

  9. Organic mercury exposure from fungicide-contaminated eggs

    SciTech Connect

    Englender, S.J.; Landrigan, P.J.; Greenwood, M.R.; Atwood, R.G.; Clarkson, T.W.; Smith, J.C.

    1980-07-01

    During a period of 50 to 55 days from early January to March 2, 1979, 14 members of an extended family in Yakima, Washington, ate eggs contaminated with organic mercury. Seed grain which had been treated with a mercurial fungicide and fed to chickens in a home flock was the source of exposure. Blood mercury levels in family members ranged from 0.9 to 20.2 ppB and correlated positively with average daily egg consumption (r = 0.92). There were no symptoms or physical signs of organic mercury intoxication. Prompt confiscation of the contaminated grain, eggs, and chicken flock terminated the exposure and may have prevented the development of serious illness.

  10. Airborne concentrations, skin contamination, and urinary metabolite excretion of polycyclic aromatic hydrocarbons among paving workers exposed to coal tar derived road tars

    SciTech Connect

    Jongeneelen, F.J.; Scheepers, P.T.; Groenendijk, A.; Van Aerts, L.A.; Anzion, R.B.; Bos, R.P.; Veenstra, S.J.

    1988-12-01

    The exposure of surface dressing workers to polycyclic aromatic hydrocarbons (PAH) was studied. Four different paving sites, at which coal tar-containing binders were applied, were selected as work sites with high exposure levels of PAH. Breathing zone airborne particulates, contamination of the skin with PAH, and 1-hydroxypyrene in urine of the workers involved in chip sealing were determined. Substantial concentrations of cyclohexane-soluble airborne particulate matter were found (GM = 0.2 mg/m3, n = 28). Skin contamination was determined using two different methods: with exposure pads and by hand washing. Pads were mounted on several parts of the body: wrist, elbow, neck, shoulder, and ankle. The pads located on the wrist appeared to be the most contaminated (pyrene: GM = 22 ng/1.77 cm2, n = 40). The end-of-shift hand washing showed that the hands of the workers were contaminated with PAH (pyrene: GM = 70 micrograms, n = 35). Preshift hand washing showed far lower, but detectable, quantities of PAH on workers' hands (pyrene: GM = 5 micrograms, n = 35). Enhanced levels of urinary 1-hydroxypyrene among the workers were found. The highest levels were found in the end-of-shift urine samples. Correlations between the pyrene exposure variables were studied. Significant positive correlations were found between pyrene on the wrist pad versus end-of-shift urinary 1-hydroxypyrene; between pyrene on the hands versus end-of-shift urinary 1-hydroxypyrene; and between the two different skin contamination variables.

  11. Genotoxicity of organic extracts of urban airborne particulate matter: an assessment within a personal exposure study.

    PubMed

    Abou Chakra, Oussama R; Joyeux, Michel; Nerrière, Eléna; Strub, Marie-Pierre; Zmirou-Navier, Denis

    2007-01-01

    Airborne particulate matter, PM(10) and PM(2.5), are associated with a range of health effects including lung cancer. Their complex organic fraction contains genotoxic and carcinogenic compounds such as polycyclic aromatic hydrocarbons (PAHs) and their derivatives. This study evaluates the genotoxicity of the PM(10) and PM(2.5) organic extracts that were sampled in the framework of a personal exposure study in three French metropolitan areas (Paris, Rouen and Strasbourg), using the comet assay, performed on HeLa S3 cells. In each city, 60-90 non-smoking volunteers composed of two groups of equal size (adults and children) carried the personal Harvard Chempass multi-pollutant sampler during 48h along two different seasons ('hot' and 'cold'). Volunteers were selected so as to live (home and work/school) in 3 different urban sectors contrasted in terms of air pollution within each city (one highly exposed to traffic emissions, one influenced by local industrial sources, and a background urban environment). Genotoxic effects are stronger for PM(2.5) extracts than for PM(10), and greater in winter than in summer. Fine particles collected by subjects living within the traffic proximity sector present the strongest genotoxic responses, especially in the Paris metropolitan area. This work confirms the genotoxic potency of particulate matter (PM(10) and PM(2.5)) organic extracts to which urban populations are exposed. PMID:16901531

  12. Evaluation of airborne geophysical surveys for large-scale mapping of contaminated mine pools: draft final report

    SciTech Connect

    Hammack, R. W.

    2006-12-28

    Decades of underground coal mining has left about 5,000 square miles of abandoned mine workings that are rapidly filling with water. The water quality of mine pools is often poor; environmental regulatory agencies are concerned because water from mine pools could contaminate diminishing surface and groundwater supplies. Mine pools are also a threat to the safety of current mining operations. Conversely, mine pools are a large, untapped water resource that, with treatment, could be used for a variety of industrial purposes. Others have proposed using mine pools in conjunction with heat pumps as a source of heating and cooling for large industrial facilities. The management or use of mine pool water requires accurate maps of mine pools. West Virginia University has predicted the likely location and volume of mine pools in the Pittsburgh Coalbed using existing mine maps, structure contour maps, and measured mine pool elevations. Unfortunately, mine maps only reflect conditions at the time of mining, are not available for all mines, and do not always denote the maximum extent of mining. Since 1999, the National Energy Technology Laboratory (NETL) has been evaluating helicopter-borne, electromagnetic sensing technologies for the detection and mapping of mine pools. Frequency domain electromagnetic sensors are able to detect shallow mine pools (depth < 50 m) if there is sufficient contrast between the conductance of the mine pool and the conductance of the overburden. The mine pools (conductors) most confidently detected by this technology are overlain by thick, resistive sandstone layers. In 2003, a helicopter time domain electromagnetic sensor was applied to mined areas in southwestern Virginia in an attempt to increase the depth of mine pool detection. This study failed because the mine pool targets were thin and not very conductive. Also, large areas of the surveys were degraded or made unusable by excessive amounts of cultural electromagnetic noise that obscured the

  13. Bioconcentration of organic contaminants in Daphnia resting eggs.

    PubMed

    Chiaia-Hernandez, Aurea C; Ashauer, Roman; Moest, Markus; Hollingshaus, Tobias; Jeon, Junho; Spaak, Piet; Hollender, Juliane

    2013-09-17

    Organic contaminants detected in sediments from Lake Greifensee and other compounds falling in the log Dow range from 1 to 7 were selected to study the bioconcentration of organic contaminants in sediments in Daphnia resting eggs (ephippia). Our results show that octocrylene, tonalide, triclocarban, and other personal care products, along with pesticides and biocides can accumulate in ephippia with log BCF values up to 3. Data on the uptake and depuration kinetics show a better fit toward a two compartment organism model over a single compartment model due to the differences in ephippial egg content in the environment. The obtained BCFs correlate with hydrophobicity for neutral compounds. Independence between BCF and hydrophobicity was observed for partially ionized compounds with log Dow values around 1. Internal concentrations in ephippia in the environment were predicted based on sediment concentrations using the equilibrium partitioning model and calculated BCFs. Estimated internal concentration values ranged between 1 and 68,000 μg/kglip with triclocarban having the highest internal concentrations followed by tonalide and triclosan. The outcomes indicate that contaminants can be taken up by ephippia from the water column or the pore water in the sediment and might influence fitness and sexual reproduction in the aquatic key species of the genus Daphnia. PMID:23919732

  14. Electrokinetic remediation of six emerging organic contaminants from soil.

    PubMed

    Guedes, Paula; Mateus, Eduardo P; Couto, Nazaré; Rodríguez, Yadira; Ribeiro, Alexandra B

    2014-12-01

    Some organic contaminants can accumulate in organisms and cause irreversible damages in biological systems through direct or indirect toxic effects. In this study the feasibility of the electrokinetic (EK) process for the remediation of 17β-oestradiol (E2), 17α-ethinyloestradiol (EE2), bisphenol A (BPA), nonylphenol (NP), octylphenol (OP) and triclosan (TCS) in soils was studied in a stationary laboratory cell. The experiments were conducted using a silty loam soil (S2) at 0, 10 and 20mA and a sandy soil (S3) at 0 and 10 mA. A pH control in the anolyte reservoir (pH>13) at 10 mA was carried out using S2, too. Photo and electrodegradation experiments were also fulfilled. Results showed that EK is a viable method for the remediation of these contaminants, both through mobilization by electroosmotic flow (EOF) and electrodegradation. As EOF is very sensible to soil pH, the control in the anolyte increased EOF rate, consequently enhancing contaminants mobilization towards the cathode end. The extent of the mobilization towards the electrode end was mainly dependent on compounds solubility and octanol-water partition coefficient. In the last 24h of experiments, BPA presented the highest mobilization rate (ca. 4 μg min(-1)) with NP not being detected in the catholyte. At the end of all experiments the percentage of contaminants that remained in the soil ranged between 17 and 50 for S2, and between 27 and 48 for S3, with no statistical differences between treatments. The mass balance performed showed that the amount of contaminant not detected in the cell is similar to the quantity that potentially may suffer photo and electrodegradation. PMID:24997283

  15. Growth of desferrioxamine-deficient Streptomyces mutants through xenosiderophore piracy of airborne fungal contaminations.

    PubMed

    Arias, Anthony Argüelles; Lambert, Stéphany; Martinet, Loïc; Adam, Delphine; Tenconi, Elodie; Hayette, Marie-Pierre; Ongena, Marc; Rigali, Sébastien

    2015-07-01

    Due to the necessity of iron for housekeeping functions, nutrition, morphogenesis and secondary metabolite production, siderophore piracy could be a key strategy in soil and substrate colonization by microorganisms. Here we report that mutants of bacterium Streptomyces coelicolor unable to produce desferrioxamine siderophores could recover growth when the plates were contaminated by indoor air spores of a Penicillium species and Engyodontium album. UPLC-ESI-MS analysis revealed that the HPLC fractions with the extracellular 'resuscitation' factors of the Penicillium isolate were only those that contained siderophores, i.e. Fe-dimerum acid, ferrichrome, fusarinine C and coprogen. The restored growth of the Streptomyces mutants devoid of desferrioxamine is most likely mediated through xenosiderophore uptake as the cultivability depends on the gene encoding the ABC-transporter-associated DesE siderophore-binding protein. That a filamentous fungus allows the growth of desferrioxamine non-producing Streptomyces in cocultures confirms that xenosiderophore piracy plays a vital role in nutritional interactions between these taxonomically unrelated filamentous microorganisms. PMID:26183915

  16. ORGANIC CONTAMINANTS IN SEDIMENTS FROM THE TRENTON CHANNEL OF THE DETROIT RIVER, MI

    EPA Science Inventory

    Anthropogenic organic contaminants in sediments from the Trenton Channel of the Detroit River, a highly industrialized waterway connecting Lake St. Clair with Lake Erie, were identified and quantified. he four major classes of organic contaminants identified were polycyclic aroma...

  17. Determining Passive Sampler Partition Coefficients for Dissolved-phase Organic Contaminants

    EPA Science Inventory

    Passive samplers are used for environmental and analytical purposes to measure dissolved nonionic organic contaminants (NOCs) by absorption from a contaminated medium into a clean phase, usually in the form of a synthetic organic film. Recently developed passive sampler techniqu...

  18. Regional prediction of soil organic carbon content over croplands using airborne hyperspectral data

    NASA Astrophysics Data System (ADS)

    Vaudour, Emmanuelle; Gilliot, Jean-Marc; Bel, Liliane; Lefebvre, Josias; Chehdi, Kacem

    2015-04-01

    This study was carried out in the framework of the Prostock-Gessol3 and the BASC-SOCSENSIT projects, dedicated to the spatial monitoring of the effects of exogenous organic matter land application on soil organic carbon storage. It aims at identifying the potential of airborne hyperspectral AISA-Eagle data for predicting the topsoil organic carbon (SOC) content of bare cultivated soils over a large peri-urban area (221 km2) with both contrasted soils and SOC contents, located in the western region of Paris, France. Soils comprise hortic or glossic luvisols, calcaric, rendzic cambisols and colluvic cambisols. Airborne AISA-Eagle data (400-1000 nm, 126 bands) with 1 m-resolution were acquired on 17 April 2013 over 13 tracks which were georeferenced. Tracks were atmospherically corrected using a set of 22 synchronous field spectra of both bare soils, black and white targets and impervious surfaces. Atmospherically corrected track tiles were mosaicked at a 2 m-resolution resulting in a 66 Gb image. A SPOT4 satellite image was acquired the same day in the framework of the SPOT4-Take Five program of the French Space Agency (CNES) which provided it with atmospheric correction. The land use identification system layer (RPG) of 2012 was used to mask non-agricultural areas, then NDVI calculation and thresholding enabled to map agricultural fields with bare soil. All 18 sampled sites known to be bare at this very date were correctly included in this map. A total of 85 sites sampled in 2013 or in the 3 previous years were identified as bare by means of this map. Predictions were made from the mosaic spectra which were related to topsoil SOC contents by means of partial least squares regression (PLSR). Regression robustness was evaluated through a series of 1000 bootstrap data sets of calibration-validation samples. The use of the total sample including 27 sites under cloud shadows led to non-significant results. Considering 43 sites outside cloud shadows only, median

  19. Airborne Flux Measurements of Volatile Organic Compounds and NOx over a European megacity

    NASA Astrophysics Data System (ADS)

    Shaw, Marvin; Lee, James; Davison, Brian; Misztal, Pawel; Karl, Thomas; Hewitt, Nick; Lewis, Alistair

    2014-05-01

    Ground level ozone (O3) and nitrogen dioxide (NO2) are priority pollutants whose concentrations are closely regulated by European Union Air Quality Directive 2008/50/EC. O3 is a secondary pollutant, produced from a complex chemical interplay between oxides of nitrogen (NOx = NO + NO2) and volatile organic compounds (VOCs). Whilst the basic atmospheric chemistry leading to O3 formation is generally well understood, there are substantial uncertainties associated with the magnitude of emissions of both VOCs and NOx. At present our knowledge of O3 precursor emissions in the UK is primarily derived from National Atmospheric Emission inventories (NAEI) that provide spatially disaggregated estimates at 1x1km resolution, and these are not routinely tested at city or regional scales. Uncertainties in emissions propagate through into uncertainties in predictions of air quality in the future, and hence the likely effectiveness of control policies on both background and peak O3 and NO2 concentrations in the UK. The Ozone Precursor Fluxes in the Urban Environment (OPFUE) project aims to quantify emission rates for NOx and selected VOCs in and around the megacity of London using airborne eddy covariance (AEC). The mathematical foundation for AEC has been extensively reviewed and AEC measurements of ozone, dimethyl sulphide, CO2 and VOCs have been previously reported. During the summer of 2013, approximately 30 hours of airborne flux measurements of toluene, benzene, NO and NO2 were obtained from the NERC Airborne Research and Survey Facility's (ARSF) Dornier-228 aircraft. Over SE England, flights involved repeated south west to north east transects of ~50 km each over Greater London and it's surrounding suburbs and rural areas, flying at the aircraft's minimum operating flight altitude and airspeed (~300m, 80m/s). Mixing ratios of benzene and toluene were acquired at 2Hz using a proton transfer reaction mass spectrometer (PTR-MS) and compared to twice hourly whole air canister

  20. Effect of Particles on Fenton Oxidation of Organic Contaminated Groundwater

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, Y.; Gwak, J.; Lee, C.; Ha, J.

    2009-12-01

    Fenton oxidation has been widely applied for a variety of water treatment due to non-selectively oxidative capability at a high reaction rate and cost effectiveness. Even though wide and deep range of studies were conducted for understanding the Fenton reaction with various contaminants, effect of particles on Fenton reaction has been little studied. This study explored the performance of Fenton oxidation for organic contaminated groundwater treatment in the presence of particles. The contaminated groundwater was a free oil separated groundwater obtained from a pilot scale bioslurping process for LNAPL treatment. The groundwater was characterized by a high suspended solid (SS) concentration relative to total organic carbon (TOC) concentration varying from 4 to 7.3. It was found that the optimum ratio of Fenton’s reagent (Fe2+:H2O2) was 1:10 in terms of TOC removal efficiency. Presence of solid particles significantly affected the TOC removal efficiency by Fenton’s reaction accounting for 37% for raw groundwater and 61% for soluble groundwater. Particles larger than 5 µm could be effectively settled out by a quiescent settling for 3 hr based on particle size distribution analysis. The TOC removal efficiency for the supernatant after settling was a similar to that of soluble sample. Total petroleum hydrocarbon (TPH) was mostly present in the adsorbed form to the particles in the groundwater and was potentially persistent to Fenton oxidation. TPH removal efficiency by Fenton oxidation was 24% which was less than that of the total groundwater indicating that hydroxyl radicals generated from Fenton oxidation did not directly attack the adsorbed organic carbon and removal of the adsorbed organic carbon was dependent on its mass transfer to bulk region. The concept for particle effect on Fenton oxidation was confirmed in another experiment spiking washed soil to the soluble groundwater. TOC removal efficiency was lowered by addition of the soil probably because the

  1. Evaluation of the area factor used in the RESRAD code for the estimation of airborne contaminant concentrations of finite area sources

    SciTech Connect

    Chang, Y.S.; Yu, C.; Wang, S.K.

    1998-07-01

    The area factor is used in the RESRAD code to estimate the airborne contaminant concentrations for a finite area of contaminated soils. The area factor model used in RESRAD version 5.70 and earlier (referred to as the old area factor) was a simple, but conservative, mixing model that tended to overestimate the airborne concentrations of radionuclide contaminants. An improved and more realistic model for the area factor (referred to here as the new area factor) is described in this report. The new area factor model is designed to reflect site-specific soil characteristics and meteorological conditions. The site-specific parameters considered include the size of the source area, average particle diameter, and average wind speed. Other site-specific parameters (particle density, atmospheric stability, raindrop diameter, and annual precipitation rate) were assumed to be constant. The model uses the Gaussian plume model combined with contaminant removal processes, such as dry and wet deposition of particulates. Area factors estimated with the new model are compared with old area factors that were based on the simple mixing model. In addition, sensitivity analyses are conducted for parameters assumed to be constant. The new area factor model has been incorporated into RESRAD version 5.75 and later.

  2. Accumulation and distribution of heavy metals in sediments and fish in the Kola Peninsula lakes under airborne contamination

    SciTech Connect

    Dauvalter, V.A.; Kashulin, N.A.; Lukin, A.A.

    1996-12-31

    The copper-nickel smelter complexes of Kola Peninsula are powerful sources of atmospheric contamination by heavy metals (Ni, Cu, Co, Cd, etc.) and acidic oxides (SO{sub 2}) deposited in precipitation and caused negative effects on local freshwater ecosystems. The rise of background levels occurs over large areas in the region. The aim of the investigations is to assess effects of the air contamination on lake ecosystems at different distances (from 15 to 120 km) from one of the main heavy metal pollution sources of the Kola Peninsula - smelters of the Pechenganickel Company. Negative effects of air pollution by the smelters on the freshwater ecosystems were recorded. Lake sediments accumulate very intensively heavy metals. Heavy metal contamination factors calculated as the quotient of concentration from the uppermost (0-1 cm) sediment to the mean preindustrial background value (concentrations from 20-30 cm sediment layers) for the investigated region reach up 120 for Ni and 76 for Cu in the lakes within a distance of 40 km from the smelters. The lakes in this region have very high contamination degree according classification by Hakanson (1980). Concentrations of Ni in organs and tissues of all studied fishes (whitefish, pike, perch, arctic char, brown trout) were considerably higher in the investigated lakes than in remote unpolluted lakes. There is tight positive correlation between Ni concentrations in surficial sediment (0-1 cm) and fish kidney (r = +0.854), as well as between values of contamination degree and Ni content in fish (r = +0.871).

  3. Airborne Measurements of Secondary Organic Aerosol Formation in the Oil Sands Region of Alberta

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Hayden, K.; Liu, P.; Leithead, A.; Moussa, S. G.; Staebler, R. M.; Gordon, M.; O'brien, J.; Li, S. M.

    2014-12-01

    The Alberta oil sands (OS) region represents a strategic natural resource and is a key driver of economic development. Its rapid expansion has led to a need for a more comprehensive understanding of the associated potential cumulative environmental impacts. In summer 2013, airborne measurements of various gaseous and particulate substances were made in the Athabasca oil sands region between August 13 and Sept 7, 2013. In particular, organic aerosol mass and composition measurements were performed with a High Resolution Time of flight Aerosol Mass Spectrometer (HR-ToF-AMS) supported by gaseous measurements of organic aerosol precursors with Proton Transfer Reaction (PTR) and Chemical Ionization (CI) mass spectrometers. These measurement data on selected flights were used to estimate the potential for local anthropogenic OS emissions to form secondary organic aerosol (SOA) downwind of precursor sources, and to investigate the importance of the surrounding biogenic emissions to the overall SOA burden in the region. The results of several flights conducted to investigate these transformations demonstrate that multiple distinct plumes were present downwind of OS industrial sources, each with differing abilities to form SOA depending upon factors such as NOx level, precursor VOC composition, and oxidant concentration. The results indicate that approximately 100 km downwind of an OS industrial source most of the measured organic aerosol (OA) was secondary in nature, forming at rates of ~6.4 to 13.6 μgm-3hr-1. Positive matrix factor (PMF) analysis of the HR-ToF-AMS data suggests that the SOA was highly oxidized (O/C~0.6) resulting in a measured ΔOA (difference above regional background OA) of approximately 2.5 - 3 despite being 100 km away from sources. The relative contribution of biogenic SOA to the total SOA and the factors affecting SOA formation during a number of flights in the OS region will be described.

  4. Leaching of organic contaminants from storage of reclaimed asphalt pavement.

    PubMed

    Norin, Malin; Strömvall, A M

    2004-03-01

    Recycling of asphalt has been promoted by rapid increases in both the use and price of petroleum-based bitumen. Semi-volatile organic compounds in leachates from reclaimed asphalt pavement, measured in field samples and in laboratory column test, were analysed through a GC/MS screen-test methodology. Sixteen PAH (polyaromatic hydrocarbons) were also analysed in leachates from the column study. The highest concentrations of semi-volatile compounds, approximately 400 microg l(-1), were measured in field samples from the scarified stockpile. Naphthalene, butylated hydroxytoluene (BHT) and dibutyl phthalate (DBP) were the most dominant of the identified semi-volatiles. The occurrence of these compounds in urban groundwater, also indicate high emission rates and persistent structures of the compounds, making them potentially hazardous. Car exhausts, rubber tires and the asphalt material itself are all probable emission sources, determined from the organic contaminants released from the stockpiles. The major leaching mechanism indicated was dissolution of organic contaminants from the surface of the asphalt gravels. In the laboratory column test, the release of high-molecular weight and more toxic PAH was higher in the leachates after two years than at the commencement of storage. The concentrations of semi-volatiles in leachates, were also several times lower than those from the field stockpile. These results demonstrate the need to follow up laboratory column test with real field measurements. PMID:15176747

  5. Source apportionment of airborne particulate matter using inorganic and organic species as tracers

    NASA Astrophysics Data System (ADS)

    Wang, Yungang; Hopke, Philip K.; Xia, Xiaoyan; Rattigan, Oliver V.; Chalupa, David C.; Utell, Mark J.

    2012-08-01

    Source apportionment is typically performed on chemical composition data derived from particulate matter (PM) samples. However, many common sources no longer emit significant amounts of characteristic trace elements requiring the use of more comprehensive chemical characterization in order to fully resolve the PM sources. Positive matrix factorization (EPA PMF, version 4.1) was used to analyze 24-hr integrated molecular marker (MM), secondary inorganic ions, trace elements, carbonaceous species and light absorption data to investigate sources of PM2.5 in Rochester, New York between October 2009 and October 2010 to explore the role of specific MMs. An eight-factor solution was found for which the factors were identified as isoprene secondary organic aerosol (SOA), airborne soil, other SOA, diesel emissions, secondary sulfate, wood combustion, gasoline vehicle, and secondary nitrate contributing 6.9%, 12.8%, 3.7%, 7.8%, 45.5%, 9.1%, 7.9%, and 6.3% to the average PM2.5 concentration, respectively Concentrations of pentacosane, hexacosane, heptacosane, and octacosane in the gasoline vehicles factor were larger compared to diesel emissions. Aethalometer Delta-C was strongly associated with wood combustion. The compounds, n-heptacosanoic acid and n-octacosanoic acid, occasionally used in the past as tracers for road dust, were found to largely associate with SOA in this study. In comparison with a standard PMF analyses without MM, inclusion of them was necessary to resolve SOA and wood combustion factors in urban areas.

  6. Airborne in-situ spectral characterization and concentration estimates of fluorescent organics as a function of depth

    NASA Technical Reports Server (NTRS)

    Tittle, R. A.

    1988-01-01

    The primary purpose of many in-situ airborne light scattering experiments in natural waters is to spectrally characterize the subsurface fluorescent organics and estimate their relative concentrations. This is often done by shining a laser beam into the water and monitoring its subsurface return signal. To do this with the proper interpretation, depth must be taken into account. If one disregards depth dependence when taking such estimates, both their spectral characteristics and their concentrations estimates can be rather ambiguous. A simple airborne lidar configuration is used to detect the subsurface return signal from a particular depth and wavelength. Underwater scatterometer were employed to show that in-situ subsurface organics are very sensitive to depth, but they also require the use of slow moving boats to cover large sample areas. Also, their very entry into the water disturbs the sample it is measuring. The method described is superior and simplest to any employed thus far.

  7. Studies examine contaminants: Pharmaceuticals, hormones and other organic wastewater contaminants in ground water resources

    USGS Publications Warehouse

    Barnes, Kymm K.; Kolpin, Dana W.; Furlong, Edward T.; Zaugg, Steven D.; Meyer, Michael T.; Barber, Larry B.; Focazio, Michael J.

    2005-01-01

    Ground water provides approximately 40 percent of the nation’s public water supply, and the total percentage of withdrawals for irrigation has increased from 23 percent in 1950 to 42 percent in 2000. Ground water also is a major contributor to flow in many streams and rivers in the United States and has a substantial influence on river and wetland habitats for plants and animals. Organic wastewater contaminants (OWCs) in the environment recently have been documented to be of global concern with a variety of sources and source pathways.

  8. On the reversibility of environmental contamination with persistent organic pollutants.

    PubMed

    Choi, Sung-Deuk; Wania, Frank

    2011-10-15

    An understanding of the factors that control the time trends of persistent organic pollutants (POPs) in the environment is required to evaluate the effectiveness of emission reductions and to predict future exposure. Using a regional contaminant fate model, CoZMo-POP 2, and a generic bell-shaped emission profile, we simulated time trends of hypothetical chemicals with a range of POP-like partitioning and degradation properties in different compartments of a generic warm temperate environment, with the objective of identifying the processes that may prevent the reversibility of environmental contamination with POPs after the end of primary emissions. Evaporation from soil and water can prevent complete reversibility of POP contamination of the atmosphere after the end of emissions. However, under the selected conditions, only for organic chemicals within a narrow range of volatility, that is, a logarithm of the octanol air equilibrium partition coefficient between 7 and 8, and with atmospheric degradation half-lives in excess of a few month can evaporation from environmental reservoirs sustain atmospheric levels that are within an order of magnitude of those resulting from primary emissions. HCB and α-HCH fulfill these criteria, which may explain, why their atmospheric concentrations have remained relatively high decades after their main primary emissions have been largely eliminated. Soil-to-water transfer is found responsible for the lack of reversibility of POP contamination of the aqueous environment after the end of emissions, whereas reversal of water-sediment exchange, although possible, is unlikely to contribute significantly. Differences in the reversibility of contamination in air and water suggests the possibility of changes in the relative importance of various exposure pathways after the end of primary emissions, namely an increase in the importance of the aquatic food chain relative to the agricultural one, especially if the former has a benthic

  9. Mapping organic contaminant plumes in groundwater using spontaneous potentials

    NASA Astrophysics Data System (ADS)

    Forte, Sarah

    Increased water demands have raised awareness of its importance. One of the challenges facing water resource management is dealing with contaminated groundwater; delineating, characterizing and remediating it. In the last decade, spontaneous potentials have been proposed as a method for delineating degrading organic contaminant plumes in groundwater. A hypothesis proposed that the redox potential gradient due to degradation of contaminants generated an electrical potential gradient that could be measured at the ground surface. This research was undertaken to better understand this phenomenon and find under what conditions it occurs. Spontaneous potentials are electrical potentials generated by three sources that act simultaneously: electrokinetic, thermoelectric and electrochemical sources. Over contaminant plumes electrochemical sources are those of interest. Thermoelectric sources are negligible unless in geothermal areas, but we hypothesized that electrokinetic potentials could be impacted by contaminants altering sediment surface properties. We built and calibrated a laboratory apparatus to make measurements that allowed us to calculate streaming current coupling coefficients. We tested sediment from hydrocarbon impacted sites with clean and hydrocarbon polluted groundwater and found a measurable though inconsistent effect. Moreover, numerical modelling was used to demonstrate that the impact of these changes on field measurements was negligible. Spontaneous potential surveys were conducted on two field sites with well characterized degrading hydrocarbon plumes in groundwater. We did not find a correlation between redox conditions and spontaneous potential, even after the electrical measurements were corrected for anthropogenic noise. In order to determine why the expected signal was not seen, we undertook numerical modelling based on coupled fluxes using two hypothesized types of current: redox and diffusion currents. The only scenarios that produced

  10. Determination of micro-organic contaminants in groundwater (Maribor, Slovenia).

    PubMed

    Koroša, A; Auersperger, P; Mali, N

    2016-11-15

    Micro-organic (MO) contaminants in groundwater can have adverse effects on both the environment and on human health. They enter the natural environment as a result of various processes, their presence in groundwater is the result of current anthropogenic activity and pollution loads from the past. A study on the occurrence and concentrations levels of selected contaminants in water was performed in the city of Maribor, Slovenia. A total of 56 groundwater and 4 surface water samples were collected in together four rounds in different hydrogeological periods (dry and wet seasons), and a total of 13 selected contaminants were analysed in this study. Carbamazepine, propyphenazone, caffeine, 2-methyl-2H-benzotriazole (2-MBT) and 2.4-dimethyl-2H-benzotriazole (2.4-DMBT) were determined as indicators of urban pollution, while pesticides and their metabolites (atrazine, desethylatrazine, deisopropylatrazine, terbuthylazine, desethylterbuthylazine, metolachlor, simazine, propazine) were mainly defined as indicators of crop production. All of the selected MO contaminants were detected both in the aquifer and Drava River. The most frequently detected MO compounds in groundwater were desethylatrazine (frequency of detection 98.2%; max. concentration 103.0ngL(-1)), atrazine (94.6%; 229ngL(-1)), 2.4-DMBT (92.9%; 273ngL(-1)), carbamazepine (80.4%; 88.00ngL(-1)), desethylterbuthylazine (76.8%; 7.0ngL(-1)) and simazine (76.8%; 29.6ngL(-1)), whereas propyphenazone (14.3%; 10.7ngL(-1)) was the least frequently detected. Detected MO concentrations in the study were compared with results published elsewhere around the world. Concentrations in groundwater indicate specific land use in their recharge areas. On the basis of correlations and the spatial distribution of selected MOs, groundwater origin for every sampling point was determined. Sampling sites were divided into three different groups for which indicative groundwater quality properties were defined. PMID:27395079

  11. The contamination mechanism and behavior of amide bond containing organic contaminant on PEMFC

    SciTech Connect

    Cho, Hyun -Seok; Das, Mayukhee; Wang, Heli; Dinh, Huyen N.; Van Zee, J. W.

    2015-02-03

    In this paper, a study is presented of the effects of an organic contaminant containing an amide bond (-CONH-), ε-caprolactam, on polymer electrolyte membrane fuel cells (PEMFCs). The ε-caprolactam has been detected in leachates from polyphthalamide materials that are being considered for use as balance-of-plant structural materials for PEMFCs. Contamination effects from ε-caprolactam in Nafion membranes are shown to be controlled by temperature. A possible explanation of the temperature effect is the endothermic ring-opening reaction of the amide bond (-NHCO-) of the cyclic ε-caprolactam. UV-vis and ATR-IR spectroscopy studies confirmed the presence of open ring structure of ε-caprolactam in membranes. The ECSA and kinetic current for the ORR of the Pt/C catalyst were also investigated and were observed to decrease upon contamination by the ε-caprolactam. By comparison of the CVs of ammonia and acetic acid, we confirmed the adsorption of carboxylic acid (-COOH) or carboxylate anion (-COO-) onto the surface of the Pt. In conclusion, a comparison of in situ voltage losses at 80°C and 50°C also revealed temperature effects, especially in the membrane, as a result of the dramatic increase in the HFR.

  12. The contamination mechanism and behavior of amide bond containing organic contaminant on PEMFC

    DOE PAGESBeta

    Cho, Hyun -Seok; Das, Mayukhee; Wang, Heli; Dinh, Huyen N.; Van Zee, J. W.

    2015-02-03

    In this paper, a study is presented of the effects of an organic contaminant containing an amide bond (-CONH-), ε-caprolactam, on polymer electrolyte membrane fuel cells (PEMFCs). The ε-caprolactam has been detected in leachates from polyphthalamide materials that are being considered for use as balance-of-plant structural materials for PEMFCs. Contamination effects from ε-caprolactam in Nafion membranes are shown to be controlled by temperature. A possible explanation of the temperature effect is the endothermic ring-opening reaction of the amide bond (-NHCO-) of the cyclic ε-caprolactam. UV-vis and ATR-IR spectroscopy studies confirmed the presence of open ring structure of ε-caprolactam in membranes.more » The ECSA and kinetic current for the ORR of the Pt/C catalyst were also investigated and were observed to decrease upon contamination by the ε-caprolactam. By comparison of the CVs of ammonia and acetic acid, we confirmed the adsorption of carboxylic acid (-COOH) or carboxylate anion (-COO-) onto the surface of the Pt. In conclusion, a comparison of in situ voltage losses at 80°C and 50°C also revealed temperature effects, especially in the membrane, as a result of the dramatic increase in the HFR.« less

  13. On-site application of air cleaner emitting plasma ion to reduce airborne contaminants in pig building

    NASA Astrophysics Data System (ADS)

    Cho, Man Su; Ko, Han Jong; Kim, Daekeun; Kim, Ki Youn

    2012-12-01

    The objective of this field study is to evaluate temporal reduction efficiency of air cleaner emitting plasma ion on airborne pollutants emitted from pig building. The operation principle of air cleaner based on plasma ion is that hydrogen atoms and oxygen ions combine to form hydroperoxyl radicals (HOO-), which surround and attach to surface of airborne microorganisms and eliminate them by breaking the hydrogen bond in their protein structure. In gaseous pollutants, it was found that there is no reduction effect of the air cleaner on ammonia and hydrogen sulfide (p > 0.05). In particulate pollutants, the air cleaner showed mean 79%(±6.1) and 78%(±3.0) of reduction efficiency for PM2.5. and PM1, respectively, compared to the control without air cleaner (p < 0.05). However, there is no significant difference in TSP and PM10 between the treatment with air cleaner and the control without air cleaner (p > 0.05). In biological pollutants, the mean reduction efficiencies for airborne bacteria and fungi by application of air cleaner were 22%(±6.6) and 25%(±8.7), respectively (p < 0.05). Based on the results obtained from this study, it was concluded that the air cleaner had a positive reduction effect on PM2.5, PM1, airborne bacteria and airborne fungi among airborne pollutants distributed in pig building while it did not lead to significant reduction of ammonia and hydrogen sulfide.

  14. Sediments Contamination with Organic Micropollutants: Current State and Perspectives

    NASA Astrophysics Data System (ADS)

    Popenda, Agnieszka; Włodarczyk-Makuła, Maria

    2016-06-01

    This study focused on the sediment contamination with some organic micropollutants based on the monitoring data together with available literature in Poland. The following persistent organic pollutants (POPs): polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and chlorinated pesticides (CP) were characterized in sediments with respect to current legislations in force. Based on accessible data, higher PAHs, PCBs and CP concentrations were found in river sediments than in lake sediments. Especially, sediments of the Oder River and its tributary in the southern part of Poland, were highly polluted. In order to minimize the risk of the secondary pollution of surface waters, it is necessary to introduce consolidated management system with sediments proceeding. Furthermore, it is also of great importance to elaborate specific regulations concerning conditions of sediments management.

  15. Actinobacillus actinomycetemcomitans contamination of toothbrushes from patients harbouring the organism.

    PubMed

    Müller, H P; Lange, D E; Müller, R F

    1989-07-01

    The main ecological niche of Actinobacillus actinomycetemcomitans (A.a.) seems to be the periodontal pocket, but it can also be isolated from supragingival plaque, buccal and tongue mucosa, or saliva. We examined toothbrushes from 21 patients, all identified as harbouring moderate to large numbers of A.a. in subgingival plaque, for contamination with this organism. 29% of the toothbrushes presented by our patients yielded detectable numbers of A.a. Immediately after toothbrushing this figure rose to 62%, but dropped to 50% after 1 h. Numbers of isolated A.a. on toothbrushes were weakly correlated with the degree of periodontal destruction, and significantly more numbers of A.a. on toothbrushes could be detected if the organism was found on mucous membranes or in saliva. There was no association with gingival inflammation, supragingival plaque nor mean numbers of isolated subgingival A.a. PMID:2760252

  16. Effects of surfactants on the desorption of organic contaminants from aquifer materials. Doctoral thesis

    SciTech Connect

    Brickell, J.L.

    1989-08-01

    The efficiency of removing organic contaminants from groundwater aquifers by the pump and treat process is adversely affected by the retardation of the contaminant's mobility due to adsorption onto aquifer material. The use of surfactants in conjunction with the pump and treat process has the potential for improving contaminant mobility by solubilizing the adsorbed contaminant.

  17. Effect of Proximity to a Cattle Feedlot on Escherichia coli O157:H7 Contamination of Leafy Greens and Evaluation of the Potential for Airborne Transmission

    PubMed Central

    Wells, James E.; Bono, James L.; Woodbury, Bryan L.; Kalchayanand, Norasak; Norman, Keri N.; Suslow, Trevor V.; López-Velasco, Gabriela; Millner, Patricia D.

    2014-01-01

    The impact of proximity to a beef cattle feedlot on Escherichia coli O157:H7 contamination of leafy greens was examined. In each of 2 years, leafy greens were planted in nine plots located 60, 120, and 180 m from a cattle feedlot (3 plots at each distance). Leafy greens (270) and feedlot manure samples (100) were collected six different times from June to September in each year. Both E. coli O157:H7 and total E. coli bacteria were recovered from leafy greens at all plot distances. E. coli O157:H7 was recovered from 3.5% of leafy green samples per plot at 60 m, which was higher (P < 0.05) than the 1.8% of positive samples per plot at 180 m, indicating a decrease in contamination as distance from the feedlot was increased. Although E. coli O157:H7 was not recovered from air samples at any distance, total E. coli was recovered from air samples at the feedlot edge and all plot distances, indicating that airborne transport of the pathogen can occur. Results suggest that risk for airborne transport of E. coli O157:H7 from cattle production is increased when cattle pen surfaces are very dry and when this situation is combined with cattle management or cattle behaviors that generate airborne dust. Current leafy green field distance guidelines of 120 m (400 feet) may not be adequate to limit the transmission of E. coli O157:H7 to produce crops planted near concentrated animal feeding operations. Additional research is needed to determine safe set-back distances between cattle feedlots and crop production that will reduce fresh produce contamination. PMID:25452286

  18. Decontaminating materials used in ground water sampling devices: Organic contaminants

    SciTech Connect

    Parker, L.V.; Ranney, T.A.

    2000-12-31

    In these studies, the efficiency of various decontamination protocols was tested on small pieces of materials commonly used in ground water sampling devices. Three materials, which ranged in ability to sorb organic solutes, were tested: stainless steel (SS), rigid polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE). The test pieces were exposed to two aqueous test solutions: One contained three volatile organic compounds (VOCs) and one nitroaromatic compound, and the other contained four pesticides. Also, three types of polymetic tubing were exposed to pesticide solutions. Generally, the contact times were 10 minutes and 24 hours for sorption and desorption. The contaminants were removed from the nonpermeable SS and the less-sorptive rigid PVC test pieces simply by washing with a hot detergent solution and rinsing with hot water. Additional treatment was required for the PTFE test pieces exposed to the VOCs and for the low-density polyethylene (LDPE) tubing exposed to the pesticide test solution. Solvent rinsing did not improve removal of the three VOCs form the PTFE and only marginally improved removal of the residual pesticides from the LDPE. However, a hot water and detergent wash and rinse followed by oven drying at approximately 105 C was effective for removing the VOCs from the PTFE and substantially reduced pesticide contamination from the LDPE.

  19. Trace organic chemicals contamination in ground water recharge.

    PubMed

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed. PMID:18378277

  20. Interaction mechanisms of organic contaminants with burned straw ash charcoal.

    PubMed

    Huang, Wenhai; Chen, Baoliang

    2010-01-01

    Black carbons (e.g., charcoal) have a great impact on the transport of organic contaminants in soil and water because of its strong affinity and ubiquity in the environment. To further elucidate their interaction mechanism, sorption of polar (p-nitrotoluene, m-dinitrobenzene and nitrobenzene) and nonpolar (naphthalene) aromatic contaminants to burned straw ash charcoal under different de-ashed treatments were investigated. The sorption isotherms fitted well with Freundlich equation, and the Freundlich N values were all around 0.31-0.38, being independent of the sorbate properties and sorbent types. After sequential removal of ashes by acid treatments (HCl and HCl-HF), both adsorption and partition were enhanced due to the enrichment of charcoal component. The separated contribution of adsorption and partition to total sorption were quantified. The effective carbon content in ash charcoal functioned as adsorption sites, partition phases, and hybrid regions with adsorption and partition were conceptualized and calculated. The hybrid regions increased obviously after de-ashed treatment. The linear relationships of Freundlich N values with the charring-temperature of charcoal or biochar (the charred byproduct in biomass pyrolysis) were observed based on the current study and the cited publications which included 15 different temperatures (100-850 degrees C), 10 kinds of precursors of charcoal/biochar, and 10 organic sorbates. PMID:21235190

  1. Passive sampling methods for contaminated sediments: State of the science for organic contaminants

    PubMed Central

    Lydy, Michael J; Landrum, Peter F; Oen, Amy MP; Allinson, Mayumi; Smedes, Foppe; Harwood, Amanda D; Li, Huizhen; Maruya, Keith A; Liu, Jingfu

    2014-01-01

    This manuscript surveys the literature on passive sampler methods (PSMs) used in contaminated sediments to assess the chemical activity of organic contaminants. The chemical activity in turn dictates the reactivity and bioavailability of contaminants in sediment. Approaches to measure specific binding of compounds to sediment components, for example, amorphous carbon or specific types of reduced carbon, and the associated partition coefficients are difficult to determine, particularly for native sediment. Thus, the development of PSMs that represent the chemical activity of complex compound–sediment interactions, expressed as the freely dissolved contaminant concentration in porewater (Cfree), offer a better proxy for endpoints of concern, such as reactivity, bioaccumulation, and toxicity. Passive sampling methods have estimated Cfree using both kinetic and equilibrium operating modes and used various polymers as the sorbing phase, for example, polydimethylsiloxane, polyethylene, and polyoxymethylene in various configurations, such as sheets, coated fibers, or vials containing thin films. These PSMs have been applied in laboratory exposures and field deployments covering a variety of spatial and temporal scales. A wide range of calibration conditions exist in the literature to estimate Cfree, but consensus values have not been established. The most critical criteria are the partition coefficient between water and the polymer phase and the equilibrium status of the sampler. In addition, the PSM must not appreciably deplete Cfree in the porewater. Some of the future challenges include establishing a standard approach for PSM measurements, correcting for nonequilibrium conditions, establishing guidance for selection and implementation of PSMs, and translating and applying data collected by PSMs. Integr Environ Assess Manag 2014;10:167–178. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of

  2. Spatial patterns of atmospherically deposited organic contaminants at high elevation in the southern Sierra Nevada mountains, California, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Airborne contaminants in the Sierra Nevada mountains of California have been implicated as a factor adversely affecting biological resources like amphibians and fish, yet the distributions of contaminants within the mountains are poorly known, particularly at high elevation. we evaluated contaminan...

  3. Microbiology and atmospheric processes: research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate

    NASA Astrophysics Data System (ADS)

    Morris, C. E.; Sands, D. C.; Bardin, M.; Jaenicke, R.; Vogel, B.; Leyronas, C.; Ariya, P. A.; Psenner, R.

    2011-01-01

    For the past 200 years, the field of aerobiology has explored the abundance, diversity, survival and transport of micro-organisms in the atmosphere. Micro-organisms have been explored as passive and severely stressed riders of atmospheric transport systems. Recently, an interest in the active roles of these micro-organisms has emerged along with proposals that the atmosphere is a global biome for microbial metabolic activity and perhaps even multiplication. As part of a series of papers on the sources, distribution and roles in atmospheric processes of biological particles in the atmosphere, here we describe the pertinence of questions relating to the potential roles that air-borne micro-organisms might play in meteorological phenomena. For the upcoming era of research on the role of air-borne micro-organisms in meteorological phenomena, one important challenge is to go beyond descriptions of abundance of micro-organisms in the atmosphere toward an understanding of their dynamics in terms of both biological and physico-chemical properties and of the relevant transport processes at different scales. Another challenge is to develop this understanding under contexts pertinent to their potential role in processes related to atmospheric chemistry, the formation of clouds, precipitation and radiative forcing. This will require truly interdisciplinary approaches involving collaborators from the biological and physical sciences, from disciplines as disparate as agronomy, microbial genetics and atmosphere physics, for example.

  4. DEVELOPMENT OF A PASSIVE, IN SITU, INTEGRATIVE SAMPLER FOR HYDROPHILLIC ORGANIC CONTAMINANTS IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Until recently, hydrophobic, bioconcentratable compounds have been the primary focus of most environmental organic contaminant investigations, There is an increasing realization that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the c...

  5. Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Vodacek, Anthony; Swift, Robert N.; Yungel, James K.; Blough, Neil V.

    1995-10-01

    The absorption coefficient of chromophoric dissolved organic matter (CDOM) at 355 nm has been retrieved from airborne laser-induced and water Raman-normalized CDOM fluorescence. Four combined airborne and ship field experiments have demonstrated that (1) the airborne CDOM fluorescence-to--water Raman ratio is linearly related to concurrent quinine-sulfate-standardized CDOM shipboard fluorescence measurements over a wide range of water masses (coastal to blue water); (2) the vicarious calibration of the airborne fluorosensor in units traceable to a fluorescence standard can be established and then maintained over an extended time period by tungsten lamp calibration; (3) the vicariously calibrated airborne CDOM fluorescence-to-water Raman ratio can be directly applied to previously developed

  6. Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity

    NASA Astrophysics Data System (ADS)

    Karl, T.; Apel, E.; Hodzic, A.; Riemer, D. D.; Blake, D. R.; Wiedinmyer, C.

    2009-01-01

    Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC) fluxes of Volatile Organic Compounds (VOC) using Proton Transfer Reaction Mass Spectrometry (PTR-MS) on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC) flux measurements using PTR-MS are feasible. City-median midday toluene and benzene fluxes are calculated to be on the order of 14.1±4.0 mg/m2/h and 4.7±2.3 mg/m2/h, respectively. For comparison the adjusted CAM2004 emission inventory estimates toluene fluxes of 10 mg/m2/h along the footprint of the flight-track. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10-15 g/g) including the International airport (e.g. 3-5 g/g) and a mean flux (concentration) ratio of 3.2±0.5 g/g (3.9±0.3 g/g) across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (BTEX- Benzene/Toluene/Ethylbenzene/m, p, o-Xylenes) compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE) and the biomass burning marker acetonitrile (CH3CN), we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >87% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds in the MCMA (2-13%).

  7. Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity

    NASA Astrophysics Data System (ADS)

    Karl, T.; Apel, E.; Hodzic, A.; Riemer, D.; Blake, D.; Wiedinmyer, C.

    2008-07-01

    Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC) fluxes of Volatile Organic Compounds (VOC) using Proton Transfer Reaction Mass Spectrometry (PTR-MS) on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC) flux measurements using PTR-MS are feasible. City-average midday toluene and benzene fluxes are calculated to be on the order of 15.5±4.0 mg/m2/h and 4.7±2.3 mg/m2/h respectively. These values argue for an underestimation of toluene and benzene emissions in current inventories used for the Mexico City Metropolitan Area (MCMA). Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10 15) including the International airport (e.g. 3 5) and a mean flux (concentration) ratio of 3.2±0.5 (3.9±0.3) across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (Benzene/Toluene/Ethylbenzene/m,p,o-Xylenes) compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE) and the biomass burning marker acetonitrile (CH3CN), we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >90% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds (0 10%) in the MCMA.

  8. Removal of Persistent Organic Contaminants by Electrochemically Activated Sulfate.

    PubMed

    Farhat, Ali; Keller, Jurg; Tait, Stephan; Radjenovic, Jelena

    2015-12-15

    Solutions of sulfate have often been used as background electrolytes in the electrochemical degradation of contaminants and have been generally considered inert even when high-oxidation-power anodes such as boron-doped diamond (BDD) were employed. This study examines the role of sulfate by comparing electro-oxidation rates for seven persistent organic contaminants at BDD anodes in sulfate and inert nitrate anolytes. Sulfate yielded electro-oxidation rates 10-15 times higher for all target contaminants compared to the rates of nitrate anolyte. This electrochemical activation of sulfate was also observed at concentrations as low as 1.6 mM, which is relevant for many wastewaters. Electrolysis of diatrizoate in the presence of specific radical quenchers (tert-butanol and methanol) had a similar effect on electro-oxidation rates, illustrating a possible role of the hydroxyl radical ((•)OH) in the anodic formation of sulfate radical (SO4(•-)) species. The addition of 0.55 mM persulfate increased the electro-oxidation rate of diatrizoate in nitrate from 0.94 to 9.97 h(-1), suggesting a nonradical activation of persulfate. Overall findings indicate the formation of strong sulfate-derived oxidant species at BDD anodes when polarized at high potentials. This may have positive implications in the electro-oxidation of wastewaters containing sulfate. For example, the energy required for the 10-fold removal of diatrizoate was decreased from 45.6 to 2.44 kWh m(-3) by switching from nitrate to sulfate anolyte. PMID:26572594

  9. Dynamics of hydrophobic organic contaminants in the Baltic proper pelagial

    SciTech Connect

    Axelman, J.; Broman, D.; Naef, C.; Pettersen, H.

    1995-12-31

    Hydrophobic organic contaminants occur in different forms in natural water. Apart from being truly dissolved in water they partition into dissolved organic carbon (DOC) and particles of different sizes including pelagic bacteria, phytoplankton and zooplankton. The distribution between the different forms is dependent on carbon turnover rates in and transport between the different compartments and on the physical and chemical properties of the compound in focus. The water phase, the DOC-phase and two particle size fractions, 0.2--2pm and 2--20 pm representing the base of the pelagic food web, were analyzed for their content of PCBs and PAHs during summer and winter conditions in the open sea in the Baltic proper. New methods for separating truly dissolved from DOC-bound compounds have been developed using a high capacity perfusion adsorbent and large scale gas sparging. The small particle size fraction was sampled using high volume tangential flow filtration. The possibility to separate between these four different compartments has given a more detailed picture of the short term dynamics of hydrophobic organic compounds in the important base of the pelagial food web.

  10. Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). However, historically a...

  11. A national survey of trace organic contaminants in Australian rivers.

    PubMed

    Scott, Philip D; Bartkow, Michael; Blockwell, Stephen J; Coleman, Heather M; Khan, Stuart J; Lim, Richard; McDonald, James A; Nice, Helen; Nugegoda, Dayanthi; Pettigrove, Vincent; Tremblay, Louis A; Warne, Michael St J; Leusch, Frederic D L

    2014-09-01

    Trace organic contaminant (TrOC) studies in Australia have, to date, focused on wastewater effluents, leaving a knowledge gap of their occurrence and risk in freshwater environments. This study measured 42 TrOCs including industrial compounds, pesticides, and pharmaceuticals and personal care products by liquid chromatography tandem mass spectrometry at 73 river sites across Australia quarterly for 1 yr. Trace organic contaminants were found in 92% of samples, with a median of three compounds detected per sample (maximum 18). The five most commonly detected TrOCs were the pharmaceuticals salicylic acid (82%, maximum = 1530 ng/L), paracetamol (also known as acetaminophen; 45%, maximum = 7150 ng/L), and carbamazepine (27%, maximum = 682 ng/L), caffeine (65%, maximum = 3770 ng/L), and the flame retardant (2-chloroethyl) phosphate (44%, maximum = 184 ng/L). Pesticides were detected in 28% of the samples. To determine the risk posed by the detected TrOCs to the aquatic environment, hazard quotients were calculated by dividing the maximum concentration detected for each compound by the predicted no-effect concentrations. Three of the 42 compounds monitored (the pharmaceuticals carbamazepine and sulfamethoxazole and the herbicide simazine) had a hazard quotient >1, suggesting that they may be causing adverse effects at the most polluted sites. A further 10 compounds had hazard quotients >0.1, indicating a potential risk; these included four pharmaceuticals, three personal care products, and three pesticides. Most compounds had hazard quotients significantly <0.1. The number of TrOCs measured in this study was limited and further investigations are required to fully assess the risk posed by complex mixtures of TrOCs on exposed biota. PMID:25603256

  12. Temporal and Spatial Patterns of Airborne Contaminants Relative to Amphibian Population in Sequoia and Kings Canyon National Parks, California

    EPA Science Inventory

    Airborne agricultural pesticides are being transported many tens of kilometers to remote locations in mountain areas, and they have been implicated as a cause for recent, dramatic population declines of several amphibian species in such areas. The strongest case is for the mount...

  13. Evaluating exposure of pedestrians to airborne contaminants associated with non-potable water use for pavement cleaning.

    PubMed

    Seidl, M; Da, G; Ausset, P; Haenn, S; Géhin, E; Moulin, L

    2016-04-01

    Climate change and increasing demography press local authorities to look after affordable water resources and replacement of drinking water for city necessities like street and pavement cleaning by more available raw water. Though, the substitution of drinking by non-drinking resources demands the evaluation of sanitary hazards. This article aims therefore to evaluate the contribution of cleaning water to the overall exposure of city dwellers in case of wet pavement cleaning using crossed physical, chemical and biological approaches. The result of tracer experiments with fluorescein show that liquid water content of the cleaning aerosol produced is about 0.24 g m(-3), rending possible a fast estimation of exposure levels. In situ analysis of the aerosol particles indicates a significant increase in particle number concentration and particle diameter, though without change in particle composition. The conventional bacterial analysis using total coliforms as tracer suggests that an important part of the contamination is issued from the pavement. The qPCR results show a more than 20-fold increase of background genome concentration for Escherichia coli and 10-fold increase for Enterococcus but a negligible contribution of the cleaning water. The fluorescence analysis of the cleaning aerosol confirms the above findings identifying pavement surface as the major contributor to aerosol organic load. The physical, chemical and microbiological approaches used make it possible to describe accurately the cleaning bioaerosol and to identify the existence of significantly higher levels of all parameters studied during the wet pavement cleaning. Though, the low level of contamination and the very short time of passage of pedestrian in the zone do not suggest a significant risk for the city dwellers. As the cleaning workers remain much longer in the impacted area, more attention should be paid to their chronic exposure. PMID:26233734

  14. Contaminant-mediated photobleaching of wetland chromophoric dissolved organic matter.

    PubMed

    Langlois, Maureen C; Weavers, Linda K; Chin, Yu-Ping

    2014-09-20

    Photolytic transformation of organic contaminants in wetlands can be mediated by chromophoric dissolved organic matter (CDOM), which in turn can lose its reactivity from photobleaching. We collected water from a small agricultural wetland (Ohio), Kawai Nui Marsh (Hawaii), the Everglades (Florida), and Okefenokee Swamp (Georgia) to assess the effect of photobleaching on the photofate of two herbicides, acetochlor and isoproturon. Analyte-spiked water samples were irradiated using a solar simulator and monitored for changes in CDOM light absorbance and dissolved oxygen. Photobleaching did not significantly impact the indirect photolysis rates of either herbicide over 24 hours of irradiation. Surprisingly, the opposite effect was observed with isoproturon, which accelerated DOM photobleaching. This phenomenon was more pronounced in higher-CDOM waters, and we believe that the redox pathway between triplet-state CDOM and isoproturon may be responsible for our observations. By contrast, acetochlor indirect photolysis was dependent on reaction with the hydroxyl radical and did not accelerate photobleaching of wetland water as much as isoproturon. Finally, herbicide indirect photolysis rate constants did not correlate strongly to any one chemical or optical property of the sampled waters. PMID:24828085

  15. 40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... contaminants. (a) MCLGs are zero for the following contaminants: (1) Benzene (2) Vinyl chloride (3) Carbon...) Toxaphene (19) Benzo pyrene (20) Dichloromethane (methylene chloride) (21) Di(2-ethylhexyl)phthalate...

  16. 40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... contaminants. (a) MCLGs are zero for the following contaminants: (1) Benzene (2) Vinyl chloride (3) Carbon...) Toxaphene (19) Benzo pyrene (20) Dichloromethane (methylene chloride) (21) Di(2-ethylhexyl)phthalate...

  17. 40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... contaminants. (a) MCLGs are zero for the following contaminants: (1) Benzene (2) Vinyl chloride (3) Carbon...) Toxaphene (19) Benzo pyrene (20) Dichloromethane (methylene chloride) (21) Di(2-ethylhexyl)phthalate...

  18. 40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... contaminants. (a) MCLGs are zero for the following contaminants: (1) Benzene (2) Vinyl chloride (3) Carbon...) Toxaphene (19) Benzo pyrene (20) Dichloromethane (methylene chloride) (21) Di(2-ethylhexyl)phthalate...

  19. 9 CFR 310.18 - Contamination of carcasses, organs, or other parts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Contamination of carcasses, organs, or... AND VOLUNTARY INSPECTION AND CERTIFICATION POST-MORTEM INSPECTION § 310.18 Contamination of carcasses... prevent contamination with fecal material, urine, bile, hair, dirt, or foreign matter; however,...

  20. 9 CFR 310.18 - Contamination of carcasses, organs, or other parts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Contamination of carcasses, organs, or... AND VOLUNTARY INSPECTION AND CERTIFICATION POST-MORTEM INSPECTION § 310.18 Contamination of carcasses... prevent contamination with fecal material, urine, bile, hair, dirt, or foreign matter; however,...

  1. 9 CFR 310.18 - Contamination of carcasses, organs, or other parts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Contamination of carcasses, organs, or... AND VOLUNTARY INSPECTION AND CERTIFICATION POST-MORTEM INSPECTION § 310.18 Contamination of carcasses... prevent contamination with fecal material, urine, bile, hair, dirt, or foreign matter; however,...

  2. Fate of organic contaminants in a boreal forest catchment

    NASA Astrophysics Data System (ADS)

    Bergknut, Magnus; Meijer, Sandra; Halsall, Crispin; Ågren, Anneli; Laudon, Hjalmar; Köhler, Stephan; Jones, Kevin; Tysklind, Mats; Wiberg, Karin

    2010-05-01

    The aim of the study was to investigate and predict the impact of hydrological and atmospheric processes on the mobilisation of contaminants in a remote catchment where the major input is related to diffuse pollution. The project included priory substances according to the European water framework directive (WFD), such as the persistent organic pollutants (POPs) HCB, PCBs and dioxins. The study was conducted at a well-characterised catchment system in northern Sweden dominated by two landscape types: forest and mire. Chemical analyses of POPs in forest soil and mire peat at various depths were performed. Evaluation of POP composition by principal component analysis (PCA) showed distinct differences between surface and deeper samples. This was attributed to vertical transport, degradation and/or shifting sources over time. The calculated net vertical transport differed between surface (0.3% of the pollutant reservoir) and deeper soils (8.0 %), suggesting that vertical transport conditions and processes differ in the deeper layers compared to the surface layers.The fate of POPs in soils and waters was explored through the development of a chemical fate model. The northerly location of the studied catchment enabled a study on the impact of spring snow melt and associated hydrological processes on contaminant mobilization. Input was based on bulk atmospheric deposition and was dominated by accumulation in the winter snowpack. The model considered air-soil exchange and accumulation in forest and mire soil as well as export of dissolved and particle-bound POPs from soil to catchment surface water. The predicted export of POPs to catchment surface waters was up to 40 times higher the during snow melt period (three week during April/May) compared to the snow covered period (approximately 4 months), highlighting the importance of the seasonal snow pack as a source of these chemicals. Release from soils was governed by the POP concentration in soil, the fraction of soil

  3. Organic Contaminants Library for the Sample Analysis at Mars

    NASA Astrophysics Data System (ADS)

    Misra, P.; Garcia-Sanchez, R.; Canham, J.; Mahaffy, P. R.

    2012-12-01

    A library containing mass spectra for Sample Analysis at Mars (SAM) materials has been developed with the purpose of contamination identification and control. Based on analysis of the Gas Chromatography-Mass Spectrometric (GCMS) data through thermal desorption, organic compounds were successfully identified from material samples, such as polymers, paints and adhesives. The library contains the spectra for all the compounds found in each of these analyzed files and is supplemented by a file information spreadsheet, a spreadsheet-formatted library for easy searching, and a Perfluorotributylamine (PFTBA) based normalization protocol to make corrections to SAM data in order to meet the standard set by commercial libraries. An example of the library in use can be seen in Figure 1, where the abundances match closely, the spectral shape is retained, and the library picks up on it with an 88% identification probability. Of course, there are also compounds that have not been identified and are retained as unknowns. The library we have developed, along with its supplemental materials, is useful from both organizational and practical viewpoints. Through them we are able to organize large volumes of GCMS data, while at the same time breaking down the components that each material sample is made of. This approach in turn allows us straightforward and fast access to information that will be critical while performing analysis on the data recorded by the SAM instrumentation. In addition, the normalization protocol dramatically increased the identification probability. In SAM GCMS, PFTBA signals were obfuscated, resulting in library matches far away from PFTBA; by using the normalization protocol we were able to transform it into a 92% probable spectral match for PFTBA. The project has demonstrated conclusively that the library is successful in identifying unknown compounds utilizing both the Automated Mass Spectral Deconvolution & Identification System (AMDIS) and the Ion

  4. EQUILIBRIUM PARTIONING AND BIOACCUMULATION OF SEDIMENT ASSOCIATED CONTAMINANTS BY INFAUNAL ORGANISMS

    EPA Science Inventory

    The utility and limits of applicability of a simple equilibrium partitioning model for predicting the maximum concentration of neutral organic compounds which can be accumulated by infaunal organisms exposed to a contaminated sediment were examined. Accumulation factors (AFs) for...

  5. Organic contaminants in Great Lakes tributaries: Identification of watersheds and chemicals of greatest concern

    EPA Science Inventory

    Trace organic contaminant concentrations in some Great Lakes tributaries indicate potential for adverse effects on aquatic organisms. Chemicals used in agriculture, industry, and households enter surface waters via variety of sources, including urban and agricultural runoff, sewa...

  6. Application of the NASA airborne oceanographic lidar to the mapping of chlorophyll and other organic pigments

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1981-01-01

    Laser fluorosensing techniques used for the airborne measurement of chlorophyll a and other naturally occurring waterborne pigments are reviewed. Previous experiments demonstrating the utility of the airborne oceanographic lidar (AOL) for assessment of various marine parameters are briefly discussed. The configuration of the AOL during the NOAA/NASA Superflux experiments is described. The participation of the AOL in these experiments is presented and the preliminary results are discussed. The importance of multispectral receiving capability in a laser fluorosensing system for providing reproducible measurements over wide areas having spatial variations in water column transmittance properties is addressed. This capability minimizes the number of truthing points required and is usable even in shallow estuarine areas where resuspension of bottom sediment is common. Finally, problems encountered on the Superflux missions and the resulting limitations on the AOL data sets are addressed and feasible solutions to these problems are provided.

  7. Analyses of organic and inorganic contaminants in Salton Sea fish.

    PubMed

    Riedel, Ralf; Schlenk, Daniel; Frank, Donnell; Costa-Pierce, Barry

    2002-05-01

    Chemical contamination of fish from the Salton Sea, a quasi-marine lake in Southern California, could adversely impact millions of birds using the Pacific Flyway and thousands of humans using the lake for recreation. Bairdiella icistia (bairdiella), Cynoscion xanthulus (orangemouth corvina), and Oreochromis spp. (tilapia) were sampled from two river mouths and two nearshore areas of the Salton Sea. Muscle tissues were analyzed for a complete suite of 14 trace metals and 53 pesticides. Fish muscle tissues had concentrations of selenium ranging between 1.89 and 2.73 microg/g wet weight. 4,4'-DDE accounted for 94% of the total DDT metabolites. Total DDTs ranged between 17.1 and 239.0 and total PCBs between 2.5 and 18.6 ng/g wet weight. PCB congeners 132, 138, 153, 168, and 180 comprised over 50% of the total PCBs. Given the potential implementation of a commercial fishing at the Salton Sea in the future, the presence of persistent organic pollutants and selenium warrants further research into the effects of these mixtures on fish populations, and on wildlife and humans consuming fish. PMID:12146823

  8. Modeling uptake of hydrophobic organic contaminants into polyethylene passive samplers.

    PubMed

    Thompson, Jay M; Hsieh, Ching-Hong; Luthy, Richard G

    2015-02-17

    Single-phase passive samplers are gaining acceptance as a method to measure hydrophobic organic contaminant (HOC) concentration in water. Although the relationship between the HOC concentration in water and passive sampler is linear at equilibrium, mass transfer models are needed for nonequilibrium conditions. We report measurements of organochlorine pesticide diffusion and partition coefficients with respect to polyethylene (PE), and present a Fickian approach to modeling HOC uptake by PE in aqueous systems. The model is an analytic solution to Fick's second law applied through an aqueous diffusive boundary layer and a polyethylene layer. Comparisons of the model with existing methods indicate agreement at appropriate boundary conditions. Laboratory release experiments on the organochlorine pesticides DDT, DDE, DDD, and chlordane in well-mixed slurries support the model's applicability to aqueous systems. In general, the advantage of the model is its application in the cases of well-agitated systems, low values of polyethylene-water partioning coefficients, thick polyethylene relative to the boundary layer thickness, and/or short exposure times. Another significant advantage is the ability to estimate, or at least bound, the needed exposure time to reach a desired CPE without empirical model inputs. A further finding of this work is that polyethylene diffusivity does not vary by transport direction through the sampler thickness. PMID:25607420

  9. Occurrence and fate of organic contaminants during onsite wastewater treatment

    USGS Publications Warehouse

    Conn, K.E.; Barber, L.B.; Brown, G.K.; Siegrist, R.L.

    2006-01-01

    Onsite wastewater treatment systems serve approximately 25% of the U.S. population. However, little is known regarding the occurrence and fate of organic wastewater contaminants (OWCs), including endocrine disrupting compounds, during onsite treatment. A range of OWCs including surfactant metabolites, steroids, stimulants, metal-chelating agents, disinfectants, antimicrobial agents, and pharmaceutical compounds was quantified in wastewater from 30 onsite treatment systems in Summit and Jefferson Counties, CO. The onsite systems represent a range of residential and nonresidential sources. Eighty eight percent of the 24 target compounds were detected in one or more samples, and several compounds were detected in every wastewater sampled. The wastewater matrices were complex and showed unique differences between source types due to differences in water and consumer product use. Nonresidential sources generally had more OWCs at higher concentrations than residential sources. Additional aerobic biofilter-based treatment beyond the traditional anaerobic tank-based treatment enhanced removal for many OWCs. Removal mechanisms included volatilization, biotransformation, and sorption with efficiencies from 99% depending on treatment type and physicochemical properties of the compound. Even with high removal rates during confined unit onsite treatment, OWCs are discharged to soil dispersal units at loadings up to 20 mg/m2/d, emphasizing the importance of understanding removal mechanisms and efficiencies in onsite treatment systems that discharge to the soil and water environments. ?? 2006 American Chemical Society.

  10. A new technique to determine organic and inorganic acid contamination.

    PubMed

    Vo, Evanly

    2002-01-01

    A new acid indicator pad was developed for the detection of acid breakthrough of gloves and chemical protective clothing. The pad carries a reagent which responds to acid contaminant by producing a color change. The pad was used to detect both organic and inorganic acids permeating through glove materials using the modified ASTM F-739 and direct permeability testing procedures. Breakthrough times for each type of glove were determined, and found to range from 4 min to > 4 h for propionic acid, from 3 min to > 4 h for acrylic acid, and from 26 min to > 4 h for HCl. A quantification was performed for propionic and acrylic acids following solvent desorption and gas chromatography. Both acids exhibited > 99% adsorption [the acid and its reactivity (the acid reacted with an indicator to contribute the color change)] on the pads at a spiking level of 1.8 microL for each acid. Acid recovery during quantification was calculated for each acid, ranging from 52-72% (RSD < or = 4.0%) for both acids over the spiking range 0.2-1.8 microL. The quantitative mass of the acids on the pads at the time of breakthrough detection ranged from 260-282 and 270-296 microg cm(-2) for propionic acid and acrylic acid, respectively. The new colorimetric indicator pad should be useful in detecting and collecting acid permeation samples through gloves and chemical protective clothing in both laboratory and field studies, for quantitative analysis. PMID:11827389

  11. The role of the global cryosphere in the fate of organic contaminants

    NASA Astrophysics Data System (ADS)

    Grannas, A. M.; Bogdal, C.; Hageman, K. J.; Halsall, C.; Harner, T.; Hung, H.; Kallenborn, R.; Klán, P.; Klánová, J.; Macdonald, R. W.; Meyer, T.; Wania, F.

    2012-07-01

    The cryosphere is an important component of global organic contaminant cycles. Snow is an efficient scavenger of atmospheric organic pollutants while a seasonal snowpack, sea ice, glaciers and ice caps are contaminant reservoirs on time scales ranging from days to millennia. Important physical and chemical processes occurring in the various cryospheric compartments impact contaminant cycling and fate. A variety of interactions and feedbacks also occur within the cryospheric system, most of which are susceptible to perturbations due to climate change. In this article, we review the current state of knowledge regarding the transport and processing of organic contaminants in the global cryosphere with an emphasis on the role of a changing climate.

  12. Enhanced binding of hydrophobic organic contaminants by microwave-assisted humification of soil organic matter.

    PubMed

    Hur, Jin; Park, Sung-Won; Kim, Min Chan; Kim, Han S

    2013-11-01

    Enhanced binding of hydrophobic organic contaminants (HOCs) with soil organic matter (SOM) by microwave (MW) irradiation was investigated in this study. We used fluorescence excitation emission matrix, humification index (HIX), and organic carbon partitioning coefficient (Koc) to examine characteristic changes in SOM and its sorptive capacity for HOCs. When MW was irradiated to soils, protein-like fluorescence decreased but fulvic- and humic-like fluorescence increased. The addition of activated carbon in the presence of oxygen facilitated the humification-like alteration of SOM more significantly, evidenced by increases in fulvic- and humic-like fluorescence signals. The extent of SOM-phenanthrene binding also increased with MW treatment, supported by a notable increase in Koc value from 1.8×10(4) to 7.3×10(5)Lkg(-1). Various descriptors indicating the physical and chemical properties of SOM along with the relative percentage of humic-like fluorescence and HIX values demonstrated strong linear relationships with Koc values. These linear relationships indicated that the increased binding affinity of SOM for phenanthrene was attributed to enhanced SOM humification, which was stimulated by MW irradiation. Thus, our results demonstrate that MW irradiation could be effectively used for remediation or for assessing the environmental risks of HOC-contaminated soils and groundwater. PMID:24050718

  13. Complexation of trace organic contaminants with fractionated dissolved organic matter: implications for mass spectrometric quantification.

    PubMed

    Ruiz, Selene Hernandez; Wickramasekara, Samanthi; Abrell, Leif; Gao, Xiaodong; Chefetz, Benny; Chorover, Jon

    2013-04-01

    Interaction with aqueous phase dissolved organic matter (DOM) can alter the fate of trace organic contaminants of emerging concern once they enter the water cycle. In order to probe possible DOM binding mechanisms and their consequences for contaminant detection and quantification in natural waters, a set of laboratory experiments was conducted with aqueous solutions containing various operationally-defined "hydrophilic" and "hydrophobic" freshwater DOM fractions isolated by resin adsorption techniques from reference Suwannee River natural organic matter (SROM). Per unit mass of SROM carbon, hydrophobic acids (HoA) comprised the largest C fraction (0.63±0.029), followed by hydrophilic-neutrals (HiN, 0.11±0.01) and acids (HiA, 0.09±0.017). Aqueous solutions comprising 8mgL(-1) DOC of each SROM fraction were spiked with a concentration range (10-1000μgL(-1)) of bisphenol A (BPA), carbamazepine (CBZ), or ibuprofen (IBU) as model target compounds in 24mM NH4HCO3 background electrolyte at pH 7.4. Contaminant interaction with the SROM fractions was probed using fluorescence spectroscopy, and effects on quantitative analysis of the target compounds were measured using direct aqueous-injection liquid chromatography tandem mass spectrometry (LC-MS/MS). Total quenching was greater for the hydrophilic fractions of SROM and associations were principally with protein-like and fulvic acid-like constituents. Whereas LC-MS/MS recoveries indicated relatively weak interactions with most SROM factions, an important exception was the HiA fraction, which diminished recovery of CBZ and IBU by ca. 30% and 70%, respectively, indicating relatively strong molecular interactions. PMID:23276460

  14. ORGANIC CONTAMINANT DISTRIBUTION IN SEDIMENTS, POLYCHAETES (NEREIS VIRENS) AND THE AMERICAN LOBSTER, HOMARUS AMERICANUS IN A LABORATORY FOOD CHAIN EXPERIMENT

    EPA Science Inventory

    A laboratory experiment was conducted to investigate the transfer of organic contaminants from an environmentally contaminated marine sediment through a simple marine food chain. The infaunal polychaete, Nereis virens, was exposed to contaminated sediment collected from the Passa...

  15. The role of the global cryosphere in the fate of organic contaminants

    NASA Astrophysics Data System (ADS)

    Grannas, A. M.; Bogdal, C.; Hageman, K. J.; Halsall, C.; Harner, T.; Hung, H.; Kallenborn, R.; Klán, P.; Klánová, J.; Macdonald, R. W.; Meyer, T.; Wania, F.

    2013-03-01

    The cryosphere is an important component of global organic contaminant cycles. Snow is an efficient scavenger of atmospheric organic pollutants while a seasonal snowpack, sea ice, glaciers and ice caps are contaminant reservoirs on time scales ranging from days to millennia. Important physical and chemical processes occurring in the various cryospheric compartments impact contaminant cycling and fate. A variety of interactions and feedbacks also occur within the cryospheric system, most of which are susceptible to perturbations due to climate change. In this article, we review the current state of knowledge regarding the transport and processing of organic contaminants in the global cryosphere with an emphasis on the role of a changing climate. Given the complexity of contaminant interactions with the cryosphere and limitations on resources and research capacity, interdisciplinary research and extended collaborations are essential to close identified knowledge gaps and to improve our understanding of contaminant fate under a changing climate.

  16. Hydrophobic organic contaminant transport property heterogeneity in the Borden Aquifer

    NASA Astrophysics Data System (ADS)

    Allen-King, Richelle M.; Kalinovich, Indra; Dominic, David F.; Wang, Guohui; Polmanteer, Reid; Divine, Dana

    2015-03-01

    We determined that the spatial heterogeneity in aquifer properties governing the reactive transport of volatile organic contaminants is defined by the arrangement of lithofacies. We measured permeability (k) and perchloroethene sorption distribution coefficient (Kd) for lithofacies that we delineated for samples from the Canadian Forces Base Borden Aquifer. We compiled existing data and collected 57 new cores to characterize a 30 m section of the aquifer near the test location of Mackay et al. (1986). The k and Kd were measured for samples taken at six elevations from all cores to create a data set consisting of nearly 400 colocated measurements. Through analysis of variance (corrected for multiple comparisons), we determined that the 12 originally mapped lithofacies could be grouped into five relatively distinct chemohydrofacies that capture the variability of both transport properties. The mean of ln k by lithofacies was related to the grain size and the variance was relatively consistent. In contrast, both the mean and variance of ln Kd were greater for more poorly sorted lithofacies, which were also typically more coarse-grained. Half of the aquifer sorption capacity occurred in the three highest-sorbing lithofacies but comprised only 20% of its volume. The model of the aquifer that emerged is that of discontinuous scour-fill deposits of medium sand, generally characterized by greater Kd and k, within laterally extensive fine-grained to very fine-grained sands of lower Kd and k. Our findings demonstrate the importance of considering source rock composition, transport, and deposition processes when constructing conceptual models of chemohydrofacies.

  17. Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices.

    PubMed

    Chabauty, Florian; Pot, Valérie; Bourdat-Deschamps, Marjolaine; Bernet, Nathalie; Labat, Christophe; Benoit, Pierre

    2016-04-01

    Compost amendment on agricultural soil is a current practice to compensate the loss of organic matter. As a consequence, dissolved organic carbon concentration in soil leachates can be increased and potentially modify the transport of other solutes. This study aims to characterize the processes controlling the mobility of dissolved organic matter (DOM) in deep soil layers and their potential impacts on the leaching of organic contaminants (pesticides and pharmaceutical compounds) potentially present in cultivated soils receiving organic waste composts. We sampled undisturbed soil cores in the illuviated horizon (60-90 cm depth) of an Albeluvisol. Percolation experiments were made in presence and absence of DOM with two different pesticides, isoproturon and epoxiconazole, and two pharmaceutical compounds, ibuprofen and sulfamethoxazole. Two types of DOM were extracted from two different soil surface horizons: one sampled in a plot receiving a co-compost of green wastes and sewage sludge applied once every 2 years since 1998 and one sampled in an unamended plot. Results show that DOM behaved as a highly reactive solute, which was continuously generated within the soil columns during flow and increased after flow interruption. DOM significantly increased the mobility of bromide and all pollutants, but the effects differed according the hydrophobic and the ionic character of the molecules. However, no clear effects of the origin of DOM on the mobility of the different contaminants were observed. PMID:26676540

  18. Volatile organic compounds in an urban airborne environment adjacent to a municipal incinerator, waste collection centre and sewage treatment plant

    NASA Astrophysics Data System (ADS)

    Leach, J.; Blanch, A.; Bianchi, A. C.

    The occurrence and temporal distribution of airborne volatile organic compounds (VOC) at nine closely grouped locations in a suburban environment on the edge of the coastline of the Southampton Water estuary, located on the coastline of central southern England, was studied over six monthly periods spanning 1996-1997. The sampling sites circumscribed a juxtaposed municipal incinerator, waste collection and processing centre and sewage treatment plant. Three sets of airborne samples being taken before and after the closure of the municipal incinerator. VOC with volatilities of low to medium polarity ranging broadly from those of n-butane to n-octadecane were the major focus of interest. Over 100 individual compounds were routinely found in localised samples taken during the period of study. The types and concentrations of VOC identified partly reflect the imprint of the various waste processing operations on atmospheric VOC within the local environment. The most abundant VOC classes consisted of aromatic, chlorinated and organosulphide compounds, with smaller proportions of alkanes, alkenes and cycloalkane compounds. Compounds produced by sewage-processing and waste management operations, including volatile organosulphides and various oxygenated compounds, may occasionally exceed olfactory detection thresholds and represent a source of potential odour complaints in the local urban environment.

  19. A compact PTR-ToF-MS instrument for airborne measurements of volatile organic compounds at high spatiotemporal resolution

    NASA Astrophysics Data System (ADS)

    Müller, M.; Mikoviny, T.; Feil, S.; Haidacher, S.; Hanel, G.; Hartungen, E.; Jordan, A.; Märk, L.; Mutschlechner, P.; Schottkowsky, R.; Sulzer, P.; Crawford, J. H.; Wisthaler, A.

    2014-11-01

    Herein, we report on the development of a compact proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) for airborne measurements of volatile organic compounds (VOCs). The new instrument resolves isobaric ions with a mass resolving power (m/Δm) of ~1000, provides accurate m/z measurements (Δm < 3 mDa), records full mass spectra at 1 Hz and thus overcomes some of the major analytical deficiencies of quadrupole-MS-based airborne instruments. 1 Hz detection limits for biogenic VOCs (isoprene, α total monoterpenes), aromatic VOCs (benzene, toluene, xylenes) and ketones (acetone, methyl ethyl ketone) range from 0.05 to 0.12 ppbV, making the instrument well-suited for fast measurements of abundant VOCs in the continental boundary layer. The instrument detects and quantifies VOCs in locally confined plumes (< 1 km), which improves our capability of characterizing emission sources and atmospheric processing within plumes. A deployment during the NASA 2013 DISCOVER-AQ mission generated high vertical- and horizontal-resolution in situ data of VOCs and ammonia for the validation of satellite retrievals and chemistry transport models.

  20. The Mobility of Organic Contaminants in Water and Clays

    NASA Astrophysics Data System (ADS)

    Lock, P. A.; Skipper, N. T.; Mirza, Z.; Fernandez-Alonso, F.; Adams, M.; Howells, S.; Swenson, J.

    2005-12-01

    The interlayer pores of swelling clays provide an ideal environment in which to study confined fluids, and are the site of many important hydrological and petrological processes. Swelling clays, such as vermiculites, are layered minerals, widespread in soils and sedimentary rocks and are an important sink/source of many toxic organic chemicals. Knowledge of diffusion of organics through clay-rich materials is therefore highly relevant to environmental issues. Experimental studies of solvation structure in aqueous systems show that charged groups can co-ordinate the surrounding water molecules quite strongly, but their is less certainty about the effect of polar and apolar groups. There is currently interest in bulk water-alcohol systems since these are known to aggregate at the nanometer scale. Our hypothesis is that the property of the interlayer fluids in clays arises from the very subtle balance of forces between the interactions of water, cations, clay and organic species. Quasi Elastic Neutron Scattering (QENS) has been used to probe the dynamics of fluids trapped inside clays and reveal the first detailed picture of confined methanol, phenol and glycol in aqueous solution. The picture that emerges is that these model contaminant molecules are surprisingly mobile. Successive QENS broadening for methanol in Na-Vermiculite over 150-330K was measured. The progressive broadening of the energy signal was accompanied by decrease in amplitude with rise in temperature. This is indicative of an overall increase in rotational and translational freedom. Methanol exhibits a Fickian diffusion mechanism as an unconfined fluid, characterised by a linear dependence of broadening of the energy signal with the scattering vector. Inside Na-Vermiculite clay however, the same fluid produces a signal broadening that becomes non-linear indicating a jump activated motion to be present. Glycol and phenol are also of fundamental interest, the former as a clay-swelling inhibitor of

  1. UPTAKE AND DEPURATION OF ORGANIC CONTAMINANTS BY BLUE MUSSELS (MYTILUS EDULIS) EXPOSED TO ENVIRONMENTALLY CONTAMINATED SEDIMENT

    EPA Science Inventory

    Experiments were designed to expose blue mussels (Mytilus edulis) to contaminated sediment collected from Narragansett Bay, Rhode Island, USA in 1982. Measurements were taken to allow comparisons of the uptake and depuration of polycyclic aromatic hydrocarbons (PAHs) and polychlo...

  2. Contamination control handbook

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Contamination Control Handbook provides technical information on avoiding contamination of physical, chemical or biological systems or products. The book includes control methods for product design, gases and liquids, airborne and surface contamination, radiation, packaging handling, storage and personnel.

  3. EXPLORATORY ANALYSIS OF THE EFFECTS OF PARTICULATE CHARACTERISTICS ON THE VARIATION IN PARTITIONING OF NONPOLAR ORGANIC CONTAMINANTS TO MARINE SEDIMENTS

    EPA Science Inventory

    The partitioning of nonpolar organic contaminants to marine sediments is considered to be controlled by the amount of organic carbon present. However, several studies propose that other characteristics of sediments may affect the partitioning of contaminants. For this exploratory...

  4. Microbial interactions with organic contaminants in soil: definitions, processes and measurement.

    PubMed

    Semple, Kirk T; Doick, Kieron J; Wick, Lukas Y; Harms, Hauke

    2007-11-01

    There has been and continues to be considerable scientific interest in predicting bioremediation rates and endpoints. This requires the development of chemical techniques capable of reliably predicting the bioavailability of organic compounds to catabolically active soil microbes. A major issue in understanding the link between chemical extraction and bioavailability is the problem of definition; there are numerous definitions, of varying degrees of complexity and relevance, to the interaction between organic contaminants and microorganisms in soil. The aim of this review is to consider the bioavailability as a descriptor for the rate and extent of biodegradation and, in an applied sense, bioremediation of organic contaminants in soil. To address this, the review will (i) consider and clarify the numerous definitions of bioavailability and discuss the usefulness of the term 'bioaccessibility'; (ii) relate definition to the microbiological and chemical measurement of organic contaminants' bioavailability in soil, and (iii) explore the mechanisms employed by soil microorganisms to attack organic contaminants in soil. PMID:17881105

  5. Characterization of organic contaminants in porous media using nuclear magnetic resonance and spectral induced polarization measurements.

    NASA Astrophysics Data System (ADS)

    Rupert, Y. K.

    2015-12-01

    The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. This laboratory research focuses on combining two innovative geophysical methods: nuclear magnetic resonance (NMR) and spectral induced polarization (SIP) to assess their suitability to characterize and quantify organic contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL), and ethoxy-nonafluorobutane, an engineered dense non-aqueous phase liquid (DNAPL), have been selected as representative organic contaminants. Low-field NMR relaxation time (T2) measurements and diffusion-relaxation (D-T2) correlation measurements, as well as low frequency SIP measurements (<10 kHz) are performed to quantify the amount of these two organic compounds in the presence of water in three types of porous media (sands, clay, and various sand-clay mixtures). The T2, D-T2, and SIP measurements are made on water, toluene, and the synthetic DNAPL in each porous media to understand the effect of different porous media on the NMR and SIP responses in each fluid. We then plan to make measurements on water-organic mixtures with varied concentrations of organic compounds in each porous medium to resolve the NMR and SIP response of the organic contaminants from that of water and to quantify the amount of organic contaminants. Building a relationship between SIP and NMR signatures from organic contaminants not only provides a fundamental yet important petrophysical relationship, but also builds a framework for continued investigation into how these two methods synergize. This will also provide spatially dense information about organic contaminated natural sediments at scales that will improve the quantitative characterization and remediation of contaminated sites.The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts

  6. Organic contamination analysis: High resolution mass spectrometric analysis of surface organics on selected areas of Surveyor 3

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Burlingame, A. L.

    1972-01-01

    The mirror and middle shroud were extracted for organics by washing the surfaces with solvents. The techniques are discussed. Ion microprobe analyses of the primarily atomic species are presented. The sources of the organic contaminants are: (1) hydrocarbons from lubricating oils and general terrestrial contamination, (2) dioctyl phthalate, probably from polyethylene bagging material (the plasticizer), (3) carboxylic acids from decomposition of grease and general terrestrial contamination, (4) silicones from sources such as lubricating oil, (5) outgassing of electronics and plasticizer, (6) vinyl alcohol and styrene copolymer, probably from electronic insulation, and (7) nitrogenous compounds from the lunar module and possibly Surveyor 3 engine exhaust.

  7. Composition and process for organic and metal contaminant fixation in soil

    DOEpatents

    Schwitzgebel, Klaus

    1994-02-08

    A method and compositions using a first ferrous iron containing solution with the iron concentration in excess of theoretical requirements to treat a contaminated site to reduce hexavalent chromium to trivalent chromium and coprecipitate trivalent chromium with other heavy metals and using a second solution of silicate containing a destabilizing salt to form a relatively impermeable gel in the contaminated site thereby fixing metals and organics to the extent that there should be no detectable ground water contamination.

  8. Composition and process for organic and metal contaminant fixation in soil

    SciTech Connect

    Schwitzgebel, K.

    1994-02-08

    A method and compositions using a first ferrous iron containing solution with the iron concentration in excess of theoretical requirements are presented to treat a contaminated site. Hexavalent chromium is reduced to trivalent chromium and trivalent chromium is coprecipitated with other heavy metals. A second solution of silicate containing a destabilizing salt is used to form a relatively impermeable gel in the contaminated site thereby fixing metals and organics to the extent that there should be no detectable ground water contamination.

  9. Bioavailability and mobility of organic contaminants in soil: new three-step ecotoxicological evaluation.

    PubMed

    Prokop, Zbyněk; Nečasová, Anežka; Klánová, Jana; Čupr, Pavel

    2016-03-01

    A novel approach was developed for rapid assessment of bioavailability and potential mobility of contaminants in soil. The response of the same test organism to the organic extract, water extract and solid phase of soil was recorded and compared. This approach was designed to give an initial estimate of the total organic toxicity (response to organic extractable fraction), as well as the mobile (response to water extract) and bioavailable fraction (response to solid phase) of soil samples. Eighteen soil samples with different levels of pollution and content of organic carbon were selected to validate the novel three-step ecotoxicological evaluation approach. All samples were chemically analysed for priority contaminants, including aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), hexachlorocyclohexane (HCH) and dichlordiphenyltrichloroethane (DDT). The ecotoxicological evaluation involved determination of toxicity of the organic, mobile and bioavailable fractions of soil to the test organism, bacterium Bacillus cereus. We found a good correlation between the chemical analysis and the toxicity of organic extract. The low toxicity of water extracts indicated low water solubility, and thus, low potential mobility of toxic contaminants present in the soil samples. The toxicity of the bioavailable fraction was significantly greater than the toxicity of water-soluble (mobile) fraction of the contaminants as deduced from comparing untreated samples and water extracts. The bioavailability of the contaminants decreased with increasing concentrations of organic carbon in evaluated soil samples. In conclusion, the three-step ecotoxicological evaluation utilised in this study can give a quick insight into soil contamination in context with bioavailability and mobility of the contaminants present. This information can be useful for hazard identification and risk assessment of soil-associated contaminants. Graphical Abstract New three-step ecotoxicological

  10. Milk and serum standard reference materials for monitoring organic contaminants in human samples.

    PubMed

    Schantz, Michele M; Eppe, Gauthier; Focant, Jean-François; Hamilton, Coreen; Heckert, N Alan; Heltsley, Rebecca M; Hoover, Dale; Keller, Jennifer M; Leigh, Stefan D; Patterson, Donald G; Pintar, Adam L; Sharpless, Katherine E; Sjödin, Andreas; Turner, Wayman E; Vander Pol, Stacy S; Wise, Stephen A

    2013-02-01

    Four new Standard Reference Materials (SRMs) have been developed to assist in the quality assurance of chemical contaminant measurements required for human biomonitoring studies, SRM 1953 Organic Contaminants in Non-Fortified Human Milk, SRM 1954 Organic Contaminants in Fortified Human Milk, SRM 1957 Organic Contaminants in Non-Fortified Human Serum, and SRM 1958 Organic Contaminants in Fortified Human Serum. These materials were developed as part of a collaboration between the National Institute of Standards and Technology (NIST) and the Centers for Disease Control and Prevention (CDC) with both agencies contributing data used in the certification of mass fraction values for a wide range of organic contaminants including polychlorinated biphenyl (PCB) congeners, chlorinated pesticides, polybrominated diphenyl ether (PBDE) congeners, and polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners. The certified mass fractions of the organic contaminants in unfortified samples, SRM 1953 and SRM 1957, ranged from 12 ng/kg to 2200 ng/kg with the exception of 4,4'-DDE in SRM 1953 at 7400 ng/kg with expanded uncertainties generally <14 %. This agreement suggests that there were no significant biases existing among the multiple methods used for analysis. PMID:23132544

  11. Organic Contamination Baseline Study: In NASA JSC Astromaterials Curation Laboratories. Summary Report

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.

    2013-01-01

    In preparation for OSIRIS-REx and other future sample return missions concerned with analyzing organics, we conducted an Organic Contamination Baseline Study for JSC Curation Labsoratories in FY12. For FY12 testing, organic baseline study focused only on molecular organic contamination in JSC curation gloveboxes: presumably future collections (i.e. Lunar, Mars, asteroid missions) would use isolation containment systems over only cleanrooms for primary sample storage. This decision was made due to limit historical data on curation gloveboxes, limited IR&D funds and Genesis routinely monitors organics in their ISO class 4 cleanrooms.

  12. REMOVAL OF ORGANIC CCL CONTAMINANTS FROM DRINKING WATERS BY MEMBRANE AND GAC PROCESSES

    EPA Science Inventory

    Bench-scale treatment data for membrane and granular activated carbon technologies are presented for the organic contaminants on the U.S. Environmental Protection Agency's Contaminant Candidate List (CCL). For granular activated carbon (GAC), isotherm results are presented and q...

  13. TRANSPORT OF ORGANIC CONTAMINANTS IN GROUNDWATER: DISTRIBUTION AND FATE OF CHEMICALS IN SAND AND GRAVEL AQUIFERS

    EPA Science Inventory

    The state-of-knowledge of the physical, chemical, and biological processes that are thought to affect organic contaminants in ground water are reviewed. The discussion is confined to horizontal flow in uniform sand and gravel aquifers. General principles governing contaminant tra...

  14. Probing Contaminant Transport to and from Clay Surfaces in Organic Solvents and Water Using Solution Calorimetry.

    PubMed

    Pourmohammadbagher, Amin; Shaw, John M

    2015-09-15

    Clays, in tailings, are a significant ongoing environmental concern in the mining and oilsands production industries, and clay rehabilitation following contamination poses challenges episodically. Understanding the fundamentals of clay behavior can lead to better environmental impact mitigation strategies. Systematic calorimetric measurements are shown to provide a framework for parsing the synergistic and antagonistic impacts of trace (i.e., parts per million level) components on the surface compositions of clays. The enthalpy of solution of as-received and "contaminated" clays, in as-received and "contaminated" organic solvents and water, at 60 °C and atmospheric pressure, provides important illustrative examples. Clay contamination included pre-saturation of clays with water and organic liquids. Solvent contamination included the addition of trace water to organic solvents and trace organic liquids to water. Enthalpy of solution outcomes are interpreted using a quantitative mass and energy balance modeling framework that isolates terms for solvent and trace contaminant sorption/desorption and surface energy effects. Underlying surface energies are shown to dominate the energetics of the solvent-clay interaction, and organic liquids as solvents or as trace contaminants are shown to displace water from as-received clay surfaces. This approach can be readily extended to include pH, salts, or other effects and is expected to provide mechanistic and quantitative insights underlying the stability of clays in tailings ponds and the behaviors of clays in diverse industrial and natural environments. PMID:26296102

  15. Use of Passive Samplers to Measure Dissolved Organic Contaminants in a Temperate Estuary

    EPA Science Inventory

    Measuring dissolved concentrations of organic contaminants can be challenging given their low solubilities and high particle association. However, to perform accurate risk assessments of these chemicals, knowing the dissolved concentration is critical since it is considered to b...

  16. DEMONSTRATION BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANIC/INORGANIC CONTAMINANTS - SILICATE TECHNOLOGY CORPORATION

    EPA Science Inventory

    Silicate Technology Corporation's (STC's) technology for treating hazardous waste utilizes silicate compounds to stabilize organic and inorganic constituents in contaminated soils and sludges. STC has developed two groups of reagents: SOILSORB HM for treating wastes with inorgan...

  17. Spatiotemporal characteristics of organic contaminant concentrations and ecological risk assessment in the Songhua River, China

    EPA Science Inventory

    To control source pollution and improve water quality, an understanding of the spatiotemporal characteristics of organic contaminant concentrations in affected receiving waters is necessary. The Songhua River in northeast China is the country's third-largest domestic river and lo...

  18. Comparison of Passive Samplers for Monitoring Dissolved Organic Contaminants in Water Column Deployments

    EPA Science Inventory

    Nonionic organic contaminants (NOCs) are difficult to measure in the water column due to their inherent chemical properties resulting in low water solubility and high particle activity. Traditional sampling methods require large quantities of water to be extracted and interferen...

  19. DISTRIBUTION OF ORGANIC WASTEWATER CONTAMINANTS BETWEEN WATER AND SEDIMENT IN SURFACE WATERS OF THE UNITED STATES

    EPA Science Inventory

    Trace concentrations of pharmaceuticals and other organic wastewater contaminants have been determined in the surface waters of Europe and the United States. A preliminary report of substantially higher concentrations of pharmaceuticals in sediment suggests that bottom sediment ...

  20. Analysis of organic contaminants from silicon wafer and disk surfaces by thermal desorption-GC-MS

    NASA Astrophysics Data System (ADS)

    Camenzind, Mark J.; Ahmed, Latif; Kumar, Anurag

    1999-03-01

    Organic contaminants can affect semiconductor wafer processing including gate oxide integrity, polysilicon growth, deep ultraviolet photoresist line-width, and cleaning & etching steps. Organophosphates are known to counter dope silicon wafers. Organic contaminants in disk drives can cause failures due to stiction or buildup on the heads. Therefore, it is important to identify organic contaminants adsorbed on wafer or disk surfaces and find their sources so they can be either completely eliminated or at least controlled. Dynamic headspace TD-GC-MS (Thermal Desorption-Gas Chromatography-Mass Spectrometry) methods are very sensitive and can be used to identify organic contaminants on disks and wafers, in air, or outgassing from running drives or their individual components.

  1. Documenting the Effectiveness of Cosorption of Airborne Contaminants by a Field-Installed Active Desiccant System: Final Report - Phase 2D

    SciTech Connect

    Fischer, J

    2003-01-23

    The final report for Phase 1 of this research effort (ORNL/SUB/94-SV004/1) concluded that a significant market opportunity would exist for active desiccant systems if it could be demonstrated that they can remove a significant proportion of common airborne contaminants while simultaneously performing the primary function of dehumidifying a stream of outdoor air or recirculated building air. If the engineering community begins to follow the intent of ASHRAE Standard 62, now part of all major building codes, the outdoor air in many major cities may need to be pre-cleaned before it is introduced into occupied spaces. Common air contaminant cosorption capability would provide a solution to three important aspects of the ASHRAE 62-89 standard that have yet to be effectively addressed by heating, ventilation, and air-conditioning (HVAC) equipment manufacturers: (1) The ASHRAE standard defines acceptable outdoor air quality. If the outdoor air contains unacceptable levels of certain common outdoor air contaminants (e.g., sulfur dioxide, ozone), then the standard requires that these contaminants be removed from the outdoor air stream to reach compliance with the acceptable outdoor air quality guidelines. (2) Some engineers prefer to apply a filtration or prescriptive approach rather than a ventilation approach to solving indoor air quality problems. The ASHRAE standard recognizes this approach provided that the filtration technology exists to remove the gaseous contaminants encountered. The performance of current gaseous filtration technologies is not well documented, and they can be costly to maintain because the life of the filter is limited and the cost is high. Moreover, it is not easy to determine when the filters need changing. In such applications, an additional advantage provided by the active desiccant system would be that the same piece of equipment could control space humidity and provide filtration, even during unoccupied periods, if the active desiccant system

  2. Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding

    USGS Publications Warehouse

    Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.

    2015-01-01

    Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.

  3. Organic contaminant transport and fate in the subsurface: Evolution of knowledge and understanding

    NASA Astrophysics Data System (ADS)

    Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.

    2015-07-01

    Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.

  4. Assessing Organic Contaminant Fluxes from Contaminated Sediments Following Dam Removal in an Urbanized River

    EPA Science Inventory

    In this study, methods and approaches were developed and tested to assess changes in contaminant fluxes resulting from dam removal in a riverine system. Sediment traps and passive samplers were deployed to measure particulate and dissolved PAHs and PCBs in the water column prior...

  5. Laser induced damage of fused silica polished optics due to a droplet forming organic contaminant.

    PubMed

    Bien-Aimé, Karell; Néauport, Jérome; Tovena-Pecault, Isabelle; Fargin, Evelyne; Labrugère, Christine; Belin, Colette; Couzi, Michel

    2009-04-20

    We report on the effect of organic molecular contamination on single shot laser induced damage density at the wavelength of 351 nm, with a 3 ns pulse length. Specific contamination experiments were made with dioctylphthalate (DOP) in liquid or gaseous phase, on the surface of fused silica polished samples, bare or solgel coated. Systematic laser induced damage was observed only in the case of liquid phase contamination. Different chemical and morphological characterization methods were used to identify and understand the damage process. We demonstrate that the contaminant morphology, rather than its physicochemical nature, can be responsible for the decrease of laser induced damage threshold of optics. PMID:19381171

  6. Thermal Catalytic Oxidation of Airborne Contaminants by a Reactor Using Ultra-Short Channel Length, Monolithic Catalyst Substrates

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Tomes, K. M.; Tatara, J. D.

    2005-01-01

    Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.

  7. Potential of zerovalent iron nanoparticles for remediation of environmental organic contaminants in water: a review.

    PubMed

    Raychoudhury, Trishikhi; Scheytt, Traugott

    2013-01-01

    Zerovalent iron (ZVI) has the potential to degrade different organic contaminants. Nanoscale zerovalent iron (NZVI) can reduce the contaminants even more rapidly due to its small size and large specific surface area (SSA), compared to granular ZVI. The main objective of this paper is to assess and compare the potential of NZVI for degradation of different contaminants in water under specific environmental conditions. As a first step, the potential reactive functional groups/bonds associated with different contaminants are identified and possible reaction mechanisms are discussed. Thereafter, the reaction efficiencies of different organic contaminants with NZVI are compared. Mass of ZVI and reaction time required to transform a certain amount of contaminated water are calculated based on literature data. Sources of contaminants in the environment and their environmental occurrences are discussed to understand the potential locations where NZVI could be applied for removal of different contaminants. Overall it is observed that azo-compounds are readily transformed in the presence of NZVI particles. Reaction efficiencies of ZVI for reduction of nitro-organic compounds are also reasonably high. However, halogenated compounds with high molecular weights or complex structures (i.e., iodinated contrast media, DDT, polychlorinated biphenyls, etc.) show lower reaction rates with NZVI compared to the widely studied chlorinated hydrocarbons (i.e., trichloroethylene). PMID:24135090

  8. Erace--an integrated system for treating organic-contaminated sites

    SciTech Connect

    Caley, S.M.; Heath, W.O.; Bergsman, T.M.; Gauglitz, P.A.; Pillay, C.; Moss, R.W.; Shah, R.R.; Goheen, S.C.; Camiaoni, D.M.

    1994-11-01

    The U.S. Department of Energy`s (DOE) Pacific Northwest Laboratory (PNL) is developing a suite of electrical technologies for treating sites contaminated with hazardous organic compounds. These include: (1) Six-Phase Soil Heating (SPSH) to remove volatile and semi-volatile organic compounds from soils; (2) In Situ Corona (ISC) to decompose nonvolatile and bound organic contaminants in soils; (3) High-Energy Corona (HEC) to treat contaminated off-gases; and (4) Liquid Corona (LC) to treat contaminated liquids. These four technologies comprise ERACE (Electrical Remediation at Contaminated Environments), an integrated system for accomplishing site remediation with little or no secondary wastes produced that would require off-site treatment or disposal. Each ERACE technology can be employed individually as a stand-alone treatment process, or combined as a system for total site remediation. For example, an ERACE system for treating sites contaminated with volatile organics would integrate SPSH to remove the contaminants from the soil, LC to continuously treat an aqueous stream condensed out of the soil off-gas, and HEC to treat non-condensibles remaining in the off-gas, before atmospheric release.

  9. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions

    NASA Astrophysics Data System (ADS)

    Yuan, Bin; Kaser, Lisa; Karl, Thomas; Graus, Martin; Peischl, Jeff; Campos, Teresa L.; Shertz, Steve; Apel, Eric C.; Hornbrook, Rebecca S.; Hills, Alan; Gilman, Jessica B.; Lerner, Brian M.; Warneke, Carsten; Flocke, Frank M.; Ryerson, Thomas B.; Guenther, Alex B.; Gouw, Joost A.

    2015-06-01

    Emissions of methane (CH4) and volatile organic compounds (VOCs) from oil and gas production may have large impacts on air quality and climate change. Methane and VOCs were measured over the Haynesville and Marcellus shale gas plays on board the National Center for Atmospheric Research C-130 and NOAA WP-3D research aircraft in June-July of 2013. We used an eddy covariance technique to measure in situ fluxes of CH4 and benzene from both C-130 flights with high-resolution data (10 Hz) and WP-3D flights with low-resolution data (1 Hz). Correlation (R = 0.65) between CH4 and benzene fluxes was observed when flying over shale gas operations, and the enhancement ratio of fluxes was consistent with the corresponding concentration observations. Fluxes calculated by the eddy covariance method show agreement with a mass balance approach within their combined uncertainties. In general, CH4 fluxes in the shale gas regions follow a lognormal distribution, with some deviations for relatively large fluxes (>10 µg m-2 s-1). Statistical analysis of the fluxes shows that a small number of facilities (i.e., ~10%) are responsible for up to ~40% of the total CH4 emissions in the two regions. We show that the airborne eddy covariance method can also be applied in some circumstances when meteorological conditions do not favor application of the mass balance method. We suggest that the airborne eddy covariance method is a reliable alternative and complementary analysis method to estimate emissions from oil and gas extraction.

  10. A partition-limited model for the plant uptake of organic contaminants from soil and water

    USGS Publications Warehouse

    Chiou, C.T.; Sheng, G.; Manes, M.

    2001-01-01

    In dealing with the passive transport of organic contaminants from soils to plants (including crops), a partition-limited model is proposed in which (i) the maximum (equilibrium) concentration of a contaminant in any location in the plant is determined by partition equilibrium with its concentration in the soil interstitial water, which in turn is determined essentially by the concentration in the soil organic matter (SOM) and (ii) the extent of approach to partition equilibrium, as measured by the ratio of the contaminant concentrations in plant water and soil interstitial water, ??pt (??? 1), depends on the transport rate of the contaminant in soil water into the plant and the volume of soil water solution that is required for the plant contaminant level to reach equilibrium with the external soil-water phase. Through reasonable estimates of plant organic-water compositions and of contaminant partition coefficients with various plant components, the model accounts for calculated values of ??pt in several published crop-contamination studies, including near-equilibrium values (i.e., ??pt ??? 1) for relatively water-soluble contaminants and lower values for much less soluble contaminants; the differences are attributed to the much higher partition coefficients of the less soluble compounds between plant lipids and plant water, which necessitates much larger volumes of the plant water transport for achieving the equilibrium capacities. The model analysis indicates that for plants with high water contents the plant-water phase acts as the major reservoir for highly water-soluble contaminants. By contrast, the lipid in a plant, even at small amounts, is usually the major reservoir for highly water-insoluble contaminants.

  11. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  12. Endophytes and their Potential to Deal with Co-contamination of Organic Contaminants (Toluene) and Toxic Metals (Nickel) during Phytoremediation

    SciTech Connect

    Weyens, N.; van der Lelie, D.; Truyens, S.; Saenen, E.; Boulet, J.; Dupae, J.; Taghavi, S.; Carleer, R.; Vangronsveld, J.

    2011-01-15

    The aim was to investigate if engineered endophytes that are capable of degrading organic contaminants, and deal with or ideally improve uptake and translocation of toxic metals, can improve phytoremediation of mixed organic-metal pollution. As a model system, yellow lupine was inoculated with the endophyte Burkholderia cepacia VM1468 possessing (a) the pTOM-Bu61 plasmid, coding for constitutive toluene/TCE degradation, and (b) the chromosomally inserted ncc-nre Ni resistance/sequestration system. As controls, plants were inoculated with B. vietnamiensis BU61 (pTOM-Bu61) and B. cepacia BU72 (containing the ncc-nre Ni resistance/sequestration system). Plants were exposed to mixes of toluene and Ni. Only inoculation with B. cepacia VM1468 resulted in decreased Ni and toluene phytotoxicity, as measured by a protective effect on plant growth and decreased activities of enzymes involved in antioxidative defence (catalase, guaiacol peroxidase, superoxide dismutase) in the roots. Besides, plants inoculated with B. cepacia VM1468 and B. vietnamiensis BU61 released less toluene through the leaves than non-inoculated plants and those inoculated with B. cepacia BU72. Ni-uptake in roots was slightly increased for B. cepacia BU72 inoculated plants. These results indicate that engineered endophytes have the potential to assist their host plant to deal with co-contamination of toxic metals and organic contaminants during phytoremediation.

  13. Allergy arising from exposure to airborne contaminants in an insect rearing facility: Health effects and exposure control

    SciTech Connect

    Wolff, D.

    1994-06-01

    In agricultural crop improvement, yield under various stress conditions and limiting factors is assessed experimentally. Of the stresses on plants which affect yield are those due to insects. Ostrinia nubilalis, the European corn borer (corn borer) is a major pest in sweet and field corn in the U.S. There are many ways to fight crop pests such as the corn borer, including (1) application of chemical insecticides, (2) application of natural predators and, (3) improving crop resistance through plant genetics programs. Randomized field trials are used to determine the effectiveness of pest management programs. These trials frequently consist of randomly selected crop plots to which well-defined input regimes are instituted. For example, corn borers might be released onto crop plots in several densities at various stages of crop development, then sprayed with different levels of pesticide. These experiments are duplicated across regions and, in some cases across the country, to determine, in this instance for example, the best pesticide application rate for a given pest density and crop development stage. In order to release these pests onto crop plots, one must have an adequate supply of the insect pest. In winter months studies are carried out in the laboratory to examine chemical and natural pesticide effectiveness, as well as such things as the role of pheromones in moth behavior. The advantage in field trials is that yield data can be garnered directly. In this country, insects are raised for crop research primarily through the US Department of Agriculture, in cooperation with public Land Grant Universities and, by the private sector agricultural concerns - seed companies and others. This study quantifies the airborne allergen exposure of persons working in a Land Grant University entomology lab were allergy to European corn borer was suspected.

  14. The potential of elemental and isotopic analysis of tree bark for discriminating sources of airborne lead contamination in the UK.

    PubMed

    Bellis, D; McLeod, C W; Satake, K

    2001-02-01

    Samples of tree bark, which accumulate airborne material, were collected from seven locations in the UK to provide an indication of the magnitude and source of lead pollution. Measurement of the Pb content and 206/207Pb stable isotope ratio by inductively coupled plasma mass spectrometry revealed significant differences between the sites. The concentration of Pb varied over almost four orders of magnitude from 7.2 to 9,600 micrograms g-1, the maximum values being found near a 'secondary' Pb smelter. The 206/207Pb isotope ratios varied from 1.108 +/- 0.002 to 1.169 +/- 0.001. The lowest Pb concentrations and highest isotope ratios were detected in bark samples from the Scilly Isles, reflecting the low-level of industry and road traffic. In contrast, samples obtained from a city centre (Sheffield) and near a motorway (M1) contained 25-46 micrograms g-1 Pb and recorded the lowest 206/207Pb ratios. Higher concentrations in the vicinity of a coal-fired power station recorded a 206/207Pb ratio of 1.14, suggesting a significant contribution from fly-ash. The relative contribution of lead from petrol (206/207Pb = 1.08) and other sources such as coal (206/207Pb = 1.18) were thus estimated using mass balance equations. Tree bark near the lead smelter recorded an intermediate 206/207Pb ratio of 1.13 reflecting the processing of material of mixed origin. PMID:11354727

  15. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  16. Toxic contaminant characterization of aquatic organisms in Galveston Bay: A pilot study. Final report

    SciTech Connect

    Brooks, J.M.; Wade, T.L.; Dennicutt, M.C.; Wiesenburg, D.A.; Wilkinson, D.

    1992-06-01

    The study characterizes contamination in edible fish and shellfish from Galveston Bay. The sampling design called for the analysis of trace contaminants in five species from four sites in Galveston Bay. The goal of the sampling program was to collect ten specimens of each target organism that were of legal market size from each collection site. Standard fisheries data were recorded for all collections. The analytical program called for the analyses of 10 individual specimens of the target organisms from each site (200 edible tissue (muscle) samples). Fifty (50) liver samples were composed for analysis from the 120 fishes. The trace contaminants that were measured included heavy metals, polynuclear aromatic hydrocarbons (PAH's), pesticides and PCBs and a GC-MS scan for other EPA organic priority pollutants. In general, trace contaminants were higher in oyster and crab tissues than fish tissue.

  17. Development and testing of biosensors that quantitatively and specifically detect organic contaminants

    SciTech Connect

    Jackson, P.; Keim, P.; Kuske, C.; Willardson, B.

    1996-07-01

    This is the final report of a two-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project sought to develop a more sensitive and less expensive method of detecting organic contaminants. Assaying complex environmental samples for organic contaminant content is costly and labor intensive. This often limits extensive testing. Sensitive microbial biosensors that detect specific organic contaminants in complex waste mixtures without prior separation from other waste components have been developed. Some soil microbes degrade organic compounds that contaminate the environment. These bacteria sense minute quantities of particular organic compounds then respond by activating genes encoding enzymes that degrade these molecules. Genetic manipulation of these gene regulatory processes has been employed to develop unique biosensors that detect specific organic compounds using standard biochemical assays. Such biosensors allow rapid, sensitive testing of environmental samples for selected organic contaminants. The cost of biosensor assays is at least 100-fold less than present methods, allowing more rapid and extensive testing and site characterization.

  18. Assessing organic contaminant fluxes from contaminated sediments following dam removal in an urbanized river.

    PubMed

    Cantwell, Mark G; Perron, Monique M; Sullivan, Julia C; Katz, David R; Burgess, Robert M; King, John

    2014-08-01

    In this study, methods and approaches were developed and tested to assess changes in contaminant fluxes resulting from dam removal in a riverine system. Sediment traps and passive samplers were deployed to measure particulate and dissolved polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the water column prior to and following removal of a small, low-head dam in the Pawtuxet River, an urbanized river located in Cranston, RI, USA. During the study, concentrations of particulate and dissolved PAHs ranged from 21.5 to 103 μg/g and from 68 to 164 ng/L, respectively. Overall, temporal trends of PAHs showed no increases in either dissolved or particulate phases following removal of the dam. Dissolved concentrations of PCBs were very low, remaining below 1.72 ng/L at all sites. Particulate PCB concentrations across sites and time showed slightly greater variability, ranging from 80 to 469 ng/g, but with no indication that dam removal influenced any increases. Particulate PAHs and PCBs were sampled continuously at the site located below the dam and did not show sustained increases in concentration resulting from dam removal. The employment of passive sampling technology and sediment traps was highly effective in monitoring the concentrations and flux of contaminants moving through the river system. Variations in river flow had no effect on the concentration of contaminants in the dissolved or particulate phases, but did influence the flux rate of contaminants exiting the river. Overall, dam removal did not cause measurable sediment disturbance or increase the concentration or fluxes of dissolved or particulate PAHs and PCBs. This is due in large part to low volumes of impounded sediment residing above the dam and highly armored sediments in the river channel, which limited erosion. Results from this study will be used to improve methods and approaches that assess the short- and long-term impacts ecological restoration activities such as

  19. ORGANIC WASTE CONTAMINATION INDICATORS IN SMALL GEORGIA PIEDMONT STREAMS

    EPA Science Inventory

    We monitored concentrations of dissolved organic carbon(DOC) and dissolved oxygen (DO), and other parameters in 17 small streams of the South Fork Broad River watershed on a monthly basis for 15 months. Here we present estimates of the amounts of organic waste input to these wate...

  20. Characterisation of airborne uranium and thorium contamination in northern England through measurement of U, Th and 235U/238U in tree bark.

    PubMed

    Bellis, D J; Ma, R; McLeod, C W

    2001-02-01

    Samples of tree bark were collected from four locations in Northern England (a typical rural site, a coal-fired power station, a uranium (isotopic) enrichment plant and a nuclear fuel fabrication facility), to assess the nature and extent of airborne uranium and thorium contamination. The U and Th concentrations of bark were determined by inductively coupled plasma mass spectrometry after conventional nebulisation of bark digests, whilst measurement of 235U/238U isotopic ratio utilised high efficiency nebulisation. Uranium concentrations varied between and within the sites (range, 0.01-12 micrograms g-1), with maximum values recorded within 1 km of the nuclear fuel fabrication plant (Springfields). In comparison, the concentration of Th in bark was low (mean, 0.018 microgram g-1) at all sites with the exception of the area affected by coal combustion (0.2-0.8 microgram g-1). The U/Th ratio varied from 0.5 to 3900 compared with the average crustal ratio of 0.3. Low values (< 2) were recorded at the 'coal' and 'rural' sites whilst Capenhurst and Springfields showed high values indicating the relative magnitude of uranium elevation. Significant enrichment of the natural 235U/238U ratio (0.00725) was observed near the nuclear installations, in particular, the enrichment plant (Capenhurst). PMID:11354728

  1. Pilot-scale UV/H2O2 study for emerging organic contaminants decomposition.

    PubMed

    Chu, Xiaona; Xiao, Yan; Hu, Jiangyong; Quek, Elaine; Xie, Rongjin; Pang, Thomas; Xing, Yongjie

    2016-03-01

    Human behaviors including consumption of drugs and use of personal care products, climate change, increased international travel, and the advent of water reclamation for direct potable use have led to the introduction of significant amounts of emerging organic contaminants into the aqueous environment. In addition, the lower detection limits associated with improved scientific methods of chemical analysis have resulted in a recent increase in documented incidences of these contaminants which previously were not routinely monitored in water. Such contaminants may cause known or suspected adverse ecological and/or human health effects at very low concentrations. Conventional drinking water treatment processes may not effectively remove these organic contaminants. Advanced oxidation process (AOP) is a promising treatment process for the removal of most of these emerging organic contaminants, and has been accepted worldwide as a suitable treatment process. In this study, different groups of emerging contaminants were studied for decomposition efficiency using pilot-scale UV/H2O2 oxidation setup, including EDCs, PPCPs, taste and odor (T&O), and perfluorinated compounds. Results found that MP UV/H2O2 AOP was efficient in removing all the selected contaminants except perfluorinated compounds. Study of the kinetics of the process showed that both light absorption and quantum yield of each compound affected the decomposition performance. Analysis of water quality parameters of the treated water indicated that the outcome of both UV photolysis and UV/H2O2 processes can be affected by changes in the feed water quality. PMID:26943602

  2. Ultrasonic imaging of organic liquid contaminants in unconsolidated porous media

    NASA Astrophysics Data System (ADS)

    Geller, Jil T.; Myer, Larry R.

    1995-08-01

    Laboratory experiments were conducted to measure the change in the ultrasonic wave signature as a function of the fraction of nonaqueous-phase liquid (NAPL) contaminants in initially water-saturated sand samples. This represents a fundamental step in the application of high-frequency seismic measurements to detect and delineate NAPL contamination in groundwater. The NAPL's used are n-dodecane, iso-octane and Freon 113®. P-wave velocity changes almost linearly as a function of the fraction of pore space occupied by NAPL. At a given NAPL fraction, the velocities rank with the bulk moduli of the NAPL's. The percent change in velocity at residual water saturation relative to the water-saturated medium ranges from 15% for n-dodecane to 31% for Freon 113®. Velocity changes are significant relative to the ability of seismic methods to detect changes on the order of 5%. These data are described by a model previously derived by G.T. Kuster and M.N. Toksöz of P-wave transmission through a fluid matrix with spherical inclusions that is modified to account for a two-fluid-phase matrix. Amplitude data as a function of NAPL fraction are described by assuming the distribution of NAPL in the column and using attenuation coefficients for the water-saturated and residual-water medium. Amplitudes are shown to be sensitive to both the fraction of NAPL and its distribution, whereas velocity is only a function of NAPL fraction.

  3. SPECIATION OF COMPLEX ORGANIC CONTAMINANTS IN WATER WITH RAMAN SPECTROSCOPY

    EPA Science Inventory

    Pesticides and industrial chemicals are typically complex organic molecules with multiple heteroatoms that can ionize, tautomerize, and form various types of hydrates in water. However, conceptual models for predicting the fate of these chemicals in the environment ignore these ...

  4. TOTAL ORGANIC CARBON DETERMINATIONS IN NATURAL AND CONTAMINATED AQUIFER MATERIALS

    EPA Science Inventory

    Quantifying the total organic carbon (TOC) content of soils and aquifer materials is essential for understanding subsurface chemistry during environmental site characterization. ontaminant fate and transport, microbial ecology, and effective treatment methodology are all influenc...

  5. Organic Compounds in Martian Meteorites May Be Terrestrial Contaminants

    NASA Astrophysics Data System (ADS)

    Jull, A. J. T.

    1998-02-01

    In 1996, David McKay and coworkers reported evidence suggesting the possibility of fossils in the Martian meteorite ALH84001 (see PSRD article "Life on Mars"). This work has stimulated much discussion as to the nature and origin of organic material in ALH84001, another Martian meteorite, EET79001, and other Martian meteorites in general. My colleagues C. Courtney, D. A. Jeffrey, and J. W. Beck and I have been investigating the origin of the organic compounds by measuring the abundances of the isotopes of carbon (C) using accelerator mass spectrometry (AMS). Important clues to the origin of the organic material can be obtained from the amounts of 14C (frequently nicknamed radiocarbon) and the relative amounts of 13C and 12C. Our analyses indicate that at least 80% of the organic material in ALH84001 is from Earth, not Mars, casting doubt on the hypothesis the meteorite contains a record of fossil life on Mars.

  6. SUPERFUND TREATABILITY CLEARINGHOUSE: COMPOSITING EXPLOSIVES/ORGANICS CONTAMINATED SOILS

    EPA Science Inventory

    Laboratory scale and pilot scale studies were conducted to evaluate composting to treat sediments and soils containing explosive and organic compounds. Sediment and soil from lagoons at Army ammunition plants, located in Louisiana, Wisconsin and Pennsylvania contained high...

  7. Removal of organic contaminants by RO and NF membranes

    NASA Technical Reports Server (NTRS)

    Yoon, Yeomin; Lueptow, Richard M.

    2005-01-01

    Rejection characteristics of organic and inorganic compounds were examined for six reverse osmosis (RO) membranes and two nanofiltration (NF) membranes that are commercially available. A batch stirred-cell was employed to determine the membrane flux and the solute rejection for solutions at various concentrations and different pH conditions. The results show that for ionic solutes the degree of separation is influenced mainly by electrostatic exclusion, while for organic solutes the removal depends mainly upon the solute radius and molecular structure. In order to provide a better understanding of rejection mechanisms for the RO and NF membranes, the ratio of solute radius (r(i,s)) to effective membrane pore radius (r(p)) was employed to compare rejections. An empirical relation for the dependence of the rejection of organic compounds on the ratio r(i,s)/r(p) is presented. The rejection for organic compounds is over 75% when r(i,s)/r(p) is greater than 0.8. In addition, the rejection of organic compounds is examined using the extended Nernst-Planck equation coupled with a steric hindrance model. The transport of organic solutes is controlled mainly by diffusion for the compounds that have a high r(i,s)/r(p) ratio, while convection is dominant for compounds that have a small r(i,s)/r(p) ratio. c2005 Elsevier B.V. All rights reserved.

  8. 9 CFR 310.18 - Contamination of carcasses, organs, or other parts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Contamination of carcasses, organs, or other parts. 310.18 Section 310.18 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION...

  9. 9 CFR 310.18 - Contamination of carcasses, organs, or other parts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Contamination of carcasses, organs, or other parts. 310.18 Section 310.18 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION...

  10. Molecular Scale Determinants of Organic Contaminant and Pesticide Sorption by Clays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clay minerals and soil organic matter (SOM) are generally considered to be the most important soil components in the sorption of aqueous phase organic contaminants. During the past 25 years, much emphasis has been placed on the dominant role of SOM in sorption. However, there is increasing evidence...

  11. Quantification of carbamazepine and atrazine and screening of suspect organic contaminants in surface and drinking waters.

    PubMed

    Segura, Pedro A; MacLeod, Sherri L; Lemoine, Pascal; Sauvé, Sébastien; Gagnon, Christian

    2011-08-01

    A new approach for the identification of suspect trace organic contaminants in drinking and surface waters is presented. Samples were initially analyzed using a target determination method for two contamination tracers, carbamazepine (CBZ) and atrazine (ATZ). This method used offline solid-phase extraction and online solid-phase extraction techniques coupled to liquid chromatography-triple quadrupole mass spectrometry to accelerate the sample preparation process and improve method performance. CBZ and ATZ were found respectively in 31% and 56% of the samples, and concentrations were usually <20 ng L(-1). These samples were re-analyzed with a similar method on a quadrupole time-of-flight mass spectrometer to identify suspect contaminants by means of exact mass measurements and isotope patterns. A database of 264 common organic contaminants was built and used in conjunction with a Molecular Feature algorithm to identify the presence of these substances in drinking and surface water collected from different sources at various locations across Canada. Several organic contaminants were identified in the samples, but only the presence of caffeine, desethylatrazine, simazine and venlafaxine could be verified by comparison to pure standards. The presence of desethylatrazine was also confirmed by MS/MS experiments. These results suggest that target analysis for tracers of organic contamination may be a helpful tool to prioritize samples which should be further screened for suspect contaminants. This study also shows that the combination of separation techniques (offline and online SPE, LC) contribute to advance the applicability of high-resolution mass spectrometry for the identification of trace organic contaminants by accelerating the preparation step, reducing complexity and increasing analyte concentrations for optimal detection. PMID:21565385

  12. Influence of organic contamination on laser induced damage of multilayer dielectric mirrors by subpicosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Favrat, O.; Sozet, M.; Tovena-Pécault, I.; Lamaignère, L.; Néauport, J.

    2014-10-01

    Laser induced damage of optical components is often a limiting factor for the development of high power lasers. Indeed, for many years, organic contamination is identified as a factor decreasing the laser induced damage threshold of optical surfaces, limiting the use of high fluencies. Also, for the development of its laser facilities, Laser MégaJoule and PETawatt Aquitaine Laser, the Commissariat à l'Energie Atomique et aux Energies Alternatives investigates the influence of organic contamination on the performances of the optical components. Actually, although great care is provided on the cleanliness of the optics, organic volatile compounds outgassed from surrounding materials can be adsorbed by the sensitive surfaces during its timelife. Thus, for this study, performances of clean and contaminated multilayer dielectric mirrors are compared. Contamination is intentionally realized either by controlled protocols or by exposing optics inside the laser facilities. Qualification and quantification of the organic contamination is realized by automated thermal desorption and gas chromatography coupled with mass spectrometry. Laser induced damage threshold of clean and contaminated mirrors are then investigated by 1053 nm laser at 670 fs.

  13. Metal uptake of Nerium oleander from aerial and underground organs and its use as a biomonitoring tool for airborne metallic pollution in cities.

    PubMed

    Vázquez, S; Martín, A; García, M; Español, C; Navarro, E

    2016-04-01

    The analysis of the airborne particulate matter-PM-incorporated to plant leaves may be informative of the air pollution in the surroundings, allowing their use as biomonitoring tools. Regarding metals, their accumulation in leaves can be the result of both atmospheric incorporation of metallic PM on aboveground plant organs and root uptake of soluble metals. In this study, the use of Nerium oleander leaves as a biomonitoring tool for metallic airborne pollution has been assessed. The metal uptake in N. oleander was assessed as follows: (a) for radicular uptake by irrigation with airborne metals as Pb, Cd, Cr, Ni, As, Ce and Zn (alone and in mixture) and (b) for direct leave exposure to urban PM. Plants showed a high resistance against the toxicity of metals under both single and multiple metal exposures. Except for Zn, the low values of translocation and bioaccumulation factors confirmed the excluder behaviour of N. oleander with respect to the metals provided by the irrigation. For metal uptake from airborne pollution, young plants grown under controlled conditions were deployed during 42 days in locations of the city of Zaragoza (700,000 h, NE Spain), differing in their level of traffic density. Samples of PM2.5 particles and the leaves of N. oleander were simultaneously collected weekly. High correlations in Pb concentrations were found between leaves and PM2.5; in a lesser extent, correlations were also found for Fe, Zn and Ti. Scanning electron microscopy showed the capture of airborne pollution particles in the large and abundant substomatal chambers of N. oleander leaves. Altogether, results indicate that N. Oleander, as a metal resistant plant by metal exclusion, is a suitable candidate as a biomonitoring tool for airborne metal pollution in urban areas. PMID:26732705

  14. Leaching of chloride, sulphate, heavy metals, dissolved organic carbon and phenolic organic pesticides from contaminated concrete.

    PubMed

    Van Praagh, M; Modin, H

    2016-10-01

    Concrete samples from demolition waste of a former pesticide plant in Sweden were analysed for total contents and leachate concentrations of potentially hazardous inorganic substances, TOC, phenols, as well as for pesticide compounds such as phenoxy acids, chlorophenols and chlorocresols. Leachates were produced by means of modified standard column leaching tests and pH-stat batch tests. Due to elevated contents of chromium and lead, as well as due to high chloride concentrations in the first leachate from column tests at L/S 0.1, recycling of the concrete as a construction material in groundworks is likely to be restricted according to Swedish guidelines. The studied pesticide compounds appear to be relatively mobile at the materials own pH>12, 12, 9 and 7. Potential leaching of pesticide residues from recycled concrete to ground water and surface water might exceed water quality guidelines for the remediation site and the EU Water Framework Directive. Results of this study stress the necessity to systematically study the mechanism behind mobility of organic contaminants from alkaline construction and demolition wastes rather than rely on total content limit values. PMID:27449537

  15. Microbe and Mineral Mediated Transformation of Heavy Metals, Radionuclides, and Organic Contaminants

    NASA Astrophysics Data System (ADS)

    Gerlach, R.

    2011-12-01

    Microorganisms influence their surroundings in many ways and humans have utilized microbially catalyzed reactions for benefit for centuries. Over the past few decades, microorganisms have been used for the control of contaminant transport in subsurface environments where many microbe mineral interactions occur. This presentation will discuss microbially influenced mineral formation and transformation as well as their influence on the fate of organic contaminants such as chlorinated aliphatics & 2,4,6-trinitrotoluene (TNT), heavy metals such as chromium, and radionuclides such as uranium & strontium. Both, batch and flow experiments have been performed, which monitor the net effect of microbe mineral interactions on the fate of these contaminants. This invited presentation will place an emphasis on the relative importance of direct microbial (i.e. biotic) transformations, mineral-mediated transformations as well as other abiotic reactions influencing the fate of environmental contaminants. Experiments will be summarized and placed in context of past and future engineered applications for the control of subsurface contaminants.

  16. Removal of Biologically Active Organic Contaminants using Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Banks, Michael A. (Inventor); Banks, Eric B. (Inventor)

    2003-01-01

    Biomedical devices that are to come into contact with living tissue, such as prosthetic and other implants for the human body and the containers used to store and transport them, are together cleaned of non-living, but biologically active organic materials, including endotoxins such as lipopolysaccharides, and assembled into a hermetically sealed package without recontamination. This is achieved by cleaning both the device and package components together in an apparatus, which includes a hermetically sealed chamber, in which they are contacted with atomic oxygen which biocleans them, by oxidizing the biologically active organic materials. The apparatus also includes means for manipulating the device and container and hermetically sealing the cleaned device into the cleaned container to form the package. A calibrated witness coupon visually indicates whether or not the device and container have received enough exposure to the atomic oxygen to have removed the organic materials from their surfaces. Gamma radiation is then used to sterilize the device in the sealed container.

  17. Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects.

    PubMed

    Pal, Amrita; Gin, Karina Yew-Hoong; Lin, Angela Yu-Chen; Reinhard, Martin

    2010-11-15

    Rapid urbanization and frequent disposal of wastewater to surface water cause widespread contamination of freshwater supplies with emerging contaminants, such as pharmaceuticals, insecticides, surfactants, endocrine disruptors, including hormones. Although these organic contaminants may be present at trace levels, their adverse effects on aquatic life, animals and even humans are a growing concern. Numerous studies have been published on the occurrence and fate of emerging organic contaminants in different parts of the world, spanning a wide range of sources and aquatic environments including freshwater catchments, effluent wastewater streams, lakes, rivers, reservoirs, estuaries and marine waters. This paper reviews recent studies on the occurrence and fate of frequently detected pharmaceuticals and hormones and identifies areas that merit further research. PMID:20934204

  18. Temporal and Spatial Variation of Atmospherically Deposited Organic Contaminants at High Elevation in Yosemite National Park, California, USA

    EPA Science Inventory

    Atmospherically deposited organic contaminants in the Sierra Nevada mountains of California, USA, have exceeded some thresholds of concern, but the spatial and temporal distributions of contaminants in the mountains are not well known. The present study evaluated (1) whether the...

  19. Size-resolved airborne particulate oxalic and related secondary organic aerosol species in the urban atmosphere of Chengdu, China

    NASA Astrophysics Data System (ADS)

    Cheng, Chunlei; Wang, Gehui; Meng, Jingjing; Wang, Qiyuan; Cao, Junji; Li, Jianjun; Wang, Jiayuan

    2015-07-01

    Size-segregated (9-stages) airborne particles during winter in Chengdu city of China were collected on a day/night basis and determined for dicarboxylic acids (diacids), ketocarboxylic acids (ketoacids), α-dicarbonyls, inorganic ions, and water-soluble organic carbon and nitrogen (WSOC and WSON). Diacid concentration was higher in nighttime (1831 ± 607 ng m- 3) than in daytime (1532 ± 196 ng m- 3), whereas ketoacids and dicarbonyls showed little diurnal difference. Most of the organic compounds were enriched in the fine mode (< 2.1 μm) with a peak at the size range of 0.7-2.1 μm. In contrast, phthalic acid (Ph) and glyoxal (Gly) presented two equivalent peaks in the fine and coarse modes, which is at least in part due to the gas-phase oxidation of precursors and a subsequent partitioning into pre-existing particles. Liquid water content (LWC) of the fine mode particles was three times higher in nighttime than in daytime. The calculated in-situ pH (pHis) indicated that all the fine mode aerosols were acidic during the sampling period and more acidic in daytime than in nighttime. Robust correlations of the ratios of glyoxal/oxalic acid (Gly/C2) and glyoxylic acid/oxalic acid (ωC2/C2) with LWC in the samples suggest that the enhancement of LWC is favorable for oxidation of Gly and ωC2 to produce C2. Abundant K+ and Cl- in the fine mode particles and the strong correlations of K+ with WSOC, WSON and C2 indicate that secondary organic aerosols in the city are significantly affected by biomass burning emission.

  20. REMOVAL OF VOLATILE ORGANIC CONTAMINANTS FROM GROUND WATER BY ADSORPTION

    EPA Science Inventory

    Laboratory and field studies are underway to determine the effectiveness of activated carbon for removing volatile organic compounds from ground water. For fifteen C1 through C6 compounds being considered for possible regulatory action, the adsorption isotherm capacity ranges fro...

  1. BIOGEOCHEMISTRY OF CHLORINATED ORGANIC CONTAMINANTS IN AQUATIC ECOSYSTEMS

    EPA Science Inventory

    Over the last several years we have conducted both laboratory and field studies to develop a better understanding of the movement of chlorinated organic compounds through aquatic ecosystems, with special emphasis on the differential movement of these compounds due to physical/che...

  2. TREATMENT ALTERNATIVES FOR CONTROLLING CHLORINATED ORGANIC CONTAMINANTS IN DRINKING WATER

    EPA Science Inventory

    A pilot plant study was conducted by the City of Thornton, Colorado, to evaluate techniques for controlling chlorinated organic compounds formed in drinking water as a result of breakpoint, or free, chlorination. The pilot plant was operated for 46 months using the raw water sour...

  3. Green Photocatalysis for Degradation of Organic Contaminants: A Review

    EPA Science Inventory

    Many organic pesticides that were banned a few decades ago, as well as those that are currently in use in many parts of the world, pose some serious threat to human life and the ecosystem because of their persistent and bioaccumulative nature. In the recent years advanced oxidati...

  4. The interplay between habitat structure and chemical contaminants on biotic responses of benthic organisms

    PubMed Central

    Matias, Miguel G.; Coleman, Ross A.

    2016-01-01

    Habitat structure influences the diversity and distribution of organisms, potentially affecting their response to disturbances by either affecting their ‘susceptibility’ or through the provision of resources that can mitigate impacts of disturbances. Chemical disturbances due to contamination are associated with decreases in diversity and functioning of systems and are also likely to increase due to coastal urbanisation. Understanding how habitat structure interacts with contaminants is essential to predict and therefore manage such effects, minimising their consequences to marine systems. Here, we manipulated two structurally different habitats and exposed them to different types of contaminants. The effects of contamination and habitat structure interacted, affecting species richness. More complex experimental habitats were colonized by a greater diversity of organisms than the less complex habitats. These differences disappeared, however, when habitats were exposed to contaminants, suggesting that contaminants can override effects of habitats structure at small spatial scales. These results provide insight into the complex ways that habitat structure and contamination interact and the need to incorporate evidence of biotic responses from individual disturbances to multiple stressors. Such effects need to be taken into account when designing and planning management and conservation strategies to natural systems. PMID:27168991

  5. The interplay between habitat structure and chemical contaminants on biotic responses of benthic organisms.

    PubMed

    Mayer-Pinto, Mariana; Matias, Miguel G; Coleman, Ross A

    2016-01-01

    Habitat structure influences the diversity and distribution of organisms, potentially affecting their response to disturbances by either affecting their 'susceptibility' or through the provision of resources that can mitigate impacts of disturbances. Chemical disturbances due to contamination are associated with decreases in diversity and functioning of systems and are also likely to increase due to coastal urbanisation. Understanding how habitat structure interacts with contaminants is essential to predict and therefore manage such effects, minimising their consequences to marine systems. Here, we manipulated two structurally different habitats and exposed them to different types of contaminants. The effects of contamination and habitat structure interacted, affecting species richness. More complex experimental habitats were colonized by a greater diversity of organisms than the less complex habitats. These differences disappeared, however, when habitats were exposed to contaminants, suggesting that contaminants can override effects of habitats structure at small spatial scales. These results provide insight into the complex ways that habitat structure and contamination interact and the need to incorporate evidence of biotic responses from individual disturbances to multiple stressors. Such effects need to be taken into account when designing and planning management and conservation strategies to natural systems. PMID:27168991

  6. Accumulation of organic air constituents by plant surfaces. Spruce needles for monitoring airborne chlorinated hydrocarbons

    SciTech Connect

    Reischl, A.; Thoma, H.; Reissinger, M.; Hutzinger, O. )

    1988-10-01

    The needles of the spruce (Picea abies) were used to monitor ambient air for organic trace substances. Analyses of spruce needles in an industrialized area demonstrated that the concentrations of these substances were much higher than those in a nonindustrialized area.

  7. ORGANIC CHARACTERIZATION OF AIRBORNE PARTICLES: INTERLABORATORY COMPARISON STUDIES AND THE DEVELOPMENT OF STANDARDS AND REFERENCE MATERIALS

    EPA Science Inventory

    Investigators characterizing and quantifying the organic compounds in particulate matter (PM) have completed the second interlaboratory comparison study. The first study used a subset of SRM1649a sieved to <63um(API) as an unknown sample, an extract of API, and SRM1649a for u...

  8. Removal of volatile and semivolatile organic contamination from soil by air and steam flushing.

    PubMed

    Sleep, B E; McClure, P D

    2001-07-01

    A soil core, obtained from a contaminated field site, contaminated with a mixture of volatile and semivolatile organic compounds (VOC and SVOC) was subjected to air and steam flushing. Removal rates of volatile and semivolatile organic compounds were monitored during flushing. Air flushing removed a significant portion of the VOC present in the soil, but a significant decline in removal rate occurred due to decreasing VOC concentrations in the soil gas phase. Application of steam flushing after air flushing produced a significant increase in contaminant removal rate for the first 4 to 5 pore volumes of steam condensate. Subsequently, contaminant concentrations decreased slowly with additional pore volumes of steam flushing. The passage of a steam volume corresponding to 11 pore volumes of steam condensate reduced the total VOC concentration in the soil gas (at 20 degrees C) by a factor of 20 to 0.07 mg/l. The corresponding total SVOC concentration in the condensate declined from 11 to 3 mg/l. Declines in contaminant removal rates during both air and steam flushing indicated rate-limited removal consistent with the persistence of a residual organic phase, rate-limited desorption, or channeling. Pressure gradients were much higher for steam flushing than for air flushing. The magnitude of the pressure gradients encountered during steam flushing for this soil indicates that, in addition to rate-limited contaminant removal, the soil permeability (2.1 x 10(-9) cm2) would be a limiting factor in the effectiveness of steam flushing. PMID:11475159

  9. Associations of free-living bacteria and dissolved organic compounds in a plume of contaminated groundwater

    USGS Publications Warehouse

    Harvey, R.W.; Barber, L.B., II

    1992-01-01

    Associations of free-living bacteria (FLB) and dissolved organic contaminants in a 4-km-long plume of sewage-contaminated groundwater were investigated. Abundance of FLB in the core of the plume (as delineated by maximum specific conductance) steadily decreased in the direction of flow from a point 0.25 km downgradient from the source to the toe of the plume. At 0.25 km downgradient, FLB comprised up to 31% of the total bacterial population, but constituted < 7% of the population at 2 km downgradient. Abundance of FLB correlated strongly (r = 0.80 n = 23) with total dissolved organic carbon (DOC) in contaminated groundwater between 0.64 and 2.1 km downgradient, although distributions of individual contaminants such as di-, tri- and tetrachloroethene were highly variable, and their association with FLB less clear. Numbers of FLB in the downgradient portion of the plume which is contaminated with branched-chain alkylbenzenesulfonate (ABS) surfactants were low (< 5??108/L) in spite of relatively high levels of DOC (up to 4 mg/L). However, abundance of FLB correlated strongly with non-surfactant DOC along vertical transects through the plume. The ratio of FLB to DOC and the ratio of FLB to attached bacteria generally decreased in the direction of flow and, consequently, with the age of the organic contaminants.

  10. Adaptive Airborne Doppler Wind Lidar Beam Scanning Patterns for Complex Terrain and Small Scale Organized Atmospheric Structure Observations

    NASA Astrophysics Data System (ADS)

    Emmitt, G.; O'Handley, C.; de Wekker, S. F.

    2008-12-01

    The conical scan is the traditional pattern used to obtain vertical profiles of the wind field with an airborne Doppler wind lidar. Nadir or zenith pointing scanning wedges are ideal for this type of scan. A bi-axis scanner has been operated on a Navy Twin Otter for more than 6 years and has been recently installed on a Navy P3 for use in a field experiment to study typhoons. The bi-axis scanner enables a broad range of scanning patterns. A subset of the possible patterns is critical to obtaining useful wind profiles in the presence of complex terrain or small (~ 100's of meters) organized atmospheric structures (rolls, updrafts, waves, etc). Several scanning strategies have been tested in flights over the Monterey Peninsula and within tropical cyclones. Combined with Google Earth (on-board) and satellite imagery overlays, new realtime adaptive scanning algorithms are being developed and tested. The results of these tests (both real and simulated) will be presented in the form of case studies.

  11. Application of Passive Sampling for Measuring Dissolved Concentrations of Organic Contaminants in the Water Column at Three U.S. EPA Marine Superfund Sites.

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). Historically, acquiring...

  12. Application of Passive Sampling for Measuring Dissolved Concentrations of Organic Contaminants in the Water Column at Three U.S. EPA Marine Superfund Sites

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). Historically acquiring ...

  13. Evidence for Terrestrial Organic Contamination of the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Keller, L. P.; Jacobsen, C.

    2004-01-01

    The Tagish Lake meteorite is a rare discovery in the meteorite world. Tentatively classified as an ungrouped type 2 carbonaceous chondrite, it is the first known CI2 meteorite [1, 2, 3]. Tagish Lake is the first meteorite to exhibit a reflectance spectrum showing the red color characteristic of the D- and P-type asteroids that populate the outer main-belt [2], although many interplanetary dust particles collected from the Earth s stratosphere exhibit a similar spectrum [4]. Several large pieces of the Tagish Lake meteorite were recovered on Jan. 18, 2000. We obtained two samples of the Tagish Lake meteorite, both collected on April 24, 2000, designated MG02 and MG03, from A. Hildebrand (Univ. of Calgary) and P. Brown (Univ. of Western Ontario). Smaller fragments collected in May 2000 were purchased from the The Meteorite Market (samples designated "MM"). We have reported preliminary results from infrared and X-ray Absorption Near-edge Structure (XANES) spectroscopy on the MM samples [5]. We report evidence to suggest that there was terrestrial contamination of the meteorite, even in fragments in contact with the lake ice for only a few months .

  14. Assessing Changes to Organic Contaminant Fluxes from Contaminated Sediments Following Dam Removal in an Urbanized River

    EPA Science Inventory

    Restoration of rivers and their associated ecosystems is a growing priority for government agencies (e.g., NOAA, USDA), as well as conservation organizations. Dam removal is a major component of many restoration projects credited with reintroducing fish species, improving water ...

  15. Effects of dissolved organic matter from a eutrophic lake on the freely dissolved concentrations of emerging organic contaminants.

    PubMed

    Xiao, Yi-Hua; Huang, Qing-Hui; Vähätalo, Anssi V; Li, Fei-Peng; Chen, Ling

    2014-08-01

    The authors studied the effects of dissolved organic matter (DOM) on the bioavailability of bisphenol A (BPA) and chloramphenicol by measuring the freely dissolved concentrations of the contaminants in solutions containing DOM that had been isolated from a mesocosm in a eutrophic lake. The abundance and aromaticity of the chromophoric DOM increased over the 25-d mesocosm experiment. The BPA freely dissolved concentration was 72.3% lower and the chloramphenicol freely dissolved concentration was 56.2% lower using DOM collected on day 25 than using DOM collected on day 1 of the mesocosm experiment. The freely dissolved concentrations negatively correlated with the ultraviolent absorption coefficient at 254 nm and positively correlated with the spectral slope of chromophoric DOM, suggesting that the bioavailability of these emerging organic contaminants depends on the characteristics of the DOM present. The DOM-water partition coefficients (log KOC ) for the emerging organic contaminants positively correlated with the aromaticity of the DOM, measured as humic acid-like fluorescent components C1 (excitation/emission=250[313]/412 nm) and C2 (excitation/emission=268[379]/456 nm). The authors conclude that the bioavailability of emerging organic contaminants in eutrophic lakes can be affected by changes in the DOM. PMID:24839192

  16. Role of benthic communities in organic contaminant transport and fate. 2: Bioaccumulation and biotransformation

    SciTech Connect

    Dickhut, R.M.; Schaffner, L.C.; Lay, P.W.; Mitra, S. |

    1994-12-31

    Numerous macrobenthic organisms from lower Chesapeake Bay have been observed to rapidly accumulate and transform a series of organic contaminants (OCs). Bioaccumulation and biotransformation vary both within and among major taxa, and with the OC physical-chemical properties. Bioaccumulation of OCs is rapid for various organisms regardless of feeding behavior indicating that uptake of contaminants from the dissolved phase may be important. Comparison of OC and metabolite body burdens to those in the corresponding sediment indicate three types of behavior for OC fluxes through the organisms over 56 days of exposure to contaminated sediments: steady state between contaminant uptake and elimination, faster uptake than elimination corresponding to bioaccumulation, and rapid loss relative to uptake, with decreasing bioaccumulation factors with time. OC loss mechanisms from operationally defined detectable pools in benthic biota may include: elimination of parent compound or metabolites, and binding of reactive metabolites to cellular structures. OC metabolite production and loss rates in benthic macrofauna from Chesapeake Bay are currently under investigation. Bioaccumulation and transformation of OCs by benthic organisms are of importance in determining their effects, including trophic transfer of organic pollutants, on aquatic ecosystems.

  17. Contamination of vegetables, fruits and soil with geohelmints eggs on organic farms in Poland.

    PubMed

    Kłapeć, Teresa; Borecka, Anna

    2012-01-01

    The objective of this study was to evaluate the contamination of vegetables, fruits and soil with zoonotic parasite eggs on organic and conventional farms in south-eastern Poland. To evaluate the contamination with eggs of zoonotic parasites, examinations were conducted on 8 conventional and 11 organic farms in south-eastern Poland from May-October in 2008 and 2009. The following fruit and vegetables were selected for the experiment: strawberry, leek, onion, carrot, zucchini, beetroot, parsley, potatoes, celery, rhubarb, lettuce, cabbage, broccoli, pumpkin, young beetroot leaves, cauliflower, French beans, turnip, fennel and sorrel. A total of 187 samples of vegetables, fruits and soil were examined by means of a modified flotation method according to Quinn et al. (1980). Contamination with Ascaris, Trichuris and Toxocara eggs was found, with a higher number of positive samples revealed on conventional (34.7%), compared to organic farms (18.9%). The level of contamination in soil samples from conventional farms was higher (88.5% positive samples), than of those from organic farms (32.8%). Of the 15 geohelmints eggs, positive samples were found in vegetables: 9 Toxocara eggs, 4 Ascaris eggs and 2 Trichuris eggs. No geohelmints eggs were observed in the strawberry samples. The consumption of vegetables and fruits contaminated with the eggs of parasites may be the cause of parasitoses in humans. Stricter sanitary standards on farms of all types may limit the incidence of parasitic zoonoses. PMID:23020033

  18. Determination of biological removal of recalcitrant organic contaminants in coal gasification waste water.

    PubMed

    Ji, Qinhong; Tabassum, Salma; Yu, Guangxin; Chu, Chunfeng; Zhang, Zhenjia

    2015-01-01

    Coal gasification waste water treatment needed a sustainable and affordable plan to eliminate the organic contaminants in order to lower the potential environmental and human health risk. In this paper, a laboratory-scale anaerobic-aerobic intermittent system carried out 66 operational cycles together for the treatment of coal gasification waste water and the removal capacity of each organic pollutant. Contaminants included phenols, carboxylic acids, long-chain hydrocarbons, and heterocyclic compounds, wherein the relative content of phenol is up to 57.86%. The long-term removal of 77 organic contaminants was evaluated at different hydraulic retention time (anaerobic24 h + aerobic48 h and anaerobic48 h +aerobic48 h). Contaminant removal ranged from no measurable removal to near-complete removal with effluent concentrations below the detection limit. Contaminant removals followed one of four trends: steady-state removal throughout, increasing removal to steady state (acclimation), decreasing removal, and no removal. Organic degradation and transformation in the reaction were analysed by gas chromatography/mass spectrometry technology. PMID:25951900

  19. Biomagnification of persistent organic contaminants in Great Slave Lake food webs

    SciTech Connect

    Evans, M.S.; Muir, D.; Lockhart, L.

    1994-12-31

    Great Slave Lake is a large, subarctic lake which receives the majority of its water from the Slave, Peace, and Athabasca Rivers watershed. Increased development in the southern region of the watershed may provide a significant source of organic contaminants to the lake in addition to contaminants entering the lake via direct atmospheric deposition. Here the authors report the results of a study comparing organic contaminant concentrations in lake trout, burbot, and whitefish collected near the Slave River outflow and in a region of Great Slave Lake which is believed to be minimally affected by the Slave River. They also use stable isotope analyses to infer spatial differences in fish feeding habits between the two regions of the lake and to investigate how food habits may affect organic contaminant biomagnification. Finally, the authors compare their Great Slave Lake data with studies conducted from other regions of the Arctic and subarctic. This allows them to infer how the Slave River inflow may affect organic contaminant concentrations and biomagnification in the Great Slave Lake ecosystem.

  20. Studies on organic and in-organic biostimulants in bioremediation of diesel-contaminated arable soil.

    PubMed

    Nwankwegu, Amechi S; Orji, Michael U; Onwosi, Chukwudi O

    2016-11-01

    In this study, use of inorganic fertilizer (N.P.K) was compared with organic manure (compost) in the bioremediation of diesel-polluted agricultural soil over a two-month period. Renewal by enhanced natural attenuation was used as control. The results revealed that total petroleum hydrocarbon removal from polluted soil was 71.40 ± 5.60% and 93.31 ± 3.60% for N.P.K and compost amended options, respectively. The control (natural attenuation) had 57.90 ± 3.98% of total petroleum hydrocarbon removed. Experimental data fitted second order kinetic model adequately for compost amended option. The fertilizer amended option was found to be 1.04 times slower (k2 = 4.00 ± 1.40 × 10(-7)gmg(-1)d(-1), half-life = 28.15 d) than compost amended option (k2 = 1.39 ± 0.54 × 10(-5) gmg(-1)d(-1), half-life = 8.10 d) but 1.21 times (20.6%) faster than the control (k2 = 2.57 ± 0.16 × 10(-7) gmg(-1)d(-1), half-life = 43.81 d). The hydrocarbon utilizers isolated from the diesel contaminated soil were: Bacillus nealsoni, Micrococcus luteus, Aspergillus awamori, and Fusarium proliferatum. The phytotoxicity test showed that germination indices for natural attenuation (control), fertilizer (NPK) and compost amended options were 34%, 56%, and 89%, respectively. PMID:27494315

  1. Vitrification of cesium-contaminated organic ion exchange resin

    SciTech Connect

    Sargent, T.N. Jr.

    1994-08-01

    Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass.

  2. Carbon content of common airborne fungal species and fungal contribution to aerosol organic carbon in a subtropical city

    NASA Astrophysics Data System (ADS)

    Cheng, Jessica Y. W.; Chan, Chak K.; Lee, C.-T.; Lau, Arthur P. S.

    Interest in the role and contribution of fungi to atmospheric aerosols and processes grows in the past decade. Substantial data or information such as fungal mass or carbon loading to ambient aerosols is however still lacking. This study aimed to quantify the specific organic carbon content (OC per spore) of eleven fungal species commonly found airborne in the subtropics, and estimated their contribution to organic carbon in aerosols. The specific OC contents showed a size-dependent relationship ( r = 0.64, p < 0.05) and ranged from 3.6 to 201.0 pg carbon per spore or yeast cell, giving an average of 6.0 pg carbon per spore (RSD 51%) for spore or cell size less than 10 μm. In accounting for natural variations in the composition and abundance of fungal population, weighted-average carbon content for field samples was adopted using the laboratory determined specific OC values. An average of 5.97 pg carbon per spore (RSD 3.8%) was enumerated from 28 field samples collected at the university campus. The mean fungal OC concentration was 3.7, 6.0 and 9.7 ng m -3 in PM 2.5, PM 2.5-10 and PM 10, respectively. These corresponded to 0.1%, 1.2% and 0.2% of the total OC in PM 2.5, PM 2.5-10 and PM 10, respectively. In the study period, rain provided periods with low total OC but high fungal prevalence and fungi contributed 7-32% OC in PM 2.5-10 or 2.4-7.1% OC in PM 10. More extensive studies are deserved to better understand the spatial-, temporal- and episodic dependency on the fungal OC contribution to the atmospheric aerosols.

  3. Resolving Organized Aerosol Structures (Rolls and Layers) with Airborne Fast Mobility Particle Sizer (FMPS) During MILAGRO/INTEX Campaign

    NASA Astrophysics Data System (ADS)

    Kapustin, V.; Clarke, A.; Zhou, J.; Howell, S.; Shinozuka, Y.; Brekhovskikh, V.; McNaughton, C.

    2007-12-01

    The Hawaii Group for Environmental Aerosol Research [http://www.soest.hawaii.edu/HIGEAR] deployed a wide range of aerosol instrumentation aboard the C-130 and the NASA DC-8 as part of MILAGRO/INTEX. These were designed to provide rapid information on aerosol composition, state of mixing (internal or external), spectral optical properties (scattering and absorption), the humidity dependence of light scattering-f(RH), and the role of condensed species in changing the absorption properties of black carbon (BC) and inferred properties of organic carbon (OC). These measurements included size distributions from about 7 nm up to about 10,000 nm and their volatility at 150, 300 and 400 C; size selected response to heating (volatility) to resolve the state of mixing of the aerosol; continuous measurements of the light scattering and absorption at 3 wavelengths; measurements of the f(RH). We also flew the first airborne deployment of the new Fast Mobility Particle Sizer (FMPS, TSI Inc.) that provided information on rapid (1Hz) size variations in the Aitken mode. This revealed small scale structure of the aerosol and allowed us to examine size distributions varying over space and time associated with mixing processes previously unresolved etc. Rapid measurements during profiles also revealed variations in size over shallow layers. Other dynamic processes included rapid size distribution measurements within orographically induced aerosol layers and size distribution evolution of the nanoparticles formed by nucleation (C-130 flights 5, 6 and 9). Evidence for fluctuations induced by underlying changes in topography was also detected. These measurements also frequently revealed the aerosol variability in the presence of boundary layer rolls aligned along the wind in the Marine Boundary Layer (Gulf region) both with and without visible cloud streets (DC-8 flight 4 and C-130 flight 7). This organized convection over 1-2 km scales influences the mixing processes (entrainment, RH

  4. Transport of organic contaminants in geomembranes under stress

    SciTech Connect

    Xiao, S. ); Moresoli, C. . Dept. of Chemical Engineering); Burczyk, A. ); Pintauro, P.; De Kee, D. . Dept. of Chemical Engineering)

    1999-07-01

    The transport properties of aqueous solutions of benzene, dichloromethane, and trichloroethylene through extended polyvinyl chloride and high-density polyethylene geomembranes are investigated. It is found that extension enhances the permeation rates of the penetrants through polyvinyl chloride geomembranes, and the opposite effect is found in the case of high-density polyethylene. This difference in response is attributed to the type of structural change, which occurred as a result of the extension. The diffusivities of a mixture of the three organic solvents through the geomembranes are also determined.

  5. Remediation of Groundwater Contaminated with Organics and Radionuclides - An Innovative Approach Eases Traditional Hurdles

    SciTech Connect

    Scott, J.; Case, N.; Coltman, K.

    2003-02-25

    Traditional approaches to the remediation of contaminated groundwater, such as pump-and-treat, have been used for many years for the treatment of groundwater contaminated with various organics. However the treatment of groundwater contaminated with organics and radionuclides has been considerably more challenging. Safety and Ecology Corporation (SEC) was recently faced with these challenges while designing a remediation system for the remediation of TCE-contaminated groundwater and soil at the RMI Extrusion Plant in Ashtabula, OH. Under contract with RMI Environmental Services (RMIES), SEC teamed with Regenesis, Inc. to design, implement, and execute a bioremediation system to remove TCE and associated organics from groundwater and soil that was also contaminated with uranium and technetium. The SEC-Regenesis system involved the injection of Hydrogen Release Compound (HRC), a natural attenuation accelerant that has been patented, designed, and produced by Regenesis, to stimulate the reductive dechlorination and remediation of chlorinated organics in subsurface environments. The compound was injected using direct-push Geoprobe rods over a specially designed grid system through the zone of contaminated groundwater. The innovative approach eliminated the need to extract contaminated groundwater and bypassed the restrictive limitations listed above. The system has been in operation for roughly six months and has begun to show considerable success at dechlorinating and remediating the TCE plume and in reducing the radionuclides into insoluble precipitants. The paper will provide an overview of the design, installation, and initial operation phase of the project, focusing on how traditional design challenges of remediating radiologically contaminated groundwater were overcome. The following topics will be specifically covered: a description of the mechanics of the HRC technology; an assessment of the applicability of the HRC technology to contaminated groundwater plumes

  6. A non-equilibrium model for predicting bioaccumulation of organic contaminants in aquatic food-webs

    SciTech Connect

    Morrison, H.; Lazar, R.; Haffner, G.D.; Whittle, D.M.; Gobas, F.A.P.C.

    1995-12-31

    A sub-model describing bioaccumulation and biomagnification in benthic invertebrates was incorporated into a steady-state food-web model (Gobas, 1993) was modified, to estimate concentrations of organic contaminants in aquatic organisms based on chemical concentrations in water and sediments. Model predictions were in good agreement with field data when applied to western Lake Erie. The improved ability of the model to simulate bioaccumulation by benthic invertebrates, makes this model particularly useful for quantifying contaminant transfer in the benthic food-web.

  7. Organic Contaminants in Riverine and Groundwater Systems: Aspects of the Anthropogenic Contribution

    NASA Astrophysics Data System (ADS)

    Schwarzbauer, Jan

    This book summarizes a selection of organic-geochemical investigations, which deal with the characterization and environmental behaviour of organic contaminations of German river and groundwater systems. The aim is to resume and present an overview of comprehensive current research activities, which have been published diversely in specialised scientific journals and, are therefore not easily available in a concise and clearly arranged way. Important topics include comprehensive non-target screening as well as isotope analysis of contaminants in water and sediments, detailed characterisation of bound residues, recording river ine pollution histories and an extensive application of the anthropogenic marker approach.

  8. [Methodological Approaches to the Organization of Counter Measures Taking into Account Landscape Features of Radioactively Contaminated Territories].

    PubMed

    Kuznetsov, V K; Sanzharova, N I

    2016-01-01

    Methodological approaches to the organization of counter measures are considered taking into account the landscape features of the radioactively contaminated territories. The current status and new requirements to the organization of counter measures in the contaminated agricultural areas are analyzed. The basic principles, objectives and problems of the formation of counter measures with regard to the landscape characteristics of the territory are presented; also substantiated are the organization and optimization of the counter measures in radioactively contaminated agricultural landscapes. PMID:27245009

  9. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents

    PubMed Central

    Jasper, Justin T.; Nguyen, Mi T.; Jones, Zackary L.; Ismail, Niveen S.; Sedlak, David L.; Sharp, Jonathan O.; Luthy, Richard G.; Horne, Alex J.; Nelson, Kara L.

    2013-01-01

    Abstract Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe. PMID:23983451

  10. Organic wastes to enhance phyto-treatment of diesel-contaminated soil.

    PubMed

    Dadrasnia, Arezoo; Agamuthu, P

    2013-11-01

    Toxic inorganic and organic chemicals are major contributors to environmental contamination and pose major health risks to human population. In this work, Dracaena reflexa and Podocarpus polystachyus were investigated for their potential to remove hydrocarbons from 2.5% and 1% diesel fuel-contaminated soil amended individually with 5% organic wastes (tea leaf, soy cake and potato skin) for a period of 270 days. Loss of 90% and 99% oil was recorded in soil contaminated with 2.5% and 1% oil with soy cake amendment, respectively, compared with 52% and 62% in unamended soil with D. reflexa at the end of 270 days. Similarly, 84% and 91% oil loss was recorded for P. polystachyus amended with organic wastes in 2.5% and 1% oil, respectively. Diesel fuel disappeared more rapidly in the soil amendment with SC than in other organic waste supplementation. It was evident that plants did not accumulate hydrocarbon from the soil, while the number of hydrocarbon-utilizing bacteria was high in the rhizosphere, thus suggesting that the mechanism of the oil degradation was rhizodegradation. The kinetic model result indicated a high rate of degradation in soil amendment with SC at 1% with D. reflexa compared with other treatments. Thus, a positive relationship was observed between diesel hydrocarbon degradation with plant biomass production. Dracaena reflexa with organic wastes amendment has a greater potential of restoring hydrocarbon-contaminated soil compared to P. polystachyus plant. PMID:24025373

  11. Do plants reflect atmospheric concentrations of persistent organic contaminants?

    SciTech Connect

    Jones, K.C.

    1994-12-31

    Chemical analysis of several types of plants -- such as pine needles, lichens, mosses and grasses -- has been used by numerous workers as a means of inferring spatial and temporal variations in the atmospheric concentrations of persistent organic compounds (e.g. PCBs, PAHs, CBs and PCDD/Fs). This is usually because plants are perceived as convenient `passive` air samplers and assumed to `integrate` variations in ambient concentrations during their lifetime. More recently, various researchers have sought to understand the mechanisms of exchange/uptake at the air vegetation surface, with a view to refining the use of vegetation sampling techniques and understanding the role of vegetation in influencing the global cycling of these compounds. This presentation will review some of the recent advances in this area, highlighting some of pitfalls and beneficial uses of employing plants as `monitoring tools`.

  12. A simplified approach for monitoring hydrophobic organic contaminants associated with suspended sediment: methodology and applications.

    PubMed

    Mahler, B J; Van Metre, P C

    2003-04-01

    Hydrophobic organic contaminants, although frequently detected in bed sediment and in aquatic biota, are rarely detected in whole-water samples, complicating determination of their occurrence, load, and source. A better approach for the investigation of hydrophobic organic contaminants is the direct analysis of sediment in suspension, but procedures for doing so are expensive and cumbersome. We describe a simple, inexpensive methodology for the dewatering of sediment and present the results of two case studies. Isolation of a sufficient mass of sediment for analyses of organochlorine compounds and PAHs is obtained by in-line filtration of large volumes of water. The sediment is removed from the filters and analyzed directly by standard laboratory methods. In the first case study, suspended-sediment sampling was used to determine occurrence, loads, and yields of contaminants in urban runoff affecting biota in Town Lake, Austin, TX. The second case study used suspended-sediment sampling to locate a point source of PCBs in the Donna Canal in south Texas, where fish are contaminated with PCBs. The case studies demonstrate that suspended-sediment sampling can be an effective tool for determining the occurrence, load, and source of hydrophobic organic contaminants in transport. PMID:12712287

  13. Investigations into methods of removing from marine sediments that toxicity attributable to organic contaminants

    SciTech Connect

    Huckins, J.N.; Lebo, J.A.; Petty, J.D.; Orazio, C.E.; Gibson, V.L.; Ho, K.

    1995-12-31

    Sediments from contaminated estuaries such as New York/New Jersey Harbor are toxic due to the presence of a diversity of contaminants, e.g., heavy metals, ammonia, and organics such as PCBs, PAHs, PCDDs and PCDFs. To facilitate Toxicity Identification Evaluation (TIE) studies of whole sediments, the authors have developed a strategy for selectively reducing or removing organic contaminant residues with minimal disruption of the dynamics of other classes of contaminants that contribute to whole sediment toxicity. The strategy consists of an optional prewash of the sediment slurry with a nonpolar volatile solvent to remove globular and crystalline contaminant phases, turbation of sediment slurry (elevated temperature may be required) in the presence of polyethylene strips (PE) or charcoal-impregnated PE strips and triolein-containing semipermeable membrane devices (SPMDs), and finally addition of small amounts of fine-grained activated carbon (shown to be nontoxic) to the test sediment. Replicate (n = 2) samples of a marine sediment spiked and aged with 500 {micro}g/g dieldrin were successfully detoxified using these procedures, as 48 h bioassays (Mysidopsis bahia and Ampelisca abdita) showed no toxicity, while untreated sediment and SPMD dialysates were toxic. Gas chromatographic analysis of the treated sediment samples showed that 97 and > 99 percent of the dieldrin had been removed. Detoxification of other sediments with naturally incurred high-K{sub oc} organic pollutants may be more problematic.

  14. Contributions of contamination and organic enrichment to sediment toxicity near a sewage outfall

    SciTech Connect

    Bay, S.M.; Greenstein, D.J.

    1994-12-31

    Sediment and interstitial water toxicity and contamination were measured at 12 sites near the Los Angeles County Sanitation Districts sewage outfall on the Palos Verdes (Calif.) shelf, a region contaminated with many metal and organic contaminants. The spatial pattern of biological effects (sea urchin growth and fertilization) was compared with chemical concentrations in sediment, interstitial water, and gonad tissue to identify potentially meaningful relationships. Tissue analyses indicated that sediment metals were not bioavailable and therefore unlikely to be a significant factor in the sediment toxicity test responses. Sediment DDTs, PCBs, and PAHs were bioavailable and showed significant correlations with sea urchin growth effects. Interstitial water toxicity was most strongly correlated with measures of organic enrichment (hydrogen sulfide, ammonia) and hydrocarbon contamination. Subsequent dose response experiments confirmed the important role of hydrogen sulfide in interstitial water toxicity but failed to demonstrate an effect of DDE (the most abundant sediment organic contaminant) on growth. Overall, variations in measured sediment characteristics accounted for a relatively small portion of the biological responses.

  15. A simplified approach for monitoring hydrophobic organic contaminants associated with suspended sediment: Methodology and applications

    USGS Publications Warehouse

    Mahler, B.J.; Van Metre, P.C.

    2003-01-01

    Hydrophobic organic contaminants, although frequently detected in bed sediment and in aquatic biota, are rarely detected in whole-water samples, complicating determination of their occurrence, load, and source. A better approach for the investigation of hydrophobic organic contaminants is the direct analysis of sediment in suspension, but procedures for doing so are expensive and cumbersome. We describe a simple, inexpensive methodology for the dewatering of sediment and present the results of two case studies. Isolation of a sufficient mass of sediment for analyses of organochlorine compounds and PAHs is obtained by in-line filtration of large volumes of water. The sediment is removed from the filters and analyzed directly by standard laboratory methods. In the first case study, suspended-sediment sampling was used to determine occurrence, loads, and yields of contaminants in urban runoff affecting biota in Town Lake, Austin, TX. The second case study used suspended-sediment sampling to locate a point source of PCBs in the Donna Canal in south Texas, where fish are contaminated with PCBs. The case studies demonstrate that suspended-sediment sampling can be an effective tool for determining the occurrence, load, and source of hydrophobic organic contaminants in transport.

  16. Mutagenicity and chemical analysis of sequential organic extracts of airborne particulates.

    PubMed

    Savard, S; Otson, R; Douglas, G R

    1992-01-01

    To obtain insight into the identity of chemicals associated with the mutagenicity of United States National Institute of Standards and Technology (NIST) Standard Reference Materials SRM 1649 (urban dust) and SRM 1650 (diesel particulate), parallel mutagenicity tests and chemical analyses were performed on dichloromethane and sequential organic extracts of these samples. SRM 1649 and 1650 were sequentially extracted with five organic solvents of increasing polarity, in order to partition mutagenic components into discrete fractions. The solvents (with associated polarity index) were as follows: (1) hexane (0.0); (2) hexane:diethyl ether 9:1 (0.29); (3) hexane:diethyl ether 1:1 (1.45); (4) diethyl ether (2.9); (5) methanol (6.6). 0.9270 g of SRM 1649, and 0.0510 g of SRM 1650 were each extracted three times with 8 ml of each of the solvents, the three aliquots were pooled, and analysed for target organics or solvent-exchanged into DMSO for mutagenicity testing in Salmonella typhimurium strains TA98 and TA100. The dichloromethane extracts of SRM 1649 and SRM 1650 contained direct-acting mutagens in Salmonella strains TA98 and TA100; SRM 1650 was significantly more potent than SRM 1649 in either strain. Addition of S9 caused a large decrease in mutagenicity of each extract, although SRM 1650 remained more potent. An interesting pattern of mutagenicity was observed for the sequential extracts of SRM 1649 and SRM 1650: the mutagenic potency of SRM 1649 extracts increased with increasing polarity of the extraction solvent while the response of the SRM 1650 extracts was the opposite. This suggests that the direct-acting mutagens in SRM 1650 are unlike those in SRM 1649. The response, though diminished, was largely unchanged when S9 was included in the test mixture. Chemical analyses on the various extracts were performed using a Hewlett-Packard model 5890 gas chromatograph equipped with a model 5970B mass selective detector (GC-MSD), and a 0.3 microns film thickness cross

  17. Volatile organic silicon compounds: the most undesirable contaminants in biogases.

    PubMed

    Ohannessian, Aurélie; Desjardin, Valérie; Chatain, Vincent; Germain, Patrick

    2008-01-01

    Recently a lot of attention has been focused on volatile organic silicon compounds (VOSiC) present in biogases. They induce costly problems due to silicate formation during biogas combustion in valorisation engine. The cost of converting landfill gas and digester gas into electricity is adversely affected by this undesirable presence. VOSiC in biogases spark off formation of silicate deposits in combustion chambers. They engender abrasion of the inner surfaces leading to serious damage, which causes frequent service interruptions, thus reducing the economic benefit of biogases. It is already known that these VOSiC originate from polydimethylsiloxanes (PDMS) hydrolysis. PDMS (silicones) are used in a wide range of consumer and industrial applications. PDMS are released into the environment through landfills and wastewater treatment plants. There is a lack of knowledge concerning PDMS biodegradation during waste storage. Consequently, understanding PDMS behaviour in landfill cells and in sludge digester is particularly important. In this article, we focused on microbial degradation of PDMS through laboratory experiments. Preliminary test concerning anaerobic biodegradation of various PDMS have been investigated. Results demonstrate that the biotic step has an obvious influence on PDMS biodegradation. PMID:19029718

  18. A portion of plant airborne communication is endorsed by uptake and metabolism of volatile organic compounds.

    PubMed

    Matsui, Kenji

    2016-08-01

    Plants have the ability to sense volatile organic compounds (VOCs) so as to efficiently adapt to their environment. The mechanisms underlying such plant 'olfactory' systems are largely unknown. Here I would like to propose that the metabolism of VOCs in plant tissues is one of the mechanisms by which plants sense VOCs. During the gas-exchange that is essential for photosynthesis, VOCs in the atmosphere are taken into the intercellular spaces of leaves. Each VOC is partitioned between the gas phase (intercellular space) and liquid phase (cell wall) at a certain ratio determined by Henry's law. The VOCs in the cell wall diffuse through the plasma membrane to the cytosol depending on their oil/water partition coefficients. Plants detoxify some VOCs, especially those that are oxidized, through glycosylation, glutathionylation, and reduction. These metabolic processes lower the concentration of VOCs in the cytosol, which facilitates further cytosolic uptake. As a result, vigorous metabolism of VOCs in the cytosol can lead to a substantial accumulation of VOC metabolites and the depletion of glutathione or NADPH. One such metabolite (a VOC glycoside) is known to mount a direct defense against herbivores, whilst deprivation of glutathione and NADPH can fortify plants with responses similar to the oxidative stress response. PMID:27281633

  19. Fate of organic contaminants in the redox zones of a landfill leachate pollution plume (Vejen, Denmark)

    NASA Astrophysics Data System (ADS)

    Lyngkilde, John; Christensen, Thomas H.

    1992-09-01

    Samples from 75 sample locations in a landfill leachate pollution plume reveal a significant disappearance of specific organic compounds (SOC's) within the first 100 m of the plume. Only the herbicide Mecoprop® (MCPP) migrates further. Since sorption and dilution cannot account for the decreasing concentrations, degradation is considered to be the governing process. Non-volatile organic carbon shows a corresponding fate probably acting as a substrate for the microbial processes. The first 20 m of the plume are methanogenic/sulfidogenic, judged on the chemistry of the groundwater, followed by a significant ferrogenic zone exhibiting a substantial capacity to degrade the SOC's. The presence of intermediary products (here an oxidized camphor compound) supports the concept of degradation within the ferrogenic zone. This investigation draws the attention to the significant natural attenuation of organic contaminants and to the so far neglected ferrogenic zone in controlling the fate of organic contaminants in leachate plumes.

  20. Development of a fast GC/MS-system for airborne measurements of Volatile Organic Compounds

    NASA Astrophysics Data System (ADS)

    Wenk, Ann-Kathrin; Wegener, Robert; Hofzumahaus, Andreas; Wahner, Andreas

    2010-05-01

    Volatile Organic Compounds (VOC) determine the radical chemistry of the atmosphere. They can serve both as sources, or sinks for radicals. Mass spectrometry linked to gas chromatography (GC/MS) is a widespread technique in environmental analysis since it can be used to separate and analyze any compound which can be evaporated and pass the analytical column with very high precision and a good sensitivity. The use of special chromatographic phases and long capillary columns enables the quantification of a wide range of compounds with little interference from other sample constituents. An in situ GC/MS consists in principle of three compartments, 1) a preconcentration unit where the sample is extracted from the air, focussed onto a small volume and volatilized, 2) a chromatographic system where the analytes are separated on the analytical column and 3) a mass spectrometer where the compounds are ionized and detected. VOC have to be preconcentrated due to their low concentration level and in order to get enough sensitivity for analysis. The aim of this project was to develop an in situ GC/MS system to analyze volatile Nonmethane Hydrocarbons (NMHC) and Oxygenated Volatile Organic Compounds (OVOC) for the High Altitude and LOng Range Research Aircraft (HALO). In contrast to other analytical instruments a GC/MS works discontinuously. The preconcentration unit is either heated up when the compounds are volatilized or cooled down when substances are adsorbed. The same is true for the GC oven. It is heated up when the compounds are separated or it is cooled down to be ready for the next injection. On a system with a single GC oven, these processes will inevitably lengthen the whole analytical procedure. To speed up the analytical process the GC/MS system described here was equipped with two GC ovens and two adsorption units. While the components are adsorbed in one adsorption unit, in the other unit the components are desorbed and transferred to the GC unit. The second GC

  1. Airborne volatile organic compounds in urban and industrial locations in four developing countries

    NASA Astrophysics Data System (ADS)

    Do, Duc Hoai; Walgraeve, Christophe; Amare, Abebech Nuguse; Barai, Krishna Rani; Parao, Amelia Estigoy; Demeestere, Kristof; van Langenhove, Herman

    2015-10-01

    Volatile organic compounds (VOCs) represent an important class of air pollutants, however their concentration levels in developing countries have scarcely been reported in literature. Therefore, concentration levels of 60 VOCs were determined at 27 urban and industrial locations in seven different cities in Ethiopia, Vietnam, the Philippines and Bangladesh between 2011 and 2014. Active sampling using Tenax TA as a sorbent was employed followed by TD-GC-MS analysis using internal standard calibration. It was found that TVOCs concentration levels in Dhaka, Bangladesh (arithmetic mean: 343 and 399 μg/m3 for urban and industrial campaign, respectively) were more than 10 times higher when compared to TVOCs levels observed in Mekelle, Ethiopia. ∑BTEX concentration at street sites ranges from 36 μg/m3 in Mekelle, to 100 and 250 μg/m3 in Hanoi, Vietnam and Dhaka, Bangladesh, respectively. The indoor to outdoor concentration ratios were found to be dependent on the country, type of environment, VOC compound and outdoor reference location. The highest Ozone Formation Potential (OFP, 2150 μg/m3), calculated from the same set of seven aromatic VOCs, was obtained at the street site in Dhaka. This OFP value is a factor three and four times higher than the OFP value observed at the street sites in Hanoi, and Manila, respectively. Finally, the Cumulative Cancer Risk (CCR) calculated for four carcinogenic VOCs ranged from 97 × 10-6 in urban Mekelle to 299 × 10-6 in urban Dhaka. This work provides for the first time comparisons of CCR in urban and industrial environments in the selected developing countries.

  2. The delivery of organic contaminants to the Arctic food web: why sea ice matters.

    PubMed

    Pućko, Monika; Stern, Gary A; Macdonald, Robie W; Jantunen, Liisa M; Bidleman, Terry F; Wong, Fiona; Barber, David G; Rysgaard, Søren

    2015-02-15

    For decades sea ice has been perceived as a physical barrier for the loading of contaminants to the Arctic Ocean. We show that sea ice, in fact, facilitates the delivery of organic contaminants to the Arctic marine food web through processes that: 1) are independent of contaminant physical-chemical properties (e.g. 2-3-fold increase in exposure to brine-associated biota), and 2) depend on physical-chemical properties and, therefore, differentiate between contaminants (e.g. atmospheric loading of contaminants to melt ponds over the summer, and their subsequent leakage to the ocean). We estimate the concentrations of legacy organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in melt pond water in the Beaufort Sea, Canadian High Arctic, in 2008, at near-gas exchange equilibrium based on Henry's law constants (HLCs), air concentrations and exchange dynamics. CUPs currently present the highest risk of increased exposures through melt pond loading and drainage due to the high ratio of melt pond water to seawater concentration (Melt pond Enrichment Factor, MEF), which ranges from 2 for dacthal to 10 for endosulfan I. Melt pond contaminant enrichment can be perceived as a hypothetical 'pump' delivering contaminants from the atmosphere to the ocean under ice-covered conditions, with 2-10% of CUPs annually entering the Beaufort Sea via this input route compared to the standing stock in the Polar Mixed Layer of the ocean. The abovementioned processes are strongly favored in first-year ice compared to multi-year ice and, therefore, the dynamic balance between contaminant inventories and contaminant deposition to the surface ocean is being widely affected by the large-scale icescape transition taking place in the Arctic. PMID:25437762

  3. Identifying sources of emerging organic contaminants in a mixed use watershed using principal components analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Principal components analysis (PCA) was used to identify sources of emerging organic contaminants in the Zumbro River watershed in southeastern Minnesota. Two main principal components (PCs) were identified, which together explained more than 50% of the variance in the data. Principal Component 1 (P...

  4. QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS FOR CHEMICAL REDUCTIONS OF ORGANIC CONTAMINANTS

    EPA Science Inventory

    Sufficient kinetic data on abiotic reduction reactions involving organic contaminants are now available that quantitative structure-activity relationships (QSARs) for these reactions can be developed. Over 50 QSARs have been reported, most in just the last few years, and they ar...

  5. ASSESSMENT OF ORGANIC CONTAMINANTS IN EMISSIONS FROM REFUSE-DERIVED FUEL COMBUSTION

    EPA Science Inventory

    Organic contaminants in emissions from refuse-derived fuel combustion were investigated in a 20-inch-diameter atmospheric fluidized-bed combustor. Combinations of coal/EcoFuel/MSW/toluene were burned inthe combustor with temperatures ranging from 1250 to 1550 degrees F. A Source ...

  6. PROTOCOL FOR THE DETERMINATION OF SELECTED NEUTRAL AND ACIDIC SEMIVOLATILE ORGANIC CONTAMINANTS IN FISH TISSUE.

    EPA Science Inventory

    During a survey of contaminants in over 300 fish tissue samples from the Columbia River Basin which runs through the states of Washington, Idaho, and Oregon, there was interest in widening the normal scope of organic compounds determined. In the analyte category amenable to GC-M...

  7. CONTROL OF VOLATILE ORGANIC CONTAMINANTS IN GROUNDWATER BY IN-WELL AERATION

    EPA Science Inventory

    At a 0.1 mgd well contaminated with several volatile organic compounds (VOCs), principally trichloroethylene (TCE), several in-well aeration schemes were evaluated as control technologies. The well was logged by the USGS to define possible zones of VOC entry. A straddle packer an...

  8. USING GENOMICS AND PROTEOMICS TO DIAGNOSE EXPOSURE OF AQUATIC ORGANISMS TO ENVIRONMENTAL CONTAMINANTS

    EPA Science Inventory

    Advances in molecular biology allow the use of cutting-edge genomic and proteomic tools to assess the effects of environmental contaminants on aquatic organisms. Techniques are available to measure changes in expression of single genes (quantitative real-time PCR) or to measure g...

  9. Partitioning of Organic Contaminants and Tracer Compounds in a CO2-Brine System at High Salinities

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Kharaka, Y. K.; Rosenbauer, R. J.; Janesko, D.; Trutna, J.

    2011-12-01

    Nonionic chemical species including gases and organic compounds partition between the fluid CO2 phase and the aqueous phase in geologic carbon sequestration systems. The injection and migration of CO2 in geologic carbon sequestration systems covers a wide range of pressure and temperature, so it is important to understand the partitioning of these compounds at various P-T conditions and salinities. Geochemical data is particularly lacking for the partitioning of organic contaminant compounds and tracer compounds between highly saline brines and CO2. Most groundwater is relatively low in organic contaminants; however, groundwater associated with hydrocarbon migration pathways, enhanced oil recovery (EOR), and hydrocarbon storage or extraction can contain high concentrations of known organic contaminants. CO2 injection in these systems may therefore be more likely to result in partitioning of contaminants into the CO2 phase that could, upon migration, represent an important risk to groundwater resources. We present the experimental apparatus and determination of partition coefficients between brine and CO2 for a suite of compounds including benzene, toluene, ethylbenzene, xylene (BTEX), and low molecular weight polynuclear aromatic hydrocarbons (PAHs). In addition, partition coefficients are determined for the important gas phase tracer compounds: SF6 and Krypton covering a P-T envelope consistent with CO2 injection and plume migration to the near surface.

  10. Organic Contaminant Levels in Three Fish Species Downchannel from the Los Alamos National Laboratory

    SciTech Connect

    Gonzales, G.J.; Fresquez, P.R.; Beveridge, J.W.

    1999-06-01

    The LANL contribution, if any, to organic contaminant levels in the common carp, the channel catfish, and the white sucker in the Rio Grande appear to be small; however, low sample sizes, high variation, and potential interaction of species effect with location treatment effect require additional sampling and analysis.

  11. Mass Spectrum Analysis of Gas Emitted during Organic Contaminant Removal from a Metal Surface with an Arc in Low Vacuum

    SciTech Connect

    Sugimoto, Masaya; Takeda, Koichi

    2006-05-05

    The gas emitted during organic contaminant removal from a metal surface with an arc in low vacuum is investigated using a quadrupole mass spectrometer. The experimental results show that fragment molecules of the contaminant material, which are created by the decomposition of the contaminant material, exist in the emitted gas. The decomposition rate of the contaminant increased with the treatment current, which indicates that the decomposition occurs not in the cathode spot, but in the arc column.

  12. Evidence of Maternal Offloading of Organic Contaminants in White Sharks (Carcharodon carcharias)

    PubMed Central

    Mull, Christopher G.; Lyons, Kady; Blasius, Mary E.; Winkler, Chuck; O’Sullivan, John B.; Lowe, Christopher G.

    2013-01-01

    Organic contaminants were measured in young of the year (YOY) white sharks (Carcharodon carcharias) incidentally caught in southern California between 2005 and 2012 (n = 20) and were found to be unexpectedly high considering the young age and dietary preferences of young white sharks, suggesting these levels may be due to exposure in utero. To assess the potential contributions of dietary exposure to the observed levels, a five-parameter bioaccumulation model was used to estimate the total loads a newborn shark would potentially accumulate in one year from consuming contaminated prey from southern California. Maximum simulated dietary accumulation of DDTs and PCBs were 25.1 and 4.73 µg/g wet weight (ww) liver, respectively. Observed ΣDDT and ΣPCB concentrations (95±91 µg/g and 16±10 µg/g ww, respectively) in a majority of YOY sharks were substantially higher than the model predictions suggesting an additional source of contaminant exposure beyond foraging. Maternal offloading of organic contaminants during reproduction has been noted in other apex predators, but this is the first evidence of transfer in a matrotrophic shark. While there are signs of white shark population recovery in the eastern Pacific, the long-term physiological and population level consequences of biomagnification and maternal offloading of environmental contaminants in white sharks is unclear. PMID:23646154

  13. Organic contaminants in sediments from the Trenton Channel of the Detroit River, Michigan

    SciTech Connect

    Furlong, E.T.; Carter, D.S.; Hites, R.A. )

    1988-01-01

    Anthropogenic organic contaminants in sediments from the Trenton Channel of the Detroit River, a highly industrialized waterway connecting Lake St. Clair with Lake Erie, were identified and quantified. The four major classes of organic contaminants identified were polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), polychlorinated naphthalenes (PCN), and polychlorinated terphenyls (PCT). Distributions of total PAH, the homologues of PCB and PCN, and total PCT were measured in 33 sediment samples. Concentration range maps revealed one region of relatively low contaminant concentration (southwest shore of Grosse Ile) and one area of high contaminant concentration in the vicinity of Monguagon Creek, located on the northwestern side of the Trenton Channel. Closer examination of total compound class and homologue concentration distributions suggests a hierarchical ordering of contaminant distribution similarity. Total PCT and PCN concentration distributions are most similar to one another, suggesting a common source in the vicinity of the Monguagon Creek mouth. PAH and PCB distributions are less similar to each other and to total PCT and PCN distributions, suggesting different sources of these compound classes.

  14. Organic contaminants in sediments from the Trenton channel of the Detroit River, Michigan

    SciTech Connect

    Furlong, E.T.; Carter, D.S.; Hites, R.A.

    1988-01-01

    Anthropogenic organic contaminants in sediments from the Trenton Channel of the Detroit River, a highly industrialized waterway connecting Lake St. Clair with Lake Erie, were identified and quantified. The four major classes of organic contaminants identified were polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), polychlorinated naphthalenes (PCN), and polychlorinated terphenyls (PCT). Distributions of total PAH, the homologues of PCB and PCN, and total PCT were measured in 33 sediment samples. Concentration range maps revealed one region of relatively low contaminant concentration (southwest shore of Grosse Ile) and one area of high contaminant concentration in the vicinity of Monguagon Creek, located on the northwestern side of the Trenton Channel. Closer examination of total compound class and homologue concentration distributions suggests a hierarchical ordering of contaminant distribution similarity. Total PCT and PCN concentration distributions are most similar to one another, suggesting a common source in the vicinity of the Monguagon Creek mouth. PAH and PCB distributions are less similar to each other and to total PCT and PCN distributions, suggesting different sources of these compound classes.

  15. Experimental and modeling studies of the fate of organic contaminants in the presence of alfalfa plants

    SciTech Connect

    Muralidharan, N.; Davis, L.C.; Erickson, L.E.; Green, R.; Tracy, J.C.

    1994-12-31

    Experimental investigations were carried out in the laboratory to study the impact of vegetation in bioremediating soil and groundwater contaminated with hazardous organic substances. A 90 cm long chamber with 2 U-shaped channels, each 10 cm in width and 35 cm in depth, was set up. Alfalfa plants were chosen and they have been growing in the channels under laboratory conditions for nearly 2 years. The channels were packed with fine sandy soil collected from near a landfill. The groundwater fed to one channel was water contaminated with toluene solution at saturated concentrations {at} 25 C, whereas, the other channel was fed with water contaminated with phenol solution {at} 500 ppm (v/v). The contaminant concentrations in the groundwater of the channels were monitored at the sampling wells located along each of the channels. The influent and effluent flow rates from each channel were measured every day and recorded. Evapotranspiration significantly influenced the fate of the pollutants. Dispersion and adsorption processes in the channel were studied by introducing bromide tracer, as a broad pulse, into the toluene fed channel and by observing toluene and phenol concentrations, following a feed step change to pure water. Tracer studies indicated that short-circuiting in the end of the channel was quite significant. Models which were previously developed to describe the fate of the contaminants in variably-saturated soils in the presence of vegetation are being employed to simulate the fate of these hazardous organic substances in the laboratory chamber.

  16. Headspace analysis: A new application for isotopic characterization of dissolved organic contaminants

    SciTech Connect

    Slater, G.F.; Dempster, H.S.; Lollar, B.S.; Ahad, J.

    1999-01-01

    Petroleum products and industrial solvents are among the most ubiquitous contaminants of soil and groundwater and the source of several common and hazardous volatile organic chemicals (VOCs). Volatilization is a key determinant of the fate of VOCs in the subsurface environment, impacting contaminant partitioning between the aqueous, gaseous, and nonaqueous liquid phases. This study uses stable carbon isotope analysis to investigate the isotopic effects involved in volatilization of trichloroethylene (TCE) and toluene from both free product (or pure phase) and aqueous solutions. Results indicate that, during volatilization from the aqueous phase and from free product, the isotopic composition of TCE and toluene remains unchanged within reproducibility limits. These results have two important implications for contaminant hydrogeology. First, they suggest that carbon isotopic signatures may be useful in tracing contaminant transport between the vapor, aqueous, and NAPL phases since they remain conservative during phase changes. Second, they demonstrate the utility of headspace extraction (sampling of the vapor phase or headspace above an aqueous solution) as a preparatory technique for isotopic analysis of dissolved VOCs. Headspace isotopic analysis provides a straightforward and rapid technique for {delta}{sup 13}C analysis of dissolved organic contaminants at concentrations as low as hundreds of ppb.

  17. The dark side of subsidies: adult stream insects export organic contaminants to riparian predators.

    PubMed

    Walters, David M; Fritz, Ken M; Otter, Ryan R

    2008-12-01

    Aquatic insects provide a critical energy subsidy to riparian food webs, yet their role as vectors of contaminants to terrestrial ecosystems is poorly understood. We investigated relationships between aquatic resource utilization and contaminant exposure for a riparian invertivore assemblage (spiders and herptiles) along a stream contaminated with polychlorinated biphenyls (PCBs). Stable carbon (delta13C) and nitrogen (delta15N) isotopes indicated that aquatic insect utilization varied among predators, with progressive enrichment of delta13C and depletion of delta15N as predators shifted from aquatic to terrestrial prey. PCB concentrations significantly increased along these isotopic gradients; delta13C and delta15N explained 65% and 15% of the variance in predator sigmaPCBs, respectively. PCBs in predators were high, exceeding 2000 ng/g wet mass (the human-health advisory prohibiting any consumption of fish tissue) in three species. Greater consideration should be given to streams as lateral exporters rather than simply as longitudinal conduits for contaminants. Persistent contaminants are underutilized for addressing landscape-level questions in subsidy research, but our results demonstrate they are an ideal in situ tracer of stream-derived energy because they label stream organic matter and invertebrates over large distances. Likewise, riparian predators such as tetragnathid spiders have great potential as biological monitors of stream condition and as an assessment tool for risk management of contaminated aquatic sediments. PMID:19263881

  18. Historical accumulation of organic contaminants in sediment cores from Massachusetts and Cape Cod Bays

    SciTech Connect

    Seavey, J.A.; Shea, D.; Weisbrod, A.V.; Hofelt, C.S.

    1995-12-31

    Trace level concentrations of over 50 polynuclear aromatic hydrocarbons (PAH) and linear alkyl benzenes (LAB), 16 chlorinated pesticides, and 20 polychlorinated biphenyls (PCB) were measured in sediment cores collected at ten sampling stations located in Massachusetts and Cape Cod Bays. The sediment cores were dated by using Pb-210. PAH and LAB values ranged from 36--30388 ng/g and < 1--181 ng/g (dry weight), respectively. Pesticide and PCB values ranged from 0.8--23 ng/g and 0.8--35 ng/g, respectively. As expected, the contaminant concentrations correlate with the amount of organic carbon in the sediment and generally decrease with increasing age of the sediment and increasing distance from Boston Harbor, the major historical source of many of these contaminants. Total inventories of contaminants in Massachusetts Bay were calculated and used to help construct a contaminant mass balance for the region. Down-core profiles were used to help reconstruct historical loading to the region. The relative distributions of contaminants in the sediment were used, along with source distributions (fingerprints), to calculate the contribution of each source to the measured sediment inventory. LABs were particularly useful in distinguishing the Boston Harbor sewage effluent from other sources. Implications to the long term fate and effects of contaminants in Massachusetts and Cape Cod Bays will be presented.

  19. BIOASSAY-DIRECTED FRACTIONATION OF ORGANIC CONTAMINANTS IN AN ESTUARINE SEDIMENT USING THE NEW MUTAGENIC BIOASSAY, MUTATOX

    EPA Science Inventory

    Bioassay-directed fractionation of organic compounds was performed on an organic solvent extract of a contaminated estuarine sediment from Black Rock Harbor, Connecticut, using the new mutagenic bioassay, Mutatox-. hemical fractionation methods of the sediment extract included si...

  20. Advances in Dynamic Transport of Organic Contaminants in Karst Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Vesper, D.; Alshawabkeh, A.; Hellweger, F.

    2011-12-01

    Karst groundwater systems develop in soluble rocks such as limestone, and are characterized by high permeability and well-developed conduit porosity. These systems provide important freshwater resources for human consumption and ecological integrity of streams, wetlands, and coastal zones. The same characteristics that make karst aquifers highly productive make them highly vulnerable to contamination. As a result, karst aquifers serve as an important route for contaminants exposure to humans and wildlife. Transport of organic contaminants in karst ground-water occurs in complex pathways influenced by the flow mechanism predominating in the aquifer: conduit-flow dominated systems tend to convey solutes rapidly through the system to a discharge point without much attenuation; diffuse-flow systems, on the other hand, can cause significant solute retardation and slow movement. These two mechanisms represent end members of a wide spectrum of conditions found in karst areas, and often a combination of conduit- and diffuse-flow mechanisms is encountered, where both flow mechanisms can control the fate and transport of contaminants. This is the case in the carbonate aquifers of northern Puerto Rico. This work addresses advances made on the characterization of fate and transport processes in karst ground-water systems characterized by variable conduit and/or diffusion dominated flow under high- and low-flow conditions. It involves laboratory-scale physical modeling and field-scale sampling and historical analysis of contaminant distribution. Statistical analysis of solute transport in Geo-Hydrobed physical models shows the heterogeneous character of transport dynamics in karstic units, and its variability under different flow regimes. Field-work analysis of chlorinated volatile organic compounds and phthalates indicates a large capacity of the karst systems to store and transmit contaminants. This work is part of the program "Puerto Rico Testsite for Exploring Contamination

  1. Organic contamination of ground water at Gas Works Park, Seattle, Washington

    USGS Publications Warehouse

    Turney, G.L.; Goerlitz, D.F.

    1990-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large.

  2. Assessing the bioaccumulation of contaminants from sediments by fish and other aquatic organisms

    USGS Publications Warehouse

    Willford, Wayne A.; Mac, Michael J.; Hesselberg, Robert J.

    1987-01-01

    Contaminated sediments that are not acutely toxic to aquatic organisms but contain bioaccumulable toxic substances present a common, yet poorly understood problem for regulatory decision makers. In order to recommend options to minimize bioaccumulation of these toxic substances, decisionmakers need estimates of 1. which substances are available for accumulation by aquatic organisms; and 2. the potential impacts of such accumulation. The most direct and meaningful approach to estimating bioavailability is measurement of contaminant uptake by aquatic organisms exposed to the sediments of concern. Reasonably reliable methodologies exist for performing such exposures in the laboratory and in situ using marine or freshwater organisms. Such methods can demonstrate short-term potential for bioaccumulation of toxics from the sediments, but not necessarily the biological significance or long-term impact of any accumulated residues in the organisms and transfer of those residues through the food chain. Since most contaminated sediments contain a mixture of toxic substances, determination of the biological significance of their accumulation is not likely in the near future. Thus, the direct measurement of significant bioaccumulation of toxic substances from the sediments remains the most immediately useful index in a decision-making process.

  3. Spatial variability of metallic and organic contamination of anguilliform fish in New Caledonia.

    PubMed

    Briand, M J; Letourneur, Y; Bonnet, X; Wafo, E; Fauvel, T; Brischoux, F; Guillou, G; Bustamante, P

    2014-03-01

    New Caledonia is one of the main hot spots of biodiversity on the planet. Large amounts of contaminants are discharged into the lagoon as a result of increasing anthropogenic activities such as intense mining, urbanization, and industrialization. Concentrations of 14 trace elements and 26 persistent organic pollutants (POPs: PCBs and pesticides) were measured in the muscles of two anguilliform fish species, over a coast to barrier reef gradient in two lagoon areas differently exposed to anthropic disturbances. This study emphasizes the high trace element contamination status of anguilliform fish and also highlights slight but perceptible organic pollution. The contamination extends throughout the lagoon, from coast to barrier reef, even in areas remote from emission points. High levels of trace elements, especially those linked to mining activities (i.e., Co, Cr, Fe, Mn, and Ni), were detected in coastal sites. Furthermore, the large dispersion of most POPs throughout the entire lagoon poses the question of their potential toxicity on marine organisms from numerous habitats. Our results underline the need for long-term monitoring of various contaminants over large spatial and time scales. PMID:24338069

  4. Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments

    USGS Publications Warehouse

    Alvarez, D.A.; Petty, J.D.; Huckins, J.N.; Jones-Lepp, T. L.; Getting, D.T.; Goddard, J.P.; Manahan, S.E.

    2004-01-01

    Increasingly it is being realized that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the concentrations of hydrophilic organic contaminants including new generation pesticides, pharmaceuticals, personal care products, and many chemicals associated with household, industrial, and agricultural wastes. To address this issue, we developed a passive in situ sampling device (the polar organic chemical integrative sampler [POCIS]) that integratively concentrates trace levels of complex mixtures of hydrophilic environmental contaminants, enables the determination of their time-weighted average water concentrations, and provides a method of estimating the potential exposure of aquatic organisms to the complex mixture of waterborne contaminants. Using a prototype sampler, linear uptake of selected herbicides and pharmaceuticals with log Kows < 4.0 was observed for up to 56 d. Estimation of the ambient water concentrations of chemicals of interest is achieved by using appropriate uptake models and determination of POCIS sampling rates for appropriate exposure conditions. Use of POCIS in field validation studies targeting the herbicide diuron in the United Kingdom resulted in the detection of the chemical at estimated concentrations of 190 to 600 ng/L. These values are in agreement with reported levels found in traditional grab samples taken concurrently.

  5. Microbiological Analysis of an Active Pilot-Scale Mobile Bioreactor Treating Organic Contaminants

    SciTech Connect

    Brigmon, R.L.

    1997-11-26

    Samples were obtained for microbiological analysis from a granular activated carbon fluidized bed bioreactor (GAC-FBR). This GAC-FBR was in operation at a former manufactured gas plant (MGP) Site in Augusta Georgia for in situ groundwater bioremediation of organics. The samples included contaminated site groundwater, GAC-FBR effluent, and biofilm coated granular activated carbon at 5, 9, and 13 feet within the GAC-FBR column. The objective of this analysis was to correlate contaminant removal with microbiological activity within the GAC-FBR.

  6. Increasing subterranean mobilization of organic contaminants and petroleum by aqueous thermal oxidation

    DOEpatents

    Leif, Roald N.; Knauss, Kevin G.; Newmark, Robin L.; Aines, Roger D.; Eaker, Craig

    2002-01-01

    In situ hydrous pyrolysis/partial oxidation of organics at the site of the organics constrained in an subsurface reservoir produces surfactants that can form an oil/water emulsion that is effectively removed from an underground formation. The removal of the oil/water emulsions is particularly useful in several applications, e.g., soil contaminant remediation and enhanced oil recovery operations. A portion of the constrained organics react in heated reservoir water with injected steam containing dissolved oxygen gas at ambient reservoir conditions to produce such surfactants.

  7. The anthropogenic contribution to the organic load of the Lippe River (Germany). Part II: Quantification of specific organic contaminants.

    PubMed

    Dsikowitzky, Larissa; Schwarzbauer, Jan; Littke, Ralf

    2004-12-01

    The major goal of this study was to investigate the organic pollution of a river on a quantitative basis. To this end, 14 anthropogenic contaminants which were identified in Lippe River water samples as reported in part I (Dsikowitzky et al., submitted parallel to this manuscript) were surveyed. Dissolved organic loads of the specific compounds were calculated on the basis of their concentrations in water and river runoff on the day of sampling. The organic loads of each compound were compiled along the longitudinal section of the river in order to generate individual spatial pollution profiles. It was observed that distribution of organic loads along the river showed distinctive patterns, depending upon the input situation and physico-chemical properties of the compound. The compounds were classified into three types of which Type 1, due to their stability in the aqueous phase, are of special interest for potential application as anthropogenic markers. PMID:15519373

  8. Review of remediation techniques for arsenic (As) contamination: a novel approach utilizing bio-organisms.

    PubMed

    Rahman, Shahedur; Kim, Ki-Hyun; Saha, Subbroto Kumar; Swaraz, A M; Paul, Dipak Kumar

    2014-02-15

    Arsenic (As) contamination has recently become a worldwide problem, as it is found to be widespread not only in drinking water but also in various foodstuffs. Because of the high toxicity, As contamination poses a serious risk to human health and ecological system. To cope with this problem, a great deal of effort have been made to account for the mechanisms of As mineral formation and accumulation by some plants and aquatic organisms exposed to the high level of As. Hence, bio-remediation is now considered an effective and potent approach to breakdown As contamination. In this review, we provide up-to-date knowledge on how biological tools (such as plants for phytoremediation and to some extent microorganisms) can be used to help resolve the effects of As problems on the Earth's environment. PMID:24509286

  9. Ultrasonic process for remediation of organics-contaminated groundwater/wastewater

    SciTech Connect

    Wu, J.M.; Peters, R.W.

    1995-07-01

    A technology is being developed that employs ultrasonic-wave energy for remediation of groundwater/wastewater contaminated with volatile organic compounds such as carbon tetrachloride (CCl{sub 4}) and trichloroethylene (TCE). This paper presents the updated results of a laboratory investigation of ultrasonic groundwater remediation using synthetic groundwaters prepared with laboratory deionized water. Key process parameters investigated included steady-state temperature, contaminant concentration, solution pH, sonication time, and intensity of the applied ultrasonics-wave energy. High destruction efficiencies of the target contaminants were achieved, and the sonication time required for a given degree of destruction decreased with increasing intensity of the applied ultrasonic energy. The sonication time can be further reduced by adding a chemical oxidant such as hydrogen peroxide.

  10. Phytoremediation of uranium-contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants

    SciTech Connect

    Huang, J.W.; Blaylock, M.J.; Kapulnik, Y.; Ensley, B.D.

    1998-07-01

    Uranium phytoextraction, the use of plants to extract U from contaminated soils, is an emerging technology. The authors report on the development of this technology for the cleanup of U-contaminated soils. In this research, they investigated the effects of various soil amendments on U desorption from soil to soil solution, studied the physiological characteristics of U uptake and accumulation in plants, and developed techniques to trigger U hyperaccumulation in plants. A key to the success of U phytoextraction is to increase soil U availability to plants. The authors have found that some organic acids can be added to soils to increase U desorption from soil to soil solution and to trigger a rapid U accumulation in plants. Of the organic acids (acetic acid, citric acid, and malic acid) tested, citric acid was the most effective in enhancing U accumulation in plants. Shoot U concentrations of Brassica juncea and Brassica chinensis grown in a U-contaminated soil increased from less than 5 mg kg{sup {minus}1} to more than 5,000 mg kg{sup {minus}1} in citric acid-treated soils. To their knowledge, this is the highest shoot U concentration reported for plants grown on U-contaminated soils. Using this U hyperaccumulation technique, they are now able to increase U accumulation in shoots of selected plant species grown in two U-contaminated soils by more than 1,000-fold within a few days. The results suggest that U phytoextraction may provide an environmentally friendly alternative for the cleanup of U-contaminated soils.

  11. Monitoring of organic contaminants in sediments using low field proton nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Rupert, Yuri

    2016-04-01

    The effective monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. Recent geophysical methods such as electrical resistivity, complex conductivity, and ground penetrating radar have been successfully applied to characterize organic contaminants in the subsurface and to monitor remediation process both in laboratory and in field. Low field proton nuclear magnetic resonance (NMR) is a geophysical tool sensitive to the molecular-scale physical and chemical environment of hydrogen-bearing fluids in geological materials and shows promise as a novel method for monitoring contaminant remediation. This laboratory research focuses on measurements on synthetic samples to determine the sensitivity of NMR to the presence of organic contaminants and improve understanding of relationships between NMR observables, hydrological properties of the sediments, and amount and state of contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL) has been selected as a representative organic contaminant. Three types of porous media (pure silica sands, montmorillonite clay, and various sand-clay mixtures with different sand/clay ratios) were prepared as synthetic sediments. NMR relaxation time (T2) and diffusion-relaxation (D ‑ T2) correlation measurements were performed in each sediment saturated with water and toluene mixed fluid at assorted concentrations (0% toluene and 100% water, 1% toluene and 99% water, 5% toluene and 95% water, 25% toluene and 75% water, and 100% toluene and 0% water) to 1) understand the effect of different porous media on the NMR responses in each fluid mixture, 2) investigate the role of clay content on T2 relaxation of each fluid, 3) quantify the amount hydrocarbons in the presence of water in each sediment, and 4) resolve hydrocarbons from water in D ‑ T2 map. Relationships between the compositions of porous media, hydrocarbon concentration, and

  12. Assessing the fate of biodegradable volatile organic contaminants in unsaturated soil filter systems

    NASA Astrophysics Data System (ADS)

    Thullner, Martin; de Biase, Cecilia; Hanzel, Joanna; Reger, Daniel; Wick, Lukas; Oswald, Sascha; van Afferden, Manfred; Schmidt, Axel; Reiche, Nils; Jechalke, Sven

    2010-05-01

    The assessment of contaminant biodegradation in the subsurface is challenged by various abiotic processes leading to a reduction of contaminant concentration without a destructive mass removal of the contaminant. In unsaturated porous media, this interplay of processes is further complicated by volatilization. Many organic contaminants are sufficiently volatile to allow for significant fluxes from the water phase into the soil air, which can eventually lead to an emission of contaminants into the atmosphere. Knowledge of the magnitude of these emissions is thus required to evaluate the efficiency of bioremediation in such porous media and to estimate potential risks due to these emissions. In the present study, vertical flow constructed wetlands were investigated at the pilot scale as part of the SAFIRA II project. The investigated wetland system is intermittently irrigated by contaminated groundwater containing the volatile compounds benzene and MTBE. Measured concentration at the in- and outflow of the system demonstrate a high mass removal rate, but the highly transient flow and transport processes in the system challenge the quantification of biodegradation and volatilization and their contribution to the observed mass removal. By a combination of conservative solute tracer tests, stable isotope fractionation and measurements of natural radon concentration is the treated groundwater is was possible to determine the contribution of biodegradation and volatilization to total mass removal. The results suggest that for the investigated volatile compounds biodegradation is the dominating mass removal process with volatilization contributing only to minor or negligible amounts. These results can be confirmed by reactive transport simulations and were further supported by laboratory studies showing that also gas phase gradients of volatile compounds can be affected by biodegradation suggesting the unsaturated zone to act as a biofilter for contaminants in the soil air.

  13. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system.

    PubMed

    Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M

    2016-08-01

    Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected within the applicability domain of a steady-state two-compartment standard plant uptake model: bisphenol A (BPA), carbamazepine (CBZ), triclosan (TCS) and caffeine (CAF). The model overestimated concentrations in most cases, when no degradation rates in plants were entered. Subsequently, biodegradation rates were fitted so that the measured concentrations were met. Obtained degradation kinetics are in the order, BPA < CAF ≈ TCS < CBZ in roots, and BPA ≈ TCS < CBZ < CAF in leaves. Kinetics determined by inverse modeling are, despite the inherent uncertainty, indicative of the dissipation rates. The advantage of the procedure that is additional knowledge can be gained from existing experimental data. Dissipation kinetics found via inverse modeling is not a conclusive proof for biodegradation and confirmation by experimental studies is needed. PMID:27179241

  14. Annual loads of organic contaminants in Chesapeake Bay contributed through fluvial transport

    SciTech Connect

    Foster, G.D.; Lippa, K.A.

    1994-12-31

    Organic contaminants in fluvial transport, atmospheric deposition, urban runoff, and shoreline erosion are being quantified and compared in an effort to understand contaminant inputs and mass balances in Chesapeake Bay. Concentrations of nine organonitrogen and organophosphorus (organo-N/P) pesticides, eight organochlorine (OC) pesticides, polychlorinated biphenyls (PCBs), and four polynuclear aromatic hydrocarbons in fluvial transport were determined at the Susquehanna, Potomac, and James River fall lines for the period of March 1992 through February 1993. Together these rivers account for ca. 75% of the freshwater inflow to the bay from fluvial sources. Sampling was conducted monthly during base flow conditions and during all major storm events. Analysis of nanogram and picogram per liter concentrations of the organic contaminants was performed for both the dissolved and particulate phases of the surface water samples. Daily fluvial loads were calculated using an iterative-increment method from concentration and discharge data, and the resulting daily load estimates were summed to provide annual loads. Loads contributed by the three tributaries from March 1992 through February 1993 were 6.9 metric tons for the organo-N/P pesticides, 0.73 metric tons for the OC compounds and PCBs, and 1.2 metric tons for the PAH. Preliminary comparisons show that loads from fluvial transport are generally greater than other sources for most contaminants except PAH, where atmospheric deposition and urban runoff contribute greater loads of some compounds.

  15. A large-scale model for simulating the fate & transport of organic contaminants in river basins.

    PubMed

    Lindim, C; van Gils, J; Cousins, I T

    2016-02-01

    We present STREAM-EU (Spatially and Temporally Resolved Exposure Assessment Model for EUropean basins), a novel dynamic mass balance model for predicting the environmental fate of organic contaminants in river basins. STREAM-EU goes beyond the current state-of-the-science in that it can simulate spatially and temporally-resolved contaminant concentrations in all relevant environmental media (surface water, groundwater, snow, soil and sediments) at the river basin scale. The model can currently be applied to multiple organic contaminants in any river basin in Europe, but the model framework is adaptable to any river basin in any continent. We simulate the environmental fate of perfluoroctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in the Danube River basin and compare model predictions to recent monitoring data. The model predicts PFOS and PFOA concentrations that agree well with measured concentrations for large stretches of the river. Disagreements between the model predictions and measurements in some river sections are shown to be useful indicators of unknown contamination sources to the river basin. PMID:26414740

  16. Estrogenic contamination by manure fertilizer in organic farming: a case study with the lizard Podarcis sicula.

    PubMed

    Verderame, Mariailaria; Limatola, Ermelinda; Scudiero, Rosaria

    2016-01-01

    In the last years, worldwide organic farming has grown exponentially; as a consequence, the use of animal manure as a soil fertility source has become the principal agricultural choice. However, the use of manure as fertilizer can increase the amount of steroid hormone metabolites in the soil. In southern Italy, lacertidae lizards are the most abundant vertebrate group in agroecosystems and have been identified as potential model species for ecotoxicological studies. The aim of this study was to understand if the manure applied in organic farming has estrogen-like effects in the lizard Podarcis sicula. Adult male lizards were captured in two organic agricultural fields (manure-treated sites) and in an uncultivated field (control site). Lizards from the two organic farms displayed hepatic biosynthetic alterations typical of an estrogenic contamination; hepatocytes contained both vitellogenin and estrogen receptor alpha transcripts and proteins, detected by in situ hybridization and immunocytochemistry. The same cells did not show cadmium, lead and metallothionein accumulation, indicative of the lack of inorganic contamination. These findings suggest that exogenous estrogens, arising from the use of manure, could affect the welfare of wild animals and animal breeding, leading to bioaccumulation of estrogens in food chain, with possible risk for human consumers. For this reason, organic farming should implement the use of sustainable practices such as crop rotation to preserve the soil biological activity, rather than organic manure as fertilizer. PMID:26475047

  17. Global warming and environmental contaminants in aquatic organisms: the need of the etho-toxicology approach.

    PubMed

    Manciocco, Arianna; Calamandrei, Gemma; Alleva, Enrico

    2014-04-01

    Environmental contaminants are associated with a wide spectrum of pathological effects. Temperature increase affects ambient distribution and toxicity of these chemicals in the water environment, representing a potentially emerging problem for aquatic species with short-, medium- and long-term repercussions on human health through the food chain. We assessed peer-reviewed literature, including primary studies, review articles and organizational reports available. We focused on studies concerning toxicity of environmental pollutants within a global warming scenario. Existing knowledge on the effects that the increase of water temperature in a contaminated situation has on physiological mechanisms of aquatic organisms is presented. Altogether we consider the potential consequences for the human beings due to fish and shellfish consumption. Finally, we propose an etho-toxicological approach to study the effects of toxicants in conditions of thermal increase, using aquatic organisms as experimental models under laboratory controlled conditions. PMID:24480426

  18. Contamination of soils and groundwater with new organic micropollutants: A review

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Yakovlev, A. S.

    2016-05-01

    The input of organic micro- and nanopollutants to the environment has grown in recent years. This vast class of substances is referred to as emerging micropollutants, and includes organic chemicals of industrial, agricultural, and municipal provenance. There are three main sources of emerging pollutants coming to the environment, i.e., (1) upon soil fertilization with sewage and sewage sludge; (2) soil irrigation with reclaimed wastewater and (3) due to filtration from municipal landfills of solid wastes. These pollutants contaminate soil, affect its inhabitants; they are also consumed by plants and penetrate to the groundwater. The pharmaceuticals most strongly affect the biota (microorganisms, earthworms, etc.). The response of microorganisms in the contaminated soil is controlled not only by the composition and the number of emerging pollutants but also by the geochemical environment.

  19. A stable isotope dilution method for measuring bioavailability of organic contaminants

    PubMed Central

    Delgado-Moreno, Laura; Gan, Jay

    2014-01-01

    Methods for determining bioavailability of organic contaminants suffer various operational limitations. We explored the use of stable isotope labeled references in developing an isotope dilution method (IDM) to measure the exchangeable pool (E) of pyrene and bifenthrin as an approximation of their bioavailability in sediments. The exchange of deuterated bifenthrin or pyrene with its native counterpart was completed within 48 h. The derived E was 38–82% for pyrene and 28–59% for bifenthrin. Regression between E and the sum of rapid and slow desorption fractions obtained from sequential desorption showed a slope close to 1.0. The ability of IDM to predict bioavailability was further shown from a strong relationship (r2 > 0.93) between E and bioaccumulation into Chironomus tentans. Given the abundance of stable isotope labeled references and their relatively easy analysis, the IDM has the potential to become a readily adoptable tool for estimating organic contaminants bioaccessibility in various matrices. PMID:23434573

  20. Preliminary evaluation of selected in situ remediation technologies for Volatile Organic Compound contamination at Arid sites

    SciTech Connect

    Lenhard, R.J.; Gerber, M.A.; Amonette, J.E.

    1992-10-01

    To support the Volatile Organic Compounds-Arid Site (VOC-Arid) Integrated Demonstration (ID) in its technical, logistical, institutional, and economical testing of emerging environmental management and restoration technologies. Pacific Northwest Laboratory(a) is evaluating several in situ remediation technologies for possible inclusion in the demonstration. The evaluations are made with respect to the initial focus of the VOC-Arid ID: the carbon tetrachloride contamination at the Hanford Site, where it was disposed to the vadose zone along with other volatile and nonvolatile organic wastes. heavy metals, acids. and radionuclides. The purposes of this report are (1) to identify candidate in situ technologies for inclusion in the program, (2) to evaluate the candidate technologies based on their potential applicability to VOC contamination at arid sites and geologic conditions representative of the ID host site (i.e., Hanford Site), and (3) to prioritize those technologies for future US Department of Energy (DOE) support.

  1. Combining hierarchical surface roughness with fluorinated surface chemistry to preserve superhydrophobicity after organic contamination

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Feng; Hung, Shih-Wei; Kuo, Shiao-Wei; Chang, Chi-Jung

    2014-11-01

    Surfaces exhibiting superhydrophobicity are attracting commercial and academic attention because of their potential applications in, for example, self-cleaning utensils, microfluidic systems, and microelectronic devices. In this study, we prepared a fluorinated superhydrophobic surface displaying nanoscale roughness, a superhydrophobic surface possessing a micro- and nanoscale binary structure, and a fluorinated superhydrophobic surface possessing such a binary structure. We investigated the effects of the (i) hierarchy of the surface topography and (ii) the surface chemical composition of the superhydrophobic carbon nanotube/polybenzoxazine coatings on their ability to retain superhydrophobicity upon contamination with particles and organic matter, an important characteristic for maintaining non-wetting properties under outdoor conditions. We have found that the topographical microstructure and the surface chemical composition are both important factors for preservation of the non-wetting properties of such superhydrophobic surfaces upon contamination with organic matter.

  2. Importance of organic amendment characteristics on bioremediation of PAH-contaminated soil.

    PubMed

    Lukić, B; Huguenot, D; Panico, A; Fabbricino, M; van Hullebusch, E D; Esposito, G

    2016-08-01

    This study investigates the importance of the organic matter characteristics of several organic amendments (i.e., buffalo manure, food and kitchen waste, fruit and vegetables waste, and activated sewage sludge) and their influence in the bioremediation of a polycyclic aromatic hydrocarbons (PAH)-contaminated soil. The removal of low molecular weights (LMW) and high molecular weights (HMW) PAHs was monitored in four bioremediation reactors and used as an indicator of the role of organic amendments in contaminant removal. The total initial concentration of LMW PAHs was 234 mg kg(-1) soil (dry weight), while the amount for HMW PAHs was 422 mg kg(-1) soil (dry weight). Monitoring of operational parameters and chemical analysis was performed during 20 weeks. The concentrations of LMW PAH residues in soil were significantly lower in reactors that displayed a mesophilic phase, i.e., 11 and 15 %, compared to reactors that displayed a thermophilic phase, i.e., 29 and 31 %. Residual HMW PAHs were up to five times higher compared to residual LMW PAHs, depending on the reactor. This demonstrated that the amount of added organic matter and macronutrients such as nitrogen and phosphorus, the biochemical organic compound classes (mostly soluble fraction and proteins), and the operational temperature are important factors affecting the overall efficiency of bioremediation. On that basis, this study shows that characterization of biochemical families could contribute to a better understanding of the effects of organic amendments and clarify their different efficiency during a bioremediation process of PAH-contaminated soil. PMID:27083907

  3. The Use of Modified Bentonite for Removal of Aromatic Organics from Contaminated Soil.

    PubMed

    Gitipour; Bowers; Bodocsi

    1997-12-15

    This study investigates the clay-aromatic interactions with a view to the use of bentonite clay for binding benzene, toluene, ethylbenzene, and o-xylene (BTEX compounds) in contaminated soils. BTEX compounds are the most toxic aromatic constituents of gasoline present in many underground storage tanks. Modified (organophilic) and ordinary bentonites are used to remove these organics. The organophilic bentonites are prepared by replacing the exchangeable inorganic cations present in bentonite particles with a quaternary ammonium salt. Various clay-to-soil ratios were applied to determine the efficiency of the modified bentonite in enhancing the cement-based solidification/stabilization (S/S) of BTEX contaminated soils. Toxicity characteristics leaching procedure (TCLP) tests were performed on soil samples to evaluate the leaching of the organics. In addition, X-ray diffraction analyses were conducted to assess the changes in the basal spacing of the clays as a result of their interaction with BTEX compounds. The findings of this study reveal that organophilic bentonite can act as a successful adsorbent for removing the aromatic organics from contaminated soil. Thus, this material is viable for enhancing the performance of cement-based S/S processes, as an adsorbent for petroleum spills, and for landfill liners and slurry walls. Copyright 1997 Academic Press. PMID:9792744

  4. Treatment of Organic-Contaminated Mixed Waste Utilizing the Oak Ridge Broad Spectrum Contracts

    SciTech Connect

    Estes, C. H.; Heacker, F. K.; Cunningham, J.; Westich, B.

    2003-02-25

    To meet the requirements of the State of Tennessee's Department of Environment and Conservation Commissioner's Order for treatment of mixed low level wastes, Oak Ridge has utilized commercial treatment companies to treat and dispose mixed waste. Over the past year, Oak Ridge has shipped organic-contaminated mixed waste for treatment to meet milestones under the Site Treatment Plan. Oak Ridge has established contracts with commercial treatment companies accessible by all DOE sites for treatment of a wide range of mixed wastes. The paper will describe and summarize the activities involved in treating and disposing of organic-contaminated mixed waste utilizing DOE complex-wide contracts and the treatment and disposal activities required. This paper will describe the case history of treatment of several organic-contaminated mixed wastes from the Oak Ridge Reservation requiring treatment prior to disposal. The paper will include waste category information, implementation activities, and contract access. The paper will discuss the specifics of the mixed waste treatment including waste characteristics, treatment process and equipment utilized, and treatment results. Additional information will be provided on task order development, waste profiling, treatment pricing, and the disposal process.

  5. Characterization of organic contaminants in environmental samples associated with mount St. Helens 1980 volcanic eruption

    USGS Publications Warehouse

    Pereira, W.E.

    1982-01-01

    Volcanic ash, surface-water, and bottom-material samples obtained in the vicinity of Mount St. Helens after the May 18, 1980, eruption were analyzed for organic contaminants by using capillary gas chromatography-mass spectrometry-computer techniques. Classes of compounds identified include n-alkanes, fatty acids, dicarboxylic acids, aromatic acids and aldehydes, phenols, resin acids, terpenes, and insect juvenile hormones. The most probable source of these compounds is from pyrolysis of plant and soil organic matter during and after the eruption. The toxicity of selected compounds and their environmental significance are discussed.

  6. Use of inorganic dryer-salts in the determination of organic contaminants in air

    SciTech Connect

    Simonov, V.A.

    1985-09-01

    This paper presents results of a study of the adsorptive activity of a number of inorganic salts relative to water vapor and to organic vapors in air under the dynamic conditions which are uses in the indicator tube method. Data are also given on the properties of dryer salts having a surface modified with glycerin. It is shown that lithium chloride on porcelain and potassium carbonate having a surface modified with glycerin can be used to dry air in determining contaminants of nonpolar and polar organic substances in it. Anhydrone on porcelain, calcium chloride, and potassium carbonate absorb some substances which are being determined and therefore are less suitable.

  7. Approaches for assessment of terrestrial vertebrate responses to contaminants: moving beyond individual organisms

    USGS Publications Warehouse

    Albers, P.H.; Heinz, G.H.; Hall, R.J.

    2000-01-01

    Conclusions: A need for a broader range ofinformation on effects of contaminants on individuals exists among the 4 classes of terrestrial vertebrates, especially mammals, reptiles, and amphibians. Separation of contaminant effects from other effects and reduction of speculative extrapolation within and among species requires information that can be produced only by combined field and laboratory investigations that incorporate seasonal or annual cycles and important spatial and interaction conditions. Assessments of contaminant effects at the population level and higher are frequently dependent on extrapolations from a lower organizational level. Actual measurements of the effects of contaminants on populations or communities, possibly in conjunction with case studies that establish relations between effects on individuals and effects on populations, are needed to reduce the uncertainty associated with these extrapolations. Associated with these assessment levels is the need for acceptable definitions of what we mean when we refer to a 'meaningful population change' or an 'effect on communities or ecosystems.' At these higher levels of organization we are also confronted with the need for procedures useful for separating contaminant effects from effects caused by other environmental conditions. Although the bulk of literature surveyed was of the focused cause-and-effect type that is necessary for proving relations between contaminants and wildlife, community or ecosystem field assessments, as sometimes performed with reptiles and amphibians, might be a useful alternative for estimating the potential of a contaminant to cause environmental harm. Assumptions about the special usefulness of reptiles and amphibians as environmental indicators ought to be tested with comparisons to mammals and birds. Information on the effects of contaminants above the individual level is needed to generate accurate estimates of the potential consequences of anthropogenic pollution (e

  8. Organic Contamination Baseline Study in NASA Johnson Space Center Astromaterials Curation Laboratories

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Allen, Carlton C.; Allton, Judith H.

    2014-01-01

    Future robotic and human spaceflight missions to the Moon, Mars, asteroids, and comets will require curating astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. 21st century sample return missions will focus on strict protocols for reducing organic contamination that have not been seen since the Apollo manned lunar landing program. To properly curate these materials, the Astromaterials Acquisition and Curation Office under the Astromaterial Research and Exploration Science Directorate at NASA Johnson Space Center houses and protects all extraterrestrial materials brought back to Earth that are controlled by the United States government. During fiscal year 2012, we conducted a year-long project to compile historical documentation and laboratory tests involving organic investigations at these facilities. In addition, we developed a plan to determine the current state of organic cleanliness in curation laboratories housing astromaterials. This was accomplished by focusing on current procedures and protocols for cleaning, sample handling, and storage. While the intention of this report is to give a comprehensive overview of the current state of organic cleanliness in JSC curation laboratories, it also provides a baseline for determining whether our cleaning procedures and sample handling protocols need to be adapted and/or augmented to meet the new requirements for future human spaceflight and robotic sample return missions.

  9. Effects Of Evaporation Rate of Some Common Organic Contaminants on Hydraulic Conductivity of Aquifer Sand

    NASA Astrophysics Data System (ADS)

    Saud, Q. J.; Hasan, S. E.

    2014-12-01

    As part of a larger study to investigate potential effects of hydrocarbons on the geotechnical properties of aquifer solids, a series of laboratory experiments were carried out to ascertain the influence of evaporation rate of some common and widespread organic contaminants on the hydraulic conductivity of aquifer sand. Gasoline and its constituent chemicals-benzene, toluene, ethylbenzene, xylene (BTEX), isooctane- and trichloroethylene (TCE) were used to contaminate sand samples collected from the aquifer and vadose zone, at varying concentrations for extended periods of time. The goal was to study any change in the chemical makeup of the contaminants and its control on hydraulic conductivity of the sand. It was found that: (a) gasoline breaks down into constituent compounds when subjected to evaporation, e.g. during oil spills and leaks; and (b) lighter compounds volatilize faster and in the following order: TCE> benzene > isooctane > toluene > gasoline> ethylbenzene > xylene. In addition, these contaminants also caused a decrease in hydraulic conductivity of sand by up to 60% as compared to the uncontaminated sand. The inherent differences in the chemical structure of contaminating chemicals influenced hydraulic conductivity such that the observed decrease was greater for aliphatic than aromatic and chlorinated hydrocarbons. The presentation includes details of the experimental set up; evaporation rate, and geotechnical tests; X-ray diffraction and scanning electron microscope studies; and data analyses and interpretation. Rate of evaporation test indicates that residual LNAPLs will occupy a certain portion of the pores in the soil either as liquid or vapor phase in the vadose zone, and will create a coating on the adjacent solid mineral grains in the aquifer. Replacement of air by the LNAPLs along with grain coatings and the intramolecular forces would impede groundwater movement, thus affecting overall permeability of contaminated aquifers. Keywords: aquifer

  10. Incineration of contaminated organic solvents in a fluidized-bed calciner

    SciTech Connect

    Schindler, R.E.

    1980-01-01

    The reprocessing of expended reactor fuels at the Idaho Chemical Processing Plant (ICPP) generates contaminated organic solvents. An evaluation of potential management alternatives shows that several are suitable for management of contaminated solvents containing tri-butyl phosphate (TBP): the solvent could be burned in a commercially-available burner which absorbs the phosphorus on a fluidized-bed of limestone leaving a solid product for burial; the solvent could be burned in a small fluidized-bed calciner which solidifies non-radioactive feed by in-bed combustion of the contaminated solvent. The fluidized-bed absorbs the phosphate forming a solid product for burial; the solvents could be solidified with a gel or sorbant for burial if the reprocessing system were modified to reduce the solvent volume; and the contaminated solvent could be burned in an existing fluidized-bed calciner designed for solidifying high-level aqueous wastes. Burning the solvent in the existing calciner was selected for process verification because it provides an existing burner, off-gas system, and solids transfer and storage system. No additional wastes are generated. A set of four pilot-plant tests verified the absence of adverse effects from the phosphorus in the fuel when calcining simulated ICPP aqueous wastes. Essentially all of the phosphorus remained in the calcined solids with only a neglegible quantity remaining in the scrubbed off-gas. Combustion efficiency was high (93 to 96%). There were no observable adverse effects on solids in the scrubbing system, corrosion rates, or solids flowability (for retrieval). Conclusions of general applicability are: alternative technologies are available for disposal of contaminated solvents, and the use of an existing fuel-using facility, e.g., calciner or incinerator - designed for contaminated wastes will usually be cost effective.

  11. Persistence and potential effects of complex organic contaminant mixtures in wastewater-impacted streams.

    PubMed

    Barber, Larry B; Keefe, Steffanie H; Brown, Greg K; Furlong, Edward T; Gray, James L; Kolpin, Dana W; Meyer, Michael T; Sandstrom, Mark W; Zaugg, Steven D

    2013-03-01

    Natural and synthetic organic contaminants in municipal wastewater treatment plant (WWTP) effluents can cause ecosystem impacts, raising concerns about their persistence in receiving streams. In this study, Lagrangian sampling, in which the same approximate parcel of water is tracked as it moves downstream, was conducted at Boulder Creek, Colorado and Fourmile Creek, Iowa to determine in-stream transport and attenuation of organic contaminants discharged from two secondary WWTPs. Similar stream reaches were evaluated, and samples were collected at multiple sites during summer and spring hydrologic conditions. Travel times to the most downstream (7.4 km) site in Boulder Creek were 6.2 h during the summer and 9.3 h during the spring, and to the Fourmile Creek 8.4 km downstream site times were 18 and 8.8 h, respectively. Discharge was measured at each site, and integrated composite samples were collected and analyzed for >200 organic contaminants including metal complexing agents, nonionic surfactant degradates, personal care products, pharmaceuticals, steroidal hormones, and pesticides. The highest concentration (>100 μg L(-1)) compounds detected in both WWTP effluents were ethylenediaminetetraacetic acid and 4-nonylphenolethoxycarboxylate oligomers, both of which persisted for at least 7 km downstream from the WWTPs. Concentrations of pharmaceuticals were lower (<1 μg L(-1)), and several compounds, including carbamazepine and sulfamethoxazole, were detected throughout the study reaches. After accounting for in-stream dilution, a complex mixture of contaminants showed little attenuation and was persistent in the receiving streams at concentrations with potential ecosystem implications. PMID:23398602

  12. Long-term effects of dredging operations program. Effects of sediment organic-matter composition on bioaccumulation of sediment organic contaminants: Interim results. Final report

    SciTech Connect

    Brannon, J.M.; Price, C.B.; Reilly, F.J.; Pennington, J.C.; McFarland, V.A.

    1991-06-01

    The relationship of sediment-bound polychlorinated biphenyl (PCB) 153 and fluoranthene to bioaccumulation by worms and clams and the relationship of sediment-bound PCB 153 and fluoranthene to concentrations in the interstitial water were examined. Bioaccumulation by both worms and clams was observed in all sediments. Apparent preference factor (APF) values showed that steady state was reached between sediment-bound contaminants and organism lipid pools. The APF values of organisms were close to the theoretical value for both contaminants in all sediments. These results showed that sediment total organic carbon (TOC) in conjunction with octanol water partition coefficients of nonpolar organic contaminants is a viable approach for predicting bioaccumulation of such compounds by infaunal organisms. Actual concentrations of contaminants in interstitial water were either overestimated or underestimated by the relationship between TOC and humic + fulvic acid organic matter fractions and sediment contaminant concentrations. Prediction of interstitial water concentrations was not as successful as use of APFs. The lack of agreement between predicted and actual interstitial water results was due to factors such as the presence of interstitial water contaminants bounds to microparticulates and dissolved organic material and the kind of organic material in the sediment.

  13. Uptake and depuration of nonionic organic contaminants from sediment by the oligochaete, Lumbriculus variegatus

    USGS Publications Warehouse

    Ingersoll, C.G.; Brunson, E.L.; Wang, F.N.; Dwyer, J.; Ankley, G.T.; Mount, D.R.; Huckins, J.; Petty, J.; Landrum, P.F.

    2003-01-01

    Uptake of sediment-associated contaminants by the oligochaete Lumbriculus variegatus was evaluated after 1, 3, 7, 14, 28, and 56 d of exposure to a field-collected sediment contaminated with DDT and its metabolites, dichlorodiphenyldichloroethane (DDD) and dichlorodiphenyldichloroethylene (DDE), or to a field-collected sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Depuration of contaminants by oligochaetes in a control sediment or in water was also evaluated over a 7-d period after 28 d of exposure to the field-collected sediments. Accumulation of PAHs with a log octanol-water partitioning coefficient (log Kow) 5.6 or DDD and DDE typically exhibited a steady increase from day 1 to about day 14 or 28, followed by a plateau. Therefore, exposures conducted for a minimum of 14 to 28 d better reflected steady-state concentrations for DDT and its metabolites and for PAHs. Depuration rates for DDT and its metabolites and high-Kow PAHs were much higher in organisms held in clean sediment relative to both water-only depuration and model predictions. This suggests that depuration in clean sediment may artificially accelerate depuration of hydrophobic compounds. Comparisons between laboratory-exposed L. variegatus and oligochaetes collected in the field from these sediments indicate that results of laboratory tests can be extrapolated to the field with a reasonable degree of certainty.

  14. Contamination of estuarine water, biota, and sediment by halogenated organic compounds: A field study

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Chiou, C.T.; Brinton, T.I.; Barber, L.B., II; Demcheck, D.K.; Demas, C.R.

    1988-01-01

    Studies conducted in the vicinity of an industrial outfall in the Calcasieu River estuary, Louisiana, have shown that water, bottom and suspended sediment, and four different species of biota are contaminated with halogenated organic compounds (HOC) including haloarenes. A "salting-out" effect in the estuary moderately enhanced the partitioning tendency of the contaminants into biota and sediments. Contaminant concentrations in water, suspended sediments, and biota were found to be far below the values predicted on the basis of the assumption of phase equilibria with respect to concentrations in bottom sediment. Relative concentration factors of HOC between biota (catfish) and bottom sediment increased with increasing octanol/estuarine water partition coefficients (Kow*), maximizing at log Kow* of about 5, although these ratios were considerably less than equilibrium values. In contrast, contaminant concentrations in water, biota, and suspended sediments were much closer to equilibrium values. Bioconcentration factors of HOC determined on the basis of lipid content for four different biotic species correlated reasonably well with equilibrium triolein/water partition coefficients (Ktw).

  15. Effects of diverse organic contaminants on trichloroethylene degradation by methanotrophic bacteria and methane-utilizing consortia

    SciTech Connect

    Palumbo, A.V.; Boerman, P.A.; Herbes, S.E. . Environmental Sciences Div.); Eng, W. . Center for Health Sciences); Strandberg, G.W.; Donaldson, T.L. . Chemical Technology Div.)

    1991-01-01

    Groundwater contaminated with organic compounds, especially solvents such as benzene, trichloroethylene (TCE), perchloroethene (PCE), carbon tetrachloride, and chlorinated ethanes, is a problem at many US Department of Energy facilities including the Oak Ridge National Laboratory (ORNL). Regulations require consideration of alternatives for remediation of these sites. A demonstration project was initiated in the spring of 1990 that will permit evaluation of two cometabolic approaches to remediation of groundwater and may lead to remediation alternatives that prove both more effective and less costly than traditional methods. More generally, the demonstration will provide valuable information on the applicability of bioremediation to a groundwater contamination problem at numerous DOE sites. The purpose of this research is to examine the effects of contaminants commonly found in association with TCE at DOE sites and to determine the conditions required for maximizing TCE degradation rates. This study focuses on compounds found in a seep at the ORNL K-25 site. The research presented here details initial experiments on TCE degradation by methanotrophs conducted in the presence of a synthetic medium, TCE, and one or more contaminants found at the K-25 site. Formate has been reported to increase the rate of TCE degradation by pure cultures but had not been tested with mixed cultures. As part of the effort to maximize TCE degradation rates, we examined the effect of formate on degradation by a mixed culture. 5 figs., 1 tab.

  16. Size-selective predation on groundwater bacteria by nanoflagellates in an organic-contaminated aquifer

    USGS Publications Warehouse

    Kinner, N.E.; Harvey, R.W.; Blakeslee, K.; Novarino, G.; Meeker, L.D.

    1998-01-01

    Time series incubations were conducted to provide estimates for the size selectivities and rates of protistan grazing that may be occurring in a sandy, contaminated aquifer. The experiments involved four size classes of fluorescently labeled groundwater bacteria (FLB) and 2- to 3-??m-long nanoflagellates, primarily Spumella guttula (Ehrenberg) Kent, that were isolated from contaminated aquifer sediments (Cape Cod, Mass.). The greatest uptake and clearance rates (0.77 bacteria flagellate-1 ?? h-1 and 1.4 nl. flagellate-1 ?? h-1, respectively) were observed for 0.8- to 1.5-??m- long FLB (0.21-??m3 average cell volume), which represent the fastest growing bacteria within the pore fluids of the contaminated aquifer sediments. The 19:1 to 67:1 volume ratios of nanoflagellate predators to preferred bacterial prey were in the lower end of the range commonly reported for other aquatic habitats. The grazing data suggest that the aquifer nanoflagellates can consume as much as 12 to 74% of the unattached bacterial community in 1 day and are likely to have a substantive effect upon bacterial degradation of organic groundwater contaminants.

  17. Spatial patterns of vegetation biomass and soil organic carbon acquired from airborne lidar and hyperspectral imagery at Reynolds Creek Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Will, R. M.; Li, A.; Glenn, N. F.; Benner, S. G.; Spaete, L.; Ilangakoon, N. T.

    2015-12-01

    Soil organic carbon distribution and the factors influencing this distribution are important for understanding carbon stores, vegetation dynamics, and the overall carbon cycle. Linking soil organic carbon (SOC) with aboveground vegetation biomass may provide a method to better understand SOC distribution in semiarid ecosystems. The Reynolds Creek Critical Zone Observatory (RC CZO) in Idaho, USA, is approximately 240 square kilometers and is situated in the semiarid Great Basin of the sagebrush-steppe ecosystem. Full waveform airborne lidar data and Next-Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-ng) collected in 2014 across the RC CZO are used to map vegetation biomass and SOC and then explore the relationships between them. Vegetation biomass is estimated by identifying vegetation species, and quantifying distribution and structure with lidar and integrating the field-measured biomass. Spectral data from AVIRIS-ng are used to differentiate non-photosynthetic vegetation (NPV) and soil, which are commonly confused in semiarid ecosystems. The information from lidar and AVIRIS-ng are then used to predict SOC by partial least squares regression (PLSR). An uncertainty analysis is provided, demonstrating the applicability of these approaches to improving our understanding of the distribution and patterns of SOC across the landscape.

  18. Organic compounds present in airborne particles stimulate superoxide production and DNA fragmentation: role of NOX and xanthine oxidase in animal tissues.

    PubMed

    Busso, Iván Tavera; Silva, Guillermo Benjamín; Carreras, Hebe Alejandra

    2016-08-01

    Suspended particulate matter trigger the production of reactive oxygen species. However, most of the studies dealing with oxidative damage of airborne particles focus on the effects of individual compounds and not real mixtures. In order to study the enzymatic superoxide production resulting from the exposition to a complex mixture, we derived organic extracts from airborne particles collected daily in an urban area and exposed kidney, liver, and heart mammal tissues. After that, we measured DNA damage employing the comet assay. We observed that in every tissue, NADPH oxidase and xanthine oxidase were involved in O2 (-) production when they were exposed to the organic extracts, as the lucigenin's chemiluminescence decays when enzymes were inhibited. The same trend was observed with the percentage of cells with comets, since DNA damage was higher when they were exposed to same experimental conditions. Our data allow us to hypothesize that these enzymes play an important role in the oxidative stress produced by PAHs and that there is a mechanism involving them in the O2 (-)generation. PMID:27180836

  19. Contaminants and microorganisms in Dutch organic food products: a comparison with conventional products.

    PubMed

    Hoogenboom, L A P; Bokhorst, J G; Northolt, M D; van de Vijver, L P L; Broex, N J G; Mevius, D J; Meijs, J A C; Van der Roest, J

    2008-10-01

    Organic products were analysed for the presence of contaminants, microorganisms and antibiotic resistance and compared with those from conventional products. No differences were observed in the Fusarium toxins deoxynivalenol and zearalenone in organic and conventional wheat, during both a dry period and a very wet period which promoted the production of these toxins. Nitrate levels in head lettuce produced organically in the open field were much lower than those in conventional products. In iceberg lettuce and head lettuce from the greenhouse, no differences were detected. Organically produced carrots contained higher nitrate levels than conventional products. Both organic and conventional products contained no residues of non-polar pesticides above the legal limits, although some were detected in conventional lettuce. Organic products contained no elevated levels of heavy metals. Salmonella was detected in 30% of pig faeces samples obtained from 30 organic farms, similar to the incidence at conventional farms. At farms that switched to organic production more then 6 years ago no Salmonella was detected, with the exception of one stable with young pigs recently purchased from another farm. No Salmonella was detected in faeces at the nine farms with organic broilers, and at one out of ten farms with laying hens. This is comparable with conventional farms where the incidence for Salmonella lies around 10%. Campylobacter was detected in faeces at all organic broiler farms, being much higher than at conventional farms. One of the most remarkable results was the fact that faeces from organic pigs and broilers showed a much lower incidence of antibiotic resistant bacteria, except for Campylobacter in broilers. It is concluded that the organic products investigated scored as equally well as conventional products with regard to food safety and at the same time show some promising features with respect to antibiotic resistance. PMID:18608495

  20. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  1. [Physicochemical and microbiological factors influencing the bioavailability of organic contaminants in subsoils

    SciTech Connect

    Not Available

    1992-12-31

    We report progress in elucidating the microbiological variables important in determining the relative success of bacteria in utilizing soil-sorbed contaminants. Two bacterial species, Pseudomonas putida (ATCC 17484) and an Alcaligenes sp. isolated from petroleum contaminated soil are known to differ markedly in their ability to utilize soil-sorbed napthalene based on a kinetic comparison of their capability of naphthalene mineralization in soil-containing and soil-free systems. The kinetic analysis led us to conclude that strain 17484 had direct access to naphthalene present in a labile sorbed state which promoted the rapid desorption of naphthalene from the non-labile phase. Conversely, both the rate and extent of naphthalene mineralization by strain NP-Alk suggested that this organism had access only to naphthalene in solution. Desorption was thus limited and the efficiency of total naphthalene removal from these soil slurries was poor. These conclusions were based on the average activities of cells in soil slurries without regard for the disposition of the organisms with respect to the sorbent. Since both organisms degrade naphthalene by apparently identical biochemical pathways, have similar enzyme kinetic properties, and are both motile, gram negative organisms, we undertook a series of investigations to gain a better understanding of what microbiological properties were important in bioavailability.

  2. Mitigation of the impact of terrestrial contamination on organic measurements from the Mars Science Laboratory.

    PubMed

    ten Kate, Inge L; Canham, John S; Conrad, Pamela G; Errigo, Therese; Katz, Ira; Mahaffy, Paul R

    2008-06-01

    The objective of the 2009 Mars Science Laboratory (MSL), which is planned to follow the Mars Exploration Rovers and the Phoenix lander to the surface of Mars, is to explore and assess quantitatively a site on Mars as a potential habitat for present or past life. Specific goals include an assessment of the past or present biological potential of the target environment and a characterization of its geology and geochemistry. Included in the 10 investigations of the MSL rover is the Sample Analysis at Mars (SAM) instrument suite, which is designed to obtain trace organic measurements, measure water and other volatiles, and measure several light isotopes with experiment sequences designed for both atmospheric and solid-phase samples. SAM integrates a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer supported by sample manipulation tools both within and external to the suite. The sub-part-per-billion sensitivity of the suite for trace species, particularly organic molecules, along with a mobile platform that will contain many kilograms of organic materials, presents a considerable challenge due to the potential for terrestrial contamination to mask the signal of martian organics. We describe the effort presently underway to understand and mitigate, wherever possible within the resource constraints of the mission, terrestrial contamination in MSL and SAM measurements. PMID:18558810

  3. Quantification of maternal offloading of organic contaminants in elasmobranchs using the histotrophic round stingray (Urobatis halleri) as a model.

    PubMed

    Lyons, Kady; Lowe, Christopher G

    2013-01-01

    Maternal offloading is one route by which young animals may accumulate persistent organic pollutants, such as dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs), but has not been well documented in elasmobranchs despite their propensity to accumulate high concentrations of contaminants. Using the round stingray (Urobatis halleri) as a coastal elasmobranch model, we examined maternal offloading processes at two stages in the stingray's entire reproductive cycle. Post-ovulated and near-term pregnant female stingrays were sampled from southern California, and organic contaminants were measured in the ova and embryonic tissues and compared to concentrations measured in corresponding female livers to determine route and extent of transfer. Total organic contaminant loads measured in ovulated eggs were about two times lower than loads measured in embryos (p < 0.001) indicating mothers have the ability to transfer contaminants throughout pregnancy. Contaminant loads measured in pups showed a positive relationship with mother's contaminant concentrations (p < 0.001); however, mothers offloaded relatively low percentages (1.5 ± 1.7%) of their total contaminant load using contaminants measured in the liver as a proxy. However, histotrophy is only one form of supplemental provisioning utilized by elasmobranchs and variation in reproductive modes likely influences the extent to which female elasmobranchs may maternally offload contaminants. PMID:24073960

  4. Oxidative effects of inorganic and organic contaminants on haemolymph of mussels.

    PubMed

    Kaloyianni, M; Dailianis, S; Chrisikopoulou, E; Zannou, A; Koutsogiannaki, S; Alamdari, D H; Koliakos, G; Dimitriadis, V K

    2009-05-01

    We applied a newly-established method in haemolymph of mussels, Mytilus galloprovincialis, exposed to different concentrations of heavy metals, such as zinc and cadmium and organic pollutants, such as PAHs and lindane, for the detection of total antioxidant capacity (TAC). The susceptibility of exposed mussels was increased in relation to oxidative stress induced by contaminants tested. Oxidative modifications of proteins were estimated by measuring protein carbonyl content (PCC) and malondialdehyde levels (MDA). For PCC measurement, a highly sensitive and accurate ELISA method, which requires only 5 microg of protein, was used. The significant increase of PCC and MDA in haemolymph of exposed mussels reinforces its role as biomarkers of oxidative stress. Significant correlation of TAC assay, PCC and MDA was conducted in order to evaluate the utility of PCC and TAC assay, used in the present study, as tools for determining oxidative effects of pollutants in mussels. The results reinforce the application of PCC method as useful tool for the determination of PCC alterations in haemolymph of mussels exposed to different levels of contaminants. In addition, the TAC method gives encouraging results, concerning its ability to predict antioxidant efficiency in haemolymph of mussels exposed to inorganic and organic contaminants. PMID:19358338

  5. Contribution of microorganisms to non-extractable residue formation from biodegradable organic contaminants in soil

    NASA Astrophysics Data System (ADS)

    Nowak, K. M.; Girardi, C.; Miltner, A.; Schäffer, A.; Kästner, M.

    2012-04-01

    Biodegradation of organic contaminants in soil is actually understood as their transformation into various primary metabolites, microbial biomass, mineralisation products and non-extractable residues (NER). NER are generally considered to be composed of parent compounds or primary metabolites with hazardous potential. Up to date, however, their chemical composition remains still unclear. Studies on NER formation are limited to quantitative analyses in soils or to simple humic acids-contaminant systems. However, in the case of biodegradable organic compounds, NER may also contain microbial biomass components, e.g. fatty acids (FA) and amino acids (AA). After cell death, these biomolecules are incorporated into soil organic matter (SOM) and stabilised, ultimately forming biogenic residues which are not any more extractable. We investigated the incorporation of the 13C-label into FA and AA and their fate during biodegradation experiments in soil with isotope-labelled 2,4-dichlorophenoxyacetic acid (13C6-2,4-D) and ibuprofen (13C6-ibu) as model organic contaminants. Our study proved for the first time that nearly all NER formed from 13C6-2,4-D and 13C6-ibu in soil derived from harmless microbial biomass components stabilised in SOM. 13C-FA and 13C-AA contents in the living microbial biomass fraction decreased over time and these components were continuously incorporated into the non-living SOM pool in biotic experiments with 13C6-2,4-D and 13C6-ibu. The 13C-AA in the non-living SOM were surprisingly stable from day 32 (13C6-2,4-D) and 58 (13C6-ibu) until the end of incubation. We also studied the transformation of 13C6-2,4-D and 13C6-ibu into NER in the abiotic soil experiments. In these experiments, the total NER contents were much lower than in the corresponding biotic experiments. The absence of labelled biomolecules in the NER fraction in abiotic soils demonstrated that they consist of the potentially hazardous parent compounds and / or their metabolites. Biogenic

  6. Temporal and spatial variation of atmospherically deposited organic contaminants at high elevation in Yosemite National Park, California, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmospherically deposited organic contaminants in the Sierra Nevada Mountains of California, USA, have exceeded some thresholds of concern, yet the distributions of contaminants in the mountains are not well known and there is little knowledge of temporal variation. The present study, (1) evaluated...

  7. EXPERIMENTAL STUDY OF MOVEMENT AND DISTRIBUTION OF DENSE ORGANIC CONTAMINANTS IN HETEROGENEOUS AQUIFERS. (R825549C063)

    EPA Science Inventory

    An experimental study of the migration of denser-than-water nonaqueous-phase organic contaminants through heterogeneous porous media was carried out. The purpose of the study was to observe the flow and record the migration of the contaminant to gain a fundamental insight into...

  8. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  9. Cadmium accumulation by muskmelon under salt stress in contaminated organic soil.

    PubMed

    Ondrasek, Gabrijel; Gabrijel, Ondrasek; Romic, Davor; Davor, Romic; Rengel, Zed; Zed, Rengel; Romic, Marija; Marija, Romic; Zovko, Monika; Monika, Zovko

    2009-03-15

    Human-induced salinization and trace element contamination are widespread and increasing rapidly, but their interactions and environmental consequences are poorly understood. Phytoaccumulation, as the crucial entry pathway for biotoxic Cd into the human foodstuffs, correlates positively with rhizosphere salinity. Hypothesising that organic matter decreases the bioavailable Cd(2+) pool and therefore restricts its phytoextraction, we assessed the effects of four salinity levels (0, 20, 40 and 60 mM NaCl) and three Cd levels (0.3, 5.5 and 10.4 mg kg(-1)) in peat soil on mineral accumulation/distribution as well as vegetative growth and fruit yield parameters of muskmelon (Cucumis melo L.) in a greenhouse. Salt stress reduced shoot biomass and fruit production, accompanied by increased Na and Cl and decreased K concentration in above-ground tissues. A 25- and 50-day exposure to salinity increased Cd accumulation in leaves up to 87% and 46%, respectively. Accumulation of Cd in the fruits was up to 43 times lower than in leaves and remained unaltered by salinity. Soil contamination by Cd enhanced its accumulation in muskmelon tissues by an order of magnitude compared with non-contaminated control. In the drainage solution, concentrations of Na and Cl slightly exceeded those in the irrigation solution, whereas Cd concentration in drainage solution was lower by 2-3 orders of magnitude than the total amount added. Chemical speciation and distribution modelling (NICA-Donnan) using Visual MINTEQ showed predominance of dissolved organic ligands in Cd chemisorption and complexation in all treatments; however, an increase in salt addition caused a decrease in organic Cd complexes from 99 to 71%, with free Cd(2+) increasing up to 6% and Cd-chlorocomplexes up to 23%. This work highlights the importance of soil organic reactive surfaces in reducing trace element bioavailability and phytoaccumulation. Chloride salinity increased Cd accumulation in leaves but not in fruit peel and

  10. [Contamination of soil with geohelminth eggs on vegetable organic farms in the Lublin voivodeship, Poland].

    PubMed

    Kłapeć, Teresa

    2009-01-01

    Organic farming, despite being more difficult and labour consuming than traditional farming, gains increasingly more followers among farmers. Currently in Poland there are approximately 10 000 organic farms. Pure, uncontaminated soil in the Lublin voivodeship makes this area an ideal location for organic agriculture production. In 2006-2007, 102 soil samples were examined from 40 organic farms specializing in vegetables and berries. Farms for the study were selected by ecology- and food-production specialists from the Lublin Agriculture Advisory Centre in Końskowola. The following plants were cultivated on the farms examined: berry-bearing plants, carrots, parsley, zucchini, cabbage, lettuce, cucumbers, cauliflowers, leeks, onions, kidney beans, beetroots, potatoes, pumpkins, broad beans, rhubarb and herbs. The presently reported parasitological survey was performed on 102 soil samples. Each sample consisted of 100 g of soil and the methodology followed that of the Polish Standard PN-Z-19000-4 (flotation method by Quinn et al.). The survey yielded eggs of parasites representing genera: Ascaris, Trichuris and Toxocara. Contamination with eggs of intestinal parasites was noted in 43 (42.16%) soil samples. Toxocara spp. eggs were found in 24 samples (55.81%). Eggs of Ascaris spp. were detected in 18 samples (41.86%) while eggs of Trichuris spp were present in one sample (2.32%). In total, 29 eggs of Toxocara spp., 19 eggs of Ascaris spp., and 1 egg of Trichuris spp. were found. The largest amount of soil for examination was taken across the plantations of berry-bearing plants - 57 samples. In the group examined, plantations of raspberries and strawberries dominated. The soil was contaminated with the eggs of Toxocara spp. and Ascaris spp. No eggs of Trichuris spp. were detected. The presence of eggs of intestinal parasites in soil poses a threat of geohelminthoses to people who eat contaminated fresh fruits and vegetables. PMID:20209816

  11. Hydrous pyrolysis/oxidation: in-ground thermal destruction of organic contaminants

    SciTech Connect

    Knauss, K. G.; Aines, R.D.; Dibley, M.J.; Leif, R.N.; Mew, D.A.

    1997-03-11

    Experimental work with organic solvents at Lawrence Livermore National Laboratory has suggested that in situ thermal oxidation of these compounds via hydrous pyrolysis forms the basis for a whole new remediation method, called hydrous pyrolysis oxidation. Preliminary results of hydrothermal oxidation using both dissolved 0{sub 2} gas and mineral oxidants present naturally in soils (e.g., MnO{sub 2}) demonstrate that TCE, TCA, and even PCE can be rapidly and completely degraded to benign products at moderate conditions, easily achieved in thermal remediation. Polycyclic aromatic hydrocarbons (PAHS) have an even larger thermodynamic driving force favoring oxidation, and they are also amenable to in situ destruction. Today, the principal treatment methods for chlorinated solvent- and PAH-contaminated soil are to remove it to landfills, or incinerate it on site. The most effective method for treating ground water, Dynamic Underground Stripping (Newmark et al., 1995), still involves removing the contaminant for destruction elsewhere. Hydrous pyrolysis/oxidation would eliminate the need for long-term use of expensive treatment facilities by converting all remaining contaminant to benign products (e.g., carbon dioxide, water, and chloride ion). The technique is expected to be applicable to dense non-aqueous phase liquids (DNAPLS) and dissolved organic components. Soil and ground water would be polished without bringing them to the surface. This would dramatically decrease the cost of final site closure efforts. Large-scale cleanup using hydrous pyrolysis/oxidation may cost less than $10/yd. The end product of hydrous pyrolysis/oxidation is expected to be a clean site. The delivery concept for hydrous pyrolysis/oxidation utilizes the established experience in heating large volumes of ground developed in the Dynamic Underground Stripping Demonstration (Newmark et al., 1995). Steam and possibly oxygen are injected together, building a heated, oxygenated zone in the

  12. Methods to Assess Bioavailability of Hydrophobic Organic Contaminants: Principles, Operations, and Limitations

    PubMed Central

    Cui, Xinyi; Mayer, Philipp; Gan, Jay

    2013-01-01

    Many important environmental contaminants are hydrophobic organic contaminants (HOCs), which include PCBs, PAHs, PBDEs, DDT and other chlorinated insecticides, among others. Owing to their strong hydrophobicity, HOCs have their final destination in soil or sediment, where their ecotoxicological effects are closely regulated by sorption and thus bioavailability. The last two decades has seen a dramatic increase in research efforts in developing and applying partitioning based methods and biomimetic extractions for measuring HOC bioavailability. However, the many variations of both analytical methods and associated measurement endpoints are often a source of confusion for users. In this review, we distinguish the most commonly used analytical approaches based on their measurement objectives, and illustrate their practical operational steps, strengths and limitations using simple flowcharts. This review may serve as guidance for new users on the selection and use of established methods, and a reference for experienced investigators to identify potential topics for further research. PMID:23064200

  13. An overview of time trends in organic contaminant concentrations in marine mammals: going up or down?

    PubMed

    Law, Robin J

    2014-05-15

    In this article I review recent trends reported in the literature from 2008 to date for organic contaminant concentrations in marine mammal tissues worldwide, in order to get an idea of where we stand currently in relation to the control of hazardous substances. For many contaminants which have been subject to regulation regarding their production and use (e.g. organochlorine pesticides, PBDE and HBCD flame retardants, butyltins) trends are downwards. For perfluorinated compounds, trends are more mixed. For dioxins, furans and dioxin-like CBs, there are no recent data, for either concentrations or trends. For CBs overall, earlier downward trends in concentration in UK harbour porpoises following regulation beginning in the 1980s have stalled, and remain at toxicologically significant levels. This raises concerns for killer whales and bottlenose dolphins who, because of their larger size and greater bioaccumulation potential, have higher levels still, often far above accepted toxicological threshold values. PMID:24703807

  14. Organization versus activation: the role of endocrine-disrupting contaminants (EDCs) during embryonic development in wildlife.

    PubMed Central

    Guillette, L J; Crain, D A; Rooney, A A; Pickford, D B

    1995-01-01

    Many environmental contaminants disrupt the vertebrate endocrine system. Although they may be no more sensitive to endocrine-disrupting contaminants (EDCs) than other vertebrates, reptiles are good sentinels of exposure to EDCs due to the lability in their sex determination. This is exemplified by a study of alligators at Lake Apopka, Florida, showing that EDCs have altered the balance of reproductive hormones resulting in reproductive dysfunction. Such alterations may be activationally or organizationally induced. Much research emphasizes the former, but a complete understanding of the influence of EDCs in nature can be generated only after consideration of both activational and organizational alterations. The organizational model suggests that a small quantity of an EDC, administered during a specific period of embryonic development, can permanently modify the organization of the reproductive, immune, and nervous systems. Additionally, this model helps explain evolutionary adaptations to naturally occurring estrogenic compounds, such as phytoestrogens. PMID:8593864

  15. More human, more humane: a new approach for testing airborne pollutants.

    PubMed

    Potera, Carol

    2007-03-01

    People not only inhale airborne contaminants but also absorb them through the skin. Both routes can set off localized toxic reactions or damage internal organs such as the liver, kidney, and brain. Conventional tests of the toxicity of gases and vapors, in which laboratory animals are exposed to lethal or sub-lethal doses of chemicals, have been criticized as expensive, unethical, inhumane, and time-consuming. Now researchers at the University of New South Wales (UNSW) in Sydney, Australia, have developed an animal-free alternative that uses human cells to test the effects of exposure to airborne toxicants. PMID:17431472

  16. More Human, More Humane: A New Approach for Testing Airborne Pollutants

    PubMed Central

    Potera, Carol

    2007-01-01

    People not only inhale airborne contaminants but also absorb them through the skin. Both routes can set off localized toxic reactions or damage internal organs such as the liver, kidney, and brain. Conventional tests of the toxicity of gases and vapors, in which laboratory animals are exposed to lethal or sub-lethal doses of chemicals, have been criticized as expensive, unethical, inhumane, and time-consuming. Now researchers at the University of New South Wales (UNSW) in Sydney, Australia, have developed an animal-free alternative that uses human cells to test the effects of exposure to airborne toxicants. PMID:17431472

  17. Surfactant-modified zeolites as permeable barriers to organic and inorganic groundwater contaminants

    SciTech Connect

    Bowman, R.S.; Sullivan, E.J.

    1995-10-01

    We have shown in laboratory experiments that natural zeolites treated with hexadecyltrimethylammonium (HDTMA) are effective sorbents for nonpolar organics, inorganic cations, and inorganic anions. Due to their low cost ({approximately}$0.75/kg) and granular nature, HDTMA-zeolites appear ideal candidates for reactive, permeable subsurface barriers. The HDTMA-zeolites are stable over a wide range of pH (3-13), ionic strength (1 M Cs{sup +} or Ca{sup 2+}), and in organic solvents. Surfactant-modified zeolites sorb nonpolar organics (benzene, toluene, xylene, chlorinated aliphatics) via a partitioning mechanism, inorganic cations (Pb{sup 2+}) via ion exchange and surface complexation, and inorganic anions (CrO{sub 4}{sup 2-}, SeO{sub 4}{sup 2-}, SO{sub 4}{sup 2-}) via surface precipitation.The goal of this work is to demonstrate the use of surfactant-modified zeolite as a permeable barrier to ground water contaminants.

  18. Preliminary assessment of contaminants in the sediment and organisms of the Swartkops Estuary, South Africa.

    PubMed

    Nel, L; Strydom, N A; Bouwman, H

    2015-12-30

    Urban estuaries are susceptible to metal and organic pollution, yet most remain understudied in South Africa with respect to the presence, concentrations and distribution of contaminants. Metal and organic chemical concentrations were assessed in sediment and organisms from different trophic levels in the lower reaches of the Swartkops Estuary. Species sampled included Upogebia africana (Malacostraca: Upogebiidae), Gilchristella aestuaria (Clupeidae), Psammogobius knysnaensis (Gobiidae), Mugil cephalus (Mugilidae), Lichia amia (Carangidae), Argyrosomus japonicus (Sciaenidae), Pomadasys commersonnii (Haemulidae) and Larus dominicanus (Avis: Laridae). This study is one of the most comprehensive studies to date assessing pollution levels in a food web in estuaries in South Africa. Due to biomagnification, higher concentrations of Arsenic, Lead, Mercury and Cadmium were found in the juveniles stages of popular angling fishes. High concentrations of Cadmium and Arsenic were recorded in the liver of L. amia, A. japonicus and P. commersonnii which exceed international quality food guidelines. Eggs from the gull, L. dominicanus, showed detectable concentrations of PCBs. PMID:26593278

  19. Organic Nutrients and Contaminants In Subsistence Species of Alaska: Concentrations and Relationship To Food Preparation Method

    PubMed Central

    Moses, Sara K.; Whiting, Alex V.; Muir, Derek C.G.; Wang, Xiaowa; O'Hara, Todd M.

    2009-01-01

    Objectives To determine nutrient and contaminant concentrations, document concentration changes related to common preparation methods and provide a basic risk-benefit analysis for select subsistence foods consumed by residents of Kotzebue, Alaska. Study design Eleven organic nutrients and 156 persistent organic pollutants (POPs) were measured in foods derived from spotted seals and sheefish. Methods Nutrients in foodstuffs were compared to Daily Recommended Intake criteria. POPs were compared to Tolerable Daily Intake Limits (TDIL). Results Cooking, as well as absence/presence of skin during sheefish processing, altered nutrient and contaminant concentrations in seals and fish. Sheefish muscle and seal blubber were particularly rich in omega-3 fatty acids and seal liver in vitamin A. Seal liver exceeded the recommended upper limit for vitamin A. POP contribution to TDIL was <25% in all tissues except blubber, in which 4 POPs were present at >25% TDIL. No POPs exceeded TDIL in a serving of any tissue studied. The most prominent concerns identified were levels of vitamin A in spotted seal liver and certain POPs in blubber, warranting consideration when determining how much and how often these foods should be consumed. Conclusions Preparation methods altering tissues from their raw state significantly affect nutrient and contaminant concentrations, thus direct evaluation of actual food items is highly recommended to determine risk-benefits ratios of traditional diets. Traditional foods provide essential nutrients with very limited risk from contaminants. We encourage the consumption of traditional foods and urge public health agencies to develop applicable models to assess overall food safety and quality. PMID:19917188

  20. A national-scale assessment of micro-organic contaminants in groundwater of England and Wales.

    PubMed

    Manamsa, Katya; Crane, Emily; Stuart, Marianne; Talbot, John; Lapworth, Dan; Hart, Alwyn

    2016-10-15

    A large variety of micro-organic (MO) compounds is used in huge quantities for a range of purposes (e.g. manufacturing, food production, healthcare) and is now being frequently detected in the aquatic environment. Interest in the occurrence of MO contaminants in the terrestrial and aquatic environments continues to grow, as well as in their environmental fate and potential toxicity. However, the contamination of groundwater resources by MOs has a limited evidence base compared to other freshwater resources. Of particular concern are newly 'emerging contaminants' such as pharmaceuticals and lifestyle compounds, particularly those with potential endocrine disrupting properties. While groundwater often has a high degree of protection from pollution due to physical, chemical and biological attenuation processes in the subsurface compared to surface aquatic environments, trace concentrations of a large range of compounds are still detected in groundwater and in some cases may persist for decades due to the long residence times of groundwater systems. This study provides the first national-scale assessment of micro-organic compounds in groundwater in England and Wales. A large set of monitoring data was analysed to determine the relative occurrence and detected concentrations of different groups of compounds and to determine relationships with land-use, aquifer type and groundwater vulnerability. MOs detected including emerging compounds such as caffeine, DEET, bisphenol A, anti-microbial agents and pharmaceuticals as well as a range of legacy contaminants including chlorinated solvents and THMs, petroleum hydrocarbons, pesticides and other industrial compounds. There are clear differences in MOs between land-use types, particularly for urban-industrial and natural land-use. Temporal trends of MO occurrence are assessed but establishing long-term trends is not yet possible. PMID:27073165

  1. Depositional history of organic contaminants on the Palos Verdes Shelf, California

    USGS Publications Warehouse

    Eganhouse, R.P.; Pontolillo, J.

    2000-01-01

    During more than 60 years, sedimentation on the Palos Verdes Shelf has been dominated by time-varying inputs of municipal wastewater from the Los Angeles County Sanitation Districts (LACSD) and debris from the Portuguese Bend Landslide (PBL). The present study examines the depositional history of wastewater-derived organic contaminants at a site approximately 6-8 km downcurrent from the outfall system. Sediments at this location are impacted by contributions from both sources, but the relative influence of the sources has changed over time. Two classes of hydrophobic organic contaminants (chlorinated hydrocarbons, long-chain alkylbenzenes) were determined in sediment cores collected in 1981 and 1992. Using molecular stratigraphy, we determined average sedimentation rates (cm/year) and mass accumulation rates (g cm-2 year-1) for the following periods: 1955-1965, 1965-1971, 1971-1981 and 1981-1992. The results show that sedimentation and mass accumulation rates increased from 1955 to 1971 and decreased from 1971 to 1981. These trends are consistent with historical information on the emission of suspended solids from the outfall system, indicating that the discharge of wastes dominated sedimentation at the site during this period. In the 1980s and early 1990s, however, mass accumulation rates increased in spite of continually decreasing emissions of wastewater solids. Several lines of evidence indicate that this increase was due to mobilization of debris from the PBL during and after unusually strong winter storms in the 1980s. As a result, heavily contaminated sediments deposited during the years of greatest waste emissions (i.e. 1950-1970) have been buried to greater sub-bottom depths, thereby reducing their availability for mobilization to the overlying water column. These results highlight the dynamic nature of sedimentation in contaminated coastal ecosystems and its importance to the long-term fate and effects of toxic substances.

  2. POLANYI-BASED MODELS FOR THE COMPETITIVE SORPTION OF LOW-POLARITY ORGANIC CONTAMINANTS ON A NATURAL SORBENT. (R825406)

    EPA Science Inventory

    The development of appropriate equilibrium sorption relationships for anthropogenic organic contaminants with soils and sediments is essential to predicting the extents and rates of solid-water interactions in the environment. In this context, we previously reported results that ...

  3. Comparison of Passive Samplers for Monitoring Dissolved Organic Contaminants in Water Column Deployments (SETAC Europe 22nd Annual Meeting)

    EPA Science Inventory

    Nonionic organic contaminants (NOCs) are difficult to measure in the water column due to their inherent chemical properties resulting in low water solubility and high particle activity. Traditional sampling methods require large quantities of water to be extracted and interferen...

  4. EMERGING TECHNOLOGY BULLETIN: PROCESS FOR THE TREATMENT OF VOLATILE ORGANIC CARBON AND HEAVY-METAL- CONTAMINATED SOIL - INTERNATIONAL TECHNOLOGY CORPORATION

    EPA Science Inventory

    The batch steam distillation and metal extraction treatment process is a two-stage system that treats soils contaminated with organics and inorganics. This system uses conventional, readily available process equipment, and does not produce hazardous combustion products. Hazar...

  5. Comparison of Passive Samplers for Monitoring Dissolved Organic Contaminants in Water Column Deployments NAC/SETAC 2012

    EPA Science Inventory

    Nonionic organic contaminants (NOCs) are difficult to measure in the water column due to their inherent chemical properties resulting in low water solubility and high particle activity. Traditional sampling methods require large quantities of water to be extracted and interferen...

  6. Constructed Wetlands for Treatment of Organic and Engineered Nanomaterial Contaminants of Emerging Concerns (WaterRF Report 4334)

    EPA Science Inventory

    The goal of this project was to determine hydraulic and carbon loading rates for constructed wetlands required for achieving different levels of organic and nanomaterial contaminants of emerging concern (CECs) removal in constructed wetlands. Specific research objectives included...

  7. The characterization of organic contaminants during the development of the Space Station water reclamation and management system

    NASA Technical Reports Server (NTRS)

    Cole, H.; Habercom, M.; Crenshaw, M.; Johnson, S.; Manuel, S.; Martindale, W.; Whitman, G.; Traweek, M.

    1991-01-01

    Examples of the application of various methods for characterizing samples for alcohols, fatty acids, detergents, and volatile/semivolatile basic, neutral, and phenolic acid contaminants are presented. Data, applications, and interpretations are given for a variety of methods including sample preparation/cleanup procedures, ion chromatography, and gas chromatography with various detectors. Summaries of the major organic contaminants that contribute to the total organic carbon content are presented.

  8. Preparation of Silica/Reduced Graphene Oxide Nanosheet Composites for Removal of Organic Contaminants from Water.

    PubMed

    Li, Wen; Liu, Wei; Wang, Haifei; Lu, Wensheng

    2016-06-01

    Graphene-based composites open up new opportunities as effective adsorbents for the removal of organic contaminants from water. In this article, we report a novel and facile process to synthesize well-dispersed silica/reduced graphene oxide (SiO2/RGO) nanosheet composites. The SiO2/RGO nanosheet composites are prepared through a modified sol-gel process with in situ hydrolysis of tetraethoxysilane (TEOS) on graphene oxide (GO) nanosheet, followed by reduction of GO to graphene. In comparison with the RGO nanosheets, the as-prepared SiO2/RGO nanosheet composites have a larger surface area and good aqueous disperse ability. In addition, the application of SiO2/RGO nanosheet composites was demonstrated on removing organic dyes from water. The SiO2/RGO nanosheet composites show rapid and stable adsorption performance on removal of Methylene Blue (MB) and thionine (TH) from water. It is indicated that the resulting SiO2/RGO composites can be utilized as efficient adsorbents for the removal of organic contaminants from water. PMID:27427624

  9. Removal of organic wastewater contaminants in septic systems using advanced treatment technologies

    USGS Publications Warehouse

    Wilcox, J.D.; Bahr, J.M.; Hedman, C.J.; Hemming, J.D.C.; Barman, M.A.E.; Bradbury, K.R.

    2009-01-01

    The detection of pharmaceuticals and other organic wastewater contaminants (OWCs) in ground water and surface-water bodies has raised concerns about the possible ecological impacts of these compounds on nontarget organisms. On-site wastewater treatment systems represent a potentially significant route of entry for organic contaminants to the environment. In this study, effluent samples were collected and analyzed from conventional septic systems and from systems using advanced treatment technologies. Six of 13 target compounds were detected in effluent from at least one septic system. Caffeine, paraxanthine, and acetaminophen were the most frequently detected compounds, and estrogenic activity was detected in 14 of 15 systems. The OWC concentrations were significantly lower in effluent after sand filtration (p < 0.01) or aerobic treatment (p < 0.05) as compared with effluent that had not undergone advanced treatment. In general, concentrations in conventional systems were comparable to those measured in previous studies of municipal wastewater treatment plant (WWTP) influent, and concentrations in systems after advanced treatment were comparable to previously measured concentrations in WWTP effluent. These data indicate that septic systems using advanced treatment can reduce OWCs in treated effluent to similar concentrations as municipal WWTPs. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  10. Spatiotemporal characteristics of organic contaminant concentrations and ecological risk assessment in the Songhua River, China.

    PubMed

    Wang, Ce; Cyterski, Mike; Feng, Yujie; Gao, Peng; Sun, Qingfang

    2015-11-01

    To control source pollution and improve water quality, an understanding of the spatiotemporal characteristics of organic contaminant concentrations in affected receiving waters is necessary. The Songhua River in northeast China is the country's third-largest domestic river and loadings of organic contaminants along an industrialized section have made it the focal point of a national pollution reduction plan. In addition to water quality issues, management of the Songhua River basin must also address local economic development, aquatic ecosystem sustainability and political relationships with Russia. In three periods spanning 2006 to 2010, eight polycyclic aromatic hydrocarbons (PAHs) and eight phenols were measured in surface waters at ten monitoring sites along the river. A generalized linear model (GLM) was used to characterize water quality at different sites and time periods. Chemical concentrations of the organic compounds showed significant sinusoidal seasonal patterns and the concentrations declined significantly from 2006 to 2010, possibly due to management practices designed to control water pollution. A critical body residue analysis showed that water concentrations measured during the winter of 2007 across all monitoring sites, but especially at S1-Shaokou and S2-Songhuajiangcun, presented a high risk for fish species. The spatiotemporal characteristics of water quality and estimated ecological risks shown here add to the body of knowledge to develop policies on industrial output and pollution management strategies for the Songhua River basin. PMID:26442573

  11. Effects of predicted climatic changes on distribution of organic contaminants in brackish water mesocosms.

    PubMed

    Ripszam, M; Gallampois, C M J; Berglund, Å; Larsson, H; Andersson, A; Tysklind, M; Haglund, P

    2015-06-01

    Predicted consequences of future climate change in the northern Baltic Sea include increases in sea surface temperatures and terrestrial dissolved organic carbon (DOC) runoff. These changes are expected to alter environmental distribution of anthropogenic organic contaminants (OCs). To assess likely shifts in their distributions, outdoor mesocosms were employed to mimic pelagic ecosystems at two temperatures and two DOC concentrations, current: 15°C and 4 mg DOCL(-1) and, within ranges of predicted increases, 18°C and 6 mg DOCL(-1), respectively. Selected organic contaminants were added to the mesocosms to monitor changes in their distribution induced by the treatments. OC partitioning to particulate matter and sedimentation were enhanced at the higher DOC concentration, at both temperatures, while higher losses and lower partitioning of OCs to DOC were observed at the higher temperature. No combined effects of higher temperature and DOC on partitioning were observed, possibly because of the balancing nature of these processes. Therefore, changes in OCs' fates may largely depend on whether they are most sensitive to temperature or DOC concentration rises. Bromoanilines, phenanthrene, biphenyl and naphthalene were sensitive to the rise in DOC concentration, whereas organophosphates, chlorobenzenes (PCBz) and polychlorinated biphenyls (PCBs) were more sensitive to temperature. Mitotane and diflufenican were sensitive to both temperature and DOC concentration rises individually, but not in combination. PMID:25710621

  12. Impact of plastics on fate and transport of organic contaminants in landfills.

    PubMed

    Saquing, Jovita M; Saquing, Carl D; Knappe, Detlef R U; Barlaz, Morton A

    2010-08-15

    Factors controlling organic contaminant sorption to common plastics in municipal solid waste were identified. Consumer plastics [drinking water container, prescription drug bottle, soda bottle, disposable cold cup, computer casing, furniture foam, carpet, vinyl flooring, formica sheet] and model polymers [high-density polyethylene (HDPE), medium-density polyethylene, low-density polyethylene, poly(vinyl chloride) (PVC)] were characterized by X-ray diffractometry, differential scanning calorimetry, and elemental analysis. The material characterization was used to interpret batch isotherm and kinetic data. K(p) values describing toluene sorption to rubbery or "soft" polymers could be normalized by the amorphous polymer fraction (f(amorphous)) but not by the organic carbon fraction (f(oc)). Diffusion coefficients (D) describing the uptake rate of toluene by rubbery plastics (HDPE, drinking water container, prescription drug bottle) were similar (D approximately 10(-10) cm(2)/s), indicating that pure HDPE can be used as a model for rubbery plastics. Toluene diffusivity was similar among glassy or "hard" plastics (PVC, soda bottle, computer casing, disposable cold cup; D approximately 10(-12) cm(2)/s) but lower than for rubbery plastics. Plastics in landfills are potential sinks of hydrophobic organic contaminants (HOCs) because of their higher affinity for HOCs compared to lignocellulosic materials and the slow desorption of HOCs from glassy plastics. PMID:20704240

  13. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications.

    PubMed

    Gill, R T; Harbottle, M J; Smith, J W N; Thornton, S F

    2014-07-01

    There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios. PMID:24875868

  14. Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter.

    PubMed

    Uchimiya, Minori; Lima, Isabel M; Klasson, K Thomas; Wartelle, Lynda H

    2010-08-01

    Contamination of soil interstitial waters by labile heavy metals such as Cu(II), Cd(II), and Ni(II) is of worldwide concern. Carbonaceous materials such as char and activated carbon have received considerable attention in recent years as soil amendment for both sequestering heavy metal contaminants and releasing essential nutrients like sulfur. Information is currently lacking in how aging impacts the integrity of biochars as soil amendment for both agricultural and environmental remediation purposes. Major contributors to biochar aging in soils are: sorption of environmental constituents, especially natural organic matter (NOM), and oxidation. To investigate the impact of NOM and organic fractions of chars, we employed broiler litter-derived chars and steam-activated carbons that underwent varying degrees of carbonization, in the presence and absence of NOM having known carboxyl contents. For aging by oxidation, we employed phosphoric acid activated carbons that underwent varying degrees of oxidation during activation. The results suggest that the organic fractions of biochars, and NOM having high carboxyl contents can mobilize Cu(II) retained by alkaline soil. Base treatment of broiler litter-derived char formed at low pyrolysis temperature (350 degrees C) improved the immobilization of all heavy metals investigated, and the extent of immobilization was similar to, or slightly greater than pecan shell-derived phosphoric acid activated carbons. Portions of total sulfur were released in soluble form in soil amended with broiler litter-derived carbons, but not pecan shell-derived phosphoric acid activated carbons. PMID:20542314

  15. Estimation of organ dose equivalents from residents of radiation-contaminated buildings with Rando phantom measurements.

    PubMed

    Lee, J S; Dong, S L; Wu, T H

    1999-05-01

    Since August 1996, a dose reconstruction model has been conducted with thermoluminescent dosimeter (TLD)-embedded chains, belts and badges for external dose measurements on the residents in radiation-contaminated buildings. The TLD dosimeters, worn on the front of the torso, would not be adequate for dose measurement in cases when the radiation is anisotropic or the incident angles of radiation sources are not directed in the front-to-back direction. The shielding and attenuation by the body would result in the dose equivalent estimation being somewhat skewed. An organ dose estimation method with a Rando phantom under various exposure geometries is proposed. The conversion factors, obtained from the phantom study, may be applicable to organ dose estimations for residents in the contaminated buildings if the incident angles correspond to the phantom simulation results. There is a great demand for developing a mathematical model or Monte Carlo calculation to deal with complicated indoor layout geometry problems involving ionizing radiation. Further research should be directed toward conducting laboratory simulation by investigating the relationship between doses delivered from multiple radiation sources. It is also necessary to collaborate with experimental biological dosimetry, such as chromosome aberration analysis, fluorescence in situ hybridization (FISH) and retrospective ESR-dosimetry with teeth, applied to the residents, so that the organ dose equivalent estimations may be more reliable for radio-epidemiological studies. PMID:10214706

  16. Scaling up a treatment to simultaneously remove persistent organic pollutants and heavy metals from contaminated soils.

    PubMed

    Rivero-Huguet, Mario; Marshall, William D

    2011-04-01

    Soil washing is a treatment process that can be used to remediate both organic and inorganic pollutants from contaminated soils, sludges, and sediments. A soil washing procedure was evaluated utilizing about 100g samples of soil that had been field-contaminated with arsenic, chromium, copper, pentachlorophenol (PCP), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). The highest level of mobilization/detoxification was achieved in three soil washes with a mixture of 0.1M [S,S]-ethyelnediaminedisuccinate ([S,S]-EDDS) and 2% Brij 98 at pH 9 with 20 min of ultrasonication treatment at room temperature. This combination mobilized 70% of arsenic, 75% of chromium, 80% of copper, 90% of PCP, and 79% of PCDDs and PCDFs, so that the decontaminated soil met the maximum acceptable concentrations of the generic C-level criteria regulated by the Ministère du Développement Durable, de l'Environnement et des Parcs for the Province of Québec, Canada. The organic pollutants were back-extracted from the aqueous suspension with hexane. Heavy metals were virtually completely precipitated from the aqueous washing suspension with Mg(0) particles at room temperature. The PCP was detoxified by catalytic hydrodechlorination with a stream of 5% (v/v) H(2)-supercritical CO(2) that transported the organosoluble fraction through a reaction chamber containing 2% Pd/γ-Al(2)O(3). In toto, this soil washing procedure demonstrates that persistent organic pollutants and selected heavy metals can be co-extracted efficiently from a field-contaminated soil with three successive washes with the same soil washing solution containing [S,S]-EDDS and a non-ionic surfactant (Brij 98) in admixture. An industrial-scale ex situ soil washing procedure with a combination of a non-ionic surfactant and a complexing reagent seems to be a plausible remediation technique for this former wooden utility pole storage facility. PMID:21354593

  17. Volatile tritiated organic acids in stack effluents and in air surrounding contaminated materials

    SciTech Connect

    Belot, Y.; Camus, H.; Marini, T.; Raviart, S. )

    1993-06-01

    A small fraction of the tritium released into the atmosphere from tritium-handling or solid waste storage facilities was shown to be in the form of volatile organic acids. The same compounds were also found, but at a much higher proportion, in the tritium evolved at room temperature from highly contaminated materials placed under air atmospheres. This might be due to the oxidation and labeling of hydrocarbon(s) by mechanisms that are presumably of a radiolytic nature. The new forms could have an impact on operational requirements and waste management strategies within a tritium facility and a fusion reactor hall. Further data are needed to assess the related doses.

  18. An evaluation of alternative cleaning methods for removing an organic contaminant from a stainless steel part

    SciTech Connect

    Boyd, J.L.

    1996-08-01

    As of December 1995, the manufacture of Freon, along with many other chlorofluorocarbons (CFCs), was prohibited by the Clean Air Act of 1990 (CAA). The ban of CFC solvents has forced manufacturers across the country to search for alternative metal cleaning techniques. The objective of this study was to develop a thorough, scientific based approach for resolving one specific manufacturer`s problem of removing organic contamination from a stainless steel part. This objective was accomplished with an approach that involved: (1) defining the problem, (2) identifying the process constraints, (3) researching alternate cleaning methods, (4) researching applicable government regulations, (5) performing a scientific evaluation and (6) drawing conclusions.

  19. The role of clay in enhancing attenuation of trace organic contaminants during managed aquifer recharge

    NASA Astrophysics Data System (ADS)

    Regnery, J.; Strasser, A.; Hake, E.; Wing, A.; Drewes, J. E.

    2013-12-01

    For more hydrophobic trace organic contaminants present in surface water or reclaimed water applied for managed aquifer recharge (MAR), sorption onto organic matter can play a major role in attenuation in subsurface systems as the retardation allows more time for biotransformation. In case of low organic matter, other sorptive processes such as interactions with mineral surfaces gain importance. Especially for positively charged molecules, sorption onto clay materials by cation exchange will play a significant role. However, if the cation exchange capacity is limited or sorption of trace organic contaminants to clay materials is reversible due to changes in geochemical conditions (i.e., pH, ion strength), this might not provide a sustainable removal pathway. The objective of this study is to investigate how sorption to clay can enhance the removal of trace organic contaminants during MAR with the goal of evaluating the feasibility (i.e., infiltration capacity) and benefit (i.e., retardation of recalcitrant compounds) of introducing clay materials as reactive barriers in MAR systems. Laboratory-scale soil column experiments and batch sorption experiments using well characterized soil mixtures with different clay percentages under abiotic conditions and spiked at environmentally relevant concentration levels were conducted to derive soil water distribution coefficients for a suite of 15 trace organic chemicals (i.e., pharmaceutical residues, personal care products, household chemicals) and to quantify their sorption/desorption potential. All clay materials used in this study were characterized by X-ray diffraction to obtain information regarding their sorption processes. Furthermore, results were compared with geochemical field data from a full-scale MAR site in Colorado where significant amounts of clay in the subsurface were present. Preliminary results indicated that certain clay materials bear a great potential to retain moderately hydrophobic compounds such as

  20. Occurrence of organic wastewater and other contaminants in cave streams in northeastern Oklahoma and northwestern Arkansas.

    PubMed

    Bidwell, Joseph R; Becker, Carol; Hensley, Steve; Stark, Richard; Meyer, Michael T

    2010-02-01

    The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and beta-sitosterol), plasticizers [diethylhexylphthalate and tris(2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surface-water site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewater-associated chemicals into the cave. Halogenated organics

  1. Development of HUMASORB{trademark}, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    SciTech Connect

    Sanjay, H.G.; Srivastave, K.C.; Walia, D.S.

    1995-10-01

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project.The objective of this project is to develop a lignite-derived adsorbent, Humasorb{sup TM} to remove heavy metals and organics from ground water and surface water streams.

  2. Concentrations and risks of organic and metal contaminants in Eurasian caviar.

    PubMed

    Wang, Wei; Batterman, Stuart; Chernyak, Sergei; Nriagu, Jerome

    2008-09-01

    Caviar (fish roe of sturgeon) may contain high levels of contaminants. Concentrations of organic contaminants, including DDT, hexachlorocyclohexanes (HCHs), polychlorinated biphenyls (PCBs), brominated flame retardants (polybrominated diphenyl ethers (PBDEs)), and 23 metals were measured in three species of caviar (Acipenser Huso huso, Acipenser gueldenstaedti, and Acipenser stellatus) imported from Azerbaijan, Bulgaria, Iran, and Russia just prior to the 2006 export ban. PCB concentrations averaged 15.4+/-25.8 ng/g wet weight basis (wwt), DDT averaged 79+/-139 ng/g wwt, arsenic (As) averaged 960+/-486 ng/g, and PBDEs were detected in all samples. Cluster analyses grouped most of the Huso huso samples together, while most of the remaining clusters were grouped by origin. Trends of contaminant concentrations, estimated by incorporating data from earlier studies, show that PCB and DDT levels have been declining since 1978, and HCH levels since 2000. The maximum allowable daily consumption rate of caviar is limited by PCBs, DDTs and As. While the health risks are uncertain since consumption rates are unknown, declining concentrations and low consumption rates suggest that health advisories for caviar are unwarranted. PMID:17681601

  3. Time scales of organic contaminant dissolution from complex source zones: coal tar pools vs. blobs

    NASA Astrophysics Data System (ADS)

    Eberhardt, Christina; Grathwohl, Peter

    2002-11-01

    Groundwater contamination due to complex organic mixtures such as coal tar, creosote and fuels is a widespread problem in industrialized regions. Although most compounds in these mixtures are biodegradable, the contaminant sources are very persistent for many decades after the contamination occurred (e.g., more than 100 years ago at gasworks sites). This limited bioavailability is due to slow dissolution processes. This study presents results from a large scale tank experiment (8 m long) on the long-term (354 days) dissolution kinetics of BTEX and PAHs from a 2.5 m long coal tar pool and 0.5 m long (smear) zone containing coal tar blobs distributed in a coarse sand. The results indicate (1) that Raoult's law holds for estimation of the saturation aqueous concentrations of the coal tar constituents, (2) that for the dissolution of smear zones longer than approximately 0.1 m and with more than 3-5% residual saturation, the local equilibrium assumption is valid and (3) that although very small (<0.1 mm), the transverse vertical dispersivity dominates the pool dissolution processes. Typical time scales for removal of the pollutants from the blob zone and the pool are in the order of a few weeks to more than 10,000 years, respectively.

  4. Time scales of organic contaminant dissolution from complex source zones: coal tar pools vs. blobs.

    PubMed

    Eberhardt, Christina; Grathwohl, Peter

    2002-11-01

    Groundwater contamination due to complex organic mixtures such as coal tar, creosote and fuels is a widespread problem in industrialized regions. Although most compounds in these mixtures are biodegradable, the contaminant sources are very persistent for many decades after the contamination occurred (e.g., more than 100 years ago at gasworks sites). This limited bioavailability is due to slow dissolution processes. This study presents results from a large scale tank experiment (8 m long) on the long-term (354 days) dissolution kinetics of BTEX and PAHs from a 2.5 m long coal tar pool and 0.5 m long (smear) zone containing coal tar blobs distributed in a coarse sand. The results inidicate (1) that Raoult's law holds for estimation of the saturation aqueous concentrations of the coal tar constituents, (2) that for the dissolution of smear zones longer than approximately 0.1 m and with more than 3-5% residual saturation, the local equilibrium assumption is valid and (3) that although very small (< 0.1 mm), the transverse vertical dispersivity dominates the pool dissolution processes. Typical time scales for removal of the pollutants from the blob zone and the pool are in the order of a few weeks to more than 10,000 years, respectively. PMID:12683639

  5. Development of adsorbent for the simultaneous removal of organic and inorganic contaminants from aqueous solution.

    PubMed

    Choi, J W; Chung, S G; Hong, S W; Kim, D J; Lee, S H

    2011-01-01

    In this study, a modified adsorbent, alginate complex beads, was prepared and applied to the removal of mixed contaminants from wastewater. The alginate complex beads were generated by the immobilization of powdered activated carbon and synthetic zeolites onto alginate gel beads, which were then dried at 110 °C for 20 h until the diameter had been reduced to 1 mm. This dry technique increased the hardness of the adsorbent to assure its durability and application. The adsorption onto the alginate complex beads of organic and inorganic compounds, as target contaminants, was investigated by performing both equilibrium and kinetic batch experiments. From the adsorption isotherms, according to the Langmuir equation, the alginate complex bead was capable of effectively removing benzene, toluene, zinc and cadmium. From kinetic batch experiments, the removal efficiencies of benzene, toluene, zinc and cadmium were found to be 66.5, 92.4, 74.1 and 76.7%, respectively, for initial solution concentrations of 100 mg L(-1). The results indicated that the adsorbent developed in this study has the potential to be a promising material for the removal of mixed pollutants from industrial wastewater or contaminated groundwater. PMID:22020474

  6. Penguin colonies as secondary sources of contamination with persistent organic pollutants.

    PubMed

    Roosens, Laurence; Van Den Brink, Nico; Riddle, Martin; Blust, Ronny; Neels, Hugo; Covaci, Adrian

    2007-08-01

    Although long-range atmospheric transport has been described as the predominant mechanism for exposing polar regions to persistent organic pollutants (POPs), recent studies have suggested that bird activity can also contribute substantially to contaminant levels in some environments. However, because the species so far reported have all been migratory, it has not been demonstrated conclusively whether locally elevated contamination represents transport from lower latitudes by the migrating birds or, alternatively, redistribution and concentration of contaminants that were already present in the high-latitude environments. The present study demonstrates, for the first time, that several POPs are present in elevated concentrations in an environment frequented by a non-migratory species (Adélie penguins) that spends its entire life in the Antarctic. Levels of POPs, such as p,p'-DDE, hexachlorobenzene (HCB), chlordanes (CHLs) and polychlorinated biphenyls (PCBs), were 10 to 100-fold higher in soil samples from penguin colonies than from reference areas. This significant difference is likely related to local penguin activity, such as a higher abundance of guano and the presence of bird carcasses. This hypothesis is also supported by a higher percentage of persistent congeners (PCB 99, 118, 138 and 153) in the soil from the colonies compared to the reference areas. This profile of PCB congeners closely matched profiles seen in penguin eggs or penguin blood. PMID:17671662

  7. Permeable Adsorptive Barrier (PAB) for the remediation of groundwater simultaneously contaminated by some chlorinated organic compounds.

    PubMed

    Erto, A; Bortone, I; Di Nardo, A; Di Natale, M; Musmarra, D

    2014-07-01

    In this paper, a Permeable Reactive Barrier (PRB) made with activated carbon, namely a Permeable Adsorptive Barrier (PAB), is put forward as an effective technique for the remediation of aquifers simultaneously contaminated by some chlorinated organic compounds. A design procedure, based on a computer code and including different routines, is presented as a tool to accurately describe mass transport within the aquifer and adsorption/desorption phenomena occurring inside the barrier. The remediation of a contaminated aquifer near a solid waste landfill in the district of Napoli (Italy), where Tetrachloroethylene (PCE) and Trichloroethylene (TCE) are simultaneously present, is considered as a case study. A complete hydrological and geotechnical site characterization, as well as a number of dedicated adsorption laboratory tests for the determination of activated carbon PCE/TCE adsorption capacity in binary systems, are carried out to support the barrier design. By means of a series of numerical simulations it is possible to determine the optimal barrier location, orientation and dimensions. PABs appear to be an effective remediation tool for the in-situ treatment of an aquifer contaminated by PCE and TCE simultaneously, as the concentration of both compounds flowing out of the barrier is everywhere lower than the regulatory limits on groundwater quality. PMID:24747934

  8. Critical body residues in the marine amphipod Ampelisca abdita: Sediment exposures with nonionic organic contaminants

    SciTech Connect

    Fay, A.A.; Brownawell, B.J.; Elskus, A.A.; McElroy, A.E.

    2000-04-01

    Body residues associated with acute toxicity were determined in the marine amphipod Ampelisca abdita exposed to spiked sediments. Nonylphenol and 2,2{prime},4,4{prime}-tetrachlorobiphenyl critical body residues (CBRs, body residue of contaminant at 50% mortality) were 1.1 {micro}mol/g wet tissue and 0.57 {micro}mol/g wet tissue, respectively, values near the low end of the CBR range expected for compounds acting via narcosis. The polycyclic aromatic hydrocarbons tested, benzo[a]pyrene (BaP) and benz[a]anthracene (BaA), were not acutely toxic at exposure concentrations of up to 43 and 1,280 {micro}g/g dry sediment for BaA and BaP respectively, and body burdens up to 1.2 {micro}mol/g wet tissue (for BaP). Neither polycyclic aromatic hydrocarbon (PAH) was significantly metabolized by A. abdita. The microextraction technique employed here allowed residue analysis of samples containing as few as three amphipods (0.33 mg dry wt). The CBR approach avoids confounding factors such as variations in bioavailability and uptake kinetics and could be employed to assess the relative contribution of specific contaminants or contaminant classes in mixtures to effects observed in toxicity tests with Ampelisca and other organisms.

  9. The plume fringe concept - Biodegradation of organic contaminants in subsurface ecosystems

    NASA Astrophysics Data System (ADS)

    Meckenstock, R. U.; Griebler, C.; Anneser, B.; Winderl, C.; Bauer, R.; Lüders, T.; Kellermann, C.; Selesi, D.

    2005-12-01

    The biodegradation of organic pollutants in groundwater systems may be limited by the depletion of essential nutrients or the low number of degraders. However, the main problem seems to be the insufficient mixing of e-donors and e-acceptors. Main degradation activities in contaminant plumes are therefore located at their fringes. In order to investigate the ecology of pollutant-degrading microbes, experiments are carried out (1) in 2D-aquifer model systems and (2) sediment cores were drilled at a former gasworks site and a novel high-resolution multilevel sampling well was installed. (1) To assess the importance of individual abiotic (e.g. mixing, toxicity, nutrients) and biotic (e.g. cell distribution and activity, redox tolerance) parameters for biodegradation under well controlled lab conditions, contaminant plumes are generated in 2D-model systems and subsequently inoculated with aerobic and/or anaerobic bacterial strains to investigate biodegradation in a spatially resolved manner. (2) To recognize limitations of biodegradation in a PAH-contaminated aquifer, sediment cores were taken and, at the same site, a high-resolution multilevel well was installed for frequent groundwater sampling with varying spatial resolution (from cm to m range). In both systems, degradation of contaminants is followed by vertically resolved concentration measurements, compound-specific stable isotope (D/H, 13C/12C) analysis and the identification of signature metabolites. Physical-chemical gradients are resolved by means of microsensors and geochemical sediment and water analysis. The spatial distribution of microbial biomass, individual groups of microbes and the presence of functional genes coding for potential degradation activities are investigated using molecular tools. First results of the work, which is embedded in two current projects, will be discussed.

  10. Ground-water contamination by organic bases derived from coal-tar wastes

    USGS Publications Warehouse

    Pereira, Wilfred E.; Rostad, Colleen E.; Garbarino, John R.; Hult, Marc F.

    1983-01-01

    A fluid sample from a shallow aquifer contaminated by coal-tar wastes was analyzed for organic bases. The sample consisted of a mixture of aqueous and oily-tar phases. The phases were separated by centrifugation and filtration. Organic bases were isolated from each phase by pH adjustment and solvent extraction. Organic bases in the oily-tar phase were further purified by neutral-alumina, micro-column adsorption chromatography. Separation and identification of the organic bases in each phase were achieved by using capillary gas chromatography-mass spectrometry-computer (GC-MS-COM) and probe distillation-high resolution mass spectrometry (PD-HRMS) techniques. Organic bases present in the aqueous phase included primary aromatic amines (such as aniline, alkylated anilines, and naphthylamines) as well as azaarenes (such as alkylated pyridines, quinolines, acridine, and benzoquinolines). The oily-tar phase contained acridine, benzacridines, dibenzacridines, and numerous other azaarenes, the elemental compositions of which were determined by PD-HRMS. Azaarenes in the oily-tar phase, varying in size from 6 to 12 rings, are reported for the first time. The origin and environmental significance of these compounds are discussed.

  11. Groundwater contamination by organic bases derived from coal-tar wastes

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Garbarino, J.R.; Hult, M.F.

    1983-01-01

    A fluid sample from a shallow aquifer contaminated by coal-tar wastes was analyzed for organic bases. The sample consisted of a mixture of aqueous and oily-tar phases. The phases were separated by centrifugation and filtration. Organic bases were isolated from each phase by pH adjustment and solvent extraction. Organic bases in the oily-tar phase were further purified by neutral-alumina, micro-column adsorption chromatography. Separation and identification of the organic bases in each phase were achieved by using capillary gas chromatography-mass spectrometry-computer (GC-MS-COM) and probe distillation-high resolution mass spectrometry (PD-HRMS) techniques. Organic bases present in the aqueous phase included primary aromatic amines (such as aniline, alkylated anilines, and naphthylamines) as well as azaarenes (such as alkylated pyridines, quinolines, acridine, and benzoquinolines). The oily-tar phase contained acridine, benzacridines, dibenzacridines, and numerous other azaarenes, the elemental compositions of which were determined by PD-HRMS. Azaarenes in the oily-tar phase, varying in size from 6 to 12 rings, are reported for the first time. The origin and environmental significance of these compounds are discussed. ?? 1983.

  12. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence.

    PubMed

    Lapworth, D J; Baran, N; Stuart, M E; Ward, R S

    2012-04-01

    Emerging organic contaminants (EOCs) detected in groundwater may have adverse effects on human health and aquatic ecosystems. This paper reviews the existing occurrence data in groundwater for a range of EOCs including pharmaceutical, personal care, 'life-style' and selected industrial compounds. The main sources and pathways for organic EOCs in groundwater are reviewed, with occurrence data for EOCs in groundwater included from both targeted studies and broad reconnaissance surveys. Nanogram-microgram per litre concentrations are present in groundwater for a large range of EOCs as well as metabolites and transformation products and under certain conditions may pose a threat to freshwater bodies for decades due to relatively long groundwater residence times. In the coming decades, more of these EOCs are likely to have drinking water standards, environmental quality standards and/or groundwater threshold values defined, and therefore a better understanding of the spatial and temporal variation remains a priority. PMID:22306910

  13. Evaluating non-incinerative treatment of organically contaminated low level mixed waste

    SciTech Connect

    Shuck, D.L.; Skriba, M.C.; Wade, J.F.

    1993-03-01

    This investigation examines the feasibility of using non-incinerator technologies effectively to treat organically contaminated mixed waste. If such a system is feasible now, it would be easier to license because it would avoid the stigma that incineration has in the publics` perception. As other DOE facilities face similar problems, this evaluation is expected to be of interest to both DOE and the attendees of WM`93. This investigation considered treatment to land disposal restriction (LDR) standards of 21 different low level mixed (LLM) waste streams covered by the Rocky Flats Federal Facilities Compliance Agreement (FFCA) agreement with the Environmental Protection Agency (EPA). Typically the hazardous components consists of organic solvent wastes and the radioactive component consists of uranic/transuranic wastes. Limited amounts of cyanide and lead wastes are also involved. The primary objective of this investigation was to identify the minimum number of non-thermal unit processes needed to effectively treat this collection of mixed waste streams.

  14. Evaluating non-incinerative treatment of organically contaminated low level mixed waste

    SciTech Connect

    Shuck, D.L. . Denver Environmental Services); Skriba, M.C. ); Wade, J.F. )

    1993-01-01

    This investigation examines the feasibility of using non-incinerator technologies effectively to treat organically contaminated mixed waste. If such a system is feasible now, it would be easier to license because it would avoid the stigma that incineration has in the publics' perception. As other DOE facilities face similar problems, this evaluation is expected to be of interest to both DOE and the attendees of WM'93. This investigation considered treatment to land disposal restriction (LDR) standards of 21 different low level mixed (LLM) waste streams covered by the Rocky Flats Federal Facilities Compliance Agreement (FFCA) agreement with the Environmental Protection Agency (EPA). Typically the hazardous components consists of organic solvent wastes and the radioactive component consists of uranic/transuranic wastes. Limited amounts of cyanide and lead wastes are also involved. The primary objective of this investigation was to identify the minimum number of non-thermal unit processes needed to effectively treat this collection of mixed waste streams.

  15. Emerging organic contaminants in coastal waters: anthropogenic impact, environmental release and ecological risk.

    PubMed

    Jiang, Jheng-Jie; Lee, Chon-Lin; Fang, Meng-Der

    2014-08-30

    This study provides a first estimate of the sources, distribution, and risk presented by emerging organic contaminants (EOCs) in coastal waters off southwestern Taiwan. Ten illicit drugs, seven nonsteroidal anti-inflammatory drugs (NSAIDs), five antibiotics, two blood lipid regulators, two antiepileptic drugs, two UV filters, caffeine, atenolol, and omeprazole were analyzed by solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry (SPE-LC-MS/MS). Thirteen EOCs were detected in coastal waters, including four NSAIDs (acetaminophen, ibuprofen, ketoprofen, and codeine), three antibiotics (ampicillin, erythromycin, and cefalexin), three illicit drugs (ketamine, pseudoephedrine, and MDMA), caffeine, carbamazepine, and gemfibrozil. The median concentrations for the 13 EOCs ranged from 1.47 ng/L to 156 ng/L. Spatial variation in concentration of the 13 EOCs suggests discharge into coastal waters via ocean outfall pipes and rivers. Codeine and ampicillin have significant pollution risk quotients (RQ>1), indicating potentially high risk to aquatic organisms in coastal waters. PMID:24439316

  16. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil.

    PubMed

    Salati, S; Quadri, G; Tambone, F; Adani, F

    2010-05-01

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. PMID:19932537

  17. Prevalence of organic and inorganic contaminants within a rapidly developing catchment

    NASA Astrophysics Data System (ADS)

    Njumbe, E. S.; Curtis, C. D.; Cooke, D. A.; Polya, D. A.; Wogelius, R. A.; Hughes, C.

    2003-04-01

    Industrialization rates in many developing countries typically outpace investment in water supply, sewage treatment and other waste water facilities. This is futher compounded by the absence of stringent land-use and waste disposal policies. The consequence of this has been contamination of land, surface water, and groundwater in such areas. Efforts to control and remediate these types of systems will rely on a thorough understanding of contaminant levels and mobility. Reliable data, however, is usually not available. Therefore this study was designed to acquire baseline data from a representative developing urban area in tropical west Africa. 43 water and 20 sediment/soil samples from streams, hand-dug wells, springs and deep boreholes within the city and surrounding areas of Douala in Cameroon were characterised. Analyses were aimed at obtaining information on the type and quantity of organic and inorganic contaminants present, and linking them to specific point and non-point sources. Results from gas chromatography (GC/FID) and gas chromatography/mass spectrometry analyses of total organic extracts (TOE) of water samples have revealed the presence of a wide range of organic compounds including phenols, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), phthalates, acids and aliphatic derivatives. Concentrations as high as 500 ng ml-1 were detected. These high levels of non-polar compounds measured in drinking water represent a clear health problem. Heavy metal concentrations in bulk alluvial sands and loamy soil have been determined by microwave assisted nitric acid digestion. Concentration ranges (in ppm of dry weight) for the important metals were: Cr, 3.2-84.2 ; Ni, 0.2-57.4 ; Zn, 2.1-92 ; Pb, 0.3-33 ; As, 0.081-9.4 ; Cu, 0.61-17.4 ; and Cd, 0-3.1. Point sources have been identified for several of the organic and inorganic compounds and this spatial information will be integrated with the chemical data to present an overview of

  18. Modeling the enhanced removal of emerging organic contaminants during MAR through a reactive barrier.

    NASA Astrophysics Data System (ADS)

    Valhondo, Cristina; Carrera, Jesús; Ayora, Carlos; Martinez-Landa, Lurdes; Nödler, Karsten; Licha, Tobias

    2014-05-01

    Artificial recharge of reclaimed water is often proposed as a way of increasing water resources while improving quality. However, it is also feared that recalcitrant organic contaminants (i.e., those that are not completely removed during wastewater treatment) may reach the aquifer. Specifically, emerging organic contaminants (EOCs) have been increasingly detected in surface and ground waters and are becoming a worldwide problem. Most EOCs exhibit higher concentrations in reclaimed water used for artificial recharge than in produced groundwater, indicating that these compounds are retained and/or degraded during infiltration. Removal may be the result of sorption, which depends on organic matter and inorganic surfaces contained in the sediments, and degradation, which depends on redox conditions (some EOCs are preferentially removed under specific redox conditions). To enhance removal and retention processes, we designed a reactive barrier, which consists of compost, sand, clay and is covered by iron oxide. The role of compost is to favor sorption of neutral compounds and to release easily degradable organic carbon, so as to generate diverse redox condition, thus increasing the range of degraded EOCs. The role of iron oxides and clay is to favor sorption of anionic and cationic compounds, respectively. The barrier has been tested in the field proving its ability in promoting diverse redox conditions and indeed improving EOCs removal. However, experimental data do not allow separating sorption from degradation. To do so, we have built a flow and transport model representing the infiltration system and the aquifer beneath. The model has been calibrated against head data, collected during three years that include recharge and natural flow periods, and concentration, collected during a conservative tracer test. The calibrated model was then used to predict the fate of EOCs using sorption and half-lives from the literature. Results confirm that retention and degradation

  19. Hydrophobic organic contaminants in surficial sediments of Baltimore Harbor: Inventories and sources

    SciTech Connect

    Ashley, J.T.F.; Baker, J.E.

    1999-05-01

    The heavily urbanized and industrialized Baltimore Harbor/Patapsco River/Back River system is one of the most highly contaminated regions of the Chesapeake Bay. In June 1996, surficial sediments were collected at 80 sites throughout the subestuarine system, including historically undersampled creek sand embayments. The samples were analyzed for a suite of hydrophobic organic contaminants (HOCs) consisting of 32 polycyclic aromatic hydrocarbons (PAHs) and 113 polychlorinated biphenyl (PCB) congeners. Total PAH and total PCB concentrations ranged from 90 to 46,200 and 8 to 2,150 ng/g dry weight, respectively. There was enormous spatial variability in the concentrations of HOCs, which was not well correlated to grain size or organic carbon content, suggesting nonequilibrium partitioning and/or proximity to sources as important factors explaining the observed spatial variability. High concentrations of both classes of HOCs were localized around major urban stormwater runoff discharges. Elevated PAH concentrations were also centered around the Sparrow`s Point Industrial Complex, most likely a result of the pyrolysis of coal during the production of steel. All but 1 of the 80 sites exceeded the effects range-low (ERL) for total PCBs and, of those sites, 40% exceeded the effects range-medium (ERM), suggesting toxicity to marine benthic organisms would frequently occur. Using principal component analysis, differences in PAH signatures were discerned. Higher molecular weight PAHs were enriched in signatures from sediments close to suspected sources (i.e., urban stormwater runoff and steel production complexes) compared to those patterns observed at sites further from outfalls or runoff. Due to varying solubilities and affinities for organic matter of the individual PAHs, partitioning of the heavier weight PAHs may enrich settling particles with high molecular weight PAHs. Lower molecular weight PAHs, having lower affinity for particles, may travel from the source to a

  20. An immunogenic Salmonella ghost confers protection against internal organ colonization and egg contamination.

    PubMed

    Jawale, Chetan V; Lee, John Hwa

    2014-11-15

    The tightly regulated expression of the PhiX174 lysis gene E from a multi-copy plasmid led to the stable production of an Salmonella Enteritidis bacterial ghost. The present study was conducted to evaluate induction of the humoral and cell-mediated immune responses induced after single or double intramuscular immunization with the S. Enteritidis ghost and to assess its protective effect on colonization of the intestinal tract, visceral and reproductive organs, internal egg contamination, and egg production of laying chickens. A total of 60 chickens were equally divided into three groups (n=20); group A (non-immunized control), group B (immunized at 8 and 16 weeks of age) and group C (immunized at 16th week of age). Chickens from both immunized groups B and C demonstrated significant increases in plasma IgG, intestinal secretory IgA levels, and antigen-specific lymphocyte proliferative responses. The population of CD3+CD4+ positive T cells in the immunized chickens was also significantly increased after immunization and virulent challenge. In addition, the immunized groups B and C showed significantly higher egg production and a lower percentage of S. Enteritidis contaminated eggs after challenge compared to those of group A. A comparison of challenge strain isolation from the immunized-challenged and non-immunized-challenged layer hens showed that the double immunization group induced excellent protection against intestinal, liver, splenic, and ovarian Salmonella colonization; however, the single immunized chickens showed lower counts only in the splenic and ovarian organs. Overall, the data give compelling evidence that vaccination with the S. Enteritidis ghost induced robust protective immunity against experimental avian salmonellosis and may contribute to the reduce incidence of egg contamination. PMID:25241048

  1. Assisted attenuation of a soil contaminated by diuron using hydroxypropyl-β-cyclodextrin and organic amendments.

    PubMed

    Rubio-Bellido, Marina; Madrid, Fernando; Morillo, Esmeralda; Villaverde, Jaime

    2015-01-01

    Diuron desorption and mineralisation were studied on an amended and artificially contaminated soil. The amendments used comprised two different composted organic residues i.e., sewage sludge (SS) mixed with pruning wastes, and urban solid residues (USR), and two different solutions (with inorganic salts as the micronutrients and hydroxypropyl-β-cyclodextrin (HPBCD)). After applying micronutrients to activate the soil flora, 15.5% mineralisation could be reached after 150 days, indicating that the soil has a potential capacity to mineralise the herbicide through biostimulation-assisted attenuation. Diuron mineralisation was also improved when HPBCD solutions were applied. Indeed, the extent of herbicide mineralisation reached 29.7% with this application. Moreover, both the lag phase and the half-life time (DT50) were reduced to 33 and 1,778 days, respectively, relative to the application of just micronutrients (i.e., 39 and 6297 days, respectively). Organic amendments were also applied (i.e., USR and SS) on the contaminated soil: it was found that the diuron mineralisation rate was improved as the amendment concentration increased. The joint application of all treatments investigated at the best conditions tested was conducted to obtain the best diuron mineralisation results. The micronutrient amendment plus 4% USR or SS amendment plus HPBCD solution (10-fold diuron initially spiked) caused an extent of diuron mineralisation 33.2 or 46.5%, respectively. PMID:25310830

  2. Biodegradation of organic contaminants in subsurface systems: Kinetic and metabolic considerations

    SciTech Connect

    Morris, M.S.

    1988-01-01

    Groundwater contaminated by organic chemicals from industrial spills, leaking underground gasoline storage tanks and landfills has caused concern about the future of a major source of drinking water. A potential alternative to expensive groundwater reclamation projects is the use of natural soil bacteria to degrade organic contaminants. This study was designed to measure the kinetic response of tertiary butyl alcohol (TBA), determine the biological degradation rates of methanol, ethanol, propanol, l-butanol, TBA, pentanol, phenol and 2,4-dichlorophenol; describe site specific conditions which enhance or inhibit degradation and compare biodegradation rates with thermodynamic predictions. Each of the test compounds except TBA was readily degraded in the Blacksburg soil. Inhibition of sulfate reduction by the addition of molybdate stimulated degradation of all compounds including TBA, whereas, inhibition of methanogenesis with BESA slowed the degradation rates. The addition of nitrate did not affect the biodegradation in Blacksburg soil. In the Newport News soil, all of the test compounds were biodegraded at substantially higher rates than was observed in the Blacksburg soil. The presence of the metabolic inhibitors did not affect degradation, however, the addition of nitrate increased the degradation rates of the alcohols but not the phenols. The degradation rates in each of the soils did not correlate with the bacterial population size or free energies of the reactions.

  3. Natural Magnetite: an efficient catalyst for the degradation of organic contaminant

    NASA Astrophysics Data System (ADS)

    He, Hongping; Zhong, Yuanhong; Liang, Xiaoliang; Tan, Wei; Zhu, Jianxi; Yan Wang, Christina

    2015-05-01

    Iron (hydr)oxides are ubiquitous earth materials that have high adsorption capacities for toxic elements and degradation ability towards organic contaminants. Many studies have investigated the reactivity of synthetic magnetite, while little is known about natural magnetite. Here, we first report the reactivity of natural magnetites with a variety of elemental impurities for catalyzing the decomposition of H2O2 to produce hydroxyl free radicals (•OH) and the consequent degradation of p-nitrophenol (p-NP). We observed that these natural magnetites show higher catalytic performance than that of the synthetic pure magnetite. The catalytic ability of natural magnetite with high phase purity depends on the surface site density while that for the magnetites with exsolutions relies on the mineralogical nature of the exsolved phases. The pleonaste exsolution can promote the generation of •OH and the consequent degradation of p-NP; the ilmenite exsolution has little effect on the decomposition of H2O2, but can increase the adsorption of p-NP on magnetite. Our results imply that natural magnetite is an efficient catalyst for the degradation of organic contaminants in nature.

  4. Trace organic contamination in biota collected from the Pearl River Estuary, China: a preliminary risk assessment.

    PubMed

    Wei, S; Lau, R K F; Fung, C N; Zheng, G J; Lam, J C W; Connell, D W; Fang, Z; Richardson, B J; Lam, P K S

    2006-12-01

    The marine ecosystem of the Pearl River Delta, located on the southern coast of China, has been heavily exploited following the rapid economic growth that has occurred since the 1980s. This investigation aimed to elucidate trace organic contamination in marine biota inhabiting the Pearl River Delta area. Biota samples, including green-lipped mussels (Perna viridis), oysters (Crassostrea rivularis) and shrimp (Penaeus orientalis) were sampled from 16 stations fringing the Estuary. Elevated concentrations (on a dry weight basis) of polycyclic aromatic hydrocarbons (27.8-1041.0 ng/g), petroleum hydrocarbons (1.7-2345.4 microg/g), polychlorinated biphenyls (2.1-108.8 ng/g), DDTs (1.9-79.0 ng/g), and hexachlorocyclohexanes (n.d.-38.4 ng/g) were recorded. A human health risk assessment was conducted to estimate the risk to local residents associated with the consumption of biota collected from the Pearl River Estuary. The results indicated that PCBs were at levels that may cause deleterious health effects in populations that consume large amounts of seafood. However, it would be instructive to establish health criteria for trace organic contaminants that are specific to the local populations, in order to derive a more accurate and relevant health risk assessment. PMID:16908034

  5. Genetic toxicity studies of organic chemicals found as contaminants in spacecraft cabin atmospheres

    NASA Technical Reports Server (NTRS)

    Torres, Joseph, Jr.

    1987-01-01

    Astronauts can be exposed during spaceflight to organic chemical contaminants in the spacecraft cabin atmosphere. Toxic exposures may cause lesions in the cellular DNA which are subsequently expressed as sister-chromatid exchanges (SCE). Analysis of SCE is a sensitive short term assay techinque to detect and quantitate exposures to DNA damaging (mutagenic) substances. The increase in SCE incidence over baseline (control) levels is generally proportional to the concentration of the mutagen and to the duration of exposure. The BHK-21 baby hamster kidney cell line was the in vitro test system used. Test organics were added to the culture media for 18 hrs, in concentrations ranging from one to 20 ppm. Acetaldehyde and carbon disulfide were chosen for this study since they have occurred as atmospheric contaminants in many of the STS flights, and have been reported to have toxic and mutagenic effects in various test systems. Glutaraldehyde was chosen because few data are available on the mutagenicity of this common fixative, which is carried on STS flights for use in biological experiments. Acetaldehyde was a very strong inducer of SCE at concentrations of 2 ppm and above. Glutaraldehyde and carbon disulfide failed to induce SCE.

  6. Long-Term Fate of Organic Micropollutants in Sewage-Contaminated Groundwater

    USGS Publications Warehouse

    Barber, L.B., II; Schroeder, M.P.; LeBlanc, D.R.

    1988-01-01

    Disposal of secondary sewage effluent by rapid infiltration has produced a plume of contaminated groundwater over 3500 m long near Falmouth, MA. Approximately 50 volatile organic compounds were detected and identified in the plume, at concentrations ranging from 10 ng/L to 500 ??g/L, by closed-loop stripping and purge- and-trap in conjuction with gas chromatography-mass spectrometry. The dominant contaminants were di-, tri- and tetrachloroethene, o- and p-dichlorobenzene, C1 to C6 alkylbenzenes, 2,6-di-tert-butylbenzoquinone, and several isomers of p-nonylphenol. The chloroethenes and chlorobenzenes had the same general distribution as chloride and boron and appear to be transported with little retardation. Less soluble compounds, such as nonylphenol and di-tert-butylbenzoquinone, appear to be retarded during subsurface transport by sorption processes. Although biodegradation of labile organic compounds occurs near the infiltration beds, many trace compounds, including chlorinated benzenes, alkylbenzenes, and aliphatic hydrocarbons, have persisted for more than 30 years in the aquifer.

  7. Natural Magnetite: an efficient catalyst for the degradation of organic contaminant

    PubMed Central

    HE, Hongping; ZHONG, Yuanhong; LIANG, Xiaoliang; TAN, Wei; ZHU, Jianxi; Yan WANG, Christina

    2015-01-01

    Iron (hydr)oxides are ubiquitous earth materials that have high adsorption capacities for toxic elements and degradation ability towards organic contaminants. Many studies have investigated the reactivity of synthetic magnetite, while little is known about natural magnetite. Here, we first report the reactivity of natural magnetites with a variety of elemental impurities for catalyzing the decomposition of H2O2 to produce hydroxyl free radicals (•OH) and the consequent degradation of p-nitrophenol (p-NP). We observed that these natural magnetites show higher catalytic performance than that of the synthetic pure magnetite. The catalytic ability of natural magnetite with high phase purity depends on the surface site density while that for the magnetites with exsolutions relies on the mineralogical nature of the exsolved phases. The pleonaste exsolution can promote the generation of •OH and the consequent degradation of p-NP; the ilmenite exsolution has little effect on the decomposition of H2O2, but can increase the adsorption of p-NP on magnetite. Our results imply that natural magnetite is an efficient catalyst for the degradation of organic contaminants in nature. PMID:25958854

  8. Development of HUMASORB{trademark}, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    SciTech Connect

    Sanjay, H.G.; Srivastava, K.C.; Walia, D.S.

    1995-12-31

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project.

  9. Impact of air-borne or canopy-derived dissolved organic carbon (DOC) on forest soil solution DOC in Flanders, Belgium

    NASA Astrophysics Data System (ADS)

    Verstraeten, Arne; De Vos, Bruno; Neirynck, Johan; Roskams, Peter; Hens, Maarten

    2014-02-01

    Dissolved organic carbon (DOC) in the soil solution of forests originates from a number of biologically and/or biochemically mediated processes, including litter decomposition and leaching, soil organic matter mineralization, root exudation, mucilage and microbial activity. A variable amount of DOC reaches the forest floor through deposition, but limited information is available about its impact on soil solution DOC. In this study, trends and patterns of soil solution DOC were evaluated in relation to deposition of DOC over an 11-year period (2002-2012) at five ICP Forests intensive monitoring plots in Flanders, northern Belgium. Trend analysis over this period showed an increase of soil solution DOC concentrations for all observed depth intervals. Fluxes of DOC increased in the organic layer, but were nearly stable in the mineral soil. Annual leaching losses of DOC were higher in coniferous (55-61 kg C ha-1) compared to deciduous plots (19-30 kg C ha-1) but embody less than 0.05% of total 1-m soil organic C stocks. Temporal deposition patterns could not explain the increasing trends of soil solution DOC concentrations. Deposition fluxes of DOC were strongly correlated with soil solution fluxes of DOC, but their seasonal peaks were not simultaneous, which confirmed that air-borne or canopy-derived DOC has a limited impact on soil solution DOC.

  10. Application of compost for effective bioremediation of organic contaminants and pollutants in soil.

    PubMed

    Kästner, Matthias; Miltner, Anja

    2016-04-01

    Soils contaminated with hazardous chemicals worldwide are awaiting remediation activities; bioremediation is often considered as a cost-effective remediation approach. Potential bioapproaches are biostimulation, e.g. by addition of nutrients, fertiliser and organic substrates, and bioaugmentation by addition of compound-degrading microbes or of organic amendments containing active microorganisms, e.g. activated sludge or compost. In most contaminated soils, the abundance of the intrinsic metabolic potential is too low to be improved by biostimulation alone, since the physical and chemical conditions in these soils are not conducive to biodegradation. In the last few decades, compost or farmyard manure addition as well as composting with various organic supplements have been found to be very efficient for soil bioremediation. In the present minireview, we provide an overview of the composting and compost addition approaches as 'stimulants' of natural attenuation. Laboratory degradation experiments are often biased either by not considering the abiotic factors or by focusing solely on the elimination of the chemicals without taking the biotic factors and processes into account. Therefore, we first systemise the concepts of composting and compost addition, then summarise the relevant physical, chemical and biotic factors and mechanisms for improved contaminant degradation triggered by compost addition. These factors and mechanisms are of particular interest, since they are more relevant and easier to determine than the composition of the degrading community, which is also addressed in this review. Due to the mostly empirical knowledge and the nonstandardised biowaste or compost materials, the field use of these approaches is highly challenging, but also promising. Based on the huge metabolic diversity of microorganisms developing during the composting processes, a highly complex metabolic diversity is established as a 'metabolic memory' within developing and mature

  11. Transport of Organic Contaminants Mobilized from Coal through Sandstone Overlying a Geological Carbon Sequestration Reservoir

    SciTech Connect

    Zhong, Lirong; Cantrell, Kirk J.; Bacon, Diana H.; Shewell, Jesse L.

    2014-02-01

    Column experiments were conducted using a wetted sandstone rock installed in a tri-axial core holder to study the flow and transport of organic compounds mobilized by scCO2 under simulated geologic carbon storage (GCS) conditions. The sandstone rock was collected from a formation overlying a deep saline reservoir at a GCS demonstration site. Rock core effluent pressures were set at 0, 500, or 1000 psig and the core temperature was set at 20 or 50°C to simulate the transport to different subsurface depths. The concentrations of the organic compounds in the column effluent and their distribution within the sandstone core were monitored. Results indicate that the mobility though the core sample was much higher for BTEX compounds than for naphthalene. Retention of organic compounds from the vapor phase to the core appeared to be primarily controlled by partitioning from the vapor phase to the aqueous phase. Adsorption to the surfaces of the wetted sandstone was also significant for naphthalene. Reduced temperature and elevated pressure resulted in greater partitioning of the mobilized organic contaminants into the water phase.

  12. Identification of specific organic contaminants in different units of a chemical production site.

    PubMed

    Dsikowitzky, L; Botalova, O; al Sandouk-Lincke, N A; Schwarzbauer, J

    2014-07-01

    Due to the very limited number of studies dealing with the chemical composition of industrial wastewaters, many industrial organic contaminants still escape our view and consequently also our control. We present here the chemical characterization of wastewaters from different units of a chemical complex, thereby contributing to the characterization of industrial pollution sources. The chemicals produced in the investigated complex are widely and intensively used and the synthesis processes are common and applied worldwide. The chemical composition of untreated and treated wastewaters from the chemical complex was investigated by applying a non-target screening which allowed for the identification of 39 organic contaminants. According to their application most of them belonged to four groups: (i) unspecific educts or intermediates of industrial syntheses, (ii) chemicals for the manufacturing of pharmaceuticals, (iii) educts for the synthesis of polymers and resins, and (iv) compounds known as typical constituents of municipal sewage. A number of halogenated compounds with unknown toxicity and with very high molecular diversity belonged to the second group. Although these compounds were completely removed or degraded during wastewater treatment, they could be useful as "alarm indicators" for industrial accidents in pharmaceutical manufacturing units or for malfunctions of wastewater treatment plants. Three potential branch-specific indicators for polymer manufacturing were found in the outflow of the complex. Among all compounds, bisphenol A, which was present in the leachate water of the on-site waste deposit, occurred in the highest concentrations of up to 20 000 μg L(-1). The comparison of contaminant loads in the inflow and outflow of the on-site wastewater treatment facility showed that most contaminants were completely or at least significantly removed or degraded during the treatment, except two alkylthiols, which were enriched during the treatment process

  13. Distribution of potentially bioavailable natural organic carbon in aquifer sediments at a chloroethene-contaminated site

    USGS Publications Warehouse

    Thomas, L.K.; Widdowson, M.A.; Chapelle, F.H.; Novak, J.T.; Boncal, J.E.; Lebrón, C. A.

    2012-01-01

    The distribution of natural organic carbon was investigated at a chloroethene-contaminated site where complete reductive dechlorination of tetrachloroethene (PCE) to vinyl chloride and ethene was observed. In this study, operationally defined potentially bioavailable organic carbon (PBOC) was measured in surficial aquifer sediment samples collected at varying depths and locations in the vicinity of a dense nonaqueous phase liquid (DNAPL) source and aqueous phase plume. The relationship between chloroethene concentrations and PBOC levels was examined by comparing differences in extractable organic carbon in aquifer sediments with minimal chloroethene exposure relative to samples collected in the source zone. Using performance-monitoring data, direct correlations with PBOC were also developed with chloroethene concentrations in groundwater. Results show a logarithm-normal distribution for PBOC in aquifer sediments with a mean concentration of 187  mg/kg. PBOC levels in sediments obtained from the underlying confining unit were generally greater when compared to sediments collected in the sandy surficial aquifer. Results demonstrated a statistically significant inverse correlation (p=0.007) between PBOC levels in aquifer sediments and chloroethene concentrations for selected monitoring wells in which chloroethene exposure was the highest. Results from laboratory exposure assays also demonstrated that sediment samples exhibited a reduction in PBOC levels of 35% and 73%, respectively, after a 72-h exposure period to PCE (20,000  μg/L). These results support the notion that PBOC depletion in sediments may be expected in chloroethene-contaminated aquifers, which has potential implications for the long-term sustainability of monitored natural attenuation.

  14. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface

    NASA Astrophysics Data System (ADS)

    Lovley, Derek R.; Anderson, Robert T.

    Dissimilatory Fe(III)-reducing microorganisms have the ability to destroy organic contaminants under anaerobic conditions by oxidizing them to carbon dioxide. Some Fe(III)-reducing microorganisms can also reductively dechlorinate chlorinated contaminants. Fe(III)-reducing microorganisms can reduce a variety of contaminant metals and convert them from soluble forms to forms that are likely to be immobilized in the subsurface. Studies in petroleum-contaminated aquifers have demonstrated that Fe(III)-reducing microorganisms can be effective agents in removing aromatic hydrocarbons from groundwater under anaerobic conditions. Laboratory studies have demonstrated the potential for Fe(III)-reducing microorganisms to remove uranium from contaminated groundwaters. The activity of Fe(III)-reducing microorganisms can be stimulated in several ways to enhance organic contaminant oxidation and metal reduction. Molecular analyses in both field and laboratory studies have demonstrated that microorganisms of the genus Geobacter become dominant members of the microbial community when Fe(III)-reducing conditions develop as the result of organic contamination, or when Fe(III) reduction is artificially stimulated. These results suggest that further understanding of the ecophysiology of Geobacter species would aid in better prediction of the natural attenuation of organic contaminants under anaerobic conditions and in the design of strategies for the bioremediation of subsurface metal contamination. Des micro-organismes simulant la réduction du fer ont la capacité de détruire des polluants organiques dans des conditions anérobies en les oxydant en dioxyde de carbone. Certains micro-organismes réducteurs de fer peuvent aussi dé-chlorer par réduction des polluants chlorés. Des micro-organismes réducteurs de fer peuvent réduire tout un ensemble de métaux polluants et les faire passer de formes solubles à des formes qui sont susceptibles d'être immobilisées dans le milieu

  15. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface

    NASA Astrophysics Data System (ADS)

    Lovley, Derek R.; Anderson, Robert T.

    Dissimilatory Fe(III)-reducing microorganisms have the ability to destroy organic contaminants under anaerobic conditions by oxidizing them to carbon dioxide. Some Fe(III)-reducing microorganisms can also reductively dechlorinate chlorinated contaminants. Fe(III)-reducing microorganisms can reduce a variety of contaminant metals and convert them from soluble forms to forms that are likely to be immobilized in the subsurface. Studies in petroleum-contaminated aquifers have demonstrated that Fe(III)-reducing microorganisms can be effective agents in removing aromatic hydrocarbons from groundwater under anaerobic conditions. Laboratory studies have demonstrated the potential for Fe(III)-reducing microorganisms to remove uranium from contaminated groundwaters. The activity of Fe(III)-reducing microorganisms can be stimulated in several ways to enhance organic contaminant oxidation and metal reduction. Molecular analyses in both field and laboratory studies have demonstrated that microorganisms of the genus Geobacter become dominant members of the microbial community when Fe(III)-reducing conditions develop as the result of organic contamination, or when Fe(III) reduction is artificially stimulated. These results suggest that further understanding of the ecophysiology of Geobacter species would aid in better prediction of the natural attenuation of organic contaminants under anaerobic conditions and in the design of strategies for the bioremediation of subsurface metal contamination. Des micro-organismes simulant la réduction du fer ont la capacité de détruire des polluants organiques dans des conditions anérobies en les oxydant en dioxyde de carbone. Certains micro-organismes réducteurs de fer peuvent aussi dé-chlorer par réduction des polluants chlorés. Des micro-organismes réducteurs de fer peuvent réduire tout un ensemble de métaux polluants et les faire passer de formes solubles à des formes qui sont susceptibles d'être immobilisées dans le milieu

  16. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions.

    PubMed

    Ersan, Gamze; Kaya, Yasemin; Apul, Onur G; Karanfil, Tanju

    2016-09-15

    The effect of NOM preloading on the adsorption of phenanthrene (PNT) and trichloroethylene (TCE) by pristine graphene nanosheets (GNS) and graphene oxide nanosheet (GO) was investigated and compared with those of a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), and two coal based granular activated carbons (GACs). PNT uptake was higher than TCE by all adsorbents on both mass and surface area bases. This was attributed to the hydrophobicity of PNT. The adsorption capacities of PNT and TCE depend on the accessibility of the organic molecules to the inner regions of the adsorbent which was influenced from the molecular size of OCs. The adsorption capacities of all adsorbents decreased as a result of NOM preloading due to site competition and/or pore/interstice blockage. However, among all adsorbents, GO was generally effected least from the NOM preloading for PNT, whereas there was not observed any trend of NOM competition with a specific adsorbent for TCE. In addition, SWCNT was generally affected most from the NOM preloading for TCE and there was not any trend for PNT. The overall results indicated that the fate and transport of organic contaminants by GNSs and CNTs type of nanoadsorbents and GACs in different natural systems will be affected by water quality parameters, characteristics of adsorbent, and properties of adsorbate. PMID:27107611

  17. Approaches to mitigate the impact of dissolved organic matter on the adsorption of synthetic organic contaminants by porous carbonaceous sorbents

    SciTech Connect

    Yanping Guo; Abhishek Yadav; Tanju Karanfil

    2007-11-15

    Adsorption of trichloroethylene (TCE) and atrazine, two synthetic organic contaminants (SOCs) having different optimum adsorption pore regions, by four activated carbons and an activated carbon fiber (ACF) was examined. Adsorbents included two coconut-shell based granular activated carbons (GACs), two coal-based GACs (F400 and HD4000) and a phenol formaldehyde-based activated carbon fiber. The selected adsorbents had a wide range of pore size distributions but similar surface acidity and hydrophobicity. Single solute and preloading (with a dissolved organic matter (DOM)) isotherms were performed. Single solute adsorption results showed that (i) the adsorbents having higher amounts of pores with sizes about the dimensions of the adsorbate molecules exhibited higher uptakes, (ii) there were some pore structure characteristics, which were not completely captured by pore size distribution analysis, that also affected the adsorption, and (iii) the BET surface area and total pore volume were not the primary factors controlling the adsorption of SOCs. The preloading isotherm results showed that for TCE adsorbing primarily in pores <10 {angstrom}, the highly microporous ACF and GACs, acting like molecular sieves, exhibited the highest uptakes. For atrazine with an optimum adsorption pore region of 10-20 {angstrom}, which overlaps with the adsorption region of some DOM components, the GACs with a broad pore size distribution and high pore volumes in the 10-20 {angstrom} region had the least impact of DOM on the adsorption. 25 refs., 3 figs., 3 tabs.

  18. Long-term effects of dredging operations program: Assessing bioaccumulation in aquatic organisms exposed to contaminated sediments. Final report

    SciTech Connect

    Clarke, J.U.; McFarland, V.A.

    1991-07-01

    This paper synthesizes previous work on bioaccumulation to provide a working document for the environmental impact on the aquatic environment due to bioaccumulation of sediment contaminants resulting from dredging operations and dredged material placement. Emphasis is placed on explanation of basic concepts concerning, and factors influencing, sediment contaminant bioaccumulation and bioavailability. The paper presents several numerical methods for assessing bioaccumulation, including a simple method for estimating theoretical bioaccumulation potential (TBP) from sediment chemistry for neutral organic chemicals. Methods are also given for projecting contaminant concentrations in organism tissues when steady state is achieved, based on laboratory or field exposures to contaminated sediments. These assessments are presented in the context of the US Environmental Protection Agency's tiered testing approach for dredged material evaluation. The various numerical methods for bioaccumulation assessment are illustrated and compared using step-by-step example calculations with hypothetical and actual data.

  19. Triple sorbent thermal desorption/gas chromatography/mass spectrometry determination of vapor phase organic contaminants

    SciTech Connect

    Ma, C.Y.; Skeen, J.T.; Dindal, A.B.; Higgins, C.E.; Jenkins, R.A.

    1994-05-01

    A thermal desorption/ps chromatography/mass spectrometry (TD/GC/MS) has been evaluated for the determination of volatile organic compounds (VOCS) in vapor phase samples using Carbosieve S-III/Carbotrap/Carotrap C triple sorbent traps (TST) similar to those available from a commercial source. The analysis was carried out with a Hewlett-Packard 5985A or 5995 GC/MS system with a modified injector to adapt an inhouse manufactured short-path desorber for transferring desorbate directly onto a cryofocusing loop for subsequent GC/MS analysis. Vapor phase standards generated from twenty six compounds were used for method validation, including alkanes, alkyl alcohols, alkyl ketones, and alkyl nitrites, a group of representative compounds that have previously been identified in a target airborne matrix. The method was validated based on the satisfactory results in terms of reproducibility, recovery rate, stability, and linearity. A relative, standard deviation of 0.55 to 24.3 % was obtained for the entire TD process (generation of gas phase standards, spiking the standards on and desorbing from TST) over a concentration range of 20 to 500 ng/trap. Linear correlation coefficients for the calibration curves as determined ranged from 0.81 to 0.99 and limits of detection ranged from 3 to 76 ng. For a majority of standards, recoveries of greater than 90% were observed. For three selected standards spiked on TSTS, minimal loss (10 to 22%) was observed after storing the spiked in, a 4{degree}C refrigerator for 29 days. The only chromatographable artifact observed was a 5% conversion of isopropanol to acetone. The validated method been successfully applied, to the determination of VOCs collected from various emission sources in a diversified concentration range.

  20. Removal efficiency of organic contaminants on Si wafer by dry cleaning using UV/O 3 and ECR plasma

    NASA Astrophysics Data System (ADS)

    Choi, K.; Ghosh, S.; Lim, J.; Lee, C. M.

    2003-02-01

    The removal efficiency of the organic contaminants existing on the surface of silicon wafers by a dry cleaning method using UV/O 3 and ECR plasma is discussed in this paper. After cleaning, Si wafers are characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscropy (AFM). In UV/O 3 cleaning, the exposure time to reach the detection limit for organic contaminants in ATR-FTIR is about 10 min and the RMS surface roughness reduces with increasing exposure time. In ECR hydrogen plasma cleaning, the RMS surface roughness reduces significantly with increasing the exposure time but the removal of organic contaminants from the silicon wafer is not very effective. In ECR oxygen plasma cleaning, the exposure times to reach both the detection limit and the lowest RMS roughness are 40 and 10 s, respectively, and the optimum exposure time is suggested to be 30-40 s, considering both the effects of cleaning and surface roughening. Therefore, dry cleaning using ECR oxygen plasma seems to be more effective than that using ECR hydrogen plasma or the UV/O 3 cleaning for the removal of organic contaminants. Also, the removal mechanisms of the organic contaminants in UV/O 3 and ECR plasma cleanings are discussed in detail.

  1. Hepatotoxicity and nephrotoxicity of organic contaminants in wastewater-irrigated soil.

    PubMed

    Gao, Hongxia; Liu, Yingli; Guan, Weijun; Li, Qingzhao; Liu, Nan; Gao, Zhenjie; Fan, Jianjun

    2015-03-01

    The objective of this study is to investigate the hepatotoxicity and nephrotoxicity of organic contaminants in wastewater-irrigated soil using in vivo and in vitro experiments on mice and rat. Soil samples were collected from a wastewater-irrigated area and groundwater-irrigated area, i.e. clean water-irrigated area as control group. The organic contaminants were extracted using an ultrasonic oscillator. In vivo experiment was performed by contamination of hepatocytes of rat using the organic extract, and comet assay was used to analyse the DNA damage of hepatocytes. For in vitro experiment, mice were first gavaged with extracts, and then the indicators for kidney functions, liver functions and oxidative damage of tissues were investigated. The result shows, for in vitro experiments, compared with clean water-irrigated area groups, the average DNA tailing length for the wastewater-irrigated area group is larger, and for the wastewater-irrigated area groups with extract concentration 0.6 g/ml and 0.9 g/ml, the tailing rate increases significantly (P < 0.05). For in vivo experiments, the change of weight across each group shows no significant difference (P < 0.05). Compared with clean water-irrigated groups, the liver indices have decreased for all groups of the wastewater-irrigated area, while both kidney and liver indices decreased for wastewater-irrigated area high-dose group (P < 0.05 or P < 0.01). The total proteins for wastewater-irrigated low-dose group and Gamma-glutamyl transpeptidase, creatinine for high-dose group all increased (P < 0.01). Compared with the reagent control group, total superoxide dismutase activity of liver for wastewater-irrigated groups and glutathione peroxidase activity for high-dose group, malondialdehyde content all decreased (P < 0.05 or P < 0.01); glutathione peroxidase activity of kidney tissue for wastewater-irrigated high-dose group decreased (P < 0.01). The result shows that the joint toxicity in

  2. Predicting the cropland soil organic carbon (SOC) distribution on a regional scale using airborne spectroscopy and topographic features

    NASA Astrophysics Data System (ADS)

    Doetterl, S.; Stevens, S.; Van Wesemael, B.; Quine, T. A.; Van Oost, K.

    2012-04-01

    The effects of soil redistribution on the carbon cycle have recently been receiving growing attention. In eroding agricultural landscapes, carbon gets transported from erosional to depositional landscape features forming a heterogeneous pattern in quantity and quality of the distributed carbon. At present, methods and research to characterize this horizontal (across the earth surface) and vertical (with depth) variability are focused on local slope scales. Approaches linking detailed local assessments to larger scales are limited. This significantly hampers our ability to understand the impact of soil redistribution processes on the global C cycle that occur at larger spatial and temporal scales. Here, we present a method to predict the SOC distribution on a regional scale for high-input cropping systems using a combination of airborne spectroscopy, GIS-based analysis of a digital elevation model (DEM) and calibration with empirical data. For a North/South transect in Luxembourg, spatial modeling is used to integrate soil surface SOC data from airborne image spectroscopy (2m resolution), vertical SOC gradients from high resolution (0.10m) soil sampling and derivates of a high-res elevation model (5m resolution). This allows the prediction of the 3D distribution of cropland soil C to be interpolated over an area of c. 150 km2 in Luxemburg which is characterized by intensive agricultural land use, a high variability in soils and a complex topography. The model is able to predict patterns of C stock distribution for cropland on a regional scale using simple hydrologic and geomorphologic parameters and provides new insights into the spatial heterogeneity of soil carbon storage covering a large area. Eroding positions have a sharper decline of carbon content with depth than stable and especially depositional sites, which in contrast store high amounts of carbon in greater depths. Relative root mean square errors range between 23-49 % and the model is in good agreement

  3. Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations.

    PubMed

    Elsner, Martin

    2010-11-01

    Gas chromatography-isotope ratio mass spectrometry (GC-IRMS) has made it possible to analyze natural stable isotope ratios (e.g., (13)C/(12)C, (15)N/(14)N, (2)H/(1)H) of individual organic contaminants in environmental samples. They may be used as fingerprints to infer contamination sources, and may demonstrate, and even quantify, the occurrence of natural contaminant transformation by the enrichment of heavy isotopes that arises from degradation-induced isotope fractionation. This review highlights an additional powerful feature of stable isotope fractionation: the study of environmental transformation mechanisms. Isotope effects reflect the energy difference of isotopologues (i.e., molecules carrying a light versus a heavy isotope in a particular molecular position) when moving from reactant to transition state. Measuring isotope fractionation, therefore, essentially allows a glimpse at transition states! It is shown how such position-specific isotope effects are "diluted out" in the compound average measured by GC-IRMS, and how a careful evaluation in mechanistic scenarios and by dual isotope plots can recover the underlying mechanistic information. The mathematical framework for multistep isotope fractionation in environmental transformations is reviewed. Case studies demonstrate how isotope fractionation changes in the presence of mass transfer, enzymatic commitment to catalysis, multiple chemical reaction steps or limited bioavailability, and how this gives information about the individual process steps. Finally, it is discussed how isotope ratios of individual products evolve in sequential or parallel transformations, and what mechanistic insight they contain. A concluding session gives an outlook on current developments, future research directions and the potential for bridging the gap between laboratory and real world systems. PMID:21038038

  4. Soil-gas contamination and entry of volatile organic compounds into a house near a landfill

    SciTech Connect

    Hodgson, A.T.; Garbesi, K.; Sextro, R.G.; Daisey, J.M. )

    1992-03-01

    Toxic volatile organic compounds (VOC) are commonly found in landfills, including those accepting only municipal waste. These VOC can migrate away from the site through the soil and result in contaminated off-site soil gas. This contaminated soil gas can enter houses built near landfills and is a potential source of human exposure to VOC. This study investigated soil-gas contamination and the mechanisms of entry of VOC into a house with a basement sited adjacent to a municipal landfill. The VOC were identified and quantified in the soil gas and in indoor and outdoor air. Pressure coupling between the basement and the surrounding soil was measured. Using soil-gas tracers, the pressure-driven advective entry of soil gas was quantified as a function of basement depressurization. From the measurements, estimates were made for the diffusive and advective entry rates of VOC into the house. A comparison of the chlorinated hydrocarbons found in soil gas at the site and in the landfill suggests that the landfill is the source of the halogenated compounds in the vicinity of the house. At the conditions of the study, the diffusive and advective entry rates of VOC from soil into the basement were estimated to be low and of similar magnitude. Advective entry of soil gas into the house was limited by the low soil air permeability and the low below-grade leakage area of the basement. For this reason, high indoor concentrations due to the intrusion of VOC from soil gas are unlikely at this house, even under conditions that would produce relatively large underpressures in the basement.

  5. Impact of urbanization on the concentrations and distribution of organic contaminants in boreal lake sediments.

    PubMed

    Honkonen, Olga; Rantalainen, Anna-Lea

    2013-02-01

    The main goal of this study was to evaluate the impacts of a middle-sized Finnish urban area on the quality of sediments in an adjacent boreal lake. We investigated the sources and distribution of organic pollutants (polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)) in the sediments from urban stormwater traps and from Lake Vesijärvi. Grab surface sediment samples were taken from Lake Vesijärvi at various distances (25-2,000 m) from four major stormwater drainage outlets and at 15 urban stormwater traps in areas with different degrees of urbanization. These samples were analysed for 16 PAHs and 28 PCBs with gas chromatography-mass spectrometry. The concentrations of pollutants in the lake sediments were elevated in the vicinity of the urban shore (∑PAH 3-16, ∑PCB up to 0.02-0.3 mg/kg dw) and decreased as a function of distance (∑PAH 0.1-2.5, ∑PCB 0.01-0.3 mg/kg dw at a distance of more than 500 m from the shore), whereas contamination levels in suburban areas were notably lower (∑PAH 0.1-3, ∑PCB < LOQ-0.03 mg/kg dw; did not decline with distance). Possible sources and pathways of contamination were also investigated. The majority of stormwater trap sediments contained predominantly asphalt-derived PAHs due to pulverized pavement. PAHs in lake sediments were of pyrogenic origin, including the combustion of gasoline, diesel and coal. Suggested pathways of lake contamination are urban runoff discharge, boat traffic and atmospheric deposition. PMID:22527470

  6. Chlorinated and brominated organic contaminants in fish from Shanghai markets: a case study of human exposure.

    PubMed

    Qiu, Yanling; Strid, Anna; Bignert, Anders; Zhu, Zhiliang; Zhao, Jianfu; Athanasiadou, Maria; Athanassiadis, Ioannis; Bergman, Åke

    2012-10-01

    In the present study were two favorite edible fish species for local residents, i.e., mandarin fish and crawfish, collected from the Shanghai market and analyzed for selected organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), hexabromocyclododecane (HBCDD), polybrominated diphenyl ethers (PBDEs) and methoxylated PBDEs (MeO-PBDEs). Efforts were also made to identify the potential sources of these contaminants. Comparable concentrations of hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs) and HBCDD were found in muscle tissue of mandarin fish from Guangdong (GDF), the Pearl River Delta and from Taihu Lake (TLF), the Yangtze River Delta. Levels of chlordanes, PCBs and PBDEs were about one magnitude lower in TLF compared to GDF. The concentrations of OCPs in the butter-like gland of the crawfish (CFB) were 2-5 times of those in the crawfish muscle (CFM) while concentrations of PCBs, PBDEs and MeO-PBDEs were comparable. The different patterns and levels of chlorinated and brominated organohalogen contaminants seen in mandarin fish from GDF and TLF indicates that different types of chemicals might be used in the two delta regions. The present study also shows a good correlation between the concentrations of hexachlorobenzene (HCB) and pentachloroanisol (PCA) in fish for the first time. Fish consumption limits based on chemical contaminants with non-carcinogenic effects were calculated. The estimated maximum daily consumption limit for GDF, TLF, CFM and CFB were 1.5, 2.6, 3.7 and 0.08 kg, respectively, indicating no significant risk regarding the persistent organic pollutants measured in the present study. PMID:22749935

  7. Mutagenicity and polycyclic aromatic hydrocarbons associated with extractable organic matter from airborne particles ⩽10 μm in southwest Mexico City

    NASA Astrophysics Data System (ADS)

    Villalobos-Pietrini, Rafael; Amador-Muñoz, Omar; Waliszewski, Stefan; Hernández-Mena, Leonel; Munive-Colín, Zenaida; Gómez-Arroyo, Sandra; Bravo-Cabrera, José Luis; Frías-Villegas, Alejandro

    A year-long sampling and analysis of 24 h airborne particles equal to or less than 10 μm (PM 10) was conducted in Southwest (SW) Mexico City in 1998. The amount of airborne PM 10 and its extractable organic matter (EOM) were highly correlated. The year 1998 was particularly dry with many fires, and higher values of PM 10 and EOM were obtained in the fire period (February-May) compared to the without fire period (January, June-December). The indirect-acting mutagenicity ( Salmonella typhimurium strain TA98 with mammalian metabolic activation, S9) did not correlate with the monthly concentrations of PM 10 and EOM, while the direct-acting mutagenicity (strains TA98 and YG1021, without mammalian metabolic activation) did correlate. The highest monthly mutagenic potency of TA98+S9 and of TA98-S9 were registered in May which correspond to the fire period, while for YG1021 the highest was in December, a without fire month. The highest TA98+S9/TA98-S9 ratios appeared from April to September (with the exception of June), indicating that emission of the direct mutagens occurred in the rest of the year (the coldest months), and December showed the highest mutagenicity of YG1021. The correlation of this mutagenicity with the number of ground-based inversions indicated a greater emissions of nitroarenes in the coldest months emitted mainly by vehicular traffic as shown by the correlation between YG1021 with CO and with NO 2. We did not find a correlation in the EOM of the complex mixtures between TA98+S9 and the total concentration of polycyclic aromatic hydrocarbons (PAH) nor between TA98+S9 and specific PAH. The analysis by gas chromatography/mass spectrometry indicated the presence of retene, a PAH found in the fire period and considered a softwood burning marker. The concentrations of fluoranthene and benz[ a]anthracene correlated with that of retene and with the burned area; they were the only PAH that presented significant differences between the periods with fire and

  8. Contaminant transport in dual-porosity media with dissolved organic matter and bacteria present as mobile colloids.

    PubMed

    Kim, Song-Bae; Corapcioglu, M Yavuz

    2002-12-01

    In riverbank filtration, contaminant transport is affected by colloidal particles such as dissolved organic matter (DOM) and bacterial particles. In addition, the subsurface heterogeneity influences the behavior of contaminant transport in riverbank filtration. A mathematical model is developed to describe the contaminant transport in dual-porosity media in the presence of DOM and bacteria as mobile colloids. In the model development, a porous medium is divided into the mobile and immobile regions to consider the presence of ineffective micropores in physically heterogeneous riverbanks. We assume that the contaminant transport in the mobile region is controlled by the advection and dispersion while the contaminant transport in the immobile region occurs due to the molecular diffusion. The contaminant transfer between the mobile and immobile regions takes place by diffusive mass transfer. The mobile region is conceptualized as a four-phase system: two mobile colloidal phases, an aqueous phase, and a solid matrix. The complete set of governing equations is solved numerically with a fully implicit finite difference method. The model results show that in riverbank filtration, the contaminant can migrate further than expected due to the presence of DOM and bacteria. In addition, the contaminant mobility increases further in the presence of the immobile region in aquifers. A sensitivity analysis shows that in dual-porosity media, earlier breakthrough of the contaminant takes place as the volumetric fraction of the mobile region decreases. It is also demonstrated that as the contaminant mass transfer rate coefficient between the mobile and immobile regions increases, the contaminant concentration gradient between the two regions reverses at earlier pore volumes. The contaminant mass transfer coefficient between the mobile and immobile regions mainly controls the tailing effect of the contaminant breakthrough. The contaminant breakthrough curves are sensitive to changes in

  9. Organic amendments increase phylogenetic diversity of arbuscular mycorrhizal fungi in acid soil contaminated by trace elements.

    PubMed

    Montiel-Rozas, María Del Mar; López-García, Álvaro; Kjøller, Rasmus; Madejón, Engracia; Rosendahl, Søren

    2016-08-01

    In 1998, a toxic mine spill polluted a 55-km(2) area in a basin southward to Doñana National Park (Spain). Subsequent attempts to restore those trace element-contaminated soils have involved physical, chemical, or biological methodologies. In this study, the restoration approach included application of different types and doses of organic amendments: biosolid compost (BC) and leonardite (LEO). Twelve years after the last addition, molecular analyses of arbuscular mycorrhizal (AM) fungal communities associated with target plants (Lamarckia aurea and Chrysanthemum coronarium) as well as analyses of trace element concentrations both in soil and in plants were performed. The results showed an improved soil quality reflected by an increase in soil pH and a decrease in trace element availability as a result of the amendments and dosages. Additionally, the phylogenetic diversity of the AM fungal community increased, reaching the maximum diversity at the highest dose of BC. Trace element concentration was considered the predominant soil factor determining the AM fungal community composition. Thereby, the studied AM fungal community reflects a community adapted to different levels of contamination as a result of the amendments. The study highlights the long-term effect of the amendments in stabilizing the soil system. PMID:27072359

  10. Effects of organic carbon supply rates on mobility of previously bioreduced uranium in a contaminated sediment

    SciTech Connect

    Wan, J.; Tokunaga, T.K.; Kim, Y.; Brodie, E.; Daly, R.; Hazen, T.C.; Firestone, M.K.

    2008-05-15

    Bioreduction-based strategies for remediating uranium (U)-contaminated sediments face the challenge of maintaining the reduced status of U for long times. Because groundwater influxes continuously bring in oxidizing terminal electron acceptors (O{sub 2}, NO{sub 3}{sup -}), it is necessary to continue supplying organic carbon (OC) to maintain the reducing environment after U bioreduction is achieved. We tested the influence of OC supply rates on mobility of previously microbial reduced uranium U(IV) in contaminated sediments. We found that high degrees of U mobilization occurred when OC supply rates were high, and when the sediment still contained abundant Fe(III). Although 900 days with low levels of OC supply minimized U mobilization, the sediment redox potential increased with time as did extractable U(VI) fractions. Molecular analyses of total microbial activity demonstrated a positive correlation with OC supply and analyses of Geobacteraceae activity (RT-qPCR of 16S rRNA) indicated continued activity even when the effluent Fe(II) became undetectable. These data support our earlier hypothesis on the mechanism responsible for re-oxidation of microbial reduced U(IV) under reducing conditions; that microbial respiration caused increased (bi)carbonate concentrations and formation of stable uranyl carbonate complexes, thereby shifted U(IV)/U(VI) equilibrium to more reducing potentials. The data also suggested that low OC concentrations could not sustain the reducing condition of the sediment for much longer time.

  11. Medical costs and lost productivity from health conditions at volatile organic compound-contaminated Superfund sites

    SciTech Connect

    Lybarger, J.A.; Spengler, R.F.; Brown, D.R.; Lee, R.; Vogt, D.P. |; Perhac, R.M. Jr. |

    1998-10-01

    This paper estimates the health costs at Superfund sites for conditions associated with volatile organic compounds (VOCs) in drinking water. Health conditions were identified from published literature and registry information as occurring at excess rates in VOC-exposed populations. These health conditions were: (1) some categories of birth defects, (2) urinary tract disorders, (3) diabetes, (4) eczema and skin conditions, (5) anemia, (6) speech and hearing impairments in children under 10 years of age, and (7) stroke. Excess rates were used to estimate the excess number of cases occurring among the total population living within one-half mile of 258 Superfund sites. These sites had evidence of completed human exposure pathways for VOCs in drinking water. For each type of medical condition, an individual`s expected medical costs, long-term care costs, and lost work time due to illness or premature mortality were estimated. Costs were calculated to be approximately $330 million per year, in the absence of any remediation or public health intervention programs. The results indicate the general magnitude of the economic burden associated with a limited number of contaminants at a portion of all Superfund sites, thus suggesting that the burden would be greater than that estimated in this study if all contaminants at all Superfund sites could be taken into account.

  12. Stabilization of Rocky Flats combustible residues contaminated with plutonium metal and organic solvents

    SciTech Connect

    Bowen, S.M.; Cisneros, M.R.; Jacobson, L.L.; Schroeder, N.C.; Ames, R.L.

    1998-09-30

    This report describes tests on a proposed flowsheet designed to stabilize combustible residues that were generated at the Rocky Flats Environmental Technology Site (RFETS) during the machining of plutonium metal. Combustible residues are essentially laboratory trash contaminated with halogenated organic solvents and plutonium metal. The proposed flowsheet, designed by RFETS, follows a glovebox procedure that includes (1) the sorting and shredding of materials, (2) a low temperature thermal desorption of solvents from the combustible materials, (3) an oxidation of plutonium metal with steam, and (4) packaging of the stabilized residues. The role of Los Alamos National Laboratory (LANL) in this study was to determine parameters for the low temperature thermal desorption and steam oxidation steps. Thermal desorption of carbon tetrachloride (CCl{sub 4}) was examined using a heated air stream on a Rocky Flats combustible residue surrogate contaminated with CCl{sub 4}. Three types of plutonium metal were oxidized with steam in a LANL glovebox to determine the effectiveness of this procedure for residue stabilization. The results from these LANL experiments are used to recommend parameters for the proposed RFETS stabilization flowsheet.

  13. Carbon and hydrogen isotope effects during sorption of organic contaminants on carbonaceous materials.

    PubMed

    Schüth, Christoph; Taubald, Heinrich; Bolaño, Nerea; Maciejczyk, Kirsten

    2003-07-01

    Stable carbon and hydrogen isotopes can be an efficient means to validate biodegradation of organic contaminants in groundwater since it results in an isotopic fractionation. A prerequisite in applying this method in the field is the proof that other processes decreasing the contaminant concentration are conservative with respect to isotope effects. In this paper we show for carbon isotopes of halogenated hydrocarbon compounds [trichloroethene (TCE), cis-dichloroethene (c-DCE), vinylchloride (VC)] and carbon and hydrogen isotopes of BTEX compounds (benzene, toluene, p-xylene) that no significant fractionation occurs during equilibrium sorption onto activated carbon, lignite coke and lignite. In general, effects were in the range of the reproducibility limit of the analytical instrument (0.5 per thousand for delta13C, and 8 per thousand for delta2H). This observation was made for fractions sorbed of less than 5% to more than 95%. Also for rate-limited sorption of TCE onto activated carbon, no significant fractionation in carbon isotopes could be observed. These findings support the assumption that for these classes of compounds, sorption processes in aquifer systems are conservative with respect to isotope effects. PMID:12814884

  14. The aquatic vascular plant Ruppia maritima as an indicator organism for contaminated sediments

    SciTech Connect

    Tagliabue, M.D.; Thursby, G.B.; Walker, H.A.; Johnston, R.K.

    1995-12-31

    An ongoing estuarine ecological risk assessment case study for the Portsmouth Naval Shipyard in the Great Bay Estuary (New Hampshire, Maine) was the catalyst to continue development a rooted aquatic plant sediment toxicity test. Laboratory studies were conducted to evaluate effects of lead, the primary site contaminant on R. maritima in the Great Bay. Although the aquatic vascular plant Zostra marina comprises up to 46% of the Great Bay subtidal habitat, R. maritima`s much smaller size makes it a more practical laboratory organism. Effects on Ruppia may offer useful insights into potential effects on Zostra or other aquatic vascular plants. Presently rooted vascular plants are not found in Clark Cove located adjacent to a landfill disposal site on the shipyard. The absence of rooted vegetation can be contributed to, physical parameters of the site (turbidity, grain size, texture) or chemical parameters (heavy metal/Pb contamination, redox potential). Exposure of bedded and nonbedded plants occurred over a four day and ten day period using lead sulfate. Concentrations for bedded exposures were as follows, 0.3, 0.5, 0.8, 1.0 simultaneously extracted metal/acid volatile sulfide (SEM/AVS) molar ratios, and 0.1, 1.0, 10.0 and 100.0mg/l Pb for water only exposures. Reduction in cumulative leaf growth was observed for the Clark Cove sediments as well as the spiked sediments as compared to reference sediments.

  15. Experimental investigations of the entrapment and persistence of organic liquid contaminants in the subsurface environment.

    PubMed Central

    Abriola, L M; Bradford, S A

    1998-01-01

    Organic liquids are common polluters of the subsurface environment. Once released, these nonaqueous phase liquids (NAPLs) tend to become entrapped within soils and geologic formations where they may serve as long-term contaminant reservoirs. The interphase mass transfer from such entrapped residuals will ultimately control environmental exposure levels as well as the persistence and/or remedial recovery of these contaminants in the subsurface. This paper summarizes National Institute of Environmental Health Sciences-sponsored research designed to investigate and quantify NAPL entrapment and interphase mass transfer in natural porous media. Results of soil column and batch experiments are presented that highlight research findings over the past several years. These experiments explore dissolution and volatilization of hydrocarbons and chlorinated solvents in sandy porous media. Initial concentration levels and long-term recovery rates are shown to depend on fluid flow rate, soil structure, NAPL composition, and soil wetting characteristics. These observations are explained in the context of conceptual models that describe entrapped NAPL morphology and boundary layer transport. The implications of these laboratory findings on the subsurface persistence and recovery of entrapped NAPLs are discussed. Images Figure 1 Figure 3 Figure 9 PMID:9703497

  16. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States - I) Groundwater

    USGS Publications Warehouse

    Barnes, K.K.; Kolpin, D.W.; Furlong, E.T.; Zaugg, S.D.; Meyer, M.T.; Barber, L.B.

    2008-01-01

    As part of the continuing effort to collect baseline information on the environmental occurrence of pharmaceuticals, and other organic wastewater contaminants (OWCs) in the Nation's water resources, water samples were collected from a network of 47 groundwater sites across 18 states in 2000. All samples collected were analyzed for 65 OWCs representing a wide variety of uses and origins. Site selection focused on areas suspected to be susceptible to contamination from either animal or human wastewaters (i.e. down gradient of a landfill, unsewered residential development, or animal feedlot). Thus, sites sampled were not necessarily used as a source of drinking water but provide a variety of geohydrologic environments with potential sources of OWCs. OWCs were detected in 81% of the sites sampled, with 35 of the 65 OWCs being found at least once. The most frequently detected compounds include N,N-diethyltoluamide (35%, insect repellant), bisphenol A (30%, plasticizer), tri(2-chloroethyl) phosphate (30%, fire retardant), sulfamethoxazole (23%, veterinary and human antibiotic), and 4-octylphenol monoethoxylate (19%, detergent metabolite). Although sampling procedures were intended to ensure that all groundwater samples analyzed were indicative of aquifer conditions it is possible that detections of some OWCs could have resulted from leaching of well-construction materials and/or other site-specific conditions related to well construction and materials. Future research will be needed to identify those factors that are most important in determining the occurrence and concentrations of OWCs in groundwater.

  17. Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation.

    PubMed

    Gerrity, Daniel; Gamage, Sujanie; Jones, Darryl; Korshin, Gregory V; Lee, Yunho; Pisarenko, Aleksey; Trenholm, Rebecca A; von Gunten, Urs; Wert, Eric C; Snyder, Shane A

    2012-12-01

    The performance of ozonation in wastewater depends on water quality and the ability to form hydroxyl radicals (·OH) to meet disinfection or contaminant transformation objectives. Since there are no on-line methods to assess ozone and ·OH exposure in wastewater, many agencies are now embracing indicator frameworks and surrogate monitoring for regulatory compliance. Two of the most promising surrogate parameters for ozone-based treatment of secondary and tertiary wastewater effluents are differential UV(254) absorbance (ΔUV(254)) and total fluorescence (ΔTF). In the current study, empirical correlations for ΔUV(254) and ΔTF were developed for the oxidation of 18 trace organic contaminants (TOrCs), including 1,4-dioxane, atenolol, atrazine, bisphenol A, carbamazepine, diclofenac, gemfibrozil, ibuprofen, meprobamate, naproxen, N,N-diethyl-meta-toluamide (DEET), para-chlorobenzoic acid (pCBA), phenytoin, primidone, sulfamethoxazole, triclosan, trimethoprim, and tris-(2-chloroethyl)-phosphate (TCEP) (R(2) = 0.50-0.83) and the inactivation of three microbial surrogates, including Escherichia coli, MS2, and Bacillus subtilis spores (R(2) = 0.46-0.78). Nine wastewaters were tested in laboratory systems, and eight wastewaters were evaluated at pilot- and full-scale. A predictive model for OH exposure based on ΔUV(254) or ΔTF was also proposed. PMID:23062789

  18. In vitro cytogenetic studies of organic chemicals found as contaminants in spacecraft cabin atmospheres

    NASA Technical Reports Server (NTRS)

    Torres, J.

    1986-01-01

    Astronauts can be exposed during spaceflight to organic chemical contaminants in the spacecraft cabin atmosphere. Toxic exposures may cause lesions in the cellular DNA which are subsequently expressed as sister-chromatid exchanges (SCE). Analysis of SCE is a sensitive short-term assay technique to detect and quantitate exposures to DNA-damaging (mutagenic) substances. The increase in SCE incidence over baseline (control) levels is generally proportional to the concentration of the mutagen and to the duration of exposure. Dichloromethane (methylene chloride) was chosen for this study since it occurred as an atmospheric contaminant in ten of the first 12 STS flights, and has been reported to have toxic and mutagenic effects in various test systems. Glutaraldehyde was chosen because relatively few data are available on the toxicity or mutagenicity of this common biological fixative, which is carried on STS flights for use in biological experiments. The BHK-21 baby hamster kidney cell line was the in vitro test system used in this study. Neither dichloromethane (10 ppm to 500 ppm) nor glutaraldehyde (1 ppm to 10 ppm) increased SCE levels following 20-hour exposure of BHK-21 cells to the test chemicals.

  19. Chemical and toxicologic assessment of organic contaminants in surface water using passive samplers

    USGS Publications Warehouse

    Alvarez, D.A.; Cranor, W.L.; Perkins, S.D.; Clark, R.C.; Smith, S.B.

    2008-01-01

    Passive sampling methodologies were used to conduct a chemical and toxicologic assessment of organic contaminants in the surface waters of three geographically distinct agricultural watersheds. A selection of current-use agrochemicals and persistent organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides, were targeted using the polar organic chemical integrative sampler (POCIS) and the semipermeable membrane device passive samplers. In addition to the chemical analysis, the Microtox assay for acute toxicity and the yeast estrogen screen (YES) were conducted as potential assessment tools in combination with the passive samplers. During the spring of 2004, the passive samplers were deployed for 29 to 65 d at Leary Weber Ditch, IN; Morgan Creek, MD; and DR2 Drain, WA. Chemical analysis of the sampler extracts identified the agrochemicals predominantly used in those areas, including atrazine, simazine, acetochlor, and metolachlor. Other chemicals identified included deethylatrazine and deisopropylatr