Science.gov

Sample records for airborne particle abraded

  1. Hollow sphere ceramic particles for abradable coatings

    SciTech Connect

    Longo, F.N.; Bader, N.F. III; Dorfman, M.R.

    1984-05-22

    A hollow sphere ceramic flame spray powder is disclosed. The desired constituents are first formed into agglomerated particles in a spray drier. Then the agglomerated particles are introduced into a plasma flame which is adjusted so that the particles collected are substantially hollow. The hollow sphere ceramic particles are suitable for flame spraying a porous and abradable coating. The hollow particles may be selected from the group consisting of zirconium oxide and magnesium zirconate.

  2. Weathering of a carbon nanotube/epoxy nanocomposite under UV light and in water bath: impact on abraded particles

    NASA Astrophysics Data System (ADS)

    Schlagenhauf, Lukas; Kianfar, Bahareh; Buerki-Thurnherr, Tina; Kuo, Yu-Ying; Wichser, Adrian; Nüesch, Frank; Wick, Peter; Wang, Jing

    2015-11-01

    Weathering processes can influence the surface properties of composites with incorporated nanoparticles. These changes may affect the release behavior of nanoparticles when an abrasion process is applied. Therefore, the influence of two different weathering processes, immersion in water and exposure to UV light, on the properties of abraded particles from a carbon nanotube (CNT)/epoxy nanocomposite was investigated. The investigation included the measurement of the weathering impact on the surface chemistry of the exposed samples, the particle size of abraded particles, the quantity of exposed CNTs in the respirable part of the abraded particles, and the toxicity of abraded particles, measured by in vitro toxicity tests using the THP-1 monocyte-derived macrophages. The results showed that weathering by immersion in water had no influence on the properties of abraded particles. The exposure to UV light caused a degradation of the epoxy on the surface, followed by delamination of an approx. 2.5 μm thick layer. An increased quantity of exposed CNTs in abraded particles was not found; on the contrary, longer UV exposure times decreased the released fraction of CNTs from 0.6% to 0.4%. The toxicity tests revealed that abraded particles from the nanocomposites did not induce additional acute cytotoxic effects compared to particles from the neat epoxy.Weathering processes can influence the surface properties of composites with incorporated nanoparticles. These changes may affect the release behavior of nanoparticles when an abrasion process is applied. Therefore, the influence of two different weathering processes, immersion in water and exposure to UV light, on the properties of abraded particles from a carbon nanotube (CNT)/epoxy nanocomposite was investigated. The investigation included the measurement of the weathering impact on the surface chemistry of the exposed samples, the particle size of abraded particles, the quantity of exposed CNTs in the respirable part of

  3. Weathering of a carbon nanotube/epoxy nanocomposite under UV light and in water bath: impact on abraded particles.

    PubMed

    Schlagenhauf, Lukas; Kianfar, Bahareh; Buerki-Thurnherr, Tina; Kuo, Yu-Ying; Wichser, Adrian; Nüesch, Frank; Wick, Peter; Wang, Jing

    2015-11-28

    Weathering processes can influence the surface properties of composites with incorporated nanoparticles. These changes may affect the release behavior of nanoparticles when an abrasion process is applied. Therefore, the influence of two different weathering processes, immersion in water and exposure to UV light, on the properties of abraded particles from a carbon nanotube (CNT)/epoxy nanocomposite was investigated. The investigation included the measurement of the weathering impact on the surface chemistry of the exposed samples, the particle size of abraded particles, the quantity of exposed CNTs in the respirable part of the abraded particles, and the toxicity of abraded particles, measured by in vitro toxicity tests using the THP-1 monocyte-derived macrophages. The results showed that weathering by immersion in water had no influence on the properties of abraded particles. The exposure to UV light caused a degradation of the epoxy on the surface, followed by delamination of an approx. 2.5 μm thick layer. An increased quantity of exposed CNTs in abraded particles was not found; on the contrary, longer UV exposure times decreased the released fraction of CNTs from 0.6% to 0.4%. The toxicity tests revealed that abraded particles from the nanocomposites did not induce additional acute cytotoxic effects compared to particles from the neat epoxy.

  4. Weathering of a carbon nanotube/epoxy nanocomposite under UV light and in water bath: impact on abraded particles.

    PubMed

    Schlagenhauf, Lukas; Kianfar, Bahareh; Buerki-Thurnherr, Tina; Kuo, Yu-Ying; Wichser, Adrian; Nüesch, Frank; Wick, Peter; Wang, Jing

    2015-11-28

    Weathering processes can influence the surface properties of composites with incorporated nanoparticles. These changes may affect the release behavior of nanoparticles when an abrasion process is applied. Therefore, the influence of two different weathering processes, immersion in water and exposure to UV light, on the properties of abraded particles from a carbon nanotube (CNT)/epoxy nanocomposite was investigated. The investigation included the measurement of the weathering impact on the surface chemistry of the exposed samples, the particle size of abraded particles, the quantity of exposed CNTs in the respirable part of the abraded particles, and the toxicity of abraded particles, measured by in vitro toxicity tests using the THP-1 monocyte-derived macrophages. The results showed that weathering by immersion in water had no influence on the properties of abraded particles. The exposure to UV light caused a degradation of the epoxy on the surface, followed by delamination of an approx. 2.5 μm thick layer. An increased quantity of exposed CNTs in abraded particles was not found; on the contrary, longer UV exposure times decreased the released fraction of CNTs from 0.6% to 0.4%. The toxicity tests revealed that abraded particles from the nanocomposites did not induce additional acute cytotoxic effects compared to particles from the neat epoxy. PMID:26490158

  5. Method and apparatus for cutting and abrading with sublimable particles

    DOEpatents

    Bingham, D.N.

    1995-10-10

    A gas delivery system provides a first gas as a liquid under extreme pressure and as a gas under intermediate pressure. Another gas delivery system provides a second gas under moderate pressure. The second gas is selected to solidify at a temperature at or above the temperature of the liquefied gas. A nozzle assembly connected to the gas delivery systems produces a stream containing a liquid component, a solid component, and a gas component. The liquid component of the stream consists of a high velocity jet of the liquefied first gas. The high velocity jet is surrounded by a particle sheath that consists of solid particles of the second gas which solidifies in the nozzle upon contact with the liquefied gas of the high velocity jet. The gas component of the stream is a high velocity flow of the first gas that encircles the particle sheath, forming an outer jacket. 6 figs.

  6. Method and apparatus for cutting and abrading with sublimable particles

    DOEpatents

    Bingham, Dennis N.

    1995-01-01

    A gas delivery system provides a first gas as a liquid under extreme pressure and as a gas under intermediate pressure. Another gas delivery system provides a second gas under moderate pressure. The second gas is selected to solidify at a temperature at or above the temperature of the liquified gas. A nozzle assembly connected to the gas delivery systems produces a stream containing a liquid component, a solid component, and a gas component. The liquid component of the stream consists of a high velocity jet of the liquified first gas. The high velocity jet is surrounded by a particle sheath that consists of solid particles of the second gas which solidifies in the nozzle upon contact with the liquified gas of the high velocity jet. The gas component of the stream is a high velocity flow of the first gas that encircles the particle sheath, forming an outer jacket.

  7. Microstructure and Properties of Porous Abradable Alumina Coatings Flame-Sprayed with Semi-molten Particles

    NASA Astrophysics Data System (ADS)

    Li, Chang-Jiu; Zou, Jiao; Huo, Hui-Bin; Yao, Jian-Tao; Yang, Guan-Jun

    2016-01-01

    High-efficiency gas turbines require high-temperature sealing by use of abradable porous ceramic coatings to increase engine efficiency. In this study, porous Al2O3 coatings were deposited by flame spraying; the coatings were applied in a semi-molten state by controlled melting of the sprayed powder particles. The effects of the degree of melting of the sprayed particles, which depends on spraying conditions, on coating microstructure and porosity were investigated. The degree of melting of the sprayed particles was characterized by use of 3D confocal laser microscopy. The porosity of the coating was estimated by image analysis. The results showed that the degree of melting of alumina particles can be changed from 70 to 30%, and thus coating porosity can be increased from 30% up to over 70%. The standard hardness test yielded no useful data for porous coatings deposited by use of sprayed particles with a degree of melting <60%, and a hardness of 32-75 HR15Y for Al2O3 coatings deposited by use of sprayed particles with a degree of melting >60%. Pin-on-disk abrasion tests, performed at room temperature by use of an Inconel 738 (IN738) nickel-based superalloy pin with a spherical tip 5 mm in diameter, were conducted on the porous alumina coating to evaluate its abrasion behavior. It was found that for coatings of hardness <32 HR15Y and porosity >40% the wear weight loss of the IN738 pin was negligible despite the high rate of wear of the coating. It is evident that flame-sprayed porous alumina coatings of high porosity prepared by this approach have potential for use as abradable coatings for gas turbines operating at high temperatures.

  8. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles.

  9. Method and apparatus for cutting, abrading, and drilling with sublimable particles and vaporous liquids

    DOEpatents

    Bingham, D.N.; Swainston, R.C.; Palmer, G.L.

    1998-03-31

    A gas delivery system provides a first gas which is in a liquid state under extreme pressure and in a gaseous state under intermediate pressure. A particle delivery system provides a slurry comprising the first gas in a liquid state and a second gas in a solid state. The second gas is selected so that it will solidify at a temperature at or above the temperature of the first gas in a liquid state. A nozzle assembly connected to the gas delivery system and to the particle delivery system produces a stream having a high velocity central jet comprising the slurry, a liquid sheath surrounding the central jet comprising the first gas in a liquid state and an outer jacket surrounding the liquid sheath comprising the first gas in a gas state. 19 figs.

  10. Method and apparatus for cutting, abrading, and drilling with sublimable particles and vaporous liquids

    DOEpatents

    Bingham, Dennis N.; Swainston, Richard C.; Palmer, Gary L.

    1998-01-01

    A gas delivery system provides a first gas which is in a liquid state under extreme pressure and in a gaseous state under intermediate pressure. A particle delivery system provides a slurry comprising the first gas in a liquid state and a second gas in a solid state. The second gas is selected so that it will solidify at a temperature at or above the temperature of the first gas in a liquid state. A nozzle assembly connected to the gas delivery system and to the particle delivery system produces a stream having a high velocity central jet comprising the slurry, a liquid sheath surrounding the central jet comprising the first gas in a liquid state and an outer jacket surrounding the liquid sheath comprising the first gas in a gas state.

  11. Airborne soil organic particles generated by precipitation

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.; Piens, Dominique S.; China, Swarup; Kovarik, Libor; Keiluweit, Marco; Arey, Bruce W.; Gilles, Mary K.; Laskin, Alexander

    2016-06-01

    Airborne organic particles play a critical role in Earth's climate, public health, air quality, and hydrological and carbon cycles. However, sources and formation mechanisms for semi-solid and solid organic particles are poorly understood and typically neglected in atmospheric models. Laboratory evidence suggests that fine particles can be formed from impaction of mineral surfaces by droplets. Here, we use chemical imaging of particles collected following rain events in the Southern Great Plains, Oklahoma, USA and after experimental irrigation to show that raindrop impaction of soils generates solid organic particles. We find that after rain events, sub-micrometre solid particles, with a chemical composition consistent with soil organic matter, contributed up to 60% of atmospheric particles. Our irrigation experiments indicate that intensive water impaction is sufficient to cause ejection of airborne soil organic particles from the soil surface. Chemical imaging and micro-spectroscopy analysis of particle physico-chemical properties suggest that these particles may have important impacts on cloud formation and efficiently absorb solar radiation. We suggest that raindrop-induced formation of solid organic particles from soils may be a widespread phenomenon in ecosystems such as agricultural systems and grasslands where soils are exposed to strong, episodic precipitation events.

  12. Airborne dust particle counting techniques.

    PubMed

    Sharma, S G; Prasad, B D

    2006-03-01

    The paper briefly describes an electro-optical system for counting of dust particles, which is based on the scattering phenomena. Utilizing the scattering of light by various size particles present in the environment, various particle counting techniques have been developed in order to measure the scattered intensity of light. Light scatters in all directions but much more in the so-called near forward direction 17( composite function) off axis, at 163( composite function) from the light source in the visible range. On the basis of two techniques, the right angle and forward angle scattering, opto-mechanical systems have been developed which measure scattered intensity and particulate matter. The forward scattering Nephelometer is more sensitive and therefore is more suitable for pollution monitoring than the right angle scattering Nephelometer. Whereas the right angle scattering Nephelometer has the utility in extremely low concentration in ppb level owing to the excellent light trap efficiency in comparison to forward scattering Nephelometer. In this paper measurement techniques and measurement results associated with design and development of a real time particle analyser are also discussed.

  13. Mechanically durable superhydrophobic surfaces prepared by abrading

    NASA Astrophysics Data System (ADS)

    Wang, Fajun; Yu, Shan; Ou, Junfei; Xue, Mingshan; Li, Wen

    2013-09-01

    Superhydrophobic surfaces with both excellent mechanical durability and easy reparability based on polytetrafluoroethylene/room temperature vulcanized silicone rubber (PTFE/RTVSR) composites were prepared by a simple abrading method. The surface energy of RTVSR matrix decreased with the increasing volume fraction of PTFE particles, and the surface rough microstructures of the composites were created by abrading. A water droplet on the surface exhibited a contact angle of about 165° ± 3.4° and a sliding angle of about 7.3° ± 1.9°. Such superhydrophobic surfaces showed strong mechanical durability against sandpaper because the surfaces were prepared in the way of mechanical abrasion, and the fresh exposed surfaces were still superhydrophobic. In addition, the micro-structures on the elastic surface of the composite will be compressed by elastic deformation to avoid being broken during the friction cycles when cotton fabric was used as an abrasion surface. The deformation will rebound to renew the original surface structures when the load is withdrawn. Therefore, the elastic PTFE/RTVSR composites are of advantage to construct superhydrophobic surfaces with better abrasion resistance. More importantly, such superhydrophobicity can be repaired by a simple abrading regeneration process within a few minutes when the surface is damaged or polluted by organic contaminant.

  14. Enumerating Spore-Forming Bacteria Airborne with Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Barengoltz, Jack

    2006-01-01

    A laboratory method has been conceived to enable the enumeration of (1) Cultivable bacteria and bacterial spores that are, variously, airborne by themselves or carried by, parts of, or otherwise associated with, other airborne particles; and (2) Spore-forming bacteria among all of the aforementioned cultivable microbes.

  15. Airborne biological particles and electric fields

    NASA Astrophysics Data System (ADS)

    Benninghoff, William S.; Benninghoff, Anne S.

    1982-01-01

    In November and December 1977 at McMurdo Station in Antarctica we investigated the kinds, numbers, and deposition of airborne particles larger than 2 μm while measuring electric field gradient at 2.5 m above the ground. Elementary collecting devices were used: Staplex Hi-Volume and Roto-rod samplers, Tauber (static sedimentation) traps, petrolatum-coated microscope slides, and snow (melted and filtered). The electric fields were measured by a rotating dipole (Stanford Radioscience Laboratory field mill number 2). During periods of blowing snow and dust the electric field gradient was + 500 to + 2500 V/m, and Tauber traps with grounded covers collected 2 or more times as much snow and dust as the ones with ungrounded covers. During falling snow the electric field gradient was -1000 to -1500 V/m, and the ungrounded traps collected almost twice as much snow and dust as those grounded. These observations suggest that under the prevailing weather conditions in polar regions the probable net effect is deposition of greater quantities of dust, including diaspores and minute organisms, on wet, grounded surfaces. This hypothesis needs examination for its use in explanation of biological distribution patterns.

  16. The impact of fireworks on airborne particles

    NASA Astrophysics Data System (ADS)

    Vecchi, Roberta; Bernardoni, Vera; Cricchio, Diana; D'Alessandro, Alessandra; Fermo, Paola; Lucarelli, Franco; Nava, Silvia; Piazzalunga, Andrea; Valli, Gianluigi

    Fireworks are one of the most unusual sources of pollution in atmosphere; although transient, these pollution episodes are responsible for high concentrations of particles (especially metals and organic compounds) and gases. In this paper, results of a study on chemical-physical properties of airborne particles (elements, ions, organic and elemental carbon and particles size distributions) collected during a fireworks episode in Milan (Italy) are reported. Elements typically emitted during pyrotechnic displays increased in 1 h as follows: Sr (120 times), Mg (22 times), Ba (12 times), K (11 times), and Cu (6 times). In our case study, Sr was recognised as the best fireworks tracer because its concentration was very high during the event and lower than, or comparable with, minimum detection limits during other time intervals, suggesting that it was mainly due to pyrotechnic displays. In addition, particles number concentrations increased significantly during the episode (up to 6.7 times in 1 h for the 0.5< d<1 μm size bin). Contributions (e.g. Cu, elemental carbon and nitrogen oxides) to air pollution due to the large traffic volume registered during the same night were also singled out. The original application of Positive Matrix Factorisation and Multiple Linear Regression allowed, as far as we know, here for the first time, the quantification of the fireworks contribution to atmospheric particulate matter (PM) and the resolution of their chemical profile. The contribution of fireworks to the local environment in terms of PM 10 mass, elements and chemical components was assessed with 4-h time resolution. PM 10 mass apportioned by fireworks was up to 33.6 μg m -3 (about 50% of the total PM 10 mass). Major contributors were elemental and organic carbon (2.8 and 8.1 μg m -3, respectively) as well as metals like Mg, K, Sr, Ba, and Cu (0.4, 0.7, 0.07, 0.1, and 0.1 μg m -3, respectively).

  17. Abradable compressor and turbine seals, volume 2

    NASA Technical Reports Server (NTRS)

    Sundberg, D. V.; Dennis, R. E.; Hurst, L. G.

    1979-01-01

    The applications and advantages of abradable coatings as gas path seals in a general aviation turbofan engine were investigated. Abradable materials were evaluated for the high pressure radial compressor and the axial high and low pressure turbine shrouds.

  18. HUMAN INTERINDIVIDUAL VARIABILITY IN SUSCEPTIBILITY TO AIRBORNE PARTICLES

    EPA Science Inventory

    Part of the explanation for the persistent epidemiological findings of associations between mortality and morbidity with relatively modest ambient exposures to airborne particles may be that some people are much more susceptible to particle-induced responses than others. This stu...

  19. Collectors Of Airborne And Spaceborne Particles

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E.

    1991-01-01

    Brushlike collectors capture samples of dust and other particles in space vacuum or air for optical, scanning-electron-microscope, and/or x-ray analysis. Gently decelerates particles without damaging them, minimizing tendency of some particles to rebound. Depending on design of specific collector of this type, it captures particles ranging upward in size from fractions of micrometer to few micrometers.

  20. Spraying for time - Abradable seals the key

    NASA Astrophysics Data System (ADS)

    Haines, S. A.

    1984-03-01

    Abradable seals are explained and a brief history of their development is given. Abradable seals are made of high-temperature-resistant composite powders, such as nickel-coated graphite, that constitute a core material coated with metal. They must abrade easily if struck by turbine blades and be soft enough to prevent engine damage should they be blown back. Research done to improve abradable seals with respect to hardness, oxidation, resistance and temperature changes is stressed. The end result is a composite powder with good insulating properties and the ability to withstand temperatures up to 850 C.

  1. Lung cancer risk of airborne particles for Italian population.

    PubMed

    Buonanno, G; Giovinco, G; Morawska, L; Stabile, L

    2015-10-01

    Airborne particles, including both ultrafine and supermicrometric particles, contain various carcinogens. Exposure and risk-assessment studies regularly use particle mass concentration as dosimetry parameter, therefore neglecting the potential impact of ultrafine particles due to their negligible mass compared to supermicrometric particles. The main purpose of this study was the characterization of lung cancer risk due to exposure to polycyclic aromatic hydrocarbons and some heavy metals associated with particle inhalation by Italian non-smoking people. A risk-assessment scheme, modified from an existing risk model, was applied to estimate the cancer risk contribution from both ultrafine and supermicrometric particles. Exposure assessment was carried out on the basis of particle number distributions measured in 25 smoke-free microenvironments in Italy. The predicted lung cancer risk was then compared to the cancer incidence rate in Italy to assess the number of lung cancer cases attributed to airborne particle inhalation, which represents one of the main causes of lung cancer, apart from smoking. Ultrafine particles are associated with a much higher risk than supermicrometric particles, and the modified risk-assessment scheme provided a more accurate estimate than the conventional scheme. Great attention has to be paid to indoor microenvironments and, in particular, to cooking and eating times, which represent the major contributors to lung cancer incidence in the Italian population. The modified risk assessment scheme can serve as a tool for assessing environmental quality, as well as setting up exposure standards for particulate matter.

  2. Airborne soil organic particles generated by precipitation

    DOE PAGES

    Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.; Piens, Dominique S.; China, Swarup; Kovarik, Libor; Keiluweit, Marco; Arey, Bruce W.; Gilles, Mary K.; Laskin, Alexander

    2016-05-02

    Airborne organic particles play a critical role in Earth’s climate1, public health2, air quality3, and hydrological and carbon cycles4. However, sources and formation mechanisms for semi-solid and solid organic particles5 are poorly understood and typically neglected in atmospheric models6. Laboratory evidence suggests that fine particles can be formed from impaction of mineral surfaces by droplets7. Here, we use chemical imaging of particles collected following rain events in the Southern Great Plains, Oklahoma, USA and after experimental irrigation to show that raindrop impaction of soils generates solid organic particles. We find that after rain events, sub-micrometre solid particles, with a chemicalmore » composition consistent with soil organic matter, contributed up to 60% of atmospheric particles. Our irrigation experiments indicate that intensive water impaction is sufficient to cause ejection of airborne soil organic particles from the soil surface. Chemical imaging and micro-spectroscopy analysis of particle physico-chemical properties suggest that these particles may have important impacts on cloud formation and efficiently absorb solar radiation. Lastly, we suggest that raindrop-induced formation of solid organic particles from soils may be a widespread phenomenon in ecosystems such as agricultural systems and grasslands where soils are exposed to strong, episodic precipitation events8.« less

  3. Airborne particle exposure and extrinsic skin aging.

    PubMed

    Vierkötter, Andrea; Schikowski, Tamara; Ranft, Ulrich; Sugiri, Dorothea; Matsui, Mary; Krämer, Ursula; Krutmann, Jean

    2010-12-01

    For decades, extrinsic skin aging has been known to result from chronic exposure to solar radiation and, more recently, to tobacco smoke. In this study, we have assessed the influence of air pollution on skin aging in 400 Caucasian women aged 70-80 years. Skin aging was clinically assessed by means of SCINEXA (score of intrinsic and extrinsic skin aging), a validated skin aging score. Traffic-related exposure at the place of residence was determined by traffic particle emissions and by estimation of soot in fine dust. Exposure to background particle concentration was determined by measurements of ambient particles at fixed monitoring sites. The impact of air pollution on skin aging was analyzed by linear and logistic regression and adjusted for potential confounding variables. Air pollution exposure was significantly correlated to extrinsic skin aging signs, in particular to pigment spots and less pronounced to wrinkles. An increase in soot (per 0.5 × 10(-5) per m) and particles from traffic (per 475  kg per year and square km) was associated with 20% more pigment spots on forehead and cheeks. Background particle pollution, which was measured in low residential areas of the cities without busy traffic and therefore is not directly attributable to traffic but rather to other sources of particles, was also positively correlated to pigment spots on face. These results indicate that particle pollution might influence skin aging as well.

  4. Acoustic Resonator Optimisation for Airborne Particle Manipulation

    NASA Astrophysics Data System (ADS)

    Devendran, Citsabehsan; Billson, Duncan R.; Hutchins, David A.; Alan, Tuncay; Neild, Adrian

    Advances in micro-electromechanical systems (MEMS) technology and biomedical research necessitate micro-machined manipulators to capture, handle and position delicate micron-sized particles. To this end, a parallel plate acoustic resonator system has been investigated for the purposes of manipulation and entrapment of micron sized particles in air. Numerical and finite element modelling was performed to optimise the design of the layered acoustic resonator. To obtain an optimised resonator design, careful considerations of the effect of thickness and material properties are required. Furthermore, the effect of acoustic attenuation which is dependent on frequency is also considered within this study, leading to an optimum operational frequency range. Finally, experimental results demonstrated good particle levitation and capture of various particle properties and sizes ranging to as small as 14.8 μm.

  5. Real-time airborne particle analyzer

    DOEpatents

    Reilly, Peter T.A.

    2012-10-16

    An aerosol particle analyzer includes a laser ablation chamber, a gas-filled conduit, and a mass spectrometer. The laser ablation chamber can be operated at a low pressure, which can be from 0.1 mTorr to 30 mTorr. The ablated ions are transferred into a gas-filled conduit. The gas-filled conduit reduces the electrical charge and the speed of ablated ions as they collide and mix with buffer gases in the gas-filled conduit. Preferably, the gas filled-conduit includes an electromagnetic multipole structure that collimates the nascent ions into a beam, which is guided into the mass spectrometer. Because the gas-filled conduit allows storage of vast quantities of the ions from the ablated particles, the ions from a single ablated particle can be analyzed multiple times and by a variety of techniques to supply statistically meaningful analysis of composition and isotope ratios.

  6. [Investigation of Carbonaceous Airborne Particles by Scanning Proton Microprobe].

    PubMed

    Bao, Liang-man; Liu, Jiang-feng; Lei, Qian-tao; Li, Xiao-lin; Zhang, Gui-lin; Li, Yan

    2016-01-15

    Carbonaceous particles are an important component of the atmospheric aerosol particles and important for global climate change, air quality and human health. The PM₁₀ single particles from two environmental monitor locations and seven pollution emission sources were analyzed using scanning proton microprobe (SPM) techniques. The concentration of carbon in individual particles was quantitatively determined by proton non-Rutherford elastic backscattering spectrometry (EBS). The results of this investigation showed that carbonaceous particles were dominant in the pollution sources of coal and oil combustions, diesel busexhaust and automobile exhaust, while inorganic particles were dominant in the sources of steel industry, cement dust and soil dust. Carbonaceous matter was enriched in particles from the city center, while mineral matter was the main component of airborne particles in the industrial area. Elemental mapping of single aerosol particles yielded important information on the chemical reactions of aerosol particles. The micro-PIXE (particle induced X-ray emission) maps of S, Ca and Fe of individual carbonaceous particles showed that sulfuration reaction occurred between SO₂and mineral particles, which increased the sulfur content of particles. PMID:27078933

  7. Blade tip geometry - A factor in abrading sintered seal material

    NASA Technical Reports Server (NTRS)

    Wolak, J.; Emery, A. F.; Etemad, S.; Choi, S. R.

    1984-01-01

    Experimental results are presented for the case of titanium blade tip specimens of various geometrical configurations rubbing at 100 m/s against specimens of nickel-chromium sintered powder metal seal material, the latter being fed toward the rotating blades at an incursion rate of 0.0254 mm/s. Blade tips in the form of orthogonal cutting tools with about 85 deg negative rake angles exhibited desirable abrading capabilities, as measured by the tear-free appearance of the grooves they generated in the seal material, little wear of blade tips, low forces of interaction and low seal densification. Similar results have been obtained for blade specimens with tips of small radius of curvature, as well as for square-ended and slanted blade tips that are plasma-sprayed with abrasive particles. The relationship between the size of these particles and their abrading effectiveness is considered.

  8. Current concepts on airborne particles and health

    SciTech Connect

    Mauderly, J.L.

    1994-11-01

    Epidemiological evidence of associations between environmental particulate concentrations and both acute and chronic health effects has grown with numerous recent studies conducted in the US and other countries. An association between short-term changes in particulate levels and acute mortality now seems certain. The association is consistent among studies and coherent among indicators of mortality and morbidity. Effects observed at surprisingly low pollution levels have raised concern for current exposures even in modestly polluted cities. Toxicology did not predict the acute mortality effect, and causal mechanisms are difficult to rationalize. Present data suggest that the fine fraction of particulate pollution is more toxic than larger particles, but the contribution of specific particulate species is poorly understood.

  9. Transport of airborne particles within a room.

    PubMed

    Richmond-Bryant, J; Eisner, A D; Brixey, L A; Wiener, R W

    2006-02-01

    The objective of this study is to test a technique used to analyze contaminant transport in the wake of a bluff body under controlled experimental conditions for application to aerosol transport in a complex furnished room. Specifically, the hypothesis tested by our work is that the dispersion of contaminants in a room is related to the turbulence kinetic energy and length scale. This turbulence is, in turn, determined by the size and shape of furnishings within the room and by the ventilation characteristics. This approach was tested for indoor dispersion through computational fluid dynamics simulations and laboratory experiments. In each, 3 mum aerosols were released in a furnished room with varied contaminant release locations (at the inlet vent or under a desk). The realizable k approximately epsilon model was employed in the simulations, followed by a Lagrangian particle trajectory simulation used as input for an in-house FORTRAN code to compute aerosol concentration. For the experiments, concentrations were measured simultaneously at seven locations by laser photometry, and air velocity was measured using laser Doppler velocimetry. The results suggest that turbulent diffusion is a significant factor in contaminant residence time in a furnished room. This procedure was then expanded to develop a simplified correlation between contaminant residence time and the number of enclosing surfaces around a point containing the contaminant. Practical Implications The work presented here provides a methodology for relating local aerosol residence time to properties of room ventilation and furniture arrangement. This technique may be used to assess probable locations of high concentration by knowing only the particle release location, furniture configuration, inlet and outlet locations, and air speeds, which are all observable features. Applications of this method include development of 'rules of thumb' for first responders entering a room where an agent has been released

  10. New Methods for Personal Exposure Monitoring for Airborne Particles

    PubMed Central

    Koehler, Kirsten A.; Peters, Thomas

    2016-01-01

    Airborne particles have been associated with a range of adverse cardiopulmonary outcomes, which has driven its monitoring at stationary, central sites throughout the world. Individual exposures, however, can differ substantially from concentrations measured at central sites due to spatial variability across a region and sources unique to the individual, such as cooking or cleaning in homes, traffic emissions during commutes, and widely varying sources encountered at work. Personal monitoring with small, battery-powered instruments enables the measurement of an individual’s exposure as they go about their daily activities. Personal monitoring can substantially reduce exposure misclassification and improve the power to detect relationships between particulate pollution and adverse health outcomes. By partitioning exposures to known locations and sources, it may be possible to account for variable toxicity of different sources. This review outlines recent advances in the field of personal exposure assessment for particulate pollution. Advances in battery technology have improved the feasibility of 24-hour monitoring, providing the ability to more completely attribute exposures to microenvironment (e.g., work, home, commute). New metrics to evaluate the relationship between particulate matter and health are also being considered, including particle number concentration, particle composition measures, and particle oxidative load. Such metrics provide opportunities to develop more precise associations between airborne particles and health and may provide opportunities for more effective regulations. PMID:26385477

  11. Flow analysis of airborne particles in a hospital operating room

    NASA Astrophysics Data System (ADS)

    Faeghi, Shiva; Lennerts, Kunibert

    2016-06-01

    Preventing airborne infections during a surgery has been always an important issue to deliver effective and high quality medical care to the patient. One of the important sources of infection is particles that are distributed through airborne routes. Factors influencing infection rates caused by airborne particles, among others, are efficient ventilation and the arrangement of surgical facilities inside the operating room. The paper studies the ventilation airflow pattern in an operating room in a hospital located in Tehran, Iran, and seeks to find the efficient configurations with respect to the ventilation system and layout of facilities. This study uses computational fluid dynamics (CFD) and investigates the effects of different inflow velocities for inlets, two pressurization scenarios (equal and excess pressure) and two arrangements of surgical facilities in room while the door is completely open. The results show that system does not perform adequately when the door is open in the operating room under the current conditions, and excess pressure adjustments should be employed to achieve efficient results. The findings of this research can be discussed in the context of design and controlling of the ventilation facilities of operating rooms.

  12. Effects of particle size and velocity on burial depth of airborne particles in glass fiber filters

    SciTech Connect

    Higby, D.P.

    1984-11-01

    Air sampling for particulate radioactive material involves collecting airborne particles on a filter and then determining the amount of radioactivity collected per unit volume of air drawn through the filter. The amount of radioactivity collected is frequently determined by directly measuring the radiation emitted from the particles collected on the filter. Counting losses caused by the particle becoming buried in the filter matrix may cause concentrations of airborne particulate radioactive materials to be underestimated by as much as 50%. Furthermore, the dose calculation for inhaled radionuclides will also be affected. The present study was designed to evaluate the extent to which particle size and sampling velocity influence burial depth in glass-fiber filters. Aerosols of high-fired /sup 239/PuO/sub 2/ were collected at various sampling velocities on glass-fiber filters. The fraction of alpha counts lost due to burial was determined as the ratio of activity detected by direct alpha count to the quantity determined by photon spectrometry. The results show that burial of airborne particles collected on glass-fiber filters appears to be a weak function of sampling velocity and particle size. Counting losses ranged from 0 to 25%. A correction that assumes losses of 10 to 15% would ensure that the concentration of airborne alpha-emitting radionuclides would not be underestimated when glass-fiber filters are used. 32 references, 21 figures, 11 tables.

  13. Airborne Particle Size Distribution Measurements at USDOE Fernald

    SciTech Connect

    Harley, N.H.; Chittaporn, P.; Heikkinen, M.; Medora, R.; Merrill, R.

    2003-03-27

    There are no long term measurements of the particle size distribution and concentration of airborne radionuclides at any USDOE facility except Fernald. Yet the determinant of lung dose is the particle size, determining the airway and lower lung deposition. Beginning in 2000, continuous (6 to 8 weeks) measurements of the aerosol particle size distribution have been made with a miniature sampler developed under EMSP. Radon gas decays to a chain of four short lived solid radionuclides that attach immediately to the resident atmospheric aerosol. These in turn decay to long lived polonium 210. Alpha emitting polonium is a tracer for any atmospheric aerosol. Six samplers at Fernald and four at QC sites in New Jersey show a difference in both polonium concentration and size distribution with the winter measurements being higher/larger than summer by almost a factor of two at all locations. EMSP USDOE Contract DE FG07 97ER62522.

  14. Distribution of airborne particles from multi-emission source.

    PubMed

    Kemppainen, Sari; Tervahattu, Heikki; Kikuchi, Ryunosuke

    2003-06-01

    The purpose of this work was to study the distribution of airborne particles in the surroundings of an iron and steel factory in southern Finland. Several sources of particulate emissions are lying side by side, causing heavy dust loading to the environment. This complicated multi-pollutant situation was studied mainly by SEM/EDX methodology. Particles accumulated on Scots pine bark were identified and quantitatively measured according to their element content, size and shape. As a result, distribution maps of particulate elements were drawn and the amount of different particle types along the study lines was plotted. Particulate emissions from the industrial or energy production processes were not the main dust source. Most emissions were produced from the clinker crusher. Numerous stockpiles of the industrial wastes and raw materials also gave rise to particulate emissions as a result of wind erosion. It was concluded that SEM/EDX methodology is a useful tool for studying the distribution of particulate pollutants.

  15. Mutagenicity of airborne particles from a nonindustrial town

    SciTech Connect

    Whong, W.Z.; Stewart, J.; McCawley, M.; Major, P.; Merchant, J.A.; Ong, T.M.

    1981-01-01

    The mutagenic activity of ambient air particles from Morgantown, West Virginia, has been monitored for 6 months using the Ames Salmonella assay system. Airborne particles, collected on glass fiber filters using a Hi-Vol sampler, were extracted with dichloromethane (DCM) and/or ethyl acetate plus methanol (E + M) in sequence. A dose-dependent mutagenic response was observed in Salmonella typhimurium TA 98 for DCM extracts from all samples. E + M extracts were mutagenic only when samples were extracted with E + M before DCM extration. The mutagenic activity of samples collected in June and July was independent of S-9 in vitro activation, whereas the mutagenicity of those collected from October to December increased in the presence of S-9 activation. The class fractionation of extracts showed that only acidic and polynuclear aromatic fractions were mutagenic. The mutagenicity of particles from Morgantown air was also detected with the Salmonella arabinose-resistant assay system.

  16. Dry deposition of large, airborne particles onto a surrogate surface

    NASA Astrophysics Data System (ADS)

    Kim, Eugene; Kalman, David; Larson, Timothy

    Simultaneous measurements of particle dry deposition flux and airborne number concentration in the open atmosphere were made using three different types of artificially generated particles in the size range 10-100 μm - perlite, diatomaceous earth and glass beads. A combination of gravimetric analysis, automated microscopy and sonic anemometry provided size-resolved estimates of both the inertial and gravitational components of the quasi-laminar layer particle deposition velocity, ( Vd) b, as a function of size. Eddy inertial deposition efficiency ( ηdI) was determined as a function of dimensionless eddy Stokes number (Stk e). In the range 3particles and gases to environmental surfaces. DOE Report PNL-SA-6721, Pacific Northwest Laboratories, Richland, WA), used in several regulatory models, significantly under-predicted (up to seven times) ( Vd) b for large particles ( da>10 μm).

  17. Airborne particle concentrations at schools measured at different spatial scales

    NASA Astrophysics Data System (ADS)

    Buonanno, G.; Fuoco, F. C.; Morawska, L.; Stabile, L.

    2013-03-01

    Potential adverse effects on children health may result from school exposure to airborne particles. To address this issue, measurements in terms of particle number concentration, particle size distribution and black carbon (BC) concentrations were performed in three school buildings in Cassino (Italy) and its suburbs, outside and inside of the classrooms during normal occupancy and use. Additional time resolved information was gathered on ventilation condition, classroom activity, and traffic count data around the schools were obtained using a video camera. Across the three investigated school buildings, the outdoor and indoor particle number concentration monitored down to 4 nm and up to 3 μm ranged from 2.8 × 104 part cm-3 to 4.7 × 104 part cm-3 and from 2.0 × 104 part cm-3 to 3.5 × 104 part cm-3, respectively. The total particle concentrations were usually higher outdoors than indoors, because no indoor sources were detected. I/O measured was less than 1 (varying in a relatively narrow range from 0.63 to 0.74), however one school exhibited indoor concentrations higher than outdoor during the morning rush hours. Particle size distribution at the outdoor site showed high particle concentrations in different size ranges, varying during the day; in relation to the starting and finishing of school time two modes were found. BC concentrations were 5 times higher at the urban school compared with the suburban and suburban-to-urban differences were larger than the relative differences of ultrafine particle concentrations.

  18. Measurement of airborne particle concentrations near the Sunset Crater volcano, Arizona.

    PubMed

    Benke, Roland R; Hooper, Donald M; Durham, James S; Bannon, Donald R; Compton, Keith L; Necsoiu, Marius; McGinnis, Ronald N

    2009-02-01

    Direct measurements of airborne particle mass concentrations or mass loads are often used to estimate health effects from the inhalation of resuspended contaminated soil. Airborne particle mass concentrations were measured using a personal sampler under a variety of surface-disturbing activities within different depositional environments at both volcanic and nonvolcanic sites near the Sunset Crater volcano in northern Arizona. Focused field investigations were performed at this analog site to improve the understanding of natural and human-induced processes at Yucca Mountain, Nevada. The level of surface-disturbing activity was found to be the most influential factor affecting the measured airborne particle concentrations, which increased over three orders of magnitude relative to ambient conditions. As the surface-disturbing activity level increased, the particle size distribution and the majority of airborne particle mass shifted from particles with aerodynamic diameters less than 10 mum (0.00039 in) to particles with aerodynamic diameters greater than 10 mum (0.00039 in). Under ambient conditions, above average wind speeds tended to increase airborne particle concentrations. In contrast, stronger winds tended to decrease airborne particle concentrations in the breathing zone during light and heavy surface-disturbing conditions. A slight increase in the average airborne particle concentration during ambient conditions was found above older nonvolcanic deposits, which tended to be finer grained than the Sunset Crater tephra deposits. An increased airborne particle concentration was realized when walking on an extremely fine-grained deposit, but the sensitivity of airborne particle concentrations to the resuspendible fraction of near-surface grain mass was not conclusive in the field setting when human activities disturbed the bulk of near-surface material. Although the limited sample size precluded detailed statistical analysis, the differences in airborne particle

  19. Increasing efficiency and effectiveness of processes related to airborne particles in reticle mask environments

    NASA Astrophysics Data System (ADS)

    Jackson, Allyn

    2015-09-01

    There are significant advantages of using the ReticleSense™ Airborne Particle Sensor (APSR) in reticle environments to locate and troubleshoot airborne particles as compared to traditional surface scan reticle, in-situ or hand-held methods. Time, resource and cost savings are identified.

  20. Increasing efficiency and effectiveness of processes related to airborne particles in reticle mask environments

    NASA Astrophysics Data System (ADS)

    Jackson, Allyn

    2014-09-01

    There are significant advantages of using the ReticleSenseTM Airborne Particle Sensor (APSR) in reticle environments to locate and troubleshoot airborne particles in reticle environments as compared to traditional surface scan reticle, in-situ or hand-held methods. Time, resource and cost savings are identified.

  1. CHARACTERIZING THE SOURCES OF HUMAN EXPOSURE TO MUTAGENIC AND CARCINOGENIC CHEMICALS IN AIRBORNE FINE PARTICLES

    EPA Science Inventory

    Personal and ambient exposures to airborne fine particles, polycyclic aromatic hydrocarbons (PAH), and genotoxic activity has been studied in populations in the US, Japan, China, and the Czech Republic. Personal exposure monitors used to collect fine particles were extracted f...

  2. Airborne virus capture and inactivation by an electrostatic particle collector.

    PubMed

    Kettleson, Eric M; Ramaswami, Bala; Hogan, Christopher J; Lee, Myong-Hwa; Statyukha, Gennadiy A; Biswas, Pratim; Angenent, Largus T

    2009-08-01

    Airborne virus capture and inactivation were studied in an electrostatic precipitator (ESP) at applied voltages from -10 to +10 kV using aerosolized bacteriophages T3 and MS2. For each charging scenario, samples were collected from the effluent air stream and assayed for viable phages using plaque assays and for nucleic acids using quantitative polymerase chain reaction (qPCR) assays. At higher applied voltages, more virus particles were captured from air with maximum log reductions of 6.8 and 6.3 for the plaque assay and 4.2 and 3.5 for the qPCR assay at -10 kV for T3 and MS2, respectively. Beyond corona inception (i.e., at applied voltages of -10, -8, +8, and +10 kV), log reduction values obtained with the plaque assay were much higher compared to those of the qPCR assay because nonviable particles, while present in the effluent were unaccounted for in the plaque assay. Comparisons of these assays showed that in-flight inactivation (i.e., inactivation without capture) was greater for the highest applied voltages with a log inactivation of 2.6 for both phages at -10 kV. We have demonstrated great potential for virus capture and inactivation via continual ion and reactive species bombardment when conditions in the ESP are enforced to generate a corona discharge.

  3. The effects of improved residential furnace filtration on airborne particles

    SciTech Connect

    Fugler, D.; Bowser, D.; Kwan, W.

    2000-07-01

    Forced air furnaces with distributed ducting systems have always had an air filter, but traditionally the filter quality was only adequate to protect the furnace fan and heat exchanger from debris. In the past several years, there has been an increasing number of more effective particulate filters that are being marketed to reduce airborne particulate or dust. These include upgraded panel filters, passive electrostatic, active electrostatic, and HEPA or near-HEPA variants. Consumers are bewildered by the lack of standardized and comprehensible performance results and need better advice on whether it would be useful for them to upgrade their current furnace filter. In order to help them make these decisions, the whole range of available furnace filters were tested in six occupied houses. The filter efficiency was determined by particulate measurement in the ducting system before and after the filter. Indoor particulates were measured in a bedroom and living room, and outdoor levels were monitored simultaneously. Testing encompassed several weeks in each house, and the results are available in the whole range of particle sizes. The project also looked at the air-cleaning effectiveness of a stand-alone air cleaner and at the ozone production of electrostatic precipitators installed in 20 houses. Test results will be helpful in specifying suitable filtration for houses.

  4. Ultrasonically Actuated Tools for Abrading Rock Surfaces

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin; Sherrit, Stewart; Bar-Cohen, Yoseph; Rainen, Richard; Askin, Steve; Bickler, Donald; Lewis, Donald; Carson, John; Dawson, Stephen; Bao, Xiaoqi; Chang, Zensheu; Peterson, Thomas

    2006-01-01

    An ultrasonic rock-abrasion tool (URAT) was developed using the same principle of ultrasonic/sonic actuation as that of the tools described in two prior NASA Tech Briefs articles: Ultrasonic/ Sonic Drill/Corers With Integrated Sensors (NPO-20856), Vol. 25, No. 1 (January 2001), page 38 and Ultrasonic/ Sonic Mechanisms for Drilling and Coring (NPO-30291), Vol. 27, No. 9 (September 2003), page 65. Hence, like those tools, the URAT offers the same advantages of low power demand, mechanical simplicity, compactness, and ability to function with very small axial loading (very small contact force between tool and rock). Like a tool described in the second of the cited previous articles, a URAT includes (1) a drive mechanism that comprises a piezoelectric ultrasonic actuator, an amplification horn, and a mass that is free to move axially over a limited range and (2) an abrasion tool bit. A URAT tool bit is a disk that has been machined or otherwise formed to have a large number of teeth and an overall shape chosen to impart the desired shape (which could be flat or curved) to the rock surface to be abraded. In operation, the disk and thus the teeth are vibrated in contact with the rock surface. The concentrated stresses at the tips of the impinging teeth repeatedly induce microfractures and thereby abrade the rock. The motion of the tool induces an ultrasonic transport effect that displaces the cuttings from the abraded area. The figure shows a prototype URAT. A piezoelectric-stack/horn actuator is housed in a cylindrical container. The movement of the actuator and bit with respect to the housing is aided by use of mechanical sliders. A set of springs accommodates the motion of the actuator and bit into or out of the housing through an axial range between 5 and 7 mm. The springs impose an approximately constant force of contact between the tool bit and the rock to be abraded. A dust shield surrounds the bit, serving as a barrier to reduce the migration of rock debris to

  5. Machine vision based particle size and size distribution determination of airborne dust particles of wood and bark pellets

    SciTech Connect

    Igathinathane, C; Pordesimo, L.O.

    2009-08-01

    Dust management strategies in industrial environment, especially of airborne dust, require quantification and measurement of size and size distribution of the particles. Advanced specialized instruments that measure airborne particle size and size distribution apply indirect methods that involve light scattering, acoustic spectroscopy, and laser diffraction. In this research, we propose a simple and direct method of airborne dust particle dimensional measurement and size distribution analysis using machine vision. The method involves development of a user-coded ImageJ plugin that measures particle length and width and analyzes size distribution of particles based on particle length from high-resolution scan images. Test materials were airborne dust from soft pine wood sawdust pellets and ground pine tree bark pellets. Subsamples prepared by dividing the actual dust using 230 mesh (63 m) sieve were analyzed as well. A flatbed document scanner acquired the digital images of the dust particles. Proper sampling, layout of dust particles in singulated arrangement, good contrast smooth background, high resolution images, and accurate algorithm are essential for reliable analysis. A halo effect around grey-scale images ensured correct threshold limits. The measurement algorithm used Feret s diameter for particle length and pixel-march technique for particle width. Particle size distribution was analyzed in a sieveless manner after grouping particles according to their distinct lengths, and several significant dimensions and parameters of particle size distribution were evaluated. Results of the measurement and analysis were presented in textual and graphical formats. The developed plugin was evaluated to have a dimension measurement accuracy in excess of 98.9% and a computer speed of analysis of <8 s/image. Arithmetic mean length of actual wood and bark pellets airborne dust particles were 0.1138 0.0123 and 0.1181 0.0149 mm, respectively. The airborne dust particles of

  6. Evaluation of Airborne Particle Emissions from Commercial Products Containing Carbon Nanotubes

    PubMed Central

    Huang, Guannan; Park, Jae Hong; Cena, Lorenzo G.; Shelton, Betsy L.; Peters, Thomas M.

    2012-01-01

    The emission of the airborne particles from epoxy resin test sticks with different CNT loadings and two commercial products were characterized while sanding with three grit sizes and three disc sander speeds. The total number concentrations, respirable mass concentrations, and particle size number/mass distributions of the emitted particles were measured using a condensation particle counter, an optical particle counter, and a scanning mobility particle sizer. The emitted particles were sampled on a polycarbonate filter and analyzed using electron microscopy. The highest number concentrations (arithmetic mean = 4670 particles/cm3) were produced with coarse sandpaper, 2% (by weight) CNT test sticks and medium disc sander speed, whereas the lowest number concentrations (arithmetic mean = 92 particles/cm3) were produced with medium sandpaper, 2% CNT test sticks and slow disc sander speed. Respirable mass concentrations were highest (arithmetic mean = 1.01 mg/m3) for fine sandpaper, 2% CNT test sticks and medium disc sander speed and lowest (arithmetic mean = 0.20 mg/m3) for medium sandpaper, 0% CNT test sticks and medium disc sander speed. For CNT-epoxy samples, airborne particles were primarily micrometer-sized epoxy cores with CNT protrusions. No free CNTs were observed in airborne samples, except for tests conducted with 4% CNT epoxy. The number concentration, mass concentration, and size distribution of airborne particles generated when products containing CNTs are sanded depends on the conditions of sanding and the characteristics of the material being sanded. PMID:23204914

  7. Self-refreshing characteristics of an airborne particle sensor using a bridged paddle oscillator

    NASA Astrophysics Data System (ADS)

    Choi, Eunsuk; Lee, Seung-Beck; Park, Bonghyun; Sul, Onejae

    2016-05-01

    We report on the self-refreshing characteristics of a micromachined airborne particle sensor. The sensor consists of a bridge-type beam having an oscillating paddle-type particle collector at its center. When a positive potential is applied to the paddle, the sensor is able to attract and collect negatively charged airborne particles while oscillating close to its resonant frequency and thereby measure their density from the change in the oscillating phase at ˜10 pg resolution. When the applied potential is removed, the collected particles are detached from the sensor due to momentum transfer from the oscillating paddle, thus demonstrating a self-refreshing capability.

  8. Evidence for more than one division of bacteria within airborne particles.

    PubMed Central

    Dimmick, R L; Wolochow, H; Chatigny, M A

    1979-01-01

    When the protocol that we had used to demonstrate a single division of bacterial cells in airborne particles was changed to one that increased the glycerol content of the atomizer fluid from 1 to 5% (vol/vol), thus producing larger particles, more than two (and nearly three) divisions of bacteria occurred within 6 h of aerosol time. PMID:395898

  9. Laboratory Study of Airborne Fallout Particles and Their Time Distribution.

    ERIC Educational Resources Information Center

    Smith, H. A., Jr.; And Others

    1979-01-01

    Samples of filtered airborne particulate, collected daily for the first month after the September 18, 1977 Chinese nuclear detonation, showed fourteen fission products. Fluctuations in the daily fallout activity levels suggested a global fallout orbit time of approximately twenty days. (Author/BB)

  10. Airborne measurements of cloud forming nuclei and aerosol particles at Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Radke, L. F.; Langer, G.; Hindman, E. E., II

    1978-01-01

    Results of airborne measurements of the sizes and concentrations of aerosol particles, ice nuclei, and cloud condensation nuclei that were taken at Kennedy Space Center, Florida, are presented along with a detailed description of the instrumentation and measuring capabilities of the University of Washington airborne measuring facility (Douglas B-23). Airborne measurements made at Ft. Collins, Colorado, and Little Rock, Arkansas, during the ferry of the B-23 are presented. The particle concentrations differed significantly between the clean air over Ft. Collins and the hazy air over Little Rock and Kennedy Space Center. The concentrations of cloud condensation nuclei over Kennedy Space Center were typical of polluted eastern seaboard air. Three different instruments were used to measure ice nuclei: one used filters to collect the particles, and the others used optical and acoustical methods to detect ice crystals grown in portable cloud chambers. A comparison of the ice nucleus counts, which are in good agreement, is presented.

  11. Airborne particles in Swansea, UK: their collection and characterization.

    PubMed

    Price, Heather; Arthur, Robert; Sexton, Keith; Gregory, Clive; Hoogendoorn, Bastiaan; Matthews, Ian; Jones, Tim; BéruBé, Kelly

    2010-01-01

    Urban air particulate matter (PM) has previously been associated with a variety of adverse health effects. It is now believed that the smallest particles, ultrafine or nanoparticles, are linked to the greatest health effects. The physicochemistry of these particles is likely to provide information regarding their toxicity. Therefore, the aim of this study was to further the understanding of the heterogeneous and changing particle concentrations in urban air, in conjunction with gaining an understanding of the physicochemistry of the particles. A Dekati electrical low-pressure impactor was used to collect the particles and real-time data in a busy traffic corridor in Swansea, Wales, over a period of 10 nonconsecutive weeks. Particle concentrations in the street canyon were analyzed and particle physicochemistries investigated using a variety of techniques. Particle number concentrations were found to vary both diurnally and from day to day in the traffic corridor. Of all particles, the nano to fine size fraction was consistently identified in the highest concentrations (maximum: 140,000 particles cm(-3)). Particle physicochemistry was found to vary as a function of size, with larger particles exhibiting a greater variety of morphologies (and consequently particle types) and associated metals. PMID:20155578

  12. An efficient analytical method for particle counting in evaluating airborne infectious isolation containment using fluorescent microspheres.

    PubMed

    Johnson, David L; Lynch, Robert A

    2008-04-01

    The containment performance of patient isolation enclosures, particularly expedient surge capacity enclosures, must be verified to protect health care providers and staff, other patients, and hospital visitors. Tracer gas methods are often used, but requirements for special equipment and training limit the technique's utility. A technologically simple yet accurate and precise particle-based technique is needed to measure the low count concentrations of escaping airborne particles that might be present outside an isolation enclosure. Reported here is the performance of such a technique employing micrometer-sized fluorescent polystyrene latex microspheres as a surrogate for pathogenic bioaerosols. Particles are released into the isolation enclosure, air is sampled inside and outside the room to capture airborne particles on 25 mm diameter filters, and the number of particles deposited on a filter is quantified using an optimized random field counting approach. The technique accurately estimates the number of surrogate bioaerosol particles on the filter, allowing calculation of the airborne particle concentrations inside and outside the enclosure, and the containment efficiency. This technique can be employed using generally available equipment and inexpensive supplies and also can minimize the number of particle counts that must be performed. The method is shown to be specific, sensitive, and accurate.

  13. An efficient analytical method for particle counting in evaluating airborne infectious isolation containment using fluorescent microspheres.

    PubMed

    Johnson, David L; Lynch, Robert A

    2008-04-01

    The containment performance of patient isolation enclosures, particularly expedient surge capacity enclosures, must be verified to protect health care providers and staff, other patients, and hospital visitors. Tracer gas methods are often used, but requirements for special equipment and training limit the technique's utility. A technologically simple yet accurate and precise particle-based technique is needed to measure the low count concentrations of escaping airborne particles that might be present outside an isolation enclosure. Reported here is the performance of such a technique employing micrometer-sized fluorescent polystyrene latex microspheres as a surrogate for pathogenic bioaerosols. Particles are released into the isolation enclosure, air is sampled inside and outside the room to capture airborne particles on 25 mm diameter filters, and the number of particles deposited on a filter is quantified using an optimized random field counting approach. The technique accurately estimates the number of surrogate bioaerosol particles on the filter, allowing calculation of the airborne particle concentrations inside and outside the enclosure, and the containment efficiency. This technique can be employed using generally available equipment and inexpensive supplies and also can minimize the number of particle counts that must be performed. The method is shown to be specific, sensitive, and accurate. PMID:18286424

  14. Fabrication and testing of an airborne ice particle counter

    NASA Technical Reports Server (NTRS)

    Kebabian, P. L.

    1976-01-01

    An optical ice particle counter was proposed as a companion instrument to the GSFC laser nephelometer. By counting ice particles and total cloud particles (both ice and liquid water), these two instruments may be used to study the balance between ice and water in clouds.

  15. Assessment of Airborne Particles. Fundamentals, Applications, and Implications to Inhalation Toxicity.

    ERIC Educational Resources Information Center

    Mercer, Thomas T., Ed.; And Others

    Concern over chemical and radioactive particulate matter in industry and over rapidly increasing air pollution has stimulated research both on the properties of airborne particles and methods for assessing them and on their biological effects following inhalation. The Third Rochester International Conference on Environmental Toxicity was,…

  16. Simulated airborne particle size distributions over Greenland during Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Unnerstad, Lars; Hansson, Margareta

    Polar ice cores indicate that the deposition of dust from the atmosphere was strongly enhanced during Last Glacial Maximum (LGM). The concentration of dust in the ice sheets and in the overlaying atmosphere are not proportional to each other but are dependent, among other things, on the relative magnitudes of dry and wet deposition which change with climate. Observed dust particle size distributions in the Greenland ice sheet are shifted toward larger particles during LGM. By applying common theories for particle removal processes we show that the airborne particle size distributions over Greenland probably remained the same in the two different climates. This leads to the conclusion that the airborne dust concentration was even higher during LGM than indicated by the enhancement in deposition flux. We suggest a LGM/pre-industrial current climate aerosol ratio (including the soluble fraction) over Greenland of about 90-125 by mass and 75-100 by number.

  17. Identifying airborne metal particles sources near an optoelectronic and semiconductor industrial park

    NASA Astrophysics Data System (ADS)

    Chen, Ho-Wen; Chen, Wei-Yea; Chang, Cheng-Nan; Chuang, Yen-Hsun; Lin, Yu-Hao

    2016-06-01

    The recently developed Central Taiwan Science Park (CTSP) in central Taiwan is home to an optoelectronic and semiconductor industrial cluster. Therefore, exploring the elemental compositions and size distributions of airborne particles emitted from the CTSP would help to prevent pollution. This study analyzed size-fractionated metal-rich particle samples collected in upwind and downwind areas of CTSP during Jan. and Oct. 2013 by using micro-orifice uniform deposited impactor (MOUDI). Correlation analysis, hierarchical cluster analysis and particle mass-size distribution analysis are performed to identify the source of metal-rich particle near the CTSP. Analyses of elemental compositions and particle size distributions emitted from the CTSP revealed that the CTSP emits some metals (V, As, In Ga, Cd and Cu) in the ultrafine particles (< 1 μm). The statistical analysis combines with the particle mass-size distribution analysis could provide useful source identification information. In airborne particles with the size of 0.32 μm, Ga could be a useful pollution index for optoelectronic and semiconductor emission in the CTSP. Meanwhile, the ratios of As/Ga concentration at the particle size of 0.32 μm demonstrates that humans near the CTSP would be potentially exposed to GaAs ultrafine particles. That is, metals such as Ga and As and other metals that are not regulated in Taiwan are potentially harmful to human health.

  18. An analytical electron microscope study of airborne industrial particles in Sosnowiec, Poland

    NASA Astrophysics Data System (ADS)

    Rietmeijer, Frans J. M.; Janeczek, Janusz

    The types and the relative amounts of airborne particles in the city of Sosnowiec (Poland) during 21-22 June, 1994 were identified by analytical electron microscope analyses. They are mostly aspherical angular Al-bearing silica particles (0.1-5.15 μm) and clusters thereof. Carbonaceous particles form sheets of soluble volatile-rich materials (0.3-33.9 μm) and rare soot. Numerous nanometer-sized Al-bearing silica grains and salt minerals are associated with the larger particles. They resulted from inefficient combustion of low-grade coals by the local industries whereby the silica particles are coal impurities that survived combustion. The total particle emission was constant during a 24 h period but silica shards dominated the nighttime emission while carbonaceous particles abounded during the daytime. This study showed that tropospheric particles in regions dominated by inefficient coal combustion are fundamentally different from typical coal fly ash spheres.

  19. Characteristics of airborne particles inside southern California museums

    NASA Astrophysics Data System (ADS)

    Ligocki, Mary P.; Salmon, Lynn G.; Fall, Theresa; Jones, Michael C.; Nazaroff, William W.; Cass, Glen R.

    The concentrations and chemical composition of suspended particulate matter were measured in both the fine and total size modes inside and outside five southern California museums over summer and winter periods. The seasonally averaged indoor/outdoor ratios for particulate matter mass concentrations ranged from 0.16 to 0.96 for fine particles and from 0.06 to 0.53 for coarse particles, with the lower values observed for buildings with sophisticated ventilation systems which include filters for particulate matter removal. Museums with deliberate particle filtration systems showed indoor fine particle concentrations generally averaging less than 10 μg m -3. One museum with no environmental control system showed indoor fine particle concentrations averaging nearly 60 μg m -3 in winter and coarse particle concentrations in the 30-40 μg m -3 range. Analyses of indoor vs outdoor concentrations of major chemical species indicated that indoor sources of organic matter may exist at all sites, but that none of the other measured species appear to have major indoor sources at the museums studied. Significant fractions of the dark-colored fine elemental (black) carbon and soil dust particles present in outdoor air are able to penetrate to the indoor atmosphere of the museums studied, and may constitute a soiling hazard to works of art displayed in museums.

  20. Airborne particle sizes and sources found in indoor air

    NASA Astrophysics Data System (ADS)

    Owen, M. K.; Ensor, D. S.; Sparks, L. E.

    As concern about indoor air quality (IAQ) has grown in recent years, understanding indoor aerosols has become increasingly important so that control techniques may be implemented to reduce damaging health effects and soiling problems. This paper begins with a brief look at the mechanics of deposition in the lungs and the aerosol dynamics that influence particles at all times. This discussion shows that the particle diameters must be known to predict dose or soiling and to determine efficient mitigation techniques. The particle sizes produced by the various indoor sources, as well as unusual aspects of each type of source, must be known so that this process may begin. This paper summarizes the results of a literature search into the sources, sizes and concentrations of indoor particles. There are several types of indoor particles: plant and animal bioaerosols and mineral, combustion and home/personal care aerosols. These types may be produced indoors or outdoors, entering through building openings. The sources may be short term, seasonal or continuous. Particle sizes produced vary from submicrometer to larger than 10 μm. The particles may be toxic or allergenic. This information is presented in a summary table and is discussed in the text.

  1. Real-time monitoring of non-viable airborne particles correlates with airborne colonies and represents an acceptable surrogate for daily assessment of cell-processing cleanroom performance

    PubMed Central

    RAVAL, JAY S.; KOCH, EILEEN; DONNENBERG, ALBERT D.

    2014-01-01

    Background aims Airborne particulate monitoring is mandated as a component of good manufacturing practice. We present a procedure developed to monitor and interpret airborne particulates in an International Organization for Standardization (ISO) class 7 cleanroom used for the cell processing of Section 351 and Section 361 products. Methods We collected paired viable and non-viable airborne particle data over a period of 1 year in locations chosen to provide a range of air quality. We used receiver operator characteristic (ROC) analysis to determine empirically the relationship between non-viable and viable airborne particle counts. Results Viable and non-viable particles were well-correlated (r 2 = 0.78), with outlier observations at the low end of the scale (non-viable particles without detectable airborne colonies). ROC analysis predicted viable counts ≥0.5/feet 3 (a limit set by the United States Pharmacopeia) at an action limit of ≥32 000 particles (≥0.5 μ)/feet 3 , with 95.6% sensitivity and 50% specificity. This limit was exceeded 2.6 times during 18 months of retrospective daily cleanroom data (an expected false alarm rate of 1.3 times/year). After implementing this action limit, we were alerted in real time to an air-handling failure undetected by our hospital facilities management. Conclusions A rational action limit for non-viable particles was determined based on the correlation with airborne colonies. Reaching or exceeding the action limit of 32 000 non-viable particles/feet 3 triggers suspension of cleanroom cell-processing activities, deep cleaning, investigation of air handling, and a deviation management process. Our full procedure for particle monitoring is available as an online supplement. PMID:22746538

  2. Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles

    NASA Astrophysics Data System (ADS)

    Hill, Steven C.; Pinnick, Ronald G.; Nachman, Paul; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1995-10-01

    We have assembled an aerosol-fluorescence spectrum analyzer (AFS), which can measure the fluorescence spectra and elastic scattering of airborne particles as they flow through a laser beam. The aerosols traverse a scattering cell where they are illuminated with intense (50 kW/cm 2) light inside the cavity of an argon-ion laser operating at 488 nm. This AFS can obtain fluorescence spectra of individual dye-doped polystyrene microspheres as small as 0.5 mu m in diameter. The spectra obtained from microspheres doped with pink and green-yellow dyes are clearly different. We have also detected the fluorescence spectra of airborne particles (although not single particles) made from various

  3. [Filter efficiency of commercial face masks in capturing particles and airborne bacteria].

    PubMed

    Minakami, K; Obara, T; Yamauchi, C

    1986-07-01

    The filter efficiency of seven kinds of commercial face mask for particles and airborne bacteria was tested in the wash room of a laboratory animal facility. The filter efficiency of the masks was 19 to 50%, as measured by the weight of particles with diameters below 10 micron, 22 to 71% for particles of the 0.3 micron level, 47 to 90% for the 1 micron level, and 90 to 99.6% for the 5 micron level. The filter efficiency for airborne bacteria was 35 to 81%. Among these even masks tested, glasswool surgery masks, three-sheet synthetic fiber masks with and without charcoal, and 28-sheet gauze masks with glass filter showed generally high efficiency, and single-sheet synthetic fiber masks, 18-sheet of gauze masks and gas masks showed low efficiency.

  4. Direct Characterization of Airborne Particles Associated with Arsenic-rich Mine Tailings: Particle Size Mineralogy and Texture

    SciTech Connect

    M Corriveau; H Jamieson; M Parsons; J Campbell; A Lanzirotti

    2011-12-31

    Windblown and vehicle-raised dust from unvegetated mine tailings can be a human health risk. Airborne particles from As-rich abandoned Au mine tailings from Nova Scotia, Canada have been characterized in terms of particle size, As concentration, As oxidation state, mineral species and texture. Samples were collected in seven aerodynamically fractionated size ranges (0.5-16 {micro}m) using a cascade impactor deployed at three tailings fields. All three sites are used for recreational activities and off-road vehicles were racing on the tailings at two mines during sample collection. Total concentrations of As in the <8 {micro}m fraction varied from 65 to 1040 ng/m{sup 3} of air as measured by proton-induced X-ray emission (PIXE) analysis. The same samples were analysed by synchrotron-based microfocused X-ray absorption near-edge spectroscopy ({micro}XANES) and X-ray diffraction ({micro}XRD) and found to contain multiple As-bearing mineral species, including Fe-As weathering products. The As species present in the dust were similar to those observed in the near-surface tailings. The action of vehicles on the tailings surface may disaggregate material cemented with Fe arsenate and contribute additional fine-grained As-rich particles to airborne dust. Results from this study can be used to help assess the potential human health risks associated with exposure to airborne particles from mine tailings.

  5. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm³. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 10⁴ /cm³ and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  6. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  7. Airborne digital holographic system for cloud particle measurements.

    PubMed

    Fugal, Jacob P; Shaw, Raymond A; Saw, Ewe Wei; Sergeyev, Aleksandr V

    2004-11-10

    An in-line holographic system for in situ detection of atmospheric cloud particles [Holographic Detector for Clouds (HOLODEC)] has been developed and flown on the National Center for Atmospheric Research C-130 research aircraft. Clear holograms are obtained in daylight conditions at typical aircraft speeds of 100 m s(-1). The instrument is fully digital and is interfaced to a control and data-acquisition system in the aircraft via optical fiber. It is operable at temperatures of less than -30 degrees C and at typical cloud humidities. Preliminary data from the experiment show its utility for studies of the three-dimensional spatial distribution of cloud particles and ice crystal shapes.

  8. Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety

    PubMed Central

    Peters, TM; Elzey, S; Johnson, R; Park, H; Grassian, VH; Maher, T; O'Shaughnessy, P

    2016-01-01

    Two methods were used to distinguish airborne engineered nanomaterials from other airborne particles in a facility that produces nano-structured lithium titanate metal oxide powder. The first method involved off-line analysis of filter samples collected with conventional respirable samplers at each of seven locations (six near production processes and one outdoors). Throughout most of the facility and outdoors, respirable mass concentrations were low (<0.050 mg m−3) and were attributed to particles other than the nanomaterial (<10% by mass titanium determined with inductively coupled plasma atomic emission spectrometry). In contrast, in a single area with extensive material handling, mass concentrations were greatest (0.118 mg m−3) and contained up to 39% +/− 11% lithium titanium, indicating the presence of airborne nanomaterial. Analysis of the filter samples collected in this area by transmission electron microscope and scanning electron microscope revealed that the airborne nanomaterial was associated only with spherical aggregates (clusters of fused 10–80 nm nanoparticles) that were larger than 200 nm. This analysis also showed that nanoparticles in this area were the smallest particles of a larger distribution of submicrometer chain agglomerates likely from welding in an adjacent area of the facility. The second method used two, hand-held, direct-reading, battery-operated instruments to obtain a time series of very fine particle number (<300 nm), respirable mass, and total mass concentration, which were then related to activities within the area of extensive material handling. This activity-based monitoring showed that very fine particle number concentrations (<300 nm) had no apparent correlation to worker activities, but that sharp peaks in the respirable and total mass concentration coincided with loading a hopper and replacing nanomaterial collection bags. These findings were consistent with those from the filter-based method in that they

  9. AIRBORNE PARTICLE SIZES AND SOURCES FOUND IN INDOOR AIR

    EPA Science Inventory

    The paper summarizes results of a literature search into the sources, sizes, and concentrations of particles in indoor air, including the various types: plant, animal, mineral, combustion, home/personal care, and radioactive aerosols. This information, presented in a summary figu...

  10. Evaluation of cell sorting aerosols and containment by an optical airborne particle counter.

    PubMed

    Xie, Mike; Waring, Michael T

    2015-08-01

    Understanding aerosols produced by cell sorting is critical to biosafety risk assessment and validation of containment efficiency. In this study an Optical Airborne Particle Counter was used to analyze aerosols produced by the BD FACSAria and to assess the effectiveness of its aerosol containment. The suitability of using this device to validate containment was directly compared to the Glo-Germ method put forth by the International Society for Advancement of Cytometry (ISAC) as a standard for testing. It was found that high concentrations of aerosols ranging from 0.3 µm to 10 µm can be detected in failure mode, with most less than 5 µm. In most cases, while numerous aerosols smaller than 5 µm were detected by the Optical Airborne Particle Counter, no Glo-Germ particles were detected, indicating that small aerosols are under-evaluated by the Glo-Germ method. The results demonstrate that the Optical Airborne Particle Counter offers a rapid, economic, and quantitative analysis of cell sorter aerosols and represents an improved method over Glo-Germ for the task of routine validation and monitoring of aerosol containment for cell sorting. PMID:26012776

  11. Identification and characterization of individual airborne volcanic ash particles by Raman microspectroscopy.

    PubMed

    Ivleva, Natalia P; Huckele, Susanne; Weinzierl, Bernadett; Niessner, Reinhard; Haisch, Christoph; Baumann, Thomas

    2013-11-01

    We present for the first time the Raman microspectroscopic identification and characterization of individual airborne volcanic ash (VA) particles. The particles were collected in April/May 2010 during research aircraft flights, which were performed by Deutsches Zentrum für Luft- und Raumfahrt in the airspace near the Eyjafjallajökull volcano eruption and over Europe (between Iceland and Southern Germany). In addition, aerosol particles were sampled by an Electrical Low Pressure Impactor in Munich, Germany. As references for the Raman analysis, we used the spectra of VA collected at the ground near the place of eruption, of mineral basaltic rock, and of different minerals from a database. We found significant differences in the spectra of VA and other aerosol particles (e.g., soot, nitrates, sulfates, and clay minerals), which allowed us to identify VA among other atmospheric particulate matter. Furthermore, while the airborne VA shows a characteristic Raman pattern (with broad band from ca. 200 to ca. 700 cm(-1) typical for SiO₂ glasses and additional bands of ferric minerals), the differences between the spectra of aged and fresh particles were observed, suggesting differences in their chemical composition and/or structure. We also analyzed similarities between Eyjafjallajökull VA particles collected at different sampling sites and compared the particles with a large variety of glassy and crystalline minerals. This was done by applying cluster analysis, in order to get information on the composition and structure of volcanic ash. PMID:24121468

  12. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit.

    PubMed

    Licina, Dusan; Bhangar, Seema; Brooks, Brandon; Baker, Robyn; Firek, Brian; Tang, Xiaochen; Morowitz, Michael J; Banfield, Jillian F; Nazaroff, William W

    2016-01-01

    Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC) system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses' station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3-1 μm) particles. The mean indoor particle mass concentrations averaged across the size range 0.3-10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3). Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37-81%. Near-room indoor emissions and outdoor sources contributed 18-59% and 1-5%, respectively. Airborne particle levels in the size range 1-10 μm showed strong dependence on human activities, indicating the importance of indoor

  13. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit

    PubMed Central

    Licina, Dusan; Bhangar, Seema; Brooks, Brandon; Baker, Robyn; Firek, Brian; Tang, Xiaochen; Morowitz, Michael J.; Banfield, Jillian F.; Nazaroff, William W.

    2016-01-01

    Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC) system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses’ station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3–1 μm) particles. The mean indoor particle mass concentrations averaged across the size range 0.3–10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3). Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37–81%. Near-room indoor emissions and outdoor sources contributed 18–59% and 1–5%, respectively. Airborne particle levels in the size range 1–10 μm showed strong dependence on human activities, indicating the importance of indoor

  14. Airborne measurements of gas and particle pollutants during CAREBeijing-2008

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Zhu, T.; Yang, W.; Bai, Z.; Sun, Y. L.; Xu, Y.; Yin, B.; Zhao, X.

    2014-01-01

    Measurements of gaseous pollutants - including ozone (O3), sulfur dioxide (SO2), nitrogen oxides (NOX = NO + NO2), carbon monoxide (CO), particle number concentrations (5.6-560 nm and 0.47-30 μm) - and meteorological parameters (T, RH, P) were conducted during the Campaigns of Air Quality Research in Beijing and Surrounding Regions in 2008 (CAREBeijing-2008), from 27 August through 13 October 2008. The data from a total 18 flights (70 h flight time) from near the surface to 2100 m altitude were obtained with a Yun-12 aircraft in the southern surrounding areas of Beijing (38-40° N, 114-118° E). The objectives of these measurements were to characterize the regional variation of air pollution during and after the Olympics of 2008, determine the importance of air mass trajectories and to evaluate of other factors that influence the pollution characteristics. The results suggest that there are primarily four distinct sources that influenced the magnitude and properties of the pollutants in the measured region based on back-trajectory analysis: (1) southerly transport of air masses from regions with high pollutant emissions, (2) northerly and northeasterly transport of less pollutant air from further away, (3) easterly transport from maritime sources where emissions of gaseous pollutant are less than from the south but still high in particle concentrations, and (4) the transport of air that is a mixture from different regions; that is, the air at all altitudes measured by the aircraft was not all from the same sources. The relatively long-lived CO concentration is shown to be a possible transport tracer of long-range transport from the northwesterly direction, especially at the higher altitudes. Three factors that influenced the size distribution of particles - i.e., air mass transport direction, ground source emissions and meteorological influences - are also discussed.

  15. Physical and chemical characterization of airborne particles from welding operations in automotive plants.

    PubMed

    Dasch, Jean; D'Arcy, James

    2008-07-01

    Airborne particles were characterized from six welding operations in three automotive plants, including resistance spot welding, metal inert gas (MIG) welding and tungsten inert gas (TIG) welding of aluminum and resistance spot welding, MIG welding and weld-through sealer of galvanized steel. Particle levels were measured throughout the process area to select a sampling location, followed by intensive particle sampling over one working shift. Temporal trends were measured, and particles were collected on filters to characterize their size and chemistry. In all cases, the particles fell into a bimodal size distribution with very large particles >20 mum in diameter, possibly emitted as spatter or metal expulsions, and very small particles about 1 mum in diameter, possibly formed from condensation of vaporized metal. The mass median aerodynamic diameter was about 1 mum, with only about 7% of the particle mass present as ultrafine particles <100 nm. About half the mass of aluminum welding particles could be accounted for by chemical analysis, with the remainder possibly present as oxygen. Predominant species were organic carbon, elemental carbon, iron, and aluminum. More than 80% of the particle mass could be accounted for from steel welding, primarily present as iron, organic carbon, zinc, and copper. Particle concentrations and elemental concentrations were compared with allowable concentrations as recommended by the Occupational Safety and Health Administration and the American Conference of Governmental Industrial Hygienists. In all cases, workplace levels were at least 11 times lower than recommended levels. PMID:18464098

  16. Physical and chemical characterization of airborne particles from welding operations in automotive plants.

    PubMed

    Dasch, Jean; D'Arcy, James

    2008-07-01

    Airborne particles were characterized from six welding operations in three automotive plants, including resistance spot welding, metal inert gas (MIG) welding and tungsten inert gas (TIG) welding of aluminum and resistance spot welding, MIG welding and weld-through sealer of galvanized steel. Particle levels were measured throughout the process area to select a sampling location, followed by intensive particle sampling over one working shift. Temporal trends were measured, and particles were collected on filters to characterize their size and chemistry. In all cases, the particles fell into a bimodal size distribution with very large particles >20 mum in diameter, possibly emitted as spatter or metal expulsions, and very small particles about 1 mum in diameter, possibly formed from condensation of vaporized metal. The mass median aerodynamic diameter was about 1 mum, with only about 7% of the particle mass present as ultrafine particles <100 nm. About half the mass of aluminum welding particles could be accounted for by chemical analysis, with the remainder possibly present as oxygen. Predominant species were organic carbon, elemental carbon, iron, and aluminum. More than 80% of the particle mass could be accounted for from steel welding, primarily present as iron, organic carbon, zinc, and copper. Particle concentrations and elemental concentrations were compared with allowable concentrations as recommended by the Occupational Safety and Health Administration and the American Conference of Governmental Industrial Hygienists. In all cases, workplace levels were at least 11 times lower than recommended levels.

  17. Predicting emissions of SVOCs from polymeric materials and their interaction with airborne particles.

    PubMed

    Xu, Ying; Little, John C

    2006-01-15

    A model that predicts the emission rate of volatile organic compounds (VOCs) from building materials is extended and used to predict the emission rate of semivolatile organic compounds (SVOCs) from polymeric materials. Reasonable agreement between model predictions and gas-phase di-2-ethylhexyl phthalate (DEHP) concentrations is achieved using data collected in a previous experimental study that measured emissions of DEHP from vinyl flooring in two very different chambers. While emissions of highly volatile VOCs are subject to "internal" control (the material-phase diffusion coefficient), emissions of the very low volatility SVOCs are subject to "external" control (partitioning into the gas phase, the convective mass-transfer coefficient, and adsorption onto interior surfaces). The effect of SVOCs partitioning onto airborne particles is also examined. The DEHP emission rate is increased when the gas-phase concentration is high, and especially when partitioning to the airborne particles is strong. Airborne particles may play an important role in inhalation exposure as well as in transporting SVOCs well beyond the source. Although more rigorous validation is needed, the model should help elucidate the mechanisms governing emissions of phthalate plasticizers, brominated flame retardants, biocides, and other SVOCs from a wide range of building materials and consumer products. PMID:16468389

  18. Total airborne mold particle sampling: evaluation of sample collection, preparation and counting procedures, and collection devices.

    PubMed

    Godish, Diana; Godish, Thad

    2008-02-01

    This study was conducted to evaluate (i) procedures used to collect, prepare, and count total airborne mold spore/particle concentrations, and (ii) the relative field performance of three commercially available total airborne mold spore/particle sampling devices. Differences between factory and laboratory airflow calibration values of axial fan-driven sampling instruments (used in the study) indicated a need for laboratory calibration using a mass flow meter to ensure that sample results were accurately calculated. An aniline blue-amended Calberla's solution adjusted to a pH of 4.2-4.4 provided good sample mounting/counting results using Dow Corning high vacuum grease, Dow Corning 280A adhesive, and Dow Corning 316 silicone release spray for samples collected using mini-Burkard and Allergenco samplers. Count variability among analysts was most pronounced in 5% counts of relatively low mold particle deposition density samples and trended downward with increased count percentage and particle deposition density. No significant differences were observed among means of 5, 10, and 20% counts and among analysts; a significant interaction effect was observed between analysts' counts and particle deposition densities. Significantly higher mini-Burkard and Air-O-Cell total mold spore/particle counts for 600x vs. 400x (1.9 and 2.3 x higher, respectively), 1000x vs. 600x (1.9 and 2.2 x higher, respectively) and 1000x vs. 400x (3.6 and 4.6 x higher, respectively) comparisons indicated that 1000x magnification counts best quantified total airborne mold spore/particles using light microscopy, and that lower magnification counts may result in unacceptable underreporting of airborne mold spore/particle concentrations. Modest but significantly higher (1.2x) total mold spore concentrations were observed with Allergenco vs. mini-Burkard samples collected in co-located, concurrently operated sampler studies; moderate but significantly higher mini-Burkard count values (1.4x) were

  19. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    PubMed

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  20. Concentration and characterization of airborne particles in Tehran's subway system.

    PubMed

    Kamani, Hosein; Hoseini, Mohammad; Seyedsalehi, Mahdi; Mahdavi, Yousef; Jaafari, Jalil; Safari, Gholam Hosein

    2014-06-01

    Particulate matter is an important air pollutant, especially in closed environments like underground subway stations. In this study, a total of 13 elements were determined from PM10 and PM2.5 samples collected at two subway stations (Imam Khomeini and Sadeghiye) in Tehran's subway system. Sampling was conducted in April to August 2011 to measure PM concentrations in platform and adjacent outdoor air of the stations. In the Imam Khomeini station, the average concentrations of PM10 and PM2.5 were 94.4 ± 26.3 and 52.3 ± 16.5 μg m(-3) in the platform and 81.8 ± 22.2 and 35 ± 17.6 μg m(-3) in the outdoor air, respectively. In the Sadeghiye station, mean concentrations of PM10 and PM2.5 were 87.6 ± 23 and 41.3 ± 20.4 μg m(-3) in the platform and 73.9 ± 17.3 and 30 ± 15 μg m(-3), in the outdoor air, respectively. The relative contribution of elemental components in each particle fraction were accounted for 43% (PM10) and 47.7% (PM2.5) in platform of Imam Khomeini station and 15.9% (PM10) and 18.5% (PM2.5) in the outdoor air of this station. Also, at the Sadeghiye station, each fraction accounted for 31.6% (PM10) and 39.8% (PM2.5) in platform and was 11.7% (PM10) and 14.3% (PM2.5) in the outdoor. At the Imam Khomeini station, Fe was the predominant element to represent 32.4 and 36 % of the total mass of PM10 and PM2.5 in the platform and 11.5 and 13.3% in the outdoor, respectively. At the Sadeghiye station, this element represented 22.7 and 29.8% of total mass of PM10 and PM2.5 in the platform and 8.7 and 10.5% in the outdoor air, respectively. Other major crustal elements were 5.8% (PM10) and 5.3% (PM2.5) in the Imam Khomeini station platform and 2.3 and 2.4% in the outdoor air, respectively. The proportion of other minor elements was significantly lower, actually less than 7% in total samples, and V was the minor concentration in total mass of PM10 and PM2.5 in both platform stations. PMID:24573466

  1. Airborne lidar measurements of smoke plume distribution, vertical transmission, and particle size.

    PubMed

    Uthe, E E; Morley, B M; Nielsen, N B

    1982-02-01

    Observations were made of a dense smoke plume downwind from a forest fire using the ALPHA-1 two-wavelength downward-looking airborne lidar system. Facsimile displays derived from lidar signatures depict plume dimensions, boundary layer height, and underlying terrain elevation. Surface returns are interpreted in terms of vertical transmission as function of cross-plume distance. Results show significantly greater plume attenuation at 0.53-microm wavelength than at 1.06-microm, indicating ~0.1-microm mean particle diameters or the presence of gaseous constituents that absorb the visible radiation. These results demonstrate the potential of multiple-wavelength airborne lidar for quantitative analysis of atmospheric particulate and gaseous constituents. PMID:20372478

  2. Characterization and control of airborne particles emitted during production of epoxy/carbon nanotube nanocomposites.

    PubMed

    Cena, Lorenzo G; Peters, Thomas M

    2011-02-01

    This work characterized airborne particles generated from the weighing of bulk, multiwall carbon nanotubes (CNTs) and the manual sanding of epoxy test samples reinforced with CNTs. It also evaluated the effectiveness of three local exhaust ventilation (LEV) conditions (no LEV, custom fume hood, and biosafety cabinet) for control of particles generated during sanding of CNT-epoxy nanocomposites. Particle number and respirable mass concentrations were measured using an optical particle counter (OPC) and a condensation particle counter (CPC), and particle morphology was assessed by transmission electron microscopy. The ratios of the geometric mean (GM) concentrations measured during the process to that measured in the background (P/B ratios) were used as indices of the impact of the process and the LEVs on observed concentrations. Processing CNT-epoxy nanocomposites materials released respirable size airborne particles (P/B ratio: weighing = 1.79; sanding = 5.90) but generally no nanoparticles (P/B ratio ∼1). The particles generated during sanding were predominantly micron sized with protruding CNTs and very different from bulk CNTs that tended to remain in large (>1 μm) tangled clusters. Respirable mass concentrations in the operator's breathing zone were lower when sanding was performed in the biological safety cabinet (GM = 0.20 μg/m(3) compared with those with no LEV (GM = 2.68 μg/m(3) or those when sanding was performed inside the fume hood (GM = 21.4 μg/m(3); p-value < 0.0001). The poor performance of the custom fume hood used in this study may have been exacerbated by its lack of a front sash and rear baffles and its low face velocity (0.39 m/sec). PMID:21253981

  3. A Novel Size-Selective Airborne Particle Sampling Instrument (Wras) for Health Risk Evaluation

    NASA Astrophysics Data System (ADS)

    Gnewuch, H.; Muir, R.; Gorbunov, B.; Priest, N. D.; Jackson, P. R.

    Health risks associated with inhalation of airborne particles are known to be influenced by particle sizes. A reliable, size resolving sampler, classifying particles in size ranges from 2 nm—30 μm and suitable for use in the field would be beneficial in investigating health risks associated with inhalation of airborne particles. A review of current aerosol samplers highlighted a number of limitations. These could be overcome by combining an inertial deposition impactor with a diffusion collector in a single device. The instrument was designed for analysing mass size distributions. Calibration was carried out using a number of recognised techniques. The instrument was tested in the field by collecting size resolved samples of lead containing aerosols present at workplaces in factories producing crystal glass. The mass deposited on each substrate proved sufficient to be detected and measured using atomic absorption spectroscopy. Mass size distributions of lead were produced and the proportion of lead present in the aerosol nanofraction calculated and varied from 10% to 70% by weight.

  4. A Lagrangian particle model to predict the airborne spread of foot-and-mouth disease virus

    NASA Astrophysics Data System (ADS)

    Mayer, D.; Reiczigel, J.; Rubel, F.

    Airborne spread of bioaerosols in the boundary layer over a complex terrain is simulated using a Lagrangian particle model, and applied to modelling the airborne spread of foot-and-mouth disease (FMD) virus. Two case studies are made with study domains located in a hilly region in the northwest of the Styrian capital Graz, the second largest town in Austria. Mountainous terrain as well as inhomogeneous and time varying meteorological conditions prevent from application of so far used Gaussian dispersion models, while the proposed model can handle these realistically. In the model, trajectories of several thousands of particles are computed and the distribution of virus concentration near the ground is calculated. This allows to assess risk of infection areas with respect to animal species of interest, such as cattle, swine or sheep. Meteorological input data like wind field and other variables necessary to compute turbulence were taken from the new pre-operational version of the non-hydrostatic numerical weather prediction model LMK ( Lokal-Modell-Kürzestfrist) running at the German weather service DWD ( Deutscher Wetterdienst). The LMK model provides meteorological parameters with a spatial resolution of about 2.8 km. To account for the spatial resolution of 400 m used by the Lagrangian particle model, the initial wind field is interpolated upon the finer grid by a mass consistent interpolation method. Case studies depict a significant influence of local wind systems on the spread of virus. Higher virus concentrations at the upwind side of the hills and marginal concentrations in the lee are well observable, as well as canalization effects by valleys. The study demonstrates that the Lagrangian particle model is an appropriate tool for risk assessment of airborne spread of virus by taking into account the realistic orographic and meteorological conditions.

  5. Concentration, Size Distribution, and Infectivity of Airborne Particles Carrying Swine Viruses

    PubMed Central

    Alonso, Carmen; Raynor, Peter C.; Davies, Peter R.; Torremorell, Montserrat

    2015-01-01

    When pathogens become airborne, they travel associated with particles of different size and composition. Particle size determines the distance across which pathogens can be transported, as well as the site of deposition and the survivability of the pathogen. Despite the importance of this information, the size distribution of particles bearing viruses emitted by infectious animals remains unknown. In this study we characterized the concentration and size distribution of inhalable particles that transport influenza A virus (IAV), porcine reproductive and respiratory syndrome virus (PRRSV), and porcine epidemic diarrhea virus (PEDV) generated by acutely infected pigs and assessed virus viability for each particle size range. Aerosols from experimentally infected pigs were sampled for 24 days using an Andersen cascade impactor able to separate particles by size (ranging from 0.4 to 10 micrometer (μm) in diameter). Air samples collected for the first 9, 20 and the last 3 days of the study were analyzed for IAV, PRRSV and PEDV, respectively, using quantitative reverse transcription polymerase chain reaction (RT-PCR) and quantified as geometric mean copies/m3 within each size range. IAV was detected in all particle size ranges in quantities ranging from 5.5x102 (in particles ranging from 1.1 to 2.1μm) to 4.3x105 RNA copies/m3 in the largest particles (9.0–10.0μm). PRRSV was detected in all size ranges except particles between 0.7 and 2.1μm in quantities ranging from 6x102 (0.4–0.7μm) to 5.1x104 RNA copies/m3 (9.0–10.0μm). PEDV, an enteric virus, was detected in all particle sizes and in higher quantities than IAV and PRRSV (p < 0.0001) ranging from 1.3x106 (0.4–0.7μm) to 3.5x108 RNA copies/m3 (9.0–10.0μm). Infectious status was demonstrated for the 3 viruses, and in the case of IAV and PRRSV, viruses were isolated from particles larger than 2.1μm. In summary, our results indicated that airborne PEDV, IAV and PRRSV can be found in a wide range of

  6. Analysing the health effects of simultaneous exposure to physical and chemical properties of airborne particles

    PubMed Central

    Pirani, Monica; Best, Nicky; Blangiardo, Marta; Liverani, Silvia; Atkinson, Richard W.; Fuller, Gary W.

    2015-01-01

    Background Airborne particles are a complex mix of organic and inorganic compounds, with a range of physical and chemical properties. Estimation of how simultaneous exposure to air particles affects the risk of adverse health response represents a challenge for scientific research and air quality management. In this paper, we present a Bayesian approach that can tackle this problem within the framework of time series analysis. Methods We used Dirichlet process mixture models to cluster time points with similar multipollutant and response profiles, while adjusting for seasonal cycles, trends and temporal components. Inference was carried out via Markov Chain Monte Carlo methods. We illustrated our approach using daily data of a range of particle metrics and respiratory mortality for London (UK) 2002–2005. To better quantify the average health impact of these particles, we measured the same set of metrics in 2012, and we computed and compared the posterior predictive distributions of mortality under the exposure scenario in 2012 vs 2005. Results The model resulted in a partition of the days into three clusters. We found a relative risk of 1.02 (95% credible intervals (CI): 1.00, 1.04) for respiratory mortality associated with days characterised by high posterior estimates of non-primary particles, especially nitrate and sulphate. We found a consistent reduction in the airborne particles in 2012 vs 2005 and the analysis of the posterior predictive distributions of respiratory mortality suggested an average annual decrease of − 3.5% (95% CI: − 0.12%, − 5.74%). Conclusions We proposed an effective approach that enabled the better understanding of hidden structures in multipollutant health effects within time series analysis. It allowed the identification of exposure metrics associated with respiratory mortality and provided a tool to assess the changes in health effects from various policies to control the ambient particle matter mixtures. PMID:25795926

  7. Measurements of Ultra-fine and Fine Aerosol Particles over Siberia: Large-scale Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail; Paris, Jean-Daniel; Stohl, Andreas; Belan, Boris; Ciais, Philippe; Nédélec, Philippe

    2010-05-01

    In this paper we discuss the results of in-situ measurements of ultra-fine and fine aerosol particles carried out in the troposphere from 500 to 7000 m in the framework of several International and Russian State Projects. Number concentrations of ultra-fine and fine aerosol particles measured during intensive airborne campaigns are presented. Measurements carried over a great part of Siberia were focused on particles with diameters from 3 to 21 nm to study new particle formation in the free/upper troposphere over middle and high latitudes of Asia, which is the most unexplored region of the Northern Hemisphere. Joint International airborne surveys were performed along the following routes: Novosibirsk-Salekhard-Khatanga-Chokurdakh-Pevek-Yakutsk-Mirny-Novosibirsk (YAK-AEROSIB/PLARCAT2008 Project) and Novosibirsk-Mirny-Yakutsk-Lensk-Bratsk-Novosibirsk (YAK-AEROSIB Project). The flights over Lake Baikal was conducted under Russian State contract. Concentrations of ultra-fine and fine particles were measured with automated diffusion battery (ADB, designed by ICKC SB RAS, Novosibirsk, Russia) modified for airborne applications. The airborne ADB coupled with CPC has an additional aspiration unit to compensate ambient pressure and changing flow rate. It enabled to classify nanoparticles in three size ranges: 3-6 nm, 6-21 nm, and 21-200 nm. To identify new particle formation events we used similar specific criteria as Young et al. (2007): (1) N3-6nm >10 cm-3, (2) R1=N3-6/N621 >1 and R2=N321/N21200 >0.5. So when one of the ratios R1 or R2 tends to decrease to the above limits the new particle formation is weakened. It is very important to notice that space scale where new particle formation was observed is rather large. All the events revealed in the FT occurred under clean air conditions (low CO mixing ratios). Measurements carried out in the atmospheric boundary layer over Baikal Lake did not reveal any event of new particle formation. Concentrations of ultra

  8. COLLECTION OF AIRBORNE PARTICLES BY A HIGH-GRADIENT PERMANENT MAGNETIC METHOD

    SciTech Connect

    Cheng, Mengdawn; Allman, Steve L; Ludtka, Gerard Michael; Avens, Larry R

    2014-01-01

    We report on the use of magnetic force in collection of airborne particles by a high- gradient permanent magnetic separation (HGPMS) device. Three aerosol particles of different magnetic susceptibility (NaCl, CuO, and Fe2O3) were generated in the electrical mobility size range of 10 to 200 nm and were used to study HGPMS collection. One HGPMS matrix element, made of stainless steel wool, was used in the device configuration. Three flow rates were selected to simulate the environmental wind speeds of interest to the study. Magnetic force was found to exhibit an insignificant effect on the separation of NaCl particles, even in the HGPMS configuration. Diffusion was a major mechanism in the removal of the diamagnetic particles; however, diffusion is insignificant under the influence of a high-gradient magnetic field for paramagnetic or ferromagnetic particles. The HGPMS showed high-performance collection (> 99%) of paramagnetic CuO and ferromagnetic Fe2O3 particles for particle sizes greater than or equal to 60 nm. As the wind speed increases, the influence of the magnetic force weakens, and the capability to remove particles from the gas stream diminishes. The results suggest that the HGPMS principle could be explored for development of an advanced miniaturized passive aerosol collector.

  9. Dielectrophoretic separation of airborne microbes and dust particles using a microfluidic channel for real-time bioaerosol monitoring.

    PubMed

    Moon, Hui-Sung; Nam, Yun-Woo; Park, Jae Chan; Jung, Hyo-Il

    2009-08-01

    Airborne microbes such as fungi, bacteria, and viruses are a threat to public health. Robust and real-time detection systems are necessary to prevent and control such dangerous biological particles in public places and dwellings. For direct and real-time detection of airborne microbes, samples must be collected and typically resuspended in liquid prior to detection; however, environmental particles such as dust are also trapped in such samples. Therefore, the isolation of target bacteria or a selective collection of microbes from unwanted nonbiological particles prior to detection is of great importance. Dielectrophoresis (DEP), the translational motion of charge neutral matter in nonuniform electric fields, is an emerging technique that can rapidly separate biological particles in microfluidics because low voltages produce significant and contactless forces on particles without any modification or labeling. In this paper, we propose a new method for the separation of airborne microbes using DEP with a simple and novel curved electrode design for separating bacteria in a solution containing beads or dust that are taken from an airborne environmental sample. Using this method, we successfully isolated 90% of the airborne bacterium Micrococcus luteus from a mixture of bacteria and dust using a microfluidic device, consisting of novel curved electrodes that attract bacteria and repel or leave dust particles. As there has been little research on analyzing environmental samples using microfluidics and DEP, this work describes a novel strategy for a rapid and direct bioaerosol monitoring system.

  10. Airborne particle concentration and meteorologic conditions associated with pneumonia incidence in feedlot cattle

    SciTech Connect

    MacVean, D.W.; Franzen, D.K.; Keefe, T.J.; Bennett, B.W.

    1986-12-01

    To elucidate the role of air quality on the occurrence of pneumonia in feedlot cattle, the following environmental values were measured at a feedlot: suspended particulates in 5 particle-size fractions, relative humidity, air temperature, and barometric pressure. Pneumonia incidence data were classified by the number of days the cattle had been at the feedlot (days on feed). The concentration of airborne particles, range of temperature, days on feed, and season of the year were associated with incidence of pneumonia in cattle. Pneumonia incidence rates were greatest both within 15 days of arrival at the feedlot and during the fall sampling periods. The incidence of pneumonia in the 16 to 30 days-on-feed group was closely associated with the concentration of particles 2.0 to 3.3 microns in diameter and the range of daily temperature when exposure occurred 15 days before the onset of disease in the fall and 10 days before in the spring.

  11. Genotoxic activity of extractable organic matter from urban airborne particles in Shanghai, China.

    PubMed

    Zhao, Xiansi; Wan, Zhi; Chen, Gang; Zhu, Huigang; Jiang, Shunhui; Yao, Jiaqing

    2002-02-15

    The aim of this research is to investigate the impact of air pollution on the population in Shanghai. The genotoxicity of extractable organic matter (EOM) from the air particles was investigated by the means of the Salmonella plate incorporation assay, rat hepatocyte unscheduled DNA repair assay, and mice micronuclei test. The airborne particles were collected in 13 locations during the summer of 1992 and winter of 1993. The crude extracts were fractionated by acid-base partitioning into acid, base and neutral fractions. The neutral fractions were further fractionated by resin-silica gel column chromatography into three subfractions. The induction of revertants with the crude extracts was higher in winter samples than in summer samples. Both indirect-acting and direct-acting mutagenicity were observed. The mutagenicity was detected with TA98, but was not detected with TA100. The mutagenic activity was the greatest in the acid, aromatic and polar fractions from summer samples. The fractions from the winter samples did not show clear differences. There was no substantial location-related variance in the mutagenic potencies of EOM, but substantial location- or time-related variances in the mutagenic potencies of the airborne particles per cubic meter air were found. While rat hepatocyte unscheduled DNA synthesis (UDS) assay revealed genotoxicity for all the samples, there was no big variance in the genotoxicity of the fractions. The mouse micronuclei test showed results similar to the UDS assay. The difference of locality did not have statistical significance.

  12. A microfluidics-based on-chip impinger for airborne particle collection.

    PubMed

    Mirzaee, I; Song, M; Charmchi, M; Sun, H

    2016-06-21

    Capturing airborne particles from air into a liquid is a critical process for the development of many sensors and analytical systems. A miniaturized airborne particle sampling device (microimpinger) has been developed in this research. The microimpinger relies on a controlled bubble generation process produced by driving air through microchannel arrays. The particles confined in the microscale bubbles are captured in the sampling liquid while the bubbles form, are released and travel in a millimetre-scale sealed liquid reservoir. The microchannel arrays in the impinger are fabricated using a soft-lithography method with polydimethylsiloxane (PDMS) as the structural material. To prevent air leakage at the connections, a PDMS-only sealing technique is successfully developed. The hydrophobicity of the microchannel surface is found to be critical for generating continuous and stable bubbles in the bubbling process. A Teflon layer is coated on the walls of a microchannel array by vapor deposition which effectively increases the hydrophobicity of the PDMS. The collection efficiency of the microimpinger is measured by counting different sizes of fluorescent polystyrene latex particles on polycarbonate membrane filters. Collection efficiencies above 90% are achieved. Furthermore, the particle capturing mechanisms during the injection, formation and rise of a single microbubble are investigated by a computational fluid dynamics (CFD) model. The Navier-Stokes equations are solved along with the use of the volume-of-fluid (VOF) method to capture the bubble deformations and the particles are tracked using a Lagrangian equation of motion. The model is also employed to study the effect of bubble size on the collection efficiency of the microimpinger.

  13. A microfluidics-based on-chip impinger for airborne particle collection.

    PubMed

    Mirzaee, I; Song, M; Charmchi, M; Sun, H

    2016-06-21

    Capturing airborne particles from air into a liquid is a critical process for the development of many sensors and analytical systems. A miniaturized airborne particle sampling device (microimpinger) has been developed in this research. The microimpinger relies on a controlled bubble generation process produced by driving air through microchannel arrays. The particles confined in the microscale bubbles are captured in the sampling liquid while the bubbles form, are released and travel in a millimetre-scale sealed liquid reservoir. The microchannel arrays in the impinger are fabricated using a soft-lithography method with polydimethylsiloxane (PDMS) as the structural material. To prevent air leakage at the connections, a PDMS-only sealing technique is successfully developed. The hydrophobicity of the microchannel surface is found to be critical for generating continuous and stable bubbles in the bubbling process. A Teflon layer is coated on the walls of a microchannel array by vapor deposition which effectively increases the hydrophobicity of the PDMS. The collection efficiency of the microimpinger is measured by counting different sizes of fluorescent polystyrene latex particles on polycarbonate membrane filters. Collection efficiencies above 90% are achieved. Furthermore, the particle capturing mechanisms during the injection, formation and rise of a single microbubble are investigated by a computational fluid dynamics (CFD) model. The Navier-Stokes equations are solved along with the use of the volume-of-fluid (VOF) method to capture the bubble deformations and the particles are tracked using a Lagrangian equation of motion. The model is also employed to study the effect of bubble size on the collection efficiency of the microimpinger. PMID:27185303

  14. A real-time monitoring system for airborne particle shape and size analysis

    NASA Astrophysics Data System (ADS)

    Kaye, P. H.; Alexander-Buckley, K.; Hirst, E.; Saunders, S.; Clark, J. M.

    1996-08-01

    This paper describes a new instrument for the study of airborne particles. The instrument performs a rapid analysis of the transient spatial intensity distribution of laser-light scattered by individual aerosol particles drawn from an ambient environment and uses this to characterize the particles in terms of both size and shape parameters. Analyses are carried out at peak particle throughput rates of up to 10,000 particles per second, and semiquantitative data relating to the size and shape (or more correctly asymmetry) spectra of the sampled particles are provided to the user via a graphical display which is refreshed or updated at 5-s intervals. In addition to the real-time display of data, continuous data recording allows subsequent replay of measurements at either normal or high speed. Preliminary experimental results are given for aerosols of both spherical and nonspherical particle types, and these suggest the instrument may find use in environmental monitoring of aerosols or clouds where some real-time semiquantitative assessment of particulate size and shape spectra may be desirable as an aid to characterizing the aerosol and its constituent particulate species.

  15. Characterization of airborne particles generated from metal active gas welding process.

    PubMed

    Guerreiro, C; Gomes, J F; Carvalho, P; Santos, T J G; Miranda, R M; Albuquerque, P

    2014-05-01

    This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm(3) of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure. PMID:24730680

  16. Characterization of airborne particles generated from metal active gas welding process.

    PubMed

    Guerreiro, C; Gomes, J F; Carvalho, P; Santos, T J G; Miranda, R M; Albuquerque, P

    2014-05-01

    This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm(3) of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure.

  17. Characterisation of airborne particles collected within and proximal to an opencast coalmine: South Wales, U.K.

    PubMed

    Jones, Tim; Blackmore, Pete; Leach, Matt; Bérubé, Kelly; Sexton, Keith; Richards, Roy

    2002-05-01

    Airborne particulate matter has been collected from within, and proximal to, an opencast coal mine in south Wales. This work forms the first part of a three year project to collect and characterise, then determine the possible toxicology of airborne particles in the south Wales region. High-resolution Field Emission SEM has shown that the coal mine dusts consist largely of an assemblage of mineral grains and vehicle exhaust particles. SEM-EDX has shown that the mineralogical make-up of the PM10 is complex, heterogeneous, and constantly changing. These findings are supported by analytical TEM-EPXMA. However, patterns can be determined relating the mineralogical composition of the airborne particles to collection locations and mining activities within the opencast. At our study opencast, Park Slip West, quartz, which has known health effects, never exceeded 30% of the total collection mass, and average levels were much less. Vehicle exhaust emissions was the largest source in terms of particle numbers. The mass of airborne particulate matter within the pit averaged approximately twice that of outside the pit: importantly however, this higher mass was due to relatively large, and non-respirable, mineral grains. This study demonstrates that the physicochemical and mineralogical characterisation of airborne particles from mining and quarrying is essential to quantify the respirable fraction, and to identify potentially hazardous components within the PM10. PMID:12004982

  18. Characterisation of airborne particles collected within and proximal to an opencast coalmine: South Wales, U.K.

    PubMed

    Jones, Tim; Blackmore, Pete; Leach, Matt; Bérubé, Kelly; Sexton, Keith; Richards, Roy

    2002-05-01

    Airborne particulate matter has been collected from within, and proximal to, an opencast coal mine in south Wales. This work forms the first part of a three year project to collect and characterise, then determine the possible toxicology of airborne particles in the south Wales region. High-resolution Field Emission SEM has shown that the coal mine dusts consist largely of an assemblage of mineral grains and vehicle exhaust particles. SEM-EDX has shown that the mineralogical make-up of the PM10 is complex, heterogeneous, and constantly changing. These findings are supported by analytical TEM-EPXMA. However, patterns can be determined relating the mineralogical composition of the airborne particles to collection locations and mining activities within the opencast. At our study opencast, Park Slip West, quartz, which has known health effects, never exceeded 30% of the total collection mass, and average levels were much less. Vehicle exhaust emissions was the largest source in terms of particle numbers. The mass of airborne particulate matter within the pit averaged approximately twice that of outside the pit: importantly however, this higher mass was due to relatively large, and non-respirable, mineral grains. This study demonstrates that the physicochemical and mineralogical characterisation of airborne particles from mining and quarrying is essential to quantify the respirable fraction, and to identify potentially hazardous components within the PM10.

  19. Characterization of Exposures to Airborne Nanoscale Particles During Friction Stir Welding of Aluminum

    PubMed Central

    Pfefferkorn, Frank E.; Bello, Dhimiter; Haddad, Gilbert; Park, Ji-Young; Powell, Maria; Mccarthy, Jon; Bunker, Kristin Lee; Fehrenbacher, Axel; Jeon, Yongho; Virji, M. Abbas; Gruetzmacher, George; Hoover, Mark D.

    2010-01-01

    Friction stir welding (FSW) is considered one of the most significant developments in joining technology over the last half century. Its industrial applications are growing steadily and so are the number of workers using this technology. To date, there are no reports on airborne exposures during FSW. The objective of this study was to investigate possible emissions of nanoscale (<100 nm) and fine (<1 μm) aerosols during FSW of two aluminum alloys in a laboratory setting and characterize their physicochemical composition. Several instruments measured size distributions (5 nm to 20 μm) with 1-s resolution, lung deposited surface areas, and PM2.5 concentrations at the source and at the breathing zone (BZ). A wide range aerosol sampling system positioned at the BZ collected integrated samples in 12 stages (2 nm to 20 μm) that were analyzed for several metals using inductively coupled plasma mass spectrometry. Airborne aerosol was directly collected onto several transmission electron microscope grids and the morphology and chemical composition of collected particles were characterized extensively. FSW generates high concentrations of ultrafine and submicrometer particles. The size distribution was bimodal, with maxima at ∼30 and ∼550 nm. The mean total particle number concentration at the 30 nm peak was relatively stable at ∼4.0 × 105 particles cm−3, whereas the arithmetic mean counts at the 550 nm peak varied between 1500 and 7200 particles cm−3, depending on the test conditions. The BZ concentrations were lower than the source concentrations by 10–100 times at their respective peak maxima and showed higher variability. The daylong average metal-specific concentrations were 2.0 (Zn), 1.4 (Al), and 0.24 (Fe) μg m−3; the estimated average peak concentrations were an order of magnitude higher. Potential for significant exposures to fine and ultrafine aerosols, particularly of Al, Fe, and Zn, during FSW may exist, especially in larger scale industrial

  20. Characterization of exposures to airborne nanoscale particles during friction stir welding of aluminum.

    PubMed

    Pfefferkorn, Frank E; Bello, Dhimiter; Haddad, Gilbert; Park, Ji-Young; Powell, Maria; McCarthy, Jon; Bunker, Kristin Lee; Fehrenbacher, Axel; Jeon, Yongho; Virji, M Abbas; Gruetzmacher, George; Hoover, Mark D

    2010-07-01

    Friction stir welding (FSW) is considered one of the most significant developments in joining technology over the last half century. Its industrial applications are growing steadily and so are the number of workers using this technology. To date, there are no reports on airborne exposures during FSW. The objective of this study was to investigate possible emissions of nanoscale (<100 nm) and fine (<1 microm) aerosols during FSW of two aluminum alloys in a laboratory setting and characterize their physicochemical composition. Several instruments measured size distributions (5 nm to 20 microm) with 1-s resolution, lung deposited surface areas, and PM(2.5) concentrations at the source and at the breathing zone (BZ). A wide range aerosol sampling system positioned at the BZ collected integrated samples in 12 stages (2 nm to 20 microm) that were analyzed for several metals using inductively coupled plasma mass spectrometry. Airborne aerosol was directly collected onto several transmission electron microscope grids and the morphology and chemical composition of collected particles were characterized extensively. FSW generates high concentrations of ultrafine and submicrometer particles. The size distribution was bimodal, with maxima at approximately 30 and approximately 550 nm. The mean total particle number concentration at the 30 nm peak was relatively stable at approximately 4.0 x 10(5) particles cm(-3), whereas the arithmetic mean counts at the 550 nm peak varied between 1500 and 7200 particles cm(-3), depending on the test conditions. The BZ concentrations were lower than the source concentrations by 10-100 times at their respective peak maxima and showed higher variability. The daylong average metal-specific concentrations were 2.0 (Zn), 1.4 (Al), and 0.24 (Fe) microg m(-3); the estimated average peak concentrations were an order of magnitude higher. Potential for significant exposures to fine and ultrafine aerosols, particularly of Al, Fe, and Zn, during FSW may

  1. Immunochemical quantification and particle size distribution of airborne papain in a meat portioning facility.

    PubMed

    Swanson, M C; Boiano, J M; Galson, S K; Grauvogel, L W; Reed, C E

    1992-01-01

    The use of enzymes in industry continues to expand. With this increased use comes a concerted need to better understand potential respiratory health hazards to exposed workers and to quantify exposure levels that cause impaired health. To this end, projects were undertaken by the National Institute for Occupational Safety and Health (NIOSH) Health Hazard Evaluations Program and Cole Associates whereby this information was collected. Data concerning medical evaluation and aspects of industrial hygiene are the subjects of two separate reports from these respective groups. This method/results report includes a description of (1) a sensitive immunoradiometric assay for the quantification of airborne papain and its particle size distribution, (2) measurement of papain from both general area and personal breathing zone air samples obtained from a meat processing plant that used this immunochemical analysis, (3) a sampling strategy, and (4) an improved air sample processing technique. Airborne papain was measured at levels ranging from low nanogram to microgram per cubic meter concentrations. Approximately half of the papain activity was associated with particles having an aerodynamic diameter of less than 9.4 microns. These data point to a need for containment and controls in the manufacture and use of such compounds. This approach can be considered by the hygienist as an effective tool to be used in conjunction with epidemiologic studies to help set standards that are practical, safe, and maintained. PMID:1590216

  2. A comparison study on airborne particles during haze days and non-haze days in Beijing.

    PubMed

    Sun, Zhenquan; Mu, Yujing; Liu, Yanju; Shao, Longyi

    2013-07-01

    Airborne particles in Beijing during haze days and non-haze days were collected by an eleven-stage cascade impactor (MOUDI 110, MSP, USA), and the mass concentrations and water soluble inorganic ions of the size segregated airborne particles were quantitatively analyzed. PM10 concentrations during haze days ranged from 250.5 to 519.4 μgm(-3) which were about 3-8 times greater than those (ranged from 67.6 to 94.0 μgm(-3)) during non-haze days, and PM1.8 concentrations during haze periods were in the range of 117.6-378.6 μgm(-3) which were 3-14 times higher than those (27.0 to 36.8 μgm(-3)) during non-haze days. In comparison with non-haze days, all water soluble inorganic ions investigated in the airborne particles greatly enhanced during haze days. NH₄(+), NO₃(-) and SO₄(2-) were found to be the dominant water soluble inorganic ions, accounting for 91-95% of the total inorganic ions in PM1.8 during haze days, and 73-81% during non-haze days. The size distributions of SO₄(2-), NO₃(-), Cl(-), K(+) and Na(+) exhibited bimodal types, while single mode was found for NH₄(+), Ca(2+) and Mg(2+). Only with exception of Ca(2+) and Mg(2+), all ions were concentrated in fine particles around 0.56-1.0 μm of "droplet mode" during haze days, while 0.32-0.56 μm of "condensation mode" during non-haze days. The extremely high mole ratio (>2) of [NH4(+)]/[SO₄(2-)] during haze days implied that the main form of ammonium in PM1.8 might be (NH4)₂SO₄ and NH₄NO₃. The mass ratio of NO₃(-)/SO₄(2-) was >1 in PM1.8 during haze days and ~1 during non-haze days, indicating that NOx from the vehicle exhaust in Beijing is playing more and more important role on fine particle formation.

  3. In situ real-time measurement of physical characteristics of airborne bacterial particles

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hee; Lee, Jung Eun

    2013-12-01

    Bioaerosols, including aerosolized bacteria, viruses, and fungi, are associated with public health and environmental problems. One promising control method to reduce the harmful effects of bioaerosols is thermal inactivation via a continuous-flow high-temperature short-time (HTST) system. However, variations in bioaerosol physical characteristics - for example, the particle size and shape - during the continuous-flow inactivation process can change the transport properties in the air, which can affect particle deposition in the human respiratory system or the filtration efficiency of ventilation systems. Real-time particle monitoring techniques are a desirable alternative to the time-consuming process of microscopic analysis that is conventionally used in sampling and particle characterization. Here, we report in situ real-time optical scattering measurements of the physical characteristics of airborne bacteria particles following an HTST process in a continuous-flow system. Our results demonstrate that the aerodynamic diameter of bacterial aerosols decreases when exposed to a high-temperature environment, and that the shape of the bacterial cells is significantly altered. These variations in physical characteristics using optical scattering measurements were found to be in agreement with the results of scanning electron microscopy analysis.

  4. Size and composition of airborne particles from pavement wear, tires, and traction sanding.

    PubMed

    Kupiainen, Kaarle J; Tervahattu, Heikki; Räisänen, Mika; Mäkelä, Timo; Aurela, Minna; Hillamo, Risto

    2005-02-01

    Mineral matter is an important component of airborne particles in urban areas. In northern cities of the world, mineral matter dominates PM10 during spring because of enhanced road abrasion caused by the use of antiskid methods, including studded tires and traction sanding. In this study, factors that affect formation of abrasion components of springtime road dust were assessed. Effects of traction sanding and tires on concentrations, mass size distribution, and composition of the particles were studied in a test facility. Lowest particle concentrations were observed in tests without traction sanding. The concentrations increased when traction sand was introduced and continued to increase as a function of the amount of aggregate dispersed. Emissions were additionally affected by type of tire, properties of traction sand aggregate, and driving speed. Aggregates with high fragmentation resistance and coarse grain size distribution had the lowest emissions. Over 90% of PM10 was mineral particles. Mineralogy of the dust and source apportionment showed that they originated from both traction sand and pavement aggregates. The remaining portion was mostly carbonaceous and originated from tires and road bitumen. Mass size distributions were dominated by coarse particles. Contribution of fine and submicron size ranges were approximately 15 and 10% in PM10, respectively. PMID:15757329

  5. Abradable dual-density ceramic turbine seal system

    NASA Technical Reports Server (NTRS)

    Clingman, D. L.; Schechter, B.; Cross, K. R.; Cavanagh, J. R.

    1981-01-01

    A plasma sprayed dual density ceramic abradable seal system for direct application to the HPT seal shroud of small gas turbine engines. The system concept is based on the thermal barrier coating and depends upon an additional layer of modified density ceramic material adjacent to the gas flow path to provide the desired abradability. This is achieved by codeposition of inert fillers with yttria stabilized zirconia (YSZ) to interrupt the continuity of the zirconia struture. The investigation of a variety of candidate fillers, with hardness values as low as 2 on Moh's scale, led to the conclusion that solid filler materials in combination with a YSZ matrix, regardless of their hardness values, have a propensity for compacting rather than shearing as originally expected. The observed compaction is accompanied by high energy dissipation in the rub interaction, usually resulting in the adhesive transfer of blade material to the stationary seal member. Two YSZ based coating systems which incorported hollow alumino silicate spheres as density reducing agents were surveyed over the entire range of compositions from 100 percent filler to 100 percent YSZ. Abradability and erosion characteristics were determined, hardness and permeability characterized, and engine experience acquired with several system configurations.

  6. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles

    NASA Astrophysics Data System (ADS)

    Hagino, Hiroyuki; Oyama, Motoaki; Sasaki, Sousuke

    2016-04-01

    To measure driving-distance-based mass emission factors for airborne brake wear particulate matter (PM; i.e., brake wear particles) related to the non-asbestos organic friction of brake assembly materials (pads and lining), and to characterize the components of brake wear particles, a brake wear dynamometer with a constant-volume sampling system was developed. Only a limited number of studies have investigated brake emissions under urban city driving cycles that correspond to the tailpipe emission test (i.e., JC08 or JE05 mode of Japanese tailpipe emission test cycles). The tests were performed using two passenger cars and one middle-class truck. The observed airborne brake wear particle emissions ranged from 0.04 to 1.4 mg/km/vehicle for PM10 (particles up to 10 μm (in size), and from 0.04 to 1.2 mg/km/vehicle for PM2.5. The proportion of brake wear debris emitted as airborne brake wear particles was 2-21% of the mass of wear. Oxygenated carbonaceous components were included in the airborne PM but not in the original friction material, which indicates that changes in carbon composition occurred during the abrasion process. Furthermore, this study identified the key tracers of brake wear particles (e.g., Fe, Cu, Ba, and Sb) at emission levels comparable to traffic-related atmospheric environments.

  7. The control by ventilation of airborne bacterial transfer between hospital patients, and its assessment by means of a particle tracer

    PubMed Central

    Foord, N.; Lidwell, O. M.

    1972-01-01

    A simple and convenient particle tracer for studies of the effectiveness of isolation units and other places in limiting the airborne transfer of bacteria is described. Particles of potassium iodide 7-8 μm. diameter are generated by spraying from solution and collected on membrane filters. The particles can be identified by development with 0·1% acid palladium chloride solution, when dark brown spots approximately 100 μm. in diameter are produced. ImagesPlate 1 PMID:4503869

  8. Chemical characterization of individual, airborne sub-10-nm particles and molecules.

    PubMed

    Wang, Shenyi; Zordan, Christopher A; Johnston, Murray V

    2006-03-15

    A nanoaerosol mass spectrometer (NAMS) is described for real-time characterization of individual airborne nanoparticles. The NAMS includes an aerodynamic inlet, quadrupole ion guide, quadrupole ion trap, and time-of-flight mass analyzer. Charged particles in the aerosol are drawn through the aerodynamic inlet, focused through the ion guide, and captured in the ion trap. Trapped particles are irradiated with a high-energy laser pulse to reach the "complete ionization limit" where each particle is thought to be completely disintegrated into atomic ions. In this limit, the relative signal intensities of the atomic ions give the atomic composition. The method is first demonstrated with sucrose particles produced with an electrospray generator. Under the conditions used, the particle detection efficiency (fraction of charged particles entering the inlet that are subsequently analyzed) reaches a maximum of 10(-4) at 9.5 nm in diameter and the size distribution of trapped particles has a geometric standard deviation of 1.1 based on a log-normal distribution. A method to deconvolute overlapping multiply charged ions (e.g. C3+ and O4+) is presented. When applied to sucrose spectra, the measured C/O atomic ratio is 1.1, which matches the expected ratio from the molecular formula. The spectra of singly charged bovine serum albumin (BSA) molecules are also presented, and the measured and expected C/N/O atomic ratios are within 15% of the each other. Also observed in the BSA spectra are signals from 13C and 32S which arise from 40 and approximately 34 atoms per molecule (particle), respectively. Potential applications of NAMS to atmospheric chemistry and biotechnology are briefly discussed. PMID:16536407

  9. Airborne bacteria transported with Sahara dust particles from Northern Africa to the European Alps

    NASA Astrophysics Data System (ADS)

    Lazzaro, A.; Meola, M.

    2015-12-01

    The Sahara Desert is the most important source of aerosols transported across the Mediterranean towards Europe. Airborne microorganisms associated with aerosols may be transported over long distances and act as colonizers of distant habitats. However, little is known on the composition and viability of such microorganisms, due to difficulties related to their detection, collection and isolation. Here we describe an in-depth assessment of the bacterial communities associated with Sahara dust (SD) particles deposited on snow. Two distinct SD events reaching the European Alps in February and May 2014 were preserved as distinct ochre-coloured layers within the snowpack. In June 2014, we collected samples from a snow profile at 3621 m a.s.l. close to the Jungfraujoch (Swiss Alps). SD particles were analyzed by Scanning Electron Microscopy and Energy-Dispersive X-Ray Spectroscopy (SEM-EDX). Backward trajectories were calculated using the NOAA HYSPLIT model. Bacterial communities were charac-terized by MiSeq Illumina sequencing of the 16S rRNA gene. Microbial physiological profiles were assessed by incubation of samples on BIOLOG plates. The SD-layers were generally enriched in illite and kaolinite particles as compared to the adjacent snow layers. The source of SD could be traced back to Algeria. We observed distinct bacterial community structures in the SD-layers as compared to the clean snow layers. While sporulating bacteria were not enriched in the SD-layers, low abundant (<1%) phyla such as Gemmatimonadetes and Deinococcus-Thermus appeared to be specific bioindicators for SD. Both phyla are adapted to arid oligotrophic environments and UV radiation and thus are well suited to survive the harsh conditions of long-distance airborne transport. Our results show that bacteria are viable and metabolically active after the trek to the European Alps.

  10. Characterisation of nano- and micron-sized airborne and collected subway particles, a multi-analytical approach.

    PubMed

    Midander, Klara; Elihn, Karine; Wallén, Anna; Belova, Lyuba; Karlsson, Anna-Karin Borg; Wallinder, Inger Odnevall

    2012-06-15

    Continuous daily measurements of airborne particles were conducted during specific periods at an underground platform within the subway system of the city center of Stockholm, Sweden. Main emphasis was placed on number concentration, particle size distribution, soot content (analyzed as elemental and black carbon) and surface area concentration. Conventional measurements of mass concentrations were conducted in parallel as well as analysis of particle morphology, bulk- and surface composition. In addition, the presence of volatile and semi volatile organic compounds within freshly collected particle fractions of PM(10) and PM(2.5) were investigated and grouped according to functional groups. Similar periodic measurements were conducted at street level for comparison. The investigation clearly demonstrates a large dominance in number concentration of airborne nano-sized particles compared to coarse particles in the subway. Out of a mean particle number concentration of 12000 particles/cm(3) (7500 to 20000 particles/cm(3)), only 190 particles/cm(3) were larger than 250 nm. Soot particles from diesel exhaust, and metal-containing particles, primarily iron, were observed in the subway aerosol. Unique measurements on freshly collected subway particle size fractions of PM(10) and PM(2.5) identified several volatile and semi-volatile organic compounds, the presence of carcinogenic aromatic compounds and traces of flame retardants. This interdisciplinary and multi-analytical investigation aims to provide an improved understanding of reported adverse health effects induced by subway aerosols. PMID:22551935

  11. Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach for Airborne Particle Analysis

    SciTech Connect

    Bruns, Emily A.; Perraud, Veronique M.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-07-15

    Secondary organic aerosols (SOA) formed in the atmosphere from the condensation of semivolatile oxidation products are a significant component of airborne particles which have deleterious effects on health, visibility, and climate. In this study, atmospheric solids analysis probe mass spectrometry (ASAP-MS) is applied for the first time to the identification of organics in particles from laboratory systems as well as from ambient air. SOA were generated in the laboratory from the ozonolysis of r-pinene and isoprene, as well as from NO3 oxidation of r-pinene, and ambient air was sampled at forested and suburban sites. Particles were collected by impaction on ZnSe disks, analyzed by Fourier transform-infrared spectroscopy (FT-IR) and then transferred to an ASAP-MS probe for further analysis. ASAP-MS data for the laboratory-generated samples show peaks from wellknown products of these reactions, and higher molecular weight oligomers are present in both laboratory and ambient samples. Oligomeric products are shown to be present in the NO3 reaction products for the first time. A major advantage of this technique is that minimal sample preparation is required, and complementary information from nondestructive techniques such as FT-IR can be obtained on the same samples. In addition, a dedicated instrument is not required for particle analysis. This work establishes that ASAP-MS will be useful for identification of organic components of SOA in a variety of field and laboratory studies.

  12. Occupational exposure to airborne particles and other pollutants in an aviation base.

    PubMed

    Buonanno, Giorgio; Bernabei, Manuele; Avino, Pasquale; Stabile, Luca

    2012-11-01

    The occupational exposure to airborne particles and other pollutants in a high performance jet engine airport was investigated. Three spatial scales were considered: i) a downwind receptor site, ii) close to the airstrip, iii) personal monitoring. Particle number, surface area, mass concentrations and distributions were measured as well as inorganic and organic fractions, ionic fractions and Polycyclic Aromatic Hydrocarbons. Particle number distribution measured at a receptor site presents a mode of 80 nm and an average total concentration of 6.5 × 10(3) part. cm(-3); the chemical analysis shows that all the elements may be attributed to long-range transport from the sea. Particle number concentrations in the proximity of the airstrip show short term peaks during the working day mainly related to takeoff, landing and pre-flight operations of jet engines. Personal exposure of workers highlights a median number concentration of 2.5 × 10(4) part. cm(-3) and 1.7 × 10(4) part. cm(-3) for crew chief and hangar operator. PMID:22771354

  13. Induction of sister chromatid exchanges and bacterial revertants by organic extracts of airborne particles. [Humans

    SciTech Connect

    Lockard, J.M.; Viau, C.J.; Lee-Stephens, C.; Caldwell, J.C.; Wojciechowski, J.P.; Enoch, H.G.; Sabharwal, P.S.

    1981-01-01

    The genotoxicities of organic extracts of airborne particles have been studied extensively in the Salmonella/mammalian microsome (Ames) test, but in few other bioassays. In these studies, we tested benzene-acetone extracts of particulate pollutants collected in Lexington, Kentucky, for capacity to induce increases in sister chromatid exchanges (SCE) in human lumphocytes and V79 cells, as well as in the Ames assay. Extracts induced linear dose-related increases in SCE in human lumphocytes and in bacterial revertants.However, variable responses were observed in SCE assays in V79 cells with and without activation by rat liver S9 or feeder layers of irradiated Syrian hamster fetal cells. We conclude that the SCE assay in human lumphocytes may be a useful indicator of the potential risks to humans of airborne particulate pollutants, as it utilizes human cells recently taken from the host, is rapid and economical, and requires small quantities of test materials. However, thorough studies of the quantitative relationships between SCE induction and mutagenicity in human cells are needed.

  14. Performance of N95 respirators: filtration efficiency for airborne microbial and inert particles.

    PubMed

    Qian, Y; Willeke, K; Grinshpun, S A; Donnelly, J; Coffey, C C

    1998-02-01

    In 1995 the National Institute for Occupational Safety and Health issued new regulations for nonpowered particulate respirators (42 CFR Part 84). A new filter certification system also was created. Among the new particulate respirators that have entered the market, the N95 respirator is the most commonly used in industrial and health care environments. The filtration efficiencies of unloaded N95 particulate respirators have been compared with those of dust/mist (DM) and dust/fume/mist (DFM) respirators certified under the former regulations (30 CFR Part 11). Through laboratory tests with NaCl certification aerosols and measurements with particle-size spectrometers, N95 respirators were found to have higher filtration efficiencies than DM and DFM respirators and noncertified surgical masks. N95 respirators made by different companies were found to have different filtration efficiencies for the most penetrating particle size (0.1 to 0.3 micron), but all were at least 95% efficient at that size for NaCl particles. Above the most penetrating particle size the filtration efficiency increases with size; it reaches approximately 99.5% or higher at about 0.75 micron. Tests with bacteria of size and shape similar to Mycobacterium tuberculosis also showed filtration efficiencies of 99.5% or higher. Experimental data were used to calculate the aerosol mass concentrations inside the respirator when worn in representative work environments. The penetrated mass fractions, in the absence of face leakage, ranged from 0.02% for large particle distributions to 1.8% for submicrometer-size welding fumes. Thus, N95 respirators provide excellent protection against airborne particles when there is a good face seal. PMID:9487666

  15. Personal exposure to airborne particles and metals: results from the Particle TEAM study in Riverside, California.

    PubMed

    Ozkaynak, H; Xue, J; Spengler, J; Wallace, L; Pellizzari, E; Jenkins, P

    1996-01-01

    The PTEAM Study was the first large-scale probability-based study of personal exposure to particles. Sponsored by the U.S. Environmental Protection Agency (EPA) and the Air Resources Board of California, it was carried out by the Research Triangle Institute (RTI) and the Harvard University School of Public Health (HSPH). HSPH designed and constructed a 4-lpm, battery-operated personal monitor for inhalable particles (PM10) that could be worn comfortably for up to 14 hours by persons from 10 to 70 years old. The monitor was worn for two consecutive 12-hour periods (day and night) during the fall of 1990 by 178 participants representing 139,000 nonsmoking residents of Riverside, California. Nearly identical monitors were employed to collect concurrent indoor and outdoor samples. The monitors were equipped with a different sampling nozzle to collect fine particles (PM2.5). Population-weighted daytime personal PM10 exposures averaged 150 +/- 9 (SE) micrograms/m3, compared to concurrent indoor and outdoor concentrations of 95 +/- 6 micrograms/m3. This suggested the existence of excess mass near the person, a "personal cloud" that appeared related to personal activities. Fourteen of 15 prevalent elements also were evaluated in the personal samples. The two major indoor sources of indoor particles were smoking and cooking; even in these homes, however, more than half of the indoor particles came from outdoors, and a substantial portion of the indoor particles were of undetermined indoor origin. Outdoor concentrations near the homes were well correlated with outdoor concentrations at the central site, supporting the idea of using the central site as an indicator of of ambient concentrations over a wider area. Indoor concentrations were only weakly correlated with outdoor concentrations, however, and personal exposures were even more poorly correlated with outdoor concentrations. Elemental profiles were obtained for environmental tobacco smoke (ETS) (major contributions

  16. Wind barriers suppress fugitive dust and soil-derived airborne particles in arid regions

    SciTech Connect

    Grantz, D.A.; Vaughn, D.L.; Farber, R.J.; Kim, B.; Ashbaugh, L.; Van Curen, T.; Campbell, R.

    1998-07-01

    Areas of abandoned agricultural land in the Antelope Valley, western Mojave (high) desert of California have proven in the previous studies to be recalcitrant to conventional tillage and revegetation strategies designed to suppress wind erosion of soil and transport of sediment and fugitive dust. These areas represented a continuing source of drifting sand and of coarse and respirable suspended particulate matter. The traditional techniques failed because furrows collapsed and the water holding capacity of the overburden was too low to support seed germination and transplant survival. In this study a variety of wind barriers were evaluated for suppression of sediment transport. Airborne particles were measured with an array of coarse particle samplers at heights of 0.2, 1.0, and 2.0 m above the soil surface. Discrete artificial wind barriers, consisting of widely spaced roughness elements were effective in suppressing fugitive emissions. Wind fences established along the leeward edge of an area of blowing sand, perpendicular to the prevailing wind, significantly decreased fugitive emissions. Control was greatest and precision of the measurements was highest under high wind conditions. These techniques provide rapid and effective suppression of fugitive emissions of soil-derived particles under conditions that resist conventional tillage and revegetation techniques. A simple, indirect procedure for determining local wind velocity erosion thresholds requiring only sampling of wind run and suspended particulate mass compared favorably with direct measurement of saltation as a function of wind velocity.

  17. Characterisation of airborne particles and associated organic components produced from incense burning.

    PubMed

    Chuang, Hsiao-Chi; Jones, Tim; Chen, Yang; Bell, Jennifer; Wenger, John; BéruBé, Kelly

    2011-12-01

    Airborne particles generated from the burning of incense have been characterized in order to gain an insight into the possible implications for human respiratory health. Physical characterization performed using field-emission scanning electron microscopy showed incense particulate smoke mainly consisted of soot particles with fine and ultrafine fractions in various aggregated forms. A range of organic compounds present in incense smoke have been identified using derivatisation reactions coupled with gas chromatography-mass spectrometry analysis. A total of 19 polar organic compounds were positively identified in the samples, including the biomass burning markers levoglucosan, mannosan and galactosan, as well as a number of aromatic acids and phenols. Formaldehyde was among 12 carbonyl compounds detected and predominantly associated with the gas phase, whereas six different quinones were also identified in the incense particulate smoke. The nano-structured incense soot particles intermixed with organics (e.g. formaldehyde and quinones) could increase the oxidative capacity. When considering the worldwide prevalence of incense burning and resulting high respiratory exposures, the oxygenated organics identified in this study have significant human health implications, especially for susceptible populations. PMID:21769554

  18. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    SciTech Connect

    Brockmann, J.E.; Adkins, C.L.J.; Gelbard, F. )

    1991-09-01

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications.

  19. Characterisation of airborne particles and associated organic components produced from incense burning.

    PubMed

    Chuang, Hsiao-Chi; Jones, Tim; Chen, Yang; Bell, Jennifer; Wenger, John; BéruBé, Kelly

    2011-12-01

    Airborne particles generated from the burning of incense have been characterized in order to gain an insight into the possible implications for human respiratory health. Physical characterization performed using field-emission scanning electron microscopy showed incense particulate smoke mainly consisted of soot particles with fine and ultrafine fractions in various aggregated forms. A range of organic compounds present in incense smoke have been identified using derivatisation reactions coupled with gas chromatography-mass spectrometry analysis. A total of 19 polar organic compounds were positively identified in the samples, including the biomass burning markers levoglucosan, mannosan and galactosan, as well as a number of aromatic acids and phenols. Formaldehyde was among 12 carbonyl compounds detected and predominantly associated with the gas phase, whereas six different quinones were also identified in the incense particulate smoke. The nano-structured incense soot particles intermixed with organics (e.g. formaldehyde and quinones) could increase the oxidative capacity. When considering the worldwide prevalence of incense burning and resulting high respiratory exposures, the oxygenated organics identified in this study have significant human health implications, especially for susceptible populations.

  20. Protecting staff against airborne viral particles: in vivo efficiency of laser masks.

    PubMed

    Derrick, J L; Li, P T Y; Tang, S P Y; Gomersall, C D

    2006-11-01

    Laser masks are used to prevent inhalation of viral particles during laser surgery. A crossover trial was performed in eight volunteers to compare the ability of a surgical mask and a laser mask with that of an FFP2 respirator to filter airborne dust particles. The surgical and laser masks were tested when worn normally and when they were taped to the face. The mean reductions in particle counts were 3.0 fold [95% confidence interval (95% CI) 1.8-4.2] for the untaped surgical mask, 3.8 fold (95% CI 2.9-4.6) for the untaped laser mask, 7.5 fold (95% CI 6.5-8.5) for the taped surgical mask, 15.6 fold (95% CI 13.5-17.8) for the taped laser mask, and 102.6 fold (95% CI 41.2-164.1) for the FFP2 half-face respirator. The laser mask provided significantly less protection than the FFP2 respirator (P=0.02), and only marginally more protection than the surgical mask. The continued use of laser masks for respiratory protection is questionable. Taping masks to the face only provided a small improvement in protection.

  1. On the interaction between glyceraldehyde-3-phosphate dehydrogenase and airborne particles: Evidence for electrophilic species

    NASA Astrophysics Data System (ADS)

    Shinyashiki, Masaru; Rodriguez, Chester E.; Di Stefano, Emma W.; Sioutas, Constantinos; Delfino, Ralph J.; Kumagai, Yoshito; Froines, John R.; Cho, Arthur K.

    Many of the adverse health effects of airborne particulate matter (PM) have been attributed to the chemical properties of some of the large number of chemical species present in PM. Some PM component chemicals are capable of generating reactive oxygen species and eliciting a state of oxidative stress. In addition, however, PM can contain chemical species that elicit their effects through covalent bond formation with nucleophilic functions in the cell. In this manuscript, we report the presence of constituents with electrophilic properties in ambient and diesel exhaust particles, demonstrated by their ability to inhibit the thiol enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). GAPDH is irreversibly inactivated by electrophiles under anaerobic conditions by covalent bond formation. This inactivation can be blocked by the prior addition of a high concentration of dithiothreitol (DTT) as an alternate nucleophile. Addition of DTT after the reaction between the electrophile and GAPDH, however, does not reverse the inactivation. This property has been utilized to develop a procedure that provides a quantitative measure of electrophiles present in samples of ambient particles collected in the Los Angeles Basin and in diesel exhaust particles. The toxicity of electrophiles is the result of irreversible changes in biological molecules; recovery is dependent on resynthesis. If the resynthesis is slow, the irreversible effects can be cumulative and manifest themselves after chronic exposure to low levels of electrophiles.

  2. Association of the mutagenicity of airborne particles with the direct emission from combustion processes investigated in Osaka, Japan

    NASA Astrophysics Data System (ADS)

    Kameda, Takayuki; Sanukida, Satoshi; Inazu, Koji; Hisamatsu, Yoshiharu; Maeda, Yasuaki; Takenaka, Norimichi; Bandow, Hiroshi

    The association of the direct-acting mutagenicity of soluble organic fraction of airborne particles toward Salmonella typhimurium YG1024 strain with the direct emission was investigated at a roadside and at a residential area in Osaka, Japan. The direct-acting mutagenicity was evaluated as mutagenic activity per unit volume of ambient air (rev m -3) and/or that per airborne particulate weight collected on a filter (rev mg -1). The annual or diurnal changes of the mutagenicity of airborne particles at the residential site showed similar patterns to those of some gaseous pollutants such as NO 2 and SO 2, which were emitted from combustion processes. This result indicates that the mutagenicity is mainly attributable to the primary emissions. From the analysis of the relationship between the wind sector and the mutagenic intensity, rev m -3 and rev mg -1 values were strongly affected by the emissions from the fixed sources and from the mobile sources, respectively. The rev m -3 value and concentration of 1-nitropyrene (1-NP) in unit per m 3 at the roadside were a factor of 2.6 and 2.8 higher than those at the residential site, respectively, but the rev mg -1 value and concentration of 1-NP in unit per mg at the roadside were substantially comparable to those at the residential area. These observations suggest that the characteristics of the airborne particles can be attributed to the automotive emissions even at the suburban area.

  3. Airborne observations of new particle formation events in the boundary layer using a Zeppelin

    NASA Astrophysics Data System (ADS)

    Lampilahti, Janne; Manninen, Hanna E.; Nieminen, Tuomo; Mirme, Sander; Pullinen, Iida; Yli-Juuti, Taina; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Lehtipalo, Katrianne; Ehn, Mikael; Mentel, Thomas F.; Petäjä, Tuukka; Kulmala, Markku

    2014-05-01

    Atmospheric new particle formation (NPF) is a frequent and ubiquitous process in the atmosphere and a major source of newly formed aerosol particles [1]. However, it is still unclear how the aerosol particle distribution evolves in space and time during an NPF. We investigated where in the planetary boundary layer does NPF begin and how does the aerosol number size distribution develop in space and time during it. We measured in Hyytiälä, southern Finland using ground based and airborne measurements. The measurements were part of the PEGASOS project. NPF was studied on six scientific flights during spring 2013 using a Zeppelin NT class airship. Ground based measurements were simultaneously conducted at SMEAR II station located in Hyytiälä. The flight profiles over Hyytiälä were flown between sunrise and noon during the growth of the boundary layer. The profiles over Hyytiälä covered vertically a distance of 100-1000 meters reaching the mixed layer, stable (nocturnal) boundary layer and the residual layer. Horizontally the profiles covered approximately a circular area of four kilometers in diameter. The measurements include particle number size distribution by Neutral cluster and Air Ion Spectrometer (NAIS), Differential Mobility Particle Sizer (DMPS) and Particle Size Magnifier (PSM) [2], meteorological parameters and position (latitude, longitude and altitude) of the Zeppelin. Beginning of NPF was determined from an increase in 1.7-3 nm ion concentration. Height of the mixed layer was estimated from relative humidity measured on-board the Zeppelin. Particle growth rate during NPF was calculated. Spatial inhomogeneities in particle number size distribution during NPF were located and the birthplace of the particles was estimated using the growth rate and trajectories. We observed a regional NPF event that began simultaneously and evolved uniformly inside the mixed layer. In the horizontal direction we observed a long and narrow high concentration plume of

  4. Preliminary results on the abradability of porous, sintered seal material

    NASA Technical Reports Server (NTRS)

    Wolak, J.; Emery, A. F.; Etemad, S.; Choi, S. R.

    1982-01-01

    Preliminary results are presented for the case of titanium blade specimens, with bare tips (or covered with wear resistant, plasma sprayed materials) rubbing at 100 m/s against specimens of abradable nickel-chromium seal material moving toward the rotating blades at 0.0125 mm/s or at 0.025 mm/s. Using a two component dynamometer, the normal force of the rub interaction was measured and the shear component estimated. The elastoplastic properties of the seal material have been determined and those parameters as well as the rigidity of the rub tester system are considered in conjunction with those affecting the accuracy of the measurement of the forces arising at the blade-seal interface. The average and the 'local instantaneous' temperatures of the seal specimen and the temperature of the blade tip surface during rubbing are presented as functions of time. A seal densification factor is defined and its functional relationships with contact force components, temperature, wear ratio and blade tip abrading capability are indicated.

  5. Corrosion Behavior of an Abradable Seal Coating System

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Xu, Cunguan; Lan, Hao; Huang, Chuanbing; Zhou, Yang; Du, Lingzhong; Zhang, Weigang

    2014-08-01

    A novel NiTi/BN composite abradable coating and two traditional Ni/C and Ni/BN coatings were manufactured with NiAl as the bond layer using thermal spray technology and their corrosion behaviors were investigated. In salt spray corrosion testing of the Ni/BN coating, defective sites of the metal matrix were corroded preferentially. Simulated occlusion experiments and electrochemical tests indicated that migration of ions resulted in pH decrease and Cl- enrichment in defects, and a more aggressive electrolyte led to a decrease of the corrosion potential of the metal inside defects but an increase of the corrosion current density, representing an autocatalytic corrosion process. Moreover, galvanic corrosion between the top and bond coatings of the abradable system was studied via the electrochemical technique. The results showed that, for the NiTi/BN, Ni/BN, and Ni/graphite coatings with a NiAl bond coating, current flow was generated between the anode and cathode. The NiTi/BN coating acted as the cathode due to its passivation, while the Ni/BN and Ni/graphite coatings acted as the anode because of their lower corrosion potential compared with the NiAl coating. The anode suffered serious corrosion damage due to galvanic corrosion, while the cathode corroded only slightly.

  6. Exposure vs toxicity levels of airborne quartz, metal and carbon particles in cast iron foundries.

    PubMed

    Moroni, Beatrice; Viti, Cecilia; Cappelletti, David

    2014-01-01

    Aerosol dust samples and quartz raw materials from different working stations in foundry plants were characterized in order to assess the health risk in this working environment. Samples were analysed by scanning and transmission electron microscopy coupled with image analysis and microanalysis, and by cathodoluminescence spectroscopy. In addition, the concentration and the solubility degree of Fe and other metals of potential health effect (Mn, Zn and Pb) in the bulk samples were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Overall, the results indicate substantial changes in quartz crystal structure and texture when passing from the raw material to the airborne dust, which include lattice defects, non-bridging oxygen hole centres and contamination of quartz grains by metal and/or graphite particles. All these aspects point towards the relevance of surface properties on reactivity. Exposure doses have been estimated based on surface area, and compared with threshold levels resulting from toxicology. The possible synergistic effects of concomitant exposure to inhalable magnetite, quartz and/or graphite particles in the same working environment have been properly remarked. PMID:23385294

  7. Exposure vs toxicity levels of airborne quartz, metal and carbon particles in cast iron foundries.

    PubMed

    Moroni, Beatrice; Viti, Cecilia; Cappelletti, David

    2014-01-01

    Aerosol dust samples and quartz raw materials from different working stations in foundry plants were characterized in order to assess the health risk in this working environment. Samples were analysed by scanning and transmission electron microscopy coupled with image analysis and microanalysis, and by cathodoluminescence spectroscopy. In addition, the concentration and the solubility degree of Fe and other metals of potential health effect (Mn, Zn and Pb) in the bulk samples were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Overall, the results indicate substantial changes in quartz crystal structure and texture when passing from the raw material to the airborne dust, which include lattice defects, non-bridging oxygen hole centres and contamination of quartz grains by metal and/or graphite particles. All these aspects point towards the relevance of surface properties on reactivity. Exposure doses have been estimated based on surface area, and compared with threshold levels resulting from toxicology. The possible synergistic effects of concomitant exposure to inhalable magnetite, quartz and/or graphite particles in the same working environment have been properly remarked.

  8. Comparison of size and geography of airborne tungsten particles in Fallon, Nevada, and Sweet Home, Oregon, with implications for public health.

    PubMed

    Sheppard, Paul R; Bierman, Brian J; Rhodes, Kent; Ridenour, Gary; Witten, Mark L

    2012-01-01

    To improve understanding of possible connections between airborne tungsten and public health, size and geography of airborne tungsten particles collected in Fallon, Nevada, and Sweet Home, Oregon, were compared. Both towns have industrial tungsten facilities, but only Fallon has experienced a cluster of childhood leukemia. Fallon and Sweet Home are similar to one another by their particles of airborne tungsten being generally small in size. Meteorologically, much, if not most, of residential Fallon is downwind of its hard metal facility for at least some fraction of time at the annual scale, whereas little of residential Sweet Home is downwind of its tungsten facility. Geographically, most Fallon residents potentially spend time daily within an environment containing elevated levels of airborne tungsten. In contrast, few Sweet Home residents potentially spend time daily within an airborne environment with elevated levels of airborne tungsten. Although it cannot be concluded from environmental data alone that elevated airborne tungsten causes childhood leukemia, the lack of excessive cancer in Sweet Home cannot logically be used to dismiss the possibility of airborne tungsten as a factor in the cluster of childhood leukemia in Fallon. Detailed modeling of all variables affecting airborne loadings of heavy metals would be needed to legitimately compare human exposures to airborne tungsten in Fallon and Sweet Home.

  9. Comparison of Size and Geography of Airborne Tungsten Particles in Fallon, Nevada, and Sweet Home, Oregon, with Implications for Public Health

    PubMed Central

    Sheppard, Paul R.; Bierman, Brian J.; Rhodes, Kent; Ridenour, Gary; Witten, Mark L.

    2012-01-01

    To improve understanding of possible connections between airborne tungsten and public health, size and geography of airborne tungsten particles collected in Fallon, Nevada, and Sweet Home, Oregon, were compared. Both towns have industrial tungsten facilities, but only Fallon has experienced a cluster of childhood leukemia. Fallon and Sweet Home are similar to one another by their particles of airborne tungsten being generally small in size. Meteorologically, much, if not most, of residential Fallon is downwind of its hard metal facility for at least some fraction of time at the annual scale, whereas little of residential Sweet Home is downwind of its tungsten facility. Geographically, most Fallon residents potentially spend time daily within an environment containing elevated levels of airborne tungsten. In contrast, few Sweet Home residents potentially spend time daily within an airborne environment with elevated levels of airborne tungsten. Although it cannot be concluded from environmental data alone that elevated airborne tungsten causes childhood leukemia, the lack of excessive cancer in Sweet Home cannot logically be used to dismiss the possibility of airborne tungsten as a factor in the cluster of childhood leukemia in Fallon. Detailed modeling of all variables affecting airborne loadings of heavy metals would be needed to legitimately compare human exposures to airborne tungsten in Fallon and Sweet Home. PMID:22523506

  10. Airborne particles of the california central valley alter the lungs of healthy adult rats.

    PubMed Central

    Smith, Kevin R; Kim, Seongheon; Recendez, Julian J; Teague, Stephen V; Ménache, Margaret G; Grubbs, David E; Sioutas, Constantinos; Pinkerton, Kent E

    2003-01-01

    Epidemiologic studies have shown that airborne particulate matter (PM) with a mass median aerodynamic diameter < 10 microm (PM10) is associated with an increase in respiratory-related disease. However, there is a growing consensus that particles < 2.5 microm (PM2.5), including many in the ultrafine (< 0.1 microm) size range, may elicit greater adverse effects. PM is a complex mixture of organic and inorganic compounds; however, those components or properties responsible for biologic effects on the respiratory system have yet to be determined. During the fall and winter of 2000-2001, healthy adult Sprague-Dawley rats were exposed in six separate experiments to filtered air or combined fine (PM2.5) and ultrafine portions of ambient PM in Fresno, California, enhanced approximately 20-fold above outdoor levels. The intent of these studies was to determine if concentrated fine/ultrafine fractions of PM are cytotoxic and/or proinflammatory in the lungs of healthy adult rats. Exposures were for 4 hr/day for 3 consecutive days. The mean mass concentration of particles ranged from 190 to 847 microg/m3. PM was enriched primarily with ammonium nitrate, organic and elemental carbon, and metals. Viability of cells recovered by bronchoalveolar lavage (BAL) from rats exposed to concentrated PM was significantly decreased during 4 of 6 weeks, compared with rats exposed to filtered air (p< 0.05). Total numbers of BAL cells were increased during 1 week, and neutrophil numbers were increased during 2 weeks. These observations strongly suggest exposure to enhanced concentrations of ambient fine/ultrafine particles in Fresno is associated with mild, but significant, cellular effects in the lungs of healthy adult rats. PMID:12782490

  11. What We are Learning about Airborne Particles from MISR Multi-angle Imaging

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph

    The NASA Earth Observing System’s Multi-angle Imaging SpectroRadiometer (MISR) instrument has been collecting global observations in 36 angular-spectral channels about once per week for over 14 years. Regarding airborne particles, MISR is contributing in three broad areas: (1) aerosol optical depth (AOD), especially over land surface, including bright desert, (2) wildfire smoke, desert dust, and volcanic ash injection and near-source plume height, and (3) aerosol type, the aggregate of qualitative constraints on particle size, shape, and single-scattering albedo (SSA). Early advances in the retrieval of these quantities focused on AOD, for which surface-based sun photometers provided a global network of ground truth, and plume height, for which ground-based and airborne lidar offered near-coincident validation data. MSIR monthly, global AOD products contributed directly to the advances in modeling aerosol impacts on climate made between the Inter-governmental Panel on Climate Change (IPCC) third and fourth assessment reports. MISR stereo-derived plume heights are now being used to constrain source inventories for the AeroCom aerosol-climate modeling effort. The remaining challenge for the MISR aerosol effort is to refine and validate our global aerosol type product. Unlike AOD and plume height, aerosol type as retrieved by MISR is a qualitative classification derived from multi-dimensional constraints, so evaluation must be done on a categorical basis. Coincident aerosol type validation data are far less common than for AOD, and, except for rare Golden Days during aircraft field campaigns, amount to remote sensing retrievals from suborbital instruments having uncertainties comparable to those from the MISR product itself. And satellite remote sensing retrievals of aerosol type are much more sensitive to scene conditions such as surface variability and AOD than either AOD or plume height. MISR aerosol type retrieval capability and information content have been

  12. The use of an experimental room for monitoring of airborne concentrations of microorganisms, glass fibers, and total particles

    SciTech Connect

    Buttner, M.P.; Stetzenbach, L.D.

    1996-12-31

    An experimental room was used as a microcosm for studies of airborne particles and microorganisms in indoor environments. The interior of the room measures 4 by 4 by 2.2 m high and has a hardwood floor and the walls and ceiling are sheetrocked and coated with interior latex paint. Exterior walls are 11.4-cm thick plywood panels consisting of two outer sections of plywood insulated with fiber glass batts. The ceiling is of similar construction with 17.1-cm thick panels. Attached to the room entrance is an anteroom equipped with a HEPA-filtered air shower to reduce mixing of air resulting from entering and exiting during experiments. The room is equipped with a computer-controlled heating, ventilation, and cooling system. Temperature, relative humidity, air flow, and room pressure can be continuously monitored by probes located in the room and air handling system components. Several research projects have been conducted using this room including monitoring the potential for airborne glass fibers released from rigid fibrous ductboard, comparisons of commercially available samplers for monitoring of airborne fungal spores, and a study on the efficacy of vacuum bags to minimize dispersal of particles, including fungal spores from fungal-contaminated carpet. During studies designed to monitor airborne fiberglass, air samples were taken in the room serviced by new rigid fibrous glass ductwork, and the results were compared to those obtained in the room with bare metal ductwork installed. Monitoring of airborne fungal spores using the Andersen six-stage sampler, the high flow Spiral Biotech sampler, the Biotest RCS Plus sampler, and the Burkard spore trap sampler was performed following the release of Penicillium spores into the room through the supply register. Dispersal of carpet-associated particles and fungal spores was measured after vacuuming using conventional cellulose vacuum bags in comparison to recently developed bags.

  13. Method of fabricating an abradable gas path seal

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Wisander, D. W. (Inventor)

    1984-01-01

    The thermal shock resistance of a ceramic layer is improved. The invention is particularly directed to an improved abradable lining that is deposited on shroud forming a gas path in turbomachinery. Improved thermal shock resistance of a shroud is effected through the deliberate introduction of benign cracks. These are microcracks which will not propagate appreciably upon exposure to the thermal shock environment in which a turbine seal must function. Laser surface fusion treatment is used to introduce these microcracks. The ceramic surface is laser scanned to form a continuous dense layer. As this layer cools and solidifies, shrinkage results in the formation of a very fine crack network. The presence of this deliberately introduced fine crack network precludes the formation of a catastrophic crack during thermal shock exposure.

  14. Abradable compressor and turbine seals, volume 1. [for turbofan engines

    NASA Technical Reports Server (NTRS)

    Sundberg, D. V.; Dennis, R. E.; Hurst, L. G.

    1979-01-01

    The application and advantages of abradable coatings as gas-path seals in a general aviation turbine engine were evaluated for use on the high-pressure compressor, the high-pressure turbine, and the low-pressure turbine shrouds. Topics covered include: (1) the initial selection of candidate materials for interim full-scale engine testing; (2) interim engine testing of the initially selected materials and additional candidate materials; (3) the design of the component required to adapt the hardware to permit full-scale engine testing of the most promising materials; (4) finalization of the fabrication methods used in the manufacture of engine test hardware; and (5) the manufacture of the hardware necessary to support the final full-scale engine tests.

  15. Beryllium solubility in occupational airborne particles: Sequential extraction procedure and workplace application.

    PubMed

    Rousset, Davy; Durand, Thibaut

    2016-01-01

    Modification of an existing sequential extraction procedure for inorganic beryllium species in the particulate matter of emissions and in working areas is described. The speciation protocol was adapted to carry out beryllium extraction in closed-face cassette sampler to take wall deposits into account. This four-step sequential extraction procedure aims to separate beryllium salts, metal, and oxides from airborne particles for individual quantification. Characterization of the beryllium species according to their solubility in air samples may provide information relative to toxicity, which is potentially related to the different beryllium chemical forms. Beryllium salts (BeF(2), BeSO(4)), metallic beryllium (Bemet), and beryllium oxide (BeO) were first individually tested, and then tested in mixtures. Cassettes were spiked with these species and recovery rates were calculated. Quantitative analyses with matched matrix were performed using inductively coupled plasma mass spectrometry (ICP-MS). Method Detection Limits (MDLs) were calculated for the four matrices used in the different extraction steps. In all cases, the MDL was below 4.2 ng/sample. This method is appropriate for assessing occupational exposure to beryllium as the lowest recommended threshold limit values are 0.01 µg.m(-3) in France([) (1) (]) and 0.05 µg.m(-3) in the USA.([ 2 ]) The protocol was then tested on samples from French factories where occupational beryllium exposure was suspected. Beryllium solubility was variable between factories and among the same workplace between different tasks.

  16. Continued development of abradable gas path seals. [for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1975-01-01

    Major program objectives were the continued development of NiCrAlY feltmetal and honeycomb systems for knife edge seal applications in the 1144 to 1366 K temperature range, and to initiate abradable seal material evaluation for blade tip seal applications in the 1366 to 1589 K temperature range. Larger fiber size, higher density feltmetal showed greatly improved erosion resistance with a slight reduction in abradability compared to the baseline feltmetal. Pack aluminide coating of the honeycomb extended the oxidation resistance and slightly improved the abradability of this material. Evaluation through selected abradability, erosion and oxidation testing, and pertinent metallography led to selection of a plasma sprayed yttria stabilized zirconia (ZrO2)/CoCrAlY layered system as the system with the most potential to meet the 1589 K requirement for blade tip seals. This system demonstrated structural integrity, erosion resistance, and some degree of abradability.

  17. Characterizing the impact of urban emissions on regional aerosol particles; airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouch, N.; Pichon, J.-M.; Prévôt, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2013-09-01

    The MEGAPOLI experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) giving detailed information of the non-refractory submicron aerosol species. The mass concentration of BC, measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), black carbon and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy). Plotting the equivalent ratios for the Positive Matrix Factorization (PMF) resolved species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA). Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in Mexico city, Mexico and in New England, USA. Using the measured VOCs species together with recent organic aerosol formation yields we predicted ~ 50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA

  18. Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouche, N.; Pichon, J.-M.; Bourianne, T.; Gomes, L.; Prevot, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2014-02-01

    The MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris, using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS), giving detailed information on the non-refractory submicron aerosol species. The mass concentration of black carbon (BC), measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), BC, and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy)). Plotting the equivalent ratios of different organic aerosol species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA) formation. Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in London, Mexico City, and in New England, USA. Using the measured SOA volatile organic compounds (VOCs) species together with organic aerosol formation

  19. Source apportionment of airborne particles in commercial aircraft cabin environment: Contributions from outside and inside of cabin

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Guan, Jun; Yang, Xudong; Lin, Chao-Hsin

    2014-06-01

    Airborne particles are an important type of air pollutants in aircraft cabin. Finding sources of particles is conducive to taking appropriate measures to remove them. In this study, measurements of concentration and size distribution of particles larger than 0.3 μm (PM>0.3) were made on nine short haul flights from September 2012 to March 2013. Particle counts in supply air and breathing zone air were both obtained. Results indicate that the number concentrations of particles ranged from 3.6 × 102 counts L-1 to 1.2 × 105 counts L-1 in supply air and breathing zone air, and they first decreased and then increased in general during the flight duration. Peaks of particle concentration were found at climbing, descending, and cruising phases in several flights. Percentages of particle concentration in breathing zone contributed by the bleed air (originated from outside) and cabin interior sources were calculated. The bleed air ratios, outside airflow rates and total airflow rates were calculated by using carbon dioxide as a ventilation tracer in five of the nine flights. The calculated results indicate that PM>0.3 in breathing zone mainly came from unfiltered bleed air, especially for particle sizes from 0.3 to 2.0 μm. And for particles larger than 2.0 μm, contributions from the bleed air and cabin interior were both important. The results would be useful for developing better cabin air quality control strategies.

  20. Nanoscale characterization of PM2.5 airborne pollutants reveals high adhesiveness and aggregation capability of soot particles

    PubMed Central

    Shi, Yuanyuan; Ji, Yanfeng; Sun, Hui; Hui, Fei; Hu, Jianchen; Wu, Yaxi; Fang, Jianlong; Lin, Hao; Wang, Jianxiang; Duan, Huiling; Lanza, Mario

    2015-01-01

    In 2012 air pollutants were responsible of seven million human death worldwide, and among them particulate matter with an aerodynamic diameter of 2.5 micrometers or less (PM2.5) are the most hazardous because they are small enough to invade even the smallest airways and penetrate to the lungs. During the last decade the size, shape, composition, sources and effect of these particles on human health have been studied. However, the noxiousness of these particles not only relies on their chemical toxicity, but particle morphology and mechanical properties affect their thermodynamic behavior, which has notable impact on their biological activity. Therefore, correlating the physical, mechanical and chemical properties of PM2.5 airborne pollutants should be the first step to characterize their interaction with other bodies but, unfortunately, such analysis has never been reported before. In this work, we present the first nanomechanical characterization of the most abundant and universal groups of PM2.5 airborne pollutants and, by means of atomic force microscope (AFM) combined with other characterization tools, we observe that fluffy soot aggregates are the most sticky and unstable. Our experiments demonstrate that such particles show strong adhesiveness and aggregation, leading to a more diverse composition and compiling all possible toxic chemicals. PMID:26177695

  1. Nanoscale characterization of PM2.5 airborne pollutants reveals high adhesiveness and aggregation capability of soot particles.

    PubMed

    Shi, Yuanyuan; Ji, Yanfeng; Sun, Hui; Hui, Fei; Hu, Jianchen; Wu, Yaxi; Fang, Jianlong; Lin, Hao; Wang, Jianxiang; Duan, Huiling; Lanza, Mario

    2015-01-01

    In 2012 air pollutants were responsible of seven million human death worldwide, and among them particulate matter with an aerodynamic diameter of 2.5 micrometers or less (PM2.5) are the most hazardous because they are small enough to invade even the smallest airways and penetrate to the lungs. During the last decade the size, shape, composition, sources and effect of these particles on human health have been studied. However, the noxiousness of these particles not only relies on their chemical toxicity, but particle morphology and mechanical properties affect their thermodynamic behavior, which has notable impact on their biological activity. Therefore, correlating the physical, mechanical and chemical properties of PM2.5 airborne pollutants should be the first step to characterize their interaction with other bodies but, unfortunately, such analysis has never been reported before. In this work, we present the first nanomechanical characterization of the most abundant and universal groups of PM2.5 airborne pollutants and, by means of atomic force microscope (AFM) combined with other characterization tools, we observe that fluffy soot aggregates are the most sticky and unstable. Our experiments demonstrate that such particles show strong adhesiveness and aggregation, leading to a more diverse composition and compiling all possible toxic chemicals. PMID:26177695

  2. Nanoscale characterization of PM2.5 airborne pollutants reveals high adhesiveness and aggregation capability of soot particles

    NASA Astrophysics Data System (ADS)

    Shi, Yuanyuan; Ji, Yanfeng; Sun, Hui; Hui, Fei; Hu, Jianchen; Wu, Yaxi; Fang, Jianlong; Lin, Hao; Wang, Jianxiang; Duan, Huiling; Lanza, Mario

    2015-07-01

    In 2012 air pollutants were responsible of seven million human death worldwide, and among them particulate matter with an aerodynamic diameter of 2.5 micrometers or less (PM2.5) are the most hazardous because they are small enough to invade even the smallest airways and penetrate to the lungs. During the last decade the size, shape, composition, sources and effect of these particles on human health have been studied. However, the noxiousness of these particles not only relies on their chemical toxicity, but particle morphology and mechanical properties affect their thermodynamic behavior, which has notable impact on their biological activity. Therefore, correlating the physical, mechanical and chemical properties of PM2.5 airborne pollutants should be the first step to characterize their interaction with other bodies but, unfortunately, such analysis has never been reported before. In this work, we present the first nanomechanical characterization of the most abundant and universal groups of PM2.5 airborne pollutants and, by means of atomic force microscope (AFM) combined with other characterization tools, we observe that fluffy soot aggregates are the most sticky and unstable. Our experiments demonstrate that such particles show strong adhesiveness and aggregation, leading to a more diverse composition and compiling all possible toxic chemicals.

  3. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea.

    PubMed

    Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un

    2012-04-30

    Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the <25 μm size fractions with minor fractions of Mg, Al, Si, Ca, S, and C. From SEM analysis, the floor dusts of the <25 μm size fractions collected on railroad ties appeared to be smaller than 10 μm, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount of Fe mixed with Na, Mg, Al, Si, S, Ca, and C. The difference in composition of the Fe-containing particles between the two subway stations was attributed to the different ballast tracks used. PMID:22381374

  4. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea.

    PubMed

    Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un

    2012-04-30

    Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the <25 μm size fractions with minor fractions of Mg, Al, Si, Ca, S, and C. From SEM analysis, the floor dusts of the <25 μm size fractions collected on railroad ties appeared to be smaller than 10 μm, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount of Fe mixed with Na, Mg, Al, Si, S, Ca, and C. The difference in composition of the Fe-containing particles between the two subway stations was attributed to the different ballast tracks used.

  5. Alternative methods for determination of composition and porosity in abradable materials

    SciTech Connect

    Matejicek, Jiri . E-mail: jmatejic@ipp.cas.cz; Kolman, Blahoslav; Dubsky, Jiri; Neufuss, Karel; Hopkins, Noel; Zwick, Jochen

    2006-07-15

    Materials properties and performance are governed by their composition and structure. These are commonly characterized using materialography and image analysis. However, in abradable materials, obtaining a reliable and representative sample (polished section) for this widespread technique is complicated by their abradable nature and heterogeneity. Therefore, alternative methods are also considered in this paper. They are namely X-ray diffraction and electron probe microanalysis to determine the composition, and mercury intrusion porosimetry, Archimedean porosimetry and helium pycnometry to determine the porosity. These methods, including materialography, were applied on representative abradable materials produced by plasma spraying; their results are compared and the advantages and drawbacks of each method are discussed.

  6. PHIPS-HALO: the airborne Particle Habit Imaging and Polar Scattering probe - Part 1: Design and operation

    NASA Astrophysics Data System (ADS)

    Abdelmonem, Ahmed; Järvinen, Emma; Duft, Denis; Hirst, Edwin; Vogt, Steffen; Leisner, Thomas; Schnaiter, Martin

    2016-07-01

    The number and shape of ice crystals present in mixed-phase and ice clouds influence the radiation properties, precipitation occurrence and lifetime of these clouds. Since clouds play a major role in the climate system, influencing the energy budget by scattering sunlight and absorbing heat radiation from the earth, it is necessary to investigate the optical and microphysical properties of cloud particles particularly in situ. The relationship between the microphysics and the single scattering properties of cloud particles is usually obtained by modelling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. There is a demand to obtain both information correspondently and simultaneously for individual cloud particles in their natural environment. For evaluating the average scattering phase function as a function of ice particle habit and crystal complexity, in situ measurements are required. To this end we have developed a novel airborne optical sensor (PHIPS-HALO) to measure the optical properties and the corresponding microphysical parameters of individual cloud particles simultaneously. PHIPS-HALO has been tested in the AIDA cloud simulation chamber and deployed in mountain stations as well as research aircraft (HALO and Polar 6). It is a successive version of the laboratory prototype instrument PHIPS-AIDA. In this paper we present the detailed design of PHIPS-HALO, including the detection mechanism, optical design, mechanical construction and aerodynamic characterization.

  7. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry.

    PubMed

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-01-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPI(TM)), a Fast Mobility Particle Sizer (FMPS(TM)), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification.

  8. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry

    PubMed Central

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-01-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPITM), a Fast Mobility Particle Sizer (FMPSTM), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification. PMID:27598180

  9. Particle Size Distribution of Airborne Microorganisms and Pathogens during an Intense African Dust Event in the Eastern Mediterranean

    PubMed Central

    Polymenakou, Paraskevi N.; Mandalakis, Manolis; Stephanou, Euripides G.; Tselepides, Anastasios

    2008-01-01

    Background The distribution of microorganisms, and especially pathogens, over airborne particles of different sizes has been ignored to a large extent, but it could have significant implications regarding the dispersion of these microorganisms across the planet, thus affecting human health. Objectives We examined the microbial quality of the aerosols over the eastern Mediterranean region during an African storm to determine the size distribution of microorganisms in the air. Methods We used a five-stage cascade impactor for bioaerosol collection in a coastal city on the eastern Mediterranean Sea during a north African dust storm. Bacterial communities associated with aerosol particles of six different size ranges were characterized following molecular culture–independent methods, regardless of the cell culturability (analysis of 16S rRNA genes). Results All 16S rDNA clone libraries were diverse, including sequences commonly found in soil and marine ecosystems. Spore-forming bacteria such as Firmicutes dominated large particle sizes (> 3.3 μm), whereas clones affiliated with Actinobacteria (found commonly in soil) and Bacteroidetes (widely distributed in the environment) gradually increased their abundance in aerosol particles of reduced size (< 3.3 μm). A large portion of the clones detected at respiratory particle sizes (< 3.3 μm) were phylogenetic neighbors to human pathogens that have been linked to several diseases. Conclusions The presence of aerosolized bacteria in small size particles may have significant implications to human health via intercontinental transportation of pathogens. PMID:18335093

  10. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry.

    PubMed

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-01-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPI(TM)), a Fast Mobility Particle Sizer (FMPS(TM)), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification. PMID:27598180

  11. Airborne measurements of cloud-forming nuclei and aerosol particles in stabilized ground clouds produced by solid rocket booster firings

    NASA Technical Reports Server (NTRS)

    Hindman, E. E., II; Ala, G. G.; Parungo, F. P.; Willis, P. T.; Bendura, R. J.; Woods, D.

    1978-01-01

    Airborne measurements of cloud volumes, ice nuclei and cloud condensation nuclei, liquid particles, and aerosol particles were obtained from stabilized ground clouds (SGCs) produced by Titan 3 launches at Kennedy Space Center, 20 August and 5 September 1977. The SGCs were bright, white, cumulus clouds early in their life and contained up to 3.5 g/m3 of liquid in micron to millimeter size droplets. The measured cloud volumes were 40 to 60 cu km five hours after launch. The SGCs contained high concentrations of cloud condensation nuclei active at 0.2%, 0.5%, and 1.0% supersaturation for periods of three to five hours. The SGCs also contained high concentrations of submicron particles. Three modes existed in the particle population: a 0.05 to 0.1 micron mode composed of aluminum-containing particles, a 0.2 to 0.8 micron mode, and a 2.0 to 10 micron mode composed of particles that contained primarily aluminum.

  12. Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Hair, J. W.; Kahnert, M.; Ferrare, R. A.; Hostetler, C. A.; Cook, A. L.; Harper, D. B.; Berkoff, T. A.; Seaman, S. T.; Collins, J. E.; Fenn, M. A.; Rogers, R. R.

    2015-12-01

    Linear particle depolarization ratio is presented for three case studies from the NASA Langley airborne High Spectral Resolution Lidar-2 HSRL-2). Particle depolarization ratio from lidar is an indicator of non-spherical particles and is sensitive to the fraction of non-spherical particles and their size. The HSRL-2 instrument measures depolarization at three wavelengths: 355, 532, and 1064 nm. The three measurement cases presented here include two cases of dust-dominated aerosol and one case of smoke aerosol. These cases have partial analogs in earlier HSRL-1 depolarization measurements at 532 and 1064 nm and in literature, but the availability of three wavelengths gives additional insight into different scenarios for non-spherical particles in the atmosphere. A case of transported Saharan dust has a spectral dependence with a peak of 0.30 at 532 nm with smaller particle depolarization ratios of 0.27 and 0.25 at 1064 and 355 nm, respectively. A case of aerosol containing locally generated wind-blown North American dust has a maximum of 0.38 at 1064 nm, decreasing to 0.37 and 0.24 at 532 and 355 nm, respectively. The cause of the maximum at 1064 nm is inferred to be very large particles that have not settled out of the dust layer. The smoke layer has the opposite spectral dependence, with the peak of 0.24 at 355 nm, decreasing to 0.09 and 0.02 at 532 and 1064 nm, respectively. The depolarization in the smoke case may be explained by the presence of coated soot aggregates. We note that in these specific case studies, the linear particle depolarization ratio for smoke and dust-dominated aerosol are more similar at 355 nm than at 532 nm, having possible implications for using the particle depolarization ratio at a single wavelength for aerosol typing.

  13. Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Hair, J. W.; Kahnert, M.; Ferrare, R. A.; Hostetler, C. A.; Cook, A. L.; Harper, D. B.; Berkoff, T. A.; Seaman, S. T.; Collins, J. E.; Fenn, M. A.; Rogers, R. R.

    2015-09-01

    Particle depolarization ratio is presented for three case studies from the NASA Langley airborne High Spectral Resolution Lidar-2 (HSRL-2). Particle depolarization ratio from lidar is an indicator of non-spherical particles and is sensitive to the fraction of non-spherical particles and their size. The HSRL-2 instrument measures depolarization at three wavelengths: 355, 532, and 1064 nm. The three measurement cases presented here include two cases of dust aerosol and one case of smoke aerosol. These cases have partial analogs in earlier HSRL-1 depolarization measurements at 532 and 1064 nm and in literature, but the availability of three wavelengths gives additional insight into different scenarios for non-spherical particles in the atmosphere. A case of transported Saharan dust has a spectral dependence with a peak of 0.30 at 532 nm with smaller particle depolarization ratios of 0.27 and 0.25 at 1064 and 355 nm, respectively. A case of locally generated wind-blown North American dust has a maximum of 0.38 at 1064 nm, decreasing to 0.37 and 0.24 at 532 and 355 nm, respectively. The cause of the maximum at 1064 nm is inferred to be very large particles that have not settled out of the dust layer. The smoke layer has the opposite spectral dependence, with the peak of 0.24 at 355 nm, decreasing to 0.09 and 0.02 at 532 and 1064 nm. The depolarization in the smoke case is inferred to be due to the presence of coated soot aggregates. We also point out implications for the upcoming EarthCARE satellite, which will measure particle depolarization ratio only at 355 nm. At 355 nm, the particle depolarization ratios for all three of our case studies are very similar, indicating that smoke and dust may be more difficult to separate with EarthCARE measurements than heretofore supposed.

  14. Size distribution of airborne particle-bound polybrominated diphenyl ethers and its implications for dry and wet deposition.

    PubMed

    Luo, Pei; Ni, Hong-Gang; Bao, Lian-Jun; Li, Shao-Meng; Zeng, Eddy Y

    2014-12-01

    Size distribution of particles in part dictates the environmental behavior of particle-bound organic pollutants in the atmosphere. The present study was conducted to examine the potential mechanisms responsible for the distribution of organic pollutants in size fractionated particles and their environmental implications, using an e-waste recycling zone in South China as a case study. Size-fractionated atmospheric particles were collected at the heights of 1.5, 5, and 20 m near two residential apartments and analyzed for polybrominated diphenyl ethers (PBDEs). The concentrations of particle-bound ΣPBDE (sum of 18 PBDE congeners) were significantly greater at 5 and 20 m than those at 1.5 m. The size-fractionated distributions of airborne ΣPBDE displayed trimodal peaks in 0.10–0.18, 1.8–3.2, and 10–18 μm at 1.5 m but only an unimodal peak in 1.0–1.8 μm at 20 m height. Emission sources, resuspension of dust and soil, and volatility of PBDEs were important factors influencing the size distribution of particle-bound PBDEs. The dry deposition fluxes of particle-bound PBDE estimated from the measured data in the present study were approximately twice the estimated wet deposition fluxes, with a total deposition flux of 3000 ng m(–2) d(–1). The relative contributions of particles to dry and wet deposition fluxes were also size-dependent, e.g., coarse (aerodynamic diameters (Dp) > 1.8 μm) and fine (Dp < 1.8 μm) particles dominated the dry and wet deposition fluxes of PBDEs, respectively.

  15. Factors influencing the airborne capture of respirable charged particles by surfactants in water sprays.

    PubMed

    Tessum, Mei W; Raynor, Peter C; Keating-Klika, Lorraine

    2014-01-01

    This research measured the effects of particle diameter, surfactant-containing spray solution, and particle charge on the capture of respirable particles by surfactant-containing water spray droplets. Polystyrene latex particles with diameters of 0.6, 1.0, or 2.1 μm were generated in a wind tunnel. Particles were given either a neutralized, unneutralized, net positive, or net negative charge, and then were captured as they passed through sprays containing anionic, cationic, or nonionic surfactant. The remaining particles were sampled, charge-separated, and counted with the sprays on and off at varying voltage levels to assess collection efficiency. Overall efficiencies were measured for particles with all charge levels, as well as efficiencies for particles with specific charge levels. The overall collection efficiency significantly increased with increasing particle diameter. Collection efficiencies of 21.5% ± 9.0%, 58.8% ± 12.5%, and 86.6% ± 43.5% (Mean ± SD) were observed for particles 0.6, 1.0, and 2.1 μm in diameter, respectively. The combination of surfactant classification and concentration also significantly affected both overall spray collection efficiency and collection efficiency for particles with specific charge levels. Ionic surfactant-containing sprays had the best performance for charged particles with the opposite sign of charge but the worst performance for charged particles with the same sign of charge, while nonionic surfactant-containing spray efficiently removed particles carrying relatively few charges. Particle charge level impacted the spray collection efficiency. Highly charged particles were removed more efficiently than weakly charged particles.

  16. Factors influencing the airborne capture of respirable charged particles by surfactants in water sprays.

    PubMed

    Tessum, Mei W; Raynor, Peter C; Keating-Klika, Lorraine

    2014-01-01

    This research measured the effects of particle diameter, surfactant-containing spray solution, and particle charge on the capture of respirable particles by surfactant-containing water spray droplets. Polystyrene latex particles with diameters of 0.6, 1.0, or 2.1 μm were generated in a wind tunnel. Particles were given either a neutralized, unneutralized, net positive, or net negative charge, and then were captured as they passed through sprays containing anionic, cationic, or nonionic surfactant. The remaining particles were sampled, charge-separated, and counted with the sprays on and off at varying voltage levels to assess collection efficiency. Overall efficiencies were measured for particles with all charge levels, as well as efficiencies for particles with specific charge levels. The overall collection efficiency significantly increased with increasing particle diameter. Collection efficiencies of 21.5% ± 9.0%, 58.8% ± 12.5%, and 86.6% ± 43.5% (Mean ± SD) were observed for particles 0.6, 1.0, and 2.1 μm in diameter, respectively. The combination of surfactant classification and concentration also significantly affected both overall spray collection efficiency and collection efficiency for particles with specific charge levels. Ionic surfactant-containing sprays had the best performance for charged particles with the opposite sign of charge but the worst performance for charged particles with the same sign of charge, while nonionic surfactant-containing spray efficiently removed particles carrying relatively few charges. Particle charge level impacted the spray collection efficiency. Highly charged particles were removed more efficiently than weakly charged particles. PMID:24479508

  17. MicroMED: a dust particle counter for the characterization of airborne dust close to the surface of Mars

    NASA Astrophysics Data System (ADS)

    Cozzolino, Fabio; Esposito, Francesca; Molfese, Cesare; Cortecchia, Fausto; Saggin, Bortolino; D'amato, Francesco

    2015-04-01

    Monitoring of airborne dust is very important in planetary climatology. Indeed, dust absorbs and scatter solar and thermal radiation, severely affecting atmospheric thermal structure, balance and dynamics (in terms of circulations). Wind-driven blowing of sand and dust is also responsible for shaping planetary surfaces through the formation of sand dunes and ripples, the erosion of rocks, and the creation and transport of soil particles. Dust is permanently present in the atmosphere of Mars and its amount varies with seasons. During regional or global dust storms, more than 80% of the incoming sunlight is absorbed by dust causing an intense atmospheric heating. Airborne dust is therefore a crucial climate component on Mars which impacts atmospheric circulations at all scales. Main dust parameters influencing the atmosphere heating are size distribution, abundance, albedo, single scattering phase function, imaginary part of the index of refraction. Moreover, major improvements of Mars climate models require, in addition to the standard meteorological parameters, quantitative information about dust lifting, transport and removal mechanisms. In this context, two major quantities need to be measured for the dust source to be understood: surface flux and granulometry. While many observations have constrained the size distribution of the dust haze seen from the orbit, it is still not known what the primary airborne dust (e.g. the recently lifted dust) is made of, size-wise. MicroMED has been designed to fill this gap. It will measure the abundance and size distribution of dust, not in the atmospheric column, but close to the surface, where dust is lifted, so to be able to monitor dust injection into the atmosphere. This has never been performed in Mars and other planets exploration. MicroMED is an Optical Particle Counter, analyzing light scattered from single dust particles to measure their size and abundance. A proper fluid-dynamic system, including a pump and a

  18. The Sensitivity of Abradable Coating Residual Stresses to Varying Material Properties

    NASA Astrophysics Data System (ADS)

    Johnston, R. E.

    2009-12-01

    This paper reports recent research on abradable materials employed for aero-engine applications. Such thermal spray coatings are used extensively within the gas turbine, applied to the inner surface of compressor and turbine shroud sections, coating the periphery of the blade rotation path. The function of an abradable seal is to wear preferentially when rotating blades come into contact with it, while minimizing over-tip clearance and improving the efficiency of the engine. Thermal spraying of an abradable coating onto a substrate imparts two components of residual stress; rapid quenching stresses as the spray material cools on impact and stresses arising from differential thermal contraction. In-service thermal stresses are superimposed by the differential expansion of these bonded layers. The combination of the production and operation history will lead to thermal-mechanical fatigue damage within the abradable coating. The present paper will describe the numerical modeling and sensitivity analysis of the thermal spray process. The sensitivity of residual stresses (with varying material properties, coating/substrate thickness, Poisson’s ratio, and substrate temperature) predicted by the Tsui and Clyne progressive deposition model enabled identification of performance drivers to coating integrity. Selecting material properties that minimize in-service stresses is a crucial stage in advancing future abradable performance.

  19. Tribological Characterization of Plasma-Sprayed CoNiCrAlY-BN Abradable Coatings

    NASA Astrophysics Data System (ADS)

    Irissou, E.; Dadouche, A.; Lima, R. S.

    2014-01-01

    The processing conditions, microstructural and tribological characterizations of plasma-sprayed CoNiCrAlY-BN high temperature abradable coatings are reported in this manuscript. Plasma spray torch parameters were varied to produce a set of abradable coatings exhibiting a broad range of porosity levels (34-62%) and superficial Rockwell hardness values (0-78 HR15Y). Abradability tests have been performed using an abradable-seal test rig, capable of simulating operational wear at different rotor speeds and seal incursion rates (SIRs). These tests allowed determining the rubbing forces and quantifying the blade and seal wear characteristics for slow and fast SIRs. Erosion wear performance and ASTM C633 coating adhesion strength test results are also reported. For optimal abradability performance, it is shown that coating hardness needs to be lower than 70 and 50 HR15Y for slow and fast blade incursion rate conditions, respectively. It is shown that the erosion wear performance, as well as, the coating cohesive strength is a function of the coating hardness. The current results allow defining the coating specifications in terms of hardness and porosity for targeted applications.

  20. Particle number size distribution in the eastern Mediterranean: Formation and growth rates of ultrafine airborne atmospheric particles

    NASA Astrophysics Data System (ADS)

    Kopanakis, I.; Chatoutsidou, S. E.; Torseth, K.; Glytsos, T.; Lazaridis, M.

    2013-10-01

    Particle number concentration was measured between June 2009 and June 2010 at Akrotiri research station in a rural/suburban region of western Crete (Greece). Overall, the available data covered 157 days during the aforementioned period of measurements. The objectives were to study the number size distribution characteristics of ambient aerosols and furthermore to identify new particle formation events and to evaluate particle formation rates and growth rates of the newborn particles. Aerosol particles with mobility diameters between 10 and 1100 nm were measured using a Scanning Mobility Particle Sizer (SMPS) system. Measurements were performed at ambient relative humidities. The median total particle number concentration was 525 #/cm3 whereas the number concentration ranged between 130 #/cm3 and 9597 #/cm3. The average percentage of particles with diameters between 10 nm and 100 nm (N10-100) to total particles was 53% during summer and spring, but reached 80% during winter. Maximum average contribution of nano-particles (10 nm < Dp < 50 nm) to total particles was recorded also in winter and was attributed partly to the effect of local heating. Furthermore, back trajectories (HYSPLIT model) showed that different air mass origins are linked to different levels of particle number concentrations, with higher values associated with air masses passing from polluted areas before reaching the Akrotiri station. Modal analysis of the measured size distribution data revealed a strong nucleation mode during winter (15-25 nm), which can be correlated with emissions from local sources (domestic heating). The nucleation mode was observed also during the spring campaigns and was partly linked to new particle formation events. On the contrary, an accumulation mode (80-120 nm) prevailed in the measurements during summer campaigns, when the station area was influenced by polluted air masses arriving mainly from Eastern Europe. In total, 13 new particle formation events were recorded

  1. Pb, Sr and Nd isotopic composition and trace element characteristics of coarse airborne particles collected with passive samplers

    NASA Astrophysics Data System (ADS)

    Hoàng-Hòa, Thi Bich; Stille, Peter; Dietze, Volker; Guéguen, Florence; Perrone, Thierry; Gieré, Reto

    2015-09-01

    Passive samplers for collection of coarse airborne particulate matter have been installed in and around the coal-mining town of Cam Pha, Quang Ninh Province (Vietnam). Analysis of Pb, Sr, and Nd isotope ratios and of major and trace element distribution patterns in atmospheric particulates collected at three stations allowed for the identification of four important dust components: (1) coal dust from an open-pit mine and fly ash particles from a coal-fired power station, (2) diesel soot, (3) traffic dust from metal, tire and pavement abrasion, and (4) limestone-derived dust. Outside of the coal-mining area, traffic-derived dust defines the atmospheric baseline composition of the studied environment.

  2. Effect of indoor-generated airborne particles on radon progeny dynamics.

    PubMed

    Trassierra, C Vargas; Stabile, L; Cardellini, F; Morawska, L; Buonanno, G

    2016-08-15

    In order to investigate the interaction between radon progeny and particles, an experimental campaign was carried out in a radon chamber at the Italian National Institute of Ionizing Radiation Metrology, quantifying the amount of attached and unattached radon daughters present in air, as well as the equilibrium factor in the presence of particles generated through indoor sources. A fixed radon concentration was maintained, while particles were generated using incense sticks, mosquito coils and gas combustion. Aerosols were characterized in terms of particle concentrations and size distributions. Simultaneously, radon concentration and attached/unattached potential alpha energy concentration in the air were continuously monitored by two different devices, based on alpha spectroscopy techniques. The presence of particles was found to affect the attached fraction of radon decay products, in such a way that the particles acted as a sink for radionuclides. In terms of sources which emit large particles (e.g. incense, mosquito coils), which greatly increase particle surface area concentrations, the Equilibrium Factor was found to double with respect to the background level before particle generation sessions. On the contrary, the radon decay product dynamics were not influenced by gas combustion processes, mainly due to the small surface area of the particles emitted. PMID:27131455

  3. Design and Laboratory Evaluation of a Sequential Spot Sampler for Time-Resolved Measurement of Airborne Particle Composition

    PubMed Central

    Eiguren Fernandez, Arantzazu; Lewis, Gregory S.; Hering, Susanne V.

    2014-01-01

    A new sampling approach has been developed to enable affordable, time-resolved monitoring of particulate chemical compositions, and more generally to provide concentrated samples of airborne particles. Using a newly developed, moderated water-based condensational growth technology, individual particle samples are deposited in a 1-mm diameter dry “spot”. The moderated condensation technology enables this collection with minimal temperature rise, providing robust collection for volatile constituents. Measured collection efficiencies are above 95% for particles in the size range from 0.010 μm to 2.5 μm. A set of 20 or more time-resolved samples, plus blanks, may be collected onto a multiwell collection plate. For chemical analysis the plate is returned to the laboratory, and placed directly into a modified autosampler, without extraction or preparation. The autosampler handles the addition of eluent, extraction, and sample injection without user manipulation. This paper presents the design and laboratory evaluation of a 1.5 L/min sampling rate version of this system. PMID:25045199

  4. Airborne Particles: What We Have Learned About Their Role in Climate from Remote Sensing, and Prospects for Future Advances

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Desert dust, wildfire smoke, volcanic ash, biogenic and urban pollution particles, all affect the regional-scale climate of Earth in places and at times; some have global-scale impacts on the column radiation balance, cloud properties, atmospheric stability structure, and circulation patterns. Remote sensing has played a central role in identifying the sources and transports of airborne particles, mapping their three-dimensional distribution and variability, quantifying their amount, and constraining aerosol air mass type. The measurements obtained from remote sensing have strengths and limitations, and their value for characterizing Earths environment is enhanced immensely when they are combined with direct, in situ observations, and used to constrain aerosol transport and climate models. A similar approach has been taken to study the role particles play in determining the climate of Mars, though based on far fewer observations. This presentation will focus what we have learned from remote sensing about the impacts aerosol have on Earths climate; a few points about how aerosols affect the climate of Mars will also be introduced, in the context of how we might assess aerosol-climate impacts more generally on other worlds.

  5. Optical trapping and rotation of airborne absorbing particles with a single focused laser beam

    NASA Astrophysics Data System (ADS)

    Lin, Jinda; Li, Yong-qing

    2014-03-01

    We measure the periodic circular motion of single absorbing aerosol particles that are optically trapped with a single focused Gaussian beam and rotate around the laser propagation direction. The scattered light from the trapped particle is observed to be directional and change periodically at 0.4-20 kHz. The instantaneous positions of the moving particle within a rotation period are measured by a high-speed imaging technique using a charge coupled device camera and a repetitively pulsed light-emitting diode illumination. The centripetal acceleration of the trapped particle as high as ˜20 times the gravitational acceleration is observed and is attributed to the photophoretic forces.

  6. Optical trapping and rotation of airborne absorbing particles with a single focused laser beam

    SciTech Connect

    Lin, Jinda; Li, Yong-qing

    2014-03-10

    We measure the periodic circular motion of single absorbing aerosol particles that are optically trapped with a single focused Gaussian beam and rotate around the laser propagation direction. The scattered light from the trapped particle is observed to be directional and change periodically at 0.4–20 kHz. The instantaneous positions of the moving particle within a rotation period are measured by a high-speed imaging technique using a charge coupled device camera and a repetitively pulsed light-emitting diode illumination. The centripetal acceleration of the trapped particle as high as ∼20 times the gravitational acceleration is observed and is attributed to the photophoretic forces.

  7. Characterization of Airborne Particles Collected from Car Engine Air Filters Using SEM and EDX Techniques

    PubMed Central

    Heredia Rivera, Birmania; Gerardo Rodriguez, Martín

    2016-01-01

    Particulate matter accumulated on car engine air-filters (CAFs) was examined in order to investigate the potential use of these devices as efficient samplers for collecting street level air that people are exposed to. The morphology, microstructure, and chemical composition of a variety of particles were studied using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The particulate matter accumulated by the CAFs was studied in two categories; the first was of removed particles by friction, and the second consisted of particles retained on the filters. Larger particles with a diameter of 74–10 µm were observed in the first category. In the second one, the detected particles had a diameter between 16 and 0.7 µm. These particles exhibited different morphologies and composition, indicating mostly a soil origin. The elemental composition revealed the presence of three groups: mineral (clay and asphalt), metallic (mainly Fe), and biological particles (vegetal and animal debris). The palynological analysis showed the presence of pollen grains associated with urban plants. These results suggest that CAFs capture a mixture of atmospheric particles, which can be analyzed in order to monitor urban air. Thus, the continuous availability of large numbers of filters and the retroactivity associated to the car routes suggest that these CAFs are very useful for studying the high traffic zones within a city. PMID:27706087

  8. LOAC (Light Optical Particle Counter): a new small aerosol counter with particle characterization capabilities for surface and airborne measurements

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenael; Jégou, Fabrice; Jeannot, Matthieu; Jourdain, Line; Dulac, François; Mallet, Marc; Dupont, Jean-Charles; Thaury, Claire; Tonnelier, Thierry; Verdier, Nicolas; Charpentier, Patrick

    2013-04-01

    The determination of the size distribution of tropospheric and stratospheric aerosols with conventional optical counters is difficult when different natures of particles are present (droplets, soot, mineral dust, secondary organic or mineral particles...). Also, a light and cheap aerosol counter that can be used at ground, onboard drones or launched under all kinds of atmospheric balloons can be very useful during specific events as volcanic plumes, desert dust transport or local pollution episodes. These goals can be achieved thanks to a new generation of aerosol counter, called LOAC (Light Optical Aerosol Counter). The instrument was developed in the frame of a cooperation between French scientific laboratories (CNRS), the Environnement-SA and MeteoModem companies and the French Space Agency (CNES). LOAC is a small optical particle counter/sizer of ~250 grams, having a low electrical power consumption. The measurements are conducted at two scattering angles. The first one, at 12°, is used to determine the aerosol particle concentrations in 19 size classes within a diameter range of 0.3-100 micrometerers. At such an angle close to forward scattering, the signal is much more intense and the measurements are the least sensitive to the particle nature. The second angle is at 60°, where the scattered light is strongly dependent on the particle refractive index and thus on the nature of the aerosols. The ratio of the measurements at the two angles is used to discriminate between the different types of particles dominating the nature of the aerosol particles in the different size classes. The sensor particularly discriminates wet or liquid particles, soil dust and soot. Since 2011, we have operated LOAC in various environments (Arctic, Mediterranean, urban and peri-urban…) under different kinds of balloons including zero pressure stratospheric, tethered, drifting tropospheric, and meteorological sounding balloons. For the last case, the total weight of the gondola

  9. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.

    PubMed

    Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-11-01

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.

  10. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions

    PubMed Central

    Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L.; Wingen, Lisa M.; Dabdub, Donald; Blake, Donald R.; Gerber, R. Benny; Finlayson-Pitts, Barbara J.

    2015-01-01

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs. PMID:26483454

  11. Measurements of Br/Pb Ratios in Airborne Particles from Car Exhaust

    NASA Astrophysics Data System (ADS)

    Öblad, M.; Selin, E.

    1985-10-01

    Concentrations of particulate bromine and lead have been measured during one summer and one winter period. The measurements were made simultaneously in five sites in a city on the Swedish west coast. A rural site about 60 km from the city was used to measure the background aerosol. Aerosol sampling was made with six dichotomous virtual impactors, which fractionate the aerosol into two modes, one fine particle mode (aerodynamic diameter, a.d. < 3.5 μm) and one coarse particle mode (3.5 μm < a.d. < 18 μm). The aerosol was collected onto thin teflon filters. Element concentrations were obtained by Energy Dispersive X-Ray Fluorescence Analysis. The element concentrations were related to air mass trajectories. The Br/Pb ratio proved to be the same on a given date for the city sites and the background site. A dependence on the air mass history was found, suggesting that it is the quality of the air basin in the region that influences the Br/Pb ratio even for fresh car exhaust. The Br/Pb ratio was the same for fine and coarse particles, indicating that the ratio is determined before coagulation with larger particles occur. The ratios between coarse and fine particles containing lead and bromine respectively were also studied. The results suggest that lead and bromine are actually attached to the same particles.

  12. Effect of Simulated High Hydrogen Content Combustion Environments on Abradable Properties of Ceramic Turbine Coatings

    NASA Astrophysics Data System (ADS)

    Basu Majumder, Madhura

    Air plasma sprayed (APS) abradable coatings are used in the turbine hot section to reduce the stator-rotor gap, minimizing gas leakage. These coatings are designed to exhibit controlled removal of material in thin layers when the turbine blades sweep through the coating, which protects the mechanical integrity of the turbine blade. In an effort to lower CO2 emissions, high H2 content fuel is being explored. This change in chemical composition of the fuel may affect the microstructure, abradability and durability of the coatings at turbine operational temperatures. The presence of high water vapor in the combustion chamber leads to accelerated degradation of the sacrificial coating materials. In this work, zirconia based composite materials with a machinable phase and varied porosity have been used to study microstructural evolution, thermal and chemical stability of the phases and abradable characteristics of baseline coating systems in both humid and dry environments. Investigation of the mechanisms that control the removal of materials and performance of abradable coatings through thermo-mechanical tests will be discussed.

  13. Airborne observations of aerosol microphysical properties and particle ageing processes in the troposphere above Europe

    NASA Astrophysics Data System (ADS)

    Hamburger, T.; McMeeking, G.; Minikin, A.; Petzold, A.; Coe, H.; Krejci, R.

    2012-12-01

    In-situ measurements of aerosol microphysical properties were performed in May 2008 during the EUCAARI-LONGREX campaign. Two aircraft, the FAAM BAe-146 and DLR Falcon 20, operated from Oberpfaffenhofen, Germany. A comprehensive data set was obtained comprising the wider region of Europe north of the Alps throughout the whole tropospheric column. Prevailing stable synoptic conditions enabled measurements of accumulating emissions inside the continental boundary layer reaching a maximum total number concentration of 19 000 particles cm-3 stp. Ultra-fine particles as indicators for nucleation events were observed within the boundary layer during high pressure conditions and after updraft of emissions induced by frontal passages above 8 km altitude in the upper free troposphere. Aerosol ageing processes during air mass transport are analysed using trajectory analysis. The ratio of particles containing a non-volatile core (250 °C) to the total aerosol number concentration was observed to increase within the first 12 to 48 h from the particle source from 50 to 85% due to coagulation. Aged aerosol also features an increased fraction of accumulation mode particles of approximately 40% of the total number concentration. The presented analysis provides an extensive data set of tropospheric aerosol microphysical properties on a continental scale which can be used for atmospheric aerosol models and comparisons of satellite retrievals.

  14. Particle size distribution of airborne Aspergillus fumigatus spores emitted from compost using membrane filtration

    NASA Astrophysics Data System (ADS)

    Deacon, L. J.; Pankhurst, L. J.; Drew, G. H.; Hayes, E. T.; Jackson, S.; Longhurst, P. J.; Longhurst, J. W. S.; Liu, J.; Pollard, S. J. T.; Tyrrel, S. F.

    Information on the particle size distribution of bioaerosols emitted from open air composting operations is valuable in evaluating potential health impacts and is a requirement for improved dispersion simulation modelling. The membrane filter method was used to study the particle size distribution of Aspergillus fumigatus spores in air 50 m downwind of a green waste compost screening operation at a commercial facility. The highest concentrations (approximately 8 × 10 4 CFU m -3) of culturable spores were found on filters with pore diameters in the range 1-2 μm which suggests that the majority of spores are emitted as single cells. The findings were compared to published data collected using an Andersen sampler. Results were significantly correlated ( p < 0.01) indicating that the two methods are directly comparable across all particles sizes for Aspergillus spores.

  15. Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.

    2013-12-01

    Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and <11% false positives from all other aerosol particles. The most effective operations have consisted of thresholding TAOS patterns in order to reject defective ones

  16. Airborne observations of aerosol microphysical properties and particle ageing processes in the troposphere above Europe

    NASA Astrophysics Data System (ADS)

    Hamburger, T.; McMeeking, G.; Minikin, A.; Petzold, A.; Coe, H.; Krejci, R.

    2012-08-01

    In-situ measurements of aerosol microphysical properties were performed in May 2008 during the EUCAARI-LONGREX campaign. Two aircraft, the FAAM BAe-146 and DLR Falcon 20, operated from Oberpfaffenhofen, Germany. A comprehensive data set was obtained comprising the wider region of Europe north of the Alps throughout the whole tropospheric column. Prevailing stable synoptic conditions enabled measurements of accumulating emissions inside the continental boundary layer reaching a maximum total number concentration of 19 000 particles cm-3 stp. Nucleation events were observed within the boundary layer during high pressure conditions and after updraft of emissions induced by frontal passages above 8 km altitude in the upper free troposphere. Aerosol ageing processes during air mass transport are analysed using trajectory analysis. The ratio of particles containing a non-volatile core (250 °C) to the total aerosol number concentration was observed to increase within the first 12 to 48 h from the particle source from 50 to 85% due to coagulation. Aged aerosol also features an increased fraction of accumulation mode particles of approximately 40% of the total number concentration. The presented analysis provides an extensive data set of tropospheric aerosol microphysical properties on a continental scale which can be used for atmospheric aerosol models and comparisons of satellite retrievals.

  17. Calibration and demonstration of a condensation nuclei counting system for airborne measurements of aircraft exhausted particles

    NASA Astrophysics Data System (ADS)

    Cofer, Wesley R.; Anderson, Bruce E.; Winstead, Edward L.; Bagwell, Donald R.

    A system of multiple continuous-flow condensation nuclei counters (CNC) was assembled, calibrated, and demonstrated on a NASA T-39 Sabreliner jet aircraft. The mission was to penetrate the exhaust plumes and/or contrails of other subsonic jet aircraft and determine the concentrations of submicrometer diameter aerosol particles. Mission criteria required rapid response measurements ( ˜ 1 s) at aircraft cruise altitudes (9-12 km). The CNC sampling system was optimized to operate at 160 Torr. Aerosol samples were acquired through an externally mounted probe. Installed downstream of the probe was a critical flow orifice that provided sample to the CNC system. The orifice not only controlled volumetric flow rate, but also dampened probe pressure/flow oscillations encountered in the turbulent aircraft-wake vortex environment. Laboratory calibrations with NaCl particles under representative conditions are reported that indicate small amounts of particle loss and a maximum measurement efficiency of ˜ 75% for particles with diameters ranging from ⩾ 0.01- ⩽ 0.18 μm Data from exhaust/contrail samplings of a NASA B757 and DC-8 at cruise altitude are discussed. Data include exhaust/contrail measurements made during periods in which the B757 port jet engine burned low-sulfur fuel while the starboard engine simultaneously burned specially prepared high-sulfur fuel. The data discussed highlight the CNC systems performance, and introduce new observations pertinent to the behavior of sulfur in aircraft exhaust aerosol chemistry.

  18. Effect of atmospheric electricity on dry deposition of airborne particles from atmosphere

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Kimmel, V.; Israelsson, S.

    The electric mechanism of dry deposition is well known in the case of unattached radon daughter clusters that are unipolar charged and of high mobility. The problematic role of the electric forces in deposition of aerosol particles is theoretically examined by comparing the fluxes of particles carried by different deposition mechanisms in a model situation. The electric mechanism of deposition appears essential for particles of diameter 10-200 nm in conditions of low wind speed. The electric flux of fine particles can be dominant on the tips of leaves and needles even in a moderate atmospheric electric field of a few hundred V m -1 measured over the plane ground surface. The electric deposition is enhanced under thunderclouds and high voltage power lines. Strong wind suppresses the relative role of the electric deposition when compared with aerodynamic deposition. When compared with diffusion deposition the electric deposition appears less uniform: the precipitation particulate matter on the tips of leaves and especially on needles of top branches of conifer trees is much more intensive than on the ground surface and electrically shielded surfaces of plants. The knowledge of deposition geometry could improve our understanding of air pollution damage to plants.

  19. Personal exposure to airborne ultrafine particles in the urban area of Milan

    NASA Astrophysics Data System (ADS)

    Cattaneo, A.; Garramone, G.; Taronna, M.; Peruzzo, C.; Cavallo, D. M.

    2009-02-01

    The relevance of health effects related to ultrafine particles (UFPs; aerodynamic diameter < 100 nm) can be better evaluated using high-resolution strategies for measuring particle number concentrations. In this study, two different portable Condensation Particle Counters (CPCs) were used to measure personal exposure to UFPs in the central area of Milan for one week period during spring, with three sampling sessions per day. Experimental data were continuously collected along an established urban pathway, moving afoot or by different private and public means of transport. Correlation analysis between data measured by two CPCs was performed and general results showed a good agreement, especially at concentrations lower than 2×105 particles /cm3. UFPs measures were divided on the basis of crossed environments or micro-environments, days of the week and day time (hours). The highest measured mean concentrations and data variability were observed during walking time and moving on motorized vehicles (bus and car), indicating that the highest exposure to UFPs can be reached near motorized traffic. The lowest exposures were observed in green areas and in office microenvironments. An appreciable difference between working and non-working days was observed. Concentration patterns and variation by days of the week and time periods appears related to time trends in traffic intensity.

  20. Treatment of airborne asbestos and asbestos-like microfiber particles using atmospheric microwave air plasma.

    PubMed

    Averroes, A; Sekiguchi, H; Sakamoto, K

    2011-11-15

    Atmospheric microwave air plasma was used to treat asbestos-like microfiber particles that had two types of ceramic fiber and one type of stainless fiber. The treated particles were characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The experiment results showed that one type of ceramic fiber (Alumina:Silica=1:1) and the stainless fiber were spheroidized, but the other type of ceramic fiber (Alumina:Silica=7:3) was not. The conversion of the fibers was investigated by calculating the equivalent diameter, the aspect ratio, and the fiber content ratio. The fiber content ratio in various conditions showed values near zero. The relationship between the normalized fiber vanishing rate and the energy needed to melt the particles completely per unit surface area of projected particles, which is defined as η, was examined and seen to indicate that the normalized fiber vanishing rate decreased rapidly with the increase in η. Finally, some preliminary experiments for pure asbestos were conducted, and the analysis via XRD and phase-contrast microscopy (PCM) showed the availability of the plasma treatment. PMID:21962864

  1. Heterogeneous reaction of N2O5 with airborne TiO2 particles and the implication for stratospheric particle injection

    NASA Astrophysics Data System (ADS)

    Tang, Mingjin; Abraham, Luke; Braesicke, Peter; Cox, Tony; McGregor, James; Pope, Francis; Pyle, John; Rkiouak, Laylla; Telford, Paul; Watson, Matt; Kalberer, Markus

    2014-05-01

    Injection of aerosol particles (or their precursors) into the stratosphere to scatter solar radiation back into space, has been suggested as a solar-radiation management (SRM) scheme for the mitigation for global warming. TiO2 has recently been highlighted as a possible candidate aerosol because of its high light scattering ability with a refractive index of 2.5 (Pope et al. 2012). The impact of particles injection on stratospheric ozone requires systematical assessment via laboratory and modelling studies. In this work, the heterogeneous reaction of airborne sub-micrometre TiO2 particles with N2O5 has been investigated at room temperature and different relative humidities (RH), using an atmospheric pressure aerosol flow tube. The uptake coefficient of N2O5 onto TiO2, γ(N2O5), was determined to be ~1.0×10-3 at low RH, and increase to ~3×10-3 at 60% RH. The dependence of γ(N2O5) on RH can be explained by the water adsorption isotherm of TiO2 particles. In addition, the uptake of N2O5 onto TiO2 aerosol particles has been included in the UKCA chemistry-climate model to assess the effect of N2O5 uptake onto TiO2 particles on the stratospheric composition. We construct a case study based on the eruption of Mt. Pinatubo, comparing the effects of TiO2 to those from the volcanic sulfate and to the situation with only background amount of aerosol. The changes in reactive nitrogen species and ozone due to the heterogeneous reaction of TiO2 with N2O5 are assessed relative to sulfate aerosol impacts. Pope, F. D., Braesicke, P., Grainger, R. G., Kalberer, M., Watson, I. M., Davidson, P. J., and Cox, R. A.: Stratospheric aerosol particles and solar-radiation management, Nature Clim. Change, 2, 713-719, 2012

  2. The impact of particle size selective sampling methods on occupational assessment of airborne beryllium particulates.

    PubMed

    Sleeth, Darrah K

    2013-05-01

    In 2010, the American Conference of Governmental Industrial Hygienists (ACGIH) formally changed its Threshold Limit Value (TLV) for beryllium from a 'total' particulate sample to an inhalable particulate sample. This change may have important implications for workplace air sampling of beryllium. A history of particle size-selective sampling methods, with a special focus on beryllium, will be provided. The current state of the science on inhalable sampling will also be presented, including a look to the future at what new methods or technology may be on the horizon. This includes new sampling criteria focused on particle deposition in the lung, proposed changes to the existing inhalable convention, as well as how the issues facing beryllium sampling may help drive other changes in sampling technology.

  3. TOF-SIMS measurements for toxic air pollutants adsorbed on the surface of airborne particles

    NASA Astrophysics Data System (ADS)

    Tomiyasu, Bunbunoshin; Hoshi, Takahiro; Owari, Masanori; Nihei, Yoshimasa

    2003-01-01

    Three kinds of particulate matter were collected: diesel and gasoline exhaust particles emitted directly from exhaust nozzle, and suspended particulate matter (SPM) near the traffic route. Soxhlet extraction was performed on each sample. By gas-chromatograph-mass spectrometer (GC-MS) analysis of these extracts, di-ethyl phthalate and di- n-butyl phthalate were detected from the extract of SPM and diesel exhaust particles (DEPs). Because these phthalates were sometimes suspected as contamination, time-of-flight secondary ion mass spectrometry (TOF-SIMS) measurements were also performed on the samples collected at the same environment. By comparing obtained spectra, it is clear that these environmental endocrine disrupters (EEDs) were adsorbed on DEP surface. Thus, we concluded that the combination of conventional method and TOF-SIMS measurement is one of the most powerful techniques for analyzing the toxic air pollutants adsorbed on SPM surface.

  4. Abraded Target on Rock 'Champagne' in Gusev Crater

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA's Mars Exploration Rover Spirit took this microscopic image of a target called 'Bubbles' on a rock called 'Champagne' after using its rock abrasion tool to grind a hole through the rock's outer surface. The circular area where the rock's interior is exposed is about 5 centimeters (2 inches) across. This rock is different from rocks out on the plains of Gusev Crater but is similar to other rocks in this area of the 'Columbia Hills' in that it rich in phosphorus. Plagioclase, a mineral commonly found in igneous rocks, is also present in these rocks, according to analysis with Spirit's miniature thermal emission spectrometer. By using the rover's alpha particle X-ray spectrometer to collect data for multiple martian days, or sols, scientists are also beginning to get measurements of trace elements in the rocks. Spirit took the images that are combined into this mosaic on sol 358 (Jan. 3, 2005).

  5. Mutagenicity of fine airborne particles: diurnal variation in community air determined by a Salmonella micro preincubation (microsuspension) procedure

    SciTech Connect

    Kado, N.Y.; Guirguis, G.N.; Flessel, C.P.; Chan, R.C.; Chang, K.I.; Wesolowski, J.J.

    1986-01-01

    A simple modification of the Salmonella liquid incubation assay previously developed for detecting mutagens in urine was used to determine mutagenic activity of airborne particulate matter. The modification consists of adding ten times more bacteria and five to ten times less metabolic enzymes compared to the plate incorporation method. The mixture volume is approximately 0.2 ml, and the mixture is incubated for 90 min before pouring it according to the standard protocol. The modified procedure was approximately ten times more sensitive than the standard plate incorporation test for detecting mutagens in air particulate extracts and approximately ten to 31 times more sensitive for the chemical mutagens 2-nitrofluorene, 4-nitroquinoline-N-oxide, 2-aminofluorene, and benzo(a)pyrene in bacterial strain TA98. Mutagenic activity was associated exclusively with fine particles (aerodynamic diameters of less than 2.5 ..mu..m). Diurnal patterns of mutagenic activity were investigated by measuring filter extracts from 2-hr samples collected in three San Francisco Bay Area cities during the summer or fall of 1982. Four criteria pollutants - lead, nitrogen dioxide, ozone, and sulfur dioxide - were simultaneously sampled at one location.

  6. Use of micro-XANES to speciate chromium in airborne fine particles in the Sacramento Valley

    SciTech Connect

    Michelle L. Werner; Peter S. Nico; Matthew A. Marcus; Cort Anastasio

    2007-07-15

    While particulate matter (PM) in the atmosphere can lead to a wide array of negative health effects, the cause of toxicity is largely unknown. One aspect of PM that likely affects health is the chemical composition, in particular the transition metals within the particles. Chromium is one transition metal of interest due to its two major oxidation states, with Cr(III) being much less toxic compared to Cr(VI). Using microfocused X-ray absorption near edge structure (micro-XANES), we analyzed the Cr speciation in fine particles (diameters {le} 2.5 {mu}m) collected at three sites in the Sacramento Valley of northern California: Sacramento, a large urban area, Davis, a small city, and Placerville, a rural area. These are several major stationary sources of Cr within 24 km of the site including chrome-plating plants, power plants and incinerators. The microfocused X-ray beam enables us to look at very small areas on the filter with a resolution of typically 5-7 micrometers. With XANES we are able to not only distinguish between Cr(VI) and Cr(III), but also to identify different types of Cr(III) and more reduced Cr species. At all of our sampling sites the main Cr species were Cr(III), with Cr(OH){sub 3} or a Cr-Fe, chromite-like, phase being the dominant species. Cr(VI)-containing particles were found only in the most urban site. All three sites contained some reduced Cr species, either Cr(0) or Cr{sub 3}C{sub 2}, although these were minor components. This work demonstrates that micro-XANES can be used as a minimally invasive analytical tool to investigate the composition of ambient PM. 32 refs., 6 figs.

  7. Summertime ozone and airborne particle concentrations measured on the Juneau Icefield (58°N)

    NASA Astrophysics Data System (ADS)

    Fry, J.; Katz, J. D.; Redell, K.; Dittrich, T.

    2010-12-01

    The Juneau Icefield Research Program has facilitated long-term research on the remote subarctic and mountain environment since 1946. In summer 2010, a pilot air quality study was conducted at Camp 18 on the Juneau Icefield (58°36'N 134°30'W). Ozone mixing ratio and aerosol particle size distribution were measured on a remote glacier plateau, with coincident monitoring of wind speed and direction from August 4-11, 2010. Correlations between these air pollution indicators and airmass source direction are explored to address the broader question of long-range transport of pollution.

  8. Concentration and Particle Size of Airborne Toxic Algae (Brevetoxin) Derived from Ocean Red Tide Events

    PubMed Central

    Cheng, Yung Sung; Mcdonald, Jacob D.; Kracko, Dean; Irvin, C. Mitch; Zhou, Yue; Pierce, Richard H.; Henry, Michael S.; Bourdelaisa, Andrea; Naar, Jerome; Baden, Daniel G.

    2009-01-01

    Red tides in the Gulf of Mexico are formed by blooms of the dinoflagellate Karenia brevis, which produces brevetoxins (PbTx). Brevetoxins can be transferred from water to air in the wind-powered whitecapped waves during red tide episodes. Inhalation exposure to marine aerosol containing PbTx causes respiratory problems. A liquid chromatograph/ tandem mass spectrometric method was developed for the detection and quantitation of several PbTxs in ambient samples collected during red tide events. This method was complemented by a previously developed antibody assay that analyzes the entire class of PbTx compounds. The method showed good linearity, accuracy, and reproducibility, allowing quantitation of PbTx compounds in the 10 pg/m3 range. Air concentrations of PbTxs and brevenal for individual samples ranged from 0.01 to 80 ng/m3. The particle size showed a single mode with a mass median diameter between 6 and 10 μm, which was consistent for all of the PbTx species that were measured. Our results imply that individual PbTxs were from the same marine aerosol or from marine aerosol that was produced from the same process. The particle size indicated the likelihood of high deposition efficiency in the respiratory tract with the majority of aerosol deposited in the upper airways and small but not insignificant deposition in the lower airways. PMID:15954221

  9. Concentration and particle size of airborne toxic algae (brevetoxin) derived from ocean red tide events.

    PubMed

    Cheng, Yung Sung; McDonald, Jacob D; Kracko, Dean; Irvin, C Mitch; Zhou, Yue; Pierce, Richard H; Henry, Michael S; Bourdelaisa, Andrea; Naar, Jerome; Baden, Daniel G

    2005-05-15

    Red tides in the Gulf of Mexico are formed by blooms of the dinoflagellate Karenia brevis, which produces brevetoxins (PbTx). Brevetoxins can be transferred from water to air in the wind-powered whitecapped waves during red tide episodes. Inhalation exposure to marine aerosol containing PbTx causes respiratory problems. A liquid chromatograph/ tandem mass spectrometric method was developed for the detection and quantitation of several PbTxs in ambient samples collected during red tide events. This method was complemented by a previously developed antibody assay that analyzes the entire class of PbTx compounds. The method showed good linearity, accuracy, and reproducibility, allowing quantitation of PbTx compounds in the 10 pg/m3 range. Air concentrations of PbTxs and brevenal for individual samples ranged from 0.01 to 80 ng/m3. The particle size showed a single mode with a mass median diameter between 6 and 10 microm, which was consistent for all of the PbTx species that were measured. Our results imply that individual PbTxs were from the same marine aerosol or from marine aerosol that was produced from the same process. The particle size indicated the likelihood of high deposition efficiency in the respiratory tract with the majority of aerosol deposited in the upper airways and small but not insignificant deposition in the lower airways. PMID:15954221

  10. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms.

    PubMed

    Valavanidis, Athanasios; Fiotakis, Konstantinos; Vlachogianni, Thomais

    2008-01-01

    Air pollution has been considered a hazard to human health. In the past decades, many studies highlighted the role of ambient airborne particulate matter (PM) as an important environmental pollutant for many different cardiopulmonary diseases and lung cancer. Numerous epidemiological studies in the past 30 years found a strong exposure-response relationship between PM for short-term effects (premature mortality, hospital admissions) and long-term or cumulative health effects (morbidity, lung cancer, cardiovascular and cardiopulmonary diseases, etc). Current research on airborne particle-induced health effects investigates the critical characteristics of particulate matter that determine their biological effects. Several independent groups of investigators have shown that the size of the airborne particles and their surface area determine the potential to elicit inflammatory injury, oxidative damage, and other biological effects. These effects are stronger for fine and ultrafine particles because they can penetrate deeper into the airways of the respiratory tract and can reach the alveoli in which 50% are retained in the lung parenchyma. Composition of the PM varies greatly and depends on many factors. The major components of PM are transition metals, ions (sulfate, nitrate), organic compound, quinoid stable radicals of carbonaceous material, minerals, reactive gases, and materials of biologic origin. Results from toxicological research have shown that PM have several mechanisms of adverse cellular effects, such as cytotoxicity through oxidative stress mechanisms, oxygen-free radical-generating activity, DNA oxidative damage, mutagenicity, and stimulation of proinflammatory factors. In this review, the results of the most recent epidemiological and toxicological studies are summarized. In general, the evaluation of most of these studies shows that the smaller the size of PM the higher the toxicity through mechanisms of oxidative stress and inflammation. Some studies

  11. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms.

    PubMed

    Valavanidis, Athanasios; Fiotakis, Konstantinos; Vlachogianni, Thomais

    2008-01-01

    Air pollution has been considered a hazard to human health. In the past decades, many studies highlighted the role of ambient airborne particulate matter (PM) as an important environmental pollutant for many different cardiopulmonary diseases and lung cancer. Numerous epidemiological studies in the past 30 years found a strong exposure-response relationship between PM for short-term effects (premature mortality, hospital admissions) and long-term or cumulative health effects (morbidity, lung cancer, cardiovascular and cardiopulmonary diseases, etc). Current research on airborne particle-induced health effects investigates the critical characteristics of particulate matter that determine their biological effects. Several independent groups of investigators have shown that the size of the airborne particles and their surface area determine the potential to elicit inflammatory injury, oxidative damage, and other biological effects. These effects are stronger for fine and ultrafine particles because they can penetrate deeper into the airways of the respiratory tract and can reach the alveoli in which 50% are retained in the lung parenchyma. Composition of the PM varies greatly and depends on many factors. The major components of PM are transition metals, ions (sulfate, nitrate), organic compound, quinoid stable radicals of carbonaceous material, minerals, reactive gases, and materials of biologic origin. Results from toxicological research have shown that PM have several mechanisms of adverse cellular effects, such as cytotoxicity through oxidative stress mechanisms, oxygen-free radical-generating activity, DNA oxidative damage, mutagenicity, and stimulation of proinflammatory factors. In this review, the results of the most recent epidemiological and toxicological studies are summarized. In general, the evaluation of most of these studies shows that the smaller the size of PM the higher the toxicity through mechanisms of oxidative stress and inflammation. Some studies

  12. Acute health impacts of airborne particles estimated from satellite remote sensing.

    PubMed

    Wang, Zhaoxi; Liu, Yang; Hu, Mu; Pan, Xiaochuan; Shi, Jing; Chen, Feng; He, Kebin; Koutrakis, Petros; Christiani, David C

    2013-01-01

    Satellite-based remote sensing provides a unique opportunity to monitor air quality from space at global, continental, national and regional scales. Most current research focused on developing empirical models using ground measurements of the ambient particulate. However, the application of satellite-based exposure assessment in environmental health is still limited, especially for acute effects, because the development of satellite PM(2.5) model depends on the availability of ground measurements. We tested the hypothesis that MODIS AOD (aerosol optical depth) exposure estimates, obtained from NASA satellites, are directly associated with daily health outcomes. Three independent healthcare databases were used: unscheduled outpatient visits, hospital admissions, and mortality collected in Beijing metropolitan area, China during 2006. We use generalized linear models to compare the short-term effects of air pollution assessed by ground monitoring (PM(10)) with adjustment of absolute humidity (AH) and AH-calibrated AOD. Across all databases we found that both AH-calibrated AOD and PM(10) (adjusted by AH) were consistently associated with elevated daily events on the current day and/or lag days for cardiovascular diseases, ischemic heart diseases, and COPD. The relative risks estimated by AH-calibrated AOD and PM(10) (adjusted by AH) were similar. Additionally, compared to ground PM(10), we found that AH-calibrated AOD had narrower confidence intervals for all models and was more robust in estimating the current day and lag day effects. Our preliminary findings suggested that, with proper adjustment of meteorological factors, satellite AOD can be used directly to estimate the acute health impacts of ambient particles without prior calibrating to the sparse ground monitoring networks. PMID:23220016

  13. Acute health impacts of airborne particles estimated from satellite remote sensing✩

    PubMed Central

    Wang, Zhaoxi; Liu, Yang; Hu, Mu; Pan, Xiaochuan; Shi, Jing; Chen, Feng; He, Kebin; Koutrakis, Petros; Christiani, David C.

    2013-01-01

    Satellite-based remote sensing provides a unique opportunity to monitor air quality from space at global, continental, national and regional scales. Most current research focused on developing empirical models using ground measurements of the ambient particulate. However, the application of satellite-based exposure assessment in environmental health is still limited, especially for acute effects, because the development of satellite PM2.5 model depends on the availability of ground measurements. We tested the hypothesis that MODIS AOD (aerosol optical depth) exposure estimates, obtained from NASA satellites, are directly associated with daily health outcomes. Three independent healthcare databases were used: unscheduled outpatient visits, hospital admissions, and mortality collected in Beijing metropolitan area, China during 2006. We use generalized linear models to compare the short-term effects of air pollution assessed by ground monitoring (PM10) with adjustment of absolute humidity (AH) and AH-calibrated AOD. Across all databases we found that both AH-calibrated AOD and PM10 (adjusted by AH) were consistently associated with elevated daily events on the current day and/or lag days for cardiovascular diseases, ischemic heart diseases, and COPD. The relative risks estimated by AH-calibrated AOD and PM10 (adjusted by AH) were similar. Additionally, compared to ground PM10, we found that AH-calibrated AOD had narrower confidence intervals for all models and was more robust in estimating the current day and lag day effects. Our preliminary findings suggested that, with proper adjustment of meteorological factors, satellite AOD can be used directly to estimate the acute health impacts of ambient particles without prior calibrating to the sparse ground monitoring networks. PMID:23220016

  14. Indoor airborne particle sources and semi-volatile partitioning effect of outdoor fine PM in offices

    NASA Astrophysics Data System (ADS)

    Sangiorgi, G.; Ferrero, L.; Ferrini, B. S.; Lo Porto, C.; Perrone, M. G.; Zangrando, R.; Gambaro, A.; Lazzati, Z.; Bolzacchini, E.

    2013-02-01

    To date, few studies have focused on PM air quality in offices, despite the fact that a lot of people spend many working hours a day in such offices. The aim of the present study is to investigate PM1 and PM2.5 in offices in Milan (Northern Italy) and in the air outside those offices. The PM samples were analyzed to determine the entity of certain compounds with possible direct or indirect adverse effects on human health: PAHs, BpA, and water soluble inorganic ions. A good correlation between outdoor and indoor PM mass concentrations emerged (R2 ˜0.87). The maximum I/O concentration ratio was 0.92, suggesting that the indoor PM level was always lower than the outdoor level. The average infiltration factor, FINF, was 0.55, showing that about a half of the outdoor PM had come indoors. The indoor-generated particles, Cig, had values ranging from 0 to 4.4 μg m-3 (<25% of the indoor PM), showing that PM indoor sources had only made a limited contribution to total indoor PM. The results of the indoor-to-outdoor comparisons for the aforementioned chemical compounds demonstrate that the offices were characterized by the absence of effective indoor sources of particulate-bound PAHs and inorganic ions, whereas Cig was around 58% of the indoor concentration for BpA. Our analysis of the FINF data pointed to the presence of a volatilization effect from PM for semi-volatile compounds like ammonium nitrate and 4- or 5-ring PAHs, which affected the measurement of their FINF. We propose the introduction of a new and simple parameter, called volatilization correction, to take account of this effect.

  15. Acute health impacts of airborne particles estimated from satellite remote sensing.

    PubMed

    Wang, Zhaoxi; Liu, Yang; Hu, Mu; Pan, Xiaochuan; Shi, Jing; Chen, Feng; He, Kebin; Koutrakis, Petros; Christiani, David C

    2013-01-01

    Satellite-based remote sensing provides a unique opportunity to monitor air quality from space at global, continental, national and regional scales. Most current research focused on developing empirical models using ground measurements of the ambient particulate. However, the application of satellite-based exposure assessment in environmental health is still limited, especially for acute effects, because the development of satellite PM(2.5) model depends on the availability of ground measurements. We tested the hypothesis that MODIS AOD (aerosol optical depth) exposure estimates, obtained from NASA satellites, are directly associated with daily health outcomes. Three independent healthcare databases were used: unscheduled outpatient visits, hospital admissions, and mortality collected in Beijing metropolitan area, China during 2006. We use generalized linear models to compare the short-term effects of air pollution assessed by ground monitoring (PM(10)) with adjustment of absolute humidity (AH) and AH-calibrated AOD. Across all databases we found that both AH-calibrated AOD and PM(10) (adjusted by AH) were consistently associated with elevated daily events on the current day and/or lag days for cardiovascular diseases, ischemic heart diseases, and COPD. The relative risks estimated by AH-calibrated AOD and PM(10) (adjusted by AH) were similar. Additionally, compared to ground PM(10), we found that AH-calibrated AOD had narrower confidence intervals for all models and was more robust in estimating the current day and lag day effects. Our preliminary findings suggested that, with proper adjustment of meteorological factors, satellite AOD can be used directly to estimate the acute health impacts of ambient particles without prior calibrating to the sparse ground monitoring networks.

  16. Indoor-outdoor relationships of airborne particles and nitrogen dioxide inside Parisian buses

    NASA Astrophysics Data System (ADS)

    Molle, Romain; Mazoué, Sophie; Géhin, Évelyne; Ionescu, Anda

    2013-04-01

    This study evaluated passengers' exposure to traffic air pollution inside the articulated buses of the line 91 in Paris during 10 working days in May, 2010. Twenty articulated buses were studied on 32 routes in order to determine the influence of the sampling position on the pollutant concentrations. This parameter is still poorly known for the rigid buses and is even less known for the articulated ones. However this parameter must be studied for articulated buses because the greater length may cause a pollutant concentration gradient in the cabin. Portable devices were used to measure pollutants in the presence of passengers from 8 a.m. to 9 a.m. and from 4 p.m. to 5 p.m., time periods corresponding to the peak traffic and travellers. PM2.5 mass concentration, particle number concentration between 0.3 and 20 μm and nitrogen dioxide concentration were simultaneously measured on three positions inside the buses (front, middle and rear) in order to study the spatial distribution of these compounds. These measurements inside the buses were compared to the outdoor concentrations at the same moment of the day provided by the Parisian air quality monitoring network; they were also compared to the results of a previous monitoring campaign performed in 2008. The results obtained during the 2010 campaign revealed that in-cabin NO2 mean concentrations were 1.5-3.5 times higher than the outside concentration levels; a maximum concentration of 234 ± 40 μg m-3 was found in the rear position (location of the engine and exhaust gas). Mean in-cabin PM2.5 mass concentrations varied from one week to another one, but they were globally the same at the three positions inside the instrumented buses. In order to determine the impact of outdoor levels, correlations have been calculated between the results measured inside the buses and those measured by the outdoor air monitoring stations. The highest Pearson correlation coefficient was 0.29 for NO2 data whereas the highest Pearson

  17. Effect of using nano and micro airborne abrasive particles on bond strength of implant abutment to prosthesis.

    PubMed

    Rismanchian, Mansour; Davoudi, Amin; Shadmehr, Elham

    2015-01-01

    Connecting prostheses to the implant abutments has become a concern and achieving a satisfactory retention has been focused in cement-retention prostheses recently. Sandblasting is a method to make a roughened surface for providing more retention. The aim of this study was to compare effects of nano and micro airborne abrasive particles (ABAP) in roughening surface of implant abutments and further retention of cemented copings. Thirty Xive abutments and analogues (4.5 D GH1) were mounted vertically in self-cured acrylic blocks. Full metal Ni-Cr copings with a loop on the top were fabricated with appropriate marginal adaptation for each abutment. All samples were divided into 3 groups: first group (MPS) was sandblasted with 50 µm Al2O3 micro ABAP, second group (NSP) was sandblasted with 80 nm Al2O3 nano ABAP, and the third group (C) was assumed as control. The samples were cemented with provisional cement (Temp Bond) and tensile bond strength of cemented copings was evaluated by a universal testing machine after thermic cycling. The t test for independent samples was used for statistical analysis by SPSS software (version 15) at the significant level of 0.05. Final result showed significant difference among all groups (p<0.001) and MPS manifested the highest mean retention (207.88 ± 45.61 N) with significant difference among other groups (p<0.001). The control group showed the lowest bond strength as predicted (48.95 ± 10.44 N). Using nano or micro ABAP is an efficient way for increasing bond strengths significantly, but it seems that micro ABAP was more effective.

  18. Resolving Organized Aerosol Structures (Rolls and Layers) with Airborne Fast Mobility Particle Sizer (FMPS) During MILAGRO/INTEX Campaign

    NASA Astrophysics Data System (ADS)

    Kapustin, V.; Clarke, A.; Zhou, J.; Howell, S.; Shinozuka, Y.; Brekhovskikh, V.; McNaughton, C.

    2007-12-01

    The Hawaii Group for Environmental Aerosol Research [http://www.soest.hawaii.edu/HIGEAR] deployed a wide range of aerosol instrumentation aboard the C-130 and the NASA DC-8 as part of MILAGRO/INTEX. These were designed to provide rapid information on aerosol composition, state of mixing (internal or external), spectral optical properties (scattering and absorption), the humidity dependence of light scattering-f(RH), and the role of condensed species in changing the absorption properties of black carbon (BC) and inferred properties of organic carbon (OC). These measurements included size distributions from about 7 nm up to about 10,000 nm and their volatility at 150, 300 and 400 C; size selected response to heating (volatility) to resolve the state of mixing of the aerosol; continuous measurements of the light scattering and absorption at 3 wavelengths; measurements of the f(RH). We also flew the first airborne deployment of the new Fast Mobility Particle Sizer (FMPS, TSI Inc.) that provided information on rapid (1Hz) size variations in the Aitken mode. This revealed small scale structure of the aerosol and allowed us to examine size distributions varying over space and time associated with mixing processes previously unresolved etc. Rapid measurements during profiles also revealed variations in size over shallow layers. Other dynamic processes included rapid size distribution measurements within orographically induced aerosol layers and size distribution evolution of the nanoparticles formed by nucleation (C-130 flights 5, 6 and 9). Evidence for fluctuations induced by underlying changes in topography was also detected. These measurements also frequently revealed the aerosol variability in the presence of boundary layer rolls aligned along the wind in the Marine Boundary Layer (Gulf region) both with and without visible cloud streets (DC-8 flight 4 and C-130 flight 7). This organized convection over 1-2 km scales influences the mixing processes (entrainment, RH

  19. The impact of flood and post-flood cleaning on airborne microbiological and particle contamination in residential houses.

    PubMed

    He, Congrong; Salonen, Heidi; Ling, Xuan; Crilley, Leigh; Jayasundara, Nadeesha; Cheung, Hing Cho; Hargreaves, Megan; Huygens, Flavia; Knibbs, Luke D; Ayoko, Godwin A; Morawska, Lidia

    2014-08-01

    In January 2011, Brisbane, Australia, experienced a major river flooding event. We aimed to investigate its effects on air quality and assess the role of prompt cleaning activities in reducing the airborne exposure risk. A comprehensive, multi-parameter indoor and outdoor measurement campaign was conducted in 41 residential houses, 2 and 6 months after the flood. The median indoor air concentrations of supermicrometer particle number (PN), PM10, fungi and bacteria 2 months after the flood were comparable to those previously measured in Brisbane. These were 2.88 p cm(-3), 15 μg m(-3), 804 cf um(-3) and 177 cf um(-3) for flood-affected houses (AFH), and 2.74 p cm(-3), 15 μg m(-3), 547 cf um(-3) and 167 cf um(-3) for non-affected houses (NFH), respectively. The I/O (indoor/outdoor) ratios of these pollutants were 1.08, 1.38, 0.74 and 1.76 for AFH and 1.03, 1.32, 0.83 and 2.17 for NFH, respectively. The average of total elements (together with transition metals) in indoor dust was 2296 ± 1328 μg m(-2) for AFH and 1454 ± 678 μg m(-2) for NFH, respectively. In general, the differences between AFH and NFH were not statistically significant, implying the absence of a measureable effect on air quality from the flood. We postulate that this was due to the very swift and effective cleaning of the flooded houses by 60,000 volunteers. Among the various cleaning methods, the use of both detergent and bleach was the most efficient at controlling indoor bacteria. All cleaning methods were equally effective for indoor fungi. This study provides quantitative evidence of the significant impact of immediate post-flood cleaning on mitigating the effects of flooding on indoor bioaerosol contamination and other pollutants.

  20. Measurement of airborne gunshot particles in a ballistics laboratory by sector field inductively coupled plasma mass spectrometry.

    PubMed

    Diaz, Ernesto; Sarkis, Jorge E Souza; Viebig, Sônia; Saldiva, Paulo

    2012-01-10

    The present study aimed determines lead (Pb), antimony (Sb) and barium (Ba) as the major elements present in GSR in the environmental air of the Ballistics Laboratory of the São Paulo Criminalistics Institute (I.C.-S.P.), São Paulo, SP, Brazil. Micro environmental monitors (mini samplers) were located at selected places. The PM(2.5) fraction of this airborne was collected in, previously weighted filters, and analyzed by sector field inductively coupled plasma mass spectrometer (SF-HR-ICP-MS). The higher values of the airborne lead, antimony and barium, were found at the firing range (lead (Pb): 58.9 μg/m(3); barium (Ba): 6.9 μg/m(3); antimony (Sb): 7.3 μg/m(3)). The mean value of the airborne in this room during 6 monitored days was Pb: 23.1 μg/m(3); Ba: 2.2 μg/m(3); Sb: 1.5 μg/m(3). In the water tank room, the air did not show levels above the limits of concern. In general the airborne lead changed from day to day, but the barium and antimony remained constant. Despite of that, the obtained values suggest that the workers may be exposed to airborne lead concentration that can result in an unhealthy environment and could increase the risk of chronic intoxication.

  1. Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European cities.

    PubMed

    Gómez, B; Palacios, M A; Gómez, M; Sanchez, J L; Morrison, G; Rauch, S; McLeod, C; Ma, R; Caroli, S; Alimonti, A; Petrucci, E; Bocca, B; Schramel, P; Zischka, M; Petterson, C; Wass, U

    2002-11-01

    Traffic is the main source of platinum-group element (PGE) contamination in populated urban areas. There is increasing concern about the hazardous effects of these new pollutants for people and for other living organisms in these areas. Airborne and road dusts, as well as tree bark and grass samples were collected at locations in the European cities of Göteborg (Sweden), Madrid (Spain), Rome (Italy), Munich (Germany), Sheffield and London (UK). Today, in spite of the large number of parameters that can influence the airborne PGE content, the results obtained so far indicate significantly higher PGE levels at traffic sites compared with the rural or non-polluted zones that have been investigated (background levels). The average Pt content in airborne particles found in downtown Madrid, Göteborg and Rome is in the range 7.3-13.1 pg m(-3). The ring roads of these cities have values in the range 4.1-17.7 pg m(-3). In Munich, a lower Pt content was found in airborne particles (4.1 pg m(-3)). The same tendency has been noted for downtown Rh, with contents in the range 2.2-2.8 pg m(-3), and in the range 0.8-3.0 and 0.3 pg m(-3) for motorway margins in Munich. The combined results obtained using a wide-range airborne classifier (WRAC) collector and a PM-10 or virtual impactor show that Pt is associated with particles for a wide range of diameters. The smaller the particle size, the lower the Pt concentration. However, in particles particles of approximately 15 pg m(-3), which is representative for all countries and environmental conditions, the tracheobronchial fraction represents approximately 10% and the alveolar fraction approximately 8% of the total particles suspended in air. However, from the environmental risk point of view, an exposure to PGEs in traffic-related ambient air is at least three orders of magnitude below the levels for which adverse

  2. [Comparing Cell Toxicity of Schizosaccharomyces pombe Exposure to Airborne PM2.5 from Beijing and Inert Particle SiO2].

    PubMed

    Liu, Meng-jiao; Huang, Yi; Wen, Hang; Qiu, Guo-yu

    2015-11-01

    To figure out the main factor of PM2.5 toxicity to cell, this study compared the cell toxicity of Schizosaccharomyces pombe (S. pombe), a model organism, exposed to inert ultrafine SiO2 particles, a model particle, and airborne PM2.5 collected from campus of Peking University Beijing China. Using ultraviolet spectrophotometry to measure cell proliferation ratio, and environmental scanning microscope to observe the particle adhesion on the cell surface, and detecting cellular ROS generation with DHE fluorescent dye chromogenic method, and using single cell gel electrophoresis to test cell DNA damage, the experiment results indicated that the ultrafine SiO2 particles (< 60 nm) could inhibit the cell proliferation of S. pombe, mainly through adsorbing onto the cell surface to change the permeability of the cell wall; but it could not induce cells to generate ROS to cause the oxidative damage. PM2.5, the average particle size of which was larger than that of SiO2 particles, could cause oxidative damages to cells mainly by inducing cells to generate ROS, and damage DNA simultaneously. It might illustrate that there was no direct relationship between the toxicity of PM2.5 and its physical properties such as the particle size.

  3. [Comparing Cell Toxicity of Schizosaccharomyces pombe Exposure to Airborne PM2.5 from Beijing and Inert Particle SiO2].

    PubMed

    Liu, Meng-jiao; Huang, Yi; Wen, Hang; Qiu, Guo-yu

    2015-11-01

    To figure out the main factor of PM2.5 toxicity to cell, this study compared the cell toxicity of Schizosaccharomyces pombe (S. pombe), a model organism, exposed to inert ultrafine SiO2 particles, a model particle, and airborne PM2.5 collected from campus of Peking University Beijing China. Using ultraviolet spectrophotometry to measure cell proliferation ratio, and environmental scanning microscope to observe the particle adhesion on the cell surface, and detecting cellular ROS generation with DHE fluorescent dye chromogenic method, and using single cell gel electrophoresis to test cell DNA damage, the experiment results indicated that the ultrafine SiO2 particles (< 60 nm) could inhibit the cell proliferation of S. pombe, mainly through adsorbing onto the cell surface to change the permeability of the cell wall; but it could not induce cells to generate ROS to cause the oxidative damage. PM2.5, the average particle size of which was larger than that of SiO2 particles, could cause oxidative damages to cells mainly by inducing cells to generate ROS, and damage DNA simultaneously. It might illustrate that there was no direct relationship between the toxicity of PM2.5 and its physical properties such as the particle size. PMID:26910977

  4. Aerodynamic performance of conventional and advanced design labyrinth seals with solid-smooth abradable, and honeycomb lands. [gas turbine engines

    NASA Technical Reports Server (NTRS)

    Stocker, H. L.; Cox, D. M.; Holle, G. F.

    1977-01-01

    Labyrinth air seal static and dynamic performance was evaluated using solid, abradable, and honeycomb lands with standard and advanced seal designs. The effects on leakage of land surface roughness, abradable land porosity, rub grooves in abradable lands, and honeycomb land cell size and depth were studied using a standard labyrinth seal. The effects of rotation on the optimum seal knife pitch were also investigated. Selected geometric and aerodynamic parameters for an advanced seal design were evaluated to derive an optimized performance configuration. The rotational energy requirements were also measured to determine the inherent friction and pumping energy absorbed by the various seal knife and land configurations tested in order to properly assess the net seal system performance level. Results indicate that: (1) seal leakage can be significantly affected with honeycomb or abradable lands; (2) rotational energy absorption does not vary significantly with the use of a solid-smooth, an abradable, or a honeycomb land; and (3) optimization of an advanced lab seal design produced a configuration that had leakage 25% below a conventional stepped seal.

  5. Organic compounds present in airborne particles stimulate superoxide production and DNA fragmentation: role of NOX and xanthine oxidase in animal tissues.

    PubMed

    Busso, Iván Tavera; Silva, Guillermo Benjamín; Carreras, Hebe Alejandra

    2016-08-01

    Suspended particulate matter trigger the production of reactive oxygen species. However, most of the studies dealing with oxidative damage of airborne particles focus on the effects of individual compounds and not real mixtures. In order to study the enzymatic superoxide production resulting from the exposition to a complex mixture, we derived organic extracts from airborne particles collected daily in an urban area and exposed kidney, liver, and heart mammal tissues. After that, we measured DNA damage employing the comet assay. We observed that in every tissue, NADPH oxidase and xanthine oxidase were involved in O2 (-) production when they were exposed to the organic extracts, as the lucigenin's chemiluminescence decays when enzymes were inhibited. The same trend was observed with the percentage of cells with comets, since DNA damage was higher when they were exposed to same experimental conditions. Our data allow us to hypothesize that these enzymes play an important role in the oxidative stress produced by PAHs and that there is a mechanism involving them in the O2 (-)generation. PMID:27180836

  6. Organic compounds present in airborne particles stimulate superoxide production and DNA fragmentation: role of NOX and xanthine oxidase in animal tissues.

    PubMed

    Busso, Iván Tavera; Silva, Guillermo Benjamín; Carreras, Hebe Alejandra

    2016-08-01

    Suspended particulate matter trigger the production of reactive oxygen species. However, most of the studies dealing with oxidative damage of airborne particles focus on the effects of individual compounds and not real mixtures. In order to study the enzymatic superoxide production resulting from the exposition to a complex mixture, we derived organic extracts from airborne particles collected daily in an urban area and exposed kidney, liver, and heart mammal tissues. After that, we measured DNA damage employing the comet assay. We observed that in every tissue, NADPH oxidase and xanthine oxidase were involved in O2 (-) production when they were exposed to the organic extracts, as the lucigenin's chemiluminescence decays when enzymes were inhibited. The same trend was observed with the percentage of cells with comets, since DNA damage was higher when they were exposed to same experimental conditions. Our data allow us to hypothesize that these enzymes play an important role in the oxidative stress produced by PAHs and that there is a mechanism involving them in the O2 (-)generation.

  7. Combined MIPAS (airborne/satellite), CALIPSO and in situ study on large potential NAT particles observed in early Arctic winter stratosphere in December 2011

    NASA Astrophysics Data System (ADS)

    Woiwode, Wolfgang; Höpfner, Michael; Pitts, Michael; Poole, Lamont; Oelhaf, Hermann; Molleker, Sergej; Borrmann, Stephan; Ebersoldt, Andreas; Frey, Wiebke; Gulde, Thomas; Maucher, Guido; Piesch, Christof; Sartorius, Christian; Orphal, Johannes

    2015-04-01

    The understanding of the characteristics of large HNO3-containing particles (potential 'NAT-rocks') involved in vertical redistribution of HNO3 in the polar winter stratosphere is limited due to the difficult accessibility of these particles by observations. While robust polar stratospheric cloud (PSC) classification schemes exist for observations by the space-borne lidar aboard CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) as well as for the passive mid-infrared limb observations by MIPAS (Michelson Interferometer for Passive Atmospheric Sounding), these observations are hardly exploited for the detection of large (diameter >10 μm) NAT particles. This is due to the facts that these particles have low overall number densities, resulting in weak detectable signatures, and that the physical characteristics of these particles (i.e. shape, morphology, HNO3-content and optical characteristics) are uncertain. We investigate collocated and complementary observations of a low-density potential large NAT particle field by the space-borne instruments CALIPSO and MIPAS-ENVISAT as well as the airborne observations by the limb-sounder MIPAS-STR and the in situ particle probe FSSP-100 (Forward Scattering Spectrometer Probe 100) aboard the high-altitude aircraft Geophysica. The observations aboard the Geophysica on 11 December 2011 associated to ESSenCe (ESa Sounder Campaign 2011) provided us the unique opportunity to study in detail the lower boundary region of a PSC where large potential NAT particles (>20 μm in diameter) were detected in situ. We analyse the ambient temperatures and gas-phase composition (HNO3 and H2O), the signatures of the observed particles in the CALIPSO and MIPAS observations, the HNO3-content of these particles suggested by the FSSP-100 and MIPAS-STR observations, and focus on the spectral fingerprint of these particles in the MIPAS-STR observations. While the spectral characterisation of the observed particles is subject

  8. Airborne Coarse Mode Aerosol Measurements with the CAS-DPOL Instrument: Effects of Particle Shape and Refractive Index and Implications for Radiative Transfer Estimate

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Weinzierl, B.; Gasteiger, J.; Spanu, A.; Freudenthaler, V.; Gross, S.

    2015-12-01

    Each year huge amounts of mineral dust are mobilized in deserts and arid regions of the world and transported over large distances forming thick elevated aerosol layers with a substantial fraction of coarse mode particles. Optical properties of mineral dust, including the absorptive refractive index of some components, cause a significant effect on the atmospheric radiative energy balance from optical to infrared wavelengths. The aerosol characteristics, in particular its coarse mode size distribution, are modified during long-range transport by aging and deposition processes. This also affects the aerosol optical properties and therefore the effect on the atmospheric radiative energy budget. In-situ measurements of aerosol microphysical properties are essential to characterize those effects in order to be implemented in global climate models in parametrized form. However, in-situ measurements of airborne coarse mode aerosols such as mineral dust and volcanic ash are challenging and the measurements are usually affected by substantial uncertainties. In this work we use airborne measurements of mineral dust from our optical light-scattering spectrometer CAS-DPOL during SALTRACE 2013 to discuss the analysis of such data. We cover the effects of varying refractive index and particle shapes and develop recommendations for the configuration of the CAS-DPOL for aerosol studies. We also present an inversion method to derive coarse mode size distributions from light-scattering probes for mixtures of non-spherical, absorbing aerosols. The size distributions retrieved from the in-situ measurements are then validated using an independent analysis with a combination of sun-photometer and lidar data. We apply these methods to investigate the Saharan mineral dust particle size distributions measured on both sides of the Atlantic Ocean and discuss the influence of aerosol aging on the atmospheric radiative energy budget. With this example we also assess how the uncertainties

  9. Friction and wear of sintered fiber-metal abradable seal materials

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Shiembob, L. T.

    1977-01-01

    Three abradable gas path seal material systems based on a sintered NiCrAlY fibermetal structure were evaluated under a range of wear conditions representative of those likely to be encountered in various knife-edge seal (labyrinth or shrouded turbine) applications. Conditions leading to undesirable wear of the rotating knife were identified and a model was proposed based on thermal effects arising under different rub conditions. It was found, and predicted by the model, that low incursion (plunge) rates tended to promote smearing of the low density sintered material with consequent wear to the knife-edge. Tradeoffs benefits between baseline 19 percent dense material, a similar material of increased density, and a self lubricating coating applied to the 19 percent material were identified based on relative rub tolerance and erosion resistance.

  10. Vertical wind retrieved by airborne lidar and analysis of island induced gravity waves in combination with numerical models and in situ particle measurements

    NASA Astrophysics Data System (ADS)

    Chouza, Fernando; Reitebuch, Oliver; Jähn, Michael; Rahm, Stephan; Weinzierl, Bernadett

    2016-04-01

    This study presents the analysis of island induced gravity waves observed by an airborne Doppler wind lidar (DWL) during SALTRACE. First, the instrumental corrections required for the retrieval of high spatial resolution vertical wind measurements from an airborne DWL are presented and the measurement accuracy estimated by means of two different methods. The estimated systematic error is below -0.05 m s-1 for the selected case of study, while the random error lies between 0.1 and 0.16 m s-1 depending on the estimation method. Then, the presented method is applied to two measurement flights during which the presence of island induced gravity waves was detected. The first case corresponds to a research flight conducted on 17 June 2013 in the Cabo Verde islands region, while the second case corresponds to a measurement flight on 26 June 2013 in the Barbados region. The presence of trapped lee waves predicted by the calculated Scorer parameter profiles was confirmed by the lidar and in situ observations. The DWL measurements are used in combination with in situ wind and particle number density measurements, large-eddy simulations (LES), and wavelet analysis to determine the main characteristics of the observed island induced trapped waves.

  11. Characterization of Fine Airborne Particulate Collected in Tokyo and Major Atmospheric Emission Sources by Using Single Particle Measurement of SEM-EDX

    NASA Astrophysics Data System (ADS)

    Sato, K.; Iijima, A.; Furuta, N.

    2008-12-01

    In our long-term monitoring of size-classified Airborne Particulate Matter (APM) in Tokyo since 1995, it had been demonstrated that toxic elements such as As, Se, Cd, Sb and Pb were extremely enriched in fine APM (PM2.5). However, in that study, total sampled APM on a filter was digested with acids, and thus only averaged elemental composition in fine APM could be obtained. One of the effective methods to determine the origin of APM is single particle measurement by using SEM-EDX. By using characteristic shapes observed by SEM and marker elements contained in APM measured by EDX, detailed information for source identification can be obtained. In this study, fine APM (PM2.5) was collected at various locations such as roadside, diesel vehicle exhaust, a heavy oil combustion plant and a waste incineration plant as well as ambient atmosphere in Tokyo, and characteristics of fine particles that will be utilized for identification of emission sources are elucidated. Fine particles can be classified into 3 main characteristic shape groups; edge-shaped, cotton-like and spherical. Shape of particles collected in a heavy oil combustion plant and a waste incineration plant was mostly spherical, and these particles may be associated with thermal process. Diesel exhaust particles were predominantly cotton-like which may consist of coagulated nano-sized particles. Most of brake abrasion dusts were edge-shaped, which may be associated with mechanical abrasion of brake pads. In the elemental analysis of fine particles, high concentrations of Sb, Cu, Ti and Ba were detected in brake abrasion dusts. Since these elements are major constituents of brake pads, these can be used for marker elements of brake abrasion dusts. High concentration of C was detected in diesel exhaust particles and oil combustion particles, and thus C can be used for marker elements of their origin. Furthermore, high concentrations of C, Ca and K were detected in fly ash from a waste incineration plant, which

  12. Comparison of physicochemical properties between fine (PM2.5) and coarse airborne particles at cold season in Korea.

    PubMed

    Choung, Sungwook; Oh, Jungsun; Han, Weon Shik; Chon, Chul-Min; Kwon, Youngsang; Kim, Do Yeon; Shin, Woosik

    2016-01-15

    Although it has been well-known that atmospheric aerosols affect negatively the local air quality, human health, and climate changes, the chemical and physical properties of atmospheric aerosols are not fully understood yet. This study experimentally measured the physiochemical characteristics of fine and coarse aerosol particles at the suburban area to evaluate relative contribution to environmental pollution in consecutive seasons of autumn and winter, 2014-2015, using XRD, SEM-EDX, XNI, ICP-MS, and TOF-SIMS. For these experimental works, the fine and coarse aerosols were collected by the high volume air sampler for 7 days each season. The fine particles contain approximately 10 μg m(-3) of carbonaceous aerosols consisting of 90% organic and 10% elemental carbon. The spherical-shape carbonaceous particles were observed for the coarse samples as well. Interestingly, the coarse particles in winter showed the increased frequency of carbon-rich particles with high contents of heavy metals. These results suggest that, for the cold season, the coarse particles could contribute relatively more to the conveyance of toxic contaminants compared to the fine particles in the study area. However, the fine particles showed acidic properties so that their deposition to surface may cause facilitate the increase of mobility for toxic heavy metals in soil and groundwater environments. The fine and coarse particulate matters, therefore, should be monitored separately with temporal variation to evaluate the impact of atmospheric aerosols to environmental pollution and human health. PMID:26476059

  13. Airborne measurements of new particle formation in the free troposphere above the Mediterranean Sea during the HYMEX campaign

    NASA Astrophysics Data System (ADS)

    Rose, C.; Sellegri, K.; Freney, E.; Dupuy, R.; Colomb, A.; Pichon, J.-M.; Ribeiro, M.; Bourianne, T.; Burnet, F.; Schwarzenboeck, A.

    2015-03-01

    While atmospheric new particle formation (NPF) has been observed in various environments and was found to contribute significantly to the total aerosol particle concentration, the production of new particles over open seas is poorly documented in the literature. Nucleation events were detected and analysed over the Mediterranean Sea using two condensation particle counters and a Scanning Mobility Particle Sizer on-board the ATR-42 research aircraft during flights conducted between the 11 September and the 4 November 2012 in the framework of the HYMEX (HYdrological cycle in Mediterranean EXperiment) project. The main purpose of the present work was to characterize the spatial extent of the NPF process. Our findings show that nucleation is occurring over large areas above the Mediterranean Sea in all air mass types. Maximum concentrations of particles in the size range 5-10 nm (N5-10) do not systematically coincide with lower fetches (time spent by the air mass over the sea before sampling), and significant N5-10 values are found for fetches between 0 and 60 h depending on the air mass type. These observations suggest that nucleation events could be more influenced by processes occurring above the sea, rather than linked to synoptic history. The analysis of the vertical extent of nucleation demonstrates that the process is favoured at high altitude, above 1000 m, i.e. frequently in the free troposphere, and more especially between 2000 and 3000 m, where the nucleation frequency is close to 50%. This vertical distribution of nucleation is favoured by the gradients of several parameters, such as the condensation sink, the temperature and the relative humidity. The mixing of two air parcels could also explain the occurrence of nucleation at preferential altitudes. After they formed, particles slowly grow at high altitude to diameters of at least 30 nm while being poorly depleted by coagulation processes. Our analysis of the particle size distributions suggests that

  14. Optical pulling of airborne absorbing particles and smut spores over a meter-scale distance with negative photophoretic force

    SciTech Connect

    Lin, Jinda; Hart, Adam G.; Li, Yong-qing

    2015-04-27

    We demonstrate optical pulling of single light-absorbing particles and smut spores in air over a meter-scale distance using a single collimated laser beam based on negative photophoretic force. The micron-sized particles are pulled towards the light source at a constant speed of 1–10 cm/s in the optical pulling pipeline while undergoing transverse rotation at 0.2–10 kHz. The pulled particles can be manipulated and precisely positioned on the entrance window with an accuracy of ∼20 μm, and their chemical compositions can be characterized with micro-Raman spectroscopy.

  15. Airborne measurements of new particle formation in the free troposphere above the Mediterranean Sea during the HYMEX campaign

    NASA Astrophysics Data System (ADS)

    Rose, C.; Sellegri, K.; Freney, E.; Dupuy, R.; Colomb, A.; Pichon, J.-M.; Ribeiro, M.; Bourianne, T.; Burnet, F.; Schwarzenboeck, A.

    2015-09-01

    While atmospheric new particle formation (NPF) has been observed in various environments and was found to contribute significantly to the total aerosol particle concentration, the production of new particles over open seas is poorly documented in the literature. Nucleation events were detected and analysed over the Mediterranean Sea using two condensation particle counters and a scanning mobility particle sizer on board the ATR-42 research aircraft during flights conducted between 11 September and 4 November 2012 in the framework of the HYMEX (HYdrological cycle in Mediterranean EXperiment) project. The main purpose of the present work was to characterize the spatial extent of the NPF process, both horizontally and vertically. Our findings show that nucleation is occurring over large areas above the Mediterranean Sea in all air mass types. Maximum concentrations of particles in the size range 5-10 nm (N5-10) do not systematically coincide with lower fetches (time spent by the air mass over the sea before sampling), and significant N5-10 values are found for fetches between 0 and 60 h depending on the air mass type. These observations suggest that nucleation events could be more influenced by local precursors originating from emission processes occurring above the sea, rather than linked to synoptic history. Vertical soundings were performed, giving the opportunity to examine profiles of the N5-10 concentration and to analyse the vertical extent of NPF. Our observations demonstrate that the process could be favoured above 1000 m, i.e. frequently in the free troposphere, and more especially between 2000 and 3000 m, where the NPF frequency is close to 50 %. This vertical distribution of NPF might be favoured by the gradients of several atmospheric parameters, together with the mixing of two air parcels, which could also explain the occurrence of the process at preferential altitudes. In addition, increased condensation sinks collocated with high concentrations of

  16. Convergent evolution of abrading flow obstacles: Insights from analogue modelling of fluvial bedrock abrasion by coarse bedload

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew; Lavé, Jérôme

    2014-03-01

    Upstream-facing convex surfaces (UFCS) are formed by bedload abrasion in bedrock rivers and indicate the recent, significant action of bedload abrasion in causing channel incision. Beyond this, little is known of the dynamics of UFCS and the effect of substrate and bedload properties on rates and distribution of bedload abrasion for these bed roughness elements. Grain size populations from 1 to 8 cm (b-axis, in 1- or 2-cm bin widths) were used to bombard preshaped marble and limestone targets bolted to the base of an annular flume. The control of initial shape and lithology of the target and the erodent grain size and lithology were investigated by monitoring the evolution of the target form using laser scanning at predefined time intervals. Eleven experiment suites were carried out containing three initial target shapes constructed from two lithologies, four bedload (erodent) grain sizes of either granodiorites or limestone, or clear water flow. All 10 targets abraded by bedload evolved from their initial form into a steady state (time invariant) form, producing UFCSs. Steady state forms were closely similar for all targets despite different initial conditions. Bedload grain size has a strong control on this equilibrium form, related to the transit path of the grains when moving over the target, whilst initial target form has only a weak control. Steady state morphology is achieved more rapidly with harder erodent bedload particles and/or softer targets. Upstream-facing convex surface stoss sides were characterised by a brighter, sugary, granular appearance on the rock-forming grain scale. Increasing erodent grain size, for a fixed bedload mass, increased the bulk abrasion rate at fixed flow speed and discharge. No detectable erosion occurred for a limestone block in clear water flows under the same flow conditions, indicating solution and cavitation were insignificant mechanisms of erosion in this study. During the experiment suites, suspended load abrasion was

  17. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  18. Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray.

    PubMed

    Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared; Friend, Sherri; Stone, Samuel; Keane, Michael

    2016-07-01

    Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the "gold standard" for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing "monodisperse" aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in some test

  19. Performance of a Scanning Mobility Particle Sizer in Measuring Diverse Types of Airborne Nanoparticles: Multi-Walled Carbon Nanotubes, Welding Fumes, and Titanium Dioxide Spray

    PubMed Central

    Chen, Bean T.; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared; Friend, Sherri; Stone, Samuel; Keane, Michael

    2016-01-01

    Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the “gold standard” for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing “monodisperse” aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in

  20. Airborne and ground-based measurements of the trace gases and particles emitted from prescribed fires in the United States

    SciTech Connect

    Burling, Ian; Yokelson, Robert J.; Akagi, Sheryl; Urbanski, Shawn; Wold, Cyle E.; Griffith, David WT; Johnson, Timothy J.; Reardon, James; Weise, David

    2011-12-07

    We measured the emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous suggestions that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured the emissions in the convective smoke plume from our airborne platform at the same time the unlofted residual smoldering combustion emissions were measured with our ground-based platform after the flame front passed through. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including significant 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts of smoke that disperses at ground level, and we show that the normally-ignored unlofted emissions can also significantly impact estimates of total emissions. Preliminary evidence of large emissions of monoterpenes was seen in the residual smoldering spectra, but we have not yet quantified these emissions. These data should lead to an improved capacity to model the impacts of biomass burning in similar

  1. Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States

    NASA Astrophysics Data System (ADS)

    Burling, I. R.; Yokelson, R. J.; Akagi, S. K.; Urbanski, S. P.; Wold, C. E.; Griffith, D. W. T.; Johnson, T. J.; Reardon, J.; Weise, D. R.

    2011-12-01

    We have measured emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as conifer forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps to close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous observations that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured both the emissions in the convective smoke plume from our airborne platform and the unlofted residual smoldering combustion emissions with our ground-based platform. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including high 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts for smoke that disperses at ground level. We also show that the often ignored unlofted emissions can significantly impact estimates of total emissions. Preliminary evidence suggests large emissions of monoterpenes in the residual smoldering smoke. These data should lead to an improved capacity to model the impacts of biomass burning in similar temperate ecosystems.

  2. Mutagenicity of fine (less than 2. 5 microns) airborne particles: diurnal variation in community air determined by a Salmonella micro preincubation (microsuspension) procedure

    SciTech Connect

    Kado, N.Y.; Guirguis, G.N.; Flessel, C.P.; Chan, R.C.; Chang, K.I.; Wesolowski, J.J.

    1986-01-01

    A simple modification of the Salmonella liquid incubation assay previously developed for detecting mutagens in urine was used to determine mutagenic activity of airborne particulate matter. The modification consists of adding ten times more bacteria (approximately 10(9) per incubation tube) and five to ten times less metabolic enzymes compared to the plate incorporation method. The mixture volume is approximately 0.2 ml, and the mixture is incubated for 90 min before pouring it according to the standard protocol. The modified procedure (micro preincubation or microsuspension) was approximately ten times more sensitive than the standard plate incorporation test for detecting mutagens in air particulate extracts and approximately ten to 31 times more sensitive for the chemical mutagens 2-nitrofluorene, 4-nitroquinoline-N-oxide, 2-aminofluorene, and benzo(a)pyrene in bacterial strain TA98. Mutagenic activity was detected in particle extracts obtained from 1 m3 of air (17 micrograms of extract) or less. This microsuspension procedure was applied to air particulate samples collected with low-volume (15-50 liters per min) virtual-dichotomous air samplers. Mutagenic activity was associated exclusively with fine particles (aerodynamic diameters of less than 2.5 microns). Diurnal patterns of mutagenic activity (TA98 revertants per cubic meter air) were investigated by measuring filter extracts from 2-hr samples collected in three San Francisco Bay Area cities during the summer or fall of 1982. Four criteria pollutants--lead, nitrogen dioxide, ozone, and sulfur dioxide--were simultaneously sampled at one location. Mutagenicity from fine particles sampled at this location was highly correlated with lead and much less correlated with nitrogen dioxide, ozone, and sulfur dioxide. The microsuspension procedure is applicable in testing samples of limited mass.

  3. Exposure to airborne particles and volatile organic compounds from polyurethane molding, spray painting, lacquering, and gluing in a workshop.

    PubMed

    Mølgaard, Bjarke; Viitanen, Anna-Kaisa; Kangas, Anneli; Huhtiniemi, Marika; Larsen, Søren Thor; Vanhala, Esa; Hussein, Tareq; Boor, Brandon E; Hämeri, Kaarle; Koivisto, Antti Joonas

    2015-04-02

    Due to the health risk related to occupational air pollution exposure, we assessed concentrations and identified sources of particles and volatile organic compounds (VOCs) in a handcraft workshop producing fishing lures. The work processes in the site included polyurethane molding, spray painting, lacquering, and gluing. We measured total VOC (TVOC) concentrations and particle size distributions at three locations representing the various phases of the manufacturing and assembly process. The mean working-hour TVOC concentrations in three locations studied were 41, 37, and 24 ppm according to photo-ionization detector measurements. The mean working-hour particle number concentration varied between locations from 3000 to 36,000 cm-3. Analysis of temporal and spatial variations of TVOC concentrations revealed that there were at least four substantial VOC sources: spray gluing, mold-release agent spraying, continuous evaporation from various lacquer and paint containers, and either spray painting or lacquering (probably both). The mold-release agent spray was indirectly also a major source of ultrafine particles. The workers' exposure can be reduced by improving the local exhaust ventilation at the known sources and by increasing the ventilation rate in the area with the continuous source.

  4. TRENDS OF POLYCYCLIC AROMATIC HYDROCARBON LEVELS AND MUTAGENICITY IN SANTIAGO'S INHALABLE AIRBORNE PARTICLES IN THE PERIOD 1992-1996.

    EPA Science Inventory

    Abstract

    Trends of polycyclic aromatic hydrocarbons (PAHs) for 1992-1996 (cold season) and their mutagenic activity were investigated in organic extracts from the Santiago. Chile. inhalable particles (PM10). The highest PAH concentrations were observed in 1992 and decline...

  5. Exposure to Airborne Particles and Volatile Organic Compounds from Polyurethane Molding, Spray Painting, Lacquering, and Gluing in a Workshop

    PubMed Central

    Mølgaard, Bjarke; Viitanen, Anna-Kaisa; Kangas, Anneli; Huhtiniemi, Marika; Larsen, Søren Thor; Vanhala, Esa; Hussein, Tareq; Boor, Brandon E.; Hämeri, Kaarle; Koivisto, Antti Joonas

    2015-01-01

    Due to the health risk related to occupational air pollution exposure, we assessed concentrations and identified sources of particles and volatile organic compounds (VOCs) in a handcraft workshop producing fishing lures. The work processes in the site included polyurethane molding, spray painting, lacquering, and gluing. We measured total VOC (TVOC) concentrations and particle size distributions at three locations representing the various phases of the manufacturing and assembly process. The mean working-hour TVOC concentrations in three locations studied were 41, 37, and 24 ppm according to photo-ionization detector measurements. The mean working-hour particle number concentration varied between locations from 3000 to 36,000 cm−3. Analysis of temporal and spatial variations of TVOC concentrations revealed that there were at least four substantial VOC sources: spray gluing, mold-release agent spraying, continuous evaporation from various lacquer and paint containers, and either spray painting or lacquering (probably both). The mold-release agent spray was indirectly also a major source of ultrafine particles. The workers’ exposure can be reduced by improving the local exhaust ventilation at the known sources and by increasing the ventilation rate in the area with the continuous source. PMID:25849539

  6. Real-time detection and characterization of individual flowing airborne biological particles: fluorescence spectra and elastic scattering measurements

    NASA Astrophysics Data System (ADS)

    Pan, Yongle; Holler, Stephen; Chang, Richard K.; Hill, Steven C.; Pinnick, Ronald G.; Niles, Stanley; Bottiger, Jerold R.; Bronk, Burt V.

    1999-11-01

    Real-time methods which is reagentless and could detect and partially characterize bioaerosols are of current interest. We present a technique for real-time measurement of UV-excited fluorescence spectra and two-dimensional angular optical scattering (TAOS) from individual flowing biological aerosol particles. The fluorescence spectra have been observed from more than 20 samples including Bacillus subtilis, Escherichia coli, Erwinia herbicola, allergens, dust, and smoke. The S/N and resolution of the spectra are sufficient for observing small lineshape differences among the same type of bioaerosol prepared under different conditions. The additional information from TAOS regarding particle size, shape, and granularity has the potential of aiding in distinguishing bacterial aerosols from other aerosols, such as diesel and cigarette smoke.

  7. Characterization of Size-Fractionated Airborne Particles Inside an Electronic Waste Recycling Facility and Acute Toxicity Testing in Mice.

    PubMed

    Kim, Yong Ho; Wyrzykowska-Ceradini, Barbara; Touati, Abderrahmane; Krantz, Q Todd; Dye, Janice A; Linak, William P; Gullett, Brian; Gilmour, M Ian

    2015-10-01

    Disposal of electronic waste (e-waste) in landfills, incinerators, or at rudimentary recycling sites can lead to the release of toxic chemicals into the environment and increased health risks. Developing e-waste recycling technologies at commercial facilities can reduce the release of toxic chemicals and efficiently recover valuable materials. While these e-waste operations represent a vast improvement over previous approaches, little is known about environmental releases, workplace exposures, and potential health impacts. In this study, airborne particulate matter (PM) was measured at various locations within a modern U.S.-based e-waste recycling facility that utilized mechanical processing. In addition, composite size fractionated PM (coarse, fine and ultrafine) samples were collected, extracted, chemically analyzed, and given by oropharyngeal aspiration to mice or cultured with lung slices for lung toxicity tests. Indoor total PM concentrations measured during the study ranged from 220 to 1200 μg/m(3). In general, the coarse PM (2.5-10 μm) was 3-4 times more abundant than fine/ultrafine PM (<2.5 μm). The coarse PM contained higher levels of Ni, Pb, and Zn (up to 6.8 times) compared to the fine (0.1-2.5 μm) and ultrafine (<0.1 μm) PM. Compared to coarse PM measurements from a regional near-roadway study, Pb and Ni were enriched 170 and 20 times, respectively, in the indoor PM, with other significant enrichments (>10 times) observed for Zn and Sb, modest enrichments (>5 times) for Cu and Sr, and minor enrichments (>2 times) for Cr, Cd, Mn, Ca, Fe, and Ba. Negligible enrichment (<2 times) or depletion (<1 time) were observed for Al, Mg, Ti, Si, and V. The coarse PM fraction elicited significant pro-inflammatory responses in the mouse lung at 24 h postexposure compared to the fine and ultrafine PM, and similar toxicity outcomes were observed in the lung slice model. We conclude that exposure to coarse PM from the facility caused substantial inflammation in the

  8. Size fractionation in mercury-bearing airborne particles (HgPM 10) at Almadén, Spain: Implications for inhalation hazards around old mines

    NASA Astrophysics Data System (ADS)

    Moreno, Teresa; Higueras, Pablo; Jones, Tim; McDonald, Iain; Gibbons, Wes

    Almadén has a >2000y mining history and an unprecedented legacy of mercury contamination. Resuspended airborne particles were extracted from mine waste (Las Cuevas), retort site soil (Almadenejos), and urban car park dust (Almadén), separated into fine (PM 10) and coarse (PM >10 μm ) fractions, analysed for mercury using ICP-MS, and individual HgPM characterised using SEM. Cold extractable mercury concentrations in PM 10 range from 100 to 150 μg g -1 (car parks), to nearly 6000 μg g -1 (mine waste), reaching a world record of 95,000 μg g -1 above the abandoned retort at Almadenejos where ultrafine HgPM have pervaded the brickwork and soil and entered the food chain: edible wild asparagus stem material from here contains 35-65 μg g -1 Hg, and pig hair from animals living, inhaling and ingesting HgPM 10 at the site yielded 8-10 μg g -1. The PM 10 fraction (dusts easily wind transported and deeply inhaled) contains much more mercury than the coarser fraction. The contribution of HgPM 10 to ecosystem contamination and potential human health effects around old mercury mines has been underestimated.

  9. Airborne studies of emissions from savanna fires in southern Africa. 1. Aerosol emissions measured with a laser optical particle counter

    NASA Astrophysics Data System (ADS)

    Le Canut, P.; Andreae, M. O.; Harris, G. W.; Wienhold, F. G.; Zenker, T.

    1996-10-01

    During the SAFARI-92 experiment (Southern Africa Fire Atmosphere Research Initiative, September-October 1992), we flew an instrumented DC-3 aircraft through plumes from fires in various southern African savanna ecosystems. Some fires had been managed purposely for scientific study (e.g., those in Kruger National Park, South Africa), while the others were "fires of opportunity" which are abundant during the burning season in southern Africa. We obtained the aerosol (0.1-3.0 μm diameter) number and mass emission ratios relative to carbon monoxide and carbon dioxide from 21 individual fires. The average particle number emission ratio ΔN/ΔCO (Δ: concentrations in plume minus background concentrations) varied between 14 ± 2 cm-3 ppb-1 for grasslands and 23 ± 7 cm-3 ppb-1 for savannas. An exceptionally high value of 43 ± 4 cm-3 ppb-1 was measured for a sugarcane fire. Similarly, the mass emission ratio ΔM/ΔCO varied from 36 ± 6 ng m-3 ppb-1 to 83 ± 45 ng m-3 ppb-1, respectively, with again an exceptionally high value of 124 ± 14 ng m-3 ppb-1 for the sugarcane fire. The number and mass emission ratios relative to CO depended strongly upon the fire intensity. Whereas the emission ratios varied greatly from one fire to the other, the aerosol number and volume distributions as a function of particle size were very consistent. The average background aerosol size distribution was characterized by three mass modes (0.2-0.4 μm, ≈1.0 μm, and ≈2.0 μm diameter). On the other hand, the aerosol size distribution in the smoke plumes showed only two mass modes, one centered in the interval 0.2-0.3 μm and the other above 2 μm diameter. From our mean emission factor (4 ± 1 g kg-1 dm) we estimate that savanna fires release some 11-18 Tg aerosol particles in the size range 0.1-3.0 μm annually, a somewhat lower amount than emitted from tropical forest fires. Worldwide, savanna fires emit some 3-8 × 1027 particles (in the same size range) annually, which is expected

  10. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  11. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  12. Study on size distributions of airborne particles by aircraft observation in spring over eastern coastal areas of China

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Liu, Hongjie; Yue, Xin; Li, Hong; Chen, Jianhua; Tang, Dagang

    2005-06-01

    The authors studied the size distributions of particles at an altitude of 2000 m by aircraft observation over eastern costal areas of China from Zhuhai, Guangdong to Dalian, Liaoning (0.47 30 μm, 57 channels, including number concentration distribution, surface area concentration distribution and mass concentration distribution). In these cities, the average daily concentrations of PM10 are very high. They are among the most heavily polluted cities in China. The main pollution sources are anthropogenic activities such as wood, coal and oil burning. The observed size distributions show a broad spectrum and unique multi-peak characteristics, indicating no significant impacts of individual sources from urban areas. These results are far different from the distribution type at ground level. It may reflect the comprehensive effect of the regional pollution characteristics. Monitoring results over big cities could to some extent reflect their pollution characteristics.

  13. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  14. Comparing polybrominated diphenyl ethers (PBDEs) in airborne particles in Guangzhou and Hong Kong: sources, seasonal variations and inland outflow.

    PubMed

    Li, Jun; Liu, Xiang; Yu, Li-Li; Zhang, Gan; Li, Xiang-Dong; Lee, Celine S L; Lin, Hai-Tao

    2009-06-01

    The historical application/usage and management of chemicals in Hong Kong have been distinctively different from mainland China. In the present study, polybrominated diphenyl ethers (PBDEs) were measured in year-round atmospheric particle samples collected from urban Hong Kong and Guangzhou for comparison. The concentrations of BDE-209 and Sigma9PBDEs (defined as the sum of BDE-28, -47, -66, -100, -99, -154, -153, -138 and -183) in Guangzhou ranged from 758 to 21,900 pg m(-3) and from 31.8 to 3320 pg m(-3), respectively, and in Hong Kong ranged from 8.5 to 895 pg m(-3) and from 1.0 to 386 pg m(-3), respectively. Elevated concentrations of PBDEs were observed in Guangzhou, showing significant atmospheric PBDE pollution. BDE-209, -47, and -99 were the dominant congeners in all the samples, suggesting that the widely used commercial penta- and deca-BDE products were the original sources. Distinct seasonal patterns were observed in the PBDE concentrations of aerosols in Hong Kong, higher during the winter monsoon period, and lower during summertime. The less distinct seasonal variations of PBDE concentrations in the aerosols of Guangzhou suggested the dominance of local pollution sources around the city. Significant correlations were found between BDE-209 and organic carbon (OC) or elemental carbon (EC) in the two cities, suggesting that combustion may be an important pathway introducing BDE-209 to the atmosphere. The lower BDE-209 concentrations along with higher OC/EC ratios implied that a quick loss of BDE-209 may occur during the aerosol aging processes. Back trajectory analysis showed that the high PBDE concentrations observed in Hong Kong may be related to the outflows from the inland area of the Pearl River Delta (PRD) by prevailing the northeast or northwest wind in winter.

  15. Airborne concentrations of PM(2.5) and diesel exhaust particles on Harlem sidewalks: a community-based pilot study.

    PubMed Central

    Kinney, P L; Aggarwal, M; Northridge, M E; Janssen, N A; Shepard, P

    2000-01-01

    Residents of the dense urban core neighborhoods of New York City (NYC) have expressed increasing concern about the potential human health impacts of diesel vehicle emissions. We measured concentrations of particulate matter [less than/equal to] 2.5 micro in aerodynamic diameter (PM(2.5)) and diesel exhaust particles (DEP) on sidewalks in Harlem, NYC, and tested whether spatial variations in concentrations were related to local diesel traffic density. Eight-hour (1000-1800 hr) air samples for PM(2.5 )and elemental carbon (EC) were collected for 5 days in July 1996 on sidewalks adjacent to four geographically distinct Harlem intersections. Samples were taken using portable monitors worn by study staff. Simultaneous traffic counts for diesel trucks, buses, cars, and pedestrians were carried out at each intersection on [Greater/equal to] 2 of the 5 sampling days. Eight-hour diesel vehicle counts ranged from 61 to 2,467 across the four sites. Mean concentrations of PM(2.5) exhibited only modest site-to-site variation (37-47 microg/m(3)), reflecting the importance of broader regional sources of PM(2.5). In contrast, EC concentrations varied 4-fold across sites (from 1.5 to 6 microg/m(3)), and were associated with bus and truck counts on adjacent streets and, at one site, with the presence of a bus depot. A high correlation (r = 0.95) was observed between EC concentrations measured analytically and a blackness measurement based on PM(2.5) filter reflectance, suggesting the utility of the latter as a surrogate measure of DEP in future community-based studies. These results show that local diesel sources in Harlem create spatial variations in sidewalk concentrations of DEP. The study also demonstrates the feasibility of a new paradigm for community-based research involving full and active partnership between academic scientists and community-based organizations. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:10706526

  16. Hypersensitivity of prediabetic JCR:LA-cp rats to fine airborne combustion particle-induced direct and noradrenergic-mediated vascular contraction.

    PubMed

    Proctor, Spencer D; Dreher, Kevin L; Kelly, Sandra E; Russell, James C

    2006-04-01

    Particulate matter with mean aerodynamic diameter < or =2.5 microm (PM(2.5)), from diesel exhaust, coal or residual oil burning, and from industrial plants, is a significant component of airborne pollution. Type 2 diabetes is associated with enhanced risk of adverse cardiovascular events following exposure to PM(2.5). Particle properties, sources, and pathophysiological mechanisms responsible are unknown. We studied effects of residual oil fly ash (ROFA) from a large U.S. powerplant on vascular function in a prediabetic, hyperinsulinemic model, the JCR:LA-cp rat. Residual oil fly ash leachate (ROFA-L) was studied using aortic rings from young-adult, obese, insulin-resistant rats and lean normal rats in vitro. Contractile response to phenylephrine and relaxant response to acetylcholine were determined in the presence and absence of L-NAME (N(G)-nitro-L-arginine methyl ester). In a separate series of studies, the direct contractile effects of ROFA-L on repeated exposure were determined. ROFA-L (12.5 microg ml(-1)) increased phenylephrine-mediated contraction in obese (p < 0.05), but not in lean rat aortae, with the effect being exacerbated by L-NAME, and it reduced acetylcholine-mediated relaxation of both obese and lean aortae (p < 0.0001). Initial exposure of aortae to ROFA-L caused a small contractile response (<0.05 g), which was markedly greater on second exposure in the obese (approximately 0.6 g, p < 0.0001) aortae but marginal in lean (approximately 0.1 g) aortae. Our data demonstrate that bioavailable constituents of oil combustion particles enhance noradrenergic-mediated vascular contraction, impair endothelium-mediated relaxation, and induce direct vasocontraction in prediabetic rats. These observations provide the first direct evidence of the causal properties of PM(2.5) and identify the pathophysiological role of the early prediabetic state in susceptibility to environmentally induced cardiovascular disease. These are important implications for public

  17. Active thermography and post-processing image enhancement for recovering of abraded and paint-covered alphanumeric identification marks

    NASA Astrophysics Data System (ADS)

    Montanini, R.; Quattrocchi, A.; Piccolo, S. A.

    2016-09-01

    Alphanumeric marking is a common technique employed in industrial applications for identification of products. However, the realised mark can undergo deterioration, either by extensive use or voluntary deletion (e.g. removal of identification numbers of weapons or vehicles). For recovery of the lost data many destructive or non-destructive techniques have been endeavoured so far, which however present several restrictions. In this paper, active infrared thermography has been exploited for the first time in order to assess its effectiveness in restoring paint covered and abraded labels made by means of different manufacturing processes (laser, dot peen, impact, cold press and scribe). Optical excitation of the target surface has been achieved using pulse (PT), lock-in (LT) and step heating (SHT) thermography. Raw infrared images were analysed with a dedicated image processing software originally developed in Matlab™, exploiting several methods, which include thermographic signal reconstruction (TSR), guided filtering (GF), block guided filtering (BGF) and logarithmic transformation (LN). Proper image processing of the raw infrared images resulted in superior contrast and enhanced readability. In particular, for deeply abraded marks, good outcomes have been obtained by application of logarithmic transformation to raw PT images and block guided filtering to raw phase LT images. With PT and LT it was relatively easy to recover labels covered by paint, with the latter one providing better thermal contrast for all the examined targets. Step heating thermography never led to adequate label identification instead.

  18. SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH

    EPA Science Inventory

    Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....

  19. Observations of Particle Organic Nitrate from Airborne and Ground Platforms in North America: Insights into Vertical and Geographical Distributions, Gas/Particle Partitioning, Losses, and Contributions to Total Particle Nitrate.

    NASA Astrophysics Data System (ADS)

    Day, D. A.; Campuzano Jost, P.; Palm, B. B.; Hu, W.; Nault, B.; Wooldridge, P. J.; Cohen, R. C.; Docherty, K. S.; Wagner, N. L.; Jimenez, J. L.

    2015-12-01

    Organic nitrate formation in the atmosphere represents a sink of NOx and a termination of the HOx/NOx­ O3-formation cycles, can act as a NOx reservoir transporting reactive nitrogen, and contributes to secondary organic aerosol (SOA) formation. However, particle organic nitrates (pRONO2) are rarely measured and thus poorly understood. We use measurements of pRONO2 and total (gas+particle) organic nitrate (totRONO2), OA, and ammonium nitrate from the DC3 and SEAC4RS aircraft and several ground campaigns to investigate vertical and geographical distributions, gas/particle partitioning, losses, and contributions to total particle nitrate (pTotNO3). Quantification with aerosol mass spectrometry is evaluated. The fraction of pTotNO3 that is pRONO2 shows a steep inverse relationship with pTotNO3, approaching 100% at low pTotNO3, primarily at rural and remote locations. pRONO2 was typically 10-30% of totRONO2 with little vertical gradient in gas/particle partitioning from the boundary layer (BL) to the upper troposphere (UT). However, pRONO2 and totRONO2 concentrations show strong vertical gradients, with a steep decrease from the top of the BL up through the residual layer. pRONO2 contribution to OA shows a moderate increase with lower OA loadings in the BL and free troposphere (~2-3% by mass of nitrate group) with higher contributions at the lowest OA (5-8%), mostly observed in the UT. In the BL, RONO2 gas/particle partitioning shows a trend with temperature, with higher particle fraction at lower temperatures, as expected from partitioning theory. However, the temperature trend is much weaker than for single compound partitioning, which may be due to a broad mixture of species. Little to no dependence of pRONO­2/OA on RH or estimated particle water was observed in the BL, suggesting that losses of pRONO2 species due to hydrolysis are too rapid to observe in this dataset and there may be a substantial fraction of pRONO2 species that are not prone to rapid hydrolysis.

  20. THE BIMODAL DISTRIBUTION: DEVELOPMENT OF THE CONCEPT OF FINE AND COARSE PARTICLES AS SEPARATE AND DISTINCT COMPONENTS OF AIRBORNE PARTICULATE MATTER

    EPA Science Inventory

    In the early 1970s, it was understood that combustion particles were formed mostly in sizes below 1 um diameter, and windblown dust was suspended in sizes mostly above 1 um diameter. However, particle size distribution was thought of as a single mode. Particles were thought to f...

  1. Modeling for Airborne Contamination

    SciTech Connect

    F.R. Faillace; Y. Yuan

    2000-08-31

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift

  2. Airborne particles in the Miyagi Museum of Art in Sendai, Japan, studied by electron probe X-ray microanalysis and energy dispersive X-ray fluorescence analysis.

    PubMed

    Injuk, Jasna; Osán, Janos; Van Grieken, René; Tsuji, Kouichi

    2002-05-01

    The presented work provides baseline data on the existing airborne conditions in the Miyagi Museum of Art in Sendai, Japan, during the summer of 2000. The chemical composition, size and indoor and outdoor origin of the suspended particulate matter were identified using a number of advanced X-ray techniques, such as Electron Probe X-Ray Microanalysis (EPXMA) and Energy Dispersive X-Ray Fluorescence Analysis (EDXRF). Our results, to the best of our knowledge, represent the first detailed study of the chemical nature of the indoor particulate matter in a Japanese museum and, as such, may contribute to future improvements of the air quality inside museums and to the lasting conservation of works of art.

  3. Size distribution and chemical composition of airborne particles in south-eastern Finland during different seasons and wildfire episodes in 2006.

    PubMed

    Makkonen, Ulla; Hellén, Heidi; Anttila, Pia; Ferm, Martin

    2010-01-01

    The inorganic main elements, trace elements and PAHs were determined from selected PM(1), PM(2.5) and PM(10) samples collected at the Nordic background station in Virolahti during different seasons and during the wildfire episodes in 2006. Submicron particles are those most harmful to human beings, as they are able to penetrate deep into the human respiratory system and may cause severe health effects. About 70-80%, of the toxic trace elements, like lead, cadmium, arsenic and nickel, as well as PAH compounds, were found in particles smaller than 1 microm. Furthermore, the main part of the copper, zinc, and vanadium was associated with submicron particles. In practice, all the PAHs found in PM(10) were actually in PM(2.5). For PAHs and trace elements, it is more beneficial to analyse the PM(2.5) or even the PM(1) fraction instead of PM(10), because exclusion of the large particles reduces the need for sample cleaning to minimize the matrix effects during the analysis. During the wildfire episodes, the concentrations of particles smaller than 2.5 microm, as well as those of submicron particles, increased, and also the ratio PM(1)/PM(10) increased to about 50%. On the fire days, the mean potassium concentration was higher in all particle fractions, but ammonium and nitrate concentrations rose only in particles smaller than 1.0 microm. PAH concentrations rose even to the same level as in winter.

  4. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    NASA Astrophysics Data System (ADS)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  5. Airborne in-situ investigations of the Eyjafjallajökull volcanic ash plume on Iceland and over north-western Germany with light aircrafts and optical particle counters

    NASA Astrophysics Data System (ADS)

    Weber, K.; Eliasson, J.; Vogel, A.; Fischer, C.; Pohl, T.; van Haren, G.; Meier, M.; Grobéty, B.; Dahmann, D.

    2012-03-01

    During the time period of the eruption of the Icelandic volcano Eyjafjallajökull in April/May 2010 the Duesseldorf University of Applied Sciences has performed 14 research flights in situations with and without the volcanic ash plume over Germany. In parallel to the research flights in Germany three measurement flights have been performed by the University of Iceland in May 2010 over the western part of Iceland. During two of these flights the outskirts of the eruption plume were entered directly, delivering most direct measurements within the eruption plume during this eruptive event. For all the measurement flights reported here, light durable piston-motor driven aircrafts were used, which were equipped with optical particle counters for in-situ measurements. Real-time monitoring of the particle concentrations was possible during the flights. As different types of optical particle counters have been used in Iceland and Germany, the optical particle counters have been re-calibrated after the flights to the same standard using gravimetric reference methods and original Eyjafjallajökull volcanic ash samples. In-situ measurement results with high spatial resolution, directly from the eruption plume in Iceland as well as from the dispersed and several days old plume over Germany, are therefore presented here for the first time. They are normalized to the same ash concentration calibration standard. Moreover, airborne particles could be sampled directly out of the eruption plume in Iceland as well as during the flights over Germany. During the research flights over Iceland from 9 May 2011 to 11 May 2011 the ash emitted from the vent of the volcano turned out to be concentrated in a narrow well-defined plume of about 10 km width at a distance of 45-60 km away from the vent. Outside this plume the airborne ash concentrations could be proved to be below 50 μg m -3 over western Iceland. However, by entering the outskirts of the plume directly the research aircraft could

  6. Airborne single particle mass spectrometers (SPLAT II & miniSPLAT) and new software for data visualization and analysis in a geo-spatial context.

    PubMed

    Zelenyuk, Alla; Imre, Dan; Wilson, Jacqueline; Zhang, Zhiyuan; Wang, Jun; Mueller, Klaus

    2015-02-01

    Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles-two fundamental properties that determine an aerosol's optical properties and ability to serve as cloud condensation or ice nuclei. Here we present our aircraft-compatible single particle mass spectrometers, SPLAT II and its new, miniaturized version, miniSPLAT that measure in-situ and in real-time the size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. Although miniSPLAT's size, weight, and power consumption are significantly smaller, its performance is on par with SPLAT II. Both instruments operate in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations, size distributions, density, and asphericity with high temporal resolution. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle compositions and their activity as cloud condensation nuclei.

  7. Airborne Single Particle Mass Spectrometers (SPLAT II & miniSPLAT) and New Software for Data Visualization and Analysis in a Geo-Spatial Context

    SciTech Connect

    Zelenyuk, Alla; Imre, D.; Wilson, Jacqueline M.; Zhang, Zhiyuan; Wang, Jun; Mueller, Klaus

    2015-02-01

    Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles - two fundamental properties that determine an aerosol’s optical properties and ability to serve as cloud condensation or ice nuclei. Here we present miniSPLAT, our new aircraft compatible single particle mass spectrometer, that measures in-situ and in real-time size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. miniSPLAT operates in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations, size distributions, density, and asphericity with high temporal resolution. When compared to our previous instrument, SPLAT II, miniSPLAT has been significantly reduced in size, weight, and power consumption without loss in performance. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle composition and their activity as cloud condensation nuclei.

  8. Biomass burning layers measured with an airborne Single Particle Soot Photometer (SP2) during the Deep Convective Clouds and Chemistry (DC3) experiment

    NASA Astrophysics Data System (ADS)

    Heimerl, K.; Weinzierl, B.; Minikin, A.; Sauer, D. N.; Fütterer, D.; Lichtenstern, M.; Schlager, H.; Schwarz, J. P.; Markovic, M. Z.; Perring, A. E.; Fahey, D. W.; Huntrieser, H.

    2013-12-01

    The 2012 wildfire season in the U.S. was one of the worst in the past decade. Coinciding with the period of intense wildfires in the western U.S., the Deep Convective Clouds and Chemistry (DC3) experiment took place in the central U.S. in May and June of 2012. Although the main goal of this experiment was to characterize chemical processes in and around thunderstorms, biomass burning plumes from wildfires were also measured during almost every flight. Measurements were performed with three different research aircraft (NCAR GV, NASA DC8 and DLR Falcon 20E), accompanied by ground based measurements with radars and radiosondes, and measurements of meteorological parameters and lightning. The instrumentation aboard the DLR Falcon included measurements of the trace gases NO, CO, O3, CO2, CH4, SO2, volatile organic compounds, and a variety of aerosol microphysical parameters. To cover a wide range of aerosol particle sizes, the DLR Falcon payload included optical particle counters (UHSAS-A, FSSP-300, FSSP-100, PCASP-100X/SPP-200 and Sky-OPC 1.129), a multi-channel CPC system for measuring total and non-volatile particle concentrations and, for absorbing particles, a three-wavelength PSAP and a Single Particle Soot Photometer (SP2). We will focus on the latter in this presentation. The SP2 measures both the mass of refractory black carbon (rBC) particles as well as their optical size, providing information about the mixing state of particles in the biomass burning layers. Most biomass burning layers were found between 3 and 8 km altitude. We will discuss measurements of plumes originating from New Mexico wildfires (Little Bear wildfire on June 11th of 2012 and Whitewater-Baldy wildfire on May 29th and 30th of 2012). Peaks of the rBC mass concentration in the plumes were as high as 2μg/m3, the fraction of rBC particles with thick coatings was higher than what is usually found in the boundary layer. During the Falcon transfer flights from Germany to the U.S. and back

  9. BioAerosol Mass Spectrometry: Reagentless Detection of Individual Airborne Spores and Other Bioagent Particles Based on Laser Desorption/Ionization Mass Spectrometry

    SciTech Connect

    Steele, Paul Thomas

    2004-09-01

    Better devices are needed for the detection of aerosolized biological warfare agents. Advances in the ongoing development of one such device, the BioAerosol Mass Spectrometry (BAMS) system, are described here in detail. The system samples individual, micrometer-sized particles directly from the air and analyzes them in real-time without sample preparation or use of reagents. At the core of the BAMS system is a dual-polarity, single-particle mass spectrometer with a laser based desorption and ionization (DI) system. The mass spectra produced by early proof-of-concept instruments were highly variable and contained limited information to differentiate certain types of similar biological particles. The investigation of this variability and subsequent changes to the DI laser system are described. The modifications have reduced the observed variability and thereby increased the usable information content in the spectra. These improvements would have little value without software to analyze and identify the mass spectra. Important improvements have been made to the algorithms that initially processed and analyzed the data. Single particles can be identified with an impressive level of accuracy, but to obtain significant reductions in the overall false alarm rate of the BAMS instrument, alarm decisions must be made dynamically on the basis of multiple analyzed particles. A statistical model has been developed to make these decisions and the resulting performance of a hypothetical BAMS system is quantitatively predicted. The predictions indicate that a BAMS system, with reasonably attainable characteristics, can operate with a very low false alarm rate (orders of magnitude lower than some currently fielded biodetectors) while still being sensitive to small concentrations of biological particles in a large range of environments. Proof-of-concept instruments, incorporating some of the modifications described here, have already performed well in independent testing.

  10. Airborne measurements of single particle refractory black carbon over the continental U.S. during the Deep Convective Clouds and Chemistry (DC3) field study

    NASA Astrophysics Data System (ADS)

    Markovic, M. Z.; Perring, A. E.; Schwarz, J. P.; Gao, R.; Holloway, J. S.; Watts, L. A.; Fahey, D. W.; Diskin, G. S.; Sachse, G. W.; Fried, A.; Weibring, P.; Richter, D.; Walega, J.; Wisthaler, A.; Mikoviny, T.

    2012-12-01

    The Deep Convective Clouds and Chemistry (DC3) campaign was a large-scale, collaborative project, which took place in the continental U.S. in May and June of 2012. The goal of the campaign was to investigate the impacts of continental convection on the composition and chemistry of the upper troposphere and lower stratosphere through a series of aircraft and ground-based measurements of atmospheric gases and particles. During DC3, a NOAA Single Particle Soot Photometer (SP2) instrument was utilized onboard NASA's DC8 research aircraft for measurements of refractory black carbon (rBC) in atmospheric particles with 1 second time resolution. Particles containing rBC are emitted into the atmosphere by incomplete combustion of fossil and bio fuel and hence are strongly linked to anthropogenic sources. These particles are of great importance because, among other effects, they increase the radiative forcing of the Earth's system through absorption of shortwave solar radiation in the troposphere, accelerate the rate of melting of arctic ice and snow by changing the albedo, and pose a respiratory and cardiovascular health risk in the boundary layer. Removal processes and timescales for rBC-containing particles are poorly constrained, which leads to high uncertainty in modeling of regional and global distributions. In this work, an overview of the NOAA SP2 measurements during DC3 is presented. Geographical variations in mass loadings and size distributions of rBC over the continental U.S. are discussed. Vertical profiles of rBC concentrations are generated and, in conjunction with carbon monoxide (CO) and formaldehyde (HCHO) mixing ratios, are used to investigate the impacts of cloud convection and storm processing on the removal of rBC-containing particles from convected air masses. Comparisons of rBC mass loadings with acetonitrile (CH3CN) and CO mixing ratios are made to identify biomass burning plumes from wild fires originating in Colorado and New Mexico, and to

  11. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  12. Molecular composition and size distribution of sugars, sugar-alcohols and carboxylic acids in airborne particles during a severe urban haze event caused by wheat straw burning

    NASA Astrophysics Data System (ADS)

    Wang, Gehui; Chen, Chunlei; Li, Jianjun; Zhou, Bianhong; Xie, Mingjie; Hu, Shuyuan; Kawamura, Kimitaka; Chen, Yan

    2011-05-01

    Molecular compositions and size distributions of water-soluble organic compounds (WSOC, i.e., sugars, sugar-alcohols and carboxylic acids) in particles from urban air of Nanjing, China during a severe haze event caused by field burning of wheat straw were characterized and compared with those in the summer and autumn non-haze periods. During the haze event levoglucosan (4030 ng m -3) was the most abundant compound among the measured WSOC, followed by succinic acid, malic acid, glycerol, arabitol and glucose, being different from those in the non-haze samples, in which sucrose or azelaic acid showed a second highest concentration, although levoglucosan was the highest. The measured WSOC in the haze event were 2-20 times more than those in the non-hazy days. Size distribution results showed that there was no significant change in the compound peaks in coarse mode (>2.1 μm) with respect to the haze and non-haze samples, but a large difference in the fine fraction (<2.1 μm) was found with a sharp increase during the hazy days mostly due to the increased emissions of wheat straw burning. Molecular compositions of organic compounds in the fresh smoke particles from wheat straw burning demonstrate that sharply increased concentrations of glycerol and succinic and malic acids in the fine particles during the haze event were mainly derived from the field burning of wheat straw, although the sources of glucose and related sugar-alcohols whose concentrations significantly increased in the fine haze samples are unclear. Compared to that in the fresh smoke particles of wheat straw burning an increase in relative abundance of succinic acid to levoglucosan during the haze event suggests a significant production of secondary organic aerosols during transport of the smoke plumes.

  13. Black Carbon as an Additional Indicator of the Adverse Health Effects of Airborne Particles Compared with PM10 and PM2.5

    PubMed Central

    Hoek, Gerard; Simic-Lawson, Milena; Fischer, Paul; van Bree, Leendert; ten Brink, Harry; Keuken, Menno; Atkinson, Richard W.; Anderson, H. Ross; Brunekreef, Bert; Cassee, Flemming R.

    2011-01-01

    Background: Current air quality standards for particulate matter (PM) use the PM mass concentration [PM with aerodynamic diameters ≤ 10 μm (PM10) or ≤ 2.5 μm (PM2.5)] as a metric. It has been suggested that particles from combustion sources are more relevant to human health than are particles from other sources, but the impact of policies directed at reducing PM from combustion processes is usually relatively small when effects are estimated for a reduction in the total mass concentration. Objectives: We evaluated the value of black carbon particles (BCP) as an additional indicator in air quality management. Methods: We performed a systematic review and meta-analysis of health effects of BCP compared with PM mass based on data from time-series studies and cohort studies that measured both exposures. We compared the potential health benefits of a hypothetical traffic abatement measure, using near-roadway concentration increments of BCP and PM2.5 based on data from prior studies. Results: Estimated health effects of a 1-μg/m3 increase in exposure were greater for BCP than for PM10 or PM2.5, but estimated effects of an interquartile range increase were similar. Two-pollutant models in time-series studies suggested that the effect of BCP was more robust than the effect of PM mass. The estimated increase in life expectancy associated with a hypothetical traffic abatement measure was four to nine times higher when expressed in BCP compared with an equivalent change in PM2.5 mass. Conclusion: BCP is a valuable additional air quality indicator to evaluate the health risks of air quality dominated by primary combustion particles. PMID:21810552

  14. Assessing inhalation exposure from airborne soil contaminants

    SciTech Connect

    Shinn, J.H.

    1998-04-01

    A method of estimation of inhalation exposure to airborne soil contaminants is presented. this method is derived from studies of airborne soil particles with radioactive tags. The concentration of contaminants in air (g/m{sup 3}) can be derived from the product of M, the suspended respirable dust mass concentration (g/m{sup 3}), S, the concentration of contaminant in the soil (g/g), and E{sub f}, an enhancement factor. Typical measurement methods and values of M, and E{sub f} are given along with highlights of experiences with this method.

  15. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  16. A comparison between different high volume sampling systems for collecting ambient airborne particles for mutagenicity testing and for analysis of organic compounds.

    PubMed

    Alfheim, I; Lindskog, A

    1984-03-15

    Samples of urban air were collected simultaneously using different sampling systems, including electrostatic precipitation (ESP) and high volume filtration (HVF) on various filters for particle sampling and absorption on activated carbon and organic polymers for sampling of volatiles. Acetone extracts of the samples were analyzed for polycyclic aromatic hydrocarbons (PAH) and tested for mutagenicity with the Ames Salmonella/microsome assay. The results show that the concentrations of PAH found in the various particle-samples were in good agreement, whereas the mutagenic activity of these samples showed large variations. The highest mutagenic activity was found in the samples collected by ESP and on the teflon-coated glassfibre filters, whereas samples collected by high volume filtration with size-fractionation showed the lowest mutagenic activity. We do not know whether the higher activity in samples from the teflon-coated filters compared to those from ordinary glassfibre filters represent filter artifacts or if it represents a more pronounced degradation of mutagenic compounds on the non-coated glassfibre filters. Extracts from filter blanks seemed to interfere with the expression of the mutagenic activity of the positive controls, benzo[a]pyrene and nitropyrene. When sampling volatile compounds, two organic polymers, polyurethane (PUR) and XAD-2, were found suitable for collecting PAH, whereas no PAH could be detected in extracts from the activated carbon. The XAD-2 adsorbent was the most effective for sampling bicyclic PAH. None of the adsorbents yielded extracts well suited for mutagenicity testing, since blank extracts were toxic to the test bacteria. Some extracts of the PUR blanks were weakly mutagenic as well. More emphasis should be placed upon developing more efficient and unreactive adsorbents and on the adaptation of such adsorbents in samplers suited for routine use. PMID:6719098

  17. Promoting Smoke-Free Homes: A Novel Behavioral Intervention Using Real-Time Audio-Visual Feedback on Airborne Particle Levels

    PubMed Central

    Klepeis, Neil E.; Hughes, Suzanne C.; Edwards, Rufus D.; Allen, Tracy; Johnson, Michael; Chowdhury, Zohir; Smith, Kirk R.; Boman-Davis, Marie; Bellettiere, John; Hovell, Melbourne F.

    2013-01-01

    Interventions are needed to protect the health of children who live with smokers. We pilot-tested a real-time intervention for promoting behavior change in homes that reduces second hand tobacco smoke (SHS) levels. The intervention uses a monitor and feedback system to provide immediate auditory and visual signals triggered at defined thresholds of fine particle concentration. Dynamic graphs of real-time particle levels are also shown on a computer screen. We experimentally evaluated the system, field-tested it in homes with smokers, and conducted focus groups to obtain general opinions. Laboratory tests of the monitor demonstrated SHS sensitivity, stability, precision equivalent to at least 1 µg/m3, and low noise. A linear relationship (R2 = 0.98) was observed between the monitor and average SHS mass concentrations up to 150 µg/m3. Focus groups and interviews with intervention participants showed in-home use to be acceptable and feasible. The intervention was evaluated in 3 homes with combined baseline and intervention periods lasting 9 to 15 full days. Two families modified their behavior by opening windows or doors, smoking outdoors, or smoking less. We observed evidence of lower SHS levels in these homes. The remaining household voiced reluctance to changing their smoking activity and did not exhibit lower SHS levels in main smoking areas or clear behavior change; however, family members expressed receptivity to smoking outdoors. This study established the feasibility of the real-time intervention, laying the groundwork for controlled trials with larger sample sizes. Visual and auditory cues may prompt family members to take immediate action to reduce SHS levels. Dynamic graphs of SHS levels may help families make decisions about specific mitigation approaches. PMID:24009742

  18. Levels, indoor-outdoor relationships and exposure risks of airborne particle-associated perchlorate and chlorate in two urban areas in Eastern Asia.

    PubMed

    Yao, Lan; Yang, Lingxiao; Chen, Jianmin; Toda, Kei; Wang, Xinfeng; Zhang, Junmei; Yamasaki, Dai; Nakamura, Yukihide; Sui, Xiao; Zheng, Longfei; Wen, Liang; Xu, Caihong; Wang, Wenxing

    2015-09-01

    Indoor and outdoor concentrations of PM2.5-associated perchlorate (ClO4(-)) and chlorate (ClO3(-)) were investigated in Jinan, China, and size-resolved perchlorate and chlorate were studied in Kumamoto, Japan. The average outdoor PM2.5-associated concentrations of perchlorate and chlorate were 4.18 ng m(-3) and 2.82 ng m(-3), respectively, in Jinan. Perchlorate and chlorate were mainly distributed in fine particles, and their approximate PM2.5-associated concentrations were 0.04 ng m(-3) and 4.14 ng m(-3), respectively, in Kumamoto. The ratios of ClO3(-)/ClO4(-) ranged from 18.72 to 360.22 in Kumamoto and from 0.03 to 7.45 in Jinan. The highest concentration of perchlorate (173.76 ng m(-3)) was observed on Spring Festival Eve. This finding and the significant correlation between perchlorate and fireworks-related components (Cl(-) and K(+)) indicated that the fireworks display was a significant source of perchlorate in Jinan. The indoor concentrations of perchlorate and chlorate in Jinan were 3.54 ng m(-3) (range, 0.14-125.14 ng m(-3)) and 0.94 ng m(-3) (range, 0.10-1.80 ng m(-3)), respectively. In the absence of an indoor source of perchlorate, the occurrence of indoor concentrations higher than those found outdoors was a common effect of individual fireworks displays near the sampling sites, coupled with meteorological influences and poor indoor diffusion conditions. The exposure risks of perchlorate and chlorate indoors indicated that the potential risk of perchlorate exposure to children during fireworks displays is deserving of concern.

  19. Levels, indoor-outdoor relationships and exposure risks of airborne particle-associated perchlorate and chlorate in two urban areas in Eastern Asia.

    PubMed

    Yao, Lan; Yang, Lingxiao; Chen, Jianmin; Toda, Kei; Wang, Xinfeng; Zhang, Junmei; Yamasaki, Dai; Nakamura, Yukihide; Sui, Xiao; Zheng, Longfei; Wen, Liang; Xu, Caihong; Wang, Wenxing

    2015-09-01

    Indoor and outdoor concentrations of PM2.5-associated perchlorate (ClO4(-)) and chlorate (ClO3(-)) were investigated in Jinan, China, and size-resolved perchlorate and chlorate were studied in Kumamoto, Japan. The average outdoor PM2.5-associated concentrations of perchlorate and chlorate were 4.18 ng m(-3) and 2.82 ng m(-3), respectively, in Jinan. Perchlorate and chlorate were mainly distributed in fine particles, and their approximate PM2.5-associated concentrations were 0.04 ng m(-3) and 4.14 ng m(-3), respectively, in Kumamoto. The ratios of ClO3(-)/ClO4(-) ranged from 18.72 to 360.22 in Kumamoto and from 0.03 to 7.45 in Jinan. The highest concentration of perchlorate (173.76 ng m(-3)) was observed on Spring Festival Eve. This finding and the significant correlation between perchlorate and fireworks-related components (Cl(-) and K(+)) indicated that the fireworks display was a significant source of perchlorate in Jinan. The indoor concentrations of perchlorate and chlorate in Jinan were 3.54 ng m(-3) (range, 0.14-125.14 ng m(-3)) and 0.94 ng m(-3) (range, 0.10-1.80 ng m(-3)), respectively. In the absence of an indoor source of perchlorate, the occurrence of indoor concentrations higher than those found outdoors was a common effect of individual fireworks displays near the sampling sites, coupled with meteorological influences and poor indoor diffusion conditions. The exposure risks of perchlorate and chlorate indoors indicated that the potential risk of perchlorate exposure to children during fireworks displays is deserving of concern. PMID:25898387

  20. Mars Airborne Prospecting Spectrometer

    NASA Astrophysics Data System (ADS)

    Steinkraus, J. M.; Wright, M. W.; Rheingans, B. E.; Steinkraus, D. E.; George, W. P.; Aljabri, A.; Hall, J. L.; Scott, D. C.

    2012-06-01

    One novel approach towards addressing the need for innovative instrumentation and investigation approaches is the integration of a suite of four spectrometer systems to form the Mars Airborne Prospecting Spectrometers (MAPS) for prospecting on Mars.

  1. Airborne cw Doppler lidar (ADOLAR)

    NASA Astrophysics Data System (ADS)

    Rahm, Stefan; Werner, Christian; Nagel, E.; Herrmann, H.; Klier, M.; Knott, H. P.; Haering, R.; Wildgruber, J.

    1994-12-01

    During the last 10 years the DLR container LDA (Laser Doppler Anemometer) was used for many wind related measurements in the atmospheric boundary layer. The experience out of this were used to construct an airborne Doppler lidar ADOLAR. Based on the available Doppler lidars it is now proposed to perform a campaign to demonstrate the concept of the spaceborne sensor ALADIN, and to answer some questions concerning the signal quality from clouds, water and land. For the continuous wave CO2 laser, the energy is focused by the telescope into the region of investigation. Some of the radiation is back scattered by small aerosol particles drifting with the wind speed through the sensing volume. The back scattered radiation is collected by the telescope and detected by coherent technique. With the laser Doppler method one gets the radial wind component. To determine the magnitude and direction of the horizontal wind, some form of scanning in azimuth and elevation is required. To keep the airborne system compact, the transceiver optics is directly coupled to a wedge scanner which provides the conical scan with the axis in Nadir direction from the aircraft. The system ADOLAR was tested in 1994. Results of the flight over the lake Ammersee are presented and are compared with the data of the inertial reference system of the aircraft.

  2. Lunar metallic particle ("mini-moon"): an interpretation.

    PubMed

    McKay, D S; Carter, J L; Greenwood, W R

    1971-02-01

    A troilite-rich nickel-iron particle ("mini-moon") recovered from the moon may be a mound detached from a sphere of silicate glass. Erosion and pitting of the particle may have been caused by passage through a cloud of hot gas and particulate matter formed by meteorite impact on the lunar surface. This explanation is in contrast to the theory that the particle was meteoritically derived molten material that was furrowed during solidification after lunar impact, subsequently pitted by high-velocity particles, and then abraded and polished by drifting dust while on the lunar surface.

  3. Lunar metallic particle ("mini-moon"): An interpretation

    USGS Publications Warehouse

    McKay, D.S.; Carter, J.L.; Greenwood, W.R.

    1971-01-01

    A troilite-rich nickel-iron particle ("mini-moon") recovered from the moon may be a mound detached from a sphere of silicate glass. Erosion and pitting of the particle may have been caused by passage through a cloud of hot gas and particulate matter formed by meteorite impact on the lunar surface. This explanation is in contrast to the theory that the particle was meteoritically derived molten material that was furrowed during solidification after lunar impact, subsequently pitted by high-velocity particles, and then abraded and polished by drifting dust while on the lunar surface.

  4. Airborne data acquisition techniques

    SciTech Connect

    Arro, A.A.

    1980-01-01

    The introduction of standards on acceptable procedures for assessing building heat loss has created a dilemma for the contractor performing airborne thermographic surveys. These standards impose specifications on instrumentation, data acquisition, recording, interpretation, and presentation. Under the standard, the contractor has both the obligation of compliance and the requirement of offering his services at a reasonable price. This paper discusses the various aspects of data acquisition for airborne thermographic surveys and various techniques to reduce the costs of this operation. These techniques include the calculation of flight parameters for economical data acquisition, the selection and use of maps for mission planning, and the use of meteorological forecasts for flight scheduling and the actual execution of the mission. The proper consideration of these factors will result in a cost effective data acquisition and will place the contractor in a very competitive position in offering airborne thermographic survey services.

  5. DO AIRBORNE PARTICLES INDUCE HERITABLE MUTATIONS?

    EPA Science Inventory

    Urban air is contaminated by gaseous and particulate emissions from a variety of sources, including industrial, vehicular, power generation, and natural. These emissions, as well as their atmospheric transformation products, damage ecological systems and causes adverse effects on...

  6. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  7. Airborne rain mapping radar

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Parks, G. S.; Li, F. K.; Im, K. E.; Howard, R. J.

    1988-01-01

    An airborne scanning radar system for remote rain mapping is described. The airborne rain mapping radar is composed of two radar frequency channels at 13.8 and 24.1 GHz. The radar is proposed to scan its antenna beam over + or - 20 deg from the antenna boresight; have a swath width of 7 km; a horizontal spatial resolution at nadir of about 500 m; and a range resolution of 120 m. The radar is designed to be applicable for retrieving rainfall rates from 0.1-60 mm/hr at the earth's surface, and for measuring linear polarization signatures and raindrop's fall velocity.

  8. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  9. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  10. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  11. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  12. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  13. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  14. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  15. Determination of airborne nanoparticles from welding operations.

    PubMed

    Gomes, João Fernando Pereira; Albuquerque, Paula Cristina Silva; Miranda, Rosa Maria Mendes; Vieira, Maria Teresa Freire

    2012-01-01

    The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.

  16. Determination of airborne nanoparticles from welding operations.

    PubMed

    Gomes, João Fernando Pereira; Albuquerque, Paula Cristina Silva; Miranda, Rosa Maria Mendes; Vieira, Maria Teresa Freire

    2012-01-01

    The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers. PMID:22788362

  17. Characterisation of particulate matter on airborne pollen grains.

    PubMed

    Ribeiro, Helena; Guimarães, Fernanda; Duque, Laura; Noronha, Fernando; Abreu, Ilda

    2015-11-01

    A characterization of the physical-chemical composition of the atmospheric PM adsorbed to airborne pollen was performed. Airborne pollen was sampled using a Hirst-type volumetric spore sampler and observed using a Field Emission Electron Probe Microanalyser for PM analysis. A secondary electron image was taken of each pollen grain and EDS spectra were obtained for individually adsorbed particles. All images were analysed and the size parameters of the particles adsorbed to pollen was determined. The measured particles' equivalent diameter varied between 0.1 and 25.8 μm, mostly in the fine fraction. The dominant particulates identified were Si-rich, Organic-rich, SO-rich, Metals & Oxides and Cl-rich. Significant daily differences were observed in the physical-chemical characteristics of particles adsorbed to the airborne pollen wall. These differences were correlated with weather parameters and atmospheric PM concentration. Airborne pollen has the ability to adsorb fine particles that may enhance its allergenicity.

  18. Abradability testing of Bn-Nextel{trademark} 312/Blackglas{trademark} 3-D woven composites and the effect on retained strength

    SciTech Connect

    Wildman, D.; Khandelwal, P.

    1996-12-31

    The low pressure (LP) turbine interstage seal for the Allison Engine Company AE 3007 turbofan engine is the component selected for the Low Cost Ceramic Composite (LC{sup 3}) program. The AE 3007 engine is a 7200 lb thrust turbofan engine with both military and commercial applications. The goals of the LP turbine interstage seal design are to provide a directly interchangeable design that will meet the 12,000 hours service life requirement with an approximate 74% weight reduction as well as initial acquisition cost and life cycle cost savings. The current LP turbine interstage seal design is comprised of a Hastelloy X honeycomb compliant seal member brazed to an INCO 718 structural member. Two approaches were used for the ceramic matrix composite (CMC) version of the interstage seal. The first approach entailed developing a process for brazing the Hastelloy X honeycomb material to the CMC with provisions for accommodating the differential thermal expansion ratio of 4:1. The second approach was to evaluate the abradability/conformability of the CMC material by conducting high speed, high temperature, rub rig testing as well as mechanical testing of the rub specimens to evaluate the retained mechanical strength. In the event the direct rub testing proved to be successful, the need for the Hastelloy X honeycomb and braze joint would be eliminated, resulting in a significant component fabrication cost reduction.

  19. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  20. Carbon Nanotubes Released from an Epoxy-Based Nanocomposite: Quantification and Particle Toxicity.

    PubMed

    Schlagenhauf, Lukas; Buerki-Thurnherr, Tina; Kuo, Yu-Ying; Wichser, Adrian; Nüesch, Frank; Wick, Peter; Wang, Jing

    2015-09-01

    Studies combining both the quantification of free nanoparticle release and the toxicological investigations of the released particles from actual nanoproducts in a real-life exposure scenario are urgently needed, yet very rare. Here, a new measurement method was established to quantify the amount of free-standing and protruding multiwalled carbon nanotubes (MWCNTs) in the respirable fraction of particles abraded from a MWCNT-epoxy nanocomposite. The quantification approach involves the prelabeling of MWCNTs with lead ions, nanocomposite production, abrasion and collection of the inhalable particle fraction, and quantification of free-standing and protruding MWCNTs by measuring the concentration of released lead ions. In vitro toxicity studies for genotoxicity, reactive oxygen species formation, and cell viability were performed using A549 human alveolar epithelial cells and THP-1 monocyte-derived macrophages. The quantification experiment revealed that in the respirable fraction of the abraded particles, approximately 4000 ppm of the MWCNTs were released as exposed MWCNTs (which could contact lung cells upon inhalation) and approximately 40 ppm as free-standing MWCNTs in the worst-case scenario. The release of exposed MWCNTs was lower for nanocomposites containing agglomerated MWCNTs. The toxicity tests revealed that the abraded particles did not induce any acute cytotoxic effects.

  1. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  2. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  3. Mammalian airborne allergens.

    PubMed

    Aalberse, Rob C

    2014-01-01

    Historically, horse dandruff was a favorite allergen source material. Today, however, allergic symptoms due to airborne mammalian allergens are mostly a result of indoor exposure, be it at home, at work or even at school. The relevance of mammalian allergens in relation to the allergenic activity of house dust extract is briefly discussed in the historical context of two other proposed sources of house dust allergenic activity: mites and Maillard-type lysine-sugar conjugates. Mammalian proteins involved in allergic reactions to airborne dust are largely found in only 2 protein families: lipocalins and secretoglobins (Fel d 1-like proteins), with a relatively minor contribution of serum albumins, cystatins and latherins. Both the lipocalin and the secretoglobin family are very complex. In some instances this results in a blurred separation between important and less important allergenic family members. The past 50 years have provided us with much detailed information on the genomic organization and protein structure of many of these allergens. However, the complex family relations, combined with the wide range of post-translational enzymatic and non-enzymatic modifications, make a proper qualitative and quantitative description of the important mammalian indoor airborne allergens still a significant proteomic challenge. PMID:24925404

  4. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  5. Airborne particulate matter and spacecraft internal environments

    NASA Technical Reports Server (NTRS)

    Liu, Benjamin Y. H.; Rubow, Kenneth L.; Mcmurry, Peter H.; Kotz, Thomas J.; Russo, Dane

    1991-01-01

    Instrumentation, consisting of a Shuttle Particle Sampler (SPS) and a Shuttle Particle Monitor (SPM), has been developed to characterize the airborne particulate matter in the Space Shuttle cabin during orbital flight. The SPS size selectively collects particles in four size fractions (0-2.5, 2.5-10, 10-100, and greater than 100 microns) which are analyzed postflight for mass concentration and size distribution, elemental composition, and morphology. The SPM provides a continuous record of particle concentration through photometric light scattering. Measurements were performed onboard Columbia, OV-102, during the flight of STS-32 in January 1990. No significant changes were observed in the particle mass concentration, size distribution, or chemical composition in samples collected during flight-day 2 and flight-day 7. The total mass concentration was 56 microg/cu cm with approximately half of the particles larger than 100 microns. Elemental analysis showed that roughly 70 percent of the particles larger than 2.5 microns were carbonaceous with small amounts of other elements present. The SPM showed no temporal or spatial variation in particle mass concentration during the mission.

  6. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  7. Human occupancy as a source of indoor airborne bacteria.

    PubMed

    Hospodsky, Denina; Qian, Jing; Nazaroff, William W; Yamamoto, Naomichi; Bibby, Kyle; Rismani-Yazdi, Hamid; Peccia, Jordan

    2012-01-01

    Exposure to specific airborne bacteria indoors is linked to infectious and noninfectious adverse health outcomes. However, the sources and origins of bacteria suspended in indoor air are not well understood. This study presents evidence for elevated concentrations of indoor airborne bacteria due to human occupancy, and investigates the sources of these bacteria. Samples were collected in a university classroom while occupied and when vacant. The total particle mass concentration, bacterial genome concentration, and bacterial phylogenetic populations were characterized in indoor, outdoor, and ventilation duct supply air, as well as in the dust of ventilation system filters and in floor dust. Occupancy increased the total aerosol mass and bacterial genome concentration in indoor air PM(10) and PM(2.5) size fractions, with an increase of nearly two orders of magnitude in airborne bacterial genome concentration in PM(10). On a per mass basis, floor dust was enriched in bacterial genomes compared to airborne particles. Quantitative comparisons between bacterial populations in indoor air and potential sources suggest that resuspended floor dust is an important contributor to bacterial aerosol populations during occupancy. Experiments that controlled for resuspension from the floor implies that direct human shedding may also significantly impact the concentration of indoor airborne particles. The high content of bacteria specific to the skin, nostrils, and hair of humans found in indoor air and in floor dust indicates that floors are an important reservoir of human-associated bacteria, and that the direct particle shedding of desquamated skin cells and their subsequent resuspension strongly influenced the airborne bacteria population structure in this human-occupied environment. Inhalation exposure to microbes shed by other current or previous human occupants may occur in communal indoor environments.

  8. Particle preconcentrator

    SciTech Connect

    Linker, K.L.; Conrad, F.J.; Custer, C.A.; Rhykerd, C.L. Jr

    2000-07-11

    An apparatus and method are disclosed for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a previous screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  9. Particle preconcentrator

    DOEpatents

    Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.

    1998-01-01

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  10. Particle preconcentrator

    DOEpatents

    Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.

    2000-01-01

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  11. Particle preconcentrator

    DOEpatents

    Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.

    2005-09-20

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  12. Particle preconcentrator

    DOEpatents

    Linker, K.L.; Conrad, F.J.; Custer, C.A.; Rhykerd, C.L. Jr.

    1998-12-29

    An apparatus and method are disclosed for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents. 3 figs.

  13. Possibility of growth of airborne microbes in outer planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Dimmick, R. L.; Chatigny, M. A.

    1975-01-01

    It is shown that airborne bacteria can maintain metabolic functions in a suitable atmosphere. It is theorized that particles in the Jovian atmosphere would have physical half-lives of 10 to 1500 years, depending upon which of two turbulent models is chosen.

  14. Airborne myxomycete spores: detection using molecular techniques

    NASA Astrophysics Data System (ADS)

    Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

    2009-01-01

    Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

  15. Particle Sizer

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Microspheres are tiny plastic beads that represent the first commercial products manufactured in orbit. An example of how they are used is a new aerodynamic particle sizer designated APS 33B produced by TSI Incorporated. TSI purchased the microspheres from the National Bureau of Standards which certified their exact size and the company uses them in calibration of the APS 33B* instrument, latest in a line of TSI systems for generating counting and weighing minute particles of submicron size. Instruments are used for evaluating air pollution control devices, quantifying environments, meteorological research, testing filters, inhalation, toxicology and other areas where generation or analysis of small airborne particles is required. * The APS 33B is no longer being manufactured. An improved version, APS 3320, is now being manufactured. 2/28/97

  16. The fate of airborne polycyclic organic matter.

    PubMed Central

    Nielsen, T; Ramdahl, T; Bjørseth, A

    1983-01-01

    Biological tests have shown that a significant part of the mutagenicity of organic extracts of collected airborne particulate matter is not due to polycyclic aromatic hydrocarbons (PAH). It is possible that part of these unknown compounds are transformation products of PAH. This survey focuses on the reaction of PAH in the atmosphere with other copollutants, such as nitrogen oxides, sulfur oxides, ozone and free radicals and their reaction products. Photochemically induced reactions of PAH are also included. The reactivity of particle-associated PAH is discussed in relation to the chemical composition and the physical properties of the carrier. Recommendations for future work are given. PMID:6825615

  17. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  18. The Development of Airborne Data for Assessing Models (ADAM) - A central repository of airborne field campaign data archives

    NASA Astrophysics Data System (ADS)

    Chen, G.; Kleb, M. M.; Aknan, A. A.; Brown, C. C.; Mangosing, D. C.; Thornhill, A.; Rinsland, P. L.

    2010-12-01

    NASA, NOAA, and NSF have conducted over 30 airborne campaigns during the past three decades aimed at gaining an understanding of the tropospheric chemical and physical processes related to climate change and air-quality issues. In recent years, the scientific value of this accumulated airborne data has been increasingly recognized for use in satellite validation and model assessment and evaluation activities. In addition to the high spatial-temporal resolutions, the airborne data, especially from the more recent studies, offers a comprehensive view of the atmosphere through a large suite of the simultaneously observed atmospheric species/parameters, ranging from photochemical precursors to products as well as particle chemical, microphysical, and optical properties. To better facilitate the model assessment and evaluation activities, we are actively engaged in the development of a web-based central airborne data archive: ADAM (Airborne Data for Assessing Models). This effort is sponsored by the NASA MEaSUREs program and is intended to archive data from tropospheric chemistry airborne field campaign since the 1980s. The principal design philosophy of the ADAM web site is to provide an intuitive user interface that allows users to browse, visualize, subset (both spatially and temporally), merge, and download the airborne data, as well as providing adequate metadata associated with the data archive. A working version of the web site which shows the ADAM user interface and functionalities will be presented. Also presented are conventions to establish common names for the atmospheric variables which are often observed during airborne campaigns as well as the approaches to handle missing data and limit of detections. This presentation is intended to serve the purpose of getting feedback from the broad atmospheric community, including both modelers and measurement experts.

  19. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  20. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  1. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  2. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  3. Characterization of Airborne Nanoparticle Loss in Sampling Tubing.

    PubMed

    Tsai, Candace Su-Jung

    2015-01-01

    Airborne nanoparticle release has been studied extensively lately using a variety of instruments and nanoparticle loss data for the instrument sampling tubes were required. This study used real-time measurements to characterize particle losses. Particle concentrations were measured by Fast Mobility Particle Sizer (FMPS). Electrically conductive and Tygon sampling tubes 7.7 mm I.D. and 2.0, 4.9, 7.0, and 8.4 m long, were used to analyze particle losses. Two different sources of nearly steady-state particles-atmospheric nanoparticles (maximum concentration of 4,000-6,000 particle/cm(3)) and nebulizer-generated salt aerosols (maximum concentration of 14,000-16,000 particle/cm(3))-were utilized. For all test conditions, a reduction in particle number concentration was observed and found to be proportional to tube length for particle diameter (dp) less than 40 nm. A maximum loss up to 30% was found for the longest tube length (8.4 m) at particle size of approximately 8 nm. For particles from 40 to 400 nm, the losses were less than 3%. Measured particle losses were greater than predicted by theory for the smallest particles. The two types of tubing showed similar particle losses for both test aerosols. Particle losses were low for dp greater than 40 nm, and for all particle sizes when the tube length was less than 2 m. PMID:25746064

  4. Airborne Dust in Space Vehicles and Habitats

    NASA Technical Reports Server (NTRS)

    James, John

    2006-01-01

    Airborne dust, suspended inside a space vehicle or in future celestial habitats, can present a serious threat to crew health if it is not controlled. During the Apollo missions to the moon, lunar dust brought inside the capsule caused eye irritation and breathing difficulty to the crew when they launched from the moon and re-acquired "microgravity." During Shuttle flights reactive and toxic dusts such as lithium hydroxide have created a risk to crew health, and fine particles from combustion events can be especially worrisome. Under nominal spaceflight conditions, airborne dusts and particles tend to be larger than on earth because of the absence of gravity settling. Aboard the ISS, dusts are effectively managed by HEPA filters, although floating dust in newly-arrived modules can be a nuisance. Future missions to the moon and to Mars will present additional challenges because of the possibility that external dust will enter the breathing atmosphere of the habitat and reach the crew's respiratory system. Testing with simulated lunar and Martian dust has shown that these materials are toxic when placed into the lungs of test animals. Defining and evaluating the physical and chemical properties of Martian dusts through robotic missions will challenge our ability to prepare better dust simulants and to determine the risk to crew health from exposure to such dusts.

  5. In vitro evaluation of pulmonary deposition of airborne volcanic ash

    NASA Astrophysics Data System (ADS)

    Lähde, Anna; Sæunn Gudmundsdottir, Sigurbjörg; Joutsensaari, Jorma; Tapper, Unto; Ruusunen, Jarno; Ihalainen, Mika; Karhunen, Tommi; Torvela, Tiina; Jokiniemi, Jorma; Järvinen, Kristiina; Gíslason, Sigurður Reynir; Briem, Haraldur; Gizurarson, Sveinbjörn

    2013-05-01

    There has been an increasing interest in the effects of volcanic eruption on the environment, climate, and health following two recent volcanic eruptions in Iceland. Although health issues are mainly focused on subjects living close to the eruption due to the high concentration of airborne ash and gasses in close vicinity to the volcanoes, the ash may also reach high altitude and get distributed thousands of kilometers away from the volcano. Ash particles used in the studies were collected at the Eyjafjallajökull and Grímsvötn eruption sites. The composition, size, density and morphology of the particles were analyzed and the effect of particle properties on the re-dispersion and lung deposition were studied. The aerodynamic size and morphology of the particles were consistent with field measurement results obtained during the eruptions. Due to their size and structure, the ash particles can be re-suspended and transported into the lungs. The total surface area of submicron ash particles deposited into the alveolar and tracheobronchial regions of the lungs were 3-9% and 1-2%, respectively. Although the main fraction of the surface area is deposited in the head airways region, a significant amount of particles can deposit into the alveolar and tracheobronchial regions. The results indicate that a substantial increase in the concentration of respirable airborne ash particles and associated health hazard can take place if the deposited ash particles are re-suspended under dry, windy conditions or by outdoor human activity.

  6. Characterization of airborne bacteria at an underground subway station.

    PubMed

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per; Blatny, Janet Martha

    2012-03-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization-time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers. PMID:22247150

  7. Characterization of Airborne Bacteria at an Underground Subway Station

    PubMed Central

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per

    2012-01-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization–time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers. PMID:22247150

  8. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  9. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  10. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  11. Quantification of airborne road-side pollution carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Baquero, T.; Shukrallah, S.; Karolia, R.; Osammor, O.; Inkson, B. J.

    2015-10-01

    Roadside diesel particulate matter (DPM) has been collected using a P-Trak particle counter with modified inlet filter. The P-Trak monitor assesses ultrafine particle number in real-time rather than accumulated PM mass over a period of time, which is important for DPM where the particles are often <100nm in size. Collected pollution particulate matter was analysed by SEM and TEM, quantifying particle size, morphology and size distribution. The primary carbon nanoparticles form complex fractal aggregates with open porous morphologies and evidence of secondary carbon deposition. For the chosen collection sites, occasional but significantly larger mineral and fibrous particles were identified. The assessment of airborne particles by mass collection (TEOM), particle-number (P-Trak) and TEM methods is discussed.

  12. Airborne particulate discriminator

    DOEpatents

    Creek, Kathryn Louise; Castro, Alonso; Gray, Perry Clayton

    2009-08-11

    A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

  13. Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant.

    PubMed

    Valle, Russell P; Wu, Tony; Zuo, Yi Y

    2015-05-26

    Inhalation of nanoparticles (NP), including lightweight airborne carbonaceous nanomaterials (CNM), poses a direct and systemic health threat to those who handle them. Inhaled NP penetrate deep pulmonary structures in which they first interact with the pulmonary surfactant (PS) lining at the alveolar air-water interface. In spite of many research efforts, there is a gap of knowledge between in vitro biophysical study and in vivo inhalation toxicology since all existing biophysical models handle NP-PS interactions in the liquid phase. This technical limitation, inherent in current in vitro methodologies, makes it impossible to simulate how airborne NP deposit at the PS film and interact with it. Existing in vitro NP-PS studies using liquid-suspended particles have been shown to artificially inflate the no-observed adverse effect level of NP exposure when compared to in vivo inhalation studies and international occupational exposure limits (OELs). Here, we developed an in vitro methodology called the constrained drop surfactometer (CDS) to quantitatively study PS inhibition by airborne CNM. We show that airborne multiwalled carbon nanotubes and graphene nanoplatelets induce a concentration-dependent PS inhibition under physiologically relevant conditions. The CNM aerosol concentrations controlled in the CDS are comparable to those defined in international OELs. Development of the CDS has the potential to advance our understanding of how submicron airborne nanomaterials affect the PS lining of the lung.

  14. Characteristics of airborne bacteria in Mumbai urban environment.

    PubMed

    Gangamma, S

    2014-08-01

    Components of biological origin constitute small but a significant proportion of the ambient airborne particulate matter (PM). However, their diversity and role in proinflammatory responses of PM are not well understood. The present study characterizes airborne bacterial species diversity in Mumbai City and elucidates the role of bacterial endotoxin in PM induced proinflammatory response in ex vivo. Airborne bacteria and endotoxin samples were collected during April-May 2010 in Mumbai using six stage microbial impactor and biosampler. The culturable bacterial species concentration was measured and factors influencing the composition were identified by principal component analysis (PCA). The biosampler samples were used to stimulate immune cells in whole blood assay. A total of 28 species belonging to 17 genera were identified. Gram positive and spore forming groups of bacteria dominated the airborne culturable bacterial concentration. The study indicated the dominance of spore forming and human or animal flora derived pathogenic/opportunistic bacteria in the ambient air environment. Pathogenic and opportunistic species of bacteria were also present in the samples. TNF-α induction by PM was reduced (35%) by polymyxin B pretreatment and this result was corroborated with the results of blocking endotoxin receptor cluster differentiation (CD14). The study highlights the importance of airborne biological particles and suggests need of further studies on biological characterization of ambient PM.

  15. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  16. FINE PARTICLES ARE MORE STRONGLY ASSOCIATED THAN COARSE PARTICLES WITH ACUTE REPIRATORY HEALTH EFFECTS IN SCHOOL CHILDREN

    EPA Science Inventory

    Numerous studies have reported associations between airborne particles and a range of respiratory outcomes from symptoms to mortality. Current attention has been focused on the characteristics of these particles responsible for the adverse health effects. We have reanalyzed three...

  17. Airborne GLM Simulator (FEGS)

    NASA Astrophysics Data System (ADS)

    Quick, M.; Blakeslee, R. J.; Christian, H. J., Jr.; Stewart, M. F.; Podgorny, S.; Corredor, D.

    2015-12-01

    Real time lightning observations have proven to be useful for advanced warning and now-casting of severe weather events. In anticipation of the launch of the Geostationary Lightning Mapper (GLM) onboard GOES-R that will provide continuous real time observations of total (both cloud and ground) lightning, the Fly's Eye GLM Simulator (FEGS) is in production. FEGS is an airborne instrument designed to provide cal/val measurements for GLM from high altitude aircraft. It consists of a 5 x 5 array of telescopes each with a narrow passband filter to isolate the 777.4 nm neutral oxygen emission triplet radiated by lightning. The telescopes will measure the optical radiance emitted by lightning that is transmitted through the cloud top with a temporal resolution of 10 μs. When integrated on the NASA ER-2 aircraft, the FEGS array with its 90° field-of-view will observe a cloud top area nearly equal to a single GLM pixel. This design will allow FEGS to determine the temporal and spatial variation of light that contributes to a GLM event detection. In addition to the primary telescope array, the instrument includes 5 supplementary optical channels that observe alternate spectral emission features and will enable the use of FEGS for interesting lightning physics applications. Here we present an up-to-date summary of the project and a description of its scientific applications.

  18. Manufactured and Airborne Nanoparticle Cardiopulmonary Interactions: A Review of Mechanisms and the Possible Contribution of Mast Cells

    EPA Science Inventory

    Human inhalation exposures to manufactured nanoparticles (NP) and airborne ultrafine particles (UFP) continues to increase in both occupational and environmental settings. UFP exposures have been associated with increased cardiovascular mortality and morbidity, while ongoing res...

  19. Photoacoustic study of airborne and model aerosols

    NASA Astrophysics Data System (ADS)

    Alebić-Juretić, A.; Zetzsch, C.; Dóka, O.; Bicanic, D.

    2003-01-01

    Airborne particulates of either natural or anthropogenic origin constitute a significant portion of atmospheric pollution. Environmental xenobiotics, among which are polynuclear aromatic hydrocarbons (PAHs) and pesticides, often adsorb to aerosols and as such are transported through the atmosphere with the physicochemical properties of the aerosols determining the lifetime of these organic compounds. As an example, the resistance of some PAHs against the photolysis is explained by the effect of the aerosol's "inner filter" that reduces the intensity of incident light reaching the mineral particles. On the other hand, some constituents of the aerosols can act as catalytic and/or stoichiometric reagents in atmospheric reactions on the solid surfaces. In the study described here the photoacoustic (PA) spectroscopy in the UV-Vis was used to investigate natural and model aerosols. The PA spectra obtained from coal and wood ashes and of Saharan sand, all three representatives of airborne aerosols, provide the evidence for the existence of the "inner filter." Furthermore, valuable information about the different nature of the interaction between the model aerosols and adsorbed organics (e.g., PAH-pyranthrene and silica, alumina, and MgO) has been obtained. Finally, the outcome of the study conducted with powdered mixtures of chalk and black carbon suggests that the PA method is a candidate method for determination of carbon content in stack ashes.

  20. Airborne transmission and precautions: facts and myths.

    PubMed

    Seto, W H

    2015-04-01

    Airborne transmission occurs only when infectious particles of <5 μm, known as aerosols, are propelled into the air. The prevention of such transmission is expensive, requiring N95 respirators and negative pressure isolation rooms. This lecture first discussed whether respiratory viral infections are airborne with reference to published reviews of studies before 2008, comparative trials of surgical masks and N95 respirators, and relevant new experimental studies. However, the most recent experimental study, using naturally infected influenza volunteers as the source, showed negative results from all the manikins that were exposed. Modelling studies by ventilation engineers were then summarized to explain why these results were not unexpected. Second, the systematic review commissioned by the World Health Organization on what constituted aerosol-generating procedures was summarized. From the available evidence, endotracheal intubation either by itself or combined with other procedures (e.g. cardiopulmonary resuscitation or bronchoscopy) was consistently associated with increased risk of transmission by the generation of aerosols. PMID:25578684

  1. [Airborne Fungal Aerosol Concentration and Distribution Characteristics in Air- Conditioned Wards].

    PubMed

    Zhang, Hua-ling; Feng, He-hua; Fang, Zi-liang; Wang, Ben-dong; Li, Dan

    2015-04-01

    The effects of airborne fungus on human health in the hospital environment are related to not only their genera and concentrations, but also their particle sizes and distribution characteristics. Moreover, the mechanisms of aerosols with different particle sizes on human health are different. Fungal samples were obtained in medicine wards of Chongqing using a six-stage sampler. The airborne fungal concentrations, genera and size distributions of all the sampling wards were investigated and identified in detail. Results showed that airborne fungal concentrations were not correlated to the diseases or personnel density, but were related to seasons, temperature, and relative humidity. The size distribution rule had roughly the same for testing wards in winter and summer. The size distributions were not related with diseases and seasons, the percentage of airborne fungal concentrations increased gradually from stage I to stage III, and then decreased dramatically from stage V to stage VI, in general, the size of airborne fungi was a normal distribution. There was no markedly difference for median diameter of airborne fungi which was less 3.19 μm in these wards. There were similar dominant genera in all wards. They were Aspergillus spp, Penicillium spp and Alternaria spp. Therefore, attention should be paid to improve the filtration efficiency of particle size of 1.1-4.7 μm for air conditioning system of wards. It also should be targeted to choose appropriate antibacterial methods and equipment for daily hygiene and air conditioning system operation management.

  2. Possibility of growth of airborne microbes in outer planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Dimmick, R. L.; Chatigny, M. A.

    1976-01-01

    The state of the art of laboratory aerobiological research is briefly reviewed. Experiments are described in which the biological behavior of microbes in or on aerosol particles is investigated in a stirred settling chamber and a rotating drum. Experimental findings are summarized which indicate that airborne bacteria can maintain metabolic functions in a suitable atmosphere. These studies have been undertaken in consideration of the possibility that Jupiter's atmosphere might be contaminated if a space probe enters a biological stratum.

  3. Exposure to mineral sands dust particles

    NASA Astrophysics Data System (ADS)

    Dias da Cunha, K.; Barros Leite, C. V.; Zays, Z.

    2004-06-01

    The aim of this study is to characterize the airborne particles in a Brazilian region with high concentration of mineral sands (Buena village). In this study proton induced X-ray emission (PIXE), plasma desorption mass spectrometry and alpha spectrometry were used for analyses of airborne particles. The analyses of aerosol samples and lichen samples show that the inhabitants of the Buena village are exposed to airborne particles in the fine fraction of aerosols. The main anthropogenic sources of particles are the mineral sands processing plant and truck traffic, and natural sources as the sea, soil and the swamp. The results from the lichen samples show that at least during the last 15 years the inhabitants of the village have been exposed to monazite particles. The results from aerosols and lichens samples also suggested that the swamp is a source of 226Ra and 210Pb bearing particles besides the monazite dust.

  4. Airborne Measurements of Coarse Mode Aerosol Composition and Abundance

    NASA Astrophysics Data System (ADS)

    Froyd, K. D.; Murphy, D. M.; Brock, C. A.; Ziemba, L. D.; Anderson, B. E.; Wilson, J. C.

    2015-12-01

    Coarse aerosol particles impact the earth's radiative balance by direct scattering and absorption of light and by promoting cloud formation. Modeling studies suggest that coarse mode mineral dust and sea salt aerosol are the dominant contributors to aerosol optical depth throughout much of the globe. Lab and field studies indicate that larger aerosol particles tend to be more efficient ice nuclei, and recent airborne measurements confirm the dominant role of mineral dust on cirrus cloud formation. However, our ability to simulate coarse mode particle abundance in large scale models is limited by a lack of validating measurements above the earth's surface. We present airborne measurements of coarse mode aerosol abundance and composition over several mid-latitude, sub-tropical, and tropical regions from the boundary layer to the stratosphere. In the free troposphere the coarse mode constitutes 10-50% of the total particulate mass over a wide range of environments. Above North America mineral dust typically dominates the coarse mode, but biomass burning particles and sea salt also contribute. In remote environments coarse mode aerosol mainly consists of internally mixed sulfate-organic particles. Both continental and marine convection can enhance coarse aerosol mass through direct lofting of primary particles and by secondary accumulation of aerosol material through cloud processing.

  5. Effect of an electrostatic space charge system on airborne dust and subsequent potential transmission of microorganisms to broiler breeder pullets by airborne dust.

    PubMed

    Richardson, L J; Mitchell, B W; Wilson, J L; Hofacre, C L

    2003-01-01

    High levels of dust and microorganisms are known to be associated with animal confinement rearing facilities. Many of the microorganisms are carried by dust particles, thus providing an excellent vector for horizontal disease transmission between birds. Two environmentally controlled rooms containing female broiler breeder pullets (n = 300) were used to evaluate the effectiveness of an electrostatic space charge system (ESCS) in reducing airborne dust and gram-negative bacteria levels over an 8-wk period (starting when the birds were 10 wk old). The ESCS was used to evaluate the effectiveness of reducing airborne microorganism levels by charging airborne dust particles and causing the particles to be attracted to grounded surfaces (i.e., walls, floor, equipment). The use of the ESCS resulted in a 64% mean reduction in gram-negative bacteria. Airborne dust levels were reduced an average of 37% over a 1-wk period in the experimental room compared with the control room on the basis of samples taken every 10 min. The reductions of airborne dust and bacteria in this study are comparable with earlier results obtained with the ESCS in commercial hatching cabinets and experimental caged layer rooms, suggesting the system could also be applied to other types of enclosed animal housing. PMID:12713167

  6. Identifying Airborne Pathogens in Time to Respond

    SciTech Connect

    Hazi, A

    2006-01-25

    Among the possible terrorist activities that might threaten national security is the release of an airborne pathogen such as anthrax. Because the potential damage to human health could be severe, experts consider 1 minute to be an operationally useful time limit for identifying the pathogen and taking action. Many commercial systems can identify airborne pathogenic microbes, but they take days or, at best, hours to produce results. The Department of Homeland Security (DHS) and other U.S. government agencies are interested in finding a faster approach. To answer this national need, a Livermore team, led by scientist Eric Gard, has developed the bioaerosol mass spectrometry (BAMS) system--the only instrument that can detect and identify spores at low concentrations in less than 1 minute. BAMS can successfully distinguish between two related but different spore species. It can also sort out a single spore from thousands of other particles--biological and nonbiological--with no false positives. The BAMS team won a 2005 R&D 100 Award for developing the system. Livermore's Laboratory Directed Research and Development (LDRD) Program funded the biomedical aspects of the BAMS project, and the Department of Defense's Technical Support Working Group and Defense Advanced Research Project Agency funded the biodefense efforts. Developing a detection system that can analyze small samples so quickly has been challenging. Livermore engineer Vincent Riot, who worked on the BAMS project, explains, ''A typical spore weighs approximately one-trillionth of a gram and is dispersed in the atmosphere, which contains naturally occurring particles that could be present at concentrations thousands of times higher. Previous systems also had difficulty separating benign organisms from those that are pathogenic but very similar, which has resulted in false alarms''.

  7. Airborne laser topographic mapping results

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Link, L. E.; Swift, R. N.; Butler, M. L.

    1984-01-01

    The results of terrain mapping experiments utilizing the National Aeronautics and Space Administration (NASA) Airborne Oceanographic Lidar (AOL) over forested areas are presented. The flight tests were conducted as part of a joint NASA/U.S. Army Corps of Engineers (CE) investigation aimed at evaluating the potential of an airborne laser ranging system to provide cross-sectional topographic data on flood plains that are difficult and expensive to survey using conventional techniques. The data described in this paper were obtained in the Wolf River Basin located near Memphis, TN. Results from surveys conducted under winter 'leaves off' and summer 'leaves on' conditions, aspects of day and night operation, and data obtained from decidous and coniferous tree types are compared. Data processing techniques are reviewed. Conclusions relative to accuracy and present limitations of the AOL, and airborne lidar systems in general, to terrain mapping over forested areas are discussed.

  8. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  9. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  10. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms

    PubMed Central

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-01-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration. PMID:26522006

  11. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms

    NASA Astrophysics Data System (ADS)

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-11-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration.

  12. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms.

    PubMed

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-01-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration.

  13. Airborne Transmission of Bordetella pertussis

    PubMed Central

    Warfel, Jason M.; Beren, Joel; Merkel, Tod J.

    2012-01-01

    Pertussis is a contagious, acute respiratory illness caused by the bacterial pathogen Bordetella pertussis. Although it is widely believed that transmission of B. pertussis occurs via aerosolized respiratory droplets, no controlled study has ever documented airborne transmission of pertussis. We set out to determine if airborne transmission occurs between infected and naive animals, utilizing the baboon model of pertussis. Our results showed that 100% of exposed naive animals became infected even when physical contact was prevented, demonstrating that pertussis transmission occurs via aerosolized respiratory droplets. PMID:22807521

  14. Mismatch in aeroallergens and airborne grass pollen concentrations

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Hernández-Ceballos, M. A.; Galán, C.

    2016-11-01

    An accurate estimation of the allergen concentration in the atmosphere is essential for allergy sufferers. The major cause of pollinosis all over Europe is due to grass pollen and Phl p 5 has the highest rates of sensitization (>50%) in patients with grass pollen-induced allergy. However, recent research has shown that airborne pollen does not always offer a clear indicator of exposure to aeroallergens. This study aims to evaluate relations between airborne grass pollen and Phl p 5 concentrations in Córdoba (southern Spain) and to study how meteorological parameters influence these atmospheric records. Monitoring was carried out from 2012 to 2014. Hirst-type volumetric spore trap was used for pollen collection, following the protocol recommended by the Spanish Aerobiology Network (REA). Aeroallergen sampling was performed using a low-volume cyclone sampler, and allergenic particles were quantified by ELISA assay. Besides, the influence of main meteorological factors on local airborne pollen and allergen concentrations was surveyed. A significant correlation was observed between grass pollen and Phl p 5 allergen concentrations during the pollen season, but with some sporadic discrepancy episodes. The cumulative annual Pollen Index also varied considerably. A significant correlation has been obtained between airborne pollen and minimum temperature, relative humidity and precipitation, during the three studied years. However, there is no clear relationship between allergens and weather variables. Our findings suggest that the correlation between grass pollen and aeroallergen Phl p 5 concentrations varies from year-to-year probably related to a complex interplay of meteorological variables.

  15. NASA Airborne Lidar 1982-1984 Flights

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar 1982-1984 Flights Data from the 1982 NASA Langley Airborne Lidar flights following the eruption of El Chichon ... continuing to January 1984. Transcribed from the following NASA Tech Reports: McCormick, M. P., and M. T. Osborn, Airborne lidar ...

  16. Physicochemical Characterization of Cloud Drop Residual Particles in Eastern Pacific Marine Stratocumulus: Airborne Measurements Downstream of a Newly-Developed Counterflow Virtual Impactor Inlet during the 2011 E-PEACE Campaign

    NASA Astrophysics Data System (ADS)

    Sorooshian, A.; Shingler, T.; Dey, S.; Brechtel, F. J.; Jonsson, H.; Metcalf, A. R.; Craven, J. S.; Coggon, M.; Lin, J. J.; Nenes, A.; Seinfeld, J.

    2011-12-01

    The aerosol nuclei that are the seeds of cloud drops are a critically important component of the atmosphere as they influence radiative transfer, visibility, and cloud microphysics. Aircraft must employ special inlets to exclusively sample cloud drops, which involves rejecting the smaller interstitial aerosol in clouds, and then subsequently drying the drops to leave only the residual particles. A new counterflow virtual impactor inlet (CVI) was recently deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE). Several state-of-the-art instruments sampling downstream of the CVI characterized the physical and chemical properties of the droplet residual particles including measurements of composition, size distribution, optical properties, and water-uptake properties. This work will summarize CVI measurements from over 25 flights during the E-PEACE campaign off the central coast of California between July and August. The flights specifically targeted aerosol-cloud interactions in a region where stratocumulus clouds are perturbed by emissions from ship traffic. New findings related to the physicochemical properties of drop residual particles will be highlighted in addition to a characterization of CVI performance.

  17. Laser Doppler spectrometer method of particle sizing. [for air pollution

    NASA Technical Reports Server (NTRS)

    Weber, F. N.

    1976-01-01

    A spectrometer for the detection of airborne particulate pollution in the submicron size range is described. In this device, airborne particles are accelerated through a supersonic nozzle, with different sizes achieving different velocities in the gas flow. Information about the velocities of the accelerated particles is obtained with a laser-heterodyne optical system through the Doppler shift of light scattered from the particles. Detection is accomplished by means of a photomultiplier. Nozzle design and signal processing techniques are also discussed.

  18. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  19. Airborne fungi--a resurvey

    SciTech Connect

    Meyer, G.H.; Prince, H.E.; Raymer, W.J.

    1983-07-01

    A 15-month survey of airborne fungi at 14 geographical stations was conducted to determine the incidence of different fungal genera. Five of these stations were surveyed 25 years earlier. A comparison between previous studies and present surveys revealed similar organisms at each station with slight shifts in frequency of dominant genera.

  20. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  1. Airborne chemicals and forest health

    SciTech Connect

    Woodman, J.N.; Cowling, E.B.

    1987-02-01

    Over the past few years the possible contribution of acid rain to the problem of forest decline has been a cause of increasing public concern. Research has begun to determine whether airborne chemicals are causing or contributing to visible damage and mortality in eastern spruce-fir and sugar maple forests and to changes in tree growth, usually without visible symptoms, in other parts of North America. This paper describes some of the complex biological relationships that determine health and productivity of forests and that make it difficult to distinguish effects of airborne chemicals from effects of natural stress. It describes four major research approaches for assessment of the effects of airborne chemicals on forests, and it summarizes current understanding of the known and possible effects of airborne chemicals on forest trees in North America and Europe. It also briefly describes the major air quality and forest health research programs in North America, and it assesses how ell these programs are likely to meet information needs during the coming decade. 69 references, 2 figures, 1 table.

  2. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  3. Ionizing air affects influenza virus infectivity and prevents airborne-transmission.

    PubMed

    Hagbom, Marie; Nordgren, Johan; Nybom, Rolf; Hedlund, Kjell-Olof; Wigzell, Hans; Svensson, Lennart

    2015-01-01

    By the use of a modified ionizer device we describe effective prevention of airborne transmitted influenza A (strain Panama 99) virus infection between animals and inactivation of virus (>97%). Active ionizer prevented 100% (4/4) of guinea pigs from infection. Moreover, the device effectively captured airborne transmitted calicivirus, rotavirus and influenza virus, with recovery rates up to 21% after 40 min in a 19 m(3) room. The ionizer generates negative ions, rendering airborne particles/aerosol droplets negatively charged and electrostatically attracts them to a positively charged collector plate. Trapped viruses are then identified by reverse transcription quantitative real-time PCR. The device enables unique possibilities for rapid and simple removal of virus from air and offers possibilities to simultaneously identify and prevent airborne transmission of viruses. PMID:26101102

  4. Ionizing air affects influenza virus infectivity and prevents airborne-transmission

    PubMed Central

    Hagbom, Marie; Nordgren, Johan; Nybom, Rolf; Hedlund, Kjell-Olof; Wigzell, Hans; Svensson, Lennart

    2015-01-01

    By the use of a modified ionizer device we describe effective prevention of airborne transmitted influenza A (strain Panama 99) virus infection between animals and inactivation of virus (>97%). Active ionizer prevented 100% (4/4) of guinea pigs from infection. Moreover, the device effectively captured airborne transmitted calicivirus, rotavirus and influenza virus, with recovery rates up to 21% after 40 min in a 19 m3 room. The ionizer generates negative ions, rendering airborne particles/aerosol droplets negatively charged and electrostatically attracts them to a positively charged collector plate. Trapped viruses are then identified by reverse transcription quantitative real-time PCR. The device enables unique possibilities for rapid and simple removal of virus from air and offers possibilities to simultaneously identify and prevent airborne transmission of viruses. PMID:26101102

  5. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  6. Some aspects of the airborne transmission of infection

    PubMed Central

    Clark, Raymond P.; de Calcina-Goff, Mervyn L.

    2009-01-01

    The relationship between the human body and the dissemination of potentially pathogenic particles and droplets is described. Airborne transmission of infection in operating theatres and a burns unit and the part played by the human microclimate and its interaction with ventilating air flows is discussed. The mechanisms by which different garment assemblies used for surgery can enhance particle dispersion are illustrated and the way that floor cleaning can increase the concentration of airborne organisms is described. The development of the successful use of ultra-clean air systems in orthopaedic implant surgery is reviewed. Relationships between contact and airborne transmission of disease are explored and ways by which containment strategies and metrics used in pharmaceutical and electronics manufacturing can be applied to the design and monitoring of healthcare areas is discussed. It is suggested that currently available techniques involving architectural, ventilation and operational aspects of healthcare provision, when properly applied, can markedly improve treatment outcomes that may otherwise be compromised by hospital-acquired infections involving both bacteria and viruses. PMID:19815574

  7. Dynamic radioactive particle source

    DOEpatents

    Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  8. Weekly variation of atmospheric particle micromorphology and chemistry in Brussels urban environment.

    PubMed

    Zaady, Eli; Carati, D; Brenig, L; Vanderstraeten, P; Lénelle, Y; Meurrens, A; Offer, Z Y

    2010-10-01

    The purpose of this study was to measure the impact of urban activities on airborne particle dynamics during weekend periods in Brussels urban area. Differences in the granulometry and micromorphology between particles sampled on working days and weekends were studied. We quantified the area, size, number, and the chemistry parameters of the airborne particles and compared between Saturday, Sunday, and Monday. We report and analyze data on airborne particles up to PM10, measured in the Brussels region from October 2002 to September 2003. Our investigation reveals detailed information regarding chemical composition of the airborne particles over the weekend period in the Brussels urban area. Furthermore, the majority of the airborne particles in the Brussels region may belong to sources geographically outside the (in situ) Brussels area. PMID:19774474

  9. An airborne icing characterization probe: nephelometer prototype

    NASA Astrophysics Data System (ADS)

    Roques, S.

    2007-10-01

    The aeronautical industry uses airborne probes to characterize icing conditions for flight certification purposes by counting and sizing cloud droplets. Existing probes have been developed for meteorologists in order to study cloud microphysics. They are used on specific aircraft, instrumented for this type of study, but are not adapted for an industrial flight test environment. The development by Airbus of a new probe giving a real time response for particle sizes between 10 and 500 µm, adapted to operational requirements, is in progress. An optical principle by coherent shadowgraphy with a low coherency point source is used for the application. The size of the droplets is measured from their shadows on a CCD. A pulsed laser coupled to a fast camera freezes the movement. Usually, image processing rejects out-of-focus objects. Here, particles far from the focal plane can be sized because of the large depth of field due to the point source. The technique used increases the depth of field and the sampled volume is enough to build a histogram even for low droplet concentrations. Image processing is done in real time and results are provided to the flight test engineer. All data and images are recorded in order to allow on-ground complementary analysis if necessary. A non-telescopic prototype has been tested in a wind tunnel and in flight. The definitive probe being retractable is designed to be easily installed through a dummy window. Retracted, it will allow the aircraft to fly at VMO (maximum operating limit speed).

  10. Ion-Beam Analysis of Airborne Pollution

    NASA Astrophysics Data System (ADS)

    Harrington, Charles; Gleason, Colin; Schuff, Katie; Battaglia, Maria; Moore, Robert; Turley, Colin; Labrake, Scott; Vineyard, Michael

    2010-11-01

    An undergraduate laboratory research program in ion-beam analysis (IBA) of atmospheric aerosols is being developed to study pollution in the Capitol District and Adirondack Mountains of New York. The IBA techniques applied in this project include proton induced X-ray emission (PIXE), proton induced gamma-ray emission (PIGE), Rutherford backscattering (RBS), and proton elastic scattering analysis (PESA). These methods are well suited for studying air pollution because they are quick, non-destructive, require little to no sample preparation, and capable of investigating microscopic samples. While PIXE spectrometry is used to analyze most elements from silicon to uranium, the other techniques are being applied to measure some of the remaining elements and complement PIXE in the study of aerosols. The airborne particulate matter is collected using nine-stage cascade impactors that separate the particles according to size and the samples are bombarded with proton beams from the Union College 1.1-MV Pelletron Accelerator. The reaction products are measured with SDD X-ray, Ge gamma-ray, and Si surface barrier charged particle detectors. Here we report on the progress we have made on the PIGE, RBS, and PESA analysis of aerosol samples.

  11. Identification of risk factors for sub-optimal housing conditions in Australian piggeries: Part 2. Airborne pollutants.

    PubMed

    Banhazi, T M; Seedorf, J; Rutley, D L; Pitchford, W S

    2008-01-01

    The concentrations of total airborne bacteria, respirable endotoxins, ammonia, and respirable and inhalable particles were monitored in 160 piggery buildings in Australia between autumn 1997 and autumn 1999. The overall mean airborne bacteria, respirable endotoxins, ammonia (NH3), and inhalable and respirable particle concentrations measured were 1.17 x 10(5) cfu m(-3), 33.1 EU m(-3), 3.7 ppm, 1.74 mg m(-3), and 0.26 mg m(-3), respectively. The characteristics of the buildings and management systems used were documented at the time of sampling. A multifactorial general linear model (GLM) statistical procedure was used to analyze the effects of housing and management factors on the concentrations of the airborne pollutants. Both airborne bacteria and respirable endotoxin concentrations were affected by building classification (type), and respirable endotoxin concentrations were positively correlated with increasing humidity. The concentrations of airborne bacteria increased as the level of pen hygiene (cleanliness) decreased. The NH3 concentrations were primarily affected by level of pen hygiene, building volume, pig flow management, and season. Building classification, pig flow management, season, building volume, ventilation rates, and temperature affected inhalable particle concentrations. Respirable particle concentrations were primarily affected by building classification, pen hygiene, pig flow management, season, ventilation rates, temperature, and humidity. These findings suggest that environmental improvement strategies (such as improved cleaning, ventilation, and temperature control) are likely to reduce airborne pollutant concentrations in pig buildings and in the environment, thus improving the health and welfare of both pigs and farm staff.

  12. Large aperture scanning airborne lidar

    NASA Technical Reports Server (NTRS)

    Smith, J.; Bindschadler, R.; Boers, R.; Bufton, J. L.; Clem, D.; Garvin, J.; Melfi, S. H.

    1988-01-01

    A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc.

  13. Magnetic airborne survey - geophysical flight

    NASA Astrophysics Data System (ADS)

    de Barros Camara, Erick; Nei Pereira Guimarães, Suze

    2016-06-01

    This paper provides a technical review process in the area of airborne acquisition of geophysical data, with emphasis for magnetometry. In summary, it addresses the calibration processes of geophysical equipment as well as the aircraft to minimize possible errors in measurements. The corrections used in data processing and filtering are demonstrated with the same results as well as the evolution of these techniques in Brazil and worldwide.

  14. Influence of Asian Dust Particles on Immune Adjuvant Effects and Airway Inflammation in Asthma Model Mice

    PubMed Central

    Kurai, Jun; Watanabe, Masanari; Tomita, Katsuyuki; Yamasaki, Hiroyuki Sano Akira; Shimizu, Eiji

    2014-01-01

    Objective An Asian dust storm (ADS) contains airborne particles that affect conditions such as asthma, but the mechanism of exacerbation is unclear. The objective of this study was to compare immune adjuvant effects and airway inflammation induced by airborne particles collected on ADS days and the original ADS soil (CJ-1 soil) in asthma model mice. Methods Airborne particles were collected on ADS days in western Japan. NC/Nga mice were co-sensitized by intranasal instillation with ADS airborne particles and/or Dermatophagoides farinae (Df), and with CJ-1 soil and/or Df for 5 consecutive days. Df-sensitized mice were stimulated with Df challenge intranasally at 7 days after the last Df sensitization. At 24 hours after challenge, serum allergen specific antibody, differential leukocyte count and inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were measured, and airway inflammation was examined histopathologically. Results Co-sensitization with ADS airborne particles and Df increased the neutrophil and eosinophil counts in BALF. Augmentation of airway inflammation was also observed in peribronchiolar and perivascular lung areas. Df-specific serum IgE was significantly elevated by ADS airborne particles, but not by CJ-1 soil. Levels of interleukin (IL)-5, IL-13, IL-6, and macrophage inflammatory protein-2 were higher in BALF in mice treated with ADS airborne particles. Conclusion These results suggest that substances attached to ADS airborne particles that are not in the original ADS soil may play important roles in immune adjuvant effects and airway inflammation. PMID:25386753

  15. NASA Student Airborne Research Program

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Shetter, R. E.

    2012-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for advanced undergraduates and early graduate students majoring in the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2012, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA P-3B aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. We will discuss the results and effectiveness of the program from the first four summers and discuss plans for the future.

  16. Vascular effects of ultrafine particles in persons with type 2 diabetes

    EPA Science Inventory

    BACKGROUND: Diabetes confers an increased risk for cardiovascular effects of airborne particles. OBJECTIVE: We hypothesized that inhalation of elemental carbon ultrafine particles (UFP) would activate blood platelets and vascular endothelium in people with type 2 diabetes. ...

  17. Prokaryotic and eukaryotic airborne microorganisms as tracers of microclimatic changes in the underground (Postojna Cave, Slovenia).

    PubMed

    Mulec, Janez; Vaupotič, Janja; Walochnik, Julia

    2012-10-01

    Bioaerosols in cave air can serve as natural tracers and, together with physical parameters, give a detailed view of conditions in the cave atmosphere and responses to climatic changes. Airborne microbes in the Postojna Cave system indicated very dynamic atmospheric conditions, especially in the transitory seasonal periods between winter and summer. Physical parameters of cave atmosphere explained the highest variance in structure of microbial community in the winter and in the summer. The airborne microbial community is composed of different microbial groups with generally low abundances. At sites with elevated organic input, occasional high concentrations of bacteria and fungi can be expected of up to 1,000 colony-forming units/m(3) per individual group. The most abundant group of airborne amoebozoans were the mycetozoans. Along with movements of air masses, airborne algae also travel deep underground. In a cave passage with elevated radon concentration (up to 60 kBq/m(3)) airborne biota were less abundant; however, the concentration of DNA in the air was comparable to that in other parts of the cave. Due to seasonal natural air inflow, high concentrations of biological and inanimate particles are introduced underground. Sedimentation of airborne allochthonous material might represent an important and continuous source of organic material for cave fauna. PMID:22570119

  18. Elemental composition of airborne particulates in uranium mining and milling operations

    SciTech Connect

    Paschoa, A.S.; Wrenn, M.E.; Jones, K.W.; Cholewa, M.; Carvalho, S.M.

    1984-01-01

    Airborne particulates were collected through filters in occupational areas of the uranium mining and milling complex located in Pocos de Caldas, Brazil. The filters were analyzed by microPIXE (particle induced x-ray emission) combined with Rutherford Backscattering (RBS) of the incident protons. The results are discussed in the paper. 4 references, 6 figures, 1 table.

  19. Airborne exposure patterns from a passenger source in aircraft cabins

    PubMed Central

    Bennett, James S.; Jones, Byron W.; Hosni, Mohammad H.; Zhang, Yuanhui; Topmiller, Jennifer L.; Dietrich, Watts L.

    2015-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. PMID:26526769

  20. Migration of contaminated soil and airborne particulates to indoor dust.

    PubMed

    Layton, David W; Beamer, Paloma I

    2009-11-01

    We have developed a modeling and measurement framework for assessing transport of contaminated soils and airborne particulates into a residence, their subsequent distribution indoors via resuspension and deposition processes, and removal by cleaning and building exhalation of suspended particles. The model explicitly accounts for the formation of house dust as a mixture of organic matter (OM) such as shed skin cells and organic fibers, soil tracked-in on footwear, and particulate matter (PM) derived from the infiltration of outdoor air. We derived formulas for use with measurements of inorganic contaminants, crustal tracers, OM, and PM to quantify selected transport parameters. Application of the model to residences in the U.S. Midwest indicates that As in ambient air can account for nearly 60% of the As input to floor dust, with soil track-in representing the remainder. Historic data on Pb contamination in Sacramento, CA, were used to reconstruct sources of Pb in indoor dust, showing that airborne Pb was likely the dominant source in the early 1980s. However, as airborne Pb levels declined due to the phase-out of leaded gasoline, soil resuspension and track-in eventually became the primary sources of Pb in house dust.

  1. Testing an innovative device against airborne Aspergillus contamination.

    PubMed

    Desoubeaux, Guillaume; Bernard, Marie-Charlotte; Gros, Valérie; Sarradin, Pierre; Perrodeau, Elodie; Vecellio, Laurent; Piscopo, Antoine; Chandenier, Jacques; Bernard, Louis

    2014-08-01

    Aspergillus fumigatus is a major airborne nosocomial pathogen that is responsible for severe mycosis in immunocompromised patients. We studied the efficacy of an innovative mobile air-treatment device in eliminating A. fumigatus from the air following experimental massive contamination in a high-security room. Viable mycological particles were isolated from sequential air samples in order to evaluate the device's effectiveness in removing the fungus. The concentration of airborne conidia was reduced by 95% in 18 min. Contamination was reduced below the detection threshold in 29 min, even when the machine was at the lowest airflow setting. In contrast, during spontaneous settling with no air treatment, conidia remained airborne for more than 1 h. This indoor air contamination model provided consistent and reproducible results. Because the air purifier proved to be effective at eliminating a major contaminant, it may prove useful in preventing air-transmitted disease agents. In an experimental space mimicking a hospital room, the AirLyse air purifier, which uses a combination of germicidal ultraviolet C irradiation and titanium photocatalysis, effectively eliminated Aspergillus conidia. Such a mobile device may be useful in routine practice for lowering microbiological air contamination in the rooms of patients at risk.

  2. Study of cloud properties using airborne and satellite measurements

    NASA Astrophysics Data System (ADS)

    Boscornea, Andreea; Stefan, Sabina; Vajaiac, Sorin Nicolae

    2014-08-01

    The present study investigates cloud microphysics properties using aircraft and satellite measurements. Cloud properties were drawn from data acquired both from in situ measurements with state of the art airborne instrumentation and from satellite products of the MODIS06 System. The used aircraft was ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research, property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS), Bucharest, Romania, which is specially equipped for this kind of research. The main tool of the airborne laboratory is a Cloud, Aerosol and Precipitation Spectrometer - CAPS (30 bins, 0.51- 50 μm). The data was recorded during two flights during the winter 2013-2014, over a flat region in the south-eastern part of Romania (between Bucharest and Constanta). The analysis of cloud particle size variations and cloud liquid water content provided by CAPS can explain cloud processes, and can also indicate the extent of aerosols effects on clouds. The results, such as cloud coverage and/or cloud types, microphysical parameters of aerosols on the one side and the cloud microphysics parameters obtained from aircraft flights on the other side, was used to illustrate the importance of microphysics cloud properties for including the radiative effects of clouds in the regional climate models.

  3. Modeling Airborne Beryllium Concentrations From Open Air Dynamic Testing

    NASA Astrophysics Data System (ADS)

    Becker, N. M.

    2003-12-01

    A heightened awareness of airborne beryllium contamination from industrial activities was reestablished during the late 1980's and early 1990's when it became recognized that Chronic Beryllium Disease (CBD) had not been eradicated, and that the Occupational Health and Safety Administration standards for occupational air exposure to beryllium may not be sufficiently protective. This was in response to the observed CBD increase in multiple industrial settings where beryllium was manufactured and/or machined, thus producing beryllium particulates which are then available for redistribution by airborne transport. Sampling and modeling design activities were expanded at Los Alamos National Laboratory in New Mexico to evaluate potential airborne beryllium exposure to workers who might be exposed during dynamic testing activities associated with nuclear weapons Stockpile Stewardship. Herein is presented the results of multiple types of collected air measurements that were designed to characterize the production and dispersion of beryllium used in components whose performance is evaluated during high explosive detonation at open air firing sites. Data from fallout, high volume air, medium volume air, adhesive film, particle size impactor, and fine-particulate counting techniques will be presented, integrated, and applied in dispersion modeling to assess potential onsite and offsite personal exposures resulting from dynamic testing activities involving beryllium.

  4. Airborne exposure patterns from a passenger source in aircraft cabins.

    PubMed

    Bennett, James S; Jones, Byron W; Hosni, Mohammad H; Zhang, Yuanhui; Topmiller, Jennifer L; Dietrich, Watts L

    2013-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. PMID:26526769

  5. Hydrometeor discrimination in melting layer using multiparameter airborne radar measurement

    NASA Technical Reports Server (NTRS)

    Kumagai, H.; Meneghini, R.; Kozu, T.

    1992-01-01

    Results from a multiparameter airborne radar/radiometer experiment (the Typhoon experiment) are presented. The experiment was conducted in the western Pacific with the NASA DC-8 aircraft, in which a dual-wavelength at X-band and Ka-band and dual-polarization at X-band radar was installed. The signatures of dBZ(X), dBZ(Ka), LDR (linear depolarization ratio) at X-band and DZ=dBZ(X)-dBZ(Ka) are discussed for the data obtained in the penetration of the typhoon Flo. With emphasis on discrimination of hydrometeor particles, some statistical features of the brightband in stratiform rain are discussed.

  6. Comprehensive analysis of airborne contaminants from recent Spacelab missions

    NASA Technical Reports Server (NTRS)

    Matney, M. L.; Boyd, J. F.; Covington, P. A.; Leano, H. J.; Pierson, D. L.; Limero, T. F.; James, J. T.

    1993-01-01

    The Shuttle experiences unique air contamination problems because of microgravity and the closed environment. Contaminant build-up in the closed atmosphere and the lack of a gravitational settling mechanism have produced some concern in previous missions about the amount of solid and volatile airborne contaminants in the Orbiter and Spacelab. Degradation of air quality in the Orbiter/Spacelab environment, through processes such as chemical contamination, high solid-particulate levels, and high microbial levels, may affect crew performance and health. A comprehensive assessment of the Shuttle air quality was undertaken during STS-40 and STS-42 missions, in which a variety of air sampling and monitoring techniques were employed to determine the contaminant load by characterizing and quantitating airborne contaminants. Data were collected on the airborne concentrations of volatile organic compounds, microorganisms, and particulate matter collected on Orbiter/Spacelab air filters. The results showed that STS-40/42 Orbiter/Spacelab air was toxicologically safe to breathe, except during STS-40 when the Orbiter Refrigerator/Freezer unit was releasing noxious gases in the middeck. On STS-40, the levels of airborne bacteria appeared to increase as the mission progressed; however, this trend was not observed for the STS-42 mission. Particulate matter in the Orbiter/Spacelab air filters was chemically analyzed in order to determine the source of particles. Only small amounts of rat hair and food bar (STS-40) and traces of soiless medium (STS-42) were detected in the Spacelab air filters, indicating that containment for Spacelab experiments was effective.

  7. Geophex airborne unmanned survey system

    SciTech Connect

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  8. Airborne wavemeter validation and calibration

    NASA Technical Reports Server (NTRS)

    Goad, Joseph H., Jr.; Rinsland, Pamela L.; Kist, Edward H., Jr.; Geier, Erika B.; Banziger, Curtis G.

    1992-01-01

    This manuscript outlines a continuing effort to validate and verify the performance of an airborne autonomous wavemeter for tuning solid state lasers to a desired wavelength. The application is measuring the vertical profiles of atmospheric water vapor using a differential absorption lidar (DIAL) technique. Improved wavemeter performance data for varying ambient temperatures are presented. This resulted when the electronic grounding and shielding were improved. The results with short pulse duration lasers are also included. These lasers show that similar performance could be obtained with lasers operating in the continuous and the pulsed domains.

  9. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.J.; Keiswetter, D.

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  10. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  11. Cyberinfrastructure for Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  12. Requirements for airborne vector gravimetry

    NASA Technical Reports Server (NTRS)

    Schwarz, K. P.; Colombo, O.; Hein, G.; Knickmeyer, E. T.

    1992-01-01

    The objective of airborne vector gravimetry is the determination of the full gravity disturbance vector along the aircraft trajectory. The paper briefly outlines the concept of this method using a combination of inertial and GPS-satellite data. The accuracy requirements for users in geodesy and solid earth geophysics, oceanography and exploration geophysics are then specified. Using these requirements, accuracy specifications for the GPS subsystem and the INS subsystem are developed. The integration of the subsystems and the problems connected with it are briefly discussed and operational methods are indicated that might reduce some of the stringent accuracy requirements.

  13. Biological monitoring of airborne pollution

    SciTech Connect

    Ditz, D.W. )

    1990-01-01

    Common plants such as grasses, mosses, and even goldenrod may turn out to have a new high-tech role as monitors of airborne pollution from solid waste incinerators. Certain plants that respond to specific pollutants can provide continuous surveillance of air quality over long periods of time: they are bio-indicators. Other species accumulate pollutants and can serve as sensitive indicators of pollutants and of food-chain contamination: they are bio-accumulators. Through creative use of these properties, biological monitoring can provide information that cannot be obtained by current methods such as stack testing.

  14. Toolsets for Airborne Data - URS and New Documentation

    Atmospheric Science Data Center

    2015-03-23

    ... airborne field missions, documentation, and EOSDIS User Registration System (URS) authentication. This web application features an intuitive user interface for variable selection across different airborne field studies and ...

  15. Distribution and identification of culturable airborne microorganisms in a Swiss milk processing facility.

    PubMed

    Brandl, Helmut; Fricker-Feer, Claudia; Ziegler, Dominik; Mandal, Jyotshna; Stephan, Roger; Lehner, Angelika

    2014-01-01

    Airborne communities (mainly bacteria) were sampled and characterized (concentration levels and diversity) at 1 outdoor and 6 indoor sites within a Swiss dairy production facility. Air samples were collected on 2 sampling dates in different seasons, one in February and one in July 2012 using impaction bioaerosol samplers. After cultivation, isolates were identified by mass spectrometry (matrix-assisted laser desorption/ionization-time-of-flight) and molecular (sequencing of 16S rRNA and rpoB genes) methods. In general, total airborne particle loads and total bacterial counts were higher in winter than in summer, but remained constant within each indoor sampling site at both sampling times (February and July). Bacterial numbers were generally very low (<100 cfu/m(3) of air) during the different steps of milk powder production. Elevated bacterial concentrations (with mean values of 391 ± 142 and 179 ± 33 cfu/m(3) of air during winter and summer sampling, respectively; n=15) occurred mainly in the "logistics area," where products in closed tins are packed in secondary packaging material and prepared for shipping. However, total bacterial counts at the outdoor site varied, with a 5- to 6-fold higher concentration observed in winter compared with summer. Twenty-five gram-positive and gram-negative genera were identified as part of the airborne microflora, with Bacillus and Staphylococcus being the most frequent genera identified. Overall, the culturable microflora community showed a composition typical and representative for the specific location. Bacterial counts were highly correlated with total airborne particles in the size range 1 to 5 µm, indicating that a simple surveillance system based upon counting of airborne particles could be implemented. The data generated in this study could be used to evaluate the effectiveness of the dairy plant's sanitation program and to identify potential sources of airborne contamination, resulting in increased food safety.

  16. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  17. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  18. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  19. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  20. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  1. The Continuous wavelet in airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liu, L.

    2013-12-01

    Airborne gravimetry is an efficient method to recover medium and high frequency band of earth gravity over any region, especially inaccessible areas, which can measure gravity data with high accuracy,high resolution and broad range in a rapidly and economical way, and It will play an important role for geoid and geophysical exploration. Filtering methods for reducing high-frequency errors is critical to the success of airborne gravimetry due to Aircraft acceleration determination based on GPS.Tradiontal filters used in airborne gravimetry are FIR,IIR filer and so on. This study recommends an improved continuous wavelet to process airborne gravity data. Here we focus on how to construct the continuous wavelet filters and show their working principle. Particularly the technical parameters (window width parameter and scale parameter) of the filters are tested. Then the raw airborne gravity data from the first Chinese airborne gravimetry campaign are filtered using FIR-low pass filter and continuous wavelet filters to remove the noise. The comparison to reference data is performed to determinate external accuracy, which shows that continuous wavelet filters applied to airborne gravity in this thesis have good performances. The advantages of the continuous wavelet filters over digital filters are also introduced. The effectiveness of the continuous wavelet filters for airborne gravimetry is demonstrated through real data computation.

  2. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  3. MASS SPECTROMETRY OF INDIVIDUAL AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    Typically, in real-time aerosol mass spectrometry (RTAMS), individual airborne particles
    are ablated and ionized with a single focused laser pulse. This technique yields information that
    permits bulk characterization of the particle, but information about the particle's sur...

  4. PARTICLE GROWTH IN HIGH-SPEED PARTICLE BEAM INLETS. (R823980)

    EPA Science Inventory

    Physical and chemical characterization of airborne particles is essential for determining their role in air pollution. Characterization instruments typically employ the use of sonic nozzles that transmit a wide range of particle sizes to a low-pressure region. The carrier gas ...

  5. Development of a new airborne humidigraph system.

    SciTech Connect

    Pekour, Mikhail S.; Schmid, Beat; Chand, Duli; Hubbe, John M.; Kluzek, Celine D.; Nelson, Danny A.; Tomlinson, Jason M.; Cziczo, Daniel J.

    2012-12-06

    Modeling and measurements of aerosol properties is complicated by the hygroscopic behavior of the aerosols adding significant uncertainty to our best estimates of the direct effect aerosols exert on the radiative balance of the atmosphere. Airborne measurements of aerosol hygroscopicity are particularly challenging but critically needed. This motivated the development of a newly designed system which can measure the dependence of the aerosol light scattering coefficient (σsp) on relative humidity (RH), known as f(RH), in real-time at a rapid rate (<10 s) on an aerial platform. The new system has several advantages over existing systems. It consists of three integrating nephelometers and humidity conditioners for simultaneous measurement of the σsp at three different RHs. The humidity is directly controlled in exchanger cells without significant temperature disturbances and without particle dilution, heating or loss of volatile compounds. The single-wavelength nephelometers are illuminated by LED-based light sources thereby minimizing heating of the sample stream. The flexible design of the RH conditioners, consisting of a number of specially designed exchanger cells (driers or humidifiers), enables us to measure f(RH) under hydration or dehydration conditions (always starting with the aerosol in a known state) with a simple system re-configuration. These exchanger cells have been characterized for losses of particles using latex spheres and laboratory generated ammonium sulfate aerosols. Residence times of 6 - 9 s in the exchangers and subsequent lines is sufficient for most aerosols to attain equilibrium with the new water vapor content. The performance of this system has been assessed aboard DOE’s G-1 research aircraft during test flights over California, Oregon, and Washington.

  6. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  7. Airborne thermography applications in Argentina

    NASA Astrophysics Data System (ADS)

    Castro, Eduardo H.; Selles, Eduardo J.; Costanzo, Marcelo; Franco, Oscar; Diaz, Jose

    2002-03-01

    Forest fires in summer and sheep buried under the snow in winter have become important problems in the south of our country, in the region named Patagonia. We are studying to find a solution by means of an airborne imaging system whose construction we have just finished. It is a 12 channel multispectral airborne scanner system that can be mounted in a Guarani airplane or in a Learjet; the first is a non- pressurized aircraft for flight at low height and the second is a pressurized one for higher flights. The scanner system is briefly described. Their sensors can detect radiation from the ultra violet to the thermal infrared. The images are visualized in real time in a monitor screen and can be stored in the hard disc of the PC for later processing. The use of this scanner for some applications that include the prevention and fighting of forest fires and the study of the possibility of detection of sheep under snow in the Patagonia is now being accomplished. Theoretical and experimental results in fire detection and a theoretical model for studying the possibility of detection of the buried sheep are presented.

  8. AIRBORNE-CONTACT DERMATITIS OF NON-PLANT ORIGIN: AN OVERVIEW

    PubMed Central

    Ghosh, Sanjay

    2011-01-01

    Airborne-contact dermatitis (ABCD) represents a unique type of contact dermatitis originating from dust, sprays, pollens or volatile chemicals by airborne fumes or particles without directly touching the allergen. ABCD in Indian patients has been attributed exclusively by pollens of the plants like Parthenium hysterophorus, etc., but in recent years the above scenario has been changing rapidly in urban and semiurban perspective especially in developing countries. ABCD has been reported worldwide due to various type of nonplant allergens and their clinical feature are sometimes distinctive. Preventive aspect has been attempted by introduction of different chemicals of less allergic potential. PMID:22345776

  9. Focusing particle concentrator with application to ultrafine particles

    DOEpatents

    Hering, Susanne; Lewis, Gregory; Spielman, Steven R.

    2013-06-11

    Technology is presented for the high efficiency concentration of fine and ultrafine airborne particles into a small fraction of the sampled airflow by condensational enlargement, aerodynamic focusing and flow separation. A nozzle concentrator structure including an acceleration nozzle with a flow extraction structure may be coupled to a containment vessel. The containment vessel may include a water condensation growth tube to facilitate the concentration of ultrafine particles. The containment vessel may further include a separate carrier flow introduced at the center of the sampled flow, upstream of the acceleration nozzle of the nozzle concentrator to facilitate the separation of particle and vapor constituents.

  10. On-line gas chromatographic analysis of airborne particles

    DOEpatents

    Hering, Susanne V.; Goldstein, Allen H.

    2012-01-03

    A method and apparatus for the in-situ, chemical analysis of an aerosol. The method may include the steps of: collecting an aerosol; thermally desorbing the aerosol into a carrier gas to provide desorbed aerosol material; transporting the desorbed aerosol material onto the head of a gas chromatography column; analyzing the aerosol material using a gas chromatograph, and quantizing the aerosol material as it evolves from the gas chromatography column. The apparatus includes a collection and thermal desorption cell, a gas chromatograph including a gas chromatography column, heated transport lines coupling the cell and the column; and a quantization detector for aerosol material evolving from the gas chromatography column.

  11. Tracing airborne particles after Japan's nuclear plant explosion

    NASA Astrophysics Data System (ADS)

    Takemura, Toshihiko; Nakamura, Hisashi; Nakajima, Teruyuki

    2011-11-01

    The powerful Tohoku earthquake and consequent tsunami that occurred off the east coast of Japan on 11 March 2011 devastated dozens of coastal cities and towns, causing the loss of more than 15,000 lives and leaving close to 4000 people still missing. Although nuclear reactors at the Fukushima Daiichi Nuclear Power Plant, located on the Pacific coast, stopped their operation automatically upon the occurrence of the Mw 9.0 quake [Showstack, 2011], the cooling system for nuclear fuel broke down. From 12 to 16 March, vapor and hydrogen blasts destroyed the buildings that had contained the reactors, resulting in the release into the atmosphere of radioactive materials such as sulfur-35, iodine-131, cesium-134, and cesium-137, which collectively can cause harmful health effects such as tissue damage and increased risk of cancer (particularly in children), depending on dose. Most of those materials emitted from the power plant rained out onto the grounds within its vicinity and forced tens of thousands within a 20-kilometer radius to evacuate (residents to the northwest of the site within about 40 kilometers also were moved from their homes). Some of the radioactive materials were transported and then detected at such distant locations as North America and Europe, although the level of radiation dose was sufficiently low not to affect human health in any significant manner.

  12. AIRBORNE PARTICLE SIZES AND SOURCES FOUND IN INDOOR AIR

    EPA Science Inventory

    As concern about indoor air quality (IAQ) has grown in recent years, understanding indoor aerosols has become increasingly important so that control techniques may be implemented to reduce damaging health effects and soiling problems. This paper begins with a brief look at the me...

  13. Predicting Airborne Particle Levels Aboard Washington State School Buses

    PubMed Central

    Adar, Sara D.; Davey, Mark; Sullivan, James R.; Compher, Michael; Szpiro, Adam; Liu, L.-J. Sally

    2008-01-01

    School buses contribute substantially to childhood air pollution exposures yet they are rarely quantified in epidemiology studies. This paper characterizes fine particulate matter (PM2.5) aboard school buses as part of a larger study examining the respiratory health impacts of emission-reducing retrofits. To assess onboard concentrations, continuous PM2.5 data were collected during 85 trips aboard 43 school buses during normal driving routines, and aboard hybrid lead vehicles traveling in front of the monitored buses during 46 trips. Ordinary and partial least square regression models for PM2.5 onboard buses were created with and without control for roadway concentrations, which were also modeled. Predictors examined included ambient PM2.5 levels, ambient weather, and bus and route characteristics. Concentrations aboard school buses (21 μg/m3) were four and two-times higher than ambient and roadway levels, respectively. Differences in PM2.5 levels between the buses and lead vehicles indicated an average of 7 μg/m3 originating from the bus's own emission sources. While roadway concentrations were dominated by ambient PM2.5, bus concentrations were influenced by bus age, diesel oxidative catalysts, and roadway concentrations. Cross validation confirmed the roadway models but the bus models were less robust. These results confirm that children are exposed to air pollution from the bus and other roadway traffic while riding school buses. In-cabin air pollution is higher than roadway concentrations and is likely influenced by bus characteristics. PMID:18985175

  14. Predicting Airborne Particle Levels Aboard Washington State School Buses.

    PubMed

    Adar, Sara D; Davey, Mark; Sullivan, James R; Compher, Michael; Szpiro, Adam; Liu, L-J Sally

    2008-10-01

    School buses contribute substantially to childhood air pollution exposures yet they are rarely quantified in epidemiology studies. This paper characterizes fine particulate matter (PM(2.5)) aboard school buses as part of a larger study examining the respiratory health impacts of emission-reducing retrofits.To assess onboard concentrations, continuous PM(2.5) data were collected during 85 trips aboard 43 school buses during normal driving routines, and aboard hybrid lead vehicles traveling in front of the monitored buses during 46 trips. Ordinary and partial least square regression models for PM(2.5) onboard buses were created with and without control for roadway concentrations, which were also modeled. Predictors examined included ambient PM(2.5) levels, ambient weather, and bus and route characteristics.Concentrations aboard school buses (21 mug/m(3)) were four and two-times higher than ambient and roadway levels, respectively. Differences in PM(2.5) levels between the buses and lead vehicles indicated an average of 7 mug/m(3) originating from the bus's own emission sources. While roadway concentrations were dominated by ambient PM(2.5), bus concentrations were influenced by bus age, diesel oxidative catalysts, and roadway concentrations. Cross validation confirmed the roadway models but the bus models were less robust.These results confirm that children are exposed to air pollution from the bus and other roadway traffic while riding school buses. In-cabin air pollution is higher than roadway concentrations and is likely influenced by bus characteristics.

  15. Comparison of airborne and surface particulate size distributions in specific Hanford Nuclear Facilities

    SciTech Connect

    Ottley, D.B.

    1995-05-01

    Settled dust from nuclear operations may be contaminated with radionuclides and become resuspended and subsequently breathed. This is the predominate radionuclide inhalation hazard scenario in nuclear facilities that have been deactivated and no longer have liquid in their process systems that may become directly airborne in accident situations. Comparisons were made between indoor ambient airborne particulate size distribution and that of resuspended dust that could become contaminated and subsequently airborne during decommissioning operations at selected nuclear facilities on the Hanford Site. Results indicate that only 5% of the particles, by count, above the breathing zone are greater than ten (10) {mu}m in size and that the particulates that could be resuspended into the breathing zone had a mean aerodynamic equivalent diameter of four (4) {mu}m or less.

  16. Airborne nanoparticle concentrations in the manufacturing of polytetrafluoroethylene (PTFE) apparel.

    PubMed

    Vosburgh, Donna J H; Boysen, Dane A; Oleson, Jacob J; Peters, Thomas M

    2011-03-01

    One form of waterproof, breathable apparel is manufactured from polytetrafluoroethylene (PTFE) membrane laminated fabric using a specific process to seal seams that have been sewn with traditional techniques. The sealing process involves applying waterproof tape to the seam by feeding the seam through two rollers while applying hot air (600 °C). This study addressed the potential for exposure to particulate matter from this sealing process by characterizing airborne particles in a facility that produces more than 1000 lightweight PTFE rain jackets per day. Aerosol concentrations throughout the facility were mapped, breathing zone concentrations were measured, and hoods used to ventilate the seam sealing operation were evaluated. The geometric mean (GM) particle number concentrations were substantially greater in the sewing and sealing areas (67,000 and 188,000 particles cm⁻³)) compared with that measured in the office area (12,100 particles cm⁻³). Respirable mass concentrations were negligible throughout the facility (GM = 0.002 mg m⁻³) in the sewing and sealing areas). The particles exiting the final discharge of the facility's ventilation system were dominated by nanoparticles (number median diameter = 25 nm; geometric standard deviation of 1.39). The breathing zone particle number concentrations of the workers who sealed the sewn seams were highly variable and significantly greater when sealing seams than when conducting other tasks (p < 0.0001). The sealing workers' breathing zone concentrations ranged from 147,000 particles cm⁻³ to 798,000 particles cm⁻³, and their seam responsibility significantly influenced their breathing zone concentrations (p = 0.03). The finding that particle number concentrations were approximately equal outside the hood and inside the local exhaust duct indicated poor effectiveness of the canopy hoods used to ventilate sealing operations. PMID:21347955

  17. Airborne Nanoparticle Concentrations in the Manufacturing of Polytetrafluoroethylene (PTFE) Apparel

    PubMed Central

    Vosburgh, Donna J.H.; Boysen, Dane A.; Oleson, Jacob J.; Peters, Thomas M.

    2016-01-01

    One form of waterproof, breathable apparel is manufactured from polytetrafluoroethylene (PTFE) membrane laminated fabric, using a specific process to seal seams that have been sewn with traditional techniques. The sealing process involves applying waterproof tape to the seam by feeding the seam through two rollers while applying hot air (600°C). This study addressed the potential for exposure to particulate matter from this sealing process, by characterizing airborne particles in a facility that produces over 1,000 lightweight PTFE rain jackets per day. Aerosol concentrations throughout the facility were mapped, breathing zone concentrations were measured, and hoods used to ventilate the seam sealing operation were evaluated. The geometric mean (GM) particle number concentrations were substantially greater in the sewing and sealing areas (67,000 and 188,000 particles cm−3) compared to that measured in the office area (12,100 particles cm−3). Respirable mass concentrations were negligible throughout the facility (GM=0.002 mg m−3 in the sewing and sealing areas). The particles exiting the final discharge of the facility's ventilation system were dominated by nanoparticles (number median diameter = 25 nm; geometric standard deviation of 1.39). The breathing zone particle number concentrations of the workers who sealed the sewn seams were highly variable and significantly greater when sealing seams than when conducting other tasks (p<0.0001). The sealing workers’ breathing zone concentrations ranged from 147,000 particles cm−3 to 798,000 particles cm−3, and their seam responsibility significantly influenced their breathing zone concentrations (p=0.03). The finding that particle number concentrations were approximately equal outside the hood and inside the local exhaust duct indicated poor effectiveness of the canopy hoods used to ventilate sealing operations. PMID:21347955

  18. Global deposition of airborne dioxin.

    PubMed

    Booth, Shawn; Hui, Joe; Alojado, Zoraida; Lam, Vicky; Cheung, William; Zeller, Dirk; Steyn, Douw; Pauly, Daniel

    2013-10-15

    We present a global dioxin model that simulates one year of atmospheric emissions, transport processes, and depositions to the earth's terrestrial and marine habitats. We map starting emission levels for each land area, and we also map the resulting deposits to terrestrial and marine environments. This model confirms that 'hot spots' of deposition are likely to be in northern Europe, eastern North America, and in parts of Asia with the highest marine dioxin depositions being the northeast and northwest Atlantic, western Pacific, northern Indian Ocean and the Mediterranean. It also reveals that approximately 40% of airborne dioxin emissions are deposited to marine environments and that many countries in Africa receive more dioxin than they produce, which results in these countries being disproportionately impacted. Since human exposure to dioxin is largely through diet, this work highlights food producing areas that receive higher atmospheric deposits of dioxin than others.

  19. The Sandia Airborne Computer (SANDAC)

    SciTech Connect

    Nava, E.J.

    1992-06-01

    The Sandia Airborne Computer (SANDAC) is a small, modular, high performance, multiprocessor computer originally designed for aerospace applications. It can use a combination of Motorola 68020 and 68040 based processor modules along with AT&T DSP32C based signal processing modules. The system is designed to use up to 15 processors in almost any combination and a complete system can include up to 20 modules. Depending on the mix of processors, total computational throughput can range from 2.5 to greater than 225 Million Instructions Per Second (MIPS). The system is designed so that processors can access all resources in the machine and the inter-processor communication details are completely transparent to the software. In addition to processors, the system includes input/output, memory, and special function modules. Because of its ease of use, small size, durability, and configuration flexibility, SANDAC has been used on applications ranging from missile navigation, guidance, and control systems to medical imaging systems.

  20. Modis-N airborne simulator

    NASA Technical Reports Server (NTRS)

    Cech, Steven D.

    1992-01-01

    All required work associated with the above referenced contract has been successfully completed at this time. The Modis-N Airborne Simulator has been developed from existing AB184 Wildfire spectrometer parts as well as new detector arrays, optical components, and associated mechanical and electrical hardware. The various instrument components have been integrated into an operational system which has undergone extensive laboratory calibration and testing. The instrument has been delivered to NASA Ames where it will be installed on the NASA ER-2. The following paragraphs detail the specific tasks performed during the contract effort, the results obtained during the integration and testing of the instrument, and the conclusions which can be drawn from this effort.

  1. Effect of surface preparation on the bond strength of heat-polymerized denture base resin to commercially pure titanium and cobalt-chromium alloy.

    PubMed

    Kawaguchi, Tomohiro; Shimizu, Hiroshi; Lassila, Lippo V J; Vallittu, Pekka K; Takahashi, Yutaka

    2011-01-01

    The aim of this study was to investigate the bond durability of heat-polymerized denture base resin to cast CP Ti and Co-Cr alloy. The alloy specimens were divided into five groups: 1) airborne-particle abraded with 50 µm alumina (SAND), 2) Rocatec tribochemical silica coating system (RO), 3) air-abraded followed by application of Epricord Opaque Primer (EP), 4) air-abraded followed by application of Super Bond C&B liquid (SB), 5) air-abraded followed by application of Alloy Primer (AL). Heat-polymerized denture resin was applied to the bonding area and polymerized according to the manufacturer's instructions. The halves of all specimens were thermocycled up to 10,000 cycles. Before thermocycling SB and AL showed significantly higher shear bond strengths than SAND, RO, EP for both metals. The shear bond strength of AL group after thermocycling was significantly higher than that of the other groups. PMID:21383520

  2. Airborne thermography or infrared remote sensing.

    PubMed

    Goillot, C C

    1975-01-01

    Airborne thermography is part of the more general remote sensing activity. The instruments suitable for image display are infrared line scanners. A great deal of interest has developed during the past 10 years in airborne thermal remote sensing and many applications are in progress. Infrared scanners on board a satellite are used for observation of cloud cover; airborne infrared scanners are used for forest fire detection, heat budget of soils, detecting insect attack, diseases, air pollution damage, water stress, salinity stress on vegetation, only to cite some main applications relevant to agronomy. Using this system it has become possible to get a 'picture' of our thermal environment.

  3. Airborne Observations of Mixed Phase Clouds in the Southern Rockies

    NASA Astrophysics Data System (ADS)

    Dorsi, S. W.; Avallone, L. M.

    2011-12-01

    Conducted over mountainous regions of Northern Colorado and Southern Wyoming during the 2010-2011 winter, the Colorado Airborne Multi-Phase Cloud Study (CAMPS) was designed to investigate the complex processes within mid-latitude, orographic, mixed-phase clouds. Over the course of 29 flights, instruments aboard the Wyoming King Air research aircraft made observations of cloud properties within diverse wintertime clouds, including many orographic mixed phase clouds. The aircraft carried a suite of in-situ cloud probes, including PMS-FSSP optical particle counter, PMS-2DC and -2DP cloud particle and precipitation imagers, Gerber PVM-100 optical and DMT LWC-100 hotwire liquid content probes, and a Rosemont icing detector. In addition, the research aircraft carried the University of Colorado closed-path laser hygrometer (CLH), which measures total water concentration by sampling the outside airstream, vaporizing condensed water particles in the sample, and observing infrared absorption in water vapor spectrum. The combination of the total water measurement from the CLH and the condensed particle measurements from the optical and hotwire cloud probes provides an opportunity to estimate the relative concentrations of cloud particles by phase. Using this host of cloud probes and the total water measurement, we develop a method for retrieving in-situ cloud water phase and concentration. We present results of this retrieval for several regions of mixed phase cloud, and describe the observed structure and evolution of these clouds.

  4. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from

  5. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery.

    PubMed

    Miller, Arthur; Drake, Pamela L; Hintz, Patrick; Habjan, Matt

    2010-07-01

    An air quality survey was conducted at a precious metals refinery in order to evaluate worker exposures to airborne metals and to provide detailed characterization of the aerosols. Two areas within the refinery were characterized: a furnace room and an electro-refining area. In line with standard survey practices, both personal and area air filter samples were collected on 37-mm filters and analyzed for metals by inductively coupled plasma-atomic emission spectroscopy. In addition to the standard sampling, measurements were conducted using other tools, designed to provide enhanced characterization of the workplace aerosols. The number concentration and number-weighted particle size distribution of airborne particles were measured with a fast mobility particle sizer (FMPS). Custom-designed software was used to correlate particle concentration data with spatial location data to generate contour maps of particle number concentrations in the work areas. Short-term samples were collected in areas of localized high concentrations and analyzed using transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) to determine particle morphology and elemental chemistry. Analysis of filter samples indicated that all of the workers were exposed to levels of silver above the Occupational Safety and Health Administration permissible exposure limit of 0.01 mg m(-3) even though the localized ventilation was functioning. Measurements with the FMPS indicated that particle number concentrations near the furnace increased up to 1000-fold above the baseline during the pouring of molten metal. Spatial mapping revealed localized elevated particle concentrations near the furnaces and plumes of particles rising into the stairwells and traveling to the upper work areas. Results of TEM/EDS analyses confirmed the high number of nanoparticles measured by the FMPS and indicated the aerosols were rich in metals including silver, lead, antimony, selenium, and zinc. Results of

  6. Enhanced Recovery of Airborne T3 Coliphage and Pasteurella pestis Bacteriophage by Means of a Presampling Humidification Technique

    PubMed Central

    Hatch, M. T.; Warren, J. C.

    1969-01-01

    This paper reports a series of experiments in which two methods of collecting airborne bacteriophage particles were compared. A standard aerosol sampler, the AGI-30, was evaluated for its competence in measuring the content of bacteriophage aerosols. It was used alone or with a prewetting or humidification device (humidifier bulb) to recover T3 coliphage and Pasteurella pestis bacteriophage particles from aerosols maintained at 21 C and varied relative humidity. Collection of bacteriophage particles via the humidifier bulb altered both the initial recovery level and the apparent biological decay. Sampling airborne bacteriophage particles by the AGI-30 alone yielded data that apparently underestimated the maximal number of potentially viable particles within the aerosol, sometimes by as much as 3 logs. PMID:4891719

  7. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  8. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  9. Particle Suspension Mechanisms - Supplemental Material

    SciTech Connect

    Dillon, M B

    2011-03-03

    This supplemental material provides a brief introduction to particle suspension mechanisms that cause exfoliated skin cells to become and remain airborne. The material presented here provides additional context to the primary manuscript and serves as background for designing possible future studies to assess the impact of skin cells as a source of infectious aerosols. This introduction is not intended to be comprehensive and interested readers are encouraged to consult the references cited.

  10. Downscaling of Airborne Wind Energy Systems

    NASA Astrophysics Data System (ADS)

    Fechner, Uwe; Schmehl, Roland

    2016-09-01

    Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that cannot be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the higher capacity factor and much lower total mass. This paper investigates the scaling effects of airborne wind energy systems. The energy yield of airborne wind energy systems, that work in pumping mode of operation is at least ten times higher than the energy yield of conventional solar systems. For airborne wind energy systems the yield is defined per square meter wing area. In this paper the dependency of the energy yield on the nominal generator power for systems in the range of 1 kW to 1 MW is investigated. For the onshore location Cabauw, The Netherlands, it is shown, that a generator of just 1.4 kW nominal power and a total system mass of less than 30 kg has the theoretical potential to harvest energy at only twice the price per kWh of large scale airborne wind energy systems. This would make airborne wind energy systems a very attractive choice for small scale remote and mobile applications as soon as the remaining challenges for commercialization are solved.

  11. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  12. Challenges and Opportunities of Airborne Metagenomics

    PubMed Central

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  13. Surface scattering properties estimated from modeling airborne multiple emission angle reflectance data

    NASA Technical Reports Server (NTRS)

    Guinness, Edward A.; Arvidson, Raymond E.; Irons, J. R.; Harding, D. J.

    1991-01-01

    Here, researchers apply the Hapke function to airborne bidirectional reflectance data collected over three terrestrial surfaces. The objectives of the study were to test the range of natural surfaces that the Hapke model fits and to evaluate model parameters in terms of known surface properties. The data used are multispectral and multiple emission angle data collected during the Geologic Remote Sensing Field Experiment (GRSFE) over a mud-cracked playa, an artificially roughened playa, and a basalt cobble strewn playa at Lunar Lake Playa in Nevada. Airborne remote sensing data and associated field measurements were acquired at the same time. The airborne data were acquired by the Advanced Solid State Array Spectroradiometer (ASAS) instrument, a 29-spectral band imaging system. ASAS reflectance data for a cobble-strewn surface and an artificially rough playa surface on Lunar Lake Playa can be explained with the Hanke model. The cobble and rough playa sites are distinguishable by a single scattering albedo, which is controlled by material composition; by the roughness parameter, which appears to be controlled by the surface texture and particle size; and the symmetry factor of the single particle phase function, which is controlled by particle size and shape. A smooth playa surface consisting of compacted, fine-grained particles has reflectance variations that are also distinct from either the cobble site or rough playa site. The smooth playa appears to behave more like a Lambertian surface that cannot be modeled with the Hapke function.

  14. Survival of Airborne MS2 Bacteriophage Generated from Human Saliva, Artificial Saliva, and Cell Culture Medium

    PubMed Central

    Kuehn, Thomas H.; Bekele, Aschalew Z.; Mor, Sunil K.; Verma, Harsha; Goyal, Sagar M.; Raynor, Peter C.; Pui, David Y. H.

    2014-01-01

    Laboratory studies of virus aerosols have been criticized for generating airborne viruses from artificial nebulizer suspensions (e.g., cell culture media), which do not mimic the natural release of viruses (e.g., from human saliva). The objectives of this study were to determine the effect of human saliva on the infectivity and survival of airborne virus and to compare it with those of artificial saliva and cell culture medium. A stock of MS2 bacteriophage was diluted in one of three nebulizer suspensions, aerosolized, size selected (100 to 450 nm) using a differential mobility analyzer, and collected onto gelatin filters. Uranine was used as a particle tracer. The resulting particle size distribution was measured using a scanning mobility particle sizer. The amounts of infectious virus, total virus, and fluorescence in the collected samples were determined by infectivity assays, quantitative reverse transcription-PCR (RT-PCR), and spectrofluorometry, respectively. For all nebulizer suspensions, the virus content generally followed a particle volume distribution rather than a number distribution. The survival of airborne MS2 was independent of particle size but was strongly affected by the type of nebulizer suspension. Human saliva was found to be much less protective than cell culture medium (i.e., 3% tryptic soy broth) and artificial saliva. These results indicate the need for caution when extrapolating laboratory results, which often use artificial nebulizer suspensions. To better assess the risk of airborne transmission of viral diseases in real-life situations, the use of natural suspensions such as saliva or respiratory mucus is recommended. PMID:24561592

  15. Observations of condensation nuclei in the 1987 airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Smith, S. D.; Ferry, G. V.; Loewenstein, M.

    1988-01-01

    The condensation nucleus counter (CNC) flown of the NASA ER-2 in the Airborne Antarctic Ozone Experiment provides a measurement of the number mixing ratio of particles which can be grown by exposure to supersaturated n-butyl alcohol vapor to diameters of a few microns. Such particles are referred to as condensation nuclei (CN). The ER-2 CNC was calibrated with aerosols of known size and concentration and was found to provide an accurate measure of the number concentration of particles larger than about 0.02 micron. Since the number distribution of stratospheric aerosols is usually dominated by particles less than a few tenths of micron in diameter, the upper cutoff of the ER-2 CNC has not been determined experimentally. However, theory suggests that the sampling and counting efficiency should remain near one for particles as large as 1 micron in diameter. Thus, the CN mixing ratio is usually a good measure of the mixing ratio of submicron particles.

  16. Visualizing Airborne and Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Bierwirth, Victoria A.

    2011-01-01

    Remote sensing is a process able to provide information about Earth to better understand Earth's processes and assist in monitoring Earth's resources. The Cloud Absorption Radiometer (CAR) is one remote sensing instrument dedicated to the cause of collecting data on anthropogenic influences on Earth as well as assisting scientists in understanding land-surface and atmospheric interactions. Landsat is a satellite program dedicated to collecting repetitive coverage of the continental Earth surfaces in seven regions of the electromagnetic spectrum. Combining these two aircraft and satellite remote sensing instruments will provide a detailed and comprehensive data collection able to provide influential information and improve predictions of changes in the future. This project acquired, interpreted, and created composite images from satellite data acquired from Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+). Landsat images were processed for areas covered by CAR during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCT AS), Cloud and Land Surface Interaction Campaign (CLASIC), Intercontinental Chemical Transport Experiment-Phase B (INTEXB), and Southern African Regional Science Initiative (SAFARI) 2000 missions. The acquisition of Landsat data will provide supplemental information to assist in visualizing and interpreting airborne and satellite imagery.

  17. Medicinal smoke reduces airborne bacteria.

    PubMed

    Nautiyal, Chandra Shekhar; Chauhan, Puneet Singh; Nene, Yeshwant Laxman

    2007-12-01

    This study represents a comprehensive analysis and scientific validation of our ancient knowledge about the effect of ethnopharmacological aspects of natural products' smoke for therapy and health care on airborne bacterial composition and dynamics, using the Biolog microplate panels and Microlog database. We have observed that 1h treatment of medicinal smoke emanated by burning wood and a mixture of odoriferous and medicinal herbs (havan sámagri=material used in oblation to fire all over India), on aerial bacterial population caused over 94% reduction of bacterial counts by 60 min and the ability of the smoke to purify or disinfect the air and to make the environment cleaner was maintained up to 24h in the closed room. Absence of pathogenic bacteria Corynebacterium urealyticum, Curtobacterium flaccumfaciens, Enterobacter aerogenes (Klebsiella mobilis), Kocuria rosea, Pseudomonas syringae pv. persicae, Staphylococcus lentus, and Xanthomonas campestris pv. tardicrescens in the open room even after 30 days is indicative of the bactericidal potential of the medicinal smoke treatment. We have demonstrated that using medicinal smoke it is possible to completely eliminate diverse plant and human pathogenic bacteria of the air within confined space. PMID:17913417

  18. Pulsed Doppler lidar airborne scanner

    NASA Technical Reports Server (NTRS)

    Dimarzio, C. A.; Mcvicker, D. B.; Morrow, C. E.; Negus, C. C.

    1985-01-01

    This report covers the work accomplished during the reporting period on Pulsed Doppler Lidar Airborne Scanner and describes plans for the next reporting period. The objectives during the current phase of the contract are divided into four phases. Phase 1 includes ground testing of the system and analysis of data from the 1981 Severe Storms Test Flights. Phase 2 consists of preflight preparation and planning for the 1983 flight series. The flight test itself will be performed during Phase 3, and Phase 4 consists of post-flight analysis and operation of the system after that flight test. The range profile from five samples taken during Flight 10, around 1700 Z is given. The lowest curve is taken from data collected upwind of Mt. Shasta at about 10,000 feet of altitude, in a clear atmosphere, where no signals were observed. It thus is a good representation of the noise level as a function of range. The next curve was taken downwind of the mountain, and shows evidence of atmospheric returns. There is some question as to whether the data are valid at all ranges, or some ranges are contaminated by the others.

  19. Performance Basis for Airborne Separation

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    2008-01-01

    Emerging applications of Airborne Separation Assistance System (ASAS) technologies make possible new and powerful methods in Air Traffic Management (ATM) that may significantly improve the system-level performance of operations in the future ATM system. These applications typically involve the aircraft managing certain components of its Four Dimensional (4D) trajectory within the degrees of freedom defined by a set of operational constraints negotiated with the Air Navigation Service Provider. It is hypothesized that reliable individual performance by many aircraft will translate into higher total system-level performance. To actually realize this improvement, the new capabilities must be attracted to high demand and complexity regions where high ATM performance is critical. Operational approval for use in such environments will require participating aircraft to be certified to rigorous and appropriate performance standards. Currently, no formal basis exists for defining these standards. This paper provides a context for defining the performance basis for 4D-ASAS operations. The trajectory constraints to be met by the aircraft are defined, categorized, and assessed for performance requirements. A proposed extension of the existing Required Navigation Performance (RNP) construct into a dynamic standard (Dynamic RNP) is outlined. Sample data is presented from an ongoing high-fidelity batch simulation series that is characterizing the performance of an advanced 4D-ASAS application. Data of this type will contribute to the evaluation and validation of the proposed performance basis.

  20. Copolyimide Surface Modifying Agents for Particle Adhesion Mitigation

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Connell, John W.

    2011-01-01

    Marine biofouling, insect adhesion on aircraft surfaces, microbial contamination of sterile environments, and particle contamination all present unique challenges for which researchers have adopted an array of mitigation strategies. Particulate contamination is of interest to NASA regarding exploration of the Moon, Mars, asteroids, etc.1 Lunar dust compromised seals, clogged filters, abraded visors and space suit surfaces, and was a significant health concern during the Apollo missions.2 Consequently, NASA has instituted a multi-faceted approach to address dust including use of sacrificial surfaces, active mitigation requiring the use of an external energy source, and passive mitigation utilizing materials with an intrinsic resistance to surface contamination. One passive mitigation strategy is modification of a material s surface energy either chemically or topographically. The focus of this paper is the synthesis and evaluation of novel copolyimide materials with surface modifying agents (SMA, oxetanes) enabling controlled variation of surface chemical composition.

  1. Concentration and distribution of platinum group elements (Pt, Pd, Rh) in airborne particulate matter in Frankfurt am Main, Germany.

    PubMed

    Zereini, Fathi; Alt, Friedrich; Messerschmidt, Jürge; von Bohlen, Alex; Liebl, Karlheinz; Püttmann, Wilhelm

    2004-03-15

    The concentrations and distribution of platinum group elements (Pt, Pd, Rh) in airborne particulate matter were studied in a period of one year from August 2001 to July 2002 in urban and in nonurban areas. Airborne dust samples were collected as a total amount (particles with an aerodynamic diameter <22 microm) and classified using an eight-stage Andersen impactor (<10 microm) at three locations with different traffic density roads in the Frankfurt am Main and nonurban areas. Sampling at the three locations was performed simultaneously for total airborne dust and fractionated airborne dust. Pd was determined by total reflection X-ray fluorescence after Hg coprecipitation. Pt and Rh were analyzed by adsorptive striping voltammetry after HPA digestion. The results show that the PGE concentrations in airborne samples depend on the traffic density. The highest PGE concentrations in air were found in the vicinity of major roads with heavy traffic, and the lowest ones were found in the nonurban area. The presence of PGE at the sampling station relatively free of traffic in a nonurban area hints to a transport of some of the emitted PGE from the city to this station by wind. At all three sampling locations, a heterogeneous distribution of the Pd, Pt, and Rh concentrations during the sampling year can be observed. The sum of PGE concentrations in total airborne dust is comparable with the sum of impactor samples. However, the concentration of Pt and Rh in total airborne dust (<22 microm) is on average higher than in impactor samples (<10 microm). On the contrary, Pd concentration is higher in impactor samples in most cases. The airborne PGE distribution is dominated by Pt, followed by Pd and Rh. The impactor samples are dominated by Pd, followed by Pt and Rh. This fact indicates that palladium occurs mainly in relatively fine airborne particles. The main fraction of PGE is found on average in particle sizes between 1.1 and 4.7 microm. Knowledge of the size distribution of

  2. Webinar: Airborne Data Discovery and Analysis with Toolsets for Airborne Data (TAD)

    Atmospheric Science Data Center

    2016-10-18

    Webinar: Airborne Data Discovery and Analysis with Toolsets for Airborne Data (TAD) Wednesday, October 26, 2016 Join us on ... based on high-level parameter groups, mission, platform and flight data ranges are available. Registration is now open.  Access the full ...

  3. Variable-cut particle-size classification by opposing jets.

    PubMed

    Pavlik, R E; Willeke, K

    1978-12-01

    A new technique of aerodynamic particle-size classification has been developed utilizing axisymmetrically-opposed air jets. For a fixed geometry the cut size can be varied from 0.8 to 3.6 micrometer by changing the jet flow rates. Future designs are expected to extend the useful particle-size range. Particles remain airborne after size separation, permitting the use of continuous, automated methods for analyzing the particle concentration and chemical compositon.

  4. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  5. Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy.

    PubMed

    Bertolini, Valentina; Gandolfi, Isabella; Ambrosini, Roberto; Bestetti, Giuseppina; Innocente, Elena; Rampazzo, Giancarlo; Franzetti, Andrea

    2013-07-01

    Despite airborne microorganisms representing a relevant fraction of atmospheric suspended particles, only a small amount of information is currently available on their abundance and diversity and very few studies have investigated the environmental factors influencing the structure of airborne bacterial communities. In this work, we used quantitative PCR and Illumina technology to provide a thorough description of airborne bacterial communities in the urban area of Milan (Italy). Forty samples were collected in 10-day sampling sessions, with one session per season. The mean bacterial abundance was about 10⁴ ribosomal operons per m³ of air and was lower in winter than in the other seasons. Communities were dominated by Actinobacteridae, Clostridiales, Sphingobacteriales and few proteobacterial orders (Burkholderiales, Rhizobiales, Sphingomonadales and Pseudomonadales). Chloroplasts were abundant in all samples. A higher abundance of Actinobacteridae, which are typical soil-inhabiting bacteria, and a lower abundance of chloroplasts in samples collected on cold days were observed. The variation in community composition observed within seasons was comparable to that observed between seasons, thus suggesting that airborne bacterial communities show large temporal variability, even between consecutive days. The structure of airborne bacterial communities therefore suggests that soil and plants are the sources which contribute most to the airborne communities of Milan atmosphere, but the structure of the bacterial community seems to depend mainly on the source of bacteria that predominates in a given period of time.

  6. Exposure to airborne allergens: a review of sampling methods.

    PubMed

    Renström, Anne

    2002-10-01

    A number of methods are used to assess exposure to high-molecular weight allergens. In the occupational setting, airborne dust is often collected on filters using pumps, the filters are eluted and allergen content in the eluate analysed using immunoassays. Collecting inhalable dust using person-carried pumps may be considered the gold standard. Other allergen sampling methods are available. Recently, a method that collects nasally inhaled dust on adhesive surfaces within nasal samplers has been developed. Allergen content can be analysed in eluates using sensitive enzyme immunoassays, or allergen-bearing particles can be immunostained using antibodies, and studied under the microscope. Settling airborne dust can be collected in petri dishes, a cheap and simple method that has been utilised in large-scale exposure studies. Collection of reservoir dust from surfaces using vacuum cleaners with a dust collector is commonly used to measure pet or mite allergens in homes. The sampling methods differ in properties and relevance to personal allergen exposure. Since methods for all steps from sampling to analysis differ between laboratories, determining occupational exposure limits for protein allergens is today unfeasible. A general standardisation of methods is needed.

  7. NASA's Coastal and Ocean Airborne Science Testbed

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Dungan, J. L.; Edwards, M.; Russell, P. B.; Morrow, J. H.; Hooker, S.; Myers, J.; Kudela, R. M.; Dunagan, S.; Soulage, M.; Ellis, T.; Clinton, N. E.; Lobitz, B.; Martin, K.; Zell, P.; Berthold, R. W.; Smith, C.; Andrew, D.; Gore, W.; Torres, J.

    2011-12-01

    The Coastal and Ocean Airborne Science Testbed (COAST) Project is a NASA Earth-science flight mission that will advance coastal ecosystems research by providing a unique airborne payload optimized for remote sensing in the optically complex coastal zone. Teaming NASA Ames scientists and engineers with Biospherical Instruments, Inc. (San Diego) and UC Santa Cruz, the airborne COAST instrument suite combines a customized imaging spectrometer, sunphotometer system, and a new bio-optical radiometer package to obtain ocean/coastal/atmosphere data simultaneously in flight for the first time. The imaging spectrometer (Headwall) is optimized in the blue region of the spectrum to emphasize remote sensing of marine and freshwater ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data will be accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Based on optical detectors called microradiometers, the NASA Ocean Biology and Biogeochemistry Calibration and Validation (cal/val) Office team has deployed advanced commercial off-the-shelf instrumentation that provides in situ measurements of the apparent optical properties at the land/ocean boundary including optically shallow aquatic ecosystems (e.g., lakes, estuaries, coral reefs). A complimentary microradiometer instrument package (Biospherical Instruments, Inc.), optimized for use above water, will be flown for the first time with the airborne instrument suite. Details of the October 2011 COAST airborne mission over Monterey Bay demonstrating this new airborne instrument suite capability will be presented, with associated preliminary data on coastal ocean color products, coincident spatial and temporal data on aerosol optical depth and water vapor column content, as well as derived exact water-leaving radiances.

  8. Cleanroom Design Practices and Their Influence on Particle Counts

    NASA Technical Reports Server (NTRS)

    Hogue, Patrick

    2008-01-01

    This paper will discuss the adverse effects of deficient cleanroom design practices on airborne particle counts and the rather curious correlation of particle count variations with external environmental pressure fluctuations. Data is also presented that demonstrates that APL building 23 cleanrooms ran well below ISO class 7 (FED class 10,000) during New Horizons and STEREO integration.

  9. Source Identification Of Airborne Antimony On The Basis Of The Field Monitoring And The Source Profiling

    NASA Astrophysics Data System (ADS)

    Iijima, A.; Sato, K.; Fujitani, Y.; Fujimori, E.; Tanabe, K.; Ohara, T.; Shimoda, M.; Kozawa, K.; Furuta, N.

    2008-12-01

    The results of the long-term monitoring of airborne particulate matter (APM) in Tokyo indicated that APM have been extremely enriched with antimony (Sb) compared to crustal composition. This observation suggests that the airborne Sb is distinctly derived from human activities. According to the material flow analysis, automotive brake abrasion dust and fly ash from waste incinerator were suspected as the significant Sb sources. To clarify the emission sources of the airborne Sb, elemental composition, particle size distribution, and morphological profiles of dust particles collected from two possible emission sources were characterized and compared to the field observation data. Brake abrasion dust samples were generated by using a brake dynamometer. During the abrasion test, particle size distribution was measured by an aerodynamic particle sizer spectrometer. Concurrently, size- classified dust particles were collected by an Andersen type air sampler. Fly ash samples were collected from several municipal waste incinerators, and the bulk ash samples were re-dispersed into an enclosed chamber. The measurement of particle size distribution and the collection of size-classified ash particles were conducted by the same methodologies as described previously. Field observations of APM were performed at a roadside site and a residential site by using an Andersen type air sampler. Chemical analyses of metallic elements were performed by an inductively coupled plasma atomic emission spectrometry and an inductively coupled plasma mass spectrometr. Morphological profiling of the individual particle was conducted by a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. High concentration of Sb was detected from both of two possible sources. Particularly, Sb concentrations in a brake abrasion dust were extremely high compared to that in an ambient APM, suggesting that airborne Sb observed at the roadside might have been largely derived from

  10. System for particle concentration and detection

    DOEpatents

    Morales, Alfredo M.; Whaley, Josh A.; Zimmerman, Mark D.; Renzi, Ronald F.; Tran, Huu M.; Maurer, Scott M.; Munslow, William D.

    2013-03-19

    A new microfluidic system comprising an automated prototype insulator-based dielectrophoresis (iDEP) triggering microfluidic device for pathogen monitoring that can eventually be run outside the laboratory in a real world environment has been used to demonstrate the feasibility of automated trapping and detection of particles. The system broadly comprised an aerosol collector for collecting air-borne particles, an iDEP chip within which to temporarily trap the collected particles and a laser and fluorescence detector with which to induce a fluorescence signal and detect a change in that signal as particles are trapped within the iDEP chip.

  11. Active airborne contamination control using electrophoresis

    SciTech Connect

    Veatch, B.D.

    1994-06-01

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ``cold,`` or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications.

  12. Airborne laser communication technology and flight test

    NASA Astrophysics Data System (ADS)

    Meng, Li-xin; Zhang, Li-zhong; Li, Xiao-ming; Li, Ying-chao; Jiang, Hui-lin

    2015-11-01

    Reconnaissance aircraft is an important node of the space-air-ground integrated information network, on which equipped with a large number of high-resolution surveillance equipment, and need high speed communications equipment to transmit detected information in real time. Currently RF communication methods cannot meet the needs of communication bandwidth. Wireless laser communication has outstanding advantages high speed, high capacity, security, etc., is an important means to solve the high-speed information transmission of airborne platforms. In this paper, detailed analysis of how the system works, the system components, work processes, link power and the key technologies of airborne laser communication were discussed. On this basis, a prototype airborne laser communications was developed, and high-speed, long-distance communications tests were carried out between the two fixed-wing aircraft, and the airborne precision aiming, atmospheric laser communication impacts on laser communication were tested. The experiments ultimately realize that, the communication distance is 144km, the communication rate is 2.5Gbps. The Airborne laser communication experiments provide technical basis for the application of the conversion equipment.

  13. Airborne and ground based CCN spectral characteristics: Inferences from CAIPEEX - 2011

    NASA Astrophysics Data System (ADS)

    Varghese, Mercy; Prabha, Thara V.; Malap, Neelam; Resmi, E. A.; Murugavel, P.; Safai, P. D.; Axisa, Duncan; Pandithurai, G.; Dani, K.

    2016-01-01

    A first time comprehensive study of Cloud Condensation Nuclei (CCN) and associated spectra from both airborne and ground campaigns of the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) conducted over the rain shadow region of Western Ghats during September and October 2011 is illustrated. Observations of CCN spectra during clean, polluted and highly polluted conditions indicated significant differences between airborne and ground observations. Vertical variation of CCN concentration is illustrated from airborne observations in the clean, polluted and highly polluted conditions with different air mass characteristics. The cloud base CCN number concentrations are three times less than that of the surface measurements at different supersaturations. Diurnal variations of the ground based CCN number concentration and activation diameter showed bimodality. Atmospheric mixing in the wet conditions is mainly through mechanical mixing. The dry conditions favored convective mixing and were dominated by more CCN than the wet conditions. New particle formation and growth events have been observed and were found more often on days with convective mixing. The average critical activation diameter (at 0.6% SS) observed at the ground is approximately 60 nm and availability of a large number of particles below this limit was due to the new particle formation. Observations give convincing evidence that the precipitable water and liquid water path is inversely proportional to surface CCN number concentration, and this relationship is largely dictated by the meteorological conditions.

  14. Characterization of the airborne activity confinement system prefilter material

    SciTech Connect

    Long, T.A.; Monson, P.R.

    1992-05-01

    A general concern with assessing the effects of postulated severe accidents is predicting and preventing the release of radioactive isotopes to the environment at the Savannah River Site (SRS) reactor. Unless the confinement systems are breached in an accident the Airborne Activity Confinement System forces all of the internal air through the filter compartments. Proper modeling of the radioactivity released to the environment requires knowledge of the filtering characteristics of the demisters, the HEPA`s, and the charcoal beds. An investigation of the mass loading characteristics for a range of particle sizes was performed under the direction of Vince Novick of Argonne National Laboratory (ANL) for the Savannah River Technology Center (SRTC) in connection with the restart of the K reactor. Both solid and liquid aerosols were used to challenge sample prefilter and HEPA filters. The results of the ANL investigation are reported in this document.

  15. Characterization of the airborne activity confinement system prefilter material

    SciTech Connect

    Long, T.A.; Monson, P.R.

    1992-05-01

    A general concern with assessing the effects of postulated severe accidents is predicting and preventing the release of radioactive isotopes to the environment at the Savannah River Site (SRS) reactor. Unless the confinement systems are breached in an accident the Airborne Activity Confinement System forces all of the internal air through the filter compartments. Proper modeling of the radioactivity released to the environment requires knowledge of the filtering characteristics of the demisters, the HEPA's, and the charcoal beds. An investigation of the mass loading characteristics for a range of particle sizes was performed under the direction of Vince Novick of Argonne National Laboratory (ANL) for the Savannah River Technology Center (SRTC) in connection with the restart of the K reactor. Both solid and liquid aerosols were used to challenge sample prefilter and HEPA filters. The results of the ANL investigation are reported in this document.

  16. Method for measuring the size distribution of airborne rhinovirus

    SciTech Connect

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  17. Dynamic size spectrometry of airborne microorganisms: Laboratory evaluation and calibration

    NASA Astrophysics Data System (ADS)

    Qian, Yinge; Willeke, Klaus; Ulevicius, Vidmantas; Grinshpun, Sergey A.; Donnelly, Jean

    Bioaerosol samplers need to be calibrated for the microorganisms of interest. The Aerosizer, a relatively new aerodynamic size spectrometer, is shown to be a suitable dynamic instrument for the evaluation and calibration of such samplers in the laboratory, prior to their use in the field. It provides the necessary reference count against which the microbiological response of the sampler can be compared. It measures the health-significant aerodynamic diameters of microorganisms down to 0.5 μm, thus including most of the bacteria, fungi and pollen found in outdoor and indoor air environments. Comparison tests with a laser size spectrometer indicate that the suspension of microorganisms needs to be washed several times before aerosolization to avoid coating of the airborne microorganisms with nutrients and microbial slime from the suspension, and to reduce the residue particles to sizes below the lowest size of the aerosolized microorganisms.

  18. Airborne spectrophotometry of Comet Halley from 5 to 9 microns

    NASA Technical Reports Server (NTRS)

    Campins, H.; Bregman, J. D.; Witteborn, F. C.; Wooden, D. H.; Rank, D. M.; Cohen, M.; Allamandola, Louis J.; Tielens, Alexander G. G. M.

    1986-01-01

    Spectrophotometry from 5 to 9 microns (resolution = 0.02) of comet Halley was obtained from the Kuiper Airborne Observatory on 1985 Dec. 12.1 and 1986 April 8.6 and 10.5 UT. Two spectral features are apparent in all the observations, one from 5.24 to 5.6 microns, and the silicate emission feature which has an onset between 7 and 8 microns. There is no evidence for the 7.5 microns feature observed by the Vega 1 spacecraft; the large difference between the areal coverage viewed from the spacecraft and the airplane may explain the discrepancy. Color temperatures significantly higher than a blackbody indicate that small particles are abundant in the coma. Significant spatial and temporal variations in the spectrum show trends similar to those observed from the ground.

  19. Airborne fungal and bacterial components in PM1 dust from biofuel plants.

    PubMed

    Madsen, Anne Mette; Schlünssen, Vivi; Olsen, Tina; Sigsgaard, Torben; Avci, Hediye

    2009-10-01

    Fungi grown in pure cultures produce DNA- or RNA-containing particles smaller than spore size (<1.5 microm). High exposures to fungi and bacteria are observed at biofuel plants. Airborne cultivable bacteria are often described to be present in clusters or associated with larger particles with an aerodynamic diameter (d(ae)) of 2-8 microm. In this study, we investigate whether airborne fungal components smaller than spore size are present in bioaerosols in working areas at biofuel plants. Furthermore, we measure the exposure to bacteria and fungal components in airborne particulate matter (PM) with a D(50) of 1 microm (called PM(1) dust). PM(1) was sampled using Triplex cyclones at a working area at 14 Danish biofuel plants. Millipore cassettes were used to sample 'total dust'. The PM(1) particles (29 samples) were analysed for content of 11 different components and the total dust was analysed for cultivable fungi, N-acetyl-beta-D-glucosaminidase (NAGase), and (1 --> 3)-beta-D-glucans. In the 29 PM(1) samples, cultivable fungi were found in six samples and with a median concentration below detection level. Using microscopy, fungal spores were identified in 22 samples. The components NAGase and (1 --> 3)-beta-D-glucans, which are mainly associated with fungi, were present in all PM(1) samples. Thermophilic actinomycetes were present in 23 of the 29 PM(1) samples [average = 739 colony-forming units (CFU) m(-3)]. Cultivable and 'total bacteria' were found in average concentrations of, respectively, 249 CFU m(-3) and 1.8 x 10(5) m(-3). DNA- and RNA-containing particles of different lengths were counted by microscopy and revealed a high concentration of particles with a length of 0.5-1.5 microm and only few particles >1.5 microm. The number of cultivable fungi and beta-glucan in the total dust correlated significantly with the number of DNA/RNA-containing particles with lengths of between 1.0 and 1.5 microm, with DNA/RNA-containing particles >1.5 microm, and with other

  20. Lunar Airborne Dust Toxicity Hazard Assessments (Invited)

    NASA Astrophysics Data System (ADS)

    Cooper, B. L.; McKay, D. S.; Taylor, L. A.; Wallace, W. T.; James, J.; Riofrio, L.; Gonzalez, C. P.

    2009-12-01

    The Lunar Airborne Dust Toxicity Assessment Group (LADTAG) is developing data to set the permissible limits for human exposure to lunar dust. This standard will guide the design of airlocks and ports for EVA, as well as the requirements for filtering and monitoring the atmosphere in habitable vehicles, rovers and other modules. LADTAG’s recommendation for permissible exposure limits will be delivered to the Constellation Program in late 2010. The current worst-case exposure limit of 0.05 mg/m3, estimated by LADTAG in 2006, reflects the concern that lunar dust may be as toxic as quartz dust. Freshly-ground quartz is known to be more toxic than un-ground quartz dust. Our research has shown that the surfaces of lunar soil grains can be more readily activated by grinding than quartz. Activation was measured by the amount of free radicals generated—activated simulants generate Reactive Oxygen Species (ROS) i.e., production of hydroxyl free radicals. Of the various influences in the lunar environment, micrometeorite bombardment probably creates the most long-lasting reactivity on the surfaces of grains, although solar wind impingement and short-wavelength UV radiation also contribute. The comminution process creates fractured surfaces with unsatisfied bonds. When these grains are inhaled and carried into the lungs, they will react with lung surfactant and cells, potentially causing tissue damage and disease. Tests on lunar simulants have shown that dissolution and leaching of metals can occur when the grains are exposed to water—the primary component of lung fluid. However, simulants may behave differently than actual lunar soils. Rodent toxicity testing will be done using the respirable fraction of actual lunar soils (particles with physical size of less than 2.5 micrometers). We are currently separating the fine material from the coarser material that comprises >95% of the mass of each soil sample. Dry sieving is not practical in this size range, so a new system

  1. Airborne Microalgae: Insights, Opportunities, and Challenges.

    PubMed

    Tesson, Sylvie V M; Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-04-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  2. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  3. Airborne pollen trends in the Iberian Peninsula.

    PubMed

    Galán, C; Alcázar, P; Oteros, J; García-Mozo, H; Aira, M J; Belmonte, J; Diaz de la Guardia, C; Fernández-González, D; Gutierrez-Bustillo, M; Moreno-Grau, S; Pérez-Badía, R; Rodríguez-Rajo, J; Ruiz-Valenzuela, L; Tormo, R; Trigo, M M; Domínguez-Vilches, E

    2016-04-15

    Airborne pollen monitoring is an effective tool for studying the reproductive phenology of anemophilous plants, an important bioindicator of plant behavior. Recent decades have revealed a trend towards rising airborne pollen concentrations in Europe, attributing these trends to an increase in anthropogenic CO2 emissions and temperature. However, the lack of water availability in southern Europe may prompt a trend towards lower flowering intensity, especially in herbaceous plants. Here we show variations in flowering intensity by analyzing the Annual Pollen Index (API) of 12 anemophilous taxa across 12 locations in the Iberian Peninsula, over the last two decades, and detecting the influence of the North Atlantic Oscillation (NAO). Results revealed differences in the distribution and flowering intensity of anemophilous species. A negative correlation was observed between airborne pollen concentrations and winter averages of the NAO index. This study confirms that changes in rainfall in the Mediterranean region, attributed to climate change, have an important impact on the phenology of plants.

  4. Airborne Microalgae: Insights, Opportunities, and Challenges

    PubMed Central

    Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-01-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  5. Urban greenness influences airborne bacterial community composition.

    PubMed

    Mhuireach, Gwynne; Johnson, Bart R; Altrichter, Adam E; Ladau, Joshua; Meadow, James F; Pollard, Katherine S; Green, Jessica L

    2016-11-15

    Urban green space provides health benefits for city dwellers, and new evidence suggests that microorganisms associated with soil and vegetation could play a role. While airborne microorganisms are ubiquitous in urban areas, the influence of nearby vegetation on airborne microbial communities remains poorly understood. We examined airborne microbial communities in parks and parking lots in Eugene, Oregon, using high-throughput sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq platform to identify bacterial taxa, and GIS to measure vegetation cover in buffer zones of different diameters. Our goal was to explore variation among highly vegetated (parks) versus non-vegetated (parking lots) urban environments. A secondary objective was to evaluate passive versus active collection methods for outdoor airborne microbial sampling. Airborne bacterial communities from five parks were different from those of five parking lots (p=0.023), although alpha diversity was similar. Direct gradient analysis showed that the proportion of vegetated area within a 50m radius of the sampling station explained 15% of the variation in bacterial community composition. A number of key taxa, including several Acidobacteriaceae were substantially more abundant in parks, while parking lots had higher relative abundance of Acetobacteraceae. Parks had greater beta diversity than parking lots, i.e. individual parks were characterized by unique bacterial signatures, whereas parking lot communities tended to be similar to each other. Although parks and parking lots were selected to form pairs of nearby sites, spatial proximity did not appear to affect compositional similarity. Our results also showed that passive and active collection methods gave comparable results, indicating the "settling dish" method is effective for outdoor airborne sampling. This work sets a foundation for understanding how urban vegetation may impact microbial communities, with potential implications for designing

  6. Urban greenness influences airborne bacterial community composition.

    PubMed

    Mhuireach, Gwynne; Johnson, Bart R; Altrichter, Adam E; Ladau, Joshua; Meadow, James F; Pollard, Katherine S; Green, Jessica L

    2016-11-15

    Urban green space provides health benefits for city dwellers, and new evidence suggests that microorganisms associated with soil and vegetation could play a role. While airborne microorganisms are ubiquitous in urban areas, the influence of nearby vegetation on airborne microbial communities remains poorly understood. We examined airborne microbial communities in parks and parking lots in Eugene, Oregon, using high-throughput sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq platform to identify bacterial taxa, and GIS to measure vegetation cover in buffer zones of different diameters. Our goal was to explore variation among highly vegetated (parks) versus non-vegetated (parking lots) urban environments. A secondary objective was to evaluate passive versus active collection methods for outdoor airborne microbial sampling. Airborne bacterial communities from five parks were different from those of five parking lots (p=0.023), although alpha diversity was similar. Direct gradient analysis showed that the proportion of vegetated area within a 50m radius of the sampling station explained 15% of the variation in bacterial community composition. A number of key taxa, including several Acidobacteriaceae were substantially more abundant in parks, while parking lots had higher relative abundance of Acetobacteraceae. Parks had greater beta diversity than parking lots, i.e. individual parks were characterized by unique bacterial signatures, whereas parking lot communities tended to be similar to each other. Although parks and parking lots were selected to form pairs of nearby sites, spatial proximity did not appear to affect compositional similarity. Our results also showed that passive and active collection methods gave comparable results, indicating the "settling dish" method is effective for outdoor airborne sampling. This work sets a foundation for understanding how urban vegetation may impact microbial communities, with potential implications for designing

  7. Predictors of airborne endotoxin concentrations in inner city homes.

    PubMed

    Mazique, D; Diette, G B; Breysse, P N; Matsui, E C; McCormack, M C; Curtin-Brosnan, J; Williams, D L; Peng, R D; Hansel, N N

    2011-05-01

    Few studies have assessed in home factors which contribute to airborne endotoxin concentrations. In 85 inner city Baltimore homes, we found no significant correlation between settled dust and airborne endotoxin concentrations. Certain household activities and characteristics, including frequency of dusting, air conditioner use and type of flooring, explained 36-42% of the variability of airborne concentrations. Measurements of both airborne and settled dust endotoxin concentrations may be needed to fully characterize domestic exposure in epidemiologic investigations. PMID:21429483

  8. Sandia Multispectral Airborne Lidar for UAV Deployment

    SciTech Connect

    Daniels, J.W.; Hargis,Jr. P.J.; Henson, T.D.; Jordan, J.D.; Lang, A.R.; Schmitt, R.L.

    1998-10-23

    Sandia National Laboratories has initiated the development of an airborne system for W laser remote sensing measurements. System applications include the detection of effluents associated with the proliferation of weapons of mass destruction and the detection of biological weapon aerosols. This paper discusses the status of the conceptual design development and plans for both the airborne payload (pointing and tracking, laser transmitter, and telescope receiver) and the Altus unmanned aerospace vehicle platform. Hardware design constraints necessary to maintain system weight, power, and volume limitations of the flight platform are identified.

  9. Detection and enumeration of airborne biocontaminants.

    PubMed

    Stetzenbach, Linda D; Buttner, Mark P; Cruz, Patricia

    2004-06-01

    The sampling and analysis of airborne microorganisms has received attention in recent years owing to concerns with mold contamination in indoor environments and the threat of bioterrorism. Traditionally, the detection and enumeration of airborne microorganisms has been conducted using light microscopy and/or culture-based methods; however, these analyses are time-consuming, laborious, subjective and lack sensitivity and specificity. The use of molecular methods, such as quantitative polymerase chain reaction amplification, can enhance monitoring strategies by increasing sensitivity and specificity, while decreasing the time required for analysis.

  10. National center for airborne laser mapping proposed

    NASA Astrophysics Data System (ADS)

    Carter, Bill; Shrestha, Ramesh L.; Dietrich, Bill

    Researchers from universities, U.S. government agencies, U.S. national laboratories, and private industry met in the spring to learn about the current capabilities of Airborne Laser Swath Mapping (ALSM), share their experiences in using the technology for a wide variety of research applications, outline research that would be made possible by research-grade ALSM data, and discuss the proposed operation and management of the brand new National Center for Airborne Laser Mapping (NCALM).The workshop successfully identified a community of researchers with common interests in the advancement and use of ALSM—a community which strongly supports the immediate establishment of the NCALM.

  11. An electrostatic precipitator for the study of airborne radioactivity.

    PubMed

    Andrews, L L; Schery, S D; Wilkening, M H

    1984-04-01

    An system has been developed to measure airborne radioactivity using electrostatic precipitation for collection and alpha-particle spectroscopy for detection. Features include good energy resolution (e.g. 170 and 300 KeV for full-width half maximum and full-width tenth maximum for 7.7-MeV alpha particles using a 7-cm2 area detector; and 52- and 122-KeV, respectively, using 1.2-cm2 area detector) and versatile computer control for collection, counting and data reduction. Aerosols bearing the radioactive atoms are deposited on a foil tape by electrostatic precipitation for a predetermined time after which the foil is moved under a solid-state detector to count the alpha-particle emissions. Activities are determined at the same frequency as samples are collected. Helium gas can be introduced at the detector to reduce energy loss and improve resolution. Although in principle certain aerosol sizes could be difficult to collect, in practice no difficulties were observed for typical environmental conditions, provided sufficiently low air-sampling rates were used. One important application is the measurement of 222Rn daughters. The sensitivity is such that detection of individual daughter concentrations less than 0.1 pCi/l. with only a 10% counting error is possible.

  12. Airborne Observations of Ammonia Emissions from North Carolina Swine Facilities

    NASA Astrophysics Data System (ADS)

    Nowak, J. B.; Neuman, J. A.; Liao, J.; Welti, A.; Middlebrook, A. M.; McKeen, S. A.; Trainer, M.; Parrish, D. D.

    2013-12-01

    Ammonia (NH3) is the dominant gas-phase base in the troposphere. As a consequence, NH3 abundance influences particle formation and composition. Anthropogenic emissions of NH3 can react with sulfuric acid (H2SO4) and nitric acid (HNO3), photochemical oxidation products of sulfur dioxide (SO2) and nitrogen oxides (NOx (NO + NO2)), to form ammoniated particles that typically account for half or more of measured PM2.5 mass in the Eastern US. NH3 emissions are predominantly from agricultural sources, primarily livestock animal waste and crop fertilization. Accurate NH3 emissions estimates from these sources are necessary for developing effective particle control strategies. Swine facilities in North Carolina are one of the largest source of NH3 emissions in the Southeastern US. Airborne measurements of NH3 and particulate ammonium (NH4+) made aboard the NOAA WP-3D aircraft as part of the recent 2013 SENEX field campaign are used to quantify NH3 emissions from North Carolina swine facilities. The observed NH3 emissions are compared to swine facility emissions estimates from current emissions inventories. In addition, the NH3 emissions from swine facilities are placed in the broader context of NH3 sources through comparison to recent emissions observations from dairy facilities in California. The July 10 SENEX WP-3D flight track colored and sized by observed NH3 mixing ratios.

  13. Statistical analysis of the size and elemental composition of airborne coal mine dust

    SciTech Connect

    Lee, C.

    1986-01-01

    The specific purpose of this thesis is to analyze two of the basic characteristics of airborne coal mine dust, size and elemental composition, and to study their ramifications on dust control measures and medical studies of coal workers' pneumoconiosis. A dust-sampling strategy using multi-stage cascade impactors is established for characterization purposes. Analysis of the size data based upon the aerodynamic diameter is performed to examine the two assumptions implicitly made in the current practice for coal mine dust size presentation; lognormality and unimodality in the mass size distribution. The bimodal lognormal model is able to identify the major modal patterns observed in the empirical models. Association of the elemental composition of coal with the rank is tested to be significant. Size dependency and locational variation of elemental composition of airborne coal mine dust are significant. The size dependency is more significant in the immediate return of the continuous miner operation and the elements showing significant locational variability are found to be enriched near the roof bolter operation. The coal seam is the main source of major elements in airborne coal mine dust, while no consistent relationship exists for the trace elements. The significance of the dust in the intake air as a potential source for the elements in airborne coal mine dust is shown. Dust reentrained along the shuttle car route is also found to be a significant dust source. Dust particles in the respirable size range are likely to transport through the working area.

  14. Potential sources of airborne Alternaria spp. spores in South-west Spain.

    PubMed

    Fernández-Rodríguez, Santiago; Sadyś, Magdalena; Smith, Matt; Tormo-Molina, Rafael; Skjøth, Carsten Ambelas; Maya-Manzano, José María; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Ángela

    2015-11-15

    Fungi belonging to the genus of Alternaria are recognised as being significant plant pathogens, and Alternaria allergens are one of the most important causes of respiratory allergic diseases in Europe. This study aims to provide a detailed and original analysis of Alternaria transport dynamics in Badajoz, SW Spain. This was achieved by examining daily mean and hourly observations of airborne Alternaria spores recorded during days with high airborne concentrations of Alternaria spores (>100 s m(-3)) from 2009 to 2011, as well as four inventory maps of major Alternaria habitats, the overall synoptic weather situation and analysis of air mass transport using Hybrid Single Particle Lagrangian Integrated Trajectory model and geographic information systems. Land use calculated within a radius of 100 km from Badajoz shows that crops and grasslands are potentially the most important local sources of airborne Alternaria spores recorded at the site. The results of back trajectory analysis show that, during the examined four episodes, the two main directions where Alternaria source areas were located were: (1) SW-W; and (2) NW-NE. Regional scale and long distance transport could therefore supplement the airborne catch recorded at Badajoz with Alternaria conidia originating from sources such as crops and orchards situated in other parts of the Iberian Peninsula. PMID:26156135

  15. Potential sources of airborne Alternaria spp. spores in South-west Spain.

    PubMed

    Fernández-Rodríguez, Santiago; Sadyś, Magdalena; Smith, Matt; Tormo-Molina, Rafael; Skjøth, Carsten Ambelas; Maya-Manzano, José María; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Ángela

    2015-11-15

    Fungi belonging to the genus of Alternaria are recognised as being significant plant pathogens, and Alternaria allergens are one of the most important causes of respiratory allergic diseases in Europe. This study aims to provide a detailed and original analysis of Alternaria transport dynamics in Badajoz, SW Spain. This was achieved by examining daily mean and hourly observations of airborne Alternaria spores recorded during days with high airborne concentrations of Alternaria spores (>100 s m(-3)) from 2009 to 2011, as well as four inventory maps of major Alternaria habitats, the overall synoptic weather situation and analysis of air mass transport using Hybrid Single Particle Lagrangian Integrated Trajectory model and geographic information systems. Land use calculated within a radius of 100 km from Badajoz shows that crops and grasslands are potentially the most important local sources of airborne Alternaria spores recorded at the site. The results of back trajectory analysis show that, during the examined four episodes, the two main directions where Alternaria source areas were located were: (1) SW-W; and (2) NW-NE. Regional scale and long distance transport could therefore supplement the airborne catch recorded at Badajoz with Alternaria conidia originating from sources such as crops and orchards situated in other parts of the Iberian Peninsula.

  16. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  17. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  18. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  19. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  20. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  1. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  2. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  3. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  4. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  5. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  6. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  7. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  8. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  9. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  10. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  11. Aerosol Remote Sensing Applications for Airborne Multiangle, Multispectral Shortwave Radiometers

    NASA Astrophysics Data System (ADS)

    von Bismarck, Jonas; Ruhtz, Thomas; Starace, Marco; Hollstein, André; Preusker, René; Fischer, Jürgen

    2010-05-01

    Aerosol particles have an important impact on the surface net radiation budget by direct scattering and absorption (direct aerosol effect) of solar radiation, and also by influencing cloud formation processes (semi-direct and indirect aerosol effects). To study the former, a number of multispectral sky- and sunphotometers have been developed at the Institute for Space Sciences of the Free University of Berlin in the past two decades. The latest operational developments were the multispectral aureole- and sunphotometer FUBISS-ASA2, the zenith radiometer FUBISS-ZENITH, and the nadir polarimeter AMSSP-EM, all designed for a flexible use on moving platforms like aircraft or ships. Currently the multiangle, multispectral radiometer URMS/AMSSP (Universal Radiation Measurement System/ Airborne Multispectral Sunphotometer and Polarimeter) is under construction for a Wing-Pod of the high altitude research aircraft HALO operated by DLR. The system is expected to have its first mission on HALO in 2011. The algorithms for the retrieval of aerosol and trace gas properties from the recorded multidirectional, multispectral radiation measurements allow more than deriving standard products, as for instance the aerosol optical depth and the Angstrom exponent. The radiation measured in the solar aureole contains information about the aerosol phasefunction and therefore allows conclusions about the particle type. Furthermore, airborne instrument operation allows vertically resolved measurements. An inversion algorithm, based on radiative transfer simulations and additionally including measured vertical zenith-radiance profiles, allows conclusions about the aerosol single scattering albedo and the relative soot fraction in aerosol layers. Ozone column retrieval is performed evaluating measurements from pixels in the Chappuis absorption band. A retrieval algorithm to derive the water-vapor column from the sunphotometer measurements is currently under development. Of the various airborne

  12. The Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev Crater and Calibration Report

    NASA Technical Reports Server (NTRS)

    Gellert, R.; Rieder, R.; Brueckner, J.; Clark, B.; Dreibus, G.; Klingelhoefer, G.; Lugmair, G.; Ming, D.; Waenke, H.; Yen, A.; Zipfel, J.; Squyres, S.

    2006-01-01

    The chemical composition of rocks and soils on Mars analyzed during the Mars Exploration Rover Spirit Mission was determined by X-ray analyses with the Alpha Particle X-Ray Spectrometer (APXS). Details of the data analysis method and the instrument calibration are presented. Measurements performed on Mars to address geometry effects and background contributions are shown. Cross calibration measurements among several instrument sensors and sources are discussed. An unintentional swap of the two flight instruments is evaluated. New concentration data acquired during the first 470 sols of rover Spirit in Gusev Crater are presented. There are two geological regions, the Gusev plains and the Columbia Hills. The plains contain soils that are very similar to previous landing sites on Mars. A meteoritic component in the soil is identified. Rocks in the plains revealed thin weathering rinds. The underlying abraded rock was classified as primitive basalt. One of these rocks contained significant Br that is probably associated with vein-filling material of different composition. One of the trenches showed large subsurface enrichments of Mg, S, and Br. Disturbed soils and rocks in the Columbia Hills revealed different elemental compositions. These rocks are significantly weathered and enriched in mobile elements, such as P, S, Cl, or Br. Even abraded rock surfaces have high Br concentrations. Thus, in contrast to the rocks and soils in the Gusev Plains, the Columbia Hills material shows more significant evidence of ancient aqueous alteration.

  13. Particle-Charge Spectrometer

    NASA Technical Reports Server (NTRS)

    Fuerstenau, Stephen; Wilson, Gregory R.

    2008-01-01

    An instrument for rapidly measuring the electric charges and sizes (from approximately 1 to approximately 100 micrometers) of airborne particles is undergoing development. Conceived for monitoring atmospheric dust particles on Mars, instruments like this one could also be used on Earth to monitor natural and artificial aerosols in diverse indoor and outdoor settings for example, volcanic regions, clean rooms, powder-processing machinery, and spray-coating facilities. The instrument incorporates a commercially available, low-noise, ultrasensitive charge-sensing preamplifier circuit. The input terminal of this circuit--the gate of a field-effect transistor--is connected to a Faraday-cage cylindrical electrode. The charged particles of interest are suspended in air or other suitable gas that is made to flow along the axis of the cylindrical electrode without touching the electrode. The flow can be channeled and generated by any of several alternative means; in the prototype of this instrument, the gas is drawn along a glass capillary tube (see upper part of figure) coaxial with the electrode. The size of a particle affects its rate of acceleration in the flow and thus affects the timing and shape of the corresponding signal peak generated by the charge-sensing amplifier. The charge affects the magnitude (and thus also the shape) of the signal peak. Thus, the signal peak (see figure) conveys information on both the size and electric charge of a sensed particle. In experiments thus far, the instrument has been found to be capable of measuring individual aerosol particle charges of magnitude greater than 350 e (where e is the fundamental unit of electric charge) with a precision of +/- 150 e. The instrument can sample particles at a rate as high as several thousand per second.

  14. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  15. Simulation system of airborne FLIR searcher

    NASA Astrophysics Data System (ADS)

    Sun, Kefeng; Li, Yu; Gao, Jiaobo; Wang, Jun; Wang, Jilong; Xie, Junhu; Ding, Na; Sun, Dandan

    2014-11-01

    Airborne Forward looking infra-red (FLIR) searcher simulation system can provide multi-mode simulated test environment that almost actual field environment, and can simulate integrated performance and external interface of airborne FLIR simulation system. Furthermore, the airborne FLIR searcher simulation system can support the algorithm optimization of image processing, and support the test and evaluation of electro-optical system, and also support the line test of software and evaluate the performance of the avionics system. The detailed design structure and information cross-linking relationship of each component are given in this paper. The simulation system is composed of the simulation center, the FLIR actuator, the FLIR emulator, and the display control terminal. The simulation center can generate the simulated target and aircraft flying data in the operation state of the airborne FLIR Searcher. The FLIR actuator can provide simulation scene. It can generate the infrared target and landform based scanning scene, response to the commands from simulation center and the FLIR actuator and operation control unit. The infrared image generated by the FLIR actuator can be processed by the FLIR emulator using PowerPC hardware framework and processing software based on VxWorks system. It can detect multi-target and output the DVI video and the multi-target detection information which corresponds to the working state of the FLIR searcher. Display control terminal can display the multi-target detection information in two-dimension situation format, and realize human-computer interaction function.

  16. Toolsets for Airborne Data Beta Release

    Atmospheric Science Data Center

    2014-09-17

    ... for Airborne Data (TAD), developed at the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center (LaRC) to promote ... and Houston, and DC3 will be added shortly. Early next year we plan to add DISCOVER-AQ Colorado and SEAC4RS to the TAD database. We ...

  17. A Technique for Airborne Aerobiological Sampling

    ERIC Educational Resources Information Center

    Mill, R. A.; And Others

    1972-01-01

    Report of a study of airborne micro-organisms collected over the Oklahoma City Metropolitan area and immediate environments, to investigate the possibility that a cloud of such organisms might account for the prevalence of some respiratory diseases in and around urban areas. (LK)

  18. Airborne Satcom Terminal Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Hoder, Doug; Zakrajsek, Robert

    2002-01-01

    NASA Glenn has constructed an airborne Ku-band satellite terminal, which provides wideband full-duplex ground-aircraft communications. The terminal makes use of novel electronically-steered phased array antennas and provides IP connectivity to and from the ground. The satcom terminal communications equipment may be easily changed whenever a new configuration is required, enhancing the terminal's versatility.

  19. Infrared airborne spectroradiometer survey results in the western Nevada area

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1982-01-01

    The Mark II airborne spectroradiometer system was flown over several geologic test sites in western Nevada. The infrared mineral absorption bands were observed and recorded for the first time using an airborne system with high spectral resolution in the 2.0 to 2.5 micron region. The data show that the hydrothermal alteration zone minerals, carbonates, and other minerals are clearly visible in the airborne survey mode. The finer spectral features that distinguish the various minerals with infrared bands are also clearly visible in the airborne survey data. Using specialized computer pattern recognition methods, it is possible to identify mineralogy and map alteration zones and lithologies by airborne spectroradiometer survey techniques.

  20. CALIOPE airborne CO{sub 2} DIAL (CACDI) system design

    SciTech Connect

    Mietz, D.; Archuleta, B.; Archuleta, J.

    1997-09-01

    Los Alamos National Laboratory is currently developing an airborne CO{sub 2} Differential Absorption Lidar (DIAL) system based on second generation technology demonstrated last summer at NTS. The CALIOPE Airborne CO{sub 2} DIAL (CACDI) system requirements have been compiled based on the mission objectives and SONDIAL model trade studies. Subsystem designs have been developed based on flow down from these system requirements, as well as experience gained from second generation ground tests and N-ABLE (Non-proliferation AirBorne Lidar Experiments) airborne experiments. This paper presents the CACDI mission objectives, system requirements, the current subsystem design, and provides an overview of the airborne experimental plan.

  1. Regional airborne flux measurements in Europe

    NASA Astrophysics Data System (ADS)

    Gioli, B.; Miglietta, F.; Vaccari, F. P.; Zaldei, A.; Hutjes, R. W. A.

    2003-04-01

    The problem of identifying the spatial and temporal distribution of sources and sinks of atmospheric CO2 is the subject of considerable scientific and political debate. Even if it is now possible to estimate within reasonable accuracy the sink strength of European forests at the local scale, difficulties still exist in determining the partitioning of the sinks at the global and regional scales. The aim of the EU-project RECAB (Regional Assessment of the Carbon Balance in Europe) that is coordinated by Alterra, Wageningen (NL), is to bridge the gap between local scale flux measurements and continental scale inversion models by a generic modelling effort and measurement program, focussing on a limited number of selected regions in Europe for which previous measurements exists. This required the establishment of a European facility for airborne measurement of surface fluxes of CO2 at very low altitude, and a research aircraft capable of performing airborne eddy covariance measurements has been acquired by this project and used on several occasions at the different RECAB sites. The aircraft is the italian Sky Arrows ERA (Environmental Research Aircraft) equipped with the NOAA/ARA Mobile Flux Platform (MFP), and a commercial open-path infrared gas analyser. Airborne eddy covariance measurements were made from June 2001 onwards in Southern Spain near Valencia (June and December 2001), in Central Germany near Jena (July 2001), in Sweden near Uppsala (August 2001), in The Netherlands near Wageningen (January and July 2002) and in Italy near Rome (June 2002). Flux towers were present at each site to provide a validation of airborne eddy covariance measurements. This contribution reports some validation results based on the comparison between airborne and ground based flux measurements and some regional scale results for different locations and different seasons, in a wide range of meteorological and ecological settings.

  2. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  3. Direct analysis of airborne mite allergen (Der f1) in the residential atmosphere by chemifluorescent immunoassay using bioaerosol sampler.

    PubMed

    Miyajima, Kumiko; Suzuki, Yurika; Miki, Daisuke; Arai, Moeka; Arakawa, Takahiro; Shimomura, Hiroji; Shiba, Kiyoko; Mitsubayashi, Kohji

    2014-06-01

    Dermatophagoides farinae allergen (Der f1) is one of the most important indoor allergens associated with allergic diseases in humans. Mite allergen Der f1 is usually associated with particles of high molecular weight; thus, Der f1 is generally present in settled dust. However, a small quantity of Der f1 can be aerosolized and become an airborne component. Until now, a reliable method of detecting airborne Der f1 has not been developed. The aim of this study was to develop a fiber-optic chemifluorescent immunoassay for the detection of airborne Der f1. In this method, the Der f1 concentration measured on the basis of the intensity of fluorescence amplified by an enzymatic reaction between the labeled enzyme by a detection antibody and a fluorescent substrate. The measured Der f1 concentration was in the range from 0.49 to 250 ng/ml and a similar range was found by enzyme-linked immunosorbent assay (ELISA). This method was proved to be highly sensitive to Der f1 compared with other airborne allergens. For the implementation of airborne allergen measurement in a residential environment, a bioaerosol sampler was constructed. The airborne allergen generated by a nebulizer was conveyed to a newly sampler we developed for collecting airborne Der f1. The sampler was composed of polymethyl methacrylate (PMMA) cells for gas/liquid phases and some porous membranes which were sandwiched in between the two phases. Der f1 in air was collected by the sampler and measured using the fiber-optic immunoassay system. The concentration of Der f1 in aerosolized standards was in the range from 0.125 to 2.0 mg/m(3) and the collection rate of the device was approximately 0.2%.

  4. The Beginnings of Airborne Astronomy, 1920 - 1930: an Historical Narrative

    NASA Technical Reports Server (NTRS)

    Craine, E. R.

    1984-01-01

    The emergence of airborne astronomy in the early twentieth century is recounted. The aerial expedition to observe the solar eclipse on September 10, 1923, is described. Observation of the total solar eclipse of January 24, 1925, is discussed. The Honey Lake aerial expedition to study the solar eclipse of April 28, 1930, is also described. Four major accomplishments in airborne astronomy during the period 1920 to 1930 are listed. Airborne expeditions were undertaken at every logical opportunity, starting a continuous sequence of airborne astronomical expeditions which was to remain unbroken, except by World War II, to the present day. Although the scientific returns of the first ten years were modest, they did exist. Interest in, and support for, airborne astronomy was generated not only among astronomers but also among the public. Albert Stevens, arguably the true father of airborne astronomy, was to become interested in applying his considerable skill and experience to the airborne acquisition of astronomical data.

  5. Role of Relative Humidity in the Survival of Airborne Mycoplasma pneumoniae

    PubMed Central

    Wright, D. N.; Bailey, G. D.; Hatch, M. T.

    1968-01-01

    Aerosols of Mycoplasma pneumoniae were studied at several relative humidities at a controlled temperature of 27 C. Production of an experimentally reproducible aerosol required preatomization of the organism in its suspending fluid and was dependent on the type of fluid used in atomization as well as on the procedures used to produce an aerosol. The airborne particles studied were within the range of epidemiological significance, with most being 2 μm or less in diameter. Survival of the airborne mycoplasma in these particles was found to be best at very low and at very high humidities. The most lethal relative humidity levels were at 60 and 80%, at which levels fewer than 1% of the organisms survived over a 4-hr observation period. However, survival of the organism at most relative humidity levels was such that long-term infectivity could be expected from aerosols of M. pneumoniae. Because of the extreme sensitivity of M. pneumoniae at critical humidity levels, control of the airborne transmission of these organisms may be possible in selected spaces. PMID:5686020

  6. Manganese survey in airborne particulate matter from a mining area at Hidalgo State, Mexico

    NASA Astrophysics Data System (ADS)

    Aldape, F.; Hernández-Méndez, B.; Flores M, J.

    1999-04-01

    A manganese (Mn) survey in airborne particulate matter from a mining area located in Hidalgo State (Mexico) was performed using PIXE. Deposits of Mn ore, first discovered in 1959 and under continuous exploitation since 1962, are nowadays considered as one of the most important of their kind in the American Continent. Afterwards, local inhabitants have been under continuous overexposure to dusts and water highly enriched with Mn. Since no information was available about Mn content in airborne particulate matter in that area, especially in the respirable fraction PM 2.5, airborne particles were collected simultaneously at two sites located on opposite sides of the rim of the mining valley, and along the line of prevailing local winds. The sample collection was performed on eight alternate days, taking two samples per day (day-time and night-time) at each sampling site, using Stacked Filter Units (SFUs) of the Davis design to separate particles into fine (PM 2.5) and coarse (PM 15) sizes. The samples were PIXE analyzed and the results of this study revealed that Mn content, in both fine and coarse fractions, were in excess of the general urban background level of 40 ng/m 3 (US Environmental Protection Agency, 1990) in more than 50% of the samples, which indicate severe environmental deterioration in the place under study.

  7. Movement of airborne contaminants in a hospital isolation room

    PubMed Central

    Eames, I.; Shoaib, D.; Klettner, C. A.; Taban, V.

    2009-01-01

    We analyse the characteristics of a force-ventilated isolation room, and the contributions to transport caused by the movement of people and doors opening/closing. The spread of fine droplets and particles can be understood, to leading order, by considering the movement of passive contaminants. A scaled (1:10) model of an isolation room (with water instead of air) was used to analyse the dilution of a passive contaminant (food dye), released either instantaneously or at a constant rate. The high level of turbulence, typical of isolation rooms, ensures that the dye concentration is uniform within the model room and mixing is perfect, and the measured mean concentration can be predicted theoretically. In a second series of experiments, the exchange generated by a door opening/closing is measured for different opening angles. A dipolar vortex is generated at the tip of the door which moves into the centre of the room, with a large coherent structure moving along the wall. The exchange volume is comparable to the swept volume of the door. Larger droplets and particles do not move passively. Their movement within a turbulent flow is studied by combining a Lagrangian model of particle movement with a kinematic simulation of a pseudo turbulent flow. The results show that while the mean fall velocity of particles is largely unchanged, turbulence significantly enhances horizontal and vertical dispersion. The horizontal spread as a function of the level of turbulence and droplet properties is estimated. The conclusions from both studies are brought together and discussed in the context of the airborne spread of contaminants within a general hospital room. PMID:19815576

  8. Latest Advancement In Airborne Relative Gravity Instrumentation.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2011-12-01

    Airborne gravity surveying has been performed with widely varying degrees of success since early experimentation with the Lacoste and Romberg dynamic meter in the 1950s. There are a number of different survey systems currently in operation including relative gravity meters and gradiometers. Airborne gravity is ideally suited to rapid, wide coverage surveying and is not significantly more expensive in more remote and inhospitable terrain which makes airborne measurements one of the few viable options available for cost effective exploration. As improved instrumentation has become available, scientific applications have also been able to take advantage for use in determining sub surface geologic structures, for example under ice sheets in Antarctica, and more recently direct measurement of the geoid to improve the vertical datum in the United States. In 2004, Lacoste and Romberg (now Micro-g Lacoste) decided to build on their success with the newly developed AirSea II dynamic meter and use that system as the basis for a dedicated airborne gravity instrument. Advances in electronics, timing and positioning technology created the opportunity to refine both the hardware and software, and to develop a truly turnkey system that would work well for users with little or no airborne gravity experience as well as those with more extensive experience. The resulting Turnkey Airborne Gravity System (TAGS) was successfully introduced in 2007 and has since been flown in applications from oil, gas and mineral exploration surveys to regional gravity mapping and geoid mapping. The system has been mounted in a variety of airborne platforms including depending on the application of interest. The development experience with the TAGS enabled Micro-g Lacoste to embark on a new project in 2010 to completely redesign the mechanical and electronic components of the system rather than continuing incremental upgrades. Building on the capabilities of the original TAGS, the objectives for the

  9. The International SubMillimetre Airborne Radiometer (ISMAR) - First results from the STICCS and COSMIC campaigns

    NASA Astrophysics Data System (ADS)

    Mendrok, Jana; Eriksson, Patrick; Fox, Stuart; Brath, Manfred; Buehler, Stefan

    2016-04-01

    Multispectral millimeter- and submillimeter-wave observations bear the potential to measure properties of non-thin ice clouds like mass content and mean particle size. The next generation of European meteorological satellites, the MetOp-SG series, will carry the first satellite-borne submillimeter sounder, the Ice Cloud Imager (ICI). An airborne demonstrator, the International SubMillimetre Airborne Radiometer (ISMAR), is operated together with other remote sensing instruments and in-situ probes on the FAAM aircraft. Scientific measurements from two campaings in the North Atlantic region, STICCS and COSMIC, are available so far. Here we will introduce the ISMAR instrument, present the acquired measurements from the STICCS and COSMIC campaigns and show some first results. This will include estimation of instrument performance, first analysis of clear-sky and cloudy cases and discussion of selected features observed in the measurements (e.g. polarisation signatures).

  10. Elemental composition of airborne dust in the Shale Shaker House during an offshore drilling operation.

    PubMed

    Hansen, A B; Larsen, E; Hansen, L V; Lyngsaae, M; Kunze, H

    1991-12-01

    During 2 days of an offshore drilling operation in the North Sea, 16 airborne dust samples from the atmosphere of the Shale Shaker House were collected onto filters. During this operation, drilling mud composed of a water slurry of barite (BaSO4) together with minor amounts of additives, among them chrome lignosulphonate and chrome lignite, was circulated between the borehole and the Shale Shaker House. The concentration of airborne dust in the atmosphere was determined and the elemental composition of the particles analysed by both PIXE (proton-induced X-ray emission) and ICP-MS (inductively coupled plasma-mass spectrometry). The total amount of dust collected varied from 0.04 to 1.41 mg m-3 with barium (Ba) as the single most abundant element. The open shale shakers turned out to be the major cause of generation of dust from the solid components of the drilling mud.

  11. Elemental composition of airborne dust in the Shale Shaker House during an offshore drilling operation.

    PubMed

    Hansen, A B; Larsen, E; Hansen, L V; Lyngsaae, M; Kunze, H

    1991-12-01

    During 2 days of an offshore drilling operation in the North Sea, 16 airborne dust samples from the atmosphere of the Shale Shaker House were collected onto filters. During this operation, drilling mud composed of a water slurry of barite (BaSO4) together with minor amounts of additives, among them chrome lignosulphonate and chrome lignite, was circulated between the borehole and the Shale Shaker House. The concentration of airborne dust in the atmosphere was determined and the elemental composition of the particles analysed by both PIXE (proton-induced X-ray emission) and ICP-MS (inductively coupled plasma-mass spectrometry). The total amount of dust collected varied from 0.04 to 1.41 mg m-3 with barium (Ba) as the single most abundant element. The open shale shakers turned out to be the major cause of generation of dust from the solid components of the drilling mud. PMID:1768013

  12. Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom

    PubMed Central

    Qian, J; Hospodsky, D; Yamamoto, N; Nazaroff, W W; Peccia, J

    2012-01-01

    The role of human occupancy as a source of indoor biological aerosols is poorly understood. Size-resolved concentrations of total and biological particles in indoor air were quantified in a classroom under occupied and vacant conditions. Per-occupant emission rates were estimated through a mass-balance modeling approach, and the microbial diversity of indoor and outdoor air during occupancy was determined via rDNA gene sequence analysis. Significant increases of total particle mass and bacterial genome concentrations were observed during the occupied period compared to the vacant case. These increases varied in magnitude with the particle size and ranged from 3 to 68 times for total mass, 12–2700 times for bacterial genomes, and 1.5–5.2 times for fungal genomes. Emission rates per person-hour because of occupancy were 31 mg, 37 × 106 genome copies, and 7.3 × 106 genome copies for total particle mass, bacteria, and fungi, respectively. Of the bacterial emissions, ∼18% are from taxa that are closely associated with the human skin microbiome. This analysis provides size-resolved, per person-hour emission rates for these biological particles and illustrates the extent to which being in an occupied room results in exposure to bacteria that are associated with previous or current human occupants. Practical Implications Presented here are the first size-resolved, per person emission rate estimates of bacterial and fungal genomes for a common occupied indoor space. The marked differences observed between total particle and bacterial size distributions suggest that size-dependent aerosol models that use total particles as a surrogate for microbial particles incorrectly assess the fate of and human exposure to airborne bacteria. The strong signal of human microbiota in airborne particulate matter in an occupied setting demonstrates that the aerosol route can be a source of exposure to microorganisms emitted from the skin, hair, nostrils, and mouths of other occupants

  13. Airborne Measurements of Aerosol Size Distributions During PACDEX

    NASA Astrophysics Data System (ADS)

    Rogers, D. C.; Gandrud, B.; Campos, T.; Kok, G.; Stith, J.

    2007-12-01

    The Pacific Dust Experiment (PACDEX) is an airborne project that attempts to characterize the indirect aerosol effect by tracing plumes of dust and pollution across the Pacific Ocean. This project occurred during April-May 2007 and used the NSF/NCAR HIAPER research aircraft. When a period of strong generation of dust particles and pollution was detected by ground-based and satellite sensors, then the aircraft was launched from Colorado to Alaska, Hawaii, and Japan. Its mission was to intercept and track these plumes from Asia, across the Pacific Ocean, and ultimately to the edges of North America. For more description, see the abstract by Stith and Ramanathan (this conference) and other companion papers on PACDEX. The HIAPER aircraft carried a wide variety of sensors for measuring aerosols, cloud particles, trace gases, and radiation. Sampling was made in several weather regimes, including clean "background" air, dust and pollution plumes, and regions with cloud systems. Altitude ranges extended from 100 m above the ocean to 13.4 km. This paper reports on aerosol measurements made with a new Ultra-High Sensitivity Aerosol Spectrometer (UHSAS), a Radial Differential Mobility Analyzer (RDMA), a water-based CN counter, and a Cloud Droplet Probe (CDP). These cover the size range 10 nm to 10 um diameter. In clear air, dust was detected with the UHSAS and CDP. Polluted air was identified with high concentrations of carbon monoxide, ozone, and CN. Aerosol size distributions will be presented, along with data to define the context of weather regimes.

  14. Cleanroom airborne particulate limits and 70% isopropyl alcohol: a lingering problem for pharmaceutical manufacturing?

    PubMed

    Eaton, Tim

    2009-01-01

    Seventy percent isopropyl alcohol (70% IPA) in water for injection is extensively utilised within pharmaceutical cleanrooms for glove and surface disinfection. When supplied in pressurised containers and delivered as an aerosol, it has been demonstrated that large quantities of 70% IPA particles are generated that remain airborne for substantial periods of time. Within non-unidirectional airflow cleanroom areas, such particles are likely to be recorded by the particle monitoring system. Consequently, the derived operational limits for particles will almost certainly be at "artificially high" levels and any particle generating activities with contamination potential may be masked. These high particle levels may not comply with the requirements of Annex 1 of the European Unions Guide to Good Manufacturing Practices (EU GGMP) and the United States Food and Drug Administration (FDA) Aseptic Processing Guideline. This is the case predominantly for the larger particles (> or =5 microm), the monitoring of which is exclusively required by the Annex 1 guide. However, by using canisters that deliver the 70% IPA as a stream, large quantities of particles are not generated and more meaningful and compliant operational levels can be obtained. Additionally, the EU GGMP's Annex 1 continuing requirement to monitor particles > or =5 microm appears to have little value or scientific justification and restricts further harmonisation of the European guide with the US FDA Aseptic Processing Guideline.

  15. Rapid detection and determination of the aerodynamic size range of airborne mycobacteria associated with whirlpools.

    PubMed

    Schafer, Millie P; Martinez, Kenneth F; Mathews, Elaine S

    2003-01-01

    Novel environmental air and water mycobacteria sampling and analytical methods are needed to circumvent difficulties associated with the use of culture-based methodologies. To implement this objective, a commercial, clinical, genus DNA amplification method utilizing the polymerase chain reaction (PCR) was interfaced with novel air sampling strategies in the laboratory. Two types of air samplers, a three-piece plastic, disposable filter cassette and an eight-stage micro-orifice uniform deposit impactor (MOUDI), were used in these studies. In both samplers, 37-mm polytetrafluoroethylene (PTFE) filters were used. Use of the MOUDI sampler permitted the capture of airborne mycobacteria in discrete size ranges, an important parameter for relating the airborne mycobacteria cells to potential respirable particles (aerodynamic diameter <10 microm) capable of causing health effects. Analysis of the samples was rapid, requiring only 1-1.5 days, as no microbial culturing or DNA purification was required. This approach was then used to detect suspected mycobacteria contamination associated with pools at a large public facility. PCR was also used to analyze various water samples from these pools. Again, no culturing or sample purification was required. Water samples taken from all ultraviolet light/hydrogen peroxide-treated whirlpools tested positive for the presence of mycobacteria. No mycobacteria were detected in the chlorine-treated pools and the water main supply facility. All air samples collected in the proximity of the indoor whirlpools and the associated changing rooms were strongly positive for airborne mycobacteria. The airborne mycobacteria particles were predominantly collected on MOUDI stages 1-6 representing an aerodynamic size range of 0.5 to 9.9 microm. In conclusion, using this approach permits the rapid detection of mycobacteria contamination as well as the routine monitoring of suspected pools. The approach circumvents problems associated with culture

  16. Identification of airborne radioactive spatial patterns in Europe - Feasibility study using Beryllium-7.

    PubMed

    Hernández-Ceballos, M A; Cinelli, G; Tollefsen, T; Marín-Ferrer, M

    2016-05-01

    The present study proposes a methodology to identify spatial patterns in airborne radioactive particles in Europe. The methodology is based on transforming the activity concentrations in the set of stations for each month (monthly index), due to the tightly spaced sampling intervals (daily to monthly), in combination with hierarchical and non-hierarchical clustering approaches, due to the lack of a priori knowledge of the number of clusters to be created. Three different hierarchical cluster methodologies are explored to set the optimal number of clusters necessary to initialize the non-hierarchical one (k-means). To evaluate this methodology, cosmogenic beryllium-7 ((7)Be) data, collected between 2007 and 2010 at 19 sampling stations in European Union (EU) countries and stored in the Radioactivity Environmental Monitoring (REM) database, are used. This methodology yields a solution with three distinguishable clusters (south, central and north), each with a different evolution of the (7)Be monthly index. Clear differences between monthly indices are shown in both intensity and time trends, following a latitudinal distribution of the sampling stations. This cluster result is evaluated performing ANOVA analysis, considering the original (7)Be activity concentrations grouped in each cluster. The statistical results (among clusters and sampling stations within clusters) confirm the spatial distribution of (7)Be in Europe, and, hence, reinforce the use of this methodology. Finally, the impact of tropopause height on this grouping is successfully tested, suggesting its influence on the spatial distribution of (7)Be in Europe. For airborne radioactive particles the analysis gave valuable results that improve knowledge of these atmospheric compounds in Europe. Hence, this work addresses a methodology to a grouping of airborne sampling stations, 1) allowing a better understanding of the distribution of (7)Be activity concentrations in the EU, and 2) serving as a basis for

  17. Identification of airborne radioactive spatial patterns in Europe - Feasibility study using Beryllium-7.

    PubMed

    Hernández-Ceballos, M A; Cinelli, G; Tollefsen, T; Marín-Ferrer, M

    2016-05-01

    The present study proposes a methodology to identify spatial patterns in airborne radioactive particles in Europe. The methodology is based on transforming the activity concentrations in the set of stations for each month (monthly index), due to the tightly spaced sampling intervals (daily to monthly), in combination with hierarchical and non-hierarchical clustering approaches, due to the lack of a priori knowledge of the number of clusters to be created. Three different hierarchical cluster methodologies are explored to set the optimal number of clusters necessary to initialize the non-hierarchical one (k-means). To evaluate this methodology, cosmogenic beryllium-7 ((7)Be) data, collected between 2007 and 2010 at 19 sampling stations in European Union (EU) countries and stored in the Radioactivity Environmental Monitoring (REM) database, are used. This methodology yields a solution with three distinguishable clusters (south, central and north), each with a different evolution of the (7)Be monthly index. Clear differences between monthly indices are shown in both intensity and time trends, following a latitudinal distribution of the sampling stations. This cluster result is evaluated performing ANOVA analysis, considering the original (7)Be activity concentrations grouped in each cluster. The statistical results (among clusters and sampling stations within clusters) confirm the spatial distribution of (7)Be in Europe, and, hence, reinforce the use of this methodology. Finally, the impact of tropopause height on this grouping is successfully tested, suggesting its influence on the spatial distribution of (7)Be in Europe. For airborne radioactive particles the analysis gave valuable results that improve knowledge of these atmospheric compounds in Europe. Hence, this work addresses a methodology to a grouping of airborne sampling stations, 1) allowing a better understanding of the distribution of (7)Be activity concentrations in the EU, and 2) serving as a basis for

  18. Particle resuspension via human activity

    NASA Astrophysics Data System (ADS)

    Qian, Jing

    This dissertation consists of three correlated parts that are related to particle resuspension from floorings in indoor environment. The term resuspension in this dissertation refers the re-entrainment of deposited particles into atmosphere via mechanic disturbances by human activity indoors, except where it is specified. The first part reviews the literature related to particle resuspension. Fundamental concepts and kinetics of resuspension of particles were extracted from previous studies. Suggestions for future research on indoor particle resuspension have been given based on the literature reviews and the findings of part 2 and part 3. The second part involved 54 resuspension experiments conducted in a room-scale environmental chamber. Three floorings types and two ventilation configurations were tested. Air exchange rate were fixed during the experiments, and the temperature/RH were monitored. The airborne particle concentration was measured by an array of optical particle counters (OPCs) in the chamber. Resuspension rates were estimated in size ranges of 0.8--1, 1.0--2.0, 2.0--5.0, and 5.0--10 mum ranging from 10-5--10 -2 hr-1, with higher resuspension rates associated with larger particles. Resuspension via walking activity varied from experiment to experiment. A "heavy and fast" walking style was associated with a higher resuspension rate than a less active style. Given the same floor loading of the test particles, resuspension rates for the carpeted floor were on the same order of magnitude but significantly higher than those for the hard floor. In the third part, an image analysis method (IAM) was adapted to characterize the particle distribution on fabric floorings. The IAM results showed the variability of particles loading on various carpets. The dust particles on fibers fro