Science.gov

Sample records for airborne particles collected

  1. Airborne particles in Swansea, UK: their collection and characterization.

    PubMed

    Price, Heather; Arthur, Robert; Sexton, Keith; Gregory, Clive; Hoogendoorn, Bastiaan; Matthews, Ian; Jones, Tim; BéruBé, Kelly

    2010-01-01

    Urban air particulate matter (PM) has previously been associated with a variety of adverse health effects. It is now believed that the smallest particles, ultrafine or nanoparticles, are linked to the greatest health effects. The physicochemistry of these particles is likely to provide information regarding their toxicity. Therefore, the aim of this study was to further the understanding of the heterogeneous and changing particle concentrations in urban air, in conjunction with gaining an understanding of the physicochemistry of the particles. A Dekati electrical low-pressure impactor was used to collect the particles and real-time data in a busy traffic corridor in Swansea, Wales, over a period of 10 nonconsecutive weeks. Particle concentrations in the street canyon were analyzed and particle physicochemistries investigated using a variety of techniques. Particle number concentrations were found to vary both diurnally and from day to day in the traffic corridor. Of all particles, the nano to fine size fraction was consistently identified in the highest concentrations (maximum: 140,000 particles cm(-3)). Particle physicochemistry was found to vary as a function of size, with larger particles exhibiting a greater variety of morphologies (and consequently particle types) and associated metals. PMID:20155578

  2. Total airborne mold particle sampling: evaluation of sample collection, preparation and counting procedures, and collection devices.

    PubMed

    Godish, Diana; Godish, Thad

    2008-02-01

    This study was conducted to evaluate (i) procedures used to collect, prepare, and count total airborne mold spore/particle concentrations, and (ii) the relative field performance of three commercially available total airborne mold spore/particle sampling devices. Differences between factory and laboratory airflow calibration values of axial fan-driven sampling instruments (used in the study) indicated a need for laboratory calibration using a mass flow meter to ensure that sample results were accurately calculated. An aniline blue-amended Calberla's solution adjusted to a pH of 4.2-4.4 provided good sample mounting/counting results using Dow Corning high vacuum grease, Dow Corning 280A adhesive, and Dow Corning 316 silicone release spray for samples collected using mini-Burkard and Allergenco samplers. Count variability among analysts was most pronounced in 5% counts of relatively low mold particle deposition density samples and trended downward with increased count percentage and particle deposition density. No significant differences were observed among means of 5, 10, and 20% counts and among analysts; a significant interaction effect was observed between analysts' counts and particle deposition densities. Significantly higher mini-Burkard and Air-O-Cell total mold spore/particle counts for 600x vs. 400x (1.9 and 2.3 x higher, respectively), 1000x vs. 600x (1.9 and 2.2 x higher, respectively) and 1000x vs. 400x (3.6 and 4.6 x higher, respectively) comparisons indicated that 1000x magnification counts best quantified total airborne mold spore/particles using light microscopy, and that lower magnification counts may result in unacceptable underreporting of airborne mold spore/particle concentrations. Modest but significantly higher (1.2x) total mold spore concentrations were observed with Allergenco vs. mini-Burkard samples collected in co-located, concurrently operated sampler studies; moderate but significantly higher mini-Burkard count values (1.4x) were

  3. COLLECTION OF AIRBORNE PARTICLES BY A HIGH-GRADIENT PERMANENT MAGNETIC METHOD

    SciTech Connect

    Cheng, Mengdawn; Allman, Steve L; Ludtka, Gerard Michael; Avens, Larry R

    2014-01-01

    We report on the use of magnetic force in collection of airborne particles by a high- gradient permanent magnetic separation (HGPMS) device. Three aerosol particles of different magnetic susceptibility (NaCl, CuO, and Fe2O3) were generated in the electrical mobility size range of 10 to 200 nm and were used to study HGPMS collection. One HGPMS matrix element, made of stainless steel wool, was used in the device configuration. Three flow rates were selected to simulate the environmental wind speeds of interest to the study. Magnetic force was found to exhibit an insignificant effect on the separation of NaCl particles, even in the HGPMS configuration. Diffusion was a major mechanism in the removal of the diamagnetic particles; however, diffusion is insignificant under the influence of a high-gradient magnetic field for paramagnetic or ferromagnetic particles. The HGPMS showed high-performance collection (> 99%) of paramagnetic CuO and ferromagnetic Fe2O3 particles for particle sizes greater than or equal to 60 nm. As the wind speed increases, the influence of the magnetic force weakens, and the capability to remove particles from the gas stream diminishes. The results suggest that the HGPMS principle could be explored for development of an advanced miniaturized passive aerosol collector.

  4. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles.

  5. A microfluidics-based on-chip impinger for airborne particle collection.

    PubMed

    Mirzaee, I; Song, M; Charmchi, M; Sun, H

    2016-06-21

    Capturing airborne particles from air into a liquid is a critical process for the development of many sensors and analytical systems. A miniaturized airborne particle sampling device (microimpinger) has been developed in this research. The microimpinger relies on a controlled bubble generation process produced by driving air through microchannel arrays. The particles confined in the microscale bubbles are captured in the sampling liquid while the bubbles form, are released and travel in a millimetre-scale sealed liquid reservoir. The microchannel arrays in the impinger are fabricated using a soft-lithography method with polydimethylsiloxane (PDMS) as the structural material. To prevent air leakage at the connections, a PDMS-only sealing technique is successfully developed. The hydrophobicity of the microchannel surface is found to be critical for generating continuous and stable bubbles in the bubbling process. A Teflon layer is coated on the walls of a microchannel array by vapor deposition which effectively increases the hydrophobicity of the PDMS. The collection efficiency of the microimpinger is measured by counting different sizes of fluorescent polystyrene latex particles on polycarbonate membrane filters. Collection efficiencies above 90% are achieved. Furthermore, the particle capturing mechanisms during the injection, formation and rise of a single microbubble are investigated by a computational fluid dynamics (CFD) model. The Navier-Stokes equations are solved along with the use of the volume-of-fluid (VOF) method to capture the bubble deformations and the particles are tracked using a Lagrangian equation of motion. The model is also employed to study the effect of bubble size on the collection efficiency of the microimpinger.

  6. A microfluidics-based on-chip impinger for airborne particle collection.

    PubMed

    Mirzaee, I; Song, M; Charmchi, M; Sun, H

    2016-06-21

    Capturing airborne particles from air into a liquid is a critical process for the development of many sensors and analytical systems. A miniaturized airborne particle sampling device (microimpinger) has been developed in this research. The microimpinger relies on a controlled bubble generation process produced by driving air through microchannel arrays. The particles confined in the microscale bubbles are captured in the sampling liquid while the bubbles form, are released and travel in a millimetre-scale sealed liquid reservoir. The microchannel arrays in the impinger are fabricated using a soft-lithography method with polydimethylsiloxane (PDMS) as the structural material. To prevent air leakage at the connections, a PDMS-only sealing technique is successfully developed. The hydrophobicity of the microchannel surface is found to be critical for generating continuous and stable bubbles in the bubbling process. A Teflon layer is coated on the walls of a microchannel array by vapor deposition which effectively increases the hydrophobicity of the PDMS. The collection efficiency of the microimpinger is measured by counting different sizes of fluorescent polystyrene latex particles on polycarbonate membrane filters. Collection efficiencies above 90% are achieved. Furthermore, the particle capturing mechanisms during the injection, formation and rise of a single microbubble are investigated by a computational fluid dynamics (CFD) model. The Navier-Stokes equations are solved along with the use of the volume-of-fluid (VOF) method to capture the bubble deformations and the particles are tracked using a Lagrangian equation of motion. The model is also employed to study the effect of bubble size on the collection efficiency of the microimpinger. PMID:27185303

  7. Characterisation of airborne particles collected within and proximal to an opencast coalmine: South Wales, U.K.

    PubMed

    Jones, Tim; Blackmore, Pete; Leach, Matt; Bérubé, Kelly; Sexton, Keith; Richards, Roy

    2002-05-01

    Airborne particulate matter has been collected from within, and proximal to, an opencast coal mine in south Wales. This work forms the first part of a three year project to collect and characterise, then determine the possible toxicology of airborne particles in the south Wales region. High-resolution Field Emission SEM has shown that the coal mine dusts consist largely of an assemblage of mineral grains and vehicle exhaust particles. SEM-EDX has shown that the mineralogical make-up of the PM10 is complex, heterogeneous, and constantly changing. These findings are supported by analytical TEM-EPXMA. However, patterns can be determined relating the mineralogical composition of the airborne particles to collection locations and mining activities within the opencast. At our study opencast, Park Slip West, quartz, which has known health effects, never exceeded 30% of the total collection mass, and average levels were much less. Vehicle exhaust emissions was the largest source in terms of particle numbers. The mass of airborne particulate matter within the pit averaged approximately twice that of outside the pit: importantly however, this higher mass was due to relatively large, and non-respirable, mineral grains. This study demonstrates that the physicochemical and mineralogical characterisation of airborne particles from mining and quarrying is essential to quantify the respirable fraction, and to identify potentially hazardous components within the PM10. PMID:12004982

  8. Characterisation of airborne particles collected within and proximal to an opencast coalmine: South Wales, U.K.

    PubMed

    Jones, Tim; Blackmore, Pete; Leach, Matt; Bérubé, Kelly; Sexton, Keith; Richards, Roy

    2002-05-01

    Airborne particulate matter has been collected from within, and proximal to, an opencast coal mine in south Wales. This work forms the first part of a three year project to collect and characterise, then determine the possible toxicology of airborne particles in the south Wales region. High-resolution Field Emission SEM has shown that the coal mine dusts consist largely of an assemblage of mineral grains and vehicle exhaust particles. SEM-EDX has shown that the mineralogical make-up of the PM10 is complex, heterogeneous, and constantly changing. These findings are supported by analytical TEM-EPXMA. However, patterns can be determined relating the mineralogical composition of the airborne particles to collection locations and mining activities within the opencast. At our study opencast, Park Slip West, quartz, which has known health effects, never exceeded 30% of the total collection mass, and average levels were much less. Vehicle exhaust emissions was the largest source in terms of particle numbers. The mass of airborne particulate matter within the pit averaged approximately twice that of outside the pit: importantly however, this higher mass was due to relatively large, and non-respirable, mineral grains. This study demonstrates that the physicochemical and mineralogical characterisation of airborne particles from mining and quarrying is essential to quantify the respirable fraction, and to identify potentially hazardous components within the PM10.

  9. Characterisation of nano- and micron-sized airborne and collected subway particles, a multi-analytical approach.

    PubMed

    Midander, Klara; Elihn, Karine; Wallén, Anna; Belova, Lyuba; Karlsson, Anna-Karin Borg; Wallinder, Inger Odnevall

    2012-06-15

    Continuous daily measurements of airborne particles were conducted during specific periods at an underground platform within the subway system of the city center of Stockholm, Sweden. Main emphasis was placed on number concentration, particle size distribution, soot content (analyzed as elemental and black carbon) and surface area concentration. Conventional measurements of mass concentrations were conducted in parallel as well as analysis of particle morphology, bulk- and surface composition. In addition, the presence of volatile and semi volatile organic compounds within freshly collected particle fractions of PM(10) and PM(2.5) were investigated and grouped according to functional groups. Similar periodic measurements were conducted at street level for comparison. The investigation clearly demonstrates a large dominance in number concentration of airborne nano-sized particles compared to coarse particles in the subway. Out of a mean particle number concentration of 12000 particles/cm(3) (7500 to 20000 particles/cm(3)), only 190 particles/cm(3) were larger than 250 nm. Soot particles from diesel exhaust, and metal-containing particles, primarily iron, were observed in the subway aerosol. Unique measurements on freshly collected subway particle size fractions of PM(10) and PM(2.5) identified several volatile and semi-volatile organic compounds, the presence of carcinogenic aromatic compounds and traces of flame retardants. This interdisciplinary and multi-analytical investigation aims to provide an improved understanding of reported adverse health effects induced by subway aerosols. PMID:22551935

  10. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea.

    PubMed

    Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un

    2012-04-30

    Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the <25 μm size fractions with minor fractions of Mg, Al, Si, Ca, S, and C. From SEM analysis, the floor dusts of the <25 μm size fractions collected on railroad ties appeared to be smaller than 10 μm, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount of Fe mixed with Na, Mg, Al, Si, S, Ca, and C. The difference in composition of the Fe-containing particles between the two subway stations was attributed to the different ballast tracks used. PMID:22381374

  11. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea.

    PubMed

    Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un

    2012-04-30

    Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the <25 μm size fractions with minor fractions of Mg, Al, Si, Ca, S, and C. From SEM analysis, the floor dusts of the <25 μm size fractions collected on railroad ties appeared to be smaller than 10 μm, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount of Fe mixed with Na, Mg, Al, Si, S, Ca, and C. The difference in composition of the Fe-containing particles between the two subway stations was attributed to the different ballast tracks used.

  12. Characterization of Airborne Particles Collected from Car Engine Air Filters Using SEM and EDX Techniques

    PubMed Central

    Heredia Rivera, Birmania; Gerardo Rodriguez, Martín

    2016-01-01

    Particulate matter accumulated on car engine air-filters (CAFs) was examined in order to investigate the potential use of these devices as efficient samplers for collecting street level air that people are exposed to. The morphology, microstructure, and chemical composition of a variety of particles were studied using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The particulate matter accumulated by the CAFs was studied in two categories; the first was of removed particles by friction, and the second consisted of particles retained on the filters. Larger particles with a diameter of 74–10 µm were observed in the first category. In the second one, the detected particles had a diameter between 16 and 0.7 µm. These particles exhibited different morphologies and composition, indicating mostly a soil origin. The elemental composition revealed the presence of three groups: mineral (clay and asphalt), metallic (mainly Fe), and biological particles (vegetal and animal debris). The palynological analysis showed the presence of pollen grains associated with urban plants. These results suggest that CAFs capture a mixture of atmospheric particles, which can be analyzed in order to monitor urban air. Thus, the continuous availability of large numbers of filters and the retroactivity associated to the car routes suggest that these CAFs are very useful for studying the high traffic zones within a city. PMID:27706087

  13. Pb, Sr and Nd isotopic composition and trace element characteristics of coarse airborne particles collected with passive samplers

    NASA Astrophysics Data System (ADS)

    Hoàng-Hòa, Thi Bich; Stille, Peter; Dietze, Volker; Guéguen, Florence; Perrone, Thierry; Gieré, Reto

    2015-09-01

    Passive samplers for collection of coarse airborne particulate matter have been installed in and around the coal-mining town of Cam Pha, Quang Ninh Province (Vietnam). Analysis of Pb, Sr, and Nd isotope ratios and of major and trace element distribution patterns in atmospheric particulates collected at three stations allowed for the identification of four important dust components: (1) coal dust from an open-pit mine and fly ash particles from a coal-fired power station, (2) diesel soot, (3) traffic dust from metal, tire and pavement abrasion, and (4) limestone-derived dust. Outside of the coal-mining area, traffic-derived dust defines the atmospheric baseline composition of the studied environment.

  14. Airborne soil organic particles generated by precipitation

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.; Piens, Dominique S.; China, Swarup; Kovarik, Libor; Keiluweit, Marco; Arey, Bruce W.; Gilles, Mary K.; Laskin, Alexander

    2016-06-01

    Airborne organic particles play a critical role in Earth's climate, public health, air quality, and hydrological and carbon cycles. However, sources and formation mechanisms for semi-solid and solid organic particles are poorly understood and typically neglected in atmospheric models. Laboratory evidence suggests that fine particles can be formed from impaction of mineral surfaces by droplets. Here, we use chemical imaging of particles collected following rain events in the Southern Great Plains, Oklahoma, USA and after experimental irrigation to show that raindrop impaction of soils generates solid organic particles. We find that after rain events, sub-micrometre solid particles, with a chemical composition consistent with soil organic matter, contributed up to 60% of atmospheric particles. Our irrigation experiments indicate that intensive water impaction is sufficient to cause ejection of airborne soil organic particles from the soil surface. Chemical imaging and micro-spectroscopy analysis of particle physico-chemical properties suggest that these particles may have important impacts on cloud formation and efficiently absorb solar radiation. We suggest that raindrop-induced formation of solid organic particles from soils may be a widespread phenomenon in ecosystems such as agricultural systems and grasslands where soils are exposed to strong, episodic precipitation events.

  15. Characterization of Fine Airborne Particulate Collected in Tokyo and Major Atmospheric Emission Sources by Using Single Particle Measurement of SEM-EDX

    NASA Astrophysics Data System (ADS)

    Sato, K.; Iijima, A.; Furuta, N.

    2008-12-01

    In our long-term monitoring of size-classified Airborne Particulate Matter (APM) in Tokyo since 1995, it had been demonstrated that toxic elements such as As, Se, Cd, Sb and Pb were extremely enriched in fine APM (PM2.5). However, in that study, total sampled APM on a filter was digested with acids, and thus only averaged elemental composition in fine APM could be obtained. One of the effective methods to determine the origin of APM is single particle measurement by using SEM-EDX. By using characteristic shapes observed by SEM and marker elements contained in APM measured by EDX, detailed information for source identification can be obtained. In this study, fine APM (PM2.5) was collected at various locations such as roadside, diesel vehicle exhaust, a heavy oil combustion plant and a waste incineration plant as well as ambient atmosphere in Tokyo, and characteristics of fine particles that will be utilized for identification of emission sources are elucidated. Fine particles can be classified into 3 main characteristic shape groups; edge-shaped, cotton-like and spherical. Shape of particles collected in a heavy oil combustion plant and a waste incineration plant was mostly spherical, and these particles may be associated with thermal process. Diesel exhaust particles were predominantly cotton-like which may consist of coagulated nano-sized particles. Most of brake abrasion dusts were edge-shaped, which may be associated with mechanical abrasion of brake pads. In the elemental analysis of fine particles, high concentrations of Sb, Cu, Ti and Ba were detected in brake abrasion dusts. Since these elements are major constituents of brake pads, these can be used for marker elements of brake abrasion dusts. High concentration of C was detected in diesel exhaust particles and oil combustion particles, and thus C can be used for marker elements of their origin. Furthermore, high concentrations of C, Ca and K were detected in fly ash from a waste incineration plant, which

  16. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  17. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  18. Airborne biological particles and electric fields

    NASA Astrophysics Data System (ADS)

    Benninghoff, William S.; Benninghoff, Anne S.

    1982-01-01

    In November and December 1977 at McMurdo Station in Antarctica we investigated the kinds, numbers, and deposition of airborne particles larger than 2 μm while measuring electric field gradient at 2.5 m above the ground. Elementary collecting devices were used: Staplex Hi-Volume and Roto-rod samplers, Tauber (static sedimentation) traps, petrolatum-coated microscope slides, and snow (melted and filtered). The electric fields were measured by a rotating dipole (Stanford Radioscience Laboratory field mill number 2). During periods of blowing snow and dust the electric field gradient was + 500 to + 2500 V/m, and Tauber traps with grounded covers collected 2 or more times as much snow and dust as the ones with ungrounded covers. During falling snow the electric field gradient was -1000 to -1500 V/m, and the ungrounded traps collected almost twice as much snow and dust as those grounded. These observations suggest that under the prevailing weather conditions in polar regions the probable net effect is deposition of greater quantities of dust, including diaspores and minute organisms, on wet, grounded surfaces. This hypothesis needs examination for its use in explanation of biological distribution patterns.

  19. CHARACTERIZING THE SOURCES OF HUMAN EXPOSURE TO MUTAGENIC AND CARCINOGENIC CHEMICALS IN AIRBORNE FINE PARTICLES

    EPA Science Inventory

    Personal and ambient exposures to airborne fine particles, polycyclic aromatic hydrocarbons (PAH), and genotoxic activity has been studied in populations in the US, Japan, China, and the Czech Republic. Personal exposure monitors used to collect fine particles were extracted f...

  20. Effects of particle size and velocity on burial depth of airborne particles in glass fiber filters

    SciTech Connect

    Higby, D.P.

    1984-11-01

    Air sampling for particulate radioactive material involves collecting airborne particles on a filter and then determining the amount of radioactivity collected per unit volume of air drawn through the filter. The amount of radioactivity collected is frequently determined by directly measuring the radiation emitted from the particles collected on the filter. Counting losses caused by the particle becoming buried in the filter matrix may cause concentrations of airborne particulate radioactive materials to be underestimated by as much as 50%. Furthermore, the dose calculation for inhaled radionuclides will also be affected. The present study was designed to evaluate the extent to which particle size and sampling velocity influence burial depth in glass-fiber filters. Aerosols of high-fired /sup 239/PuO/sub 2/ were collected at various sampling velocities on glass-fiber filters. The fraction of alpha counts lost due to burial was determined as the ratio of activity detected by direct alpha count to the quantity determined by photon spectrometry. The results show that burial of airborne particles collected on glass-fiber filters appears to be a weak function of sampling velocity and particle size. Counting losses ranged from 0 to 25%. A correction that assumes losses of 10 to 15% would ensure that the concentration of airborne alpha-emitting radionuclides would not be underestimated when glass-fiber filters are used. 32 references, 21 figures, 11 tables.

  1. Airborne dust particle counting techniques.

    PubMed

    Sharma, S G; Prasad, B D

    2006-03-01

    The paper briefly describes an electro-optical system for counting of dust particles, which is based on the scattering phenomena. Utilizing the scattering of light by various size particles present in the environment, various particle counting techniques have been developed in order to measure the scattered intensity of light. Light scatters in all directions but much more in the so-called near forward direction 17( composite function) off axis, at 163( composite function) from the light source in the visible range. On the basis of two techniques, the right angle and forward angle scattering, opto-mechanical systems have been developed which measure scattered intensity and particulate matter. The forward scattering Nephelometer is more sensitive and therefore is more suitable for pollution monitoring than the right angle scattering Nephelometer. Whereas the right angle scattering Nephelometer has the utility in extremely low concentration in ppb level owing to the excellent light trap efficiency in comparison to forward scattering Nephelometer. In this paper measurement techniques and measurement results associated with design and development of a real time particle analyser are also discussed.

  2. Airborne soil organic particles generated by precipitation

    DOE PAGES

    Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.; Piens, Dominique S.; China, Swarup; Kovarik, Libor; Keiluweit, Marco; Arey, Bruce W.; Gilles, Mary K.; Laskin, Alexander

    2016-05-02

    Airborne organic particles play a critical role in Earth’s climate1, public health2, air quality3, and hydrological and carbon cycles4. However, sources and formation mechanisms for semi-solid and solid organic particles5 are poorly understood and typically neglected in atmospheric models6. Laboratory evidence suggests that fine particles can be formed from impaction of mineral surfaces by droplets7. Here, we use chemical imaging of particles collected following rain events in the Southern Great Plains, Oklahoma, USA and after experimental irrigation to show that raindrop impaction of soils generates solid organic particles. We find that after rain events, sub-micrometre solid particles, with a chemicalmore » composition consistent with soil organic matter, contributed up to 60% of atmospheric particles. Our irrigation experiments indicate that intensive water impaction is sufficient to cause ejection of airborne soil organic particles from the soil surface. Chemical imaging and micro-spectroscopy analysis of particle physico-chemical properties suggest that these particles may have important impacts on cloud formation and efficiently absorb solar radiation. Lastly, we suggest that raindrop-induced formation of solid organic particles from soils may be a widespread phenomenon in ecosystems such as agricultural systems and grasslands where soils are exposed to strong, episodic precipitation events8.« less

  3. The impact of fireworks on airborne particles

    NASA Astrophysics Data System (ADS)

    Vecchi, Roberta; Bernardoni, Vera; Cricchio, Diana; D'Alessandro, Alessandra; Fermo, Paola; Lucarelli, Franco; Nava, Silvia; Piazzalunga, Andrea; Valli, Gianluigi

    Fireworks are one of the most unusual sources of pollution in atmosphere; although transient, these pollution episodes are responsible for high concentrations of particles (especially metals and organic compounds) and gases. In this paper, results of a study on chemical-physical properties of airborne particles (elements, ions, organic and elemental carbon and particles size distributions) collected during a fireworks episode in Milan (Italy) are reported. Elements typically emitted during pyrotechnic displays increased in 1 h as follows: Sr (120 times), Mg (22 times), Ba (12 times), K (11 times), and Cu (6 times). In our case study, Sr was recognised as the best fireworks tracer because its concentration was very high during the event and lower than, or comparable with, minimum detection limits during other time intervals, suggesting that it was mainly due to pyrotechnic displays. In addition, particles number concentrations increased significantly during the episode (up to 6.7 times in 1 h for the 0.5< d<1 μm size bin). Contributions (e.g. Cu, elemental carbon and nitrogen oxides) to air pollution due to the large traffic volume registered during the same night were also singled out. The original application of Positive Matrix Factorisation and Multiple Linear Regression allowed, as far as we know, here for the first time, the quantification of the fireworks contribution to atmospheric particulate matter (PM) and the resolution of their chemical profile. The contribution of fireworks to the local environment in terms of PM 10 mass, elements and chemical components was assessed with 4-h time resolution. PM 10 mass apportioned by fireworks was up to 33.6 μg m -3 (about 50% of the total PM 10 mass). Major contributors were elemental and organic carbon (2.8 and 8.1 μg m -3, respectively) as well as metals like Mg, K, Sr, Ba, and Cu (0.4, 0.7, 0.07, 0.1, and 0.1 μg m -3, respectively).

  4. Mutagenicity of airborne particles from a nonindustrial town

    SciTech Connect

    Whong, W.Z.; Stewart, J.; McCawley, M.; Major, P.; Merchant, J.A.; Ong, T.M.

    1981-01-01

    The mutagenic activity of ambient air particles from Morgantown, West Virginia, has been monitored for 6 months using the Ames Salmonella assay system. Airborne particles, collected on glass fiber filters using a Hi-Vol sampler, were extracted with dichloromethane (DCM) and/or ethyl acetate plus methanol (E + M) in sequence. A dose-dependent mutagenic response was observed in Salmonella typhimurium TA 98 for DCM extracts from all samples. E + M extracts were mutagenic only when samples were extracted with E + M before DCM extration. The mutagenic activity of samples collected in June and July was independent of S-9 in vitro activation, whereas the mutagenicity of those collected from October to December increased in the presence of S-9 activation. The class fractionation of extracts showed that only acidic and polynuclear aromatic fractions were mutagenic. The mutagenicity of particles from Morgantown air was also detected with the Salmonella arabinose-resistant assay system.

  5. Self-refreshing characteristics of an airborne particle sensor using a bridged paddle oscillator

    NASA Astrophysics Data System (ADS)

    Choi, Eunsuk; Lee, Seung-Beck; Park, Bonghyun; Sul, Onejae

    2016-05-01

    We report on the self-refreshing characteristics of a micromachined airborne particle sensor. The sensor consists of a bridge-type beam having an oscillating paddle-type particle collector at its center. When a positive potential is applied to the paddle, the sensor is able to attract and collect negatively charged airborne particles while oscillating close to its resonant frequency and thereby measure their density from the change in the oscillating phase at ˜10 pg resolution. When the applied potential is removed, the collected particles are detached from the sensor due to momentum transfer from the oscillating paddle, thus demonstrating a self-refreshing capability.

  6. A comparison between different high volume sampling systems for collecting ambient airborne particles for mutagenicity testing and for analysis of organic compounds.

    PubMed

    Alfheim, I; Lindskog, A

    1984-03-15

    Samples of urban air were collected simultaneously using different sampling systems, including electrostatic precipitation (ESP) and high volume filtration (HVF) on various filters for particle sampling and absorption on activated carbon and organic polymers for sampling of volatiles. Acetone extracts of the samples were analyzed for polycyclic aromatic hydrocarbons (PAH) and tested for mutagenicity with the Ames Salmonella/microsome assay. The results show that the concentrations of PAH found in the various particle-samples were in good agreement, whereas the mutagenic activity of these samples showed large variations. The highest mutagenic activity was found in the samples collected by ESP and on the teflon-coated glassfibre filters, whereas samples collected by high volume filtration with size-fractionation showed the lowest mutagenic activity. We do not know whether the higher activity in samples from the teflon-coated filters compared to those from ordinary glassfibre filters represent filter artifacts or if it represents a more pronounced degradation of mutagenic compounds on the non-coated glassfibre filters. Extracts from filter blanks seemed to interfere with the expression of the mutagenic activity of the positive controls, benzo[a]pyrene and nitropyrene. When sampling volatile compounds, two organic polymers, polyurethane (PUR) and XAD-2, were found suitable for collecting PAH, whereas no PAH could be detected in extracts from the activated carbon. The XAD-2 adsorbent was the most effective for sampling bicyclic PAH. None of the adsorbents yielded extracts well suited for mutagenicity testing, since blank extracts were toxic to the test bacteria. Some extracts of the PUR blanks were weakly mutagenic as well. More emphasis should be placed upon developing more efficient and unreactive adsorbents and on the adaptation of such adsorbents in samplers suited for routine use. PMID:6719098

  7. Enumerating Spore-Forming Bacteria Airborne with Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Barengoltz, Jack

    2006-01-01

    A laboratory method has been conceived to enable the enumeration of (1) Cultivable bacteria and bacterial spores that are, variously, airborne by themselves or carried by, parts of, or otherwise associated with, other airborne particles; and (2) Spore-forming bacteria among all of the aforementioned cultivable microbes.

  8. HUMAN INTERINDIVIDUAL VARIABILITY IN SUSCEPTIBILITY TO AIRBORNE PARTICLES

    EPA Science Inventory

    Part of the explanation for the persistent epidemiological findings of associations between mortality and morbidity with relatively modest ambient exposures to airborne particles may be that some people are much more susceptible to particle-induced responses than others. This stu...

  9. Airborne measurements of cloud forming nuclei and aerosol particles at Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Radke, L. F.; Langer, G.; Hindman, E. E., II

    1978-01-01

    Results of airborne measurements of the sizes and concentrations of aerosol particles, ice nuclei, and cloud condensation nuclei that were taken at Kennedy Space Center, Florida, are presented along with a detailed description of the instrumentation and measuring capabilities of the University of Washington airborne measuring facility (Douglas B-23). Airborne measurements made at Ft. Collins, Colorado, and Little Rock, Arkansas, during the ferry of the B-23 are presented. The particle concentrations differed significantly between the clean air over Ft. Collins and the hazy air over Little Rock and Kennedy Space Center. The concentrations of cloud condensation nuclei over Kennedy Space Center were typical of polluted eastern seaboard air. Three different instruments were used to measure ice nuclei: one used filters to collect the particles, and the others used optical and acoustical methods to detect ice crystals grown in portable cloud chambers. A comparison of the ice nucleus counts, which are in good agreement, is presented.

  10. Collectors Of Airborne And Spaceborne Particles

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E.

    1991-01-01

    Brushlike collectors capture samples of dust and other particles in space vacuum or air for optical, scanning-electron-microscope, and/or x-ray analysis. Gently decelerates particles without damaging them, minimizing tendency of some particles to rebound. Depending on design of specific collector of this type, it captures particles ranging upward in size from fractions of micrometer to few micrometers.

  11. Airborne virus capture and inactivation by an electrostatic particle collector.

    PubMed

    Kettleson, Eric M; Ramaswami, Bala; Hogan, Christopher J; Lee, Myong-Hwa; Statyukha, Gennadiy A; Biswas, Pratim; Angenent, Largus T

    2009-08-01

    Airborne virus capture and inactivation were studied in an electrostatic precipitator (ESP) at applied voltages from -10 to +10 kV using aerosolized bacteriophages T3 and MS2. For each charging scenario, samples were collected from the effluent air stream and assayed for viable phages using plaque assays and for nucleic acids using quantitative polymerase chain reaction (qPCR) assays. At higher applied voltages, more virus particles were captured from air with maximum log reductions of 6.8 and 6.3 for the plaque assay and 4.2 and 3.5 for the qPCR assay at -10 kV for T3 and MS2, respectively. Beyond corona inception (i.e., at applied voltages of -10, -8, +8, and +10 kV), log reduction values obtained with the plaque assay were much higher compared to those of the qPCR assay because nonviable particles, while present in the effluent were unaccounted for in the plaque assay. Comparisons of these assays showed that in-flight inactivation (i.e., inactivation without capture) was greater for the highest applied voltages with a log inactivation of 2.6 for both phages at -10 kV. We have demonstrated great potential for virus capture and inactivation via continual ion and reactive species bombardment when conditions in the ESP are enforced to generate a corona discharge.

  12. Lung cancer risk of airborne particles for Italian population.

    PubMed

    Buonanno, G; Giovinco, G; Morawska, L; Stabile, L

    2015-10-01

    Airborne particles, including both ultrafine and supermicrometric particles, contain various carcinogens. Exposure and risk-assessment studies regularly use particle mass concentration as dosimetry parameter, therefore neglecting the potential impact of ultrafine particles due to their negligible mass compared to supermicrometric particles. The main purpose of this study was the characterization of lung cancer risk due to exposure to polycyclic aromatic hydrocarbons and some heavy metals associated with particle inhalation by Italian non-smoking people. A risk-assessment scheme, modified from an existing risk model, was applied to estimate the cancer risk contribution from both ultrafine and supermicrometric particles. Exposure assessment was carried out on the basis of particle number distributions measured in 25 smoke-free microenvironments in Italy. The predicted lung cancer risk was then compared to the cancer incidence rate in Italy to assess the number of lung cancer cases attributed to airborne particle inhalation, which represents one of the main causes of lung cancer, apart from smoking. Ultrafine particles are associated with a much higher risk than supermicrometric particles, and the modified risk-assessment scheme provided a more accurate estimate than the conventional scheme. Great attention has to be paid to indoor microenvironments and, in particular, to cooking and eating times, which represent the major contributors to lung cancer incidence in the Italian population. The modified risk assessment scheme can serve as a tool for assessing environmental quality, as well as setting up exposure standards for particulate matter.

  13. Airborne particle exposure and extrinsic skin aging.

    PubMed

    Vierkötter, Andrea; Schikowski, Tamara; Ranft, Ulrich; Sugiri, Dorothea; Matsui, Mary; Krämer, Ursula; Krutmann, Jean

    2010-12-01

    For decades, extrinsic skin aging has been known to result from chronic exposure to solar radiation and, more recently, to tobacco smoke. In this study, we have assessed the influence of air pollution on skin aging in 400 Caucasian women aged 70-80 years. Skin aging was clinically assessed by means of SCINEXA (score of intrinsic and extrinsic skin aging), a validated skin aging score. Traffic-related exposure at the place of residence was determined by traffic particle emissions and by estimation of soot in fine dust. Exposure to background particle concentration was determined by measurements of ambient particles at fixed monitoring sites. The impact of air pollution on skin aging was analyzed by linear and logistic regression and adjusted for potential confounding variables. Air pollution exposure was significantly correlated to extrinsic skin aging signs, in particular to pigment spots and less pronounced to wrinkles. An increase in soot (per 0.5 × 10(-5) per m) and particles from traffic (per 475  kg per year and square km) was associated with 20% more pigment spots on forehead and cheeks. Background particle pollution, which was measured in low residential areas of the cities without busy traffic and therefore is not directly attributable to traffic but rather to other sources of particles, was also positively correlated to pigment spots on face. These results indicate that particle pollution might influence skin aging as well.

  14. Acoustic Resonator Optimisation for Airborne Particle Manipulation

    NASA Astrophysics Data System (ADS)

    Devendran, Citsabehsan; Billson, Duncan R.; Hutchins, David A.; Alan, Tuncay; Neild, Adrian

    Advances in micro-electromechanical systems (MEMS) technology and biomedical research necessitate micro-machined manipulators to capture, handle and position delicate micron-sized particles. To this end, a parallel plate acoustic resonator system has been investigated for the purposes of manipulation and entrapment of micron sized particles in air. Numerical and finite element modelling was performed to optimise the design of the layered acoustic resonator. To obtain an optimised resonator design, careful considerations of the effect of thickness and material properties are required. Furthermore, the effect of acoustic attenuation which is dependent on frequency is also considered within this study, leading to an optimum operational frequency range. Finally, experimental results demonstrated good particle levitation and capture of various particle properties and sizes ranging to as small as 14.8 μm.

  15. Real-time airborne particle analyzer

    DOEpatents

    Reilly, Peter T.A.

    2012-10-16

    An aerosol particle analyzer includes a laser ablation chamber, a gas-filled conduit, and a mass spectrometer. The laser ablation chamber can be operated at a low pressure, which can be from 0.1 mTorr to 30 mTorr. The ablated ions are transferred into a gas-filled conduit. The gas-filled conduit reduces the electrical charge and the speed of ablated ions as they collide and mix with buffer gases in the gas-filled conduit. Preferably, the gas filled-conduit includes an electromagnetic multipole structure that collimates the nascent ions into a beam, which is guided into the mass spectrometer. Because the gas-filled conduit allows storage of vast quantities of the ions from the ablated particles, the ions from a single ablated particle can be analyzed multiple times and by a variety of techniques to supply statistically meaningful analysis of composition and isotope ratios.

  16. Laboratory Study of Airborne Fallout Particles and Their Time Distribution.

    ERIC Educational Resources Information Center

    Smith, H. A., Jr.; And Others

    1979-01-01

    Samples of filtered airborne particulate, collected daily for the first month after the September 18, 1977 Chinese nuclear detonation, showed fourteen fission products. Fluctuations in the daily fallout activity levels suggested a global fallout orbit time of approximately twenty days. (Author/BB)

  17. [Investigation of Carbonaceous Airborne Particles by Scanning Proton Microprobe].

    PubMed

    Bao, Liang-man; Liu, Jiang-feng; Lei, Qian-tao; Li, Xiao-lin; Zhang, Gui-lin; Li, Yan

    2016-01-15

    Carbonaceous particles are an important component of the atmospheric aerosol particles and important for global climate change, air quality and human health. The PM₁₀ single particles from two environmental monitor locations and seven pollution emission sources were analyzed using scanning proton microprobe (SPM) techniques. The concentration of carbon in individual particles was quantitatively determined by proton non-Rutherford elastic backscattering spectrometry (EBS). The results of this investigation showed that carbonaceous particles were dominant in the pollution sources of coal and oil combustions, diesel busexhaust and automobile exhaust, while inorganic particles were dominant in the sources of steel industry, cement dust and soil dust. Carbonaceous matter was enriched in particles from the city center, while mineral matter was the main component of airborne particles in the industrial area. Elemental mapping of single aerosol particles yielded important information on the chemical reactions of aerosol particles. The micro-PIXE (particle induced X-ray emission) maps of S, Ca and Fe of individual carbonaceous particles showed that sulfuration reaction occurred between SO₂and mineral particles, which increased the sulfur content of particles. PMID:27078933

  18. Real-time monitoring of non-viable airborne particles correlates with airborne colonies and represents an acceptable surrogate for daily assessment of cell-processing cleanroom performance

    PubMed Central

    RAVAL, JAY S.; KOCH, EILEEN; DONNENBERG, ALBERT D.

    2014-01-01

    Background aims Airborne particulate monitoring is mandated as a component of good manufacturing practice. We present a procedure developed to monitor and interpret airborne particulates in an International Organization for Standardization (ISO) class 7 cleanroom used for the cell processing of Section 351 and Section 361 products. Methods We collected paired viable and non-viable airborne particle data over a period of 1 year in locations chosen to provide a range of air quality. We used receiver operator characteristic (ROC) analysis to determine empirically the relationship between non-viable and viable airborne particle counts. Results Viable and non-viable particles were well-correlated (r 2 = 0.78), with outlier observations at the low end of the scale (non-viable particles without detectable airborne colonies). ROC analysis predicted viable counts ≥0.5/feet 3 (a limit set by the United States Pharmacopeia) at an action limit of ≥32 000 particles (≥0.5 μ)/feet 3 , with 95.6% sensitivity and 50% specificity. This limit was exceeded 2.6 times during 18 months of retrospective daily cleanroom data (an expected false alarm rate of 1.3 times/year). After implementing this action limit, we were alerted in real time to an air-handling failure undetected by our hospital facilities management. Conclusions A rational action limit for non-viable particles was determined based on the correlation with airborne colonies. Reaching or exceeding the action limit of 32 000 non-viable particles/feet 3 triggers suspension of cleanroom cell-processing activities, deep cleaning, investigation of air handling, and a deviation management process. Our full procedure for particle monitoring is available as an online supplement. PMID:22746538

  19. Identification and characterization of individual airborne volcanic ash particles by Raman microspectroscopy.

    PubMed

    Ivleva, Natalia P; Huckele, Susanne; Weinzierl, Bernadett; Niessner, Reinhard; Haisch, Christoph; Baumann, Thomas

    2013-11-01

    We present for the first time the Raman microspectroscopic identification and characterization of individual airborne volcanic ash (VA) particles. The particles were collected in April/May 2010 during research aircraft flights, which were performed by Deutsches Zentrum für Luft- und Raumfahrt in the airspace near the Eyjafjallajökull volcano eruption and over Europe (between Iceland and Southern Germany). In addition, aerosol particles were sampled by an Electrical Low Pressure Impactor in Munich, Germany. As references for the Raman analysis, we used the spectra of VA collected at the ground near the place of eruption, of mineral basaltic rock, and of different minerals from a database. We found significant differences in the spectra of VA and other aerosol particles (e.g., soot, nitrates, sulfates, and clay minerals), which allowed us to identify VA among other atmospheric particulate matter. Furthermore, while the airborne VA shows a characteristic Raman pattern (with broad band from ca. 200 to ca. 700 cm(-1) typical for SiO₂ glasses and additional bands of ferric minerals), the differences between the spectra of aged and fresh particles were observed, suggesting differences in their chemical composition and/or structure. We also analyzed similarities between Eyjafjallajökull VA particles collected at different sampling sites and compared the particles with a large variety of glassy and crystalline minerals. This was done by applying cluster analysis, in order to get information on the composition and structure of volcanic ash. PMID:24121468

  20. Direct Characterization of Airborne Particles Associated with Arsenic-rich Mine Tailings: Particle Size Mineralogy and Texture

    SciTech Connect

    M Corriveau; H Jamieson; M Parsons; J Campbell; A Lanzirotti

    2011-12-31

    Windblown and vehicle-raised dust from unvegetated mine tailings can be a human health risk. Airborne particles from As-rich abandoned Au mine tailings from Nova Scotia, Canada have been characterized in terms of particle size, As concentration, As oxidation state, mineral species and texture. Samples were collected in seven aerodynamically fractionated size ranges (0.5-16 {micro}m) using a cascade impactor deployed at three tailings fields. All three sites are used for recreational activities and off-road vehicles were racing on the tailings at two mines during sample collection. Total concentrations of As in the <8 {micro}m fraction varied from 65 to 1040 ng/m{sup 3} of air as measured by proton-induced X-ray emission (PIXE) analysis. The same samples were analysed by synchrotron-based microfocused X-ray absorption near-edge spectroscopy ({micro}XANES) and X-ray diffraction ({micro}XRD) and found to contain multiple As-bearing mineral species, including Fe-As weathering products. The As species present in the dust were similar to those observed in the near-surface tailings. The action of vehicles on the tailings surface may disaggregate material cemented with Fe arsenate and contribute additional fine-grained As-rich particles to airborne dust. Results from this study can be used to help assess the potential human health risks associated with exposure to airborne particles from mine tailings.

  1. Current concepts on airborne particles and health

    SciTech Connect

    Mauderly, J.L.

    1994-11-01

    Epidemiological evidence of associations between environmental particulate concentrations and both acute and chronic health effects has grown with numerous recent studies conducted in the US and other countries. An association between short-term changes in particulate levels and acute mortality now seems certain. The association is consistent among studies and coherent among indicators of mortality and morbidity. Effects observed at surprisingly low pollution levels have raised concern for current exposures even in modestly polluted cities. Toxicology did not predict the acute mortality effect, and causal mechanisms are difficult to rationalize. Present data suggest that the fine fraction of particulate pollution is more toxic than larger particles, but the contribution of specific particulate species is poorly understood.

  2. Identifying airborne metal particles sources near an optoelectronic and semiconductor industrial park

    NASA Astrophysics Data System (ADS)

    Chen, Ho-Wen; Chen, Wei-Yea; Chang, Cheng-Nan; Chuang, Yen-Hsun; Lin, Yu-Hao

    2016-06-01

    The recently developed Central Taiwan Science Park (CTSP) in central Taiwan is home to an optoelectronic and semiconductor industrial cluster. Therefore, exploring the elemental compositions and size distributions of airborne particles emitted from the CTSP would help to prevent pollution. This study analyzed size-fractionated metal-rich particle samples collected in upwind and downwind areas of CTSP during Jan. and Oct. 2013 by using micro-orifice uniform deposited impactor (MOUDI). Correlation analysis, hierarchical cluster analysis and particle mass-size distribution analysis are performed to identify the source of metal-rich particle near the CTSP. Analyses of elemental compositions and particle size distributions emitted from the CTSP revealed that the CTSP emits some metals (V, As, In Ga, Cd and Cu) in the ultrafine particles (< 1 μm). The statistical analysis combines with the particle mass-size distribution analysis could provide useful source identification information. In airborne particles with the size of 0.32 μm, Ga could be a useful pollution index for optoelectronic and semiconductor emission in the CTSP. Meanwhile, the ratios of As/Ga concentration at the particle size of 0.32 μm demonstrates that humans near the CTSP would be potentially exposed to GaAs ultrafine particles. That is, metals such as Ga and As and other metals that are not regulated in Taiwan are potentially harmful to human health.

  3. Transport of airborne particles within a room.

    PubMed

    Richmond-Bryant, J; Eisner, A D; Brixey, L A; Wiener, R W

    2006-02-01

    The objective of this study is to test a technique used to analyze contaminant transport in the wake of a bluff body under controlled experimental conditions for application to aerosol transport in a complex furnished room. Specifically, the hypothesis tested by our work is that the dispersion of contaminants in a room is related to the turbulence kinetic energy and length scale. This turbulence is, in turn, determined by the size and shape of furnishings within the room and by the ventilation characteristics. This approach was tested for indoor dispersion through computational fluid dynamics simulations and laboratory experiments. In each, 3 mum aerosols were released in a furnished room with varied contaminant release locations (at the inlet vent or under a desk). The realizable k approximately epsilon model was employed in the simulations, followed by a Lagrangian particle trajectory simulation used as input for an in-house FORTRAN code to compute aerosol concentration. For the experiments, concentrations were measured simultaneously at seven locations by laser photometry, and air velocity was measured using laser Doppler velocimetry. The results suggest that turbulent diffusion is a significant factor in contaminant residence time in a furnished room. This procedure was then expanded to develop a simplified correlation between contaminant residence time and the number of enclosing surfaces around a point containing the contaminant. Practical Implications The work presented here provides a methodology for relating local aerosol residence time to properties of room ventilation and furniture arrangement. This technique may be used to assess probable locations of high concentration by knowing only the particle release location, furniture configuration, inlet and outlet locations, and air speeds, which are all observable features. Applications of this method include development of 'rules of thumb' for first responders entering a room where an agent has been released

  4. Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety

    PubMed Central

    Peters, TM; Elzey, S; Johnson, R; Park, H; Grassian, VH; Maher, T; O'Shaughnessy, P

    2016-01-01

    Two methods were used to distinguish airborne engineered nanomaterials from other airborne particles in a facility that produces nano-structured lithium titanate metal oxide powder. The first method involved off-line analysis of filter samples collected with conventional respirable samplers at each of seven locations (six near production processes and one outdoors). Throughout most of the facility and outdoors, respirable mass concentrations were low (<0.050 mg m−3) and were attributed to particles other than the nanomaterial (<10% by mass titanium determined with inductively coupled plasma atomic emission spectrometry). In contrast, in a single area with extensive material handling, mass concentrations were greatest (0.118 mg m−3) and contained up to 39% +/− 11% lithium titanium, indicating the presence of airborne nanomaterial. Analysis of the filter samples collected in this area by transmission electron microscope and scanning electron microscope revealed that the airborne nanomaterial was associated only with spherical aggregates (clusters of fused 10–80 nm nanoparticles) that were larger than 200 nm. This analysis also showed that nanoparticles in this area were the smallest particles of a larger distribution of submicrometer chain agglomerates likely from welding in an adjacent area of the facility. The second method used two, hand-held, direct-reading, battery-operated instruments to obtain a time series of very fine particle number (<300 nm), respirable mass, and total mass concentration, which were then related to activities within the area of extensive material handling. This activity-based monitoring showed that very fine particle number concentrations (<300 nm) had no apparent correlation to worker activities, but that sharp peaks in the respirable and total mass concentration coincided with loading a hopper and replacing nanomaterial collection bags. These findings were consistent with those from the filter-based method in that they

  5. New Methods for Personal Exposure Monitoring for Airborne Particles

    PubMed Central

    Koehler, Kirsten A.; Peters, Thomas

    2016-01-01

    Airborne particles have been associated with a range of adverse cardiopulmonary outcomes, which has driven its monitoring at stationary, central sites throughout the world. Individual exposures, however, can differ substantially from concentrations measured at central sites due to spatial variability across a region and sources unique to the individual, such as cooking or cleaning in homes, traffic emissions during commutes, and widely varying sources encountered at work. Personal monitoring with small, battery-powered instruments enables the measurement of an individual’s exposure as they go about their daily activities. Personal monitoring can substantially reduce exposure misclassification and improve the power to detect relationships between particulate pollution and adverse health outcomes. By partitioning exposures to known locations and sources, it may be possible to account for variable toxicity of different sources. This review outlines recent advances in the field of personal exposure assessment for particulate pollution. Advances in battery technology have improved the feasibility of 24-hour monitoring, providing the ability to more completely attribute exposures to microenvironment (e.g., work, home, commute). New metrics to evaluate the relationship between particulate matter and health are also being considered, including particle number concentration, particle composition measures, and particle oxidative load. Such metrics provide opportunities to develop more precise associations between airborne particles and health and may provide opportunities for more effective regulations. PMID:26385477

  6. Flow analysis of airborne particles in a hospital operating room

    NASA Astrophysics Data System (ADS)

    Faeghi, Shiva; Lennerts, Kunibert

    2016-06-01

    Preventing airborne infections during a surgery has been always an important issue to deliver effective and high quality medical care to the patient. One of the important sources of infection is particles that are distributed through airborne routes. Factors influencing infection rates caused by airborne particles, among others, are efficient ventilation and the arrangement of surgical facilities inside the operating room. The paper studies the ventilation airflow pattern in an operating room in a hospital located in Tehran, Iran, and seeks to find the efficient configurations with respect to the ventilation system and layout of facilities. This study uses computational fluid dynamics (CFD) and investigates the effects of different inflow velocities for inlets, two pressurization scenarios (equal and excess pressure) and two arrangements of surgical facilities in room while the door is completely open. The results show that system does not perform adequately when the door is open in the operating room under the current conditions, and excess pressure adjustments should be employed to achieve efficient results. The findings of this research can be discussed in the context of design and controlling of the ventilation facilities of operating rooms.

  7. Dielectrophoretic separation of airborne microbes and dust particles using a microfluidic channel for real-time bioaerosol monitoring.

    PubMed

    Moon, Hui-Sung; Nam, Yun-Woo; Park, Jae Chan; Jung, Hyo-Il

    2009-08-01

    Airborne microbes such as fungi, bacteria, and viruses are a threat to public health. Robust and real-time detection systems are necessary to prevent and control such dangerous biological particles in public places and dwellings. For direct and real-time detection of airborne microbes, samples must be collected and typically resuspended in liquid prior to detection; however, environmental particles such as dust are also trapped in such samples. Therefore, the isolation of target bacteria or a selective collection of microbes from unwanted nonbiological particles prior to detection is of great importance. Dielectrophoresis (DEP), the translational motion of charge neutral matter in nonuniform electric fields, is an emerging technique that can rapidly separate biological particles in microfluidics because low voltages produce significant and contactless forces on particles without any modification or labeling. In this paper, we propose a new method for the separation of airborne microbes using DEP with a simple and novel curved electrode design for separating bacteria in a solution containing beads or dust that are taken from an airborne environmental sample. Using this method, we successfully isolated 90% of the airborne bacterium Micrococcus luteus from a mixture of bacteria and dust using a microfluidic device, consisting of novel curved electrodes that attract bacteria and repel or leave dust particles. As there has been little research on analyzing environmental samples using microfluidics and DEP, this work describes a novel strategy for a rapid and direct bioaerosol monitoring system.

  8. Airborne Particle Size Distribution Measurements at USDOE Fernald

    SciTech Connect

    Harley, N.H.; Chittaporn, P.; Heikkinen, M.; Medora, R.; Merrill, R.

    2003-03-27

    There are no long term measurements of the particle size distribution and concentration of airborne radionuclides at any USDOE facility except Fernald. Yet the determinant of lung dose is the particle size, determining the airway and lower lung deposition. Beginning in 2000, continuous (6 to 8 weeks) measurements of the aerosol particle size distribution have been made with a miniature sampler developed under EMSP. Radon gas decays to a chain of four short lived solid radionuclides that attach immediately to the resident atmospheric aerosol. These in turn decay to long lived polonium 210. Alpha emitting polonium is a tracer for any atmospheric aerosol. Six samplers at Fernald and four at QC sites in New Jersey show a difference in both polonium concentration and size distribution with the winter measurements being higher/larger than summer by almost a factor of two at all locations. EMSP USDOE Contract DE FG07 97ER62522.

  9. Distribution of airborne particles from multi-emission source.

    PubMed

    Kemppainen, Sari; Tervahattu, Heikki; Kikuchi, Ryunosuke

    2003-06-01

    The purpose of this work was to study the distribution of airborne particles in the surroundings of an iron and steel factory in southern Finland. Several sources of particulate emissions are lying side by side, causing heavy dust loading to the environment. This complicated multi-pollutant situation was studied mainly by SEM/EDX methodology. Particles accumulated on Scots pine bark were identified and quantitatively measured according to their element content, size and shape. As a result, distribution maps of particulate elements were drawn and the amount of different particle types along the study lines was plotted. Particulate emissions from the industrial or energy production processes were not the main dust source. Most emissions were produced from the clinker crusher. Numerous stockpiles of the industrial wastes and raw materials also gave rise to particulate emissions as a result of wind erosion. It was concluded that SEM/EDX methodology is a useful tool for studying the distribution of particulate pollutants.

  10. The control by ventilation of airborne bacterial transfer between hospital patients, and its assessment by means of a particle tracer

    PubMed Central

    Foord, N.; Lidwell, O. M.

    1972-01-01

    A simple and convenient particle tracer for studies of the effectiveness of isolation units and other places in limiting the airborne transfer of bacteria is described. Particles of potassium iodide 7-8 μm. diameter are generated by spraying from solution and collected on membrane filters. The particles can be identified by development with 0·1% acid palladium chloride solution, when dark brown spots approximately 100 μm. in diameter are produced. ImagesPlate 1 PMID:4503869

  11. Collation of earth resources data collected by ERIM airborne sensors

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.

    1975-01-01

    Earth resources imagery from nine years of data collection with developmental airborne sensors is cataloged for reference. The imaging sensors include single and multiband line scanners and side-looking radars. The operating wavelengths of the sensors include ultraviolet, visible and infrared band scanners, and X- and L-band radar. Imagery from all bands (radar and scanner) were collected at some sites and many sites had repeated coverage. The multiband scanner data was radiometrically calibrated. Illustrations show how the data can be used in earth resource investigations. References are made to published reports which have made use of the data in completed investigations. Data collection sponsors are identified and a procedure described for gaining access to the data.

  12. Physical and chemical characterization of airborne particles from welding operations in automotive plants.

    PubMed

    Dasch, Jean; D'Arcy, James

    2008-07-01

    Airborne particles were characterized from six welding operations in three automotive plants, including resistance spot welding, metal inert gas (MIG) welding and tungsten inert gas (TIG) welding of aluminum and resistance spot welding, MIG welding and weld-through sealer of galvanized steel. Particle levels were measured throughout the process area to select a sampling location, followed by intensive particle sampling over one working shift. Temporal trends were measured, and particles were collected on filters to characterize their size and chemistry. In all cases, the particles fell into a bimodal size distribution with very large particles >20 mum in diameter, possibly emitted as spatter or metal expulsions, and very small particles about 1 mum in diameter, possibly formed from condensation of vaporized metal. The mass median aerodynamic diameter was about 1 mum, with only about 7% of the particle mass present as ultrafine particles <100 nm. About half the mass of aluminum welding particles could be accounted for by chemical analysis, with the remainder possibly present as oxygen. Predominant species were organic carbon, elemental carbon, iron, and aluminum. More than 80% of the particle mass could be accounted for from steel welding, primarily present as iron, organic carbon, zinc, and copper. Particle concentrations and elemental concentrations were compared with allowable concentrations as recommended by the Occupational Safety and Health Administration and the American Conference of Governmental Industrial Hygienists. In all cases, workplace levels were at least 11 times lower than recommended levels. PMID:18464098

  13. Physical and chemical characterization of airborne particles from welding operations in automotive plants.

    PubMed

    Dasch, Jean; D'Arcy, James

    2008-07-01

    Airborne particles were characterized from six welding operations in three automotive plants, including resistance spot welding, metal inert gas (MIG) welding and tungsten inert gas (TIG) welding of aluminum and resistance spot welding, MIG welding and weld-through sealer of galvanized steel. Particle levels were measured throughout the process area to select a sampling location, followed by intensive particle sampling over one working shift. Temporal trends were measured, and particles were collected on filters to characterize their size and chemistry. In all cases, the particles fell into a bimodal size distribution with very large particles >20 mum in diameter, possibly emitted as spatter or metal expulsions, and very small particles about 1 mum in diameter, possibly formed from condensation of vaporized metal. The mass median aerodynamic diameter was about 1 mum, with only about 7% of the particle mass present as ultrafine particles <100 nm. About half the mass of aluminum welding particles could be accounted for by chemical analysis, with the remainder possibly present as oxygen. Predominant species were organic carbon, elemental carbon, iron, and aluminum. More than 80% of the particle mass could be accounted for from steel welding, primarily present as iron, organic carbon, zinc, and copper. Particle concentrations and elemental concentrations were compared with allowable concentrations as recommended by the Occupational Safety and Health Administration and the American Conference of Governmental Industrial Hygienists. In all cases, workplace levels were at least 11 times lower than recommended levels.

  14. Predicting emissions of SVOCs from polymeric materials and their interaction with airborne particles.

    PubMed

    Xu, Ying; Little, John C

    2006-01-15

    A model that predicts the emission rate of volatile organic compounds (VOCs) from building materials is extended and used to predict the emission rate of semivolatile organic compounds (SVOCs) from polymeric materials. Reasonable agreement between model predictions and gas-phase di-2-ethylhexyl phthalate (DEHP) concentrations is achieved using data collected in a previous experimental study that measured emissions of DEHP from vinyl flooring in two very different chambers. While emissions of highly volatile VOCs are subject to "internal" control (the material-phase diffusion coefficient), emissions of the very low volatility SVOCs are subject to "external" control (partitioning into the gas phase, the convective mass-transfer coefficient, and adsorption onto interior surfaces). The effect of SVOCs partitioning onto airborne particles is also examined. The DEHP emission rate is increased when the gas-phase concentration is high, and especially when partitioning to the airborne particles is strong. Airborne particles may play an important role in inhalation exposure as well as in transporting SVOCs well beyond the source. Although more rigorous validation is needed, the model should help elucidate the mechanisms governing emissions of phthalate plasticizers, brominated flame retardants, biocides, and other SVOCs from a wide range of building materials and consumer products. PMID:16468389

  15. 78 FR 54956 - Agency Information Collection (Open Burn Pit Registry Airborne Hazard Self-Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ... AFFAIRS Agency Information Collection (Open Burn Pit Registry Airborne Hazard Self-Assessment....rennie@va.gov . Please refer to ``OMB Control No. 2900-NEW, Open Burn Pit Registry Airborne Hazard Self-Assessment Questionnaire.'' SUPPLEMENTARY INFORMATION: Title: Open Burn Pit Registry Airborne Hazard...

  16. Dry deposition of large, airborne particles onto a surrogate surface

    NASA Astrophysics Data System (ADS)

    Kim, Eugene; Kalman, David; Larson, Timothy

    Simultaneous measurements of particle dry deposition flux and airborne number concentration in the open atmosphere were made using three different types of artificially generated particles in the size range 10-100 μm - perlite, diatomaceous earth and glass beads. A combination of gravimetric analysis, automated microscopy and sonic anemometry provided size-resolved estimates of both the inertial and gravitational components of the quasi-laminar layer particle deposition velocity, ( Vd) b, as a function of size. Eddy inertial deposition efficiency ( ηdI) was determined as a function of dimensionless eddy Stokes number (Stk e). In the range 3particles and gases to environmental surfaces. DOE Report PNL-SA-6721, Pacific Northwest Laboratories, Richland, WA), used in several regulatory models, significantly under-predicted (up to seven times) ( Vd) b for large particles ( da>10 μm).

  17. Airborne radionuclides in mosses collected at different latitudes.

    PubMed

    Krmar, M; Wattanavatee, K; Radnović, D; Slivka, J; Bhongsuwan, T; Frontasyeva, M V; Pavlov, S S

    2013-03-01

    Terrestrial mosses are a promising medium for investigation and monitoring of airborne radionuclide depositions due to their widespread occurrence, ease of sampling, and the possibility of high-resolution gamma spectrometry measurements without preparatory chemical treatment of samples. The overall objective of the present study was to compare (7)Be, (210)Pb and (137)Cs activity concentrations (in Bq/kg) in moss samples collected at two different climate zones: the south of Thailand (7 °N) and in Serbia (∼45 °N) in order to examine deposition of airborne radionuclide in these distant areas. Significant difference of the (210)Pb content (almost a factor of 2) in mosses was observed. The mean value of (7)Be activity in samples from Serbia was almost 40% higher than activity of those collected in Thailand. Level of (137)Cs in Thailand mosses was below the detection limit. It was shown that air transport of water droplets in the area of waterfalls and strong turbulence can deposit U and Th daughter nuclei. PMID:21880403

  18. Airborne radionuclides in mosses collected at different latitudes.

    PubMed

    Krmar, M; Wattanavatee, K; Radnović, D; Slivka, J; Bhongsuwan, T; Frontasyeva, M V; Pavlov, S S

    2013-03-01

    Terrestrial mosses are a promising medium for investigation and monitoring of airborne radionuclide depositions due to their widespread occurrence, ease of sampling, and the possibility of high-resolution gamma spectrometry measurements without preparatory chemical treatment of samples. The overall objective of the present study was to compare (7)Be, (210)Pb and (137)Cs activity concentrations (in Bq/kg) in moss samples collected at two different climate zones: the south of Thailand (7 °N) and in Serbia (∼45 °N) in order to examine deposition of airborne radionuclide in these distant areas. Significant difference of the (210)Pb content (almost a factor of 2) in mosses was observed. The mean value of (7)Be activity in samples from Serbia was almost 40% higher than activity of those collected in Thailand. Level of (137)Cs in Thailand mosses was below the detection limit. It was shown that air transport of water droplets in the area of waterfalls and strong turbulence can deposit U and Th daughter nuclei.

  19. Airborne particle concentrations at schools measured at different spatial scales

    NASA Astrophysics Data System (ADS)

    Buonanno, G.; Fuoco, F. C.; Morawska, L.; Stabile, L.

    2013-03-01

    Potential adverse effects on children health may result from school exposure to airborne particles. To address this issue, measurements in terms of particle number concentration, particle size distribution and black carbon (BC) concentrations were performed in three school buildings in Cassino (Italy) and its suburbs, outside and inside of the classrooms during normal occupancy and use. Additional time resolved information was gathered on ventilation condition, classroom activity, and traffic count data around the schools were obtained using a video camera. Across the three investigated school buildings, the outdoor and indoor particle number concentration monitored down to 4 nm and up to 3 μm ranged from 2.8 × 104 part cm-3 to 4.7 × 104 part cm-3 and from 2.0 × 104 part cm-3 to 3.5 × 104 part cm-3, respectively. The total particle concentrations were usually higher outdoors than indoors, because no indoor sources were detected. I/O measured was less than 1 (varying in a relatively narrow range from 0.63 to 0.74), however one school exhibited indoor concentrations higher than outdoor during the morning rush hours. Particle size distribution at the outdoor site showed high particle concentrations in different size ranges, varying during the day; in relation to the starting and finishing of school time two modes were found. BC concentrations were 5 times higher at the urban school compared with the suburban and suburban-to-urban differences were larger than the relative differences of ultrafine particle concentrations.

  20. Measurement of airborne particle concentrations near the Sunset Crater volcano, Arizona.

    PubMed

    Benke, Roland R; Hooper, Donald M; Durham, James S; Bannon, Donald R; Compton, Keith L; Necsoiu, Marius; McGinnis, Ronald N

    2009-02-01

    Direct measurements of airborne particle mass concentrations or mass loads are often used to estimate health effects from the inhalation of resuspended contaminated soil. Airborne particle mass concentrations were measured using a personal sampler under a variety of surface-disturbing activities within different depositional environments at both volcanic and nonvolcanic sites near the Sunset Crater volcano in northern Arizona. Focused field investigations were performed at this analog site to improve the understanding of natural and human-induced processes at Yucca Mountain, Nevada. The level of surface-disturbing activity was found to be the most influential factor affecting the measured airborne particle concentrations, which increased over three orders of magnitude relative to ambient conditions. As the surface-disturbing activity level increased, the particle size distribution and the majority of airborne particle mass shifted from particles with aerodynamic diameters less than 10 mum (0.00039 in) to particles with aerodynamic diameters greater than 10 mum (0.00039 in). Under ambient conditions, above average wind speeds tended to increase airborne particle concentrations. In contrast, stronger winds tended to decrease airborne particle concentrations in the breathing zone during light and heavy surface-disturbing conditions. A slight increase in the average airborne particle concentration during ambient conditions was found above older nonvolcanic deposits, which tended to be finer grained than the Sunset Crater tephra deposits. An increased airborne particle concentration was realized when walking on an extremely fine-grained deposit, but the sensitivity of airborne particle concentrations to the resuspendible fraction of near-surface grain mass was not conclusive in the field setting when human activities disturbed the bulk of near-surface material. Although the limited sample size precluded detailed statistical analysis, the differences in airborne particle

  1. Increasing efficiency and effectiveness of processes related to airborne particles in reticle mask environments

    NASA Astrophysics Data System (ADS)

    Jackson, Allyn

    2015-09-01

    There are significant advantages of using the ReticleSense™ Airborne Particle Sensor (APSR) in reticle environments to locate and troubleshoot airborne particles as compared to traditional surface scan reticle, in-situ or hand-held methods. Time, resource and cost savings are identified.

  2. Increasing efficiency and effectiveness of processes related to airborne particles in reticle mask environments

    NASA Astrophysics Data System (ADS)

    Jackson, Allyn

    2014-09-01

    There are significant advantages of using the ReticleSenseTM Airborne Particle Sensor (APSR) in reticle environments to locate and troubleshoot airborne particles in reticle environments as compared to traditional surface scan reticle, in-situ or hand-held methods. Time, resource and cost savings are identified.

  3. Comparison of size and geography of airborne tungsten particles in Fallon, Nevada, and Sweet Home, Oregon, with implications for public health.

    PubMed

    Sheppard, Paul R; Bierman, Brian J; Rhodes, Kent; Ridenour, Gary; Witten, Mark L

    2012-01-01

    To improve understanding of possible connections between airborne tungsten and public health, size and geography of airborne tungsten particles collected in Fallon, Nevada, and Sweet Home, Oregon, were compared. Both towns have industrial tungsten facilities, but only Fallon has experienced a cluster of childhood leukemia. Fallon and Sweet Home are similar to one another by their particles of airborne tungsten being generally small in size. Meteorologically, much, if not most, of residential Fallon is downwind of its hard metal facility for at least some fraction of time at the annual scale, whereas little of residential Sweet Home is downwind of its tungsten facility. Geographically, most Fallon residents potentially spend time daily within an environment containing elevated levels of airborne tungsten. In contrast, few Sweet Home residents potentially spend time daily within an airborne environment with elevated levels of airborne tungsten. Although it cannot be concluded from environmental data alone that elevated airborne tungsten causes childhood leukemia, the lack of excessive cancer in Sweet Home cannot logically be used to dismiss the possibility of airborne tungsten as a factor in the cluster of childhood leukemia in Fallon. Detailed modeling of all variables affecting airborne loadings of heavy metals would be needed to legitimately compare human exposures to airborne tungsten in Fallon and Sweet Home.

  4. Comparison of Size and Geography of Airborne Tungsten Particles in Fallon, Nevada, and Sweet Home, Oregon, with Implications for Public Health

    PubMed Central

    Sheppard, Paul R.; Bierman, Brian J.; Rhodes, Kent; Ridenour, Gary; Witten, Mark L.

    2012-01-01

    To improve understanding of possible connections between airborne tungsten and public health, size and geography of airborne tungsten particles collected in Fallon, Nevada, and Sweet Home, Oregon, were compared. Both towns have industrial tungsten facilities, but only Fallon has experienced a cluster of childhood leukemia. Fallon and Sweet Home are similar to one another by their particles of airborne tungsten being generally small in size. Meteorologically, much, if not most, of residential Fallon is downwind of its hard metal facility for at least some fraction of time at the annual scale, whereas little of residential Sweet Home is downwind of its tungsten facility. Geographically, most Fallon residents potentially spend time daily within an environment containing elevated levels of airborne tungsten. In contrast, few Sweet Home residents potentially spend time daily within an airborne environment with elevated levels of airborne tungsten. Although it cannot be concluded from environmental data alone that elevated airborne tungsten causes childhood leukemia, the lack of excessive cancer in Sweet Home cannot logically be used to dismiss the possibility of airborne tungsten as a factor in the cluster of childhood leukemia in Fallon. Detailed modeling of all variables affecting airborne loadings of heavy metals would be needed to legitimately compare human exposures to airborne tungsten in Fallon and Sweet Home. PMID:22523506

  5. An airborne meteorological data collection system using satellite relay (ASDAR)

    NASA Technical Reports Server (NTRS)

    Bagwell, J. W.; Lindow, B. G.

    1978-01-01

    The National Aeronautics and Space Administration (NASA) has developed an airborne data acquisition and communication system for the National Oceanic and Atmospheric Administration (NOAA). This system known as ASDAR, the Aircraft to Satellite Data Relay, consists of a microprocessor based controller, time clock, transmitter and antenna. Together they acquire meteorological and position information from existing aircraft systems on B-747 aircraft, convert and format these, and transmit them to the ground via the GOES meteorological satellite series. The development and application of the ASDAR system is described with emphasis on unique features. Performance to date is exceptional, providing horizon-to-horizon coverage of aircraft flights. The data collected is of high quality and is considered a valuable addition to the data base from which NOAA generates its weather forecasts.

  6. A Novel Size-Selective Airborne Particle Sampling Instrument (Wras) for Health Risk Evaluation

    NASA Astrophysics Data System (ADS)

    Gnewuch, H.; Muir, R.; Gorbunov, B.; Priest, N. D.; Jackson, P. R.

    Health risks associated with inhalation of airborne particles are known to be influenced by particle sizes. A reliable, size resolving sampler, classifying particles in size ranges from 2 nm—30 μm and suitable for use in the field would be beneficial in investigating health risks associated with inhalation of airborne particles. A review of current aerosol samplers highlighted a number of limitations. These could be overcome by combining an inertial deposition impactor with a diffusion collector in a single device. The instrument was designed for analysing mass size distributions. Calibration was carried out using a number of recognised techniques. The instrument was tested in the field by collecting size resolved samples of lead containing aerosols present at workplaces in factories producing crystal glass. The mass deposited on each substrate proved sufficient to be detected and measured using atomic absorption spectroscopy. Mass size distributions of lead were produced and the proportion of lead present in the aerosol nanofraction calculated and varied from 10% to 70% by weight.

  7. Characterization of Exposures to Airborne Nanoscale Particles During Friction Stir Welding of Aluminum

    PubMed Central

    Pfefferkorn, Frank E.; Bello, Dhimiter; Haddad, Gilbert; Park, Ji-Young; Powell, Maria; Mccarthy, Jon; Bunker, Kristin Lee; Fehrenbacher, Axel; Jeon, Yongho; Virji, M. Abbas; Gruetzmacher, George; Hoover, Mark D.

    2010-01-01

    Friction stir welding (FSW) is considered one of the most significant developments in joining technology over the last half century. Its industrial applications are growing steadily and so are the number of workers using this technology. To date, there are no reports on airborne exposures during FSW. The objective of this study was to investigate possible emissions of nanoscale (<100 nm) and fine (<1 μm) aerosols during FSW of two aluminum alloys in a laboratory setting and characterize their physicochemical composition. Several instruments measured size distributions (5 nm to 20 μm) with 1-s resolution, lung deposited surface areas, and PM2.5 concentrations at the source and at the breathing zone (BZ). A wide range aerosol sampling system positioned at the BZ collected integrated samples in 12 stages (2 nm to 20 μm) that were analyzed for several metals using inductively coupled plasma mass spectrometry. Airborne aerosol was directly collected onto several transmission electron microscope grids and the morphology and chemical composition of collected particles were characterized extensively. FSW generates high concentrations of ultrafine and submicrometer particles. The size distribution was bimodal, with maxima at ∼30 and ∼550 nm. The mean total particle number concentration at the 30 nm peak was relatively stable at ∼4.0 × 105 particles cm−3, whereas the arithmetic mean counts at the 550 nm peak varied between 1500 and 7200 particles cm−3, depending on the test conditions. The BZ concentrations were lower than the source concentrations by 10–100 times at their respective peak maxima and showed higher variability. The daylong average metal-specific concentrations were 2.0 (Zn), 1.4 (Al), and 0.24 (Fe) μg m−3; the estimated average peak concentrations were an order of magnitude higher. Potential for significant exposures to fine and ultrafine aerosols, particularly of Al, Fe, and Zn, during FSW may exist, especially in larger scale industrial

  8. Characterization of exposures to airborne nanoscale particles during friction stir welding of aluminum.

    PubMed

    Pfefferkorn, Frank E; Bello, Dhimiter; Haddad, Gilbert; Park, Ji-Young; Powell, Maria; McCarthy, Jon; Bunker, Kristin Lee; Fehrenbacher, Axel; Jeon, Yongho; Virji, M Abbas; Gruetzmacher, George; Hoover, Mark D

    2010-07-01

    Friction stir welding (FSW) is considered one of the most significant developments in joining technology over the last half century. Its industrial applications are growing steadily and so are the number of workers using this technology. To date, there are no reports on airborne exposures during FSW. The objective of this study was to investigate possible emissions of nanoscale (<100 nm) and fine (<1 microm) aerosols during FSW of two aluminum alloys in a laboratory setting and characterize their physicochemical composition. Several instruments measured size distributions (5 nm to 20 microm) with 1-s resolution, lung deposited surface areas, and PM(2.5) concentrations at the source and at the breathing zone (BZ). A wide range aerosol sampling system positioned at the BZ collected integrated samples in 12 stages (2 nm to 20 microm) that were analyzed for several metals using inductively coupled plasma mass spectrometry. Airborne aerosol was directly collected onto several transmission electron microscope grids and the morphology and chemical composition of collected particles were characterized extensively. FSW generates high concentrations of ultrafine and submicrometer particles. The size distribution was bimodal, with maxima at approximately 30 and approximately 550 nm. The mean total particle number concentration at the 30 nm peak was relatively stable at approximately 4.0 x 10(5) particles cm(-3), whereas the arithmetic mean counts at the 550 nm peak varied between 1500 and 7200 particles cm(-3), depending on the test conditions. The BZ concentrations were lower than the source concentrations by 10-100 times at their respective peak maxima and showed higher variability. The daylong average metal-specific concentrations were 2.0 (Zn), 1.4 (Al), and 0.24 (Fe) microg m(-3); the estimated average peak concentrations were an order of magnitude higher. Potential for significant exposures to fine and ultrafine aerosols, particularly of Al, Fe, and Zn, during FSW may

  9. Concentration, Size Distribution, and Infectivity of Airborne Particles Carrying Swine Viruses

    PubMed Central

    Alonso, Carmen; Raynor, Peter C.; Davies, Peter R.; Torremorell, Montserrat

    2015-01-01

    When pathogens become airborne, they travel associated with particles of different size and composition. Particle size determines the distance across which pathogens can be transported, as well as the site of deposition and the survivability of the pathogen. Despite the importance of this information, the size distribution of particles bearing viruses emitted by infectious animals remains unknown. In this study we characterized the concentration and size distribution of inhalable particles that transport influenza A virus (IAV), porcine reproductive and respiratory syndrome virus (PRRSV), and porcine epidemic diarrhea virus (PEDV) generated by acutely infected pigs and assessed virus viability for each particle size range. Aerosols from experimentally infected pigs were sampled for 24 days using an Andersen cascade impactor able to separate particles by size (ranging from 0.4 to 10 micrometer (μm) in diameter). Air samples collected for the first 9, 20 and the last 3 days of the study were analyzed for IAV, PRRSV and PEDV, respectively, using quantitative reverse transcription polymerase chain reaction (RT-PCR) and quantified as geometric mean copies/m3 within each size range. IAV was detected in all particle size ranges in quantities ranging from 5.5x102 (in particles ranging from 1.1 to 2.1μm) to 4.3x105 RNA copies/m3 in the largest particles (9.0–10.0μm). PRRSV was detected in all size ranges except particles between 0.7 and 2.1μm in quantities ranging from 6x102 (0.4–0.7μm) to 5.1x104 RNA copies/m3 (9.0–10.0μm). PEDV, an enteric virus, was detected in all particle sizes and in higher quantities than IAV and PRRSV (p < 0.0001) ranging from 1.3x106 (0.4–0.7μm) to 3.5x108 RNA copies/m3 (9.0–10.0μm). Infectious status was demonstrated for the 3 viruses, and in the case of IAV and PRRSV, viruses were isolated from particles larger than 2.1μm. In summary, our results indicated that airborne PEDV, IAV and PRRSV can be found in a wide range of

  10. Genotoxic activity of extractable organic matter from urban airborne particles in Shanghai, China.

    PubMed

    Zhao, Xiansi; Wan, Zhi; Chen, Gang; Zhu, Huigang; Jiang, Shunhui; Yao, Jiaqing

    2002-02-15

    The aim of this research is to investigate the impact of air pollution on the population in Shanghai. The genotoxicity of extractable organic matter (EOM) from the air particles was investigated by the means of the Salmonella plate incorporation assay, rat hepatocyte unscheduled DNA repair assay, and mice micronuclei test. The airborne particles were collected in 13 locations during the summer of 1992 and winter of 1993. The crude extracts were fractionated by acid-base partitioning into acid, base and neutral fractions. The neutral fractions were further fractionated by resin-silica gel column chromatography into three subfractions. The induction of revertants with the crude extracts was higher in winter samples than in summer samples. Both indirect-acting and direct-acting mutagenicity were observed. The mutagenicity was detected with TA98, but was not detected with TA100. The mutagenic activity was the greatest in the acid, aromatic and polar fractions from summer samples. The fractions from the winter samples did not show clear differences. There was no substantial location-related variance in the mutagenic potencies of EOM, but substantial location- or time-related variances in the mutagenic potencies of the airborne particles per cubic meter air were found. While rat hepatocyte unscheduled DNA synthesis (UDS) assay revealed genotoxicity for all the samples, there was no big variance in the genotoxicity of the fractions. The mouse micronuclei test showed results similar to the UDS assay. The difference of locality did not have statistical significance.

  11. The effects of improved residential furnace filtration on airborne particles

    SciTech Connect

    Fugler, D.; Bowser, D.; Kwan, W.

    2000-07-01

    Forced air furnaces with distributed ducting systems have always had an air filter, but traditionally the filter quality was only adequate to protect the furnace fan and heat exchanger from debris. In the past several years, there has been an increasing number of more effective particulate filters that are being marketed to reduce airborne particulate or dust. These include upgraded panel filters, passive electrostatic, active electrostatic, and HEPA or near-HEPA variants. Consumers are bewildered by the lack of standardized and comprehensible performance results and need better advice on whether it would be useful for them to upgrade their current furnace filter. In order to help them make these decisions, the whole range of available furnace filters were tested in six occupied houses. The filter efficiency was determined by particulate measurement in the ducting system before and after the filter. Indoor particulates were measured in a bedroom and living room, and outdoor levels were monitored simultaneously. Testing encompassed several weeks in each house, and the results are available in the whole range of particle sizes. The project also looked at the air-cleaning effectiveness of a stand-alone air cleaner and at the ozone production of electrostatic precipitators installed in 20 houses. Test results will be helpful in specifying suitable filtration for houses.

  12. 78 FR 33894 - Proposed Information Collection (Open Burn Pit Registry Airborne Hazard Self-Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... AFFAIRS Proposed Information Collection (Open Burn Pit Registry Airborne Hazard Self-Assessment... members of the Armed Forces to toxic airborne chemicals and fumes caused by open burn pits. DATES: Written...: cynthia.harvey-pryor@va.gov . Please refer to ``OMB Control No. 2900-NEW, Open Burn Pit Registry...

  13. Immunochemical quantification and particle size distribution of airborne papain in a meat portioning facility.

    PubMed

    Swanson, M C; Boiano, J M; Galson, S K; Grauvogel, L W; Reed, C E

    1992-01-01

    The use of enzymes in industry continues to expand. With this increased use comes a concerted need to better understand potential respiratory health hazards to exposed workers and to quantify exposure levels that cause impaired health. To this end, projects were undertaken by the National Institute for Occupational Safety and Health (NIOSH) Health Hazard Evaluations Program and Cole Associates whereby this information was collected. Data concerning medical evaluation and aspects of industrial hygiene are the subjects of two separate reports from these respective groups. This method/results report includes a description of (1) a sensitive immunoradiometric assay for the quantification of airborne papain and its particle size distribution, (2) measurement of papain from both general area and personal breathing zone air samples obtained from a meat processing plant that used this immunochemical analysis, (3) a sampling strategy, and (4) an improved air sample processing technique. Airborne papain was measured at levels ranging from low nanogram to microgram per cubic meter concentrations. Approximately half of the papain activity was associated with particles having an aerodynamic diameter of less than 9.4 microns. These data point to a need for containment and controls in the manufacture and use of such compounds. This approach can be considered by the hygienist as an effective tool to be used in conjunction with epidemiologic studies to help set standards that are practical, safe, and maintained. PMID:1590216

  14. Association of the mutagenicity of airborne particles with the direct emission from combustion processes investigated in Osaka, Japan

    NASA Astrophysics Data System (ADS)

    Kameda, Takayuki; Sanukida, Satoshi; Inazu, Koji; Hisamatsu, Yoshiharu; Maeda, Yasuaki; Takenaka, Norimichi; Bandow, Hiroshi

    The association of the direct-acting mutagenicity of soluble organic fraction of airborne particles toward Salmonella typhimurium YG1024 strain with the direct emission was investigated at a roadside and at a residential area in Osaka, Japan. The direct-acting mutagenicity was evaluated as mutagenic activity per unit volume of ambient air (rev m -3) and/or that per airborne particulate weight collected on a filter (rev mg -1). The annual or diurnal changes of the mutagenicity of airborne particles at the residential site showed similar patterns to those of some gaseous pollutants such as NO 2 and SO 2, which were emitted from combustion processes. This result indicates that the mutagenicity is mainly attributable to the primary emissions. From the analysis of the relationship between the wind sector and the mutagenic intensity, rev m -3 and rev mg -1 values were strongly affected by the emissions from the fixed sources and from the mobile sources, respectively. The rev m -3 value and concentration of 1-nitropyrene (1-NP) in unit per m 3 at the roadside were a factor of 2.6 and 2.8 higher than those at the residential site, respectively, but the rev mg -1 value and concentration of 1-NP in unit per mg at the roadside were substantially comparable to those at the residential area. These observations suggest that the characteristics of the airborne particles can be attributed to the automotive emissions even at the suburban area.

  15. Machine vision based particle size and size distribution determination of airborne dust particles of wood and bark pellets

    SciTech Connect

    Igathinathane, C; Pordesimo, L.O.

    2009-08-01

    Dust management strategies in industrial environment, especially of airborne dust, require quantification and measurement of size and size distribution of the particles. Advanced specialized instruments that measure airborne particle size and size distribution apply indirect methods that involve light scattering, acoustic spectroscopy, and laser diffraction. In this research, we propose a simple and direct method of airborne dust particle dimensional measurement and size distribution analysis using machine vision. The method involves development of a user-coded ImageJ plugin that measures particle length and width and analyzes size distribution of particles based on particle length from high-resolution scan images. Test materials were airborne dust from soft pine wood sawdust pellets and ground pine tree bark pellets. Subsamples prepared by dividing the actual dust using 230 mesh (63 m) sieve were analyzed as well. A flatbed document scanner acquired the digital images of the dust particles. Proper sampling, layout of dust particles in singulated arrangement, good contrast smooth background, high resolution images, and accurate algorithm are essential for reliable analysis. A halo effect around grey-scale images ensured correct threshold limits. The measurement algorithm used Feret s diameter for particle length and pixel-march technique for particle width. Particle size distribution was analyzed in a sieveless manner after grouping particles according to their distinct lengths, and several significant dimensions and parameters of particle size distribution were evaluated. Results of the measurement and analysis were presented in textual and graphical formats. The developed plugin was evaluated to have a dimension measurement accuracy in excess of 98.9% and a computer speed of analysis of <8 s/image. Arithmetic mean length of actual wood and bark pellets airborne dust particles were 0.1138 0.0123 and 0.1181 0.0149 mm, respectively. The airborne dust particles of

  16. Airborne bacteria transported with Sahara dust particles from Northern Africa to the European Alps

    NASA Astrophysics Data System (ADS)

    Lazzaro, A.; Meola, M.

    2015-12-01

    The Sahara Desert is the most important source of aerosols transported across the Mediterranean towards Europe. Airborne microorganisms associated with aerosols may be transported over long distances and act as colonizers of distant habitats. However, little is known on the composition and viability of such microorganisms, due to difficulties related to their detection, collection and isolation. Here we describe an in-depth assessment of the bacterial communities associated with Sahara dust (SD) particles deposited on snow. Two distinct SD events reaching the European Alps in February and May 2014 were preserved as distinct ochre-coloured layers within the snowpack. In June 2014, we collected samples from a snow profile at 3621 m a.s.l. close to the Jungfraujoch (Swiss Alps). SD particles were analyzed by Scanning Electron Microscopy and Energy-Dispersive X-Ray Spectroscopy (SEM-EDX). Backward trajectories were calculated using the NOAA HYSPLIT model. Bacterial communities were charac-terized by MiSeq Illumina sequencing of the 16S rRNA gene. Microbial physiological profiles were assessed by incubation of samples on BIOLOG plates. The SD-layers were generally enriched in illite and kaolinite particles as compared to the adjacent snow layers. The source of SD could be traced back to Algeria. We observed distinct bacterial community structures in the SD-layers as compared to the clean snow layers. While sporulating bacteria were not enriched in the SD-layers, low abundant (<1%) phyla such as Gemmatimonadetes and Deinococcus-Thermus appeared to be specific bioindicators for SD. Both phyla are adapted to arid oligotrophic environments and UV radiation and thus are well suited to survive the harsh conditions of long-distance airborne transport. Our results show that bacteria are viable and metabolically active after the trek to the European Alps.

  17. Evaluation of Airborne Particle Emissions from Commercial Products Containing Carbon Nanotubes

    PubMed Central

    Huang, Guannan; Park, Jae Hong; Cena, Lorenzo G.; Shelton, Betsy L.; Peters, Thomas M.

    2012-01-01

    The emission of the airborne particles from epoxy resin test sticks with different CNT loadings and two commercial products were characterized while sanding with three grit sizes and three disc sander speeds. The total number concentrations, respirable mass concentrations, and particle size number/mass distributions of the emitted particles were measured using a condensation particle counter, an optical particle counter, and a scanning mobility particle sizer. The emitted particles were sampled on a polycarbonate filter and analyzed using electron microscopy. The highest number concentrations (arithmetic mean = 4670 particles/cm3) were produced with coarse sandpaper, 2% (by weight) CNT test sticks and medium disc sander speed, whereas the lowest number concentrations (arithmetic mean = 92 particles/cm3) were produced with medium sandpaper, 2% CNT test sticks and slow disc sander speed. Respirable mass concentrations were highest (arithmetic mean = 1.01 mg/m3) for fine sandpaper, 2% CNT test sticks and medium disc sander speed and lowest (arithmetic mean = 0.20 mg/m3) for medium sandpaper, 0% CNT test sticks and medium disc sander speed. For CNT-epoxy samples, airborne particles were primarily micrometer-sized epoxy cores with CNT protrusions. No free CNTs were observed in airborne samples, except for tests conducted with 4% CNT epoxy. The number concentration, mass concentration, and size distribution of airborne particles generated when products containing CNTs are sanded depends on the conditions of sanding and the characteristics of the material being sanded. PMID:23204914

  18. A comparison study on airborne particles during haze days and non-haze days in Beijing.

    PubMed

    Sun, Zhenquan; Mu, Yujing; Liu, Yanju; Shao, Longyi

    2013-07-01

    Airborne particles in Beijing during haze days and non-haze days were collected by an eleven-stage cascade impactor (MOUDI 110, MSP, USA), and the mass concentrations and water soluble inorganic ions of the size segregated airborne particles were quantitatively analyzed. PM10 concentrations during haze days ranged from 250.5 to 519.4 μgm(-3) which were about 3-8 times greater than those (ranged from 67.6 to 94.0 μgm(-3)) during non-haze days, and PM1.8 concentrations during haze periods were in the range of 117.6-378.6 μgm(-3) which were 3-14 times higher than those (27.0 to 36.8 μgm(-3)) during non-haze days. In comparison with non-haze days, all water soluble inorganic ions investigated in the airborne particles greatly enhanced during haze days. NH₄(+), NO₃(-) and SO₄(2-) were found to be the dominant water soluble inorganic ions, accounting for 91-95% of the total inorganic ions in PM1.8 during haze days, and 73-81% during non-haze days. The size distributions of SO₄(2-), NO₃(-), Cl(-), K(+) and Na(+) exhibited bimodal types, while single mode was found for NH₄(+), Ca(2+) and Mg(2+). Only with exception of Ca(2+) and Mg(2+), all ions were concentrated in fine particles around 0.56-1.0 μm of "droplet mode" during haze days, while 0.32-0.56 μm of "condensation mode" during non-haze days. The extremely high mole ratio (>2) of [NH4(+)]/[SO₄(2-)] during haze days implied that the main form of ammonium in PM1.8 might be (NH4)₂SO₄ and NH₄NO₃. The mass ratio of NO₃(-)/SO₄(2-) was >1 in PM1.8 during haze days and ~1 during non-haze days, indicating that NOx from the vehicle exhaust in Beijing is playing more and more important role on fine particle formation.

  19. Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach for Airborne Particle Analysis

    SciTech Connect

    Bruns, Emily A.; Perraud, Veronique M.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-07-15

    Secondary organic aerosols (SOA) formed in the atmosphere from the condensation of semivolatile oxidation products are a significant component of airborne particles which have deleterious effects on health, visibility, and climate. In this study, atmospheric solids analysis probe mass spectrometry (ASAP-MS) is applied for the first time to the identification of organics in particles from laboratory systems as well as from ambient air. SOA were generated in the laboratory from the ozonolysis of r-pinene and isoprene, as well as from NO3 oxidation of r-pinene, and ambient air was sampled at forested and suburban sites. Particles were collected by impaction on ZnSe disks, analyzed by Fourier transform-infrared spectroscopy (FT-IR) and then transferred to an ASAP-MS probe for further analysis. ASAP-MS data for the laboratory-generated samples show peaks from wellknown products of these reactions, and higher molecular weight oligomers are present in both laboratory and ambient samples. Oligomeric products are shown to be present in the NO3 reaction products for the first time. A major advantage of this technique is that minimal sample preparation is required, and complementary information from nondestructive techniques such as FT-IR can be obtained on the same samples. In addition, a dedicated instrument is not required for particle analysis. This work establishes that ASAP-MS will be useful for identification of organic components of SOA in a variety of field and laboratory studies.

  20. Induction of sister chromatid exchanges and bacterial revertants by organic extracts of airborne particles. [Humans

    SciTech Connect

    Lockard, J.M.; Viau, C.J.; Lee-Stephens, C.; Caldwell, J.C.; Wojciechowski, J.P.; Enoch, H.G.; Sabharwal, P.S.

    1981-01-01

    The genotoxicities of organic extracts of airborne particles have been studied extensively in the Salmonella/mammalian microsome (Ames) test, but in few other bioassays. In these studies, we tested benzene-acetone extracts of particulate pollutants collected in Lexington, Kentucky, for capacity to induce increases in sister chromatid exchanges (SCE) in human lumphocytes and V79 cells, as well as in the Ames assay. Extracts induced linear dose-related increases in SCE in human lumphocytes and in bacterial revertants.However, variable responses were observed in SCE assays in V79 cells with and without activation by rat liver S9 or feeder layers of irradiated Syrian hamster fetal cells. We conclude that the SCE assay in human lumphocytes may be a useful indicator of the potential risks to humans of airborne particulate pollutants, as it utilizes human cells recently taken from the host, is rapid and economical, and requires small quantities of test materials. However, thorough studies of the quantitative relationships between SCE induction and mutagenicity in human cells are needed.

  1. Alternative analysis of airborne laser data collected within conventional multi-parameter airborne geophysical surveys

    NASA Astrophysics Data System (ADS)

    Ahl, Andreas; Supper, R.; Motschka, K.; Schattauer, I.

    2010-05-01

    For the interpretation of airborne gamma-ray spectrometry as well as airborne electromagnetics it is of great importance to determine the distance between the geophysical sensor and the ground surface. Since radar altimeters do not penetrate vegetation, laser altimeters became popular in airborne geophysics over the past years. Currently the airborne geophysical platform of the Geological Survey of Austria (GBA) is equipped with a Riegl LD90-3800VHS-FLP high resolution laser altimeter, measuring the distances according to the first and the last reflected pulse. The goal of the presented study was to explore the possibilities of deriving additional information about the survey area from the laser data and to determine the accuracy of such results. On one hand the difference between the arrival time of the first and the last reflected pulse can be used to determine the height of the vegetation. This parameter is for example important for the correction of damping effects on airborne gamma-ray measurements caused by vegetation. Moreover especially for groundwater studies at catchment scale, this parameter can also be applied to support the spatial assessment of evapotranspiration. In combination with the altitude above geoid, determined by a GPS receiver, a rough digital elevation model of the survey area can be derived from the laser altimetry. Based on a data set from a survey area in the northern part of Austria, close to the border with the Czech Republic, the reliability of such a digital elevation model and the calculated vegetation height was tested. In this study a mean deviation of -1.4m, with a standard deviation of ±3.4m, between the digital elevation model from Upper Austria (25m spatial resolution) and the determined elevation model was determined. We also found an obvious correlation between the calculated vegetation heights greater 15m and the mapped forest published by the ‘Department of Forest Inventory' of the ‘Federal Forest Office' of Austria

  2. Evidence for more than one division of bacteria within airborne particles.

    PubMed Central

    Dimmick, R L; Wolochow, H; Chatigny, M A

    1979-01-01

    When the protocol that we had used to demonstrate a single division of bacterial cells in airborne particles was changed to one that increased the glycerol content of the atomizer fluid from 1 to 5% (vol/vol), thus producing larger particles, more than two (and nearly three) divisions of bacteria occurred within 6 h of aerosol time. PMID:395898

  3. On the interaction between glyceraldehyde-3-phosphate dehydrogenase and airborne particles: Evidence for electrophilic species

    NASA Astrophysics Data System (ADS)

    Shinyashiki, Masaru; Rodriguez, Chester E.; Di Stefano, Emma W.; Sioutas, Constantinos; Delfino, Ralph J.; Kumagai, Yoshito; Froines, John R.; Cho, Arthur K.

    Many of the adverse health effects of airborne particulate matter (PM) have been attributed to the chemical properties of some of the large number of chemical species present in PM. Some PM component chemicals are capable of generating reactive oxygen species and eliciting a state of oxidative stress. In addition, however, PM can contain chemical species that elicit their effects through covalent bond formation with nucleophilic functions in the cell. In this manuscript, we report the presence of constituents with electrophilic properties in ambient and diesel exhaust particles, demonstrated by their ability to inhibit the thiol enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). GAPDH is irreversibly inactivated by electrophiles under anaerobic conditions by covalent bond formation. This inactivation can be blocked by the prior addition of a high concentration of dithiothreitol (DTT) as an alternate nucleophile. Addition of DTT after the reaction between the electrophile and GAPDH, however, does not reverse the inactivation. This property has been utilized to develop a procedure that provides a quantitative measure of electrophiles present in samples of ambient particles collected in the Los Angeles Basin and in diesel exhaust particles. The toxicity of electrophiles is the result of irreversible changes in biological molecules; recovery is dependent on resynthesis. If the resynthesis is slow, the irreversible effects can be cumulative and manifest themselves after chronic exposure to low levels of electrophiles.

  4. An efficient analytical method for particle counting in evaluating airborne infectious isolation containment using fluorescent microspheres.

    PubMed

    Johnson, David L; Lynch, Robert A

    2008-04-01

    The containment performance of patient isolation enclosures, particularly expedient surge capacity enclosures, must be verified to protect health care providers and staff, other patients, and hospital visitors. Tracer gas methods are often used, but requirements for special equipment and training limit the technique's utility. A technologically simple yet accurate and precise particle-based technique is needed to measure the low count concentrations of escaping airborne particles that might be present outside an isolation enclosure. Reported here is the performance of such a technique employing micrometer-sized fluorescent polystyrene latex microspheres as a surrogate for pathogenic bioaerosols. Particles are released into the isolation enclosure, air is sampled inside and outside the room to capture airborne particles on 25 mm diameter filters, and the number of particles deposited on a filter is quantified using an optimized random field counting approach. The technique accurately estimates the number of surrogate bioaerosol particles on the filter, allowing calculation of the airborne particle concentrations inside and outside the enclosure, and the containment efficiency. This technique can be employed using generally available equipment and inexpensive supplies and also can minimize the number of particle counts that must be performed. The method is shown to be specific, sensitive, and accurate.

  5. An efficient analytical method for particle counting in evaluating airborne infectious isolation containment using fluorescent microspheres.

    PubMed

    Johnson, David L; Lynch, Robert A

    2008-04-01

    The containment performance of patient isolation enclosures, particularly expedient surge capacity enclosures, must be verified to protect health care providers and staff, other patients, and hospital visitors. Tracer gas methods are often used, but requirements for special equipment and training limit the technique's utility. A technologically simple yet accurate and precise particle-based technique is needed to measure the low count concentrations of escaping airborne particles that might be present outside an isolation enclosure. Reported here is the performance of such a technique employing micrometer-sized fluorescent polystyrene latex microspheres as a surrogate for pathogenic bioaerosols. Particles are released into the isolation enclosure, air is sampled inside and outside the room to capture airborne particles on 25 mm diameter filters, and the number of particles deposited on a filter is quantified using an optimized random field counting approach. The technique accurately estimates the number of surrogate bioaerosol particles on the filter, allowing calculation of the airborne particle concentrations inside and outside the enclosure, and the containment efficiency. This technique can be employed using generally available equipment and inexpensive supplies and also can minimize the number of particle counts that must be performed. The method is shown to be specific, sensitive, and accurate. PMID:18286424

  6. Fabrication and testing of an airborne ice particle counter

    NASA Technical Reports Server (NTRS)

    Kebabian, P. L.

    1976-01-01

    An optical ice particle counter was proposed as a companion instrument to the GSFC laser nephelometer. By counting ice particles and total cloud particles (both ice and liquid water), these two instruments may be used to study the balance between ice and water in clouds.

  7. Collection and Analysis of Aircraft Emitted Particles

    NASA Technical Reports Server (NTRS)

    Wilson, James Charles

    1999-01-01

    The University of Denver Aerosol Group proposed to adapt an impactor system for the collection of particles emitted by aircraft. The collection substrates were electron microscope grids which were analyzed by Dr. Pat Sheridan using a transmission electron microscope. The impactor was flown in the SNIFF behind aircraft and engine emissions were sampled. This report details the results of that work.

  8. Multisensor airborne imagery collection and processing onboard small unmanned systems

    NASA Astrophysics Data System (ADS)

    Linne von Berg, Dale; Anderson, Scott A.; Bird, Alan; Holt, Niel; Kruer, Melvin; Walls, Thomas J.; Wilson, Michael L.

    2010-04-01

    FEATHAR (Fusion, Exploitation, Algorithms, and Targeting for High-Altitude Reconnaissance) is an ONR funded effort to develop and test new tactical sensor systems specifically designed for small manned and unmanned platforms (payload weight < 50 lbs). This program is being directed and executed by the Naval Research Laboratory (NRL) in conjunction with the Space Dynamics Laboratory (SDL). FEATHAR has developed and integrated EyePod, a combined long-wave infrared (LWIR) and visible to near infrared (VNIR) optical survey & inspection system, with NuSAR, a combined dual band synthetic aperture radar (SAR) system. These sensors are being tested in conjunction with other ground and airborne sensor systems to demonstrate intelligent real-time cross-sensor cueing and in-air data fusion. Results from test flights of the EyePod and NuSAR sensors will be presented.

  9. Assessment of Airborne Particles. Fundamentals, Applications, and Implications to Inhalation Toxicity.

    ERIC Educational Resources Information Center

    Mercer, Thomas T., Ed.; And Others

    Concern over chemical and radioactive particulate matter in industry and over rapidly increasing air pollution has stimulated research both on the properties of airborne particles and methods for assessing them and on their biological effects following inhalation. The Third Rochester International Conference on Environmental Toxicity was,…

  10. Simulated airborne particle size distributions over Greenland during Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Unnerstad, Lars; Hansson, Margareta

    Polar ice cores indicate that the deposition of dust from the atmosphere was strongly enhanced during Last Glacial Maximum (LGM). The concentration of dust in the ice sheets and in the overlaying atmosphere are not proportional to each other but are dependent, among other things, on the relative magnitudes of dry and wet deposition which change with climate. Observed dust particle size distributions in the Greenland ice sheet are shifted toward larger particles during LGM. By applying common theories for particle removal processes we show that the airborne particle size distributions over Greenland probably remained the same in the two different climates. This leads to the conclusion that the airborne dust concentration was even higher during LGM than indicated by the enhancement in deposition flux. We suggest a LGM/pre-industrial current climate aerosol ratio (including the soluble fraction) over Greenland of about 90-125 by mass and 75-100 by number.

  11. Collective Surfing of Chemically Active Particles

    NASA Astrophysics Data System (ADS)

    Masoud, Hassan; Shelley, Michael J.

    2014-03-01

    We study theoretically the collective dynamics of immotile particles bound to a 2D surface atop a 3D fluid layer. These particles are chemically active and produce a chemical concentration field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. For a 3D diffusion-dominated concentration field and Stokesian fluid we show that the surface dynamics of active particle density can be determined using nonlocal 2D surface operators. Remarkably, we also show that for both deep or shallow fluid layers this surface dynamics reduces to the 2D Keller-Segel model for the collective chemotactic aggregation of slime mold colonies. Mathematical analysis has established that the Keller-Segel model can yield finite-time, finite-mass concentration singularities. We show that such singular behavior occurs in our finite-depth system, and study the associated 3D flow structures.

  12. Collective surfing of chemically active particles.

    PubMed

    Masoud, Hassan; Shelley, Michael J

    2014-03-28

    We study theoretically the collective dynamics of immotile particles bound to a 2D surface atop a 3D fluid layer. These particles are chemically active and produce a chemical concentration field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. For a 3D diffusion-dominated concentration field and Stokesian fluid we show that the surface dynamics of active particle density can be determined using nonlocal 2D surface operators. Remarkably, we also show that for both deep or shallow fluid layers this surface dynamics reduces to the 2D Keller-Segel model for the collective chemotactic aggregation of slime mold colonies. Mathematical analysis has established that the Keller-Segel model can yield finite-time, finite-mass concentration singularities. We show that such singular behavior occurs in our finite-depth system, and study the associated 3D flow structures. PMID:24724685

  13. An analytical electron microscope study of airborne industrial particles in Sosnowiec, Poland

    NASA Astrophysics Data System (ADS)

    Rietmeijer, Frans J. M.; Janeczek, Janusz

    The types and the relative amounts of airborne particles in the city of Sosnowiec (Poland) during 21-22 June, 1994 were identified by analytical electron microscope analyses. They are mostly aspherical angular Al-bearing silica particles (0.1-5.15 μm) and clusters thereof. Carbonaceous particles form sheets of soluble volatile-rich materials (0.3-33.9 μm) and rare soot. Numerous nanometer-sized Al-bearing silica grains and salt minerals are associated with the larger particles. They resulted from inefficient combustion of low-grade coals by the local industries whereby the silica particles are coal impurities that survived combustion. The total particle emission was constant during a 24 h period but silica shards dominated the nighttime emission while carbonaceous particles abounded during the daytime. This study showed that tropospheric particles in regions dominated by inefficient coal combustion are fundamentally different from typical coal fly ash spheres.

  14. Characteristics of airborne particles inside southern California museums

    NASA Astrophysics Data System (ADS)

    Ligocki, Mary P.; Salmon, Lynn G.; Fall, Theresa; Jones, Michael C.; Nazaroff, William W.; Cass, Glen R.

    The concentrations and chemical composition of suspended particulate matter were measured in both the fine and total size modes inside and outside five southern California museums over summer and winter periods. The seasonally averaged indoor/outdoor ratios for particulate matter mass concentrations ranged from 0.16 to 0.96 for fine particles and from 0.06 to 0.53 for coarse particles, with the lower values observed for buildings with sophisticated ventilation systems which include filters for particulate matter removal. Museums with deliberate particle filtration systems showed indoor fine particle concentrations generally averaging less than 10 μg m -3. One museum with no environmental control system showed indoor fine particle concentrations averaging nearly 60 μg m -3 in winter and coarse particle concentrations in the 30-40 μg m -3 range. Analyses of indoor vs outdoor concentrations of major chemical species indicated that indoor sources of organic matter may exist at all sites, but that none of the other measured species appear to have major indoor sources at the museums studied. Significant fractions of the dark-colored fine elemental (black) carbon and soil dust particles present in outdoor air are able to penetrate to the indoor atmosphere of the museums studied, and may constitute a soiling hazard to works of art displayed in museums.

  15. Airborne particle sizes and sources found in indoor air

    NASA Astrophysics Data System (ADS)

    Owen, M. K.; Ensor, D. S.; Sparks, L. E.

    As concern about indoor air quality (IAQ) has grown in recent years, understanding indoor aerosols has become increasingly important so that control techniques may be implemented to reduce damaging health effects and soiling problems. This paper begins with a brief look at the mechanics of deposition in the lungs and the aerosol dynamics that influence particles at all times. This discussion shows that the particle diameters must be known to predict dose or soiling and to determine efficient mitigation techniques. The particle sizes produced by the various indoor sources, as well as unusual aspects of each type of source, must be known so that this process may begin. This paper summarizes the results of a literature search into the sources, sizes and concentrations of indoor particles. There are several types of indoor particles: plant and animal bioaerosols and mineral, combustion and home/personal care aerosols. These types may be produced indoors or outdoors, entering through building openings. The sources may be short term, seasonal or continuous. Particle sizes produced vary from submicrometer to larger than 10 μm. The particles may be toxic or allergenic. This information is presented in a summary table and is discussed in the text.

  16. Collective excitations and dust particles in space

    NASA Technical Reports Server (NTRS)

    Gilra, D. P.

    1972-01-01

    It is shown that observed bands at 2200 A and in the 10 micron region are most probably due to collective excitations of dust particles. The following specific conclusions are drawn: (1) the 2200 A interstellar band is very likely due to graphite particles; (2) these graphite particles should be very small, approximately spherical, and should have no coating whatsoever; (3) the identification of circumstellar and interstellar silicates from the observations in the 10 micron region does not seem to be correct; (4) very valuable information about the shape of the circumstellar and interstellar dust particles can be obtained directly from observations; and (5) narrow band polarization measurements in the spectral regions of these bands will be very helpful in determining the shape of the particles.

  17. 78 FR 44625 - Proposed Information Collection (Open Burn Pit Registry Airborne Hazard Self-Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... June 5, 2013 (78 FR 33894), and posting the draft questionnaire that was the subject of that notice, on... 5, 2013, VA published a notice in the Federal Register (78 FR 33894) (FR Doc. 2013-13224) announcing... AFFAIRS Proposed Information Collection (Open Burn Pit Registry Airborne Hazard...

  18. Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles

    NASA Astrophysics Data System (ADS)

    Hill, Steven C.; Pinnick, Ronald G.; Nachman, Paul; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1995-10-01

    We have assembled an aerosol-fluorescence spectrum analyzer (AFS), which can measure the fluorescence spectra and elastic scattering of airborne particles as they flow through a laser beam. The aerosols traverse a scattering cell where they are illuminated with intense (50 kW/cm 2) light inside the cavity of an argon-ion laser operating at 488 nm. This AFS can obtain fluorescence spectra of individual dye-doped polystyrene microspheres as small as 0.5 mu m in diameter. The spectra obtained from microspheres doped with pink and green-yellow dyes are clearly different. We have also detected the fluorescence spectra of airborne particles (although not single particles) made from various

  19. [Filter efficiency of commercial face masks in capturing particles and airborne bacteria].

    PubMed

    Minakami, K; Obara, T; Yamauchi, C

    1986-07-01

    The filter efficiency of seven kinds of commercial face mask for particles and airborne bacteria was tested in the wash room of a laboratory animal facility. The filter efficiency of the masks was 19 to 50%, as measured by the weight of particles with diameters below 10 micron, 22 to 71% for particles of the 0.3 micron level, 47 to 90% for the 1 micron level, and 90 to 99.6% for the 5 micron level. The filter efficiency for airborne bacteria was 35 to 81%. Among these even masks tested, glasswool surgery masks, three-sheet synthetic fiber masks with and without charcoal, and 28-sheet gauze masks with glass filter showed generally high efficiency, and single-sheet synthetic fiber masks, 18-sheet of gauze masks and gas masks showed low efficiency.

  20. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm³. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 10⁴ /cm³ and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  1. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  2. Concentration and characterization of airborne particles in Tehran's subway system.

    PubMed

    Kamani, Hosein; Hoseini, Mohammad; Seyedsalehi, Mahdi; Mahdavi, Yousef; Jaafari, Jalil; Safari, Gholam Hosein

    2014-06-01

    Particulate matter is an important air pollutant, especially in closed environments like underground subway stations. In this study, a total of 13 elements were determined from PM10 and PM2.5 samples collected at two subway stations (Imam Khomeini and Sadeghiye) in Tehran's subway system. Sampling was conducted in April to August 2011 to measure PM concentrations in platform and adjacent outdoor air of the stations. In the Imam Khomeini station, the average concentrations of PM10 and PM2.5 were 94.4 ± 26.3 and 52.3 ± 16.5 μg m(-3) in the platform and 81.8 ± 22.2 and 35 ± 17.6 μg m(-3) in the outdoor air, respectively. In the Sadeghiye station, mean concentrations of PM10 and PM2.5 were 87.6 ± 23 and 41.3 ± 20.4 μg m(-3) in the platform and 73.9 ± 17.3 and 30 ± 15 μg m(-3), in the outdoor air, respectively. The relative contribution of elemental components in each particle fraction were accounted for 43% (PM10) and 47.7% (PM2.5) in platform of Imam Khomeini station and 15.9% (PM10) and 18.5% (PM2.5) in the outdoor air of this station. Also, at the Sadeghiye station, each fraction accounted for 31.6% (PM10) and 39.8% (PM2.5) in platform and was 11.7% (PM10) and 14.3% (PM2.5) in the outdoor. At the Imam Khomeini station, Fe was the predominant element to represent 32.4 and 36 % of the total mass of PM10 and PM2.5 in the platform and 11.5 and 13.3% in the outdoor, respectively. At the Sadeghiye station, this element represented 22.7 and 29.8% of total mass of PM10 and PM2.5 in the platform and 8.7 and 10.5% in the outdoor air, respectively. Other major crustal elements were 5.8% (PM10) and 5.3% (PM2.5) in the Imam Khomeini station platform and 2.3 and 2.4% in the outdoor air, respectively. The proportion of other minor elements was significantly lower, actually less than 7% in total samples, and V was the minor concentration in total mass of PM10 and PM2.5 in both platform stations. PMID:24573466

  3. Airborne digital holographic system for cloud particle measurements.

    PubMed

    Fugal, Jacob P; Shaw, Raymond A; Saw, Ewe Wei; Sergeyev, Aleksandr V

    2004-11-10

    An in-line holographic system for in situ detection of atmospheric cloud particles [Holographic Detector for Clouds (HOLODEC)] has been developed and flown on the National Center for Atmospheric Research C-130 research aircraft. Clear holograms are obtained in daylight conditions at typical aircraft speeds of 100 m s(-1). The instrument is fully digital and is interfaced to a control and data-acquisition system in the aircraft via optical fiber. It is operable at temperatures of less than -30 degrees C and at typical cloud humidities. Preliminary data from the experiment show its utility for studies of the three-dimensional spatial distribution of cloud particles and ice crystal shapes.

  4. What We are Learning about Airborne Particles from MISR Multi-angle Imaging

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph

    The NASA Earth Observing System’s Multi-angle Imaging SpectroRadiometer (MISR) instrument has been collecting global observations in 36 angular-spectral channels about once per week for over 14 years. Regarding airborne particles, MISR is contributing in three broad areas: (1) aerosol optical depth (AOD), especially over land surface, including bright desert, (2) wildfire smoke, desert dust, and volcanic ash injection and near-source plume height, and (3) aerosol type, the aggregate of qualitative constraints on particle size, shape, and single-scattering albedo (SSA). Early advances in the retrieval of these quantities focused on AOD, for which surface-based sun photometers provided a global network of ground truth, and plume height, for which ground-based and airborne lidar offered near-coincident validation data. MSIR monthly, global AOD products contributed directly to the advances in modeling aerosol impacts on climate made between the Inter-governmental Panel on Climate Change (IPCC) third and fourth assessment reports. MISR stereo-derived plume heights are now being used to constrain source inventories for the AeroCom aerosol-climate modeling effort. The remaining challenge for the MISR aerosol effort is to refine and validate our global aerosol type product. Unlike AOD and plume height, aerosol type as retrieved by MISR is a qualitative classification derived from multi-dimensional constraints, so evaluation must be done on a categorical basis. Coincident aerosol type validation data are far less common than for AOD, and, except for rare Golden Days during aircraft field campaigns, amount to remote sensing retrievals from suborbital instruments having uncertainties comparable to those from the MISR product itself. And satellite remote sensing retrievals of aerosol type are much more sensitive to scene conditions such as surface variability and AOD than either AOD or plume height. MISR aerosol type retrieval capability and information content have been

  5. AIRBORNE PARTICLE SIZES AND SOURCES FOUND IN INDOOR AIR

    EPA Science Inventory

    The paper summarizes results of a literature search into the sources, sizes, and concentrations of particles in indoor air, including the various types: plant, animal, mineral, combustion, home/personal care, and radioactive aerosols. This information, presented in a summary figu...

  6. Design and Laboratory Evaluation of a Sequential Spot Sampler for Time-Resolved Measurement of Airborne Particle Composition

    PubMed Central

    Eiguren Fernandez, Arantzazu; Lewis, Gregory S.; Hering, Susanne V.

    2014-01-01

    A new sampling approach has been developed to enable affordable, time-resolved monitoring of particulate chemical compositions, and more generally to provide concentrated samples of airborne particles. Using a newly developed, moderated water-based condensational growth technology, individual particle samples are deposited in a 1-mm diameter dry “spot”. The moderated condensation technology enables this collection with minimal temperature rise, providing robust collection for volatile constituents. Measured collection efficiencies are above 95% for particles in the size range from 0.010 μm to 2.5 μm. A set of 20 or more time-resolved samples, plus blanks, may be collected onto a multiwell collection plate. For chemical analysis the plate is returned to the laboratory, and placed directly into a modified autosampler, without extraction or preparation. The autosampler handles the addition of eluent, extraction, and sample injection without user manipulation. This paper presents the design and laboratory evaluation of a 1.5 L/min sampling rate version of this system. PMID:25045199

  7. Cryogenic particle collection on a cometary mission

    NASA Technical Reports Server (NTRS)

    Szara, R. J.; Economou, T. E.; Blume, E.; Turkevich, A. L.

    1982-01-01

    The present investigation is concerned with research related to the design of a method for capturing effectively particulate matter and volatiles from the tail of a comet for the purpose of chemical analysis. It is envisaged to conduct a space mission with a means of propulsion which would make it possible to maneuver the space probe into the coma of the comet. The collecting medium has to be chemically inert and easily distinguishable from the particles being collected. It is proposed to employ a film of solid xenon at a temperature of 65 K as the collecting medium. Sublimation of this film and the resultant pressure will be used to concentrate the particles on a small area suitable for analysis. Attention is given to the laboratory apparatus, the experimental work, the experimental results, and the cryogenic requirements for a space mission.

  8. Evaluation of cell sorting aerosols and containment by an optical airborne particle counter.

    PubMed

    Xie, Mike; Waring, Michael T

    2015-08-01

    Understanding aerosols produced by cell sorting is critical to biosafety risk assessment and validation of containment efficiency. In this study an Optical Airborne Particle Counter was used to analyze aerosols produced by the BD FACSAria and to assess the effectiveness of its aerosol containment. The suitability of using this device to validate containment was directly compared to the Glo-Germ method put forth by the International Society for Advancement of Cytometry (ISAC) as a standard for testing. It was found that high concentrations of aerosols ranging from 0.3 µm to 10 µm can be detected in failure mode, with most less than 5 µm. In most cases, while numerous aerosols smaller than 5 µm were detected by the Optical Airborne Particle Counter, no Glo-Germ particles were detected, indicating that small aerosols are under-evaluated by the Glo-Germ method. The results demonstrate that the Optical Airborne Particle Counter offers a rapid, economic, and quantitative analysis of cell sorter aerosols and represents an improved method over Glo-Germ for the task of routine validation and monitoring of aerosol containment for cell sorting. PMID:26012776

  9. On-line gas chromatographic analysis of airborne particles

    DOEpatents

    Hering, Susanne V.; Goldstein, Allen H.

    2012-01-03

    A method and apparatus for the in-situ, chemical analysis of an aerosol. The method may include the steps of: collecting an aerosol; thermally desorbing the aerosol into a carrier gas to provide desorbed aerosol material; transporting the desorbed aerosol material onto the head of a gas chromatography column; analyzing the aerosol material using a gas chromatograph, and quantizing the aerosol material as it evolves from the gas chromatography column. The apparatus includes a collection and thermal desorption cell, a gas chromatograph including a gas chromatography column, heated transport lines coupling the cell and the column; and a quantization detector for aerosol material evolving from the gas chromatography column.

  10. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit.

    PubMed

    Licina, Dusan; Bhangar, Seema; Brooks, Brandon; Baker, Robyn; Firek, Brian; Tang, Xiaochen; Morowitz, Michael J; Banfield, Jillian F; Nazaroff, William W

    2016-01-01

    Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC) system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses' station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3-1 μm) particles. The mean indoor particle mass concentrations averaged across the size range 0.3-10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3). Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37-81%. Near-room indoor emissions and outdoor sources contributed 18-59% and 1-5%, respectively. Airborne particle levels in the size range 1-10 μm showed strong dependence on human activities, indicating the importance of indoor

  11. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit

    PubMed Central

    Licina, Dusan; Bhangar, Seema; Brooks, Brandon; Baker, Robyn; Firek, Brian; Tang, Xiaochen; Morowitz, Michael J.; Banfield, Jillian F.; Nazaroff, William W.

    2016-01-01

    Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC) system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses’ station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3–1 μm) particles. The mean indoor particle mass concentrations averaged across the size range 0.3–10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3). Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37–81%. Near-room indoor emissions and outdoor sources contributed 18–59% and 1–5%, respectively. Airborne particle levels in the size range 1–10 μm showed strong dependence on human activities, indicating the importance of indoor

  12. Airborne measurements of gas and particle pollutants during CAREBeijing-2008

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Zhu, T.; Yang, W.; Bai, Z.; Sun, Y. L.; Xu, Y.; Yin, B.; Zhao, X.

    2014-01-01

    Measurements of gaseous pollutants - including ozone (O3), sulfur dioxide (SO2), nitrogen oxides (NOX = NO + NO2), carbon monoxide (CO), particle number concentrations (5.6-560 nm and 0.47-30 μm) - and meteorological parameters (T, RH, P) were conducted during the Campaigns of Air Quality Research in Beijing and Surrounding Regions in 2008 (CAREBeijing-2008), from 27 August through 13 October 2008. The data from a total 18 flights (70 h flight time) from near the surface to 2100 m altitude were obtained with a Yun-12 aircraft in the southern surrounding areas of Beijing (38-40° N, 114-118° E). The objectives of these measurements were to characterize the regional variation of air pollution during and after the Olympics of 2008, determine the importance of air mass trajectories and to evaluate of other factors that influence the pollution characteristics. The results suggest that there are primarily four distinct sources that influenced the magnitude and properties of the pollutants in the measured region based on back-trajectory analysis: (1) southerly transport of air masses from regions with high pollutant emissions, (2) northerly and northeasterly transport of less pollutant air from further away, (3) easterly transport from maritime sources where emissions of gaseous pollutant are less than from the south but still high in particle concentrations, and (4) the transport of air that is a mixture from different regions; that is, the air at all altitudes measured by the aircraft was not all from the same sources. The relatively long-lived CO concentration is shown to be a possible transport tracer of long-range transport from the northwesterly direction, especially at the higher altitudes. Three factors that influenced the size distribution of particles - i.e., air mass transport direction, ground source emissions and meteorological influences - are also discussed.

  13. Personal exposure to airborne particles and metals: results from the Particle TEAM study in Riverside, California.

    PubMed

    Ozkaynak, H; Xue, J; Spengler, J; Wallace, L; Pellizzari, E; Jenkins, P

    1996-01-01

    The PTEAM Study was the first large-scale probability-based study of personal exposure to particles. Sponsored by the U.S. Environmental Protection Agency (EPA) and the Air Resources Board of California, it was carried out by the Research Triangle Institute (RTI) and the Harvard University School of Public Health (HSPH). HSPH designed and constructed a 4-lpm, battery-operated personal monitor for inhalable particles (PM10) that could be worn comfortably for up to 14 hours by persons from 10 to 70 years old. The monitor was worn for two consecutive 12-hour periods (day and night) during the fall of 1990 by 178 participants representing 139,000 nonsmoking residents of Riverside, California. Nearly identical monitors were employed to collect concurrent indoor and outdoor samples. The monitors were equipped with a different sampling nozzle to collect fine particles (PM2.5). Population-weighted daytime personal PM10 exposures averaged 150 +/- 9 (SE) micrograms/m3, compared to concurrent indoor and outdoor concentrations of 95 +/- 6 micrograms/m3. This suggested the existence of excess mass near the person, a "personal cloud" that appeared related to personal activities. Fourteen of 15 prevalent elements also were evaluated in the personal samples. The two major indoor sources of indoor particles were smoking and cooking; even in these homes, however, more than half of the indoor particles came from outdoors, and a substantial portion of the indoor particles were of undetermined indoor origin. Outdoor concentrations near the homes were well correlated with outdoor concentrations at the central site, supporting the idea of using the central site as an indicator of of ambient concentrations over a wider area. Indoor concentrations were only weakly correlated with outdoor concentrations, however, and personal exposures were even more poorly correlated with outdoor concentrations. Elemental profiles were obtained for environmental tobacco smoke (ETS) (major contributions

  14. Collective dynamics of soft active particles.

    PubMed

    van Drongelen, Ruben; Pal, Anshuman; Goodrich, Carl P; Idema, Timon

    2015-03-01

    We present a model of soft active particles that leads to a rich array of collective behavior found also in dense biological swarms of bacteria and other unicellular organisms. Our model uses only local interactions, such as Vicsek-type nearest-neighbor alignment, short-range repulsion, and a local boundary term. Changing the relative strength of these interactions leads to migrating swarms, rotating swarms, and jammed swarms, as well as swarms that exhibit run-and-tumble motion, alternating between migration and either rotating or jammed states. Interestingly, although a migrating swarm moves slower than an individual particle, the diffusion constant can be up to three orders of magnitude larger, suggesting that collective motion can be highly advantageous, for example, when searching for food. PMID:25871143

  15. Collective dynamics of soft active particles

    NASA Astrophysics Data System (ADS)

    van Drongelen, Ruben; Pal, Anshuman; Goodrich, Carl P.; Idema, Timon

    2015-03-01

    We present a model of soft active particles that leads to a rich array of collective behavior found also in dense biological swarms of bacteria and other unicellular organisms. Our model uses only local interactions, such as Vicsek-type nearest-neighbor alignment, short-range repulsion, and a local boundary term. Changing the relative strength of these interactions leads to migrating swarms, rotating swarms, and jammed swarms, as well as swarms that exhibit run-and-tumble motion, alternating between migration and either rotating or jammed states. Interestingly, although a migrating swarm moves slower than an individual particle, the diffusion constant can be up to three orders of magnitude larger, suggesting that collective motion can be highly advantageous, for example, when searching for food.

  16. Alpha particle collective Thomson scattering in TFTR

    SciTech Connect

    Machuzak, J.S.; Woskov, P.P.; Rhee, D.Y.; Gilmore, J.; Bretz, N.L.; Park, H.K.; Aamodt, R.E.; Cheung, P.Y.; Russell, D.A.; Bindslev, H.

    1993-11-01

    A collective Thomson scattering diagnostic is being implemented on TFTR to measure alpha particle, energetic and thermal ion densities and velocity distributions. A 60 GHz, 0.1-1 kW gyrotron will be used as the transmitter source, and the scattering geometry will be perpendicular to the magnetic field in the extraordinary mode polarization. An enhanced scattered signal is anticipated from fluctuations in the lower hybrid frequency range with this scattering geometry. Millimeter wave collective Thomson scattering diagnostics have the advantage of larger scattering angles to decrease the amount of stray light, and long, high power, modulated pulses to obtain improved signal to noise through synchronous detection techniques.

  17. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry.

    PubMed

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-01-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPI(TM)), a Fast Mobility Particle Sizer (FMPS(TM)), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification.

  18. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry

    PubMed Central

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-01-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPITM), a Fast Mobility Particle Sizer (FMPSTM), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification. PMID:27598180

  19. Particle Size Distribution of Airborne Microorganisms and Pathogens during an Intense African Dust Event in the Eastern Mediterranean

    PubMed Central

    Polymenakou, Paraskevi N.; Mandalakis, Manolis; Stephanou, Euripides G.; Tselepides, Anastasios

    2008-01-01

    Background The distribution of microorganisms, and especially pathogens, over airborne particles of different sizes has been ignored to a large extent, but it could have significant implications regarding the dispersion of these microorganisms across the planet, thus affecting human health. Objectives We examined the microbial quality of the aerosols over the eastern Mediterranean region during an African storm to determine the size distribution of microorganisms in the air. Methods We used a five-stage cascade impactor for bioaerosol collection in a coastal city on the eastern Mediterranean Sea during a north African dust storm. Bacterial communities associated with aerosol particles of six different size ranges were characterized following molecular culture–independent methods, regardless of the cell culturability (analysis of 16S rRNA genes). Results All 16S rDNA clone libraries were diverse, including sequences commonly found in soil and marine ecosystems. Spore-forming bacteria such as Firmicutes dominated large particle sizes (> 3.3 μm), whereas clones affiliated with Actinobacteria (found commonly in soil) and Bacteroidetes (widely distributed in the environment) gradually increased their abundance in aerosol particles of reduced size (< 3.3 μm). A large portion of the clones detected at respiratory particle sizes (< 3.3 μm) were phylogenetic neighbors to human pathogens that have been linked to several diseases. Conclusions The presence of aerosolized bacteria in small size particles may have significant implications to human health via intercontinental transportation of pathogens. PMID:18335093

  20. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry.

    PubMed

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-01-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPI(TM)), a Fast Mobility Particle Sizer (FMPS(TM)), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification. PMID:27598180

  1. Impaction onto a Glass Slide or Agar versus Impingement into a Liquid for the Collection and Recovery of Airborne Microorganisms

    PubMed Central

    Juozaitis, Arvydas; Willeke, Klaus; Grinshpun, Sergey A.; Donnelly, Jean

    1994-01-01

    To study impaction versus impingement for the collection and recovery of viable airborne microorganisms, three new bioaerosol samplers have been designed and built. They differ from each other by the medium onto which the bioaerosol particles are collected (glass, agar, and liquid) but have the same inlet and collection geometries and the same sampling flow rate. The bioaerosol concentrations recorded by three different collection techniques have been compared with each other: impaction onto a glass slide, impaction onto an agar medium, and impingement into a liquid. It was found that the particle collection efficiency of agar slide impaction depends on the concentration of agar in the collection medium and on the sampling time, when samples are collected on a nonmoving agar slide. Impingement into a liquid showed anomalous behavior with respect to the sampling flow rate. Optimal sampling conditions in which all three new samplers exhibit the same overall sampling efficiency for nonbiological particles have been established. Inlet and collection efficiencies of about 100% have been achieved for all three devices at a sampling flow rate of 10 liters/min. The new agar slide impactor and the new impinger were then used to study the biological factors affecting the overall sampling efficiency. Laboratory experiments on the total recovery of a typical environmental microorganism, Pseudomonas fluorescens ATCC 13525, showed that both sampling methods, impaction and impingement, provided essentially the same total recovery when relatively nonstressed microorganisms were sampled under optimal sampling conditions. Comparison tests of the newly developed bioaerosol samplers with those commercially available showed that the incorporation of our research findings into the design of the new samplers yields better performance data than data from currently available samplers. PMID:16349217

  2. Apparatus for real-time airborne particulate radionuclide collection and analysis

    DOEpatents

    Smart, John E.; Perkins, Richard W.

    2001-01-01

    An improved apparatus for collecting and analyzing an airborne particulate radionuclide having a filter mounted in a housing, the housing having an air inlet upstream of the filter and an air outlet downstream of the filter, wherein an air stream flows therethrough. The air inlet receives the air stream, the filter collects the airborne particulate radionuclide and permits a filtered air stream to pass through the air outlet. The improvement which permits real time counting is a gamma detecting germanium diode mounted downstream of the filter in the filtered air stream. The gamma detecting germanium diode is spaced apart from a downstream side of the filter a minimum distance for a substantially maximum counting detection while permitting substantially free air flow through the filter and uniform particulate radionuclide deposition on the filter.

  3. Tracing airborne particles after Japan's nuclear plant explosion

    NASA Astrophysics Data System (ADS)

    Takemura, Toshihiko; Nakamura, Hisashi; Nakajima, Teruyuki

    2011-11-01

    The powerful Tohoku earthquake and consequent tsunami that occurred off the east coast of Japan on 11 March 2011 devastated dozens of coastal cities and towns, causing the loss of more than 15,000 lives and leaving close to 4000 people still missing. Although nuclear reactors at the Fukushima Daiichi Nuclear Power Plant, located on the Pacific coast, stopped their operation automatically upon the occurrence of the Mw 9.0 quake [Showstack, 2011], the cooling system for nuclear fuel broke down. From 12 to 16 March, vapor and hydrogen blasts destroyed the buildings that had contained the reactors, resulting in the release into the atmosphere of radioactive materials such as sulfur-35, iodine-131, cesium-134, and cesium-137, which collectively can cause harmful health effects such as tissue damage and increased risk of cancer (particularly in children), depending on dose. Most of those materials emitted from the power plant rained out onto the grounds within its vicinity and forced tens of thousands within a 20-kilometer radius to evacuate (residents to the northwest of the site within about 40 kilometers also were moved from their homes). Some of the radioactive materials were transported and then detected at such distant locations as North America and Europe, although the level of radiation dose was sufficiently low not to affect human health in any significant manner.

  4. Predicting Airborne Particle Levels Aboard Washington State School Buses.

    PubMed

    Adar, Sara D; Davey, Mark; Sullivan, James R; Compher, Michael; Szpiro, Adam; Liu, L-J Sally

    2008-10-01

    School buses contribute substantially to childhood air pollution exposures yet they are rarely quantified in epidemiology studies. This paper characterizes fine particulate matter (PM(2.5)) aboard school buses as part of a larger study examining the respiratory health impacts of emission-reducing retrofits.To assess onboard concentrations, continuous PM(2.5) data were collected during 85 trips aboard 43 school buses during normal driving routines, and aboard hybrid lead vehicles traveling in front of the monitored buses during 46 trips. Ordinary and partial least square regression models for PM(2.5) onboard buses were created with and without control for roadway concentrations, which were also modeled. Predictors examined included ambient PM(2.5) levels, ambient weather, and bus and route characteristics.Concentrations aboard school buses (21 mug/m(3)) were four and two-times higher than ambient and roadway levels, respectively. Differences in PM(2.5) levels between the buses and lead vehicles indicated an average of 7 mug/m(3) originating from the bus's own emission sources. While roadway concentrations were dominated by ambient PM(2.5), bus concentrations were influenced by bus age, diesel oxidative catalysts, and roadway concentrations. Cross validation confirmed the roadway models but the bus models were less robust.These results confirm that children are exposed to air pollution from the bus and other roadway traffic while riding school buses. In-cabin air pollution is higher than roadway concentrations and is likely influenced by bus characteristics.

  5. Size distribution of airborne particle-bound polybrominated diphenyl ethers and its implications for dry and wet deposition.

    PubMed

    Luo, Pei; Ni, Hong-Gang; Bao, Lian-Jun; Li, Shao-Meng; Zeng, Eddy Y

    2014-12-01

    Size distribution of particles in part dictates the environmental behavior of particle-bound organic pollutants in the atmosphere. The present study was conducted to examine the potential mechanisms responsible for the distribution of organic pollutants in size fractionated particles and their environmental implications, using an e-waste recycling zone in South China as a case study. Size-fractionated atmospheric particles were collected at the heights of 1.5, 5, and 20 m near two residential apartments and analyzed for polybrominated diphenyl ethers (PBDEs). The concentrations of particle-bound ΣPBDE (sum of 18 PBDE congeners) were significantly greater at 5 and 20 m than those at 1.5 m. The size-fractionated distributions of airborne ΣPBDE displayed trimodal peaks in 0.10–0.18, 1.8–3.2, and 10–18 μm at 1.5 m but only an unimodal peak in 1.0–1.8 μm at 20 m height. Emission sources, resuspension of dust and soil, and volatility of PBDEs were important factors influencing the size distribution of particle-bound PBDEs. The dry deposition fluxes of particle-bound PBDE estimated from the measured data in the present study were approximately twice the estimated wet deposition fluxes, with a total deposition flux of 3000 ng m(–2) d(–1). The relative contributions of particles to dry and wet deposition fluxes were also size-dependent, e.g., coarse (aerodynamic diameters (Dp) > 1.8 μm) and fine (Dp < 1.8 μm) particles dominated the dry and wet deposition fluxes of PBDEs, respectively.

  6. Predicting Airborne Particle Levels Aboard Washington State School Buses

    PubMed Central

    Adar, Sara D.; Davey, Mark; Sullivan, James R.; Compher, Michael; Szpiro, Adam; Liu, L.-J. Sally

    2008-01-01

    School buses contribute substantially to childhood air pollution exposures yet they are rarely quantified in epidemiology studies. This paper characterizes fine particulate matter (PM2.5) aboard school buses as part of a larger study examining the respiratory health impacts of emission-reducing retrofits. To assess onboard concentrations, continuous PM2.5 data were collected during 85 trips aboard 43 school buses during normal driving routines, and aboard hybrid lead vehicles traveling in front of the monitored buses during 46 trips. Ordinary and partial least square regression models for PM2.5 onboard buses were created with and without control for roadway concentrations, which were also modeled. Predictors examined included ambient PM2.5 levels, ambient weather, and bus and route characteristics. Concentrations aboard school buses (21 μg/m3) were four and two-times higher than ambient and roadway levels, respectively. Differences in PM2.5 levels between the buses and lead vehicles indicated an average of 7 μg/m3 originating from the bus's own emission sources. While roadway concentrations were dominated by ambient PM2.5, bus concentrations were influenced by bus age, diesel oxidative catalysts, and roadway concentrations. Cross validation confirmed the roadway models but the bus models were less robust. These results confirm that children are exposed to air pollution from the bus and other roadway traffic while riding school buses. In-cabin air pollution is higher than roadway concentrations and is likely influenced by bus characteristics. PMID:18985175

  7. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    PubMed

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  8. Airborne lidar measurements of smoke plume distribution, vertical transmission, and particle size.

    PubMed

    Uthe, E E; Morley, B M; Nielsen, N B

    1982-02-01

    Observations were made of a dense smoke plume downwind from a forest fire using the ALPHA-1 two-wavelength downward-looking airborne lidar system. Facsimile displays derived from lidar signatures depict plume dimensions, boundary layer height, and underlying terrain elevation. Surface returns are interpreted in terms of vertical transmission as function of cross-plume distance. Results show significantly greater plume attenuation at 0.53-microm wavelength than at 1.06-microm, indicating ~0.1-microm mean particle diameters or the presence of gaseous constituents that absorb the visible radiation. These results demonstrate the potential of multiple-wavelength airborne lidar for quantitative analysis of atmospheric particulate and gaseous constituents. PMID:20372478

  9. Characterization and control of airborne particles emitted during production of epoxy/carbon nanotube nanocomposites.

    PubMed

    Cena, Lorenzo G; Peters, Thomas M

    2011-02-01

    This work characterized airborne particles generated from the weighing of bulk, multiwall carbon nanotubes (CNTs) and the manual sanding of epoxy test samples reinforced with CNTs. It also evaluated the effectiveness of three local exhaust ventilation (LEV) conditions (no LEV, custom fume hood, and biosafety cabinet) for control of particles generated during sanding of CNT-epoxy nanocomposites. Particle number and respirable mass concentrations were measured using an optical particle counter (OPC) and a condensation particle counter (CPC), and particle morphology was assessed by transmission electron microscopy. The ratios of the geometric mean (GM) concentrations measured during the process to that measured in the background (P/B ratios) were used as indices of the impact of the process and the LEVs on observed concentrations. Processing CNT-epoxy nanocomposites materials released respirable size airborne particles (P/B ratio: weighing = 1.79; sanding = 5.90) but generally no nanoparticles (P/B ratio ∼1). The particles generated during sanding were predominantly micron sized with protruding CNTs and very different from bulk CNTs that tended to remain in large (>1 μm) tangled clusters. Respirable mass concentrations in the operator's breathing zone were lower when sanding was performed in the biological safety cabinet (GM = 0.20 μg/m(3) compared with those with no LEV (GM = 2.68 μg/m(3) or those when sanding was performed inside the fume hood (GM = 21.4 μg/m(3); p-value < 0.0001). The poor performance of the custom fume hood used in this study may have been exacerbated by its lack of a front sash and rear baffles and its low face velocity (0.39 m/sec). PMID:21253981

  10. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  11. A Lagrangian particle model to predict the airborne spread of foot-and-mouth disease virus

    NASA Astrophysics Data System (ADS)

    Mayer, D.; Reiczigel, J.; Rubel, F.

    Airborne spread of bioaerosols in the boundary layer over a complex terrain is simulated using a Lagrangian particle model, and applied to modelling the airborne spread of foot-and-mouth disease (FMD) virus. Two case studies are made with study domains located in a hilly region in the northwest of the Styrian capital Graz, the second largest town in Austria. Mountainous terrain as well as inhomogeneous and time varying meteorological conditions prevent from application of so far used Gaussian dispersion models, while the proposed model can handle these realistically. In the model, trajectories of several thousands of particles are computed and the distribution of virus concentration near the ground is calculated. This allows to assess risk of infection areas with respect to animal species of interest, such as cattle, swine or sheep. Meteorological input data like wind field and other variables necessary to compute turbulence were taken from the new pre-operational version of the non-hydrostatic numerical weather prediction model LMK ( Lokal-Modell-Kürzestfrist) running at the German weather service DWD ( Deutscher Wetterdienst). The LMK model provides meteorological parameters with a spatial resolution of about 2.8 km. To account for the spatial resolution of 400 m used by the Lagrangian particle model, the initial wind field is interpolated upon the finer grid by a mass consistent interpolation method. Case studies depict a significant influence of local wind systems on the spread of virus. Higher virus concentrations at the upwind side of the hills and marginal concentrations in the lee are well observable, as well as canalization effects by valleys. The study demonstrates that the Lagrangian particle model is an appropriate tool for risk assessment of airborne spread of virus by taking into account the realistic orographic and meteorological conditions.

  12. Factors influencing the airborne capture of respirable charged particles by surfactants in water sprays.

    PubMed

    Tessum, Mei W; Raynor, Peter C; Keating-Klika, Lorraine

    2014-01-01

    This research measured the effects of particle diameter, surfactant-containing spray solution, and particle charge on the capture of respirable particles by surfactant-containing water spray droplets. Polystyrene latex particles with diameters of 0.6, 1.0, or 2.1 μm were generated in a wind tunnel. Particles were given either a neutralized, unneutralized, net positive, or net negative charge, and then were captured as they passed through sprays containing anionic, cationic, or nonionic surfactant. The remaining particles were sampled, charge-separated, and counted with the sprays on and off at varying voltage levels to assess collection efficiency. Overall efficiencies were measured for particles with all charge levels, as well as efficiencies for particles with specific charge levels. The overall collection efficiency significantly increased with increasing particle diameter. Collection efficiencies of 21.5% ± 9.0%, 58.8% ± 12.5%, and 86.6% ± 43.5% (Mean ± SD) were observed for particles 0.6, 1.0, and 2.1 μm in diameter, respectively. The combination of surfactant classification and concentration also significantly affected both overall spray collection efficiency and collection efficiency for particles with specific charge levels. Ionic surfactant-containing sprays had the best performance for charged particles with the opposite sign of charge but the worst performance for charged particles with the same sign of charge, while nonionic surfactant-containing spray efficiently removed particles carrying relatively few charges. Particle charge level impacted the spray collection efficiency. Highly charged particles were removed more efficiently than weakly charged particles.

  13. Factors influencing the airborne capture of respirable charged particles by surfactants in water sprays.

    PubMed

    Tessum, Mei W; Raynor, Peter C; Keating-Klika, Lorraine

    2014-01-01

    This research measured the effects of particle diameter, surfactant-containing spray solution, and particle charge on the capture of respirable particles by surfactant-containing water spray droplets. Polystyrene latex particles with diameters of 0.6, 1.0, or 2.1 μm were generated in a wind tunnel. Particles were given either a neutralized, unneutralized, net positive, or net negative charge, and then were captured as they passed through sprays containing anionic, cationic, or nonionic surfactant. The remaining particles were sampled, charge-separated, and counted with the sprays on and off at varying voltage levels to assess collection efficiency. Overall efficiencies were measured for particles with all charge levels, as well as efficiencies for particles with specific charge levels. The overall collection efficiency significantly increased with increasing particle diameter. Collection efficiencies of 21.5% ± 9.0%, 58.8% ± 12.5%, and 86.6% ± 43.5% (Mean ± SD) were observed for particles 0.6, 1.0, and 2.1 μm in diameter, respectively. The combination of surfactant classification and concentration also significantly affected both overall spray collection efficiency and collection efficiency for particles with specific charge levels. Ionic surfactant-containing sprays had the best performance for charged particles with the opposite sign of charge but the worst performance for charged particles with the same sign of charge, while nonionic surfactant-containing spray efficiently removed particles carrying relatively few charges. Particle charge level impacted the spray collection efficiency. Highly charged particles were removed more efficiently than weakly charged particles. PMID:24479508

  14. Analysing the health effects of simultaneous exposure to physical and chemical properties of airborne particles

    PubMed Central

    Pirani, Monica; Best, Nicky; Blangiardo, Marta; Liverani, Silvia; Atkinson, Richard W.; Fuller, Gary W.

    2015-01-01

    Background Airborne particles are a complex mix of organic and inorganic compounds, with a range of physical and chemical properties. Estimation of how simultaneous exposure to air particles affects the risk of adverse health response represents a challenge for scientific research and air quality management. In this paper, we present a Bayesian approach that can tackle this problem within the framework of time series analysis. Methods We used Dirichlet process mixture models to cluster time points with similar multipollutant and response profiles, while adjusting for seasonal cycles, trends and temporal components. Inference was carried out via Markov Chain Monte Carlo methods. We illustrated our approach using daily data of a range of particle metrics and respiratory mortality for London (UK) 2002–2005. To better quantify the average health impact of these particles, we measured the same set of metrics in 2012, and we computed and compared the posterior predictive distributions of mortality under the exposure scenario in 2012 vs 2005. Results The model resulted in a partition of the days into three clusters. We found a relative risk of 1.02 (95% credible intervals (CI): 1.00, 1.04) for respiratory mortality associated with days characterised by high posterior estimates of non-primary particles, especially nitrate and sulphate. We found a consistent reduction in the airborne particles in 2012 vs 2005 and the analysis of the posterior predictive distributions of respiratory mortality suggested an average annual decrease of − 3.5% (95% CI: − 0.12%, − 5.74%). Conclusions We proposed an effective approach that enabled the better understanding of hidden structures in multipollutant health effects within time series analysis. It allowed the identification of exposure metrics associated with respiratory mortality and provided a tool to assess the changes in health effects from various policies to control the ambient particle matter mixtures. PMID:25795926

  15. Measurements of Ultra-fine and Fine Aerosol Particles over Siberia: Large-scale Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail; Paris, Jean-Daniel; Stohl, Andreas; Belan, Boris; Ciais, Philippe; Nédélec, Philippe

    2010-05-01

    In this paper we discuss the results of in-situ measurements of ultra-fine and fine aerosol particles carried out in the troposphere from 500 to 7000 m in the framework of several International and Russian State Projects. Number concentrations of ultra-fine and fine aerosol particles measured during intensive airborne campaigns are presented. Measurements carried over a great part of Siberia were focused on particles with diameters from 3 to 21 nm to study new particle formation in the free/upper troposphere over middle and high latitudes of Asia, which is the most unexplored region of the Northern Hemisphere. Joint International airborne surveys were performed along the following routes: Novosibirsk-Salekhard-Khatanga-Chokurdakh-Pevek-Yakutsk-Mirny-Novosibirsk (YAK-AEROSIB/PLARCAT2008 Project) and Novosibirsk-Mirny-Yakutsk-Lensk-Bratsk-Novosibirsk (YAK-AEROSIB Project). The flights over Lake Baikal was conducted under Russian State contract. Concentrations of ultra-fine and fine particles were measured with automated diffusion battery (ADB, designed by ICKC SB RAS, Novosibirsk, Russia) modified for airborne applications. The airborne ADB coupled with CPC has an additional aspiration unit to compensate ambient pressure and changing flow rate. It enabled to classify nanoparticles in three size ranges: 3-6 nm, 6-21 nm, and 21-200 nm. To identify new particle formation events we used similar specific criteria as Young et al. (2007): (1) N3-6nm >10 cm-3, (2) R1=N3-6/N621 >1 and R2=N321/N21200 >0.5. So when one of the ratios R1 or R2 tends to decrease to the above limits the new particle formation is weakened. It is very important to notice that space scale where new particle formation was observed is rather large. All the events revealed in the FT occurred under clean air conditions (low CO mixing ratios). Measurements carried out in the atmospheric boundary layer over Baikal Lake did not reveal any event of new particle formation. Concentrations of ultra

  16. Airborne particle concentration and meteorologic conditions associated with pneumonia incidence in feedlot cattle

    SciTech Connect

    MacVean, D.W.; Franzen, D.K.; Keefe, T.J.; Bennett, B.W.

    1986-12-01

    To elucidate the role of air quality on the occurrence of pneumonia in feedlot cattle, the following environmental values were measured at a feedlot: suspended particulates in 5 particle-size fractions, relative humidity, air temperature, and barometric pressure. Pneumonia incidence data were classified by the number of days the cattle had been at the feedlot (days on feed). The concentration of airborne particles, range of temperature, days on feed, and season of the year were associated with incidence of pneumonia in cattle. Pneumonia incidence rates were greatest both within 15 days of arrival at the feedlot and during the fall sampling periods. The incidence of pneumonia in the 16 to 30 days-on-feed group was closely associated with the concentration of particles 2.0 to 3.3 microns in diameter and the range of daily temperature when exposure occurred 15 days before the onset of disease in the fall and 10 days before in the spring.

  17. A real-time monitoring system for airborne particle shape and size analysis

    NASA Astrophysics Data System (ADS)

    Kaye, P. H.; Alexander-Buckley, K.; Hirst, E.; Saunders, S.; Clark, J. M.

    1996-08-01

    This paper describes a new instrument for the study of airborne particles. The instrument performs a rapid analysis of the transient spatial intensity distribution of laser-light scattered by individual aerosol particles drawn from an ambient environment and uses this to characterize the particles in terms of both size and shape parameters. Analyses are carried out at peak particle throughput rates of up to 10,000 particles per second, and semiquantitative data relating to the size and shape (or more correctly asymmetry) spectra of the sampled particles are provided to the user via a graphical display which is refreshed or updated at 5-s intervals. In addition to the real-time display of data, continuous data recording allows subsequent replay of measurements at either normal or high speed. Preliminary experimental results are given for aerosols of both spherical and nonspherical particle types, and these suggest the instrument may find use in environmental monitoring of aerosols or clouds where some real-time semiquantitative assessment of particulate size and shape spectra may be desirable as an aid to characterizing the aerosol and its constituent particulate species.

  18. Characterization of airborne particles generated from metal active gas welding process.

    PubMed

    Guerreiro, C; Gomes, J F; Carvalho, P; Santos, T J G; Miranda, R M; Albuquerque, P

    2014-05-01

    This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm(3) of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure. PMID:24730680

  19. Characterization of airborne particles generated from metal active gas welding process.

    PubMed

    Guerreiro, C; Gomes, J F; Carvalho, P; Santos, T J G; Miranda, R M; Albuquerque, P

    2014-05-01

    This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm(3) of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure.

  20. In situ real-time measurement of physical characteristics of airborne bacterial particles

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hee; Lee, Jung Eun

    2013-12-01

    Bioaerosols, including aerosolized bacteria, viruses, and fungi, are associated with public health and environmental problems. One promising control method to reduce the harmful effects of bioaerosols is thermal inactivation via a continuous-flow high-temperature short-time (HTST) system. However, variations in bioaerosol physical characteristics - for example, the particle size and shape - during the continuous-flow inactivation process can change the transport properties in the air, which can affect particle deposition in the human respiratory system or the filtration efficiency of ventilation systems. Real-time particle monitoring techniques are a desirable alternative to the time-consuming process of microscopic analysis that is conventionally used in sampling and particle characterization. Here, we report in situ real-time optical scattering measurements of the physical characteristics of airborne bacteria particles following an HTST process in a continuous-flow system. Our results demonstrate that the aerodynamic diameter of bacterial aerosols decreases when exposed to a high-temperature environment, and that the shape of the bacterial cells is significantly altered. These variations in physical characteristics using optical scattering measurements were found to be in agreement with the results of scanning electron microscopy analysis.

  1. Size and composition of airborne particles from pavement wear, tires, and traction sanding.

    PubMed

    Kupiainen, Kaarle J; Tervahattu, Heikki; Räisänen, Mika; Mäkelä, Timo; Aurela, Minna; Hillamo, Risto

    2005-02-01

    Mineral matter is an important component of airborne particles in urban areas. In northern cities of the world, mineral matter dominates PM10 during spring because of enhanced road abrasion caused by the use of antiskid methods, including studded tires and traction sanding. In this study, factors that affect formation of abrasion components of springtime road dust were assessed. Effects of traction sanding and tires on concentrations, mass size distribution, and composition of the particles were studied in a test facility. Lowest particle concentrations were observed in tests without traction sanding. The concentrations increased when traction sand was introduced and continued to increase as a function of the amount of aggregate dispersed. Emissions were additionally affected by type of tire, properties of traction sand aggregate, and driving speed. Aggregates with high fragmentation resistance and coarse grain size distribution had the lowest emissions. Over 90% of PM10 was mineral particles. Mineralogy of the dust and source apportionment showed that they originated from both traction sand and pavement aggregates. The remaining portion was mostly carbonaceous and originated from tires and road bitumen. Mass size distributions were dominated by coarse particles. Contribution of fine and submicron size ranges were approximately 15 and 10% in PM10, respectively. PMID:15757329

  2. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles

    NASA Astrophysics Data System (ADS)

    Hagino, Hiroyuki; Oyama, Motoaki; Sasaki, Sousuke

    2016-04-01

    To measure driving-distance-based mass emission factors for airborne brake wear particulate matter (PM; i.e., brake wear particles) related to the non-asbestos organic friction of brake assembly materials (pads and lining), and to characterize the components of brake wear particles, a brake wear dynamometer with a constant-volume sampling system was developed. Only a limited number of studies have investigated brake emissions under urban city driving cycles that correspond to the tailpipe emission test (i.e., JC08 or JE05 mode of Japanese tailpipe emission test cycles). The tests were performed using two passenger cars and one middle-class truck. The observed airborne brake wear particle emissions ranged from 0.04 to 1.4 mg/km/vehicle for PM10 (particles up to 10 μm (in size), and from 0.04 to 1.2 mg/km/vehicle for PM2.5. The proportion of brake wear debris emitted as airborne brake wear particles was 2-21% of the mass of wear. Oxygenated carbonaceous components were included in the airborne PM but not in the original friction material, which indicates that changes in carbon composition occurred during the abrasion process. Furthermore, this study identified the key tracers of brake wear particles (e.g., Fe, Cu, Ba, and Sb) at emission levels comparable to traffic-related atmospheric environments.

  3. SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH

    EPA Science Inventory

    Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....

  4. Chemical characterization of individual, airborne sub-10-nm particles and molecules.

    PubMed

    Wang, Shenyi; Zordan, Christopher A; Johnston, Murray V

    2006-03-15

    A nanoaerosol mass spectrometer (NAMS) is described for real-time characterization of individual airborne nanoparticles. The NAMS includes an aerodynamic inlet, quadrupole ion guide, quadrupole ion trap, and time-of-flight mass analyzer. Charged particles in the aerosol are drawn through the aerodynamic inlet, focused through the ion guide, and captured in the ion trap. Trapped particles are irradiated with a high-energy laser pulse to reach the "complete ionization limit" where each particle is thought to be completely disintegrated into atomic ions. In this limit, the relative signal intensities of the atomic ions give the atomic composition. The method is first demonstrated with sucrose particles produced with an electrospray generator. Under the conditions used, the particle detection efficiency (fraction of charged particles entering the inlet that are subsequently analyzed) reaches a maximum of 10(-4) at 9.5 nm in diameter and the size distribution of trapped particles has a geometric standard deviation of 1.1 based on a log-normal distribution. A method to deconvolute overlapping multiply charged ions (e.g. C3+ and O4+) is presented. When applied to sucrose spectra, the measured C/O atomic ratio is 1.1, which matches the expected ratio from the molecular formula. The spectra of singly charged bovine serum albumin (BSA) molecules are also presented, and the measured and expected C/N/O atomic ratios are within 15% of the each other. Also observed in the BSA spectra are signals from 13C and 32S which arise from 40 and approximately 34 atoms per molecule (particle), respectively. Potential applications of NAMS to atmospheric chemistry and biotechnology are briefly discussed. PMID:16536407

  5. Concentrations of PAHs in atmospheric particles (PM-10) and roadside soil particles collected in Kuala Lumpur, Malaysia

    NASA Astrophysics Data System (ADS)

    Omar, Nasr Yousef M. J.; Abas, M. Radzi Bin; Ketuly, Kamal Aziz; Tahir, Norhayati Mohd

    The concentrations of polycyclic aromatic hydrocarbons (PAHs) in atmospheric particles and roadside soil particles were measured at eight locations in the city center and the suburb of Kuala Lumpur, Malaysia. Atmospheric particles were collected using high-volume PM-10 sampler on glass fiber filters over 24 h average sampling period. Both types of samples were extracted with dichloromethane by ultrasonic agitation. The extracts were then fractionated on an alumina-silica column and the aromatic fraction was subjected to gas chromatography-mass spectrometric (GC-MS) analysis. Total PAH concentrations in the atmospheric particles and roadside soil particles were found to be 6.28±4.35 ng m -3 and 0.22±0.11 μg g -1, respectively. Benzo[ g, h, i]perylene and coronene were found to be the most abundant PAHs in airborne particles at all locations. The most abundant PAHs in the roadside soil particles were fluoranthene, pyrene and phenanthrene.

  6. Occupational exposure to airborne particles and other pollutants in an aviation base.

    PubMed

    Buonanno, Giorgio; Bernabei, Manuele; Avino, Pasquale; Stabile, Luca

    2012-11-01

    The occupational exposure to airborne particles and other pollutants in a high performance jet engine airport was investigated. Three spatial scales were considered: i) a downwind receptor site, ii) close to the airstrip, iii) personal monitoring. Particle number, surface area, mass concentrations and distributions were measured as well as inorganic and organic fractions, ionic fractions and Polycyclic Aromatic Hydrocarbons. Particle number distribution measured at a receptor site presents a mode of 80 nm and an average total concentration of 6.5 × 10(3) part. cm(-3); the chemical analysis shows that all the elements may be attributed to long-range transport from the sea. Particle number concentrations in the proximity of the airstrip show short term peaks during the working day mainly related to takeoff, landing and pre-flight operations of jet engines. Personal exposure of workers highlights a median number concentration of 2.5 × 10(4) part. cm(-3) and 1.7 × 10(4) part. cm(-3) for crew chief and hangar operator. PMID:22771354

  7. Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain).

    PubMed

    Vallés, I; Camacho, A; Ortega, X; Serrano, I; Blázquez, S; Pérez, S

    2009-02-01

    Results for naturally occurring (7)Be, (210)Pb, (40)K, (214)Bi, (214)Pb, (212)Pb, (228)Ac and (208)Tl and anthropogenic (137)Cs in airborne particulate matter in the Barcelona area during the period from January 2001 to December 2005 are presented and discussed. The (212)Pb and (208)Tl, (214)Bi and (214)Pb, (7)Be and (210)Pb radionuclide levels showed a significant correlation with each other, with correlation coefficients of 0.99, 0.78 and 0.69, respectively, suggesting similar origin/behaviour of these radionuclides in the air. Caessium-137 and Potassium-40 were transported to the air as resuspended particle from the soil. The (7)Be and (210)Pb concentrations showed similar seasonal variations, with a tendency for maximum concentrations during the summer months. An inverse relationship was observed between the (7)Be, (210)Pb, (40)K and (137)Cs concentrations and weekly rainfall, indicating washout of atmospheric aerosols carrying these radionuclides.

  8. Performance of N95 respirators: filtration efficiency for airborne microbial and inert particles.

    PubMed

    Qian, Y; Willeke, K; Grinshpun, S A; Donnelly, J; Coffey, C C

    1998-02-01

    In 1995 the National Institute for Occupational Safety and Health issued new regulations for nonpowered particulate respirators (42 CFR Part 84). A new filter certification system also was created. Among the new particulate respirators that have entered the market, the N95 respirator is the most commonly used in industrial and health care environments. The filtration efficiencies of unloaded N95 particulate respirators have been compared with those of dust/mist (DM) and dust/fume/mist (DFM) respirators certified under the former regulations (30 CFR Part 11). Through laboratory tests with NaCl certification aerosols and measurements with particle-size spectrometers, N95 respirators were found to have higher filtration efficiencies than DM and DFM respirators and noncertified surgical masks. N95 respirators made by different companies were found to have different filtration efficiencies for the most penetrating particle size (0.1 to 0.3 micron), but all were at least 95% efficient at that size for NaCl particles. Above the most penetrating particle size the filtration efficiency increases with size; it reaches approximately 99.5% or higher at about 0.75 micron. Tests with bacteria of size and shape similar to Mycobacterium tuberculosis also showed filtration efficiencies of 99.5% or higher. Experimental data were used to calculate the aerosol mass concentrations inside the respirator when worn in representative work environments. The penetrated mass fractions, in the absence of face leakage, ranged from 0.02% for large particle distributions to 1.8% for submicrometer-size welding fumes. Thus, N95 respirators provide excellent protection against airborne particles when there is a good face seal. PMID:9487666

  9. Wind barriers suppress fugitive dust and soil-derived airborne particles in arid regions

    SciTech Connect

    Grantz, D.A.; Vaughn, D.L.; Farber, R.J.; Kim, B.; Ashbaugh, L.; Van Curen, T.; Campbell, R.

    1998-07-01

    Areas of abandoned agricultural land in the Antelope Valley, western Mojave (high) desert of California have proven in the previous studies to be recalcitrant to conventional tillage and revegetation strategies designed to suppress wind erosion of soil and transport of sediment and fugitive dust. These areas represented a continuing source of drifting sand and of coarse and respirable suspended particulate matter. The traditional techniques failed because furrows collapsed and the water holding capacity of the overburden was too low to support seed germination and transplant survival. In this study a variety of wind barriers were evaluated for suppression of sediment transport. Airborne particles were measured with an array of coarse particle samplers at heights of 0.2, 1.0, and 2.0 m above the soil surface. Discrete artificial wind barriers, consisting of widely spaced roughness elements were effective in suppressing fugitive emissions. Wind fences established along the leeward edge of an area of blowing sand, perpendicular to the prevailing wind, significantly decreased fugitive emissions. Control was greatest and precision of the measurements was highest under high wind conditions. These techniques provide rapid and effective suppression of fugitive emissions of soil-derived particles under conditions that resist conventional tillage and revegetation techniques. A simple, indirect procedure for determining local wind velocity erosion thresholds requiring only sampling of wind run and suspended particulate mass compared favorably with direct measurement of saltation as a function of wind velocity.

  10. Characterisation of airborne particles and associated organic components produced from incense burning.

    PubMed

    Chuang, Hsiao-Chi; Jones, Tim; Chen, Yang; Bell, Jennifer; Wenger, John; BéruBé, Kelly

    2011-12-01

    Airborne particles generated from the burning of incense have been characterized in order to gain an insight into the possible implications for human respiratory health. Physical characterization performed using field-emission scanning electron microscopy showed incense particulate smoke mainly consisted of soot particles with fine and ultrafine fractions in various aggregated forms. A range of organic compounds present in incense smoke have been identified using derivatisation reactions coupled with gas chromatography-mass spectrometry analysis. A total of 19 polar organic compounds were positively identified in the samples, including the biomass burning markers levoglucosan, mannosan and galactosan, as well as a number of aromatic acids and phenols. Formaldehyde was among 12 carbonyl compounds detected and predominantly associated with the gas phase, whereas six different quinones were also identified in the incense particulate smoke. The nano-structured incense soot particles intermixed with organics (e.g. formaldehyde and quinones) could increase the oxidative capacity. When considering the worldwide prevalence of incense burning and resulting high respiratory exposures, the oxygenated organics identified in this study have significant human health implications, especially for susceptible populations. PMID:21769554

  11. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    SciTech Connect

    Brockmann, J.E.; Adkins, C.L.J.; Gelbard, F. )

    1991-09-01

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications.

  12. Characterisation of airborne particles and associated organic components produced from incense burning.

    PubMed

    Chuang, Hsiao-Chi; Jones, Tim; Chen, Yang; Bell, Jennifer; Wenger, John; BéruBé, Kelly

    2011-12-01

    Airborne particles generated from the burning of incense have been characterized in order to gain an insight into the possible implications for human respiratory health. Physical characterization performed using field-emission scanning electron microscopy showed incense particulate smoke mainly consisted of soot particles with fine and ultrafine fractions in various aggregated forms. A range of organic compounds present in incense smoke have been identified using derivatisation reactions coupled with gas chromatography-mass spectrometry analysis. A total of 19 polar organic compounds were positively identified in the samples, including the biomass burning markers levoglucosan, mannosan and galactosan, as well as a number of aromatic acids and phenols. Formaldehyde was among 12 carbonyl compounds detected and predominantly associated with the gas phase, whereas six different quinones were also identified in the incense particulate smoke. The nano-structured incense soot particles intermixed with organics (e.g. formaldehyde and quinones) could increase the oxidative capacity. When considering the worldwide prevalence of incense burning and resulting high respiratory exposures, the oxygenated organics identified in this study have significant human health implications, especially for susceptible populations.

  13. Protecting staff against airborne viral particles: in vivo efficiency of laser masks.

    PubMed

    Derrick, J L; Li, P T Y; Tang, S P Y; Gomersall, C D

    2006-11-01

    Laser masks are used to prevent inhalation of viral particles during laser surgery. A crossover trial was performed in eight volunteers to compare the ability of a surgical mask and a laser mask with that of an FFP2 respirator to filter airborne dust particles. The surgical and laser masks were tested when worn normally and when they were taped to the face. The mean reductions in particle counts were 3.0 fold [95% confidence interval (95% CI) 1.8-4.2] for the untaped surgical mask, 3.8 fold (95% CI 2.9-4.6) for the untaped laser mask, 7.5 fold (95% CI 6.5-8.5) for the taped surgical mask, 15.6 fold (95% CI 13.5-17.8) for the taped laser mask, and 102.6 fold (95% CI 41.2-164.1) for the FFP2 half-face respirator. The laser mask provided significantly less protection than the FFP2 respirator (P=0.02), and only marginally more protection than the surgical mask. The continued use of laser masks for respiratory protection is questionable. Taping masks to the face only provided a small improvement in protection.

  14. Airborne Hyperspectral Survey of Afghanistan 2007: Flight Line Planning and HyMap Data Collection

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Livo, K. Eric

    2008-01-01

    Hyperspectral remote sensing data were acquired over Afghanistan with the HyMap imaging spectrometer (Cocks and others, 1998) operating on the WB-57 high altitude NASA research aircraft (http://jsc-aircraft-ops.jsc.nasa.gov/wb57/index.html). These data were acquired during the interval of August 22, 2007 to October 2, 2007, as part of the United States Geological Survey (USGS) project 'Oil and Gas Resources Assessment of the Katawaz and Helmand Basins'. A total of 218 flight lines of hyperspectral remote sensing data were collected over the country. This report describes the planning of the airborne survey and the flight lines that were flown. Included with this report are digital files of the nadir tracks of the flight lines, including a map of the labeled flight lines and corresponding vector shape files for geographic information systems (GIS).

  15. Instrument Would Detect and Collect Biological Aerosols

    NASA Technical Reports Server (NTRS)

    Savoy, Steve; Mayo, Mike

    2006-01-01

    A proposed compact, portable instrument would sample micron-sized airborne particles, would discriminate between biological ones (e.g., bacteria) and nonbiological ones (e.g., dust particles), and would collect the detected biological particles for further analysis. The instrument is intended to satisfy a growing need for means of rapid, inexpensive collection of bioaerosols in a variety of indoor and outdoor settings. Purposes that could be served by such collection include detecting airborne pathogens inside buildings and their ventilation systems, measuring concentrations of airborne biological contaminants around municipal waste-processing facilities, monitoring airborne effluents from suspected biowarfare facilities, and warning of the presence of airborne biowarfare agents

  16. 78 FR 67147 - Proposed Data Collections Submitted for Public Comment and Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... particles produced during coughing and breathing is particularly unclear. The question of airborne... viable influenza virus in airborne particles that are produced by patients when they cough, and the size... to cough repeatedly into an aerosol particle collection system, and the airborne particles...

  17. Airborne observations of new particle formation events in the boundary layer using a Zeppelin

    NASA Astrophysics Data System (ADS)

    Lampilahti, Janne; Manninen, Hanna E.; Nieminen, Tuomo; Mirme, Sander; Pullinen, Iida; Yli-Juuti, Taina; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Lehtipalo, Katrianne; Ehn, Mikael; Mentel, Thomas F.; Petäjä, Tuukka; Kulmala, Markku

    2014-05-01

    Atmospheric new particle formation (NPF) is a frequent and ubiquitous process in the atmosphere and a major source of newly formed aerosol particles [1]. However, it is still unclear how the aerosol particle distribution evolves in space and time during an NPF. We investigated where in the planetary boundary layer does NPF begin and how does the aerosol number size distribution develop in space and time during it. We measured in Hyytiälä, southern Finland using ground based and airborne measurements. The measurements were part of the PEGASOS project. NPF was studied on six scientific flights during spring 2013 using a Zeppelin NT class airship. Ground based measurements were simultaneously conducted at SMEAR II station located in Hyytiälä. The flight profiles over Hyytiälä were flown between sunrise and noon during the growth of the boundary layer. The profiles over Hyytiälä covered vertically a distance of 100-1000 meters reaching the mixed layer, stable (nocturnal) boundary layer and the residual layer. Horizontally the profiles covered approximately a circular area of four kilometers in diameter. The measurements include particle number size distribution by Neutral cluster and Air Ion Spectrometer (NAIS), Differential Mobility Particle Sizer (DMPS) and Particle Size Magnifier (PSM) [2], meteorological parameters and position (latitude, longitude and altitude) of the Zeppelin. Beginning of NPF was determined from an increase in 1.7-3 nm ion concentration. Height of the mixed layer was estimated from relative humidity measured on-board the Zeppelin. Particle growth rate during NPF was calculated. Spatial inhomogeneities in particle number size distribution during NPF were located and the birthplace of the particles was estimated using the growth rate and trajectories. We observed a regional NPF event that began simultaneously and evolved uniformly inside the mixed layer. In the horizontal direction we observed a long and narrow high concentration plume of

  18. Exposure vs toxicity levels of airborne quartz, metal and carbon particles in cast iron foundries.

    PubMed

    Moroni, Beatrice; Viti, Cecilia; Cappelletti, David

    2014-01-01

    Aerosol dust samples and quartz raw materials from different working stations in foundry plants were characterized in order to assess the health risk in this working environment. Samples were analysed by scanning and transmission electron microscopy coupled with image analysis and microanalysis, and by cathodoluminescence spectroscopy. In addition, the concentration and the solubility degree of Fe and other metals of potential health effect (Mn, Zn and Pb) in the bulk samples were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Overall, the results indicate substantial changes in quartz crystal structure and texture when passing from the raw material to the airborne dust, which include lattice defects, non-bridging oxygen hole centres and contamination of quartz grains by metal and/or graphite particles. All these aspects point towards the relevance of surface properties on reactivity. Exposure doses have been estimated based on surface area, and compared with threshold levels resulting from toxicology. The possible synergistic effects of concomitant exposure to inhalable magnetite, quartz and/or graphite particles in the same working environment have been properly remarked. PMID:23385294

  19. Exposure vs toxicity levels of airborne quartz, metal and carbon particles in cast iron foundries.

    PubMed

    Moroni, Beatrice; Viti, Cecilia; Cappelletti, David

    2014-01-01

    Aerosol dust samples and quartz raw materials from different working stations in foundry plants were characterized in order to assess the health risk in this working environment. Samples were analysed by scanning and transmission electron microscopy coupled with image analysis and microanalysis, and by cathodoluminescence spectroscopy. In addition, the concentration and the solubility degree of Fe and other metals of potential health effect (Mn, Zn and Pb) in the bulk samples were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Overall, the results indicate substantial changes in quartz crystal structure and texture when passing from the raw material to the airborne dust, which include lattice defects, non-bridging oxygen hole centres and contamination of quartz grains by metal and/or graphite particles. All these aspects point towards the relevance of surface properties on reactivity. Exposure doses have been estimated based on surface area, and compared with threshold levels resulting from toxicology. The possible synergistic effects of concomitant exposure to inhalable magnetite, quartz and/or graphite particles in the same working environment have been properly remarked.

  20. Mutagenicity of fine airborne particles: diurnal variation in community air determined by a Salmonella micro preincubation (microsuspension) procedure

    SciTech Connect

    Kado, N.Y.; Guirguis, G.N.; Flessel, C.P.; Chan, R.C.; Chang, K.I.; Wesolowski, J.J.

    1986-01-01

    A simple modification of the Salmonella liquid incubation assay previously developed for detecting mutagens in urine was used to determine mutagenic activity of airborne particulate matter. The modification consists of adding ten times more bacteria and five to ten times less metabolic enzymes compared to the plate incorporation method. The mixture volume is approximately 0.2 ml, and the mixture is incubated for 90 min before pouring it according to the standard protocol. The modified procedure was approximately ten times more sensitive than the standard plate incorporation test for detecting mutagens in air particulate extracts and approximately ten to 31 times more sensitive for the chemical mutagens 2-nitrofluorene, 4-nitroquinoline-N-oxide, 2-aminofluorene, and benzo(a)pyrene in bacterial strain TA98. Mutagenic activity was associated exclusively with fine particles (aerodynamic diameters of less than 2.5 ..mu..m). Diurnal patterns of mutagenic activity were investigated by measuring filter extracts from 2-hr samples collected in three San Francisco Bay Area cities during the summer or fall of 1982. Four criteria pollutants - lead, nitrogen dioxide, ozone, and sulfur dioxide - were simultaneously sampled at one location.

  1. Airborne particles of the california central valley alter the lungs of healthy adult rats.

    PubMed Central

    Smith, Kevin R; Kim, Seongheon; Recendez, Julian J; Teague, Stephen V; Ménache, Margaret G; Grubbs, David E; Sioutas, Constantinos; Pinkerton, Kent E

    2003-01-01

    Epidemiologic studies have shown that airborne particulate matter (PM) with a mass median aerodynamic diameter < 10 microm (PM10) is associated with an increase in respiratory-related disease. However, there is a growing consensus that particles < 2.5 microm (PM2.5), including many in the ultrafine (< 0.1 microm) size range, may elicit greater adverse effects. PM is a complex mixture of organic and inorganic compounds; however, those components or properties responsible for biologic effects on the respiratory system have yet to be determined. During the fall and winter of 2000-2001, healthy adult Sprague-Dawley rats were exposed in six separate experiments to filtered air or combined fine (PM2.5) and ultrafine portions of ambient PM in Fresno, California, enhanced approximately 20-fold above outdoor levels. The intent of these studies was to determine if concentrated fine/ultrafine fractions of PM are cytotoxic and/or proinflammatory in the lungs of healthy adult rats. Exposures were for 4 hr/day for 3 consecutive days. The mean mass concentration of particles ranged from 190 to 847 microg/m3. PM was enriched primarily with ammonium nitrate, organic and elemental carbon, and metals. Viability of cells recovered by bronchoalveolar lavage (BAL) from rats exposed to concentrated PM was significantly decreased during 4 of 6 weeks, compared with rats exposed to filtered air (p< 0.05). Total numbers of BAL cells were increased during 1 week, and neutrophil numbers were increased during 2 weeks. These observations strongly suggest exposure to enhanced concentrations of ambient fine/ultrafine particles in Fresno is associated with mild, but significant, cellular effects in the lungs of healthy adult rats. PMID:12782490

  2. Effective localized collection and identification of airborne species through electrodynamic precipitation and SERS-based detection

    PubMed Central

    Lin, En-Chiang; Fang, Jun; Park, Se-Chul; Johnson, Forrest W.; Jacobs, Heiko O.

    2013-01-01

    Various nanostructured sensor designs currently aim to achieve or claim single molecular detection by a reduction of the active sensor size. However, a reduction of the sensor size has the negative effect of reducing the capture probability considering the diffusion-based analyte transport commonly used. Here we introduce and apply a localized programmable electrodynamic precipitation concept as an alternative to diffusion. The process provides higher collection rates of airborne species and detection at lower concentration. As an example, we compare an identical nanostructured surfaced-enhanced Raman spectroscopy sensor with and without localized delivery and find that the sensitivity and detection time is improved by at least two orders of magnitudes. Localized collection in an active-matrix array-like fashion is also tested, yielding hybrid molecular arrays on a single chip over a broad range of molecular weights, including small benzenethiol (110.18 Da) and 4-fluorobenzenethiol (128.17 Da), or large macromolecules such as anti-mouse IgG (~150 kDa). PMID:23535657

  3. The use of an experimental room for monitoring of airborne concentrations of microorganisms, glass fibers, and total particles

    SciTech Connect

    Buttner, M.P.; Stetzenbach, L.D.

    1996-12-31

    An experimental room was used as a microcosm for studies of airborne particles and microorganisms in indoor environments. The interior of the room measures 4 by 4 by 2.2 m high and has a hardwood floor and the walls and ceiling are sheetrocked and coated with interior latex paint. Exterior walls are 11.4-cm thick plywood panels consisting of two outer sections of plywood insulated with fiber glass batts. The ceiling is of similar construction with 17.1-cm thick panels. Attached to the room entrance is an anteroom equipped with a HEPA-filtered air shower to reduce mixing of air resulting from entering and exiting during experiments. The room is equipped with a computer-controlled heating, ventilation, and cooling system. Temperature, relative humidity, air flow, and room pressure can be continuously monitored by probes located in the room and air handling system components. Several research projects have been conducted using this room including monitoring the potential for airborne glass fibers released from rigid fibrous ductboard, comparisons of commercially available samplers for monitoring of airborne fungal spores, and a study on the efficacy of vacuum bags to minimize dispersal of particles, including fungal spores from fungal-contaminated carpet. During studies designed to monitor airborne fiberglass, air samples were taken in the room serviced by new rigid fibrous glass ductwork, and the results were compared to those obtained in the room with bare metal ductwork installed. Monitoring of airborne fungal spores using the Andersen six-stage sampler, the high flow Spiral Biotech sampler, the Biotest RCS Plus sampler, and the Burkard spore trap sampler was performed following the release of Penicillium spores into the room through the supply register. Dispersal of carpet-associated particles and fungal spores was measured after vacuuming using conventional cellulose vacuum bags in comparison to recently developed bags.

  4. [Comparing Cell Toxicity of Schizosaccharomyces pombe Exposure to Airborne PM2.5 from Beijing and Inert Particle SiO2].

    PubMed

    Liu, Meng-jiao; Huang, Yi; Wen, Hang; Qiu, Guo-yu

    2015-11-01

    To figure out the main factor of PM2.5 toxicity to cell, this study compared the cell toxicity of Schizosaccharomyces pombe (S. pombe), a model organism, exposed to inert ultrafine SiO2 particles, a model particle, and airborne PM2.5 collected from campus of Peking University Beijing China. Using ultraviolet spectrophotometry to measure cell proliferation ratio, and environmental scanning microscope to observe the particle adhesion on the cell surface, and detecting cellular ROS generation with DHE fluorescent dye chromogenic method, and using single cell gel electrophoresis to test cell DNA damage, the experiment results indicated that the ultrafine SiO2 particles (< 60 nm) could inhibit the cell proliferation of S. pombe, mainly through adsorbing onto the cell surface to change the permeability of the cell wall; but it could not induce cells to generate ROS to cause the oxidative damage. PM2.5, the average particle size of which was larger than that of SiO2 particles, could cause oxidative damages to cells mainly by inducing cells to generate ROS, and damage DNA simultaneously. It might illustrate that there was no direct relationship between the toxicity of PM2.5 and its physical properties such as the particle size.

  5. [Comparing Cell Toxicity of Schizosaccharomyces pombe Exposure to Airborne PM2.5 from Beijing and Inert Particle SiO2].

    PubMed

    Liu, Meng-jiao; Huang, Yi; Wen, Hang; Qiu, Guo-yu

    2015-11-01

    To figure out the main factor of PM2.5 toxicity to cell, this study compared the cell toxicity of Schizosaccharomyces pombe (S. pombe), a model organism, exposed to inert ultrafine SiO2 particles, a model particle, and airborne PM2.5 collected from campus of Peking University Beijing China. Using ultraviolet spectrophotometry to measure cell proliferation ratio, and environmental scanning microscope to observe the particle adhesion on the cell surface, and detecting cellular ROS generation with DHE fluorescent dye chromogenic method, and using single cell gel electrophoresis to test cell DNA damage, the experiment results indicated that the ultrafine SiO2 particles (< 60 nm) could inhibit the cell proliferation of S. pombe, mainly through adsorbing onto the cell surface to change the permeability of the cell wall; but it could not induce cells to generate ROS to cause the oxidative damage. PM2.5, the average particle size of which was larger than that of SiO2 particles, could cause oxidative damages to cells mainly by inducing cells to generate ROS, and damage DNA simultaneously. It might illustrate that there was no direct relationship between the toxicity of PM2.5 and its physical properties such as the particle size. PMID:26910977

  6. Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain).

    PubMed

    Vallés, I; Camacho, A; Ortega, X; Serrano, I; Blázquez, S; Pérez, S

    2009-02-01

    Results for naturally occurring (7)Be, (210)Pb, (40)K, (214)Bi, (214)Pb, (212)Pb, (228)Ac and (208)Tl and anthropogenic (137)Cs in airborne particulate matter in the Barcelona area during the period from January 2001 to December 2005 are presented and discussed. The (212)Pb and (208)Tl, (214)Bi and (214)Pb, (7)Be and (210)Pb radionuclide levels showed a significant correlation with each other, with correlation coefficients of 0.99, 0.78 and 0.69, respectively, suggesting similar origin/behaviour of these radionuclides in the air. Caessium-137 and Potassium-40 were transported to the air as resuspended particle from the soil. The (7)Be and (210)Pb concentrations showed similar seasonal variations, with a tendency for maximum concentrations during the summer months. An inverse relationship was observed between the (7)Be, (210)Pb, (40)K and (137)Cs concentrations and weekly rainfall, indicating washout of atmospheric aerosols carrying these radionuclides. PMID:19027201

  7. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  8. Measurement of airborne gunshot particles in a ballistics laboratory by sector field inductively coupled plasma mass spectrometry.

    PubMed

    Diaz, Ernesto; Sarkis, Jorge E Souza; Viebig, Sônia; Saldiva, Paulo

    2012-01-10

    The present study aimed determines lead (Pb), antimony (Sb) and barium (Ba) as the major elements present in GSR in the environmental air of the Ballistics Laboratory of the São Paulo Criminalistics Institute (I.C.-S.P.), São Paulo, SP, Brazil. Micro environmental monitors (mini samplers) were located at selected places. The PM(2.5) fraction of this airborne was collected in, previously weighted filters, and analyzed by sector field inductively coupled plasma mass spectrometer (SF-HR-ICP-MS). The higher values of the airborne lead, antimony and barium, were found at the firing range (lead (Pb): 58.9 μg/m(3); barium (Ba): 6.9 μg/m(3); antimony (Sb): 7.3 μg/m(3)). The mean value of the airborne in this room during 6 monitored days was Pb: 23.1 μg/m(3); Ba: 2.2 μg/m(3); Sb: 1.5 μg/m(3). In the water tank room, the air did not show levels above the limits of concern. In general the airborne lead changed from day to day, but the barium and antimony remained constant. Despite of that, the obtained values suggest that the workers may be exposed to airborne lead concentration that can result in an unhealthy environment and could increase the risk of chronic intoxication.

  9. Beryllium solubility in occupational airborne particles: Sequential extraction procedure and workplace application.

    PubMed

    Rousset, Davy; Durand, Thibaut

    2016-01-01

    Modification of an existing sequential extraction procedure for inorganic beryllium species in the particulate matter of emissions and in working areas is described. The speciation protocol was adapted to carry out beryllium extraction in closed-face cassette sampler to take wall deposits into account. This four-step sequential extraction procedure aims to separate beryllium salts, metal, and oxides from airborne particles for individual quantification. Characterization of the beryllium species according to their solubility in air samples may provide information relative to toxicity, which is potentially related to the different beryllium chemical forms. Beryllium salts (BeF(2), BeSO(4)), metallic beryllium (Bemet), and beryllium oxide (BeO) were first individually tested, and then tested in mixtures. Cassettes were spiked with these species and recovery rates were calculated. Quantitative analyses with matched matrix were performed using inductively coupled plasma mass spectrometry (ICP-MS). Method Detection Limits (MDLs) were calculated for the four matrices used in the different extraction steps. In all cases, the MDL was below 4.2 ng/sample. This method is appropriate for assessing occupational exposure to beryllium as the lowest recommended threshold limit values are 0.01 µg.m(-3) in France([) (1) (]) and 0.05 µg.m(-3) in the USA.([ 2 ]) The protocol was then tested on samples from French factories where occupational beryllium exposure was suspected. Beryllium solubility was variable between factories and among the same workplace between different tasks.

  10. Synchronization and collective motion of globally coupled Brownian particles

    NASA Astrophysics Data System (ADS)

    Sevilla, Francisco J.; Dossetti, Victor; Heiblum-Robles, Alexandro

    2014-12-01

    In this work, we study a system of passive Brownian (non-self-propelled) particles in two dimensions, interacting only through a social-like force (velocity alignment in this case) that resembles Kuramoto's coupling among phase oscillators. We show that the kinematical stationary states of the system go from a phase in thermal equilibrium with no net flux of particles, to far-from-equilibrium phases exhibiting collective motion by increasing the coupling among particles. The mechanism that leads to the instability of the equilibrium phase relies on the competition between two time scales, namely, the mean collision time of the Brownian particles in a thermal bath and the time it takes for a particle to orient its direction of motion along the direction of motion of the group. Our results show a clear connection between collective motion and the Kuramoto model for synchronization, in our case, for the direction of motion of the particles.

  11. Particle-Molecule Collection by Sonic Flow Impingers

    ERIC Educational Resources Information Center

    Jackson, Melbourne L.

    1974-01-01

    The theoretical basis of the sonic-flow impinger is discussed. Details are given for the design, prediction of performance, preliminary evaluation for particle collection, and field use of a sonic-flow impinger train. (DT)

  12. Measurements of Br/Pb Ratios in Airborne Particles from Car Exhaust

    NASA Astrophysics Data System (ADS)

    Öblad, M.; Selin, E.

    1985-10-01

    Concentrations of particulate bromine and lead have been measured during one summer and one winter period. The measurements were made simultaneously in five sites in a city on the Swedish west coast. A rural site about 60 km from the city was used to measure the background aerosol. Aerosol sampling was made with six dichotomous virtual impactors, which fractionate the aerosol into two modes, one fine particle mode (aerodynamic diameter, a.d. < 3.5 μm) and one coarse particle mode (3.5 μm < a.d. < 18 μm). The aerosol was collected onto thin teflon filters. Element concentrations were obtained by Energy Dispersive X-Ray Fluorescence Analysis. The element concentrations were related to air mass trajectories. The Br/Pb ratio proved to be the same on a given date for the city sites and the background site. A dependence on the air mass history was found, suggesting that it is the quality of the air basin in the region that influences the Br/Pb ratio even for fresh car exhaust. The Br/Pb ratio was the same for fine and coarse particles, indicating that the ratio is determined before coagulation with larger particles occur. The ratios between coarse and fine particles containing lead and bromine respectively were also studied. The results suggest that lead and bromine are actually attached to the same particles.

  13. Flue gas conditioning for improved particle collection in electrostatic precipitators

    SciTech Connect

    Durham, M.D.

    1993-04-16

    Several tasks have been completed in a program to evaluate additives to improve fine particle collection in electrostatic precipitators. Screening tests and laboratory evaluations of additives are summarized in this report. Over 20 additives were evaluated; four were found to improve flyash precipitation rates. The Insitec particle analyzer was also evaluated; test results show that the analyzer will provide accurate sizing and counting information for particles in the size range of [le] 10 [mu]m dia.

  14. Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European cities.

    PubMed

    Gómez, B; Palacios, M A; Gómez, M; Sanchez, J L; Morrison, G; Rauch, S; McLeod, C; Ma, R; Caroli, S; Alimonti, A; Petrucci, E; Bocca, B; Schramel, P; Zischka, M; Petterson, C; Wass, U

    2002-11-01

    Traffic is the main source of platinum-group element (PGE) contamination in populated urban areas. There is increasing concern about the hazardous effects of these new pollutants for people and for other living organisms in these areas. Airborne and road dusts, as well as tree bark and grass samples were collected at locations in the European cities of Göteborg (Sweden), Madrid (Spain), Rome (Italy), Munich (Germany), Sheffield and London (UK). Today, in spite of the large number of parameters that can influence the airborne PGE content, the results obtained so far indicate significantly higher PGE levels at traffic sites compared with the rural or non-polluted zones that have been investigated (background levels). The average Pt content in airborne particles found in downtown Madrid, Göteborg and Rome is in the range 7.3-13.1 pg m(-3). The ring roads of these cities have values in the range 4.1-17.7 pg m(-3). In Munich, a lower Pt content was found in airborne particles (4.1 pg m(-3)). The same tendency has been noted for downtown Rh, with contents in the range 2.2-2.8 pg m(-3), and in the range 0.8-3.0 and 0.3 pg m(-3) for motorway margins in Munich. The combined results obtained using a wide-range airborne classifier (WRAC) collector and a PM-10 or virtual impactor show that Pt is associated with particles for a wide range of diameters. The smaller the particle size, the lower the Pt concentration. However, in particles particles of approximately 15 pg m(-3), which is representative for all countries and environmental conditions, the tracheobronchial fraction represents approximately 10% and the alveolar fraction approximately 8% of the total particles suspended in air. However, from the environmental risk point of view, an exposure to PGEs in traffic-related ambient air is at least three orders of magnitude below the levels for which adverse

  15. Particle size distribution of airborne Aspergillus fumigatus spores emitted from compost using membrane filtration

    NASA Astrophysics Data System (ADS)

    Deacon, L. J.; Pankhurst, L. J.; Drew, G. H.; Hayes, E. T.; Jackson, S.; Longhurst, P. J.; Longhurst, J. W. S.; Liu, J.; Pollard, S. J. T.; Tyrrel, S. F.

    Information on the particle size distribution of bioaerosols emitted from open air composting operations is valuable in evaluating potential health impacts and is a requirement for improved dispersion simulation modelling. The membrane filter method was used to study the particle size distribution of Aspergillus fumigatus spores in air 50 m downwind of a green waste compost screening operation at a commercial facility. The highest concentrations (approximately 8 × 10 4 CFU m -3) of culturable spores were found on filters with pore diameters in the range 1-2 μm which suggests that the majority of spores are emitted as single cells. The findings were compared to published data collected using an Andersen sampler. Results were significantly correlated ( p < 0.01) indicating that the two methods are directly comparable across all particles sizes for Aspergillus spores.

  16. TOF-SIMS measurements for toxic air pollutants adsorbed on the surface of airborne particles

    NASA Astrophysics Data System (ADS)

    Tomiyasu, Bunbunoshin; Hoshi, Takahiro; Owari, Masanori; Nihei, Yoshimasa

    2003-01-01

    Three kinds of particulate matter were collected: diesel and gasoline exhaust particles emitted directly from exhaust nozzle, and suspended particulate matter (SPM) near the traffic route. Soxhlet extraction was performed on each sample. By gas-chromatograph-mass spectrometer (GC-MS) analysis of these extracts, di-ethyl phthalate and di- n-butyl phthalate were detected from the extract of SPM and diesel exhaust particles (DEPs). Because these phthalates were sometimes suspected as contamination, time-of-flight secondary ion mass spectrometry (TOF-SIMS) measurements were also performed on the samples collected at the same environment. By comparing obtained spectra, it is clear that these environmental endocrine disrupters (EEDs) were adsorbed on DEP surface. Thus, we concluded that the combination of conventional method and TOF-SIMS measurement is one of the most powerful techniques for analyzing the toxic air pollutants adsorbed on SPM surface.

  17. Organic compounds present in airborne particles stimulate superoxide production and DNA fragmentation: role of NOX and xanthine oxidase in animal tissues.

    PubMed

    Busso, Iván Tavera; Silva, Guillermo Benjamín; Carreras, Hebe Alejandra

    2016-08-01

    Suspended particulate matter trigger the production of reactive oxygen species. However, most of the studies dealing with oxidative damage of airborne particles focus on the effects of individual compounds and not real mixtures. In order to study the enzymatic superoxide production resulting from the exposition to a complex mixture, we derived organic extracts from airborne particles collected daily in an urban area and exposed kidney, liver, and heart mammal tissues. After that, we measured DNA damage employing the comet assay. We observed that in every tissue, NADPH oxidase and xanthine oxidase were involved in O2 (-) production when they were exposed to the organic extracts, as the lucigenin's chemiluminescence decays when enzymes were inhibited. The same trend was observed with the percentage of cells with comets, since DNA damage was higher when they were exposed to same experimental conditions. Our data allow us to hypothesize that these enzymes play an important role in the oxidative stress produced by PAHs and that there is a mechanism involving them in the O2 (-)generation. PMID:27180836

  18. Organic compounds present in airborne particles stimulate superoxide production and DNA fragmentation: role of NOX and xanthine oxidase in animal tissues.

    PubMed

    Busso, Iván Tavera; Silva, Guillermo Benjamín; Carreras, Hebe Alejandra

    2016-08-01

    Suspended particulate matter trigger the production of reactive oxygen species. However, most of the studies dealing with oxidative damage of airborne particles focus on the effects of individual compounds and not real mixtures. In order to study the enzymatic superoxide production resulting from the exposition to a complex mixture, we derived organic extracts from airborne particles collected daily in an urban area and exposed kidney, liver, and heart mammal tissues. After that, we measured DNA damage employing the comet assay. We observed that in every tissue, NADPH oxidase and xanthine oxidase were involved in O2 (-) production when they were exposed to the organic extracts, as the lucigenin's chemiluminescence decays when enzymes were inhibited. The same trend was observed with the percentage of cells with comets, since DNA damage was higher when they were exposed to same experimental conditions. Our data allow us to hypothesize that these enzymes play an important role in the oxidative stress produced by PAHs and that there is a mechanism involving them in the O2 (-)generation.

  19. 75 FR 54151 - Proposed Data Collections Submitted for Public Comment and Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... during coughing and breathing is particularly unclear. The question of airborne transmission is... virus in airborne particles that are produced by patients when they cough, and the size and quantity of... be asked to cough into an aerosol particle collection system, and the airborne particles produced...

  20. Characterizing the impact of urban emissions on regional aerosol particles; airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouch, N.; Pichon, J.-M.; Prévôt, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2013-09-01

    The MEGAPOLI experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) giving detailed information of the non-refractory submicron aerosol species. The mass concentration of BC, measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), black carbon and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy). Plotting the equivalent ratios for the Positive Matrix Factorization (PMF) resolved species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA). Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in Mexico city, Mexico and in New England, USA. Using the measured VOCs species together with recent organic aerosol formation yields we predicted ~ 50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA

  1. Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouche, N.; Pichon, J.-M.; Bourianne, T.; Gomes, L.; Prevot, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2014-02-01

    The MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris, using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS), giving detailed information on the non-refractory submicron aerosol species. The mass concentration of black carbon (BC), measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), BC, and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy)). Plotting the equivalent ratios of different organic aerosol species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA) formation. Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in London, Mexico City, and in New England, USA. Using the measured SOA volatile organic compounds (VOCs) species together with organic aerosol formation

  2. Method of concurrently filtering particles and collecting gases

    SciTech Connect

    Mitchell, Mark A; Meike, Annemarie; Anderson, Brian L

    2015-04-28

    A system for concurrently filtering particles and collecting gases. Materials are be added (e.g., via coating the ceramic substrate, use of loose powder(s), or other means) to a HEPA filter (ceramic, metal, or otherwise) to collect gases (e.g., radioactive gases such as iodine). The gases could be radioactive, hazardous, or valuable gases.

  3. Source apportionment of airborne particles in commercial aircraft cabin environment: Contributions from outside and inside of cabin

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Guan, Jun; Yang, Xudong; Lin, Chao-Hsin

    2014-06-01

    Airborne particles are an important type of air pollutants in aircraft cabin. Finding sources of particles is conducive to taking appropriate measures to remove them. In this study, measurements of concentration and size distribution of particles larger than 0.3 μm (PM>0.3) were made on nine short haul flights from September 2012 to March 2013. Particle counts in supply air and breathing zone air were both obtained. Results indicate that the number concentrations of particles ranged from 3.6 × 102 counts L-1 to 1.2 × 105 counts L-1 in supply air and breathing zone air, and they first decreased and then increased in general during the flight duration. Peaks of particle concentration were found at climbing, descending, and cruising phases in several flights. Percentages of particle concentration in breathing zone contributed by the bleed air (originated from outside) and cabin interior sources were calculated. The bleed air ratios, outside airflow rates and total airflow rates were calculated by using carbon dioxide as a ventilation tracer in five of the nine flights. The calculated results indicate that PM>0.3 in breathing zone mainly came from unfiltered bleed air, especially for particle sizes from 0.3 to 2.0 μm. And for particles larger than 2.0 μm, contributions from the bleed air and cabin interior were both important. The results would be useful for developing better cabin air quality control strategies.

  4. Personal exposure to airborne ultrafine particles in the urban area of Milan

    NASA Astrophysics Data System (ADS)

    Cattaneo, A.; Garramone, G.; Taronna, M.; Peruzzo, C.; Cavallo, D. M.

    2009-02-01

    The relevance of health effects related to ultrafine particles (UFPs; aerodynamic diameter < 100 nm) can be better evaluated using high-resolution strategies for measuring particle number concentrations. In this study, two different portable Condensation Particle Counters (CPCs) were used to measure personal exposure to UFPs in the central area of Milan for one week period during spring, with three sampling sessions per day. Experimental data were continuously collected along an established urban pathway, moving afoot or by different private and public means of transport. Correlation analysis between data measured by two CPCs was performed and general results showed a good agreement, especially at concentrations lower than 2×105 particles /cm3. UFPs measures were divided on the basis of crossed environments or micro-environments, days of the week and day time (hours). The highest measured mean concentrations and data variability were observed during walking time and moving on motorized vehicles (bus and car), indicating that the highest exposure to UFPs can be reached near motorized traffic. The lowest exposures were observed in green areas and in office microenvironments. An appreciable difference between working and non-working days was observed. Concentration patterns and variation by days of the week and time periods appears related to time trends in traffic intensity.

  5. Nanoscale characterization of PM2.5 airborne pollutants reveals high adhesiveness and aggregation capability of soot particles

    PubMed Central

    Shi, Yuanyuan; Ji, Yanfeng; Sun, Hui; Hui, Fei; Hu, Jianchen; Wu, Yaxi; Fang, Jianlong; Lin, Hao; Wang, Jianxiang; Duan, Huiling; Lanza, Mario

    2015-01-01

    In 2012 air pollutants were responsible of seven million human death worldwide, and among them particulate matter with an aerodynamic diameter of 2.5 micrometers or less (PM2.5) are the most hazardous because they are small enough to invade even the smallest airways and penetrate to the lungs. During the last decade the size, shape, composition, sources and effect of these particles on human health have been studied. However, the noxiousness of these particles not only relies on their chemical toxicity, but particle morphology and mechanical properties affect their thermodynamic behavior, which has notable impact on their biological activity. Therefore, correlating the physical, mechanical and chemical properties of PM2.5 airborne pollutants should be the first step to characterize their interaction with other bodies but, unfortunately, such analysis has never been reported before. In this work, we present the first nanomechanical characterization of the most abundant and universal groups of PM2.5 airborne pollutants and, by means of atomic force microscope (AFM) combined with other characterization tools, we observe that fluffy soot aggregates are the most sticky and unstable. Our experiments demonstrate that such particles show strong adhesiveness and aggregation, leading to a more diverse composition and compiling all possible toxic chemicals. PMID:26177695

  6. Nanoscale characterization of PM2.5 airborne pollutants reveals high adhesiveness and aggregation capability of soot particles.

    PubMed

    Shi, Yuanyuan; Ji, Yanfeng; Sun, Hui; Hui, Fei; Hu, Jianchen; Wu, Yaxi; Fang, Jianlong; Lin, Hao; Wang, Jianxiang; Duan, Huiling; Lanza, Mario

    2015-01-01

    In 2012 air pollutants were responsible of seven million human death worldwide, and among them particulate matter with an aerodynamic diameter of 2.5 micrometers or less (PM2.5) are the most hazardous because they are small enough to invade even the smallest airways and penetrate to the lungs. During the last decade the size, shape, composition, sources and effect of these particles on human health have been studied. However, the noxiousness of these particles not only relies on their chemical toxicity, but particle morphology and mechanical properties affect their thermodynamic behavior, which has notable impact on their biological activity. Therefore, correlating the physical, mechanical and chemical properties of PM2.5 airborne pollutants should be the first step to characterize their interaction with other bodies but, unfortunately, such analysis has never been reported before. In this work, we present the first nanomechanical characterization of the most abundant and universal groups of PM2.5 airborne pollutants and, by means of atomic force microscope (AFM) combined with other characterization tools, we observe that fluffy soot aggregates are the most sticky and unstable. Our experiments demonstrate that such particles show strong adhesiveness and aggregation, leading to a more diverse composition and compiling all possible toxic chemicals. PMID:26177695

  7. Nanoscale characterization of PM2.5 airborne pollutants reveals high adhesiveness and aggregation capability of soot particles

    NASA Astrophysics Data System (ADS)

    Shi, Yuanyuan; Ji, Yanfeng; Sun, Hui; Hui, Fei; Hu, Jianchen; Wu, Yaxi; Fang, Jianlong; Lin, Hao; Wang, Jianxiang; Duan, Huiling; Lanza, Mario

    2015-07-01

    In 2012 air pollutants were responsible of seven million human death worldwide, and among them particulate matter with an aerodynamic diameter of 2.5 micrometers or less (PM2.5) are the most hazardous because they are small enough to invade even the smallest airways and penetrate to the lungs. During the last decade the size, shape, composition, sources and effect of these particles on human health have been studied. However, the noxiousness of these particles not only relies on their chemical toxicity, but particle morphology and mechanical properties affect their thermodynamic behavior, which has notable impact on their biological activity. Therefore, correlating the physical, mechanical and chemical properties of PM2.5 airborne pollutants should be the first step to characterize their interaction with other bodies but, unfortunately, such analysis has never been reported before. In this work, we present the first nanomechanical characterization of the most abundant and universal groups of PM2.5 airborne pollutants and, by means of atomic force microscope (AFM) combined with other characterization tools, we observe that fluffy soot aggregates are the most sticky and unstable. Our experiments demonstrate that such particles show strong adhesiveness and aggregation, leading to a more diverse composition and compiling all possible toxic chemicals.

  8. Microscopy and chemistry of particles collected on TEOM filters: Swansea, south Wales, 1998-1999

    NASA Astrophysics Data System (ADS)

    Jones, T. P.; Williamson, B. J.; BéruBé, K. A.; Richards, R. J.

    Tapered element oscillating microbalances (TEOMs) are used in the UK Automatic Monitoring Network for the continuous measurement of ambient airborne particles. Used TEOM filters from Swansea, Cardiff and Pembroke were examined under high-resolution field emission scanning electron microscopy (FESEM). Clusters of calcium sulphate crystals, gypsum (CaSO 4·2H 2O) and anhydrite (CaSO 4) were abundant on spring and summer filters, and not present on autumn and winter filters. From textural considerations, the sulphates must have crystallised on the filter surfaces, either by dissolution and recrystallisation of CaSO 4 collected as particles, or by direct precipitation from saline water collected on the filters; in much the same way as the formation of 'desert roses' by the evaporation of saline pore waters in desert sands. The proposed mechanism for the formation of these crystals has two important implications. Firstly, if the filters are episodically saturated with water, then on occasion the recorded masses will consist of both particles plus water, causing errors in the results of continuous monitoring; an important consideration for epidemiological studies based on TEOM data. Secondly, past toxicological experiments undertaken on TEOM-derived 'PM10' may have investigated material containing a significant component of in situ formed crystals, rather than the original PM10.

  9. Evaluation of salt particle collection device for preventing SCC on canister - Effect on particle collection rate by electric field

    SciTech Connect

    Takeda, H.; Saegusa, T.

    2013-07-01

    Now, in Japan, while metal casks are used for spent nuclear fuel storage, a practical use of concrete casks is under review because of its cost effectiveness and procurement easiness. In reviewing the practical use, stress corrosion cracking (SCC) of a canister container in the concrete cask becomes an issue and is needed to be resolved soon. A natural ventilation system is generally adopted for the storage facilities, especially in Japan where facilities are built near coasts so that the cooling air includes sea salt particles. Therefore, the occurrence of SCC is concerned when the sea salt particles adhere to welded parts of the canisters. In this study, we proposed a salt particle collection device with low pressure loss which does not interfere with the air flow into the building or the concrete casks. The device is composed of a stack of 10 parallel stainless steel plates, the air is free to circulate in the space between them. Pressure loss tests in a laboratory and salt particle collection tests in the field have been performed. It has been clarified that the pressure loss of the device is one-thirtieth to one-twentieth of that of a commercial filter and 40% of the particles in the air could be collected and the device would not influence the heat removal performance. Moreover, we evaluated the effect of electric field on the particle collection under supposing the particle charge. In the case of electric field over 10{sup 3} kV/m the particle collection rate could be improved dramatically.

  10. PHIPS-HALO: the airborne Particle Habit Imaging and Polar Scattering probe - Part 1: Design and operation

    NASA Astrophysics Data System (ADS)

    Abdelmonem, Ahmed; Järvinen, Emma; Duft, Denis; Hirst, Edwin; Vogt, Steffen; Leisner, Thomas; Schnaiter, Martin

    2016-07-01

    The number and shape of ice crystals present in mixed-phase and ice clouds influence the radiation properties, precipitation occurrence and lifetime of these clouds. Since clouds play a major role in the climate system, influencing the energy budget by scattering sunlight and absorbing heat radiation from the earth, it is necessary to investigate the optical and microphysical properties of cloud particles particularly in situ. The relationship between the microphysics and the single scattering properties of cloud particles is usually obtained by modelling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. There is a demand to obtain both information correspondently and simultaneously for individual cloud particles in their natural environment. For evaluating the average scattering phase function as a function of ice particle habit and crystal complexity, in situ measurements are required. To this end we have developed a novel airborne optical sensor (PHIPS-HALO) to measure the optical properties and the corresponding microphysical parameters of individual cloud particles simultaneously. PHIPS-HALO has been tested in the AIDA cloud simulation chamber and deployed in mountain stations as well as research aircraft (HALO and Polar 6). It is a successive version of the laboratory prototype instrument PHIPS-AIDA. In this paper we present the detailed design of PHIPS-HALO, including the detection mechanism, optical design, mechanical construction and aerodynamic characterization.

  11. Flue gas conditioning for improved particle collection in electrostatic precipitators

    SciTech Connect

    Durham, M.D.

    1992-01-14

    Electrostatic precipitators (ESP) serve as the primary air pollution control device for the majority of coal-fired utility boilers in the Eastern and Midwestern regions of the United States. Since most of these ESPs are collecting flyash generated from medium- and high-sulfur coal, they are not experiencing operational limitations which are common when treating high-resistivity particles and are performing at an efficiency that is as high as could be expected. However, there are indications that the collection efficiency could be improved with flue gas conditioning. Conditioning is commonly used for solving operational problems associated with high-resistivity dusts. The purpose of conditioning for low- and moderate-resistivity applications is to increase the adhesive characteristics of the dust. Flue gas conditioning that increases particle adhesion has the potential to improve collection efficiency because a large percentage of particulate emissions from a well-performing ESP is due to reentrainment. Improved ESP performance should result if particle reentrainment could be reduced by making the particles more adhesive. This could produce a significant reduction in emissions from and ESP from the Following mechanisms: reduced erosion-type reentrainment; reduced rapping emissions; reduced hopper reentrainment; increased agglomeration of fine particles.

  12. Airborne measurements of cloud-forming nuclei and aerosol particles in stabilized ground clouds produced by solid rocket booster firings

    NASA Technical Reports Server (NTRS)

    Hindman, E. E., II; Ala, G. G.; Parungo, F. P.; Willis, P. T.; Bendura, R. J.; Woods, D.

    1978-01-01

    Airborne measurements of cloud volumes, ice nuclei and cloud condensation nuclei, liquid particles, and aerosol particles were obtained from stabilized ground clouds (SGCs) produced by Titan 3 launches at Kennedy Space Center, 20 August and 5 September 1977. The SGCs were bright, white, cumulus clouds early in their life and contained up to 3.5 g/m3 of liquid in micron to millimeter size droplets. The measured cloud volumes were 40 to 60 cu km five hours after launch. The SGCs contained high concentrations of cloud condensation nuclei active at 0.2%, 0.5%, and 1.0% supersaturation for periods of three to five hours. The SGCs also contained high concentrations of submicron particles. Three modes existed in the particle population: a 0.05 to 0.1 micron mode composed of aluminum-containing particles, a 0.2 to 0.8 micron mode, and a 2.0 to 10 micron mode composed of particles that contained primarily aluminum.

  13. Particle Swarm Based Collective Searching Model for Adaptive Environment

    SciTech Connect

    Cui, Xiaohui; Patton, Robert M; Potok, Thomas E; Treadwell, Jim N

    2008-01-01

    This report presents a pilot study of an integration of particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the collective search behavior of self-organized groups in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social group adaptation for the dynamic environment and to provide insight and understanding of social group knowledge discovering and strategic searching. A new adaptive environment model, which dynamically reacts to the group collective searching behaviors, is proposed in this research. The simulations in the research indicate that effective communication between groups is not the necessary requirement for whole self-organized groups to achieve the efficient collective searching behavior in the adaptive environment.

  14. Particle Swarm Based Collective Searching Model for Adaptive Environment

    SciTech Connect

    Cui, Xiaohui; Patton, Robert M; Potok, Thomas E; Treadwell, Jim N

    2007-01-01

    This report presents a pilot study of an integration of particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the collective search behavior of self-organized groups in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social group adaptation for the dynamic environment and to provide insight and understanding of social group knowledge discovering and strategic searching. A new adaptive environment model, which dynamically reacts to the group collective searching behaviors, is proposed in this research. The simulations in the research indicate that effective communication between groups is not the necessary requirement for whole self-organized groups to achieve the efficient collective searching behavior in the adaptive environment.

  15. Use of micro-XANES to speciate chromium in airborne fine particles in the Sacramento Valley

    SciTech Connect

    Michelle L. Werner; Peter S. Nico; Matthew A. Marcus; Cort Anastasio

    2007-07-15

    While particulate matter (PM) in the atmosphere can lead to a wide array of negative health effects, the cause of toxicity is largely unknown. One aspect of PM that likely affects health is the chemical composition, in particular the transition metals within the particles. Chromium is one transition metal of interest due to its two major oxidation states, with Cr(III) being much less toxic compared to Cr(VI). Using microfocused X-ray absorption near edge structure (micro-XANES), we analyzed the Cr speciation in fine particles (diameters {le} 2.5 {mu}m) collected at three sites in the Sacramento Valley of northern California: Sacramento, a large urban area, Davis, a small city, and Placerville, a rural area. These are several major stationary sources of Cr within 24 km of the site including chrome-plating plants, power plants and incinerators. The microfocused X-ray beam enables us to look at very small areas on the filter with a resolution of typically 5-7 micrometers. With XANES we are able to not only distinguish between Cr(VI) and Cr(III), but also to identify different types of Cr(III) and more reduced Cr species. At all of our sampling sites the main Cr species were Cr(III), with Cr(OH){sub 3} or a Cr-Fe, chromite-like, phase being the dominant species. Cr(VI)-containing particles were found only in the most urban site. All three sites contained some reduced Cr species, either Cr(0) or Cr{sub 3}C{sub 2}, although these were minor components. This work demonstrates that micro-XANES can be used as a minimally invasive analytical tool to investigate the composition of ambient PM. 32 refs., 6 figs.

  16. Concentration and Particle Size of Airborne Toxic Algae (Brevetoxin) Derived from Ocean Red Tide Events

    PubMed Central

    Cheng, Yung Sung; Mcdonald, Jacob D.; Kracko, Dean; Irvin, C. Mitch; Zhou, Yue; Pierce, Richard H.; Henry, Michael S.; Bourdelaisa, Andrea; Naar, Jerome; Baden, Daniel G.

    2009-01-01

    Red tides in the Gulf of Mexico are formed by blooms of the dinoflagellate Karenia brevis, which produces brevetoxins (PbTx). Brevetoxins can be transferred from water to air in the wind-powered whitecapped waves during red tide episodes. Inhalation exposure to marine aerosol containing PbTx causes respiratory problems. A liquid chromatograph/ tandem mass spectrometric method was developed for the detection and quantitation of several PbTxs in ambient samples collected during red tide events. This method was complemented by a previously developed antibody assay that analyzes the entire class of PbTx compounds. The method showed good linearity, accuracy, and reproducibility, allowing quantitation of PbTx compounds in the 10 pg/m3 range. Air concentrations of PbTxs and brevenal for individual samples ranged from 0.01 to 80 ng/m3. The particle size showed a single mode with a mass median diameter between 6 and 10 μm, which was consistent for all of the PbTx species that were measured. Our results imply that individual PbTxs were from the same marine aerosol or from marine aerosol that was produced from the same process. The particle size indicated the likelihood of high deposition efficiency in the respiratory tract with the majority of aerosol deposited in the upper airways and small but not insignificant deposition in the lower airways. PMID:15954221

  17. Concentration and particle size of airborne toxic algae (brevetoxin) derived from ocean red tide events.

    PubMed

    Cheng, Yung Sung; McDonald, Jacob D; Kracko, Dean; Irvin, C Mitch; Zhou, Yue; Pierce, Richard H; Henry, Michael S; Bourdelaisa, Andrea; Naar, Jerome; Baden, Daniel G

    2005-05-15

    Red tides in the Gulf of Mexico are formed by blooms of the dinoflagellate Karenia brevis, which produces brevetoxins (PbTx). Brevetoxins can be transferred from water to air in the wind-powered whitecapped waves during red tide episodes. Inhalation exposure to marine aerosol containing PbTx causes respiratory problems. A liquid chromatograph/ tandem mass spectrometric method was developed for the detection and quantitation of several PbTxs in ambient samples collected during red tide events. This method was complemented by a previously developed antibody assay that analyzes the entire class of PbTx compounds. The method showed good linearity, accuracy, and reproducibility, allowing quantitation of PbTx compounds in the 10 pg/m3 range. Air concentrations of PbTxs and brevenal for individual samples ranged from 0.01 to 80 ng/m3. The particle size showed a single mode with a mass median diameter between 6 and 10 microm, which was consistent for all of the PbTx species that were measured. Our results imply that individual PbTxs were from the same marine aerosol or from marine aerosol that was produced from the same process. The particle size indicated the likelihood of high deposition efficiency in the respiratory tract with the majority of aerosol deposited in the upper airways and small but not insignificant deposition in the lower airways. PMID:15954221

  18. Coupling spin to velocity: collective motion of Hamiltonian polar particles

    NASA Astrophysics Data System (ADS)

    Løland Bore, Sigbjørn; Schindler, Michael; Nguyen Thu Lam, Khanh-Dang; Bertin, Eric; Dauchot, Olivier

    2016-03-01

    We propose a conservative two-dimensional particle model in which particles carry a continuous and classical spin. The model includes standard ferromagnetic interactions between spins of two different particles, and a nonstandard coupling between spin and velocity of the same particle inspired by the coupling observed in self-propelled hard discs. Because of this coupling Galilean invariance is broken and the conserved linear momentum associated to translation invariance is not proportional to the velocity of the center of mass. Also, the dynamics is not invariant under a global rotation of the spins alone. This, in principle, leaves room for collective motion and thus raises the question whether collective motion can arise in Hamiltonian systems. We study the statistical mechanics of such a system, and show that, in the fully connected (or mean-field) case, a transition to collective motion does exist in spite of momentum conservation. Interestingly, the velocity of the center of mass, which in the absence of Galilean invariance, is a relevant variable, also feeds back on the magnetization properties, as it acts as an external magnetic field that smoothens the transition. Molecular dynamics simulations of finite size systems indeed reveal a rich phase diagram, with a transition from a disordered to a homogeneous polar phase, but also more complex inhomogeneous phases with local order interrupted by topological defects.

  19. Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Hair, J. W.; Kahnert, M.; Ferrare, R. A.; Hostetler, C. A.; Cook, A. L.; Harper, D. B.; Berkoff, T. A.; Seaman, S. T.; Collins, J. E.; Fenn, M. A.; Rogers, R. R.

    2015-12-01

    Linear particle depolarization ratio is presented for three case studies from the NASA Langley airborne High Spectral Resolution Lidar-2 HSRL-2). Particle depolarization ratio from lidar is an indicator of non-spherical particles and is sensitive to the fraction of non-spherical particles and their size. The HSRL-2 instrument measures depolarization at three wavelengths: 355, 532, and 1064 nm. The three measurement cases presented here include two cases of dust-dominated aerosol and one case of smoke aerosol. These cases have partial analogs in earlier HSRL-1 depolarization measurements at 532 and 1064 nm and in literature, but the availability of three wavelengths gives additional insight into different scenarios for non-spherical particles in the atmosphere. A case of transported Saharan dust has a spectral dependence with a peak of 0.30 at 532 nm with smaller particle depolarization ratios of 0.27 and 0.25 at 1064 and 355 nm, respectively. A case of aerosol containing locally generated wind-blown North American dust has a maximum of 0.38 at 1064 nm, decreasing to 0.37 and 0.24 at 532 and 355 nm, respectively. The cause of the maximum at 1064 nm is inferred to be very large particles that have not settled out of the dust layer. The smoke layer has the opposite spectral dependence, with the peak of 0.24 at 355 nm, decreasing to 0.09 and 0.02 at 532 and 1064 nm, respectively. The depolarization in the smoke case may be explained by the presence of coated soot aggregates. We note that in these specific case studies, the linear particle depolarization ratio for smoke and dust-dominated aerosol are more similar at 355 nm than at 532 nm, having possible implications for using the particle depolarization ratio at a single wavelength for aerosol typing.

  20. Observations of the spectral dependence of particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Hair, J. W.; Kahnert, M.; Ferrare, R. A.; Hostetler, C. A.; Cook, A. L.; Harper, D. B.; Berkoff, T. A.; Seaman, S. T.; Collins, J. E.; Fenn, M. A.; Rogers, R. R.

    2015-09-01

    Particle depolarization ratio is presented for three case studies from the NASA Langley airborne High Spectral Resolution Lidar-2 (HSRL-2). Particle depolarization ratio from lidar is an indicator of non-spherical particles and is sensitive to the fraction of non-spherical particles and their size. The HSRL-2 instrument measures depolarization at three wavelengths: 355, 532, and 1064 nm. The three measurement cases presented here include two cases of dust aerosol and one case of smoke aerosol. These cases have partial analogs in earlier HSRL-1 depolarization measurements at 532 and 1064 nm and in literature, but the availability of three wavelengths gives additional insight into different scenarios for non-spherical particles in the atmosphere. A case of transported Saharan dust has a spectral dependence with a peak of 0.30 at 532 nm with smaller particle depolarization ratios of 0.27 and 0.25 at 1064 and 355 nm, respectively. A case of locally generated wind-blown North American dust has a maximum of 0.38 at 1064 nm, decreasing to 0.37 and 0.24 at 532 and 355 nm, respectively. The cause of the maximum at 1064 nm is inferred to be very large particles that have not settled out of the dust layer. The smoke layer has the opposite spectral dependence, with the peak of 0.24 at 355 nm, decreasing to 0.09 and 0.02 at 532 and 1064 nm. The depolarization in the smoke case is inferred to be due to the presence of coated soot aggregates. We also point out implications for the upcoming EarthCARE satellite, which will measure particle depolarization ratio only at 355 nm. At 355 nm, the particle depolarization ratios for all three of our case studies are very similar, indicating that smoke and dust may be more difficult to separate with EarthCARE measurements than heretofore supposed.

  1. Airborne detection and quantification of swine influenza a virus in air samples collected inside, outside and downwind from swine barns.

    PubMed

    Corzo, Cesar A; Culhane, Marie; Dee, Scott; Morrison, Robert B; Torremorell, Montserrat

    2013-01-01

    Airborne transmission of influenza A virus (IAV) in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m³ of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m³ of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m³. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions.

  2. Airborne Detection and Quantification of Swine Influenza A Virus in Air Samples Collected Inside, Outside and Downwind from Swine Barns

    PubMed Central

    Corzo, Cesar A.; Culhane, Marie; Dee, Scott; Morrison, Robert B.; Torremorell, Montserrat

    2013-01-01

    Airborne transmission of influenza A virus (IAV) in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m3 of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m3 of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m3. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions. PMID:23951164

  3. Bending modulus of bidisperse particle rafts: Local and collective contributions.

    PubMed

    Petit, Pauline; Biance, Anne-Laure; Lorenceau, Elise; Planchette, Carole

    2016-04-01

    The bending modulus of air-water interfaces covered by a monolayer of bidisperse particles is probed experimentally under quasistatic conditions via the compression of the monolayer, and under dynamical conditions studying capillary-wave propagation. Simple averaging of the modulus obtained solely with small or large particles fails to describe our data. Indeed, as observed in other configurations for monodisperse systems, bidisperse rafts have both a granular and an elastic character: chain forces and collective effects must be taken into account to fully understand our results.

  4. Speciation of atmospheric polycyclic aromatic hydrocarbons (PAHs) present during fog time collected submicron particles.

    PubMed

    Singh, Dharmendra Kumar; Sharma, Swati; Habib, Gazala; Gupta, Tarun

    2015-08-01

    Airborne submicron particles (PM1) were collected using PM1 sampler during the fog-dominated days (December 2013-January 2014). PM1 values varied between 58.12 μg/m(3) and 198.75 μg/m(3), and average mass concentration was 162.33 ± 38.25 μg/m(3) while total average concentration of particle-associated polycyclic aromatic hydrocarbon (PAHs) determined was 616.31 ± 30.31 ng/m(3). This is a signal for an alarming high pollution level at this site situated in the Indo-Gangetic Plain (IGP). PAHs were extracted from filters using toluene and acetonitrile. Quantitative measurements of polycyclic aromatic hydrocarbons (PAHs) were carried out using the high performance liquid chromatography (HPLC) technique. The extracts were analyzed for 16 target polycyclic aromatic hydrocarbons (PAHs) including carcinogenic compound benzo(a)pyrene (19.86 ± 38.98 ng/m(3)). Fluoranthene, benzo(a)anthracene, anthracene, and fluorene were the predominant compounds found in the samples collected during foggy days. Based on number of rings, four-ring PAH compounds had maximum contribution (43%) in this fog time collected submicron particles followed by three-ring (21%), five-ring (20%), six-ring (13%), and two-ring (3%), respectively. In winter and foggy days, wood and coal combustion and biomass burning also significantly contribute to the PAH levels. However, diagnostic ratio suggests diesel emissions as the prime source of PAHs at this sampling site.

  5. MicroMED: a dust particle counter for the characterization of airborne dust close to the surface of Mars

    NASA Astrophysics Data System (ADS)

    Cozzolino, Fabio; Esposito, Francesca; Molfese, Cesare; Cortecchia, Fausto; Saggin, Bortolino; D'amato, Francesco

    2015-04-01

    Monitoring of airborne dust is very important in planetary climatology. Indeed, dust absorbs and scatter solar and thermal radiation, severely affecting atmospheric thermal structure, balance and dynamics (in terms of circulations). Wind-driven blowing of sand and dust is also responsible for shaping planetary surfaces through the formation of sand dunes and ripples, the erosion of rocks, and the creation and transport of soil particles. Dust is permanently present in the atmosphere of Mars and its amount varies with seasons. During regional or global dust storms, more than 80% of the incoming sunlight is absorbed by dust causing an intense atmospheric heating. Airborne dust is therefore a crucial climate component on Mars which impacts atmospheric circulations at all scales. Main dust parameters influencing the atmosphere heating are size distribution, abundance, albedo, single scattering phase function, imaginary part of the index of refraction. Moreover, major improvements of Mars climate models require, in addition to the standard meteorological parameters, quantitative information about dust lifting, transport and removal mechanisms. In this context, two major quantities need to be measured for the dust source to be understood: surface flux and granulometry. While many observations have constrained the size distribution of the dust haze seen from the orbit, it is still not known what the primary airborne dust (e.g. the recently lifted dust) is made of, size-wise. MicroMED has been designed to fill this gap. It will measure the abundance and size distribution of dust, not in the atmospheric column, but close to the surface, where dust is lifted, so to be able to monitor dust injection into the atmosphere. This has never been performed in Mars and other planets exploration. MicroMED is an Optical Particle Counter, analyzing light scattered from single dust particles to measure their size and abundance. A proper fluid-dynamic system, including a pump and a

  6. Leonid's Particle Analyses from Stratospheric Balloon Collection on Xerogel Surfaces

    NASA Technical Reports Server (NTRS)

    Noever, David; Phillips, Tony; Horack, John; Porter, Linda; Myszka, Ed

    1999-01-01

    Recovered from a stratospheric balloon above 20 km on 17-18 November 1998, at least eight candidate microparticles were collected and analyzed from low-density silica xerogel collection plates. Capture time at Leonids' storm peak was validated locally along the balloon trajectory by direct video imaging of meteor fluence up to 24/hr above 98% of the Earth's atmosphere. At least one 30 micron particle agrees morphologically to a smooth, unmelted spherule and compares most closely in non-volatile elemental ratios (Mg/Si, Al/Si, and Fe/Si) to compositional data in surface/ocean meteorite collections. A Euclidean tree diagram based on composition makes a most probable identification as a non-porous stratospherically collected particle and a least probable identification as terrestrial matter or an ordinary chondrite. If of extraterrestrial origin, the mineralogical class would be consistent with a stony (S) type of silicate, olivine [(Mg,Fe)2SiO4] and pyroxene [(Mg, Fe)Si!O3)--or oxides, herecynite [(Fe,Mg) Al2O4].

  7. Particle number size distribution in the eastern Mediterranean: Formation and growth rates of ultrafine airborne atmospheric particles

    NASA Astrophysics Data System (ADS)

    Kopanakis, I.; Chatoutsidou, S. E.; Torseth, K.; Glytsos, T.; Lazaridis, M.

    2013-10-01

    Particle number concentration was measured between June 2009 and June 2010 at Akrotiri research station in a rural/suburban region of western Crete (Greece). Overall, the available data covered 157 days during the aforementioned period of measurements. The objectives were to study the number size distribution characteristics of ambient aerosols and furthermore to identify new particle formation events and to evaluate particle formation rates and growth rates of the newborn particles. Aerosol particles with mobility diameters between 10 and 1100 nm were measured using a Scanning Mobility Particle Sizer (SMPS) system. Measurements were performed at ambient relative humidities. The median total particle number concentration was 525 #/cm3 whereas the number concentration ranged between 130 #/cm3 and 9597 #/cm3. The average percentage of particles with diameters between 10 nm and 100 nm (N10-100) to total particles was 53% during summer and spring, but reached 80% during winter. Maximum average contribution of nano-particles (10 nm < Dp < 50 nm) to total particles was recorded also in winter and was attributed partly to the effect of local heating. Furthermore, back trajectories (HYSPLIT model) showed that different air mass origins are linked to different levels of particle number concentrations, with higher values associated with air masses passing from polluted areas before reaching the Akrotiri station. Modal analysis of the measured size distribution data revealed a strong nucleation mode during winter (15-25 nm), which can be correlated with emissions from local sources (domestic heating). The nucleation mode was observed also during the spring campaigns and was partly linked to new particle formation events. On the contrary, an accumulation mode (80-120 nm) prevailed in the measurements during summer campaigns, when the station area was influenced by polluted air masses arriving mainly from Eastern Europe. In total, 13 new particle formation events were recorded

  8. Mutagenicity of fine (less than 2. 5 microns) airborne particles: diurnal variation in community air determined by a Salmonella micro preincubation (microsuspension) procedure

    SciTech Connect

    Kado, N.Y.; Guirguis, G.N.; Flessel, C.P.; Chan, R.C.; Chang, K.I.; Wesolowski, J.J.

    1986-01-01

    A simple modification of the Salmonella liquid incubation assay previously developed for detecting mutagens in urine was used to determine mutagenic activity of airborne particulate matter. The modification consists of adding ten times more bacteria (approximately 10(9) per incubation tube) and five to ten times less metabolic enzymes compared to the plate incorporation method. The mixture volume is approximately 0.2 ml, and the mixture is incubated for 90 min before pouring it according to the standard protocol. The modified procedure (micro preincubation or microsuspension) was approximately ten times more sensitive than the standard plate incorporation test for detecting mutagens in air particulate extracts and approximately ten to 31 times more sensitive for the chemical mutagens 2-nitrofluorene, 4-nitroquinoline-N-oxide, 2-aminofluorene, and benzo(a)pyrene in bacterial strain TA98. Mutagenic activity was detected in particle extracts obtained from 1 m3 of air (17 micrograms of extract) or less. This microsuspension procedure was applied to air particulate samples collected with low-volume (15-50 liters per min) virtual-dichotomous air samplers. Mutagenic activity was associated exclusively with fine particles (aerodynamic diameters of less than 2.5 microns). Diurnal patterns of mutagenic activity (TA98 revertants per cubic meter air) were investigated by measuring filter extracts from 2-hr samples collected in three San Francisco Bay Area cities during the summer or fall of 1982. Four criteria pollutants--lead, nitrogen dioxide, ozone, and sulfur dioxide--were simultaneously sampled at one location. Mutagenicity from fine particles sampled at this location was highly correlated with lead and much less correlated with nitrogen dioxide, ozone, and sulfur dioxide. The microsuspension procedure is applicable in testing samples of limited mass.

  9. Volatile organic compounds in an urban airborne environment adjacent to a municipal incinerator, waste collection centre and sewage treatment plant

    NASA Astrophysics Data System (ADS)

    Leach, J.; Blanch, A.; Bianchi, A. C.

    The occurrence and temporal distribution of airborne volatile organic compounds (VOC) at nine closely grouped locations in a suburban environment on the edge of the coastline of the Southampton Water estuary, located on the coastline of central southern England, was studied over six monthly periods spanning 1996-1997. The sampling sites circumscribed a juxtaposed municipal incinerator, waste collection and processing centre and sewage treatment plant. Three sets of airborne samples being taken before and after the closure of the municipal incinerator. VOC with volatilities of low to medium polarity ranging broadly from those of n-butane to n-octadecane were the major focus of interest. Over 100 individual compounds were routinely found in localised samples taken during the period of study. The types and concentrations of VOC identified partly reflect the imprint of the various waste processing operations on atmospheric VOC within the local environment. The most abundant VOC classes consisted of aromatic, chlorinated and organosulphide compounds, with smaller proportions of alkanes, alkenes and cycloalkane compounds. Compounds produced by sewage-processing and waste management operations, including volatile organosulphides and various oxygenated compounds, may occasionally exceed olfactory detection thresholds and represent a source of potential odour complaints in the local urban environment.

  10. Waste Workers’ Exposure to Airborne Fungal and Bacterial Species in the Truck Cab and During Waste Collection

    PubMed Central

    Madsen, Anne Mette; Alwan, Taif; Ørberg, Anders; Uhrbrand, Katrine; Jørgensen, Marie Birk

    2016-01-01

    A large number of people work with garbage collection, and exposure to microorganisms is considered an occupational health problem. However, knowledge on microbial exposure at species level is limited. The aim of the study was to achieve knowledge on waste collectors’ exposure to airborne inhalable fungal and bacterial species during waste collection with focus on the transport of airborne microorganisms into the truck cab. Airborne microorganisms were collected with samplers mounted in the truck cab, on the workers’ clothes, and outdoors. Fungal and bacterial species were quantified and identified. The study showed that the workers were exposed to between 112 and 4.8×104 bacteria m−3 air and 326 and 4.6×104 fungi m−3 air. The personal exposures to bacteria and fungi were significantly higher than the concentrations measured in the truck cabs and in the outdoor references. On average, the fungal and bacterial concentrations in truck cabs were 111 and 7.7 times higher than outdoor reference measurements. In total, 23 fungal and 38 bacterial species were found and identified. Most fungal species belonged to the genus Penicillium and in total 11 Penicillium species were found. Identical fungal species were often found both in a personal sample and in the same person’s truck cab, but concentrations were on average 27 times higher in personal samples. Concentrations of fungal and bacterial species found only in the personal samples were lower than concentrations of species also found in truck cabs. Skin-related bacteria constituted a large fraction of bacterial isolates found in personal and truck cab samples. In total, six Staphylococcus species were found. In outdoor samples, no skin-related bacteria were found. On average, concentrations of bacterial species found both in the truck cab and personal samples were 77 times higher in personal samples than in truck cab samples. In conclusion, high concentrations of fungi were found in truck cabs, but the

  11. Airborne and Ground-Based Platforms for Data Collection in Small Vineyards: Examples from the UK and Switzerland

    NASA Astrophysics Data System (ADS)

    Green, David R.; Gómez, Cristina; Fahrentrapp, Johannes

    2015-04-01

    This paper presents an overview of some of the low-cost ground and airborne platforms and technologies now becoming available for data collection in small area vineyards. Low-cost UAV or UAS platforms and cameras are now widely available as the means to collect both vertical and oblique aerial still photography and airborne videography in vineyards. Examples of small aerial platforms include the AR Parrot Drone, the DJI Phantom (1 and 2), and 3D Robotics IRIS+. Both fixed-wing and rotary wings platforms offer numerous advantages for aerial image acquisition including the freedom to obtain high resolution imagery at any time required. Imagery captured can be stored on mobile devices such as an Apple iPad and shared, written directly to a memory stick or card, or saved to the Cloud. The imagery can either be visually interpreted or subjected to semi-automated analysis using digital image processing (DIP) software to extract information about vine status or the vineyard environment. At the ground-level, a radio-controlled 'rugged' model 4x4 vehicle can also be used as a mobile platform to carry a number of sensors (e.g. a Go-Pro camera) around a vineyard, thereby facilitating quick and easy field data collection from both within the vine canopy and rows. For the small vineyard owner/manager with limited financial resources, this technology has a number of distinct advantages to aid in vineyard management practices: it is relatively cheap to purchase; requires a short learning-curve to use and to master; can make use of autonomous ground control units for repetitive coverage enabling reliable monitoring; and information can easily be analysed and integrated within a GIS with minimal expertise. In addition, these platforms make widespread use of familiar and everyday, off-the-shelf technologies such as WiFi, Go-Pro cameras, Cloud computing, and smartphones or tablets as the control interface, all with a large and well established end-user support base. Whilst there are

  12. Effect of indoor-generated airborne particles on radon progeny dynamics.

    PubMed

    Trassierra, C Vargas; Stabile, L; Cardellini, F; Morawska, L; Buonanno, G

    2016-08-15

    In order to investigate the interaction between radon progeny and particles, an experimental campaign was carried out in a radon chamber at the Italian National Institute of Ionizing Radiation Metrology, quantifying the amount of attached and unattached radon daughters present in air, as well as the equilibrium factor in the presence of particles generated through indoor sources. A fixed radon concentration was maintained, while particles were generated using incense sticks, mosquito coils and gas combustion. Aerosols were characterized in terms of particle concentrations and size distributions. Simultaneously, radon concentration and attached/unattached potential alpha energy concentration in the air were continuously monitored by two different devices, based on alpha spectroscopy techniques. The presence of particles was found to affect the attached fraction of radon decay products, in such a way that the particles acted as a sink for radionuclides. In terms of sources which emit large particles (e.g. incense, mosquito coils), which greatly increase particle surface area concentrations, the Equilibrium Factor was found to double with respect to the background level before particle generation sessions. On the contrary, the radon decay product dynamics were not influenced by gas combustion processes, mainly due to the small surface area of the particles emitted. PMID:27131455

  13. Acute health impacts of airborne particles estimated from satellite remote sensing.

    PubMed

    Wang, Zhaoxi; Liu, Yang; Hu, Mu; Pan, Xiaochuan; Shi, Jing; Chen, Feng; He, Kebin; Koutrakis, Petros; Christiani, David C

    2013-01-01

    Satellite-based remote sensing provides a unique opportunity to monitor air quality from space at global, continental, national and regional scales. Most current research focused on developing empirical models using ground measurements of the ambient particulate. However, the application of satellite-based exposure assessment in environmental health is still limited, especially for acute effects, because the development of satellite PM(2.5) model depends on the availability of ground measurements. We tested the hypothesis that MODIS AOD (aerosol optical depth) exposure estimates, obtained from NASA satellites, are directly associated with daily health outcomes. Three independent healthcare databases were used: unscheduled outpatient visits, hospital admissions, and mortality collected in Beijing metropolitan area, China during 2006. We use generalized linear models to compare the short-term effects of air pollution assessed by ground monitoring (PM(10)) with adjustment of absolute humidity (AH) and AH-calibrated AOD. Across all databases we found that both AH-calibrated AOD and PM(10) (adjusted by AH) were consistently associated with elevated daily events on the current day and/or lag days for cardiovascular diseases, ischemic heart diseases, and COPD. The relative risks estimated by AH-calibrated AOD and PM(10) (adjusted by AH) were similar. Additionally, compared to ground PM(10), we found that AH-calibrated AOD had narrower confidence intervals for all models and was more robust in estimating the current day and lag day effects. Our preliminary findings suggested that, with proper adjustment of meteorological factors, satellite AOD can be used directly to estimate the acute health impacts of ambient particles without prior calibrating to the sparse ground monitoring networks. PMID:23220016

  14. Acute health impacts of airborne particles estimated from satellite remote sensing✩

    PubMed Central

    Wang, Zhaoxi; Liu, Yang; Hu, Mu; Pan, Xiaochuan; Shi, Jing; Chen, Feng; He, Kebin; Koutrakis, Petros; Christiani, David C.

    2013-01-01

    Satellite-based remote sensing provides a unique opportunity to monitor air quality from space at global, continental, national and regional scales. Most current research focused on developing empirical models using ground measurements of the ambient particulate. However, the application of satellite-based exposure assessment in environmental health is still limited, especially for acute effects, because the development of satellite PM2.5 model depends on the availability of ground measurements. We tested the hypothesis that MODIS AOD (aerosol optical depth) exposure estimates, obtained from NASA satellites, are directly associated with daily health outcomes. Three independent healthcare databases were used: unscheduled outpatient visits, hospital admissions, and mortality collected in Beijing metropolitan area, China during 2006. We use generalized linear models to compare the short-term effects of air pollution assessed by ground monitoring (PM10) with adjustment of absolute humidity (AH) and AH-calibrated AOD. Across all databases we found that both AH-calibrated AOD and PM10 (adjusted by AH) were consistently associated with elevated daily events on the current day and/or lag days for cardiovascular diseases, ischemic heart diseases, and COPD. The relative risks estimated by AH-calibrated AOD and PM10 (adjusted by AH) were similar. Additionally, compared to ground PM10, we found that AH-calibrated AOD had narrower confidence intervals for all models and was more robust in estimating the current day and lag day effects. Our preliminary findings suggested that, with proper adjustment of meteorological factors, satellite AOD can be used directly to estimate the acute health impacts of ambient particles without prior calibrating to the sparse ground monitoring networks. PMID:23220016

  15. Acute health impacts of airborne particles estimated from satellite remote sensing.

    PubMed

    Wang, Zhaoxi; Liu, Yang; Hu, Mu; Pan, Xiaochuan; Shi, Jing; Chen, Feng; He, Kebin; Koutrakis, Petros; Christiani, David C

    2013-01-01

    Satellite-based remote sensing provides a unique opportunity to monitor air quality from space at global, continental, national and regional scales. Most current research focused on developing empirical models using ground measurements of the ambient particulate. However, the application of satellite-based exposure assessment in environmental health is still limited, especially for acute effects, because the development of satellite PM(2.5) model depends on the availability of ground measurements. We tested the hypothesis that MODIS AOD (aerosol optical depth) exposure estimates, obtained from NASA satellites, are directly associated with daily health outcomes. Three independent healthcare databases were used: unscheduled outpatient visits, hospital admissions, and mortality collected in Beijing metropolitan area, China during 2006. We use generalized linear models to compare the short-term effects of air pollution assessed by ground monitoring (PM(10)) with adjustment of absolute humidity (AH) and AH-calibrated AOD. Across all databases we found that both AH-calibrated AOD and PM(10) (adjusted by AH) were consistently associated with elevated daily events on the current day and/or lag days for cardiovascular diseases, ischemic heart diseases, and COPD. The relative risks estimated by AH-calibrated AOD and PM(10) (adjusted by AH) were similar. Additionally, compared to ground PM(10), we found that AH-calibrated AOD had narrower confidence intervals for all models and was more robust in estimating the current day and lag day effects. Our preliminary findings suggested that, with proper adjustment of meteorological factors, satellite AOD can be used directly to estimate the acute health impacts of ambient particles without prior calibrating to the sparse ground monitoring networks.

  16. Flue gas conditioning for improved particle collection in electrostatic precipitators

    SciTech Connect

    Durham, M.D.

    1992-04-27

    The purpose of this research program is to identify and evaluate a variety of additives capable of increasing particle cohesion which could be used for improving collection efficiency in an ESP. A three-phase screening process will be used to provide the, evaluation of many additives in a logical and cost-effective manner. The three step approach involves the following experimental setups: 1. Provide a preliminary screening in the laboratory by measuring the effects of various conditioning agents on reentrainment of flyash particles in an electric field operating at simulated flue gas conditions. 2. Evaluate the successful additives using a 100 acfm bench-scale ESP operating on actual flue gas. 3. Obtain the data required for scaling up the technology by testing the two or three most promising conditioning agents at the pilot scale.

  17. Airborne Particles: What We Have Learned About Their Role in Climate from Remote Sensing, and Prospects for Future Advances

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Desert dust, wildfire smoke, volcanic ash, biogenic and urban pollution particles, all affect the regional-scale climate of Earth in places and at times; some have global-scale impacts on the column radiation balance, cloud properties, atmospheric stability structure, and circulation patterns. Remote sensing has played a central role in identifying the sources and transports of airborne particles, mapping their three-dimensional distribution and variability, quantifying their amount, and constraining aerosol air mass type. The measurements obtained from remote sensing have strengths and limitations, and their value for characterizing Earths environment is enhanced immensely when they are combined with direct, in situ observations, and used to constrain aerosol transport and climate models. A similar approach has been taken to study the role particles play in determining the climate of Mars, though based on far fewer observations. This presentation will focus what we have learned from remote sensing about the impacts aerosol have on Earths climate; a few points about how aerosols affect the climate of Mars will also be introduced, in the context of how we might assess aerosol-climate impacts more generally on other worlds.

  18. Collective dynamics in dispersions of anisotropic and deformable particles

    NASA Astrophysics Data System (ADS)

    Saintillan, David

    The modeling of complex fluids, such as particulate suspensions, emulsions and polymer solutions, is a great challenge owing to the slow decay of hydrodynamic disturbances at low Reynolds numbers, which lead to long-ranged interactions between suspended particles. In this work, we use theory and numerical simulations to address a few problems in which hydrodynamic interactions result in collective dynamics, with emphasis on the effects of particle shape and deformability. We first address the behavior of suspensions of anisotropic particles such as rigid fibers, and deformable particles such as viscous droplets, under sedimentation. Hydrodynamic interactions in these systems result in a concentration instability by which the particles aggregate into dense clusters surrounded by clarified fluid. Using newly developed efficient algorithms, we perform large-scale simulations of such suspensions with the aim of elucidating the instability mechanism. The salient features of the instability are adequately captured, and simulations in finite containers exhibit a wavenumber selection. Using a linear, stability analysis we demonstrate that the size of the concentration fluctuations is controlled by the stratification that is observed to form during the sedimentation process. We then investigate the dynamics in suspensions of uncharged polarizable rigid rods placed in an electric field. The polarization of a rod results in the formation of a dipolar charge cloud around its surface, leading to a non-linear electrokinetic phenomenon termed induced-charge electrophoresis, which causes particle alignment and creates a disturbance flow. We derive a simple slender-body formulation for this effect valid for high-aspect-ratio particles, and use it to study hydrodynamic interactions in these systems. Using both theory and numerical simulations we show that experimentally observed particle pairings can be explained based on these interactions. Finally, we apply Brownian dynamics to

  19. Optical trapping and rotation of airborne absorbing particles with a single focused laser beam

    NASA Astrophysics Data System (ADS)

    Lin, Jinda; Li, Yong-qing

    2014-03-01

    We measure the periodic circular motion of single absorbing aerosol particles that are optically trapped with a single focused Gaussian beam and rotate around the laser propagation direction. The scattered light from the trapped particle is observed to be directional and change periodically at 0.4-20 kHz. The instantaneous positions of the moving particle within a rotation period are measured by a high-speed imaging technique using a charge coupled device camera and a repetitively pulsed light-emitting diode illumination. The centripetal acceleration of the trapped particle as high as ˜20 times the gravitational acceleration is observed and is attributed to the photophoretic forces.

  20. Optical trapping and rotation of airborne absorbing particles with a single focused laser beam

    SciTech Connect

    Lin, Jinda; Li, Yong-qing

    2014-03-10

    We measure the periodic circular motion of single absorbing aerosol particles that are optically trapped with a single focused Gaussian beam and rotate around the laser propagation direction. The scattered light from the trapped particle is observed to be directional and change periodically at 0.4–20 kHz. The instantaneous positions of the moving particle within a rotation period are measured by a high-speed imaging technique using a charge coupled device camera and a repetitively pulsed light-emitting diode illumination. The centripetal acceleration of the trapped particle as high as ∼20 times the gravitational acceleration is observed and is attributed to the photophoretic forces.

  1. Collective translational and rotational Monte Carlo moves for attractive particles

    NASA Astrophysics Data System (ADS)

    Růžička, Štěpán; Allen, Michael P.

    2014-03-01

    Virtual move Monte Carlo is a Monte Carlo (MC) cluster algorithm forming clusters via local energy gradients and approximating the collective kinetic or dynamic motion of attractive colloidal particles. We carefully describe, analyze, and test the algorithm. To formally validate the algorithm through highlighting its symmetries, we present alternative and compact ways of selecting and accepting clusters which illustrate the formal use of abstract concepts in the design of biased MC techniques: the superdetailed balance and the early rejection scheme. A brief and comprehensive summary of the algorithms is presented, which makes them accessible without needing to understand the details of the derivation.

  2. Collective two-particle resonances induced by photon entanglement

    SciTech Connect

    Richter, Marten; Mukamel, Shaul

    2011-06-15

    An assembly of noninteracting atoms may become correlated upon interaction with entangled photons, and certain elements of their joint density matrix can then show collective resonances. We explore experimental signatures of these resonances in the nonlinear response of a pair of two-level atoms. We find that these resonances are canceled out in stimulated signals such as pump-probe and two-photon absorption due to the destructive interference of two-photon-absorption and emission pathways in the joint two-particle space. However, they may be observed in photon statistics (Hanbury-Brown-Twiss) measurements through the attenuation of two-time intensity correlations.

  3. Collective motion of self-propelled particles with memory.

    PubMed

    Nagai, Ken H; Sumino, Yutaka; Montagne, Raul; Aranson, Igor S; Chaté, Hugues

    2015-04-24

    We show that memory, in the form of underdamped angular dynamics, is a crucial ingredient for the collective properties of self-propelled particles. Using Vicsek-style models with an Ornstein-Uhlenbeck process acting on angular velocity, we uncover a rich variety of collective phases not observed in usual overdamped systems, including vortex lattices and active foams. In a model with strictly nematic interactions the smectic arrangement of Vicsek waves giving rise to global polar order is observed. We also provide a calculation of the effective interaction between vortices in the case where a telegraphic noise process is at play, explaining thus the emergence and structure of the vortex lattices observed here and in motility assay experiments. PMID:25955073

  4. Collective motion of self-propelled particles with memory.

    PubMed

    Nagai, Ken H; Sumino, Yutaka; Montagne, Raul; Aranson, Igor S; Chaté, Hugues

    2015-04-24

    We show that memory, in the form of underdamped angular dynamics, is a crucial ingredient for the collective properties of self-propelled particles. Using Vicsek-style models with an Ornstein-Uhlenbeck process acting on angular velocity, we uncover a rich variety of collective phases not observed in usual overdamped systems, including vortex lattices and active foams. In a model with strictly nematic interactions the smectic arrangement of Vicsek waves giving rise to global polar order is observed. We also provide a calculation of the effective interaction between vortices in the case where a telegraphic noise process is at play, explaining thus the emergence and structure of the vortex lattices observed here and in motility assay experiments.

  5. Collective Motion of Self-Propelled Particles with Memory

    NASA Astrophysics Data System (ADS)

    Nagai, Ken H.; Sumino, Yutaka; Montagne, Raul; Aranson, Igor S.; Chaté, Hugues

    2015-04-01

    We show that memory, in the form of underdamped angular dynamics, is a crucial ingredient for the collective properties of self-propelled particles. Using Vicsek-style models with an Ornstein-Uhlenbeck process acting on angular velocity, we uncover a rich variety of collective phases not observed in usual overdamped systems, including vortex lattices and active foams. In a model with strictly nematic interactions the smectic arrangement of Vicsek waves giving rise to global polar order is observed. We also provide a calculation of the effective interaction between vortices in the case where a telegraphic noise process is at play, explaining thus the emergence and structure of the vortex lattices observed here and in motility assay experiments.

  6. Size-segregated compositional analysis of aerosol particles collected in the European Arctic during the ACCACIA campaign

    NASA Astrophysics Data System (ADS)

    Young, G.; Jones, H. M.; Darbyshire, E.; Baustian, K. J.; McQuaid, J. B.; Bower, K. N.; Connolly, P. J.; Gallagher, M. W.; Choularton, T. W.

    2016-03-01

    Single-particle compositional analysis of filter samples collected on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft is presented for six flights during the springtime Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign (March-April 2013). Scanning electron microscopy was utilised to derive size-segregated particle compositions and size distributions, and these were compared to corresponding data from wing-mounted optical particle counters. Reasonable agreement between the calculated number size distributions was found. Significant variability in composition was observed, with differing external and internal mixing identified, between air mass trajectory cases based on HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) analyses. Dominant particle classes were silicate-based dusts and sea salts, with particles notably rich in K and Ca detected in one case. Source regions varied from the Arctic Ocean and Greenland through to northern Russia and the European continent. Good agreement between the back trajectories was mirrored by comparable compositional trends between samples. Silicate dusts were identified in all cases, and the elemental composition of the dust was consistent for all samples except one. It is hypothesised that long-range, high-altitude transport was primarily responsible for this dust, with likely sources including the Asian arid regions.

  7. LOAC (Light Optical Particle Counter): a new small aerosol counter with particle characterization capabilities for surface and airborne measurements

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenael; Jégou, Fabrice; Jeannot, Matthieu; Jourdain, Line; Dulac, François; Mallet, Marc; Dupont, Jean-Charles; Thaury, Claire; Tonnelier, Thierry; Verdier, Nicolas; Charpentier, Patrick

    2013-04-01

    The determination of the size distribution of tropospheric and stratospheric aerosols with conventional optical counters is difficult when different natures of particles are present (droplets, soot, mineral dust, secondary organic or mineral particles...). Also, a light and cheap aerosol counter that can be used at ground, onboard drones or launched under all kinds of atmospheric balloons can be very useful during specific events as volcanic plumes, desert dust transport or local pollution episodes. These goals can be achieved thanks to a new generation of aerosol counter, called LOAC (Light Optical Aerosol Counter). The instrument was developed in the frame of a cooperation between French scientific laboratories (CNRS), the Environnement-SA and MeteoModem companies and the French Space Agency (CNES). LOAC is a small optical particle counter/sizer of ~250 grams, having a low electrical power consumption. The measurements are conducted at two scattering angles. The first one, at 12°, is used to determine the aerosol particle concentrations in 19 size classes within a diameter range of 0.3-100 micrometerers. At such an angle close to forward scattering, the signal is much more intense and the measurements are the least sensitive to the particle nature. The second angle is at 60°, where the scattered light is strongly dependent on the particle refractive index and thus on the nature of the aerosols. The ratio of the measurements at the two angles is used to discriminate between the different types of particles dominating the nature of the aerosol particles in the different size classes. The sensor particularly discriminates wet or liquid particles, soil dust and soot. Since 2011, we have operated LOAC in various environments (Arctic, Mediterranean, urban and peri-urban…) under different kinds of balloons including zero pressure stratospheric, tethered, drifting tropospheric, and meteorological sounding balloons. For the last case, the total weight of the gondola

  8. Charge collection studies in irradiated HV-CMOS particle detectors

    NASA Astrophysics Data System (ADS)

    Affolder, A.; Andelković, M.; Arndt, K.; Bates, R.; Blue, A.; Bortoletto, D.; Buttar, C.; Caragiulo, P.; Cindro, V.; Das, D.; Dopke, J.; Dragone, A.; Ehrler, F.; Fadeyev, V.; Galloway, Z.; Gorišek, A.; Grabas, H.; Gregor, I. M.; Grenier, P.; Grillo, A.; Hommels, L. B. A.; Huffman, T.; John, J.; Kanisauskas, K.; Kenney, C.; Kramberger, G.; Liang, Z.; Mandić, I.; Maneuski, D.; McMahon, S.; Mikuž, M.; Muenstermann, D.; Nickerson, R.; Perić, I.; Phillips, P.; Plackett, R.; Rubbo, F.; Segal, J.; Seiden, A.; Shipsey, I.; Song, W.; Stanitzki, M.; Su, D.; Tamma, C.; Turchetta, R.; Vigani, L.; Volk, J.; Wang, R.; Warren, M.; Wilson, F.; Worm, S.; Xiu, Q.; Zavrtanik, M.; Zhang, J.; Zhu, H.

    2016-04-01

    Charge collection properties of particle detectors made in HV-CMOS technology were investigated before and after irradiation with reactor neutrons. Two different sensor types were designed and processed in 180 and 350 nm technology by AMS. Edge-TCT and charge collection measurements with electrons from 90Sr source were employed. Diffusion of generated carriers from undepleted substrate contributes significantly to the charge collection before irradiation, while after irradiation the drift contribution prevails as shown by charge measurements at different shaping times. The depleted region at a given bias voltage was found to grow with irradiation in the fluence range of interest for strip detectors at the HL-LHC. This leads to large gains in the measured charge with respect to the one before irradiation. The increase of the depleted region was attributed to removal of effective acceptors. The evolution of depleted region with fluence was investigated and modeled. Initial studies show a small effect of short term annealing on charge collection.

  9. Pollution Characteristics and Health Risk Assessment of Airborne Heavy Metals Collected from Beijing Bus Stations.

    PubMed

    Zheng, Xiaoxia; Zhao, Wenji; Yan, Xing; Shu, Tongtong; Xiong, Qiulin; Chen, Fantao

    2015-08-17

    Airborne dust, which contains high levels of toxic metals, is recognized as one of the most harmful environment component. The purpose of this study was to evaluate heavy metals pollution in dustfall from bus stations in Beijing, and to perform a risk assessment analysis for adult passengers. The concentrations of Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn were determined by inductively coupled plasma mass spectroscopy (ICP-MS). The spatial distribution, pollution level and potential health risk of heavy metals were analyzed by Geographic Information System (GIS) mapping technology, geo-accumulation index and health risk assessment model, respectively. The results indicate that dust samples have elevated metal concentrations, especially for Cd, Cu, Pb and Zn. The nine metals can be divided into two categories in terms of spatial distribution and pollution level. Cd, Cr, Cu, Mo, Pb and Zn reach contaminated level and have similar spatial patterns with hotspots distributed within the Fifth Ring Road. While the hot spot areas of Co and V are always out of the Fifth Ring Road. Health risk assessment shows that both carcinogenic and non-carcinogenic risks of selected metals were within the safe range.

  10. Pollution Characteristics and Health Risk Assessment of Airborne Heavy Metals Collected from Beijing Bus Stations

    PubMed Central

    Zheng, Xiaoxia; Zhao, Wenji; Yan, Xing; Shu, Tongtong; Xiong, Qiulin; Chen, Fantao

    2015-01-01

    Airborne dust, which contains high levels of toxic metals, is recognized as one of the most harmful environment component. The purpose of this study was to evaluate heavy metals pollution in dustfall from bus stations in Beijing, and to perform a risk assessment analysis for adult passengers. The concentrations of Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn were determined by inductively coupled plasma mass spectroscopy (ICP-MS). The spatial distribution, pollution level and potential health risk of heavy metals were analyzed by Geographic Information System (GIS) mapping technology, geo-accumulation index and health risk assessment model, respectively. The results indicate that dust samples have elevated metal concentrations, especially for Cd, Cu, Pb and Zn. The nine metals can be divided into two categories in terms of spatial distribution and pollution level. Cd, Cr, Cu, Mo, Pb and Zn reach contaminated level and have similar spatial patterns with hotspots distributed within the Fifth Ring Road. While the hot spot areas of Co and V are always out of the Fifth Ring Road. Health risk assessment shows that both carcinogenic and non-carcinogenic risks of selected metals were within the safe range. PMID:26287229

  11. TFTR 60 GHz alpha particle collective Thomson Scattering diagnostic

    SciTech Connect

    Machuzak, J.S.; Woskov, P.P.; Gilmore, J.; Bretz, N.L.; Park, H.K.; Aamodt, R.E.; Cheung, P.Y.; Russell, D.A.; Bindslev, H.

    1995-03-01

    A 60 GHz gyrotron collective Thomson Scattering alpha particle diagnostic has been implemented for the D-T period on TFM. Gyrotron power of 0.1-1 kW in pulses of up to 1 second can be launched in X-mode. Efficient corrugated waveguides are used with antennaes and vacuum windows of the TFTR Microwave Scattering system. A multichannel synchronous detector receiver system and spectrum analyzer acquire the scattered signals. A 200 Megasample/sec digitizer is used to resolve fine structure in the frequency spectrum. By scattering nearly perpendicular to the magnetic field, this experiment will take advantage of an enhancement of the scattered signal which results from the interaction of the alpha particles with plasma resonances in the lower hybrid frequency range. Significant enhancements are expected, which will make these measurements possible with gyrotron power less than 1 kW, while maintaining an acceptable signal to noise ratio. We hope to extract alpha particle density and velocity distribution functions from the data. The D and T fuel densities and temperatures may also be obtainable by measurement of the respective ion cyclotron harmonic frequencies.

  12. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.

    PubMed

    Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-11-01

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.

  13. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions

    PubMed Central

    Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L.; Wingen, Lisa M.; Dabdub, Donald; Blake, Donald R.; Gerber, R. Benny; Finlayson-Pitts, Barbara J.

    2015-01-01

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs. PMID:26483454

  14. Particle Characterization and Ice Nucleation Efficiency of Field-Collected Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Wang, B.; Gilles, M. K.; Laskin, A.; Moffet, R.; Nizkorodov, S.; Roedel, T.; Sterckx, L.; Tivanski, A.; Knopf, D. A.

    2011-12-01

    Atmospheric ice formation by heterogeneous nucleation is one of the least understood processes resulting in cirrus and mixed-phase clouds which affect the global radiation budget, the hydrological cycle, and water vapor distribution. In particular, how organic aerosol affect ice nucleation is not well understood. Here we report on heterogeneous ice nucleation from particles collected during the CalNex campaign at the Caltech campus site, Pasadena, on May 19, 2010 at 6am-12pm (A2) and 12pm-6pm (A3) and May 23 at 6am-12pm (B2) and 6pm-12am (B4). The ice nucleation onsets and water uptake were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). The ice nucleation efficiency was related to the particle chemical composition. Single particle characterization was provided by using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The STXM/NEXAFS analysis indicates that the morning sample (A2) constitutes organic particles and organic particles with soot and inorganic inclusions. The afternoon sample (A3) is dominated by organic particles with a potentially higher degree of oxidation associated with soot. The B2 sample shows a higher number fraction of magnesium-containing particle indicative of a marine source and ~93% of the particles contained sulfur besides oxygen and carbon as derived from CCSEM/EDX analysis. The B4 sample lacks the strong marine influence and shows higher organic content. Above 230 K, we observed water uptake followed by condensation freezing at mean RH of 93-100% and 89-95% for A2 and A3, respectively. This indicates that the aged A3 particles are efficient ice nuclei (IN) for condensation freezing. Below 230 K A2 and A3 induced deposition ice nucleation between 125-155% RHice (at mean values of 134-150% RHice). The B2 and B4

  15. An Assessment of Airborn Gravimetry Collected under the NGS GRAV-D Project

    NASA Astrophysics Data System (ADS)

    Holmes, S. A.

    2009-12-01

    In the United States, the National Geodetic Survey [NGS] holds the official charter to maintain the vertical datum for the USA and its territories. This includes the responsibility to maintain a current geoid model for transforming between orthometric (H) and geodetic (h) heights. The latest (2009) NGS geoid model incorporates the latest GRACE-based satellite-only geopotential solutions, very-high-resolution digital elevation models [DEMs] derived from the Shuttle Radar Topography Mission [SRTM], and other additional data and processing improvements. This recent geoid model also benefited greatly from the prior release of the National Geospatial-Intelligence Agency’s [NGA] Earth Gravitational Model 2008 [EGM2008], which served as a computational reference field for the new geoid, but was also particularly useful for identifying and removing corrupted data from the NGS gravimetry database. Looking forwards, NGS intends to increase its efforts to refine and improve its future national geoid models. To this end, their ambitious "Gravity for the Re-definition of the American Datum” [GRAV-D] project aims to update the NGS gravimetry holdings by flying new airborn gravity surveys over a large fraction of the USA and it territories. Concurrent efforts will focus on developing new processing techniques for optimally incorporating improved gravimetry into the final geoid solution. To this end, the GRAV-D team has already flown several surveys in the Gulf of Mexico, Puerto Rico, US Virgin Islands, and Alaska. Testing and analysis aimed at calibrating and validating the preliminary survey data is already underway. The latest assessment of these recent efforts, including the extent to which this new data can be expected to contribute to an improved gravimetric geoid model, is presented here.

  16. Airborne observations of aerosol microphysical properties and particle ageing processes in the troposphere above Europe

    NASA Astrophysics Data System (ADS)

    Hamburger, T.; McMeeking, G.; Minikin, A.; Petzold, A.; Coe, H.; Krejci, R.

    2012-12-01

    In-situ measurements of aerosol microphysical properties were performed in May 2008 during the EUCAARI-LONGREX campaign. Two aircraft, the FAAM BAe-146 and DLR Falcon 20, operated from Oberpfaffenhofen, Germany. A comprehensive data set was obtained comprising the wider region of Europe north of the Alps throughout the whole tropospheric column. Prevailing stable synoptic conditions enabled measurements of accumulating emissions inside the continental boundary layer reaching a maximum total number concentration of 19 000 particles cm-3 stp. Ultra-fine particles as indicators for nucleation events were observed within the boundary layer during high pressure conditions and after updraft of emissions induced by frontal passages above 8 km altitude in the upper free troposphere. Aerosol ageing processes during air mass transport are analysed using trajectory analysis. The ratio of particles containing a non-volatile core (250 °C) to the total aerosol number concentration was observed to increase within the first 12 to 48 h from the particle source from 50 to 85% due to coagulation. Aged aerosol also features an increased fraction of accumulation mode particles of approximately 40% of the total number concentration. The presented analysis provides an extensive data set of tropospheric aerosol microphysical properties on a continental scale which can be used for atmospheric aerosol models and comparisons of satellite retrievals.

  17. Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.

    2013-12-01

    Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and <11% false positives from all other aerosol particles. The most effective operations have consisted of thresholding TAOS patterns in order to reject defective ones

  18. Comparison of physicochemical properties between fine (PM2.5) and coarse airborne particles at cold season in Korea.

    PubMed

    Choung, Sungwook; Oh, Jungsun; Han, Weon Shik; Chon, Chul-Min; Kwon, Youngsang; Kim, Do Yeon; Shin, Woosik

    2016-01-15

    Although it has been well-known that atmospheric aerosols affect negatively the local air quality, human health, and climate changes, the chemical and physical properties of atmospheric aerosols are not fully understood yet. This study experimentally measured the physiochemical characteristics of fine and coarse aerosol particles at the suburban area to evaluate relative contribution to environmental pollution in consecutive seasons of autumn and winter, 2014-2015, using XRD, SEM-EDX, XNI, ICP-MS, and TOF-SIMS. For these experimental works, the fine and coarse aerosols were collected by the high volume air sampler for 7 days each season. The fine particles contain approximately 10 μg m(-3) of carbonaceous aerosols consisting of 90% organic and 10% elemental carbon. The spherical-shape carbonaceous particles were observed for the coarse samples as well. Interestingly, the coarse particles in winter showed the increased frequency of carbon-rich particles with high contents of heavy metals. These results suggest that, for the cold season, the coarse particles could contribute relatively more to the conveyance of toxic contaminants compared to the fine particles in the study area. However, the fine particles showed acidic properties so that their deposition to surface may cause facilitate the increase of mobility for toxic heavy metals in soil and groundwater environments. The fine and coarse particulate matters, therefore, should be monitored separately with temporal variation to evaluate the impact of atmospheric aerosols to environmental pollution and human health. PMID:26476059

  19. Airborne observations of aerosol microphysical properties and particle ageing processes in the troposphere above Europe

    NASA Astrophysics Data System (ADS)

    Hamburger, T.; McMeeking, G.; Minikin, A.; Petzold, A.; Coe, H.; Krejci, R.

    2012-08-01

    In-situ measurements of aerosol microphysical properties were performed in May 2008 during the EUCAARI-LONGREX campaign. Two aircraft, the FAAM BAe-146 and DLR Falcon 20, operated from Oberpfaffenhofen, Germany. A comprehensive data set was obtained comprising the wider region of Europe north of the Alps throughout the whole tropospheric column. Prevailing stable synoptic conditions enabled measurements of accumulating emissions inside the continental boundary layer reaching a maximum total number concentration of 19 000 particles cm-3 stp. Nucleation events were observed within the boundary layer during high pressure conditions and after updraft of emissions induced by frontal passages above 8 km altitude in the upper free troposphere. Aerosol ageing processes during air mass transport are analysed using trajectory analysis. The ratio of particles containing a non-volatile core (250 °C) to the total aerosol number concentration was observed to increase within the first 12 to 48 h from the particle source from 50 to 85% due to coagulation. Aged aerosol also features an increased fraction of accumulation mode particles of approximately 40% of the total number concentration. The presented analysis provides an extensive data set of tropospheric aerosol microphysical properties on a continental scale which can be used for atmospheric aerosol models and comparisons of satellite retrievals.

  20. Calibration and demonstration of a condensation nuclei counting system for airborne measurements of aircraft exhausted particles

    NASA Astrophysics Data System (ADS)

    Cofer, Wesley R.; Anderson, Bruce E.; Winstead, Edward L.; Bagwell, Donald R.

    A system of multiple continuous-flow condensation nuclei counters (CNC) was assembled, calibrated, and demonstrated on a NASA T-39 Sabreliner jet aircraft. The mission was to penetrate the exhaust plumes and/or contrails of other subsonic jet aircraft and determine the concentrations of submicrometer diameter aerosol particles. Mission criteria required rapid response measurements ( ˜ 1 s) at aircraft cruise altitudes (9-12 km). The CNC sampling system was optimized to operate at 160 Torr. Aerosol samples were acquired through an externally mounted probe. Installed downstream of the probe was a critical flow orifice that provided sample to the CNC system. The orifice not only controlled volumetric flow rate, but also dampened probe pressure/flow oscillations encountered in the turbulent aircraft-wake vortex environment. Laboratory calibrations with NaCl particles under representative conditions are reported that indicate small amounts of particle loss and a maximum measurement efficiency of ˜ 75% for particles with diameters ranging from ⩾ 0.01- ⩽ 0.18 μm Data from exhaust/contrail samplings of a NASA B757 and DC-8 at cruise altitude are discussed. Data include exhaust/contrail measurements made during periods in which the B757 port jet engine burned low-sulfur fuel while the starboard engine simultaneously burned specially prepared high-sulfur fuel. The data discussed highlight the CNC systems performance, and introduce new observations pertinent to the behavior of sulfur in aircraft exhaust aerosol chemistry.

  1. Effect of atmospheric electricity on dry deposition of airborne particles from atmosphere

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Kimmel, V.; Israelsson, S.

    The electric mechanism of dry deposition is well known in the case of unattached radon daughter clusters that are unipolar charged and of high mobility. The problematic role of the electric forces in deposition of aerosol particles is theoretically examined by comparing the fluxes of particles carried by different deposition mechanisms in a model situation. The electric mechanism of deposition appears essential for particles of diameter 10-200 nm in conditions of low wind speed. The electric flux of fine particles can be dominant on the tips of leaves and needles even in a moderate atmospheric electric field of a few hundred V m -1 measured over the plane ground surface. The electric deposition is enhanced under thunderclouds and high voltage power lines. Strong wind suppresses the relative role of the electric deposition when compared with aerodynamic deposition. When compared with diffusion deposition the electric deposition appears less uniform: the precipitation particulate matter on the tips of leaves and especially on needles of top branches of conifer trees is much more intensive than on the ground surface and electrically shielded surfaces of plants. The knowledge of deposition geometry could improve our understanding of air pollution damage to plants.

  2. Treatment of airborne asbestos and asbestos-like microfiber particles using atmospheric microwave air plasma.

    PubMed

    Averroes, A; Sekiguchi, H; Sakamoto, K

    2011-11-15

    Atmospheric microwave air plasma was used to treat asbestos-like microfiber particles that had two types of ceramic fiber and one type of stainless fiber. The treated particles were characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The experiment results showed that one type of ceramic fiber (Alumina:Silica=1:1) and the stainless fiber were spheroidized, but the other type of ceramic fiber (Alumina:Silica=7:3) was not. The conversion of the fibers was investigated by calculating the equivalent diameter, the aspect ratio, and the fiber content ratio. The fiber content ratio in various conditions showed values near zero. The relationship between the normalized fiber vanishing rate and the energy needed to melt the particles completely per unit surface area of projected particles, which is defined as η, was examined and seen to indicate that the normalized fiber vanishing rate decreased rapidly with the increase in η. Finally, some preliminary experiments for pure asbestos were conducted, and the analysis via XRD and phase-contrast microscopy (PCM) showed the availability of the plasma treatment. PMID:21962864

  3. Heterogeneous reaction of N2O5 with airborne TiO2 particles and the implication for stratospheric particle injection

    NASA Astrophysics Data System (ADS)

    Tang, Mingjin; Abraham, Luke; Braesicke, Peter; Cox, Tony; McGregor, James; Pope, Francis; Pyle, John; Rkiouak, Laylla; Telford, Paul; Watson, Matt; Kalberer, Markus

    2014-05-01

    Injection of aerosol particles (or their precursors) into the stratosphere to scatter solar radiation back into space, has been suggested as a solar-radiation management (SRM) scheme for the mitigation for global warming. TiO2 has recently been highlighted as a possible candidate aerosol because of its high light scattering ability with a refractive index of 2.5 (Pope et al. 2012). The impact of particles injection on stratospheric ozone requires systematical assessment via laboratory and modelling studies. In this work, the heterogeneous reaction of airborne sub-micrometre TiO2 particles with N2O5 has been investigated at room temperature and different relative humidities (RH), using an atmospheric pressure aerosol flow tube. The uptake coefficient of N2O5 onto TiO2, γ(N2O5), was determined to be ~1.0×10-3 at low RH, and increase to ~3×10-3 at 60% RH. The dependence of γ(N2O5) on RH can be explained by the water adsorption isotherm of TiO2 particles. In addition, the uptake of N2O5 onto TiO2 aerosol particles has been included in the UKCA chemistry-climate model to assess the effect of N2O5 uptake onto TiO2 particles on the stratospheric composition. We construct a case study based on the eruption of Mt. Pinatubo, comparing the effects of TiO2 to those from the volcanic sulfate and to the situation with only background amount of aerosol. The changes in reactive nitrogen species and ozone due to the heterogeneous reaction of TiO2 with N2O5 are assessed relative to sulfate aerosol impacts. Pope, F. D., Braesicke, P., Grainger, R. G., Kalberer, M., Watson, I. M., Davidson, P. J., and Cox, R. A.: Stratospheric aerosol particles and solar-radiation management, Nature Clim. Change, 2, 713-719, 2012

  4. Flue gas conditioning for improved particle collection in electrostatic precipitators

    SciTech Connect

    Durham, M.D.

    1993-01-15

    It is concluded that the laboratory tests should be conducted at high levels of SO[sub 3] such that the resulting resistivity is in the range of 10[sup 7]--10[sup 8] ohm-cm. There are several reasons leading to this conclusion. At SO[sub 3] concentrations of 30 ppM and greater, the curves for both dew point and resistivity are relatively flat so that changes in gas phase SO[sub 3] will have minimal impact on particle characteristics. In addition, the electrostatic forces are relatively flat in this range so that changes in flue gas conditions will that result in a change in resistivity by up to two orders of magnitude will have little effect on the magnitude of reentrainment. Finally, at the very low resistivity conditions, reentrainment will be the highest. Since the purpose of the laboratory resistivity tests is to determine the relative ability of the various additives to reduce resistivity, the greater the reentrainment, the easier it will be to measure an improvement. Tests were conducted by first operating at baseline conditions with no additives and then repeating the test with additives. The data collected during each test includes the resistivity of the material, thickness of the collected dust layer, and subjective indications of the dust characteristics. The candidate additives were from the polymer group, cellulose derivatives, starches and gums, and oils. No waxes or synthetic compounds have been tested to date in the laboratory apparatus. Of the seventeen additives tested, eight appeared to have a positive impact on either the ash layer thickness or the physical appearance of the dust layer. Excessive deposits on the discharge electrode resulted during injection of some of the additives. Three of the additives resulted in significant deposits in the injection chamber. The build up on the electrode was interpreted as a positive indicator of increase particle adhesion. The initial observations and comments for the eight additives are listed in Table 1.

  5. Collective and single particle structure in /sup 103/Rh

    SciTech Connect

    Dejbakhsh, H.; Schmitt, R.P.; Mouchaty, G.

    1988-02-01

    High-spin states in /sup 103/Rh have been studied using the /sup 100/Mo(/sup 7/Li,4n..gamma..) reaction at 45 MeV. The in-beam techniques employed included relative ..gamma..-ray excitation functions, ..gamma..-..gamma.. coincidences, and ..gamma..-ray angular distribution measurements. Low-lying collective bands built on the 1g/sub 9/2/ and 2p/sub 1/2/ quasiproton states show large signature splitting. At higher excitation energies (2.346 and 3.399 MeV), two strong ..delta..I = 1 cascades are also observed with small signature splitting. These latter bands probably arise from three quasiparticle configurations. The one quasiparticle bands are interpreted within the framework of the axially symmetric rotor-plus-particle model with a variable moment of inertia, the generalized particle-asymmetric-rotor model, and the interacting boson-fermion model. High-spin features of /sup 103/Rh are compared with the predictions of the cranked shell model. All of the models indicate that /sup 103/Rh is a soft nucleus which exhibits shape coexistence.

  6. COMPARISON OF METHODS FOR DETECTION AND ENUMERATION OF AIRBORNE MICROORGANISMS COLLECTED BY LIQUID IMPINGEMENT

    EPA Science Inventory

    Bacterial agents and cell components can be spread as bioaerosols, producing infections and asthmatic problems. This study compares four methods for the detection and enumeration of aerosolized bacteria collected in an AGI-30 impinger. Changes in the total and viable concentratio...

  7. Comparison of methods for detection and enumeration of airborne microorganisms collected by liquid impingement.

    PubMed Central

    Terzieva, S; Donnelly, J; Ulevicius, V; Grinshpun, S A; Willeke, K; Stelma, G N; Brenner, K P

    1996-01-01

    Bacterial agents and cell components can be spread as bioaerosols, producing infections and asthmatic problems. This study compares four methods for the detection and enumeration of aerosolized bacteria collected in an AGI-30 impinger. Changes in the total and viable concentrations of Pseudomonas fluorescens in the collection fluid with respect to time of impingement were determined. Two direct microscopic methods (acridine orange and BacLight) and aerodynamic aerosol-size spectrometry (Aerosizer) were employed to measure the total bacterial cell concentrations in the impinger collection fluid and the air, respectively. These data were compared with plate counts on selective (MacConkey agar) and nonselective (Trypticase soy agar) media, and the percentages of culturable cells in the collection fluid and the bacterial injury response to the impingement process were determined'. The bacterial collection rate was found to be relatively unchanged during 60 min of impingement. The aerosol measurements indicated an increased amount of cell fragments upstream of the impinger due to continuous bacterial nebulization. Some of the bacterial clusters, present in the air upstream of the impinger, deagglomerated during impingement, thus increasing the total bacterial count by both direct microscopic methods. The BacLight staining technique was also used to determine the changes in viable bacterial concentration during the impingement process. The percentage of viable bacteria, determined as a ratio of BacLight live to total counts was only 20% after 60 min of sampling. High counts on Trypticase soy agar indicated that most of the injured cells could recover. On the other hand, the counts from the MacConkey agar were very low, indicating that most of the cells were structurally damaged in the impinger. The comparison of data on the percentage of injured bacteria obtained by the traditional plate count with the data on percentage of nonviable bacteria obtained by the Bac

  8. Single-particle and collective excitations in 62Ni

    NASA Astrophysics Data System (ADS)

    Albers, M.; Zhu, S.; Ayangeakaa, A. D.; Janssens, R. V. F.; Gellanki, J.; Ragnarsson, I.; Alcorta, M.; Baugher, T.; Bertone, P. F.; Carpenter, M. P.; Chiara, C. J.; Chowdhury, P.; David, H. M.; Deacon, A. N.; DiGiovine, B.; Gade, A.; Hoffman, C. R.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Nair, C.; Rogers, A. M.; Seweryniak, D.

    2016-09-01

    Background: Level sequences of rotational character have been observed in several nuclei in the A =60 mass region. The importance of the deformation-driving π f7 /2 and ν g9 /2 orbitals on the onset of nuclear deformation is stressed. Purpose: A measurement was performed in order to identify collective rotational structures in the relatively neutron-rich 62Ni isotope. Method: The 26Mg(48Ca,2 α 4 n γ )62Ni complex reaction at beam energies between 275 and 320 MeV was utilized. Reaction products were identified in mass (A ) and charge (Z ) with the fragment mass analyzer (FMA) and γ rays were detected with the Gammasphere array. Results: Two collective bands, built upon states of single-particle character, were identified and sizable deformation was assigned to both sequences based on the measured transitional quadrupole moments, herewith quantifying the deformation at high spin. Conclusions: Based on cranked Nilsson-Strutinsky calculations and comparisons with deformed bands in the A =60 mass region, the two rotational bands are understood as being associated with configurations involving multiple f7 /2 protons and g9 /2 neutrons, driving the nucleus to sizable prolate deformation.

  9. The impact of particle size selective sampling methods on occupational assessment of airborne beryllium particulates.

    PubMed

    Sleeth, Darrah K

    2013-05-01

    In 2010, the American Conference of Governmental Industrial Hygienists (ACGIH) formally changed its Threshold Limit Value (TLV) for beryllium from a 'total' particulate sample to an inhalable particulate sample. This change may have important implications for workplace air sampling of beryllium. A history of particle size-selective sampling methods, with a special focus on beryllium, will be provided. The current state of the science on inhalable sampling will also be presented, including a look to the future at what new methods or technology may be on the horizon. This includes new sampling criteria focused on particle deposition in the lung, proposed changes to the existing inhalable convention, as well as how the issues facing beryllium sampling may help drive other changes in sampling technology.

  10. Size distribution of radioactive particles collected at Tokai, Japan 6 days after the nuclear accident.

    PubMed

    Miyamoto, Yutaka; Yasuda, Kenichiro; Magara, Masaaki

    2014-06-01

    Airborne radioactive particles released by the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in 2011 were collected with a cascade low-pressure impactor at the Japan Atomic Energy Agency (JAEA) in Tokai, Japan, 114 km south of the FDNPP. Size-fractionated samples were collected twice, in the periods of March 17-April 1, 2011, and May 9-13, 2011. These size-fractionated samplings were carried out in the earliest days at a short distance from the FDNPP. Radioactivity of short-lived nuclides (several ten days of half-life) was determined as well as (134)Cs and (137)Cs. The elemental composition of size-fractionated samples was also measured. In the first collection, the activity median aerodynamic diameter (AMAD) of (129m)Te, (140)Ba, (134)Cs, (136)Cs and (137)Cs was 1.5-1.6 μm, while the diameter of (131)I was 0.45 μm. The diameters of (134)Cs and (137)Cs in the second collection were expressed as three peaks at <0.5 μm, 0.94 μm, and 7.8 μm. The (134)Cs/(137)Cs ratio of the first collection was 1.02 in total, but the ratio in the fine fractions was 0.91. A distribution map of (134)Cs/(137)Cs - (136)Cs/(137)Cs ratios was helpful in understanding the change of radioactive Cs composition. The Cs composition of size fractions <0.43 μm and the composition in the 1.1-2.1 μm range (including the AMAD of 1.5-1.6 μm) were similar to the calculated compositions of fuels in the reactors No. 1 and No. 3 at the FDNPP using the ORIGEN-II code. The Cs composition collected in May, 2011 was similar to the calculation results of reactor No. 2 fuel composition. The change of Cs composition implies that the radioactive Cs was released from the three reactors at the FDNPP via different processes.

  11. Culturability of Bacillus spores on aerosol collection filters exposed to airborne combustion products of Al, Mg, and B·Ti.

    PubMed

    Adhikari, Atin; Yermakov, Michael; Indugula, Reshmi; Reponen, Tiina; Driks, Adam; Grinshpun, Sergey A

    2016-05-01

    Destruction of bioweapon facilities due to explosion or fire could aerosolize highly pathogenic microorganisms. The post-event air quality assessment is conducted through air sampling. A bioaerosol sample (often collected on a filter for further culture-based analysis) also contains combustion products, which may influence the microbial culturability and, thus, impact the outcome. We have examined the interaction between spores deposited on collection filters using two simulants of Bacillus anthracis [B. thuringiensis (Bt) and B. atrophaeus (referred to as BG)] and incoming combustion products of Al as well as Mg and B·Ti (common ingredient of metalized explosives). Spores extracted from Teflon, polycarbonate, mixed cellulose ester (MCE), and gelatin filters (most common filter media for bioaerosol sampling), which were exposed to combustion products during a short-term sampling, were analyzed by cultivation. Surprisingly, we observed that aluminum combustion products enhanced the culturability of Bt (but not BG) spores on Teflon filters increasing the culturable count by more than an order of magnitude. Testing polycarbonate and MCE filter materials also revealed a moderate increase of culturability although gelatin did not. No effect was observed with either of the two species interacting on either filter media with products originated by combustion of Mg and B·Ti. Sample contamination, spore agglomeration, effect of a filter material on the spore survival, changes in the spore wall ultrastructure and germination, as well as other factors were explored to interpret the findings. The study raises a question about the reliability of certain filter materials for collecting airborne bio-threat agents in combustion environments. PMID:26914458

  12. Culturability of Bacillus spores on aerosol collection filters exposed to airborne combustion products of Al, Mg, and B·Ti.

    PubMed

    Adhikari, Atin; Yermakov, Michael; Indugula, Reshmi; Reponen, Tiina; Driks, Adam; Grinshpun, Sergey A

    2016-05-01

    Destruction of bioweapon facilities due to explosion or fire could aerosolize highly pathogenic microorganisms. The post-event air quality assessment is conducted through air sampling. A bioaerosol sample (often collected on a filter for further culture-based analysis) also contains combustion products, which may influence the microbial culturability and, thus, impact the outcome. We have examined the interaction between spores deposited on collection filters using two simulants of Bacillus anthracis [B. thuringiensis (Bt) and B. atrophaeus (referred to as BG)] and incoming combustion products of Al as well as Mg and B·Ti (common ingredient of metalized explosives). Spores extracted from Teflon, polycarbonate, mixed cellulose ester (MCE), and gelatin filters (most common filter media for bioaerosol sampling), which were exposed to combustion products during a short-term sampling, were analyzed by cultivation. Surprisingly, we observed that aluminum combustion products enhanced the culturability of Bt (but not BG) spores on Teflon filters increasing the culturable count by more than an order of magnitude. Testing polycarbonate and MCE filter materials also revealed a moderate increase of culturability although gelatin did not. No effect was observed with either of the two species interacting on either filter media with products originated by combustion of Mg and B·Ti. Sample contamination, spore agglomeration, effect of a filter material on the spore survival, changes in the spore wall ultrastructure and germination, as well as other factors were explored to interpret the findings. The study raises a question about the reliability of certain filter materials for collecting airborne bio-threat agents in combustion environments.

  13. The physical nature of interplanetary dust as inferred by particles collected at 35 km. [morphology of micrometeorites and ablation products

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Hodge, P. W.; Bucher, W.

    1973-01-01

    Particles were collected at an altitude of 35 km by two flights of a volume sampling micrometeorite collector. The collection scheme is very sensitive and is capable of collecting a significant number of particles. Many of the particles collected have chemical compositions similar to solar or to iron meteorites. Morphology of collected particles indicates that both true micrometeorites and ablation products were collected.

  14. Summertime ozone and airborne particle concentrations measured on the Juneau Icefield (58°N)

    NASA Astrophysics Data System (ADS)

    Fry, J.; Katz, J. D.; Redell, K.; Dittrich, T.

    2010-12-01

    The Juneau Icefield Research Program has facilitated long-term research on the remote subarctic and mountain environment since 1946. In summer 2010, a pilot air quality study was conducted at Camp 18 on the Juneau Icefield (58°36'N 134°30'W). Ozone mixing ratio and aerosol particle size distribution were measured on a remote glacier plateau, with coincident monitoring of wind speed and direction from August 4-11, 2010. Correlations between these air pollution indicators and airmass source direction are explored to address the broader question of long-range transport of pollution.

  15. Single-particle Analyses of Compositions, Morphology, and Viscosity of Aerosol Particles Collected During GoAmazon2014

    NASA Astrophysics Data System (ADS)

    Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.

    2014-12-01

    Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could

  16. Ionizer assisted air filtration for collection of submicron and ultrafine particles-evaluation of long-term performance and influencing factors.

    PubMed

    Shi, Bingbing; Ekberg, Lars

    2015-06-01

    Previous research has demonstrated that unipolar ionization can enhance the filter performance to collect airborne particles, aeroallergens, and airborne microorganisms, without affecting the filter pressure drop. However, there is a lack of research on the long-term system performance as well as the influence of environmental and operational parameters. In this paper, both field and laboratory tests were carried out to evaluate the long-term particle collection efficiency of a synthetic filter of class M6 with and without ionization. The effect of air velocity, temperature, relative humidity, and particle concentration were further investigated in laboratory tests. Results showed that ionization enhanced the filtration efficiency by 40%-units during most of the operation time. When the ionization system was managed by periodically switching the ionizer polarity, the filtration efficiency against PM0.3-0.5 was maintained above 50% during half a year. Furthermore, the pressure drop of the ionizer-assisted M6 filter was 25-30% lower than that of a filter of class F7. The evaluation of various influencing factors demonstrated that (1) air moisture reduced the increase of filtration efficiency; (2) higher upstream particle concentration and air velocity decreased the filtration efficiency; and (3) the air temperature had very limited effect on the filtration efficiency.

  17. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    PubMed Central

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Chen, Lung-Chi; Costa, Max

    2013-01-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM10 and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM10 collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM10 exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. PMID:23085030

  18. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms.

    PubMed

    Valavanidis, Athanasios; Fiotakis, Konstantinos; Vlachogianni, Thomais

    2008-01-01

    Air pollution has been considered a hazard to human health. In the past decades, many studies highlighted the role of ambient airborne particulate matter (PM) as an important environmental pollutant for many different cardiopulmonary diseases and lung cancer. Numerous epidemiological studies in the past 30 years found a strong exposure-response relationship between PM for short-term effects (premature mortality, hospital admissions) and long-term or cumulative health effects (morbidity, lung cancer, cardiovascular and cardiopulmonary diseases, etc). Current research on airborne particle-induced health effects investigates the critical characteristics of particulate matter that determine their biological effects. Several independent groups of investigators have shown that the size of the airborne particles and their surface area determine the potential to elicit inflammatory injury, oxidative damage, and other biological effects. These effects are stronger for fine and ultrafine particles because they can penetrate deeper into the airways of the respiratory tract and can reach the alveoli in which 50% are retained in the lung parenchyma. Composition of the PM varies greatly and depends on many factors. The major components of PM are transition metals, ions (sulfate, nitrate), organic compound, quinoid stable radicals of carbonaceous material, minerals, reactive gases, and materials of biologic origin. Results from toxicological research have shown that PM have several mechanisms of adverse cellular effects, such as cytotoxicity through oxidative stress mechanisms, oxygen-free radical-generating activity, DNA oxidative damage, mutagenicity, and stimulation of proinflammatory factors. In this review, the results of the most recent epidemiological and toxicological studies are summarized. In general, the evaluation of most of these studies shows that the smaller the size of PM the higher the toxicity through mechanisms of oxidative stress and inflammation. Some studies

  19. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms.

    PubMed

    Valavanidis, Athanasios; Fiotakis, Konstantinos; Vlachogianni, Thomais

    2008-01-01

    Air pollution has been considered a hazard to human health. In the past decades, many studies highlighted the role of ambient airborne particulate matter (PM) as an important environmental pollutant for many different cardiopulmonary diseases and lung cancer. Numerous epidemiological studies in the past 30 years found a strong exposure-response relationship between PM for short-term effects (premature mortality, hospital admissions) and long-term or cumulative health effects (morbidity, lung cancer, cardiovascular and cardiopulmonary diseases, etc). Current research on airborne particle-induced health effects investigates the critical characteristics of particulate matter that determine their biological effects. Several independent groups of investigators have shown that the size of the airborne particles and their surface area determine the potential to elicit inflammatory injury, oxidative damage, and other biological effects. These effects are stronger for fine and ultrafine particles because they can penetrate deeper into the airways of the respiratory tract and can reach the alveoli in which 50% are retained in the lung parenchyma. Composition of the PM varies greatly and depends on many factors. The major components of PM are transition metals, ions (sulfate, nitrate), organic compound, quinoid stable radicals of carbonaceous material, minerals, reactive gases, and materials of biologic origin. Results from toxicological research have shown that PM have several mechanisms of adverse cellular effects, such as cytotoxicity through oxidative stress mechanisms, oxygen-free radical-generating activity, DNA oxidative damage, mutagenicity, and stimulation of proinflammatory factors. In this review, the results of the most recent epidemiological and toxicological studies are summarized. In general, the evaluation of most of these studies shows that the smaller the size of PM the higher the toxicity through mechanisms of oxidative stress and inflammation. Some studies

  20. FEASIBILITY OF THE AEROSOL-TO-LIQUID PARTICLE EXTRACTION SYSTEM (ALPES) FOR COLLECTION OF VIABLE FRANCISELLA SP.

    SciTech Connect

    Heitkamp, M

    2006-08-07

    Several Biowatch monitoring sites in the Houston area have tested positive for Francisella tularensis and there is a need to determine whether natural occurring Francisella-related microorganism(s) may be responsible for these observed positive reactions. The collection, culturing and characterization of Francisella-related natural microorganisms will provide the knowledge base to improve the future selectivity of Biowatch monitoring for Francisella. The aerosol-to-liquid particle extraction system (ALPES) is a high-efficiency, dual mechanism collection system that utilizes a liquid collection medium for capture of airborne microorganisms. Since the viability of microorganisms is preserved better in liquid medium than on air filters, this project was undertaken to determine whether Francisella philomiragia and Francisella tularensis LVS maintain acceptable viability in the continuous liquid recirculation, high direct current voltage and residual ozone concentrations which occur during ALPES operation. Throughout a series of preliminary trial runs with representative gram-negative and gram-positive microorganisms, several design modifications and improvements to the ALPES optimized liquid handling, electrical stability, sampling and overall performance for biological sampling. Initial testing with Francisella philomiragia showed viability was preserved better in PBS buffer than HBSS buffer. Trial runs at starting cell concentrations of 1.8 x 10{sup 6} and 2.5 x 10{sup 4} CFU/L showed less than a 1-log decrease in viability for F. philomiragia after 24 h in the ALPES. Francisella tularensis LVS (live vaccine strain) was used as a surrogate for virulent F. tularensis in ALPES trial runs conducted at starting cell concentrations of 10{sup 4}, 10{sup 5} and 10{sup 6} CFU/L. F. tularensis LVS was slow-growing and required highly selective growth media to prevent overgrowth by collected airborne microorganisms. In addition, one ALPES unit intake was HEPA filtered during

  1. Extracts of airborne particulates collected at different locations in the Copenhagen area induce the expression of cytochrome P-450IA1

    SciTech Connect

    Roepstorff, V.; Ostenfeldt, N.; Autrup, H. )

    1990-08-01

    Acetone extracts of airborne particulates collected at different sites in the greater Copenhagen area were tested for their ability to induce the expression of cytochrome P-450IA1 RNA in a human breast cancer cell line, T47-D. The induction efficiency was expressed as an benz(a) anthracene equivalents, that is, the amount of benz(a)anthracene required to give the same level of induction. A significantly higher level of induction of P-450IA1 RNA was seen with samples collected on days with a smog alert. The inducibility of samples collected in rural areas was lower, but no significant difference in inducibility was found between samples collected in urban and suburban areas. Lack of correlation between the mutagenic activity in the Ames assay and the P-450IA1-inducing activity of the samples suggests that the complex mixture of compounds found in airborne particulates may have different biological activities in the two short-term test systems. Measurements of P-450IA1 inducibility provide a new, sensitive approach to assess the biological activity of material present in air pollution. The presence in airborne particulates of chemical compounds that induce cytochrome P-450IA1 an enzyme responsible for the metabolism of ubiquitous chemical carcinogens, suggests that the general environment may change an individual's response to the impact of exogenous chemicals, including the carcinogens present in cigarette smoke.

  2. Collection efficiency of ultrafine particles by an electrostatic precipitator under DC and pulse operating modes

    SciTech Connect

    Zukeran, Akinori; Looy, P.C.; Chakrabarti, A.; Berezin, A.A.; Jayaram, S.; Cross, J.D.; Ito, Tairo; Chang, J.S.

    1999-10-01

    High particle collection efficiency in terms of particle weight/volume mg/m{sup 3} is well achieved by a conventional electrostatic precipitator (ESP). However, the collection efficiencies in terms of number density for the ultrafine (particle size between 0.01--0.1 {micro}m) or submicrometer particles by a conventional ESP are still relatively low. Therefore, it is necessary to improve the collection efficiency for ultrafine particles. In this paper, attempts have been made to improve the ultrafine particle collection efficiency by controlling dust loading, as well as using the short pulse energizations. The present version of the ESP consists of three sets of wire-plate-type electrodes. For the ESP under dc operation modes, experimental results show that the collection efficiency for dc applied voltage decreases with increasing dust loading when particle density is larger than 2.5 x 10{sup 10} particles/m{sup 3} due to inefficient collections of ultrafine particles. However, under pulse operating modes without dc bias, high particle collection efficiency for ultrafine particles was obtained, which is thought to be due to the enhancement of particle charging by electrons.

  3. Indoor airborne particle sources and semi-volatile partitioning effect of outdoor fine PM in offices

    NASA Astrophysics Data System (ADS)

    Sangiorgi, G.; Ferrero, L.; Ferrini, B. S.; Lo Porto, C.; Perrone, M. G.; Zangrando, R.; Gambaro, A.; Lazzati, Z.; Bolzacchini, E.

    2013-02-01

    To date, few studies have focused on PM air quality in offices, despite the fact that a lot of people spend many working hours a day in such offices. The aim of the present study is to investigate PM1 and PM2.5 in offices in Milan (Northern Italy) and in the air outside those offices. The PM samples were analyzed to determine the entity of certain compounds with possible direct or indirect adverse effects on human health: PAHs, BpA, and water soluble inorganic ions. A good correlation between outdoor and indoor PM mass concentrations emerged (R2 ˜0.87). The maximum I/O concentration ratio was 0.92, suggesting that the indoor PM level was always lower than the outdoor level. The average infiltration factor, FINF, was 0.55, showing that about a half of the outdoor PM had come indoors. The indoor-generated particles, Cig, had values ranging from 0 to 4.4 μg m-3 (<25% of the indoor PM), showing that PM indoor sources had only made a limited contribution to total indoor PM. The results of the indoor-to-outdoor comparisons for the aforementioned chemical compounds demonstrate that the offices were characterized by the absence of effective indoor sources of particulate-bound PAHs and inorganic ions, whereas Cig was around 58% of the indoor concentration for BpA. Our analysis of the FINF data pointed to the presence of a volatilization effect from PM for semi-volatile compounds like ammonium nitrate and 4- or 5-ring PAHs, which affected the measurement of their FINF. We propose the introduction of a new and simple parameter, called volatilization correction, to take account of this effect.

  4. Indoor-outdoor relationships of airborne particles and nitrogen dioxide inside Parisian buses

    NASA Astrophysics Data System (ADS)

    Molle, Romain; Mazoué, Sophie; Géhin, Évelyne; Ionescu, Anda

    2013-04-01

    This study evaluated passengers' exposure to traffic air pollution inside the articulated buses of the line 91 in Paris during 10 working days in May, 2010. Twenty articulated buses were studied on 32 routes in order to determine the influence of the sampling position on the pollutant concentrations. This parameter is still poorly known for the rigid buses and is even less known for the articulated ones. However this parameter must be studied for articulated buses because the greater length may cause a pollutant concentration gradient in the cabin. Portable devices were used to measure pollutants in the presence of passengers from 8 a.m. to 9 a.m. and from 4 p.m. to 5 p.m., time periods corresponding to the peak traffic and travellers. PM2.5 mass concentration, particle number concentration between 0.3 and 20 μm and nitrogen dioxide concentration were simultaneously measured on three positions inside the buses (front, middle and rear) in order to study the spatial distribution of these compounds. These measurements inside the buses were compared to the outdoor concentrations at the same moment of the day provided by the Parisian air quality monitoring network; they were also compared to the results of a previous monitoring campaign performed in 2008. The results obtained during the 2010 campaign revealed that in-cabin NO2 mean concentrations were 1.5-3.5 times higher than the outside concentration levels; a maximum concentration of 234 ± 40 μg m-3 was found in the rear position (location of the engine and exhaust gas). Mean in-cabin PM2.5 mass concentrations varied from one week to another one, but they were globally the same at the three positions inside the instrumented buses. In order to determine the impact of outdoor levels, correlations have been calculated between the results measured inside the buses and those measured by the outdoor air monitoring stations. The highest Pearson correlation coefficient was 0.29 for NO2 data whereas the highest Pearson

  5. Effect of using nano and micro airborne abrasive particles on bond strength of implant abutment to prosthesis.

    PubMed

    Rismanchian, Mansour; Davoudi, Amin; Shadmehr, Elham

    2015-01-01

    Connecting prostheses to the implant abutments has become a concern and achieving a satisfactory retention has been focused in cement-retention prostheses recently. Sandblasting is a method to make a roughened surface for providing more retention. The aim of this study was to compare effects of nano and micro airborne abrasive particles (ABAP) in roughening surface of implant abutments and further retention of cemented copings. Thirty Xive abutments and analogues (4.5 D GH1) were mounted vertically in self-cured acrylic blocks. Full metal Ni-Cr copings with a loop on the top were fabricated with appropriate marginal adaptation for each abutment. All samples were divided into 3 groups: first group (MPS) was sandblasted with 50 µm Al2O3 micro ABAP, second group (NSP) was sandblasted with 80 nm Al2O3 nano ABAP, and the third group (C) was assumed as control. The samples were cemented with provisional cement (Temp Bond) and tensile bond strength of cemented copings was evaluated by a universal testing machine after thermic cycling. The t test for independent samples was used for statistical analysis by SPSS software (version 15) at the significant level of 0.05. Final result showed significant difference among all groups (p<0.001) and MPS manifested the highest mean retention (207.88 ± 45.61 N) with significant difference among other groups (p<0.001). The control group showed the lowest bond strength as predicted (48.95 ± 10.44 N). Using nano or micro ABAP is an efficient way for increasing bond strengths significantly, but it seems that micro ABAP was more effective.

  6. Resolving Organized Aerosol Structures (Rolls and Layers) with Airborne Fast Mobility Particle Sizer (FMPS) During MILAGRO/INTEX Campaign

    NASA Astrophysics Data System (ADS)

    Kapustin, V.; Clarke, A.; Zhou, J.; Howell, S.; Shinozuka, Y.; Brekhovskikh, V.; McNaughton, C.

    2007-12-01

    The Hawaii Group for Environmental Aerosol Research [http://www.soest.hawaii.edu/HIGEAR] deployed a wide range of aerosol instrumentation aboard the C-130 and the NASA DC-8 as part of MILAGRO/INTEX. These were designed to provide rapid information on aerosol composition, state of mixing (internal or external), spectral optical properties (scattering and absorption), the humidity dependence of light scattering-f(RH), and the role of condensed species in changing the absorption properties of black carbon (BC) and inferred properties of organic carbon (OC). These measurements included size distributions from about 7 nm up to about 10,000 nm and their volatility at 150, 300 and 400 C; size selected response to heating (volatility) to resolve the state of mixing of the aerosol; continuous measurements of the light scattering and absorption at 3 wavelengths; measurements of the f(RH). We also flew the first airborne deployment of the new Fast Mobility Particle Sizer (FMPS, TSI Inc.) that provided information on rapid (1Hz) size variations in the Aitken mode. This revealed small scale structure of the aerosol and allowed us to examine size distributions varying over space and time associated with mixing processes previously unresolved etc. Rapid measurements during profiles also revealed variations in size over shallow layers. Other dynamic processes included rapid size distribution measurements within orographically induced aerosol layers and size distribution evolution of the nanoparticles formed by nucleation (C-130 flights 5, 6 and 9). Evidence for fluctuations induced by underlying changes in topography was also detected. These measurements also frequently revealed the aerosol variability in the presence of boundary layer rolls aligned along the wind in the Marine Boundary Layer (Gulf region) both with and without visible cloud streets (DC-8 flight 4 and C-130 flight 7). This organized convection over 1-2 km scales influences the mixing processes (entrainment, RH

  7. The impact of flood and post-flood cleaning on airborne microbiological and particle contamination in residential houses.

    PubMed

    He, Congrong; Salonen, Heidi; Ling, Xuan; Crilley, Leigh; Jayasundara, Nadeesha; Cheung, Hing Cho; Hargreaves, Megan; Huygens, Flavia; Knibbs, Luke D; Ayoko, Godwin A; Morawska, Lidia

    2014-08-01

    In January 2011, Brisbane, Australia, experienced a major river flooding event. We aimed to investigate its effects on air quality and assess the role of prompt cleaning activities in reducing the airborne exposure risk. A comprehensive, multi-parameter indoor and outdoor measurement campaign was conducted in 41 residential houses, 2 and 6 months after the flood. The median indoor air concentrations of supermicrometer particle number (PN), PM10, fungi and bacteria 2 months after the flood were comparable to those previously measured in Brisbane. These were 2.88 p cm(-3), 15 μg m(-3), 804 cf um(-3) and 177 cf um(-3) for flood-affected houses (AFH), and 2.74 p cm(-3), 15 μg m(-3), 547 cf um(-3) and 167 cf um(-3) for non-affected houses (NFH), respectively. The I/O (indoor/outdoor) ratios of these pollutants were 1.08, 1.38, 0.74 and 1.76 for AFH and 1.03, 1.32, 0.83 and 2.17 for NFH, respectively. The average of total elements (together with transition metals) in indoor dust was 2296 ± 1328 μg m(-2) for AFH and 1454 ± 678 μg m(-2) for NFH, respectively. In general, the differences between AFH and NFH were not statistically significant, implying the absence of a measureable effect on air quality from the flood. We postulate that this was due to the very swift and effective cleaning of the flooded houses by 60,000 volunteers. Among the various cleaning methods, the use of both detergent and bleach was the most efficient at controlling indoor bacteria. All cleaning methods were equally effective for indoor fungi. This study provides quantitative evidence of the significant impact of immediate post-flood cleaning on mitigating the effects of flooding on indoor bioaerosol contamination and other pollutants.

  8. Composition of Dust Particles Collected in the Coma of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Hilchenbach, Martin; Kissel, Jochen; Langevin, Yves; Briois, Christelle; Koch, Andreas; Schulz, Rita; Silen, Johan; Rynö, Jouni

    2016-04-01

    The COmetary Secondary Ion Mass Analyser (COSIMA) is a dust particle composition analyzing instrument onboard the ROSETTA spacecraft orbiting comet 67P/Churyumov-Gerasimenko since August 2014. COSIMA is collecting cometary particles on metal targets in the inner coma, identifies the collected particle on microscopic images and analyses their composition by secondary ion mass spectrometry. We will report on the high resolution mass spectra containing positive or negative ions of elements, organic molecules and molecular fragments originating from the cometary particle surfaces.

  9. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    SciTech Connect

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Chen, Lung-Chi; Costa, Max

    2012-12-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM{sub 10} and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM{sub 10} collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM{sub 10} exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ► PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ► One-day exposure to PM induced genes involved in responding to oxidative stress. ► 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  10. Particle collection efficiency and particle re-entrainment of an electrostatic precipitator in a sewage sludge incineration plant.

    PubMed

    Ferge, Thomas; Maguhn, Jürgen; Felber, Hannes; Zimmermann, Ralf

    2004-03-01

    In several recent studies it was shown that high atmospheric loads of submicrometer particles in the size range below 500 nm have strong impact on human health. Therefore, extensive research concerning the reduction of fine particle emissions is needed to further improve air quality. Regarding health effects, especially the emission characteristics of fine and ultrafine particles emerging from anthropogenic sources such as combustion processes are of special interest. This study shows that the emission characteristic of an electrostatic precipitator (ESP) due to re-entrainment of fine particles and their subsequent release into the atmosphere can be significantly lowered by application of different operating conditions. For this purpose the particle collection efficiency of an ESP was studied in a municipal sewage sludge incineration plant. Particles were sampled under different operating conditions upstream and downstream from the ESP, and the particle number concentrations were measured simultaneously with aerodynamic particle sizers. In addition, the size distribution of the particles downstream from the ESP was measured with high time resolution by an electrical low-pressure impactor to investigate the particle re-entrainment into the flue gas. To determine the influence of operating conditions, different rapping cycles were investigated regarding their impact on the collection efficiency and the subsequent particle re-entrainment.

  11. Observations on the use of membrane filtration and liquid impingement to collect airborne microorganisms in various atmospheric environments

    USGS Publications Warehouse

    Griffin, Dale W.; Gonzalez, C.; Teigell, N.; Petrosky, T.; Northup, D.E.; Lyles, M.

    2011-01-01

    The influence of sample-collection-time on the recovery of culturable airborne microorganisms using a low-flow-rate membrane-filtration unit and a high-flow-rate liquid impinger were investigated. Differences in recoveries were investigated in four different atmospheric environments, one mid-oceanic at an altitude of ~10.0 m, one on a mountain top at an altitude of ~3,000.0 m, one at ~1.0 m altitude in Tallahassee, Florida, and one at ~1.0 m above ground in a subterranean-cave. Regarding use of membrane filtration, a common trend was observed: the shorter the collection period, the higher the recovery of culturable bacteria and fungi. These data also demonstrated that lower culturable counts were common in the more remote mid-oceanic and mountain-top atmospheric environments with bacteria, fungi, and total numbers averaging (by sample time or method categories) <3.0 colony-forming units (CFU) m -3. At the Florida and subterranean sites, the lowest average count noted was 3.5 bacteria CFU m-3, and the highest averaged 140.4 total CFU m-3. When atmospheric temperature allowed use, the high-volume liquid impinger utilized in this study resulted in much higher recoveries, as much as 10?? greater in a number of the categories (bacterial, fungal, and total CFU). Together, these data illustrated that (1) the high-volume liquid impinger is clearly superior to membrane filtration for aeromicrobiology studies if start-up costs are not an issue and temperature permits use; (2) although membrane filtration is more cost friendly and has a 'typically' wider operational range, its limits include loss of cell viability with increased sample time and issues with effectively extracting nucleic acids for community-based analyses; (3) the ability to recover culturable microorganisms is limited in 'extreme' atmospheric environments and thus the use of a 'limited' methodology in these environments must be taken into account; and (4) the atmosphere culls, i.e., everything is not

  12. Apparatus and method for collection and concentration of respirable particles into a small fluid volume

    DOEpatents

    Simon, Jonathan N.; Brown, Steve B.

    2002-01-01

    An apparatus and method for the collection of respirable particles and concentration of such particles into a small fluid volume. The apparatus captures and concentrates small (1-10 .mu.m) respirable particles into a sub-millileter volume of fluid. The method involves a two step operation, collection and concentration: wherein collection of particles is by a wetted surface having small vertical slits that act as capillary channels; and concentration is carried out by transfer of the collected particles to a small volume (sub-milliliter) container by centrifugal force whereby the particles are forced through the vertical slits and contact a non-wetted wall surface, and are deflected to the bottom where they are contained for analysis, such as a portable flow cytometer or a portable PCR DNA analysis system.

  13. Accurate stratospheric particle size distributions from a flat plate collection surface

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Mackinnon, I. D. R.

    1985-01-01

    Flat plate particle collections have revealed the presence of a remarkable variety of both terrestrial and extraterrestrial material in the stratosphere. It is found that the ratio of terrestrial to extraterrestrial material and the nature of the material collected may vary significantly over short time scales. These fluctuations may be related to massive injections of volcanic ash, emissions from solid fuel rockets, or variations in the micrometeoroid flux. The variations in particle number density can be of great importance to the earth's atmospheric radiation balance, and, therefore, its climate. With the objective to assess the number density of solid particles in the stratosphere, an examination has been conducted of all particles exceeding 1 micron in average diameter for a representative suite of particles obtained from a single flat plate collection surface. Attention is given to solid particle size distributions in the stratosphere, and the origin of important stratospheric particle types.

  14. Experimental Assessment of Collection Efficiency of Submicron Aerosol Particles by Cloud Droplets

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Ardon-Dryer, K.; Cziczo, D. J.

    2013-12-01

    The interplay between aerosol particles and water droplets in the atmosphere, especially in clouds, influences both aerosol and cloud properties. The major uncertainty in our understanding of climate arises in the indirect effect of aerosol and their ability to impact cloud formation and consequently alter the global radiative balance. The collision between a water droplet and aerosol particles that results in coalescence is termed 'collection' or 'coagulation'. Coagulation can lead to aerosol removal from the atmosphere or induce ice nucleation via contact freezing at temperatures below 0 C. Theoretical studies have shown that for aerosol particles smaller than 0.1 micrometers, Brownian motion is important, and for particles with diameters larger than 1 micrometer, inertial force dominates. There is a collection efficiency minimum for particles between 0.1-2 micrometers, called the 'Greenfield Gap'. Experimental efforts, however, have been limited to very large drizzle and rain drops until recently, and constrained parameters necessary to describe particle collection efficiency by cloud droplets have not been available. One reason is that laboratory setups that allow for coagulation to be observed on a single-particle basis have been lacking. Collection efficiency is also an important parameter for studying and assessing contact ice nucleation. Contact ice nucleation is currently the least understood ice nucleation mechanism and can be potentially important for mixed-phase cloud formation. The significance of experimentally assessing collection efficiency is therefore two-fold: to first understand the frequency of contacts and to then understand the fraction that lead to ice nucleation. We have constructed the MIT-Contact Freezing Chamber (MIT-CFC) to study collection efficiency of submicron aerosol particles by cloud droplets and contact freezing. A stream of 30-micron cloud droplets fall freely into the chamber and collide with aerosol particles. The outflow

  15. Characterization of Size-Fractionated Airborne Particles Inside an Electronic Waste Recycling Facility and Acute Toxicity Testing in Mice.

    PubMed

    Kim, Yong Ho; Wyrzykowska-Ceradini, Barbara; Touati, Abderrahmane; Krantz, Q Todd; Dye, Janice A; Linak, William P; Gullett, Brian; Gilmour, M Ian

    2015-10-01

    Disposal of electronic waste (e-waste) in landfills, incinerators, or at rudimentary recycling sites can lead to the release of toxic chemicals into the environment and increased health risks. Developing e-waste recycling technologies at commercial facilities can reduce the release of toxic chemicals and efficiently recover valuable materials. While these e-waste operations represent a vast improvement over previous approaches, little is known about environmental releases, workplace exposures, and potential health impacts. In this study, airborne particulate matter (PM) was measured at various locations within a modern U.S.-based e-waste recycling facility that utilized mechanical processing. In addition, composite size fractionated PM (coarse, fine and ultrafine) samples were collected, extracted, chemically analyzed, and given by oropharyngeal aspiration to mice or cultured with lung slices for lung toxicity tests. Indoor total PM concentrations measured during the study ranged from 220 to 1200 μg/m(3). In general, the coarse PM (2.5-10 μm) was 3-4 times more abundant than fine/ultrafine PM (<2.5 μm). The coarse PM contained higher levels of Ni, Pb, and Zn (up to 6.8 times) compared to the fine (0.1-2.5 μm) and ultrafine (<0.1 μm) PM. Compared to coarse PM measurements from a regional near-roadway study, Pb and Ni were enriched 170 and 20 times, respectively, in the indoor PM, with other significant enrichments (>10 times) observed for Zn and Sb, modest enrichments (>5 times) for Cu and Sr, and minor enrichments (>2 times) for Cr, Cd, Mn, Ca, Fe, and Ba. Negligible enrichment (<2 times) or depletion (<1 time) were observed for Al, Mg, Ti, Si, and V. The coarse PM fraction elicited significant pro-inflammatory responses in the mouse lung at 24 h postexposure compared to the fine and ultrafine PM, and similar toxicity outcomes were observed in the lung slice model. We conclude that exposure to coarse PM from the facility caused substantial inflammation in the

  16. Quantification of airborne road-side pollution carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Baquero, T.; Shukrallah, S.; Karolia, R.; Osammor, O.; Inkson, B. J.

    2015-10-01

    Roadside diesel particulate matter (DPM) has been collected using a P-Trak particle counter with modified inlet filter. The P-Trak monitor assesses ultrafine particle number in real-time rather than accumulated PM mass over a period of time, which is important for DPM where the particles are often <100nm in size. Collected pollution particulate matter was analysed by SEM and TEM, quantifying particle size, morphology and size distribution. The primary carbon nanoparticles form complex fractal aggregates with open porous morphologies and evidence of secondary carbon deposition. For the chosen collection sites, occasional but significantly larger mineral and fibrous particles were identified. The assessment of airborne particles by mass collection (TEOM), particle-number (P-Trak) and TEM methods is discussed.

  17. Anisotropy-driven collective instability in intense charged particle beams

    NASA Astrophysics Data System (ADS)

    Startsev, Edward A.; Davidson, Ronald C.; Qin, Hong

    2005-12-01

    The classical electrostatic Harris instability is generalized to the case of a one-component intense charged particle beam with anisotropic temperature including the important effects of finite transverse geometry and beam space charge. For a long, coasting beam, the eigenmode code bEASt have been used to determine detailed 3D stability properties over a wide range of temperature anisotropy and beam intensity. A simple theoretical model is developed which describes the essential features of the linear stage of the instability. Both the simulations and the analytical theory clearly show that moderately intense beams are linearly unstable to short-wavelength perturbations provided the ratio of the longitudinal temperature to the transverse temperature is smaller than some threshold value. The delta-f particle-in-cell code BEST has been used to study the detailed nonlinear evolution and saturation of the instability.

  18. Apparatus to collect, classify, concentrate, and characterize gas-borne particles

    DOEpatents

    Rader, Daniel J.; Torczynski, John R.; Wally, Karl; Brockmann, John E.

    2003-12-16

    An aerosol lab-on-a-chip (ALOC) integrates one or more of a variety of particle collection, classification, concentration (enrichment), an characterization processes onto a single substrate or layered stack of such substrates. By mounting a UV laser diode laser light source on the substrate, or substrates tack, so that it is located down-stream of the sample inlet port and at right angle the sample particle stream, the UV light source can illuminate individual particles in the stream to induce a fluorescence response in those particles having a fluorescent signature such as biological particles, some of said particles. An illuminated particle having a fluorescent signal above a threshold signal would trigger a sorter module that would separate that particle from the particle stream.

  19. Development and characterization of an electrostatic particle sampling system for the selective collection of trace explosives.

    PubMed

    Beer, Sebastian; Müller, Gerhard; Wöllenstein, Jürgen

    2012-01-30

    Detection of trace explosives residues at people and cargo control points has become a key security challenge. A severe obstacle is that all commercial and military high explosives have low to extremely low vapor pressures which make them very hard to detect. With detectable vapors not being present, explosives detection needs to proceed through a series of sequential steps including particle collection, thermal vapor conversion and vapor detection. The present paper describes the design and test of an electrostatic particle precipitator which allows particle residue to be collected from the environment, the collected particle residue to be separated into high- and low-electron affinity fractions and the high-electron-affinity one to be concentrated onto a small-area collector surface for later vaporization. The selectivity of this particle collection and separation process is demonstrated and a full-chain demonstration of a DNT detection experiment is presented (DNT: di-nitro-toluene).

  20. Analyses of Extraterrestrial Particles Collected Outside The Mir Station

    NASA Technical Reports Server (NTRS)

    Borg, J.; Bibring, J.-P.; Bunch, T.; Flynn, G.; Nishioka, K.; Westphal, A.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    The European Space Exposure Facility (ESEF) has flown two collection boxes (B1 and B2) outside the MIR station from October 1995 to February 1996, during the EST EUROMIR95 mission. B1 was opened only during the encounter with the Orionides meteor stream and the last 5 weeks of the mission, while B2 stayed open during the entire mission, except during docking operations on MIR, to minimise contamination. We describe here the results of the analyses performed on various passive collectors of the COMRADE experiment. We also indicate the improvements that will be given to the collecting techniques, in the objective of the future COMET-99 collection, programmed by French CNES.

  1. Collection, Storage and Real-Time Transmission of Housekeeping and Instrument Data Aboard Manned NASA Airborne Science Platforms

    NASA Astrophysics Data System (ADS)

    Van Gilst, D. P.; Sorenson, C. E.

    2011-12-01

    Multi-instrument aircraft-based science campaigns require a baseline level of housekeeping service to record and distribute real time data, including timing signals, aircraft state and air data. As campaigns have become more sophisticated with greater integration between aircraft, ground instrumentation, satellites and forecasters in locations around the world, the scope of the services provided by the facility data systems on NASA's airborne science aircraft have increased to include situational awareness displays, real-time interchange of data between instruments and aircraft, and ingest of data to assist in real-time targeting of flights. As the scope of services has expanded, it has become increasingly important to provide standardized interfaces to experimenters to minimize integration complexity, and to make services sufficiently reliable for mission operations to depend upon them. Within the NASA airborne science program in recent years this has been provided by systems based around the core of the REVEAL/NASDAT system, with additional services including satellite communications, data display and ingest of outside data being provided by a mix of custom and COTS hardware and software. With a strong emphasis on transmission of data over industry standard IP and ethernet based networks, this system has been proven on numerous highly diverse missions on the DC-8 over the last 4 years and is being replicated on other NASA Airborne Science Platforms.

  2. Water Condensation Growth Cells for Ultrafine Particle Collection Onto Concentrated Spots

    NASA Astrophysics Data System (ADS)

    Lewis, G. S.; Hering, S. V.; Kreisberg, N.

    2007-12-01

    A laminar flow, condensation method, analogous to that employed in the water-based condensation particle counters, is utilized to provide concentrated, low-pressure drop collection of fine and ultrafine particles. With the laminar flow water condensation approach, the aerosol flow is first chilled by a cold walled conditioner, and then introduced into a hot wet-walled condenser. Because water vapor diffuses more rapidly then heat, the air vapor is supersaturated resulting in particles large enough to be collected by impaction. Several types of collectors have been designed and tested. A compact system utilizing a single TED as a heat pump to provide a ~ 25 ° C temperature difference provides collection at 0.4 L/min with a lower cutpoint of 10 nm, a pressure drop of 1 kPa, and a power consumption of 1 Watt. A larger, parallel plate system samples at 10 L/min, and yields a cutpoint of 20 nm. The design of these systems was guided by numeric modeling of the saturation ratios, particle activation and growth. The model includes the heat release from condensation, and the associated warming of the flow that reduces the supersaturation and particle growth at high particle number concentrations. By controlling the system geometry (either plate separation or tube diameter), we are able to activate at small particle sizes while minimizing concentration effects. Our method of particle collection provides a number of other advantages. Particle bounce off the impaction surface can be eliminated by controlling the temperature of the impaction surface so as to maintain a thin film of water on the surface. Particles can also be collected into a small liquid vial containing less then 1 ml of fluid, which eliminates the need for particle extraction from filters or resuspension from surface, it minimizes the total volume of the sample, and it allows for continuous automated collection and analysis.

  3. Experimental Assessment of Collection Efficiency of Submicron Aerosol Particles by Cloud Droplets

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Oo, K.; Brown, M. D.; Dhaniyala, S.; Cziczo, D. J.

    2012-12-01

    An experimental setup has been constructed to measure the collection efficiency of submicron aerosol particles by cloud droplets. The collection efficiency study is a prelude to studying contact nucleation, which is a potentially important ice nucleation mode that is not well-understood. This laboratory setup is a step closer to experimentally assessing the importance of contact nucleation. Water droplets with 20 micron diameter and submicron aerosol particles are brought into contact in an injector situated inside a chilled glass flow tube. The water droplets that collect aerosol particles are allowed to pass through a counterflow virtual impactor (CVI), which accepts large droplets and rejects aerosol particles that have not coagulated with the water droplets. The collected droplets are sent into the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument which performs in situ chemical analysis of a single particle. The number of aerosol particles collected by the single water droplet is quantified by calibrating the PALMS with known concentrations of aerosol particles. The water droplets contain a known amount of ammonium sulfate for identification purpose in the mass spectrometry. Preliminary results from the experiment will be discussed and compared with previous theoretical and experimental studies.

  4. Combined MIPAS (airborne/satellite), CALIPSO and in situ study on large potential NAT particles observed in early Arctic winter stratosphere in December 2011

    NASA Astrophysics Data System (ADS)

    Woiwode, Wolfgang; Höpfner, Michael; Pitts, Michael; Poole, Lamont; Oelhaf, Hermann; Molleker, Sergej; Borrmann, Stephan; Ebersoldt, Andreas; Frey, Wiebke; Gulde, Thomas; Maucher, Guido; Piesch, Christof; Sartorius, Christian; Orphal, Johannes

    2015-04-01

    The understanding of the characteristics of large HNO3-containing particles (potential 'NAT-rocks') involved in vertical redistribution of HNO3 in the polar winter stratosphere is limited due to the difficult accessibility of these particles by observations. While robust polar stratospheric cloud (PSC) classification schemes exist for observations by the space-borne lidar aboard CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) as well as for the passive mid-infrared limb observations by MIPAS (Michelson Interferometer for Passive Atmospheric Sounding), these observations are hardly exploited for the detection of large (diameter >10 μm) NAT particles. This is due to the facts that these particles have low overall number densities, resulting in weak detectable signatures, and that the physical characteristics of these particles (i.e. shape, morphology, HNO3-content and optical characteristics) are uncertain. We investigate collocated and complementary observations of a low-density potential large NAT particle field by the space-borne instruments CALIPSO and MIPAS-ENVISAT as well as the airborne observations by the limb-sounder MIPAS-STR and the in situ particle probe FSSP-100 (Forward Scattering Spectrometer Probe 100) aboard the high-altitude aircraft Geophysica. The observations aboard the Geophysica on 11 December 2011 associated to ESSenCe (ESa Sounder Campaign 2011) provided us the unique opportunity to study in detail the lower boundary region of a PSC where large potential NAT particles (>20 μm in diameter) were detected in situ. We analyse the ambient temperatures and gas-phase composition (HNO3 and H2O), the signatures of the observed particles in the CALIPSO and MIPAS observations, the HNO3-content of these particles suggested by the FSSP-100 and MIPAS-STR observations, and focus on the spectral fingerprint of these particles in the MIPAS-STR observations. While the spectral characterisation of the observed particles is subject

  5. Chemical Characterization of Individual Particles and Residuals of Cloud Droplets and Ice Crystals Collected On Board Research Aircraft in the ISDAC 2008 Study

    SciTech Connect

    Hiranuma, Naruki; Brooks, Sarah D.; Moffet, Ryan C.; Glen, Andrew; Laskin, Alexander; Gilles, Marry K.; Liu, Peter; MacDonald, A. M.; Strapp, J. Walter; McFarquhar, Greg

    2013-06-24

    Although it has been shown that size of atmospheric particles has a direct correlation with their ability to act as cloud droplet and ice nuclei, the influence of composition of freshly emitted and aged particles in nucleation processes is poorly understood. In this work we combine data from field measurements of ice nucleation with chemical imaging of the sampled particles to link aerosol composition with ice nucleation ability. Field measurements and sampling were conducted during the Indirect and Semidirect Aerosols Campaign (ISDAC) over Barrow, Alaska, in the springtime of 2008. In-situ ice nucleation measurements were conducted using a Continuous Flow Diffusion Chamber (CFDC). Measured number concentrations of ice nuclei (IN) varied from frequent values of 0.01 per liter to more than 10 per liter. Residuals of airborne droplets and ice crystals were collected through a counterflow virtual impactor (CVI). The compositions of individual atmospheric particles and the residuals were studied using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis (CCSEM/EDX) and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy (STXM/NEXAFS). Chemical analysis of cloud particle residuals collected during an episode of high ice nucleation suggests that both size and composition may influence aerosol's ability to act as IN. The STXM/NEXAFS chemical composition maps of individual residuals have characteristic structures of either inorganic or black carbon cores coated by organic materials. In a separate flight, particle samples from a biomass burning plume were collected. Although it has previously been suggested that episodes of biomass burning contribute to increased numbers of highly effective ice nuclei, in this episode we observed that only a small fraction were effective ice nuclei. Most of the particles from the biomass plume episode were smaller in size and were composed of

  6. Airborne Coarse Mode Aerosol Measurements with the CAS-DPOL Instrument: Effects of Particle Shape and Refractive Index and Implications for Radiative Transfer Estimate

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Weinzierl, B.; Gasteiger, J.; Spanu, A.; Freudenthaler, V.; Gross, S.

    2015-12-01

    Each year huge amounts of mineral dust are mobilized in deserts and arid regions of the world and transported over large distances forming thick elevated aerosol layers with a substantial fraction of coarse mode particles. Optical properties of mineral dust, including the absorptive refractive index of some components, cause a significant effect on the atmospheric radiative energy balance from optical to infrared wavelengths. The aerosol characteristics, in particular its coarse mode size distribution, are modified during long-range transport by aging and deposition processes. This also affects the aerosol optical properties and therefore the effect on the atmospheric radiative energy budget. In-situ measurements of aerosol microphysical properties are essential to characterize those effects in order to be implemented in global climate models in parametrized form. However, in-situ measurements of airborne coarse mode aerosols such as mineral dust and volcanic ash are challenging and the measurements are usually affected by substantial uncertainties. In this work we use airborne measurements of mineral dust from our optical light-scattering spectrometer CAS-DPOL during SALTRACE 2013 to discuss the analysis of such data. We cover the effects of varying refractive index and particle shapes and develop recommendations for the configuration of the CAS-DPOL for aerosol studies. We also present an inversion method to derive coarse mode size distributions from light-scattering probes for mixtures of non-spherical, absorbing aerosols. The size distributions retrieved from the in-situ measurements are then validated using an independent analysis with a combination of sun-photometer and lidar data. We apply these methods to investigate the Saharan mineral dust particle size distributions measured on both sides of the Atlantic Ocean and discuss the influence of aerosol aging on the atmospheric radiative energy budget. With this example we also assess how the uncertainties

  7. Vertical wind retrieved by airborne lidar and analysis of island induced gravity waves in combination with numerical models and in situ particle measurements

    NASA Astrophysics Data System (ADS)

    Chouza, Fernando; Reitebuch, Oliver; Jähn, Michael; Rahm, Stephan; Weinzierl, Bernadett

    2016-04-01

    This study presents the analysis of island induced gravity waves observed by an airborne Doppler wind lidar (DWL) during SALTRACE. First, the instrumental corrections required for the retrieval of high spatial resolution vertical wind measurements from an airborne DWL are presented and the measurement accuracy estimated by means of two different methods. The estimated systematic error is below -0.05 m s-1 for the selected case of study, while the random error lies between 0.1 and 0.16 m s-1 depending on the estimation method. Then, the presented method is applied to two measurement flights during which the presence of island induced gravity waves was detected. The first case corresponds to a research flight conducted on 17 June 2013 in the Cabo Verde islands region, while the second case corresponds to a measurement flight on 26 June 2013 in the Barbados region. The presence of trapped lee waves predicted by the calculated Scorer parameter profiles was confirmed by the lidar and in situ observations. The DWL measurements are used in combination with in situ wind and particle number density measurements, large-eddy simulations (LES), and wavelet analysis to determine the main characteristics of the observed island induced trapped waves.

  8. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias R.; Gilles, Marry K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-25

    Atmospheric ice formation induced by particles with complex chemical and physical properties through heterogeneous nucleation is not well understood. Heterogeneous ice nucleation and water uptake by ambient particles collected from urban environments in Los Angeles and Mexico City are presented. Using a vapour controlled cooling system equipped with an optical microscopy, the range of onset conditions for ice nucleation and water uptake by the collected particles was determined as a function of temperature (200{273 K) and relative humidity with respect to ice (RHice) up to water saturation. Three distinctly different types of authentic atmospheric particles were investigated including soot particles associated with organics/inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn containing inorganic particles apportioned to anthropogenic emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption ne structure spectroscopy (STXM/NEXAFS). Above 230 K, signicant differences in water uptake and immersion freezing effciencies of the different particle types were observed. Below 230 K, the particles exhibited high deposition ice nucleation effciencies and formed ice at RHice values well below homogeneous ice nucleation limits. The data show that the chemical composition of these eld{collected particles plays an important role in determining water uptake and immersion freezing. Heterogeneous ice nucleation rate coeffcients, cumulative ice nuclei (IN) spectrum, and IN activated fraction for deposition ice nucleation are derived. The presented ice nucleation data demonstrate that anthropogenic and marine particles comprising of various chemical and physical properties exhibit distinctly different ice

  9. Influence of Asian Dust Particles on Immune Adjuvant Effects and Airway Inflammation in Asthma Model Mice

    PubMed Central

    Kurai, Jun; Watanabe, Masanari; Tomita, Katsuyuki; Yamasaki, Hiroyuki Sano Akira; Shimizu, Eiji

    2014-01-01

    Objective An Asian dust storm (ADS) contains airborne particles that affect conditions such as asthma, but the mechanism of exacerbation is unclear. The objective of this study was to compare immune adjuvant effects and airway inflammation induced by airborne particles collected on ADS days and the original ADS soil (CJ-1 soil) in asthma model mice. Methods Airborne particles were collected on ADS days in western Japan. NC/Nga mice were co-sensitized by intranasal instillation with ADS airborne particles and/or Dermatophagoides farinae (Df), and with CJ-1 soil and/or Df for 5 consecutive days. Df-sensitized mice were stimulated with Df challenge intranasally at 7 days after the last Df sensitization. At 24 hours after challenge, serum allergen specific antibody, differential leukocyte count and inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were measured, and airway inflammation was examined histopathologically. Results Co-sensitization with ADS airborne particles and Df increased the neutrophil and eosinophil counts in BALF. Augmentation of airway inflammation was also observed in peribronchiolar and perivascular lung areas. Df-specific serum IgE was significantly elevated by ADS airborne particles, but not by CJ-1 soil. Levels of interleukin (IL)-5, IL-13, IL-6, and macrophage inflammatory protein-2 were higher in BALF in mice treated with ADS airborne particles. Conclusion These results suggest that substances attached to ADS airborne particles that are not in the original ADS soil may play important roles in immune adjuvant effects and airway inflammation. PMID:25386753

  10. Raman identification of drug of abuse particles collected with colored and transparent tapes.

    PubMed

    Moreno, Victor Molina; López-López, María; Atoche, Juan-Carlos; García-Ruiz, Carmen

    2014-03-01

    Raman microscopy is a useful tool for the analysis of drug particles collected with adhesive tapes. In this work, first, the spectra of thirty drugs of abuse, degradation products, metabolites, and common cutting agent standards were recorded and the Raman bands observed were summarized providing the forensic analyst useful information for the identification of drug evidence. Then, the collection of different drug particles by a fingerprint lifting tape commonly used to remove and store fingerprints and fibers, and a white and green packaging tape, followed by the subsequent identification of the drugs by confocal Raman spectroscopy was performed. The particles were analyzed on top of the tapes, trapped between glass slides and the tapes, trapped in the tape folded over itself in the case of the transparent tape, and after folding and unfolding the tape in the case of the colored tape. The results obtained by the different approaches show that both tapes did not compromise the drugs spectra. However, the use of transparent tape is preferred because this tape allows the previous visual detection of the particles. Finally, several drug and sugar particles were spread over a clean table and inside a pocket, and the particles were collected with transparent tape and then properly identified. Although good results were obtained in both cases, the amount of fibers and other substances present in the collection area made the previous detection of the particles difficult and increases the analysis time. PMID:24630328

  11. Raman identification of drug of abuse particles collected with colored and transparent tapes.

    PubMed

    Moreno, Victor Molina; López-López, María; Atoche, Juan-Carlos; García-Ruiz, Carmen

    2014-03-01

    Raman microscopy is a useful tool for the analysis of drug particles collected with adhesive tapes. In this work, first, the spectra of thirty drugs of abuse, degradation products, metabolites, and common cutting agent standards were recorded and the Raman bands observed were summarized providing the forensic analyst useful information for the identification of drug evidence. Then, the collection of different drug particles by a fingerprint lifting tape commonly used to remove and store fingerprints and fibers, and a white and green packaging tape, followed by the subsequent identification of the drugs by confocal Raman spectroscopy was performed. The particles were analyzed on top of the tapes, trapped between glass slides and the tapes, trapped in the tape folded over itself in the case of the transparent tape, and after folding and unfolding the tape in the case of the colored tape. The results obtained by the different approaches show that both tapes did not compromise the drugs spectra. However, the use of transparent tape is preferred because this tape allows the previous visual detection of the particles. Finally, several drug and sugar particles were spread over a clean table and inside a pocket, and the particles were collected with transparent tape and then properly identified. Although good results were obtained in both cases, the amount of fibers and other substances present in the collection area made the previous detection of the particles difficult and increases the analysis time.

  12. A self-consistent theory of collective alpha particle losses induced by Alfvenic turbulence

    SciTech Connect

    Biglari, H.; Diamond, P.H.

    1992-01-01

    The nonlinear dynamics of kinetic Alfven waves, resonantly excited by energetic ions/alpha particles, is investigated. It is shown that {alpha}-particles govern both linear instability and nonlinear saturation dynamics, while the background MHD turbulence results only in a nonlinear real frequency shift. The most efficient saturation mechanism is found to be self-induced profile modification. Expressions for the fluctuation amplitudes and the {alpha}-particle radial flux are self-consistently derived. The work represents the first self-consistent, turbulent treatment of collective {alpha}-particle losses by Alfvenic fluctuations.

  13. Dynamical quorum sensing and synchronization in collections of excitable and oscillatory catalytic particles

    NASA Astrophysics Data System (ADS)

    Tinsley, M. R.; Taylor, A. F.; Huang, Z.; Wang, F.; Showalter, K.

    2010-06-01

    We present experimental studies of interacting excitable and oscillatory catalytic particles in well-stirred and spatially distributed systems. A number of distinct paths to synchronized oscillatory behavior are described. We present an example of a Kuramoto type transition in a well-stirred system with a collective rhythm emerging on increasing the number density of oscillatory particles. Groups of spatially distributed oscillatory particles become entrained to a common frequency by organizing centers. Quorum sensing type transitions are found in populations of globally and locally coupled excitable particles, with a sharp transition from steady state to fully synchronized behavior at a critical density or group size.

  14. Mineralogy of Interplanetary Dust Particles from the Comet Giacobini-Zinner Dust Stream Collections

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Messenger, S.; Westphal, A. J.; Palma, R. L.

    2015-01-01

    The Draconoid meteor shower, originating from comet 21P/Giacobini-Zinner, is a low-velocity Earth-crossing dust stream that had a peak anticipated flux on Oct. 8, 2012. In response to this prediction, NASA performed dedicated stratospheric dust collections to target interplanetary dust particles (IDPs) from this comet stream on Oct 15-17, 2012 [3]. Twelve dust particles from this targeted collection were allocated to our coordinated analysis team for studies of noble gas (Univ. Minnesota, Minnesota State Univ.), SXRF and Fe-XANES (SSL Berkeley) and mineralogy/isotopes (JSC). Here we report a mineralogical study of 3 IDPs from the Draconoid collection..

  15. A novel rocket-based in-situ collection technique for mesospheric and stratospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Reid, W.; Achtert, P.; Ivchenko, N.; Magnusson, P.; Kuremyr, T.; Shepenkov, V.; Tibert, G.

    2012-11-01

    A technique for collecting aerosol particles between altitudes of 85 and 17 km is described. Collection probes are ejected from a sounding rocket allowing for multi-point measurements. Each probe is equipped with 110 collection samples that are 3 mm in diameter. The collection samples are one of three types: standard transmission electron microscopy carbon grids, glass fibre filter paper or silicone gel. Each collection sample is exposed over a 50 m to 5 km height range with a total of 45 separate ranges. Post-flight electron microscopy gives size-resolved information on particle number, shape and elemental composition. Each collection probe is equipped with a suite of sensors to capture the probe's status during the fall. Parachute recovery systems along with GPS-based localization ensure that each probe can be located and recovered for post-flight analysis.

  16. Comparing polybrominated diphenyl ethers (PBDEs) in airborne particles in Guangzhou and Hong Kong: sources, seasonal variations and inland outflow.

    PubMed

    Li, Jun; Liu, Xiang; Yu, Li-Li; Zhang, Gan; Li, Xiang-Dong; Lee, Celine S L; Lin, Hai-Tao

    2009-06-01

    The historical application/usage and management of chemicals in Hong Kong have been distinctively different from mainland China. In the present study, polybrominated diphenyl ethers (PBDEs) were measured in year-round atmospheric particle samples collected from urban Hong Kong and Guangzhou for comparison. The concentrations of BDE-209 and Sigma9PBDEs (defined as the sum of BDE-28, -47, -66, -100, -99, -154, -153, -138 and -183) in Guangzhou ranged from 758 to 21,900 pg m(-3) and from 31.8 to 3320 pg m(-3), respectively, and in Hong Kong ranged from 8.5 to 895 pg m(-3) and from 1.0 to 386 pg m(-3), respectively. Elevated concentrations of PBDEs were observed in Guangzhou, showing significant atmospheric PBDE pollution. BDE-209, -47, and -99 were the dominant congeners in all the samples, suggesting that the widely used commercial penta- and deca-BDE products were the original sources. Distinct seasonal patterns were observed in the PBDE concentrations of aerosols in Hong Kong, higher during the winter monsoon period, and lower during summertime. The less distinct seasonal variations of PBDE concentrations in the aerosols of Guangzhou suggested the dominance of local pollution sources around the city. Significant correlations were found between BDE-209 and organic carbon (OC) or elemental carbon (EC) in the two cities, suggesting that combustion may be an important pathway introducing BDE-209 to the atmosphere. The lower BDE-209 concentrations along with higher OC/EC ratios implied that a quick loss of BDE-209 may occur during the aerosol aging processes. Back trajectory analysis showed that the high PBDE concentrations observed in Hong Kong may be related to the outflows from the inland area of the Pearl River Delta (PRD) by prevailing the northeast or northwest wind in winter.

  17. Heterogeneous Nucleation of Ice on Anthropogenic Organic Particles Collected in Mexico City

    SciTech Connect

    Knopf, Daniel A.; Wang, BingBing; Laskin, Alexander; Moffet, Ryan C.; Gilles, Marry K.

    2010-06-05

    This study reports on heterogeneous ice nucleation activity of predominantly organic or coated with organic material anthropogenic particles sampled within and around the polluted environment of Mexico City. The onset of heterogeneous ice nucleation was observed as a function of particle temperature (Tp), relative humidity (RH), nucleation mode, and chemical composition of particles influenced by their photochemical atmospheric aging. Particle analyses was conducted using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). In contrast to the majority of laboratory studies employing proxies of organic aerosol, we show that anthropogenic organic particles collected in Mexico City have can potentially induce ice nucleation at experimental conditions relevant to cirrus formation. The reported results suggest a new paradigm for the potential impact of organic particles on ice cloud formation and climate.

  18. Heterogeneous nucleation of ice on anthropogenic organic particles collected in Mexico City

    SciTech Connect

    Knopf, D.A.; Wang, B.; Laskin, A.; Moffet, R.C.; Gilles, M.K.

    2010-06-20

    This study reports on heterogeneous ice nucleation activity of predominantly organic (or coated with organic material) anthropogenic particles sampled within and around the polluted environment of Mexico City. The onset of heterogeneous ice nucleation was observed as a function of particle temperature (Tp), relative humidity (RH), nucleation mode, and particle chemical composition which is influenced by photochemical atmospheric aging. Particle analyses included computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). In contrast to most laboratory studies employing proxies of organic aerosol, we show that anthropogenic organic particles collected in Mexico City can potentially induce ice nucleation at experimental conditions relevant to cirrus formation. The results suggest a new precedent for the potential impact of organic particles on ice cloud formation and climate.

  19. Experimental Assessment of Collection Efficiency of Submicron Aerosol Particles by Cloud Droplets

    NASA Astrophysics Data System (ADS)

    Huang, Y. W.; Ardon-Dryer, K.; Cziczo, D. J.

    2014-12-01

    The interplay between aerosol particles and water droplets in the atmosphere, especially in clouds, influences both aerosol and cloud properties. The major uncertainty in our understanding of climate arises in the indirect effect of aerosol and their ability to impact cloud formation and consequently alter the global radiative balance. The collision between a water droplet and aerosol particles that results in coalescence is termed "collection" or "coagulation". Coagulation can lead to aerosol removal from the atmosphere or induce ice nucleation via contact freezing. There is a theoretical collection efficiency minimum of particles with diameter between 0.1-2 µm, called the "Greenfield Gap". Experimental effort, however, was limited to drizzle and rain drops until recently, and has not constrained parameters that describe particle collection efficiency by cloud droplets. Collection efficiency is also an important parameter for assessing contact freezing, the least known ice nucleation mechanism today. Experimentally assessing collection efficiency can prove the existence of the "Greenfield Gap" and lay the foundation for studying contact freezing. We recently constructed the MIT-Contact Freezing Chamber (MIT-CFC) to study coagulation experimentally. A stream of 40 µm cloud droplets fall freely into the chamber and collide with aerosol particles with known size and concentration. The outflow goes through a series of dryers before entering the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument for chemical composition analysis. PALMS is a true single-particle instrument and gives information on the size and the chemical composition of each particle. Coagulated particles from the MIT-CFC have mass spectral signatures of both the aerosol particles and the droplet residuals, while the droplet residual contains no signature of the aerosol particles. To our knowledge, this is the first time coagulation has been seen on a single-particle basis. We will

  20. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  1. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias; Gilles, Mary K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2011-11-01

    Ice formation induced by atmospheric particles through heterogeneous nucleation is not well understood. Onset conditions for heterogeneous ice nucleation and water uptake by particles collected in Los Angeles and Mexico City were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). Four dominant particle types were identified including soot associated with organics, soot with organic and inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn-containing particles apportioned to emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Above 230 K, significant differences in onsets of water uptake and immersion freezing of different particle types were observed. Below 230 K, particles exhibited high deposition ice nucleation efficiencies and formed ice atRHicewell below homogeneous ice nucleation limits. The data suggest that water uptake and immersion freezing are more sensitive to changes in particle chemical composition compared to deposition ice nucleation. The data demonstrate that anthropogenic and marine influenced particles, exhibiting various chemical and physical properties, possess distinctly different ice nucleation efficiencies and can serve as efficient IN at atmospheric conditions typical for cirrus and mixed-phase clouds.

  2. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias; Gilles, Mary K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-01

    Ice formation induced by atmospheric particles through heterogeneous nucleation is not well understood. Onset conditions for heterogeneous ice nucleation and water uptake by particles collected in Los Angeles and Mexico City were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). Four dominant particle types were identified including soot associated with organics, soot with organic and inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn-containing particles apportioned to emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Above 230 K, significant differences in onsets of water uptake and immersion freezing of different particle types were observed. Below 230 K, particles exhibited high deposition ice nucleation efficiencies and formed ice atRHicewell below homogeneous ice nucleation limits. The data suggest that water uptake and immersion freezing are more sensitive to changes in particle chemical composition compared to deposition ice nucleation. The data demonstrate that anthropogenic and marine influenced particles, exhibiting various chemical and physical properties, possess distinctly different ice nucleation efficiencies and can serve as efficient IN at atmospheric conditions typical for cirrus and mixed-phase clouds.

  3. The oceanographic toolbox for the collection of sinking and suspended marine particles

    NASA Astrophysics Data System (ADS)

    McDonnell, Andrew M. P.; Lam, Phoebe J.; Lamborg, Carl H.; Buesseler, Ken O.; Sanders, Richard; Riley, Jennifer S.; Marsay, Chris; Smith, Helen E. K.; Sargent, Elizabeth C.; Lampitt, Richard S.; Bishop, James K. B.

    2015-04-01

    Marine particles play a central role in controlling the transport, cycling, and inventories of many major elements and trace elements and isotopes throughout the oceans. Studies seeking to elucidate the biogeochemical roles of marine particles often require reliable ways to collect them from the ocean. Here, we review the oceanographic toolbox of techniques and instrumentation that are employed to collect both suspended and sinking particles. With these tools, it is possible to determine both the concentrations and vertical fluxes of important elements and individual particle types. We describe the various methods for quantifying the concentrations of particulate matter with in situ pumps, towed sampling devices, bottle collectors, and large volume capture devices. The uses of various types of flux collection platforms are discussed including surface tethered, neutrally buoyant, and bottom moored devices. We address the issues of sediment trap collection biases and the apparent inconsistencies that can arise due to differences in the temporal and spatial scales sampled by the various methodologies. Special attention is given to collection considerations made for the analysis of trace metals and isotopes, as these methodologies are of high importance to the ongoing GEOTRACES program which seeks to identify the processes and quantify fluxes that control the distributions of key trace elements and isotopes in the ocean. With the emergence of new particle collection methodologies and the continued reliance on traditional collection methods, it is imperative that we combine these multiple approaches in ways that will help improve their accuracy and precision while enhancing their utility in advancing understanding of the biogeochemical and ecological roles of marine particles.

  4. Composition of Stratospheric Aerosol Particles collected during the SOLVE campaign 2000

    NASA Astrophysics Data System (ADS)

    Schütze, Katharina; Nathalie, Benker; Martin, Ebert; Ralf, Weigel; Wilson James, C.; Stephan, Borrmann; Stephan, Weinbruch

    2016-04-01

    Stratospheric Aerosol particles were collected during the SAGE III Ozone loss and validation Experiment (SOLVE) in January-March 2000 in Kiruna/ Sweden onboard the scientific ER-2 aircraft with the Multi-Sample Aerosol Collection System. The particles are deposited on Cu transmission electron microscopy (TEM) grids. Particles of six samples from different flights (including one PSC sample) were analyzed by TEM and Energy Dispersive X-ray detection (EDX) regarding their size, chemical composition and morphology. Most particles are sulfates (formed from droplets of sulfuric acid) which are not resistant to the electron beam. In addition, refractory particles in the size range of 100-500 nm are found. They are either embedded in the sulfates or occur as single particles. The refractory particles are mainly carbonaceous showing only C and O as major peaks in their X-ray spectra. Some particles contain minor amounts of Si and Fe. Both, the O/C (median from 0.10-0.40), as well as Si/C (median from 0.05-0.32) ratios are increasing with time, from the middle of January to the end of February. The largest Fe/C ratio (median: 0.37) is found in a sample of the end of January. Based on the nanostructure and the absence of potassium as a tracer, biomass burning can be excluded as a source. Soot from diesel engines as well as from aircrafts show a nanostructure which is not found in the refractory particles. Due to the fact that large volcanic eruptions, which introduced material directly into the stratosphere, were missing since the eruption of Mt. Pinatubo in 1991, they are a very unlikely source of the refractory particles. The most likely source of the refractory particles is thus extraterrestrial material.

  5. Airborne concentrations of PM(2.5) and diesel exhaust particles on Harlem sidewalks: a community-based pilot study.

    PubMed Central

    Kinney, P L; Aggarwal, M; Northridge, M E; Janssen, N A; Shepard, P

    2000-01-01

    Residents of the dense urban core neighborhoods of New York City (NYC) have expressed increasing concern about the potential human health impacts of diesel vehicle emissions. We measured concentrations of particulate matter [less than/equal to] 2.5 micro in aerodynamic diameter (PM(2.5)) and diesel exhaust particles (DEP) on sidewalks in Harlem, NYC, and tested whether spatial variations in concentrations were related to local diesel traffic density. Eight-hour (1000-1800 hr) air samples for PM(2.5 )and elemental carbon (EC) were collected for 5 days in July 1996 on sidewalks adjacent to four geographically distinct Harlem intersections. Samples were taken using portable monitors worn by study staff. Simultaneous traffic counts for diesel trucks, buses, cars, and pedestrians were carried out at each intersection on [Greater/equal to] 2 of the 5 sampling days. Eight-hour diesel vehicle counts ranged from 61 to 2,467 across the four sites. Mean concentrations of PM(2.5) exhibited only modest site-to-site variation (37-47 microg/m(3)), reflecting the importance of broader regional sources of PM(2.5). In contrast, EC concentrations varied 4-fold across sites (from 1.5 to 6 microg/m(3)), and were associated with bus and truck counts on adjacent streets and, at one site, with the presence of a bus depot. A high correlation (r = 0.95) was observed between EC concentrations measured analytically and a blackness measurement based on PM(2.5) filter reflectance, suggesting the utility of the latter as a surrogate measure of DEP in future community-based studies. These results show that local diesel sources in Harlem create spatial variations in sidewalk concentrations of DEP. The study also demonstrates the feasibility of a new paradigm for community-based research involving full and active partnership between academic scientists and community-based organizations. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:10706526

  6. Airborne measurements of new particle formation in the free troposphere above the Mediterranean Sea during the HYMEX campaign

    NASA Astrophysics Data System (ADS)

    Rose, C.; Sellegri, K.; Freney, E.; Dupuy, R.; Colomb, A.; Pichon, J.-M.; Ribeiro, M.; Bourianne, T.; Burnet, F.; Schwarzenboeck, A.

    2015-03-01

    While atmospheric new particle formation (NPF) has been observed in various environments and was found to contribute significantly to the total aerosol particle concentration, the production of new particles over open seas is poorly documented in the literature. Nucleation events were detected and analysed over the Mediterranean Sea using two condensation particle counters and a Scanning Mobility Particle Sizer on-board the ATR-42 research aircraft during flights conducted between the 11 September and the 4 November 2012 in the framework of the HYMEX (HYdrological cycle in Mediterranean EXperiment) project. The main purpose of the present work was to characterize the spatial extent of the NPF process. Our findings show that nucleation is occurring over large areas above the Mediterranean Sea in all air mass types. Maximum concentrations of particles in the size range 5-10 nm (N5-10) do not systematically coincide with lower fetches (time spent by the air mass over the sea before sampling), and significant N5-10 values are found for fetches between 0 and 60 h depending on the air mass type. These observations suggest that nucleation events could be more influenced by processes occurring above the sea, rather than linked to synoptic history. The analysis of the vertical extent of nucleation demonstrates that the process is favoured at high altitude, above 1000 m, i.e. frequently in the free troposphere, and more especially between 2000 and 3000 m, where the nucleation frequency is close to 50%. This vertical distribution of nucleation is favoured by the gradients of several parameters, such as the condensation sink, the temperature and the relative humidity. The mixing of two air parcels could also explain the occurrence of nucleation at preferential altitudes. After they formed, particles slowly grow at high altitude to diameters of at least 30 nm while being poorly depleted by coagulation processes. Our analysis of the particle size distributions suggests that

  7. Optical pulling of airborne absorbing particles and smut spores over a meter-scale distance with negative photophoretic force

    SciTech Connect

    Lin, Jinda; Hart, Adam G.; Li, Yong-qing

    2015-04-27

    We demonstrate optical pulling of single light-absorbing particles and smut spores in air over a meter-scale distance using a single collimated laser beam based on negative photophoretic force. The micron-sized particles are pulled towards the light source at a constant speed of 1–10 cm/s in the optical pulling pipeline while undergoing transverse rotation at 0.2–10 kHz. The pulled particles can be manipulated and precisely positioned on the entrance window with an accuracy of ∼20 μm, and their chemical compositions can be characterized with micro-Raman spectroscopy.

  8. Interplay between one-particle and collective degrees of freedom in nuclei

    NASA Astrophysics Data System (ADS)

    Hamamoto, Ikuko

    2016-02-01

    Some developments of nuclear-structure physics uniquely related to Copenhagen School are sketched based on theoretical considerations versus experimental findings and one-particle versus collective aspects. Based on my personal overview I pick up the following topics; (1) Study of vibration in terms of particle-vibration coupling; (2) one-particle motion in deformed and rotating potentials, and yrast spectroscopy in high-spin physics; (3) triaxial shape in nuclei: wobbling motion and chiral bands; (4) nuclear structure of drip line nuclei: in particular, shell-structure (or magic numbers) change and spherical or deformed halo phenomena; (5) shell structure in oblate deformation.

  9. Airborne myxomycete spores: detection using molecular techniques

    NASA Astrophysics Data System (ADS)

    Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

    2009-01-01

    Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

  10. Human occupancy as a source of indoor airborne bacteria.

    PubMed

    Hospodsky, Denina; Qian, Jing; Nazaroff, William W; Yamamoto, Naomichi; Bibby, Kyle; Rismani-Yazdi, Hamid; Peccia, Jordan

    2012-01-01

    Exposure to specific airborne bacteria indoors is linked to infectious and noninfectious adverse health outcomes. However, the sources and origins of bacteria suspended in indoor air are not well understood. This study presents evidence for elevated concentrations of indoor airborne bacteria due to human occupancy, and investigates the sources of these bacteria. Samples were collected in a university classroom while occupied and when vacant. The total particle mass concentration, bacterial genome concentration, and bacterial phylogenetic populations were characterized in indoor, outdoor, and ventilation duct supply air, as well as in the dust of ventilation system filters and in floor dust. Occupancy increased the total aerosol mass and bacterial genome concentration in indoor air PM(10) and PM(2.5) size fractions, with an increase of nearly two orders of magnitude in airborne bacterial genome concentration in PM(10). On a per mass basis, floor dust was enriched in bacterial genomes compared to airborne particles. Quantitative comparisons between bacterial populations in indoor air and potential sources suggest that resuspended floor dust is an important contributor to bacterial aerosol populations during occupancy. Experiments that controlled for resuspension from the floor implies that direct human shedding may also significantly impact the concentration of indoor airborne particles. The high content of bacteria specific to the skin, nostrils, and hair of humans found in indoor air and in floor dust indicates that floors are an important reservoir of human-associated bacteria, and that the direct particle shedding of desquamated skin cells and their subsequent resuspension strongly influenced the airborne bacteria population structure in this human-occupied environment. Inhalation exposure to microbes shed by other current or previous human occupants may occur in communal indoor environments.

  11. Determination of rare earth elements (REES) in airborne particulate matter (APM) collected in Tokyo, Japan, and a positive anomaly of europium and terbium.

    PubMed

    Suzuki, Yoshinari; Suzuki, Tatsunosuke; Furuta, Naoki

    2010-01-01

    The determination of rare earth elements (REEs) in airborne particulate matter (APM) was conducted, and the distribution pattern of atmospheric REEs was evaluated in this study. The APM was collected in the center of Tokyo, Japan, where serious air pollution is always of concern. A cellulose acetate membrane filter was used to collect the APM because Ba and REEs contamination is lower than that in a quartz glass fiber filter. The REEs measurement was conducted by ICP-MS after the digestion of the APM by a microwave acid digestion procedure. The standard reference material (SRM) of NIST 1648 urban particulate matter was used to validate the accuracy of the analytical method. The analytical results for SRM well agreed with those of the reference and reported values. Consequently, the analytical method established in this study was applied to the determination of REEs in APM collected in Tokyo, Japan. The obtained REEs distribution pattern in the APM showed a positive anomaly of Tb and Eu. The La/Sm ratio, which is considered to be as a good indicator of the anthropogenic effect, in size-classified APM showed a high degree of the anthropogenic effect in fine APM with a diameter of <1.1 µm. Emission sources of Tb, Eu and other REEs are discussed.

  12. Airborne measurements of new particle formation in the free troposphere above the Mediterranean Sea during the HYMEX campaign

    NASA Astrophysics Data System (ADS)

    Rose, C.; Sellegri, K.; Freney, E.; Dupuy, R.; Colomb, A.; Pichon, J.-M.; Ribeiro, M.; Bourianne, T.; Burnet, F.; Schwarzenboeck, A.

    2015-09-01

    While atmospheric new particle formation (NPF) has been observed in various environments and was found to contribute significantly to the total aerosol particle concentration, the production of new particles over open seas is poorly documented in the literature. Nucleation events were detected and analysed over the Mediterranean Sea using two condensation particle counters and a scanning mobility particle sizer on board the ATR-42 research aircraft during flights conducted between 11 September and 4 November 2012 in the framework of the HYMEX (HYdrological cycle in Mediterranean EXperiment) project. The main purpose of the present work was to characterize the spatial extent of the NPF process, both horizontally and vertically. Our findings show that nucleation is occurring over large areas above the Mediterranean Sea in all air mass types. Maximum concentrations of particles in the size range 5-10 nm (N5-10) do not systematically coincide with lower fetches (time spent by the air mass over the sea before sampling), and significant N5-10 values are found for fetches between 0 and 60 h depending on the air mass type. These observations suggest that nucleation events could be more influenced by local precursors originating from emission processes occurring above the sea, rather than linked to synoptic history. Vertical soundings were performed, giving the opportunity to examine profiles of the N5-10 concentration and to analyse the vertical extent of NPF. Our observations demonstrate that the process could be favoured above 1000 m, i.e. frequently in the free troposphere, and more especially between 2000 and 3000 m, where the NPF frequency is close to 50 %. This vertical distribution of NPF might be favoured by the gradients of several atmospheric parameters, together with the mixing of two air parcels, which could also explain the occurrence of the process at preferential altitudes. In addition, increased condensation sinks collocated with high concentrations of

  13. Collection strategy, inner morphology, and size distribution of dust particles in ASDEX Upgrade

    SciTech Connect

    M. Balden; N. Endstrasser; P. W. Humrickhouse; V. Rohde; M. Rasinski; U. von Toussaint; S. Elgeti; R. Neu

    2014-04-01

    The dust collection and analysis strategy in ASDEX Upgrade (AUG) is described. During five consecutive operation campaigns (2007–2011), Si collectors were installed, which were supported by filtered vacuum sampling and collection with adhesive tapes in 2009. The outer and inner morphology (e.g. shape) and elemental composition of the collected particles were analysed by scanning electron microscopy. The majority of the ~50?000 analysed particles on the Si collectors of campaign 2009 contain tungsten—the plasma-facing material in AUG—and show basically two different types of outer appearance: spheroids and irregularly shaped particles. By far most of the W-dominated spheroids consist of a solid W core, i.e. solidified W droplets. A part of these particles is coated with a low-Z material; a process that seems to happen presumably in the far scrape-off layer plasma. In addition, some conglomerates of B, C and W appear as spherical particles after their contact with plasma. By far most of the particles classified as B-, C- and W-dominated irregularly shaped particles consist of the same conglomerate with varying fraction of embedded W in the B–C matrix and some porosity, which can exceed 50%. The fragile structures of many conglomerates confirm the absence of intensive plasma contact. Both the ablation and mobilization of conglomerate material and the production of W droplets are proposed to be triggered by arcing. The size distribution of each dust particle class is best described by a log-normal distribution allowing an extrapolation of the dust volume and surface area. The maximum in this distribution is observed above the resolution limit of 0.28 µm only for the W-dominated spheroids, at around 1 µm. The amount of W-containing dust is extrapolated to be less than 300 mg on the horizontal areas of AUG.

  14. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  15. Airborne particulate matter and spacecraft internal environments

    NASA Technical Reports Server (NTRS)

    Liu, Benjamin Y. H.; Rubow, Kenneth L.; Mcmurry, Peter H.; Kotz, Thomas J.; Russo, Dane

    1991-01-01

    Instrumentation, consisting of a Shuttle Particle Sampler (SPS) and a Shuttle Particle Monitor (SPM), has been developed to characterize the airborne particulate matter in the Space Shuttle cabin during orbital flight. The SPS size selectively collects particles in four size fractions (0-2.5, 2.5-10, 10-100, and greater than 100 microns) which are analyzed postflight for mass concentration and size distribution, elemental composition, and morphology. The SPM provides a continuous record of particle concentration through photometric light scattering. Measurements were performed onboard Columbia, OV-102, during the flight of STS-32 in January 1990. No significant changes were observed in the particle mass concentration, size distribution, or chemical composition in samples collected during flight-day 2 and flight-day 7. The total mass concentration was 56 microg/cu cm with approximately half of the particles larger than 100 microns. Elemental analysis showed that roughly 70 percent of the particles larger than 2.5 microns were carbonaceous with small amounts of other elements present. The SPM showed no temporal or spatial variation in particle mass concentration during the mission.

  16. Simultaneous determination of airborne carbonyls and aromatic hydrocarbons using mixed sorbent collection and thermal desorption-gas chromatography/mass spectrometric analysis.

    PubMed

    Chien, Yeh-Chung; Yin, Ko-Ghun

    2009-05-01

    Volatile organic chemicals (VOC) such as aromatics and carbonyls are ubiquitous, and have environmental and health significance. This work presents a novel analytical method for simultaneously monitoring airborne carbonyls compounds and aromatic hydrocarbons. Carbonyls were collected onto an adsorbent (Tenax TA, coated with pentafluorophenyl hydrazine (PFPH)) that reacted with carbonyl groups to form thermo-stable derivatives that are suitable for subsequent analysis by thermal-desorption and GC/MS. Aromatic hydrocarbons were collected onto Tenax TA that was packed in the same sampling tube, and analyzed using the same method as carbonyls. Six carbonyls (formaldehyde, acetaldehyde, benzaldehyde, acetone, methyl ethyl ketone and methyl isobutyl ketone) and five aromatics (benzene, toluene, ethylbenzene, xylenes and styrene) were evaluated following standard test protocols. Calibration ranges were 30-200 ng per tube for most test chemicals, and 200-1000 ng per tube for formaldehyde. The analytical precision was 7% or better, and the collection efficiency, tested using a static sampling bag, was between 94 and 98%. PFPH-coated Tenax TA (for collecting carbonyls) needs to be placed in the front section of the tube, and Tenax TA in the back section (for collecting aromatics). The method detection limits of the current method ranged between 0.2 and 25 ng per tube, which corresponded to sub- to 17.2 ppbv (for formaldehyde), based on a typical 6 l sample from a sampling rate of 25 ml/min. Samples were stable for at least ten days under ambient conditions. The proposed method was also tested in the field and proved satisfactory. The proposed method is simple, feasible and has an acceptable accuracy and precision. It can thus be adopted as a reference method for making relevant measurements. PMID:19436859

  17. Nontoxic colloidal particles impede antibiotic resistance of swarming bacteria by disrupting collective motion and speed

    NASA Astrophysics Data System (ADS)

    Lu, Shengtao; Liu, Fang; Xing, Bengang; Yeow, Edwin K. L.

    2015-12-01

    A monolayer of swarming B. subtilis on semisolid agar is shown to display enhanced resistance against antibacterial drugs due to their collective behavior and motility. The dynamics of swarming motion, visualized in real time using time-lapse microscopy, prevents the bacteria from prolonged exposure to lethal drug concentrations. The elevated drug resistance is significantly reduced when the collective motion of bacteria is judiciously disrupted using nontoxic polystyrene colloidal particles immobilized on the agar surface. The colloidal particles block and hinder the motion of the cells, and force large swarming rafts to break up into smaller packs in order to maneuver across narrow spaces between densely packed particles. In this manner, cohesive rafts rapidly lose their collectivity, speed, and group dynamics, and the cells become vulnerable to the drugs. The antibiotic resistance capability of swarming B. subtilis is experimentally observed to be negatively correlated with the number density of colloidal particles on the engineered surface. This relationship is further tested using an improved self-propelled particle model that takes into account interparticle alignment and hard-core repulsion. This work has pertinent implications on the design of optimal methods to treat drug resistant bacteria commonly found in swarming colonies.

  18. Nontoxic colloidal particles impede antibiotic resistance of swarming bacteria by disrupting collective motion and speed.

    PubMed

    Lu, Shengtao; Liu, Fang; Xing, Bengang; Yeow, Edwin K L

    2015-12-01

    A monolayer of swarming B. subtilis on semisolid agar is shown to display enhanced resistance against antibacterial drugs due to their collective behavior and motility. The dynamics of swarming motion, visualized in real time using time-lapse microscopy, prevents the bacteria from prolonged exposure to lethal drug concentrations. The elevated drug resistance is significantly reduced when the collective motion of bacteria is judiciously disrupted using nontoxic polystyrene colloidal particles immobilized on the agar surface. The colloidal particles block and hinder the motion of the cells, and force large swarming rafts to break up into smaller packs in order to maneuver across narrow spaces between densely packed particles. In this manner, cohesive rafts rapidly lose their collectivity, speed, and group dynamics, and the cells become vulnerable to the drugs. The antibiotic resistance capability of swarming B. subtilis is experimentally observed to be negatively correlated with the number density of colloidal particles on the engineered surface. This relationship is further tested using an improved self-propelled particle model that takes into account interparticle alignment and hard-core repulsion. This work has pertinent implications on the design of optimal methods to treat drug resistant bacteria commonly found in swarming colonies.

  19. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  20. Size distribution and chemical composition of airborne particles in south-eastern Finland during different seasons and wildfire episodes in 2006.

    PubMed

    Makkonen, Ulla; Hellén, Heidi; Anttila, Pia; Ferm, Martin

    2010-01-01

    The inorganic main elements, trace elements and PAHs were determined from selected PM(1), PM(2.5) and PM(10) samples collected at the Nordic background station in Virolahti during different seasons and during the wildfire episodes in 2006. Submicron particles are those most harmful to human beings, as they are able to penetrate deep into the human respiratory system and may cause severe health effects. About 70-80%, of the toxic trace elements, like lead, cadmium, arsenic and nickel, as well as PAH compounds, were found in particles smaller than 1 microm. Furthermore, the main part of the copper, zinc, and vanadium was associated with submicron particles. In practice, all the PAHs found in PM(10) were actually in PM(2.5). For PAHs and trace elements, it is more beneficial to analyse the PM(2.5) or even the PM(1) fraction instead of PM(10), because exclusion of the large particles reduces the need for sample cleaning to minimize the matrix effects during the analysis. During the wildfire episodes, the concentrations of particles smaller than 2.5 microm, as well as those of submicron particles, increased, and also the ratio PM(1)/PM(10) increased to about 50%. On the fire days, the mean potassium concentration was higher in all particle fractions, but ammonium and nitrate concentrations rose only in particles smaller than 1.0 microm. PAH concentrations rose even to the same level as in winter.

  1. Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray.

    PubMed

    Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared; Friend, Sherri; Stone, Samuel; Keane, Michael

    2016-07-01

    Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the "gold standard" for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing "monodisperse" aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in some test

  2. Performance of a Scanning Mobility Particle Sizer in Measuring Diverse Types of Airborne Nanoparticles: Multi-Walled Carbon Nanotubes, Welding Fumes, and Titanium Dioxide Spray

    PubMed Central

    Chen, Bean T.; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared; Friend, Sherri; Stone, Samuel; Keane, Michael

    2016-01-01

    Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the “gold standard” for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing “monodisperse” aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in

  3. Composition of Dust Particles Collected in the Inner Coma of Comet 67P/Churymumo-Gerasimenko by Rosetta

    NASA Astrophysics Data System (ADS)

    Hilchenbach, M.; Kissel, J.; Langevin, Y.; Briois, C.; Koch, A.; Schulz, R.; Silen, J.; Altobelli, N.; Altwegg, K.; Baklouti, D.; Bardyn, A.; Colangeli, L.; Cottin, H.; Engrand, C.; Fischer, H.; Fray, N.; Glasmachers, A.; Grün, E.; Haerendel, G.; Henkel, H.; Höfner, H.; Hornung, K.; Jessberger, E.-K.; Lehto, H.; Ligier, N.; Martin, P.; Merouane, S.; Orthous-Daunay, F.-R.; Paquette, J.; Raulin, F.; Le Roy, L.; Rynö, J.; Silieström, S.; Steiger, W.; Stenzel, O.; Stephan, T.; Thirkell, L.; Thomas, R.; Torkar, K.; Varmuza, K.; Wanczek, K.-P.; Zaprudin, B.

    2016-08-01

    The dust particle instrument COSIMA - COmetary Secondary Ion Mass Analyser - on board ESA’s ROSETTA mission is collecting and analyzing dust particles in the inner coma of Jupiter-family comet 67P/Churyumov-Gerasimenko.

  4. Airborne and ground-based measurements of the trace gases and particles emitted from prescribed fires in the United States

    SciTech Connect

    Burling, Ian; Yokelson, Robert J.; Akagi, Sheryl; Urbanski, Shawn; Wold, Cyle E.; Griffith, David WT; Johnson, Timothy J.; Reardon, James; Weise, David

    2011-12-07

    We measured the emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous suggestions that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured the emissions in the convective smoke plume from our airborne platform at the same time the unlofted residual smoldering combustion emissions were measured with our ground-based platform after the flame front passed through. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including significant 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts of smoke that disperses at ground level, and we show that the normally-ignored unlofted emissions can also significantly impact estimates of total emissions. Preliminary evidence of large emissions of monoterpenes was seen in the residual smoldering spectra, but we have not yet quantified these emissions. These data should lead to an improved capacity to model the impacts of biomass burning in similar

  5. Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States

    NASA Astrophysics Data System (ADS)

    Burling, I. R.; Yokelson, R. J.; Akagi, S. K.; Urbanski, S. P.; Wold, C. E.; Griffith, D. W. T.; Johnson, T. J.; Reardon, J.; Weise, D. R.

    2011-12-01

    We have measured emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as conifer forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps to close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous observations that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured both the emissions in the convective smoke plume from our airborne platform and the unlofted residual smoldering combustion emissions with our ground-based platform. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including high 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts for smoke that disperses at ground level. We also show that the often ignored unlofted emissions can significantly impact estimates of total emissions. Preliminary evidence suggests large emissions of monoterpenes in the residual smoldering smoke. These data should lead to an improved capacity to model the impacts of biomass burning in similar temperate ecosystems.

  6. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  7. Exposure to airborne particles and volatile organic compounds from polyurethane molding, spray painting, lacquering, and gluing in a workshop.

    PubMed

    Mølgaard, Bjarke; Viitanen, Anna-Kaisa; Kangas, Anneli; Huhtiniemi, Marika; Larsen, Søren Thor; Vanhala, Esa; Hussein, Tareq; Boor, Brandon E; Hämeri, Kaarle; Koivisto, Antti Joonas

    2015-04-02

    Due to the health risk related to occupational air pollution exposure, we assessed concentrations and identified sources of particles and volatile organic compounds (VOCs) in a handcraft workshop producing fishing lures. The work processes in the site included polyurethane molding, spray painting, lacquering, and gluing. We measured total VOC (TVOC) concentrations and particle size distributions at three locations representing the various phases of the manufacturing and assembly process. The mean working-hour TVOC concentrations in three locations studied were 41, 37, and 24 ppm according to photo-ionization detector measurements. The mean working-hour particle number concentration varied between locations from 3000 to 36,000 cm-3. Analysis of temporal and spatial variations of TVOC concentrations revealed that there were at least four substantial VOC sources: spray gluing, mold-release agent spraying, continuous evaporation from various lacquer and paint containers, and either spray painting or lacquering (probably both). The mold-release agent spray was indirectly also a major source of ultrafine particles. The workers' exposure can be reduced by improving the local exhaust ventilation at the known sources and by increasing the ventilation rate in the area with the continuous source.

  8. TRENDS OF POLYCYCLIC AROMATIC HYDROCARBON LEVELS AND MUTAGENICITY IN SANTIAGO'S INHALABLE AIRBORNE PARTICLES IN THE PERIOD 1992-1996.

    EPA Science Inventory

    Abstract

    Trends of polycyclic aromatic hydrocarbons (PAHs) for 1992-1996 (cold season) and their mutagenic activity were investigated in organic extracts from the Santiago. Chile. inhalable particles (PM10). The highest PAH concentrations were observed in 1992 and decline...

  9. Exposure to Airborne Particles and Volatile Organic Compounds from Polyurethane Molding, Spray Painting, Lacquering, and Gluing in a Workshop

    PubMed Central

    Mølgaard, Bjarke; Viitanen, Anna-Kaisa; Kangas, Anneli; Huhtiniemi, Marika; Larsen, Søren Thor; Vanhala, Esa; Hussein, Tareq; Boor, Brandon E.; Hämeri, Kaarle; Koivisto, Antti Joonas

    2015-01-01

    Due to the health risk related to occupational air pollution exposure, we assessed concentrations and identified sources of particles and volatile organic compounds (VOCs) in a handcraft workshop producing fishing lures. The work processes in the site included polyurethane molding, spray painting, lacquering, and gluing. We measured total VOC (TVOC) concentrations and particle size distributions at three locations representing the various phases of the manufacturing and assembly process. The mean working-hour TVOC concentrations in three locations studied were 41, 37, and 24 ppm according to photo-ionization detector measurements. The mean working-hour particle number concentration varied between locations from 3000 to 36,000 cm−3. Analysis of temporal and spatial variations of TVOC concentrations revealed that there were at least four substantial VOC sources: spray gluing, mold-release agent spraying, continuous evaporation from various lacquer and paint containers, and either spray painting or lacquering (probably both). The mold-release agent spray was indirectly also a major source of ultrafine particles. The workers’ exposure can be reduced by improving the local exhaust ventilation at the known sources and by increasing the ventilation rate in the area with the continuous source. PMID:25849539

  10. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  11. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  12. The development and the tests of the electrostatic probe for dust particle collection in thermonuclear reactors

    NASA Astrophysics Data System (ADS)

    Begrambekov, L. B.; Voityuk, A. N.; Zakharov, A. M.

    2016-09-01

    Formation of dust particles in thermonuclear reactors can greatly affect the plasma parameters and lead to accumulation of tritium. The rates of formation and deposition of dust need to be measured, and the parameters of formation of dust particles and clusters need to be studied. A model of a device for collection of fine conductive particles capable of removing them from the reactor chamber for future research is proposed in this paper. The dust collector's operation is based on a principle of applied electrostatic field. The model was tested in different operating conditions: in vacuum, at the atmospheric pressure in the atmosphere of air and dry nitrogen. The experiments were conducted with a stationary system and with the dust collector in motion relative to the dusty surface. It is shown that, during the probe moving relative to the surface, it can remove up to 95% of fine tungsten particles with sizes ranging from 1 to 10 μm.

  13. Regression modeling of particle size distributions in urban storm water: advancements through improved sample collection methods

    USGS Publications Warehouse

    Fienen, Michael N.; Selbig, William R.

    2012-01-01

    A new sample collection system was developed to improve the representation of sediment entrained in urban storm water by integrating water quality samples from the entire water column. The depth-integrated sampler arm (DISA) was able to mitigate sediment stratification bias in storm water, thereby improving the characterization of suspended-sediment concentration and particle size distribution at three independent study locations. Use of the DISA decreased variability, which improved statistical regression to predict particle size distribution using surrogate environmental parameters, such as precipitation depth and intensity. The performance of this statistical modeling technique was compared to results using traditional fixed-point sampling methods and was found to perform better. When environmental parameters can be used to predict particle size distributions, environmental managers have more options when characterizing concentrations, loads, and particle size distributions in urban runoff.

  14. Genotoxicity of Polycyclic Aromatic Hydrocarbons and Nitro-Derived in Respirable Airborne Particulate Matter Collected from Urban Areas of Rio de Janeiro (Brazil)

    PubMed Central

    Ramos de Rainho, Claudia; Machado Corrêa, Sérgio; Luiz Mazzei, José; Alessandra Fortes Aiub, Claudia

    2013-01-01

    Air pollution toxic effects are mainly attributed to small inhalable particulates with an aerodynamic diameter of less than 2.5 µm (PM 2.5). Our objective was to investigate mutagenic and clastogenic activity in PM samples collected in Rio de Janeiro. Samples were collected using a high-volume sampler at three sites: with low traffic and (2) and (3) with a heavy traffic. Six polycyclic aromatic hydrocarbons (PAHs) were quantified by gas chromatography/mass spectrometry (GC/MS). Salmonella typhimurium TA98 and the derivative strains YG1021 and YG1024 were used in mutagenicity assays in the presence of organic extracts (10–50 µg/ plate) with and without exogenous metabolization. Allium cepa test was performed to evaluate possible cytotoxic and clastogenic activities. The highest PM 2.5 µm (132.73 µm/m3) and PAH values (1.22 ng/m3 for benzo(a)pyrene) were detected at site 3. High mutagenic frameshift responses in absence and presence of metabolic activation were detected at site 3. The participation of nitroarenes and dinitroarenes was detected in the total mutagenicity of the extracts studied. The cytotoxic effect and the abnormalities detected by Allium cepa test can be attributed to the PAH nitroderivatives in the organic extracts. Evaluation of the genotoxicity of urban airborne particulate matter is important as a basis for decision making by regulatory authorities. PMID:23738331

  15. Genotoxicity of polycyclic aromatic hydrocarbons and nitro-derived in respirable airborne particulate matter collected from urban areas of Rio de Janeiro (Brazil).

    PubMed

    Ramos de Rainho, Claudia; Machado Corrêa, Sérgio; Luiz Mazzei, José; Alessandra Fortes Aiub, Claudia; Felzenszwalb, Israel

    2013-01-01

    Air pollution toxic effects are mainly attributed to small inhalable particulates with an aerodynamic diameter of less than 2.5 µ m (PM 2.5). Our objective was to investigate mutagenic and clastogenic activity in PM samples collected in Rio de Janeiro. Samples were collected using a high-volume sampler at three sites: with low traffic and (2) and (3) with a heavy traffic. Six polycyclic aromatic hydrocarbons (PAHs) were quantified by gas chromatography/mass spectrometry (GC/MS). Salmonella typhimurium TA98 and the derivative strains YG1021 and YG1024 were used in mutagenicity assays in the presence of organic extracts (10-50 µ g/ plate) with and without exogenous metabolization. Allium cepa test was performed to evaluate possible cytotoxic and clastogenic activities. The highest PM 2.5 µ m (132.73 µ m/m(3)) and PAH values (1.22 ng/m(3) for benzo(a)pyrene) were detected at site 3. High mutagenic frameshift responses in absence and presence of metabolic activation were detected at site 3. The participation of nitroarenes and dinitroarenes was detected in the total mutagenicity of the extracts studied. The cytotoxic effect and the abnormalities detected by Allium cepa test can be attributed to the PAH nitroderivatives in the organic extracts. Evaluation of the genotoxicity of urban airborne particulate matter is important as a basis for decision making by regulatory authorities. PMID:23738331

  16. The fate of airborne polycyclic organic matter.

    PubMed Central

    Nielsen, T; Ramdahl, T; Bjørseth, A

    1983-01-01

    Biological tests have shown that a significant part of the mutagenicity of organic extracts of collected airborne particulate matter is not due to polycyclic aromatic hydrocarbons (PAH). It is possible that part of these unknown compounds are transformation products of PAH. This survey focuses on the reaction of PAH in the atmosphere with other copollutants, such as nitrogen oxides, sulfur oxides, ozone and free radicals and their reaction products. Photochemically induced reactions of PAH are also included. The reactivity of particle-associated PAH is discussed in relation to the chemical composition and the physical properties of the carrier. Recommendations for future work are given. PMID:6825615

  17. An Atlas of extraterrestrial particles collected with NASA U-2 aircraft, 1974 - 1976

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Tomandl, D.; Blanchard, M. B.; Ferry, G. V.; Kyte, F.

    1976-01-01

    Extraterrestrial particles collected during U-2 flights in the stratosphere were divided into four groups: chondritic, iron-sulfur--nickel, mafic silicates, and others. The chondritic aggregates are typically composed of Fe, Mg, Si, C, S, Ca, and Ni. Detectable levels of He-4 implanted from the solar wind occur in some. Olivine, spinel, and possibly pyrrhotite and a hydrated layered-lattice silicate were identified. The chondritic ablation particles contain no sulfur and appear to have been melted. Magnetite, olivine, and pyroxene were identified. The iron-sulfur-nickel type particles resemble meteoritic iron sulfide with a small amount of nickel, and contain magnetite and troilite. The mafic silicate type particles are iron magnesium silicate grains with clumps of chondritic aggregate particles adhering to their surfaces. Olivine and possibly pyrrhotite and pyroxene were identified. Most of the iron-nickel type particles are spherules and include taenite and wustite. The other type particles include nickel-iron mounds on spheroidal glassy-like grains having chondritic-like elemental abundances.

  18. Airborne cw Doppler lidar (ADOLAR)

    NASA Astrophysics Data System (ADS)

    Rahm, Stefan; Werner, Christian; Nagel, E.; Herrmann, H.; Klier, M.; Knott, H. P.; Haering, R.; Wildgruber, J.

    1994-12-01

    During the last 10 years the DLR container LDA (Laser Doppler Anemometer) was used for many wind related measurements in the atmospheric boundary layer. The experience out of this were used to construct an airborne Doppler lidar ADOLAR. Based on the available Doppler lidars it is now proposed to perform a campaign to demonstrate the concept of the spaceborne sensor ALADIN, and to answer some questions concerning the signal quality from clouds, water and land. For the continuous wave CO2 laser, the energy is focused by the telescope into the region of investigation. Some of the radiation is back scattered by small aerosol particles drifting with the wind speed through the sensing volume. The back scattered radiation is collected by the telescope and detected by coherent technique. With the laser Doppler method one gets the radial wind component. To determine the magnitude and direction of the horizontal wind, some form of scanning in azimuth and elevation is required. To keep the airborne system compact, the transceiver optics is directly coupled to a wedge scanner which provides the conical scan with the axis in Nadir direction from the aircraft. The system ADOLAR was tested in 1994. Results of the flight over the lake Ammersee are presented and are compared with the data of the inertial reference system of the aircraft.

  19. DUSTER: collection of meteoric CaO and carbon smoke particles in the upper stratosphere .

    NASA Astrophysics Data System (ADS)

    Della Corte, V.; Rietmeijer, F. J. M.; Rotundi, A.; Ferrari, M.; Palumbo, P.

    Nanometer- to micrometer-size particles present in the upper stratosphere are a mixture of terrestrial and extra-terrestrial origins. They can be extraterrestrial particles condensed after meteor ablation. Meteoric dust in bolides is occasionally deposited into the lower stratosphere around 20 km altitude. Nanometer CaO and pure carbon smoke particles were collected at 38 km altitude in the upper stratosphere in the Arctic during June 2008 using DUSTER (Dust in the Upper Stratosphere Tracking Experiment and Retrieval), a balloon-borne instrument for the non-destructive collection of solid particles between 200 nm to 40 microns. We report the collection of micron sized CaCO_3 (calcite) grains. Their morphologies show evidence of melting and condensation after vaporization suggest at temperatures of approximately 3500 K. The formation environment of the collected grains was probably a dense dust cloud formed by the disintegration of a carbonaceous meteoroid during deceleration in the Earth� atmosphere. For the first time, DUSTER collected meteor ablation products that were presumably associated with the disintegration of a bolide crossing the Earth's atmosphere. The collected mostly CaO and pure carbon nanoparticles from the debris cloud of a fireball, included: 1) intact fragments; 2) quenched melted grains; and 3) vapor phase condensation products. The DUSTER project was funded by the Italian Space Agency (ASI), PRIN2008/MIUR (Ministero dell'Istruzione dell'Universitá e della Ricerca), PNRA 2013(Piano Nazionale Ricerca Antartide). CNES graciously provided this flight opportunity. We thank E. Zona and S. Inarta at the Laboratorio di Fisica Cosmica INAF, Osservatorio Astronomico di Capodimonte-Universitá di Napoli Parthenope. F.J.M.R. was supported by grant NNX07AI39G from the NASA Cosmochemistry Program. We thank three anonymous reviewers who assisted us in introducing our new instrument.

  20. Real-time detection and characterization of individual flowing airborne biological particles: fluorescence spectra and elastic scattering measurements

    NASA Astrophysics Data System (ADS)

    Pan, Yongle; Holler, Stephen; Chang, Richard K.; Hill, Steven C.; Pinnick, Ronald G.; Niles, Stanley; Bottiger, Jerold R.; Bronk, Burt V.

    1999-11-01

    Real-time methods which is reagentless and could detect and partially characterize bioaerosols are of current interest. We present a technique for real-time measurement of UV-excited fluorescence spectra and two-dimensional angular optical scattering (TAOS) from individual flowing biological aerosol particles. The fluorescence spectra have been observed from more than 20 samples including Bacillus subtilis, Escherichia coli, Erwinia herbicola, allergens, dust, and smoke. The S/N and resolution of the spectra are sufficient for observing small lineshape differences among the same type of bioaerosol prepared under different conditions. The additional information from TAOS regarding particle size, shape, and granularity has the potential of aiding in distinguishing bacterial aerosols from other aerosols, such as diesel and cigarette smoke.

  1. Plume particle collection and sizing from static firing of solid rocket motors

    NASA Technical Reports Server (NTRS)

    Sambamurthi, Jay K.

    1995-01-01

    A unique dart system has been designed and built at the NASA Marshall Space Flight Center to collect aluminum oxide plume particles from the plumes of large scale solid rocket motors, such as the space shuttle RSRM. The capability of this system to collect clean samples from both the vertically fired MNASA (18.3% scaled version of the RSRM) motors and the horizontally fired RSRM motor has been demonstrated. The particle mass averaged diameters, d43, measured from the samples for the different motors, ranged from 8 to 11 mu m and were independent of the dart collection surface and the motor burn time. The measured results agreed well with those calculated using the industry standard Hermsen's correlation within the standard deviation of the correlation . For each of the samples analyzed from both MNASA and RSRM motors, the distribution of the cumulative mass fraction of the plume oxide particles as a function of the particle diameter was best described by a monomodal log-normal distribution with a standard deviation of 0.13 - 0.15. This distribution agreed well with the theoretical prediction by Salita using the OD3P code for the RSRM motor at the nozzle exit plane.

  2. Single-particle characterization of soil samples collected at various arid areas of China, using low-Z particle electron probe X-ray microanalysis☆

    NASA Astrophysics Data System (ADS)

    Kim, HyeKyeong; Hwang, HeeJin; Ro, Chul-Un

    2006-04-01

    Individual soil particles collected at arid areas of China are analyzed using a single particle analytical technique, named low- Z particle electron probe X-ray microanalysis (EPMA). The major chemical species encountered in soil samples are SiO 2, aluminosilicates, CaCO 3, Fe-containing particles, and carbonaceous particles. Aluminosilicate particles are the most abundant in soil samples, followed by SiO 2 particles. For soil samples collected at Loess plateau nearby the Yellow river, aluminosilicate and CaCO 3 species are more abundantly observed than for soil samples collected at the Tengger and the Hungshandake deserts. Whereas, sand desert soils have higher content of SiO 2 than loess soils. In this work, using the low- Z particle EPMA, it is clearly demonstrated that the relative abundances of each chemical species significantly vary among soil samples. The frequencies to encounter aluminosilicates and the contents of minor elements in aluminosilicate-containing particles are different between soil samples. Also, the contents of calcite, dolomite, and Fe-containing particles vary from sample to sample. This kind of detailed information on chemical composition of source soils could be useful for the identification of the source region of mineral particles in aerosol samples and in the research of chemical modification of Asian Dust particles during long-range transport.

  3. Individual particle analysis of aerosols collected at Lhasa City in the Tibetan Plateau.

    PubMed

    Duo, Bu; Zhang, Yunchen; Kong, Lingdong; Fu, Hongbo; Hu, Yunjie; Chen, Jianmin; Li, Lin; Qiong, A

    2015-03-01

    To understand the composition and major sources of aerosol particles in Lhasa City on the Tibetan Plateau (TP), individual particles were collected from 2 February to 8 March, 2013 in Tibet University. The mean concentrations of both PM2.5 and PM10 during the sampling were 25.7±21.7 and 57.2±46.7 μg/m3, respectively, much lower than those of other cities in East and South Asia, but higher than those in the remote region in TP like Nam Co, indicating minor urban pollution. Combining the observations with the meteorological parameters and back trajectory analysis, it was concluded that local sources controlled the pollution during the sampling. Transmission electron microscopy (TEM) combined with energy-dispersive X-ray spectra (EDS) was used to study 408 particles sampled on four days. Based on the EDS analysis, a total of 8 different particle categories were classified for all 408 particles, including Si-rich, Ca-rich, soot, K-rich, Fe-rich, Pb-rich, Al-rich and other particles. The dominant elements were Si, Al and Ca, which were mainly attributed to mineral dust in the earth's crust such as feldspar and clay. Fe-, Pb-, K-, Al-rich particles and soot mainly originated from anthropogenic sources like firework combustion and biomass burning during the sampling. During the sampling, the pollution mainly came from mineral dust, while the celebration ceremony and religious ritual produced a large quantity of anthropogenic metal-bearing particles on 9 and 25 February 2013. Cement particles also had a minor influence. The data obtained in this study can be useful for developing pollution control strategies.

  4. Individual particle analysis of aerosols collected at Lhasa City in the Tibetan Plateau.

    PubMed

    Duo, Bu; Zhang, Yunchen; Kong, Lingdong; Fu, Hongbo; Hu, Yunjie; Chen, Jianmin; Li, Lin; Qiong, A

    2015-03-01

    To understand the composition and major sources of aerosol particles in Lhasa City on the Tibetan Plateau (TP), individual particles were collected from 2 February to 8 March, 2013 in Tibet University. The mean concentrations of both PM2.5 and PM10 during the sampling were 25.7±21.7 and 57.2±46.7 μg/m3, respectively, much lower than those of other cities in East and South Asia, but higher than those in the remote region in TP like Nam Co, indicating minor urban pollution. Combining the observations with the meteorological parameters and back trajectory analysis, it was concluded that local sources controlled the pollution during the sampling. Transmission electron microscopy (TEM) combined with energy-dispersive X-ray spectra (EDS) was used to study 408 particles sampled on four days. Based on the EDS analysis, a total of 8 different particle categories were classified for all 408 particles, including Si-rich, Ca-rich, soot, K-rich, Fe-rich, Pb-rich, Al-rich and other particles. The dominant elements were Si, Al and Ca, which were mainly attributed to mineral dust in the earth's crust such as feldspar and clay. Fe-, Pb-, K-, Al-rich particles and soot mainly originated from anthropogenic sources like firework combustion and biomass burning during the sampling. During the sampling, the pollution mainly came from mineral dust, while the celebration ceremony and religious ritual produced a large quantity of anthropogenic metal-bearing particles on 9 and 25 February 2013. Cement particles also had a minor influence. The data obtained in this study can be useful for developing pollution control strategies. PMID:25766026

  5. Elemental composition of airborne particulates in uranium mining and milling operations

    SciTech Connect

    Paschoa, A.S.; Wrenn, M.E.; Jones, K.W.; Cholewa, M.; Carvalho, S.M.

    1984-01-01

    Airborne particulates were collected through filters in occupational areas of the uranium mining and milling complex located in Pocos de Caldas, Brazil. The filters were analyzed by microPIXE (particle induced x-ray emission) combined with Rutherford Backscattering (RBS) of the incident protons. The results are discussed in the paper. 4 references, 6 figures, 1 table.

  6. Collection and curation of interplanetary dust particles recovered from the stratosphere

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Warren, Jack L.

    1994-01-01

    Since May 1981, the National Aeronautics and Space Administration (NASA) has used aircraft to collect interplanetary dust particles (IDP's) from Earth's stratosphere. Specially designed dust collectors are prepared for flight and processed after flight in an ultraclean (Class-100) laboratory constructed for this purpose at the Lyndon B. Johnson Space Center (JSC) in Houston, Texas. Particles are individually retrieved from the collectors, examined, and cataloged, and then made available to the scientific community for research. Interplanetary dust thereby joins lunar samples and Antarctic meteorites as a critical extraterrestrial material being curated at JSC.

  7. Wave-vector dispersion versus angular-momentum dispersion of collective modes in small metal particles

    NASA Astrophysics Data System (ADS)

    Ekardt, W.

    1987-09-01

    The wave-vector dispersion of collective modes in small particles is investigated within the time-dependent local-density approximation as applied to a self-consistent jellium particle. It is shown that the dispersion of the volume plasmons can be understood from that in an infinite electron gas. For a given multipole an optimum wave vector exists for the quasiresonant excitation of the volume mode but not for the surface mode. It is pointed out that-for the volume modes-the hydrodynamic approximation gives a reasonable first guess for the relation between frequencies and size-quantized wave vectors.

  8. Characterization of exhaled breath particles collected by an electret filter technique.

    PubMed

    Tinglev, Åsa Danielsson; Ullah, Shahid; Ljungkvist, Göran; Viklund, Emilia; Olin, Anna-Carin; Beck, Olof

    2016-06-01

    Aerosol particles that are present in exhaled breath carry nonvolatile components and have gained interest as a specimen for potential biomarkers. Nonvolatile compounds detected in exhaled breath include both endogenous and exogenous compounds. The aim of this study was to study particles collected with a new, simple and convenient filter technique. Samples of breath were collected from healthy volunteers from approximately 30 l of exhaled air. Particles were counted with an optical particle counter and two phosphatidylcholines were measured by liquid chromatography-tandem mass spectrometry. In addition, phosphatidylcholines and methadone was analysed in breath from patients in treatment with methadone and oral fluid was collected with the Quantisal device. The results demonstrated that the majority of particles are  <1 μm in size and that the fraction of larger particle contributes most to the total mass. The phosphatidylcholine PC(16 : 0/16 : 0) dominated over PC(16 : 0/18 : 1) and represented a major constituent of the particles. The concentration of the PC(16 : 0/16 : 0) homolog was significantly correlated (p  <  0.001) with total mass. From the low concentration of the two phosphatidylcholines and their relative abundance in oral fluid a major contribution from the oral cavity could be ruled out. The concentration of PC(16 : 0/16 : 0) in breath was positively correlated with age (p  <  0.01). An attempt to use PC(16 : 0/16 : 0) as a sample size indicator for methadone was not successful, as the large intra-individual variability between samplings even increased after normalization. In conclusion, it was demonstrated that exhaled breath sampled with the filter device represents a specimen corresponding to surfactant. The possible use of PC(16 : 0/16 : 0) as a sample size indicator was supported and deserves further investigations. We propose that the direct and selective collection of the breath aerosol particles is a promising strategy

  9. Size fractionation in mercury-bearing airborne particles (HgPM 10) at Almadén, Spain: Implications for inhalation hazards around old mines

    NASA Astrophysics Data System (ADS)

    Moreno, Teresa; Higueras, Pablo; Jones, Tim; McDonald, Iain; Gibbons, Wes

    Almadén has a >2000y mining history and an unprecedented legacy of mercury contamination. Resuspended airborne particles were extracted from mine waste (Las Cuevas), retort site soil (Almadenejos), and urban car park dust (Almadén), separated into fine (PM 10) and coarse (PM >10 μm ) fractions, analysed for mercury using ICP-MS, and individual HgPM characterised using SEM. Cold extractable mercury concentrations in PM 10 range from 100 to 150 μg g -1 (car parks), to nearly 6000 μg g -1 (mine waste), reaching a world record of 95,000 μg g -1 above the abandoned retort at Almadenejos where ultrafine HgPM have pervaded the brickwork and soil and entered the food chain: edible wild asparagus stem material from here contains 35-65 μg g -1 Hg, and pig hair from animals living, inhaling and ingesting HgPM 10 at the site yielded 8-10 μg g -1. The PM 10 fraction (dusts easily wind transported and deeply inhaled) contains much more mercury than the coarser fraction. The contribution of HgPM 10 to ecosystem contamination and potential human health effects around old mercury mines has been underestimated.

  10. Collection and analysis of colloidal particles transported in the Mississippi River, U.S.A.

    USGS Publications Warehouse

    Rees, T.F.; Ranville, J.F.

    1990-01-01

    Sediment transport has long been recognized as an important mechanism for the transport of contaminants in surface waters. Suspended sediment has traditionally been divided into three size classes: sand-sized (>63 ??m), silt-sized ( 63 ??m), silt-sized (< 63 ??m but settleable) and clay-sized (non-settleable). The first two classes are easily collected and characterized using screens (sand) and settling (silt). The clay-sized particles, more properly called colloids, are more difficult to collect and characterize, and until recently received little attention. From the hydrologic perspective, a colloid is a particle, droplet, or gas bubble with at least one dimension between 0.001 and 1 ??m. Because of their small size, colloids have large specific surface areas and high surface free energies which may facilitate sorption of hydrophobic materials. Understanding what types of colloids are present in a system, how contaminants of interest interact with these colloids, and what parameters control the transport of colloids in natural systems is critical if the relative importance of colloid-mediated transport is to be understood. This paper describes the collection, concentration and characterization of colloidal materials in the Mississippi River. Colloid concentrations, particle-size distributions, mineral composition and electrophoretic mobilities were determined. Techniques used are illustrated with samples collected at St. Louis, Missouri, U.S.A.

  11. Single-particle characterization of atmospheric aerosols collected at Gosan, Korea, during the Asian Pacific Regional Aerosol Characterization Experiment field campaign using low-Z (atomic number) particle electron probe X-ray microanalysis.

    PubMed

    Geng, Hong; Cheng, Fangqin; Ro, Chul-Un

    2011-11-01

    A quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), namely low-Z (atomic number) particle EPMA, was used to characterize the chemical compositions of the individual aerosol particles collected at the Gosan supersite, Jeju Island, Korea, as a part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). On 4-10 April 2001 just before a severe dust storm arrived, seven sets of aerosol samples were obtained by a seven-stage May cascade impactor with a flow rate of 20 L/min. Overall 11,200 particles on stages 1-6 with cutoff diameters of 16, 8, 4, 2, 1, and 0.5 microm, respectively, were examined and classified based on their secondary electron images and X-ray spectra. In general, sea salt particles were the most frequently encountered, followed by mineral dust, organic carbon (OC)-like, (NH4)2SO4/NH4HSO4-containing, elemental carbon (EC)-like, Fe-rich, and K-rich particles. Sea salt and mineral dust particles had a higher relative abundance on stages 1-5, whereas OC-like, (NH4)2SO4/NH4HSO4-containing, Fe-rich, and K-rich particles were relatively abundant on stage 6. The analysis on relative number abundances of various particle types combined with 72-hr backward air mass trajectories indicated that a lot of reacted sea salt and reacted mineral dust (with airborne NOx and SO2 or their acidic products) and OC-like particles were carried by the air masses passing over the Yellow Sea (for sample "10 April") and many NH4HSO4/ (NH4)2SO4-containing particles were carried by the air masses passing over the Sea of Japan and Korea Strait (for samples "4-9 April"). It was concluded that the atmosphere over Jeju Island was influenced by anthropogenic SO2 and NOx, organic compounds, and secondary aerosols when Asian dust was absent.

  12. Airborne studies of emissions from savanna fires in southern Africa. 1. Aerosol emissions measured with a laser optical particle counter

    NASA Astrophysics Data System (ADS)

    Le Canut, P.; Andreae, M. O.; Harris, G. W.; Wienhold, F. G.; Zenker, T.

    1996-10-01

    During the SAFARI-92 experiment (Southern Africa Fire Atmosphere Research Initiative, September-October 1992), we flew an instrumented DC-3 aircraft through plumes from fires in various southern African savanna ecosystems. Some fires had been managed purposely for scientific study (e.g., those in Kruger National Park, South Africa), while the others were "fires of opportunity" which are abundant during the burning season in southern Africa. We obtained the aerosol (0.1-3.0 μm diameter) number and mass emission ratios relative to carbon monoxide and carbon dioxide from 21 individual fires. The average particle number emission ratio ΔN/ΔCO (Δ: concentrations in plume minus background concentrations) varied between 14 ± 2 cm-3 ppb-1 for grasslands and 23 ± 7 cm-3 ppb-1 for savannas. An exceptionally high value of 43 ± 4 cm-3 ppb-1 was measured for a sugarcane fire. Similarly, the mass emission ratio ΔM/ΔCO varied from 36 ± 6 ng m-3 ppb-1 to 83 ± 45 ng m-3 ppb-1, respectively, with again an exceptionally high value of 124 ± 14 ng m-3 ppb-1 for the sugarcane fire. The number and mass emission ratios relative to CO depended strongly upon the fire intensity. Whereas the emission ratios varied greatly from one fire to the other, the aerosol number and volume distributions as a function of particle size were very consistent. The average background aerosol size distribution was characterized by three mass modes (0.2-0.4 μm, ≈1.0 μm, and ≈2.0 μm diameter). On the other hand, the aerosol size distribution in the smoke plumes showed only two mass modes, one centered in the interval 0.2-0.3 μm and the other above 2 μm diameter. From our mean emission factor (4 ± 1 g kg-1 dm) we estimate that savanna fires release some 11-18 Tg aerosol particles in the size range 0.1-3.0 μm annually, a somewhat lower amount than emitted from tropical forest fires. Worldwide, savanna fires emit some 3-8 × 1027 particles (in the same size range) annually, which is expected

  13. In vitro evaluation of pulmonary deposition of airborne volcanic ash

    NASA Astrophysics Data System (ADS)

    Lähde, Anna; Sæunn Gudmundsdottir, Sigurbjörg; Joutsensaari, Jorma; Tapper, Unto; Ruusunen, Jarno; Ihalainen, Mika; Karhunen, Tommi; Torvela, Tiina; Jokiniemi, Jorma; Järvinen, Kristiina; Gíslason, Sigurður Reynir; Briem, Haraldur; Gizurarson, Sveinbjörn

    2013-05-01

    There has been an increasing interest in the effects of volcanic eruption on the environment, climate, and health following two recent volcanic eruptions in Iceland. Although health issues are mainly focused on subjects living close to the eruption due to the high concentration of airborne ash and gasses in close vicinity to the volcanoes, the ash may also reach high altitude and get distributed thousands of kilometers away from the volcano. Ash particles used in the studies were collected at the Eyjafjallajökull and Grímsvötn eruption sites. The composition, size, density and morphology of the particles were analyzed and the effect of particle properties on the re-dispersion and lung deposition were studied. The aerodynamic size and morphology of the particles were consistent with field measurement results obtained during the eruptions. Due to their size and structure, the ash particles can be re-suspended and transported into the lungs. The total surface area of submicron ash particles deposited into the alveolar and tracheobronchial regions of the lungs were 3-9% and 1-2%, respectively. Although the main fraction of the surface area is deposited in the head airways region, a significant amount of particles can deposit into the alveolar and tracheobronchial regions. The results indicate that a substantial increase in the concentration of respirable airborne ash particles and associated health hazard can take place if the deposited ash particles are re-suspended under dry, windy conditions or by outdoor human activity.

  14. The complementarity of PIXE and PIGE techniques: A case study of size segregated airborne particulates collected from a Nigeria city.

    PubMed

    Ezeh, G C; Obioh, I B; Asubiojo, O I; Chiari, M; Nava, S; Calzolai, G; Lucarelli, F; Nuviadenu, C

    2015-09-01

    The Proton Induced X-ray Emission (PIXE) technique is a reliable ion beam analytical tool for the characterization of thin aerosol samples, but it can underestimate the lightest measurable elements (such as Na, Mg, Al and Si) owing to the absorption of their X-rays inside the sample. The Proton Induced Gamma-ray Emission (PIGE) technique could be employed as avalid means to determine corrections for such an effect. Hence, in this study, Fine (PM(2.5)) and Coarse (PM(10-2.5)) particulate matter samples collected at Ikeja, Lagos-Nigeria, using a double staged 'Gent' stacked sampler were analyzed for their elemental concentrations using an external beam set-up for simultaneous PIXE and PIGE measurements. The measured PIXE concentrations as well as the PIGE correction factors for Na and Al detected in the PM(10-2.5) samples (collected on polycarbonate Nuclepore membranes) are reported. The concentrations of 24 elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb, Sr, Zr, Cs and Pb) detected in both fractions were displayed, discussed and likely sources of these elements were also identified.

  15. Analysis of volatiles present in interplanetary dust and stratospheric particles collected on large area collectors

    NASA Technical Reports Server (NTRS)

    Hartmetz, C. P.; Gibson, E. K., Jr.; Blanford, G. E.

    1991-01-01

    Results are presented from an analysis of six chondritic interplanetary dust particles (IDPs) and 22 other stratospheric particles collected on large-area collector, carried out in order to obtain information on the nature, distribution, and form of volatiles in IDPs. A laser microprobe/mass spectrometer (LMMS) was used to extract volatile elements and molecules from particles larger than 10 microns, and an improved hexane rinsing technique was developed for the removal of contaminants. Results show that, because of contamination from silicone oil, freon, and hexane, most of the LMMS signal from IDPs can be interpreted as arising from contamination. Therefore, a species was not considered indigenous unless the signal was an order of magnitude greater in abundance than that released from a pure contaminant coated on gold.

  16. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms

    PubMed Central

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-01-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration. PMID:26522006

  17. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms

    NASA Astrophysics Data System (ADS)

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-11-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration.

  18. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms.

    PubMed

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-01-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration.

  19. High volume electrostatic field-sampler for collection of fine particle bulk samples

    NASA Astrophysics Data System (ADS)

    Kumar Sharma, Anoop; Wallin, Håkan; Alstrup Jensen, Keld

    A high volume electrostatic field-sampler was developed for collection of fine particles, which easily can be recovered for subsequent sample characterisation and bioassays. The sampler was based on a commercial office air cleaner and consisted of a prefilter followed by electrostatic collection plates operating at 2.7 kV. The sampler performance was characterised for 26 nm to 5.4 μm-size particles in urban street air. The collection efficiency reached a maximum (60-70%) between 0.2 and 0.8 μm and dropped to ˜25% at 30 nm and 2.5 μm, respectively. After extraction in water, the particle loss was<2%. The extraction efficiency for dry lyophilised particulate matter was above 80%, allowing retrievement of ˜12 mg day -1 in urban street air at PM 10 levels of ˜24 μg m -3. The ozone generating capacity of the corona discharge during operation was on the order of 10 ppb. A polycyclic aromatic hydrocarbons (PAH) degradation test using benzo[a]pyrene as a model showed that ˜85% was degraded after 24 h. However, similar results were observed when the corona discharge was switched off. Hence, the ozone and other corona discharge reactants do not appear to contribute considerably to PAH-degradation. The overall results show that the sampler type is a promising alternative to traditional sampling of fine particles for bulk analysis and bioassays. The main advantages are simple operation, high stability, high quantifiable particle recovery rates and low cost.

  20. Study on size distributions of airborne particles by aircraft observation in spring over eastern coastal areas of China

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Liu, Hongjie; Yue, Xin; Li, Hong; Chen, Jianhua; Tang, Dagang

    2005-06-01

    The authors studied the size distributions of particles at an altitude of 2000 m by aircraft observation over eastern costal areas of China from Zhuhai, Guangdong to Dalian, Liaoning (0.47 30 μm, 57 channels, including number concentration distribution, surface area concentration distribution and mass concentration distribution). In these cities, the average daily concentrations of PM10 are very high. They are among the most heavily polluted cities in China. The main pollution sources are anthropogenic activities such as wood, coal and oil burning. The observed size distributions show a broad spectrum and unique multi-peak characteristics, indicating no significant impacts of individual sources from urban areas. These results are far different from the distribution type at ground level. It may reflect the comprehensive effect of the regional pollution characteristics. Monitoring results over big cities could to some extent reflect their pollution characteristics.

  1. Plume Particle Collection and Sizing from Static Firing of Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Sambamurthi, Jay K.

    1995-01-01

    Thermal radiation from the plume of any solid rocket motor, containing aluminum as one of the propellant ingredients, is mainly from the microscopic, hot aluminum oxide particles in the plume. The plume radiation to the base components of the flight vehicle is primarily determined by the plume flowfield properties, the size distribution of the plume particles, and their optical properties. The optimum design of a vehicle base thermal protection system is dependent on the ability to accurately predict this intense thermal radiation using validated theoretical models. This article describes a successful effort to collect reasonably clean plume particle samples from the static firing of the flight simulation motor (FSM-4) on March 10, 1994 at the T-24 test bed at the Thiokol space operations facility as well as three 18.3% scaled MNASA motors tested at NASA/MSFC. Prior attempts to collect plume particles from the full-scale motor firings have been unsuccessful due to the extremely hostile thermal and acoustic environment in the vicinity of the motor nozzle.

  2. Qualitatively different collective and single-particle dynamics in a supercooled liquid.

    PubMed

    Priya, Madhu; Bidhoodi, Neeta; Das, Shankar P

    2015-12-01

    The equations of fluctuating nonlinear hydrodynamics for a two component mixture are obtained with a proper choice of slow variables which correspond to the conservation laws in the system. Using these nonlinear equations we construct the basic equations of the mode coupling theory (MCT) and consequent ergodic-nonergodic (ENE) transition in a binary mixture. The model is also analyzed in the one component limit of the mixture to study the dynamics of a tagged particle in the sea of identical particles. According to the existing MCT, dynamics of the single-particle correlation is slaved to that of the collective density fluctuations and, hence, both correlations freeze simultaneously at the ENE transition. We show here from a nonperturbative approach that at the ENE transition, characterized by the freezing of the long time limit of the dynamic correlation of collective density fluctuations to a nonzero value, the tagged-particle correlation still decays to zero. Our result implies that the point at which simulation or experimental data of the self-diffusion constant extrapolate to zero would not correspond to the ENE transition of simple MCT. PMID:26764693

  3. Qualitatively different collective and single-particle dynamics in a supercooled liquid

    NASA Astrophysics Data System (ADS)

    Priya, Madhu; Bidhoodi, Neeta; Das, Shankar P.

    2015-12-01

    The equations of fluctuating nonlinear hydrodynamics for a two component mixture are obtained with a proper choice of slow variables which correspond to the conservation laws in the system. Using these nonlinear equations we construct the basic equations of the mode coupling theory (MCT) and consequent ergodic-nonergodic (ENE) transition in a binary mixture. The model is also analyzed in the one component limit of the mixture to study the dynamics of a tagged particle in the sea of identical particles. According to the existing MCT, dynamics of the single-particle correlation is slaved to that of the collective density fluctuations and, hence, both correlations freeze simultaneously at the ENE transition. We show here from a nonperturbative approach that at the ENE transition, characterized by the freezing of the long time limit of the dynamic correlation of collective density fluctuations to a nonzero value, the tagged-particle correlation still decays to zero. Our result implies that the point at which simulation or experimental data of the self-diffusion constant extrapolate to zero would not correspond to the ENE transition of simple MCT.

  4. Characteristics of airborne bacteria in Mumbai urban environment.

    PubMed

    Gangamma, S

    2014-08-01

    Components of biological origin constitute small but a significant proportion of the ambient airborne particulate matter (PM). However, their diversity and role in proinflammatory responses of PM are not well understood. The present study characterizes airborne bacterial species diversity in Mumbai City and elucidates the role of bacterial endotoxin in PM induced proinflammatory response in ex vivo. Airborne bacteria and endotoxin samples were collected during April-May 2010 in Mumbai using six stage microbial impactor and biosampler. The culturable bacterial species concentration was measured and factors influencing the composition were identified by principal component analysis (PCA). The biosampler samples were used to stimulate immune cells in whole blood assay. A total of 28 species belonging to 17 genera were identified. Gram positive and spore forming groups of bacteria dominated the airborne culturable bacterial concentration. The study indicated the dominance of spore forming and human or animal flora derived pathogenic/opportunistic bacteria in the ambient air environment. Pathogenic and opportunistic species of bacteria were also present in the samples. TNF-α induction by PM was reduced (35%) by polymyxin B pretreatment and this result was corroborated with the results of blocking endotoxin receptor cluster differentiation (CD14). The study highlights the importance of airborne biological particles and suggests need of further studies on biological characterization of ambient PM.

  5. Quantitative ED-EPMA combined with morphological information for the characterization of individual aerosol particles collected in Incheon, Korea

    NASA Astrophysics Data System (ADS)

    Kang, SuJin; Hwang, HeeJin; Kang, Sunni; Park, YooMyung; Kim, HyeKyeong; Ro, Chul-Un

    A quantitative single-particle analytical technique, called low- Z particle electron probe X-ray microanalysis, combined with the utilization of their morphological information on individual particles, was applied to characterize six aerosol samples collected in one Korean city, Incheon, during March 9-15, 2006. The collected supermicron aerosol particles were classified based on their chemical species and morphology on a single-particle basis. Many different particle types were identified and their emission source, transport, and reactivity in the air were elucidated. In the samples, particles in the "soil-derived particles" group were the most abundant, followed by "reacted sea-salts", "reacted CaCO 3-containing particles", "genuine sea-salts", "reacted sea-salts + others", "Fe-containing particles", "anthropogenic organics", (NH 4) 2SO 4, "K-containing particles", and "fly ash". The application of this single-particle analysis, fully utilizing their chemical compositional and morphological data of individual particles, clearly revealed the different characteristics of the six aerosol samples. For samples S3 and S5, which were sampled during two Asian dust storm events, almost all particles were of soil origin that had not experienced chemical modification and that did not entrain sea-salts during their long-range transport. For sample S1, collected at an episodic period of high PM 10 concentration and haze, anthropogenic, secondary, and soil-derived particles emitted from local sources were predominant. For samples S2, S4, and S6, which were collected on average spring days with respect to their PM 10 concentrations, marine originated particles were the most abundant. Sample S2 seems to have been strongly influenced by emissions from the Yellow Sea and Korean peninsula, sample S4 had the minimum anthropogenic influence among the four samples collected in the absence of any Asian dust storm event, and sample S6 seems to have entrained air pollutants that had been

  6. Concentrations, enrichment and predominant sources of Sb and other trace elements in size classified airborne particulate matter collected in Tokyo from 1995 to 2004.

    PubMed

    Furuta, Naoki; Iijima, Akihiro; Kambe, Akiko; Sakai, Kazuhiro; Sato, Keiichi

    2005-12-01

    APM was collected and trace elements existing in the particles were monitored since May 1995 in this study. APM sample was collected separately by size (d < 2 microm, 2-11 microm and >11 microm) on the roof of the university building (45 m above ground) in the campus of Faculty of Science and Engineering, Chuo University, Tokyo, Japan, using an Anderson low volume air sampler. The collected sample was digested by HNO3, H2O2 and HF using a microwave oven, and major elements (Na, Mg, Al, K, Ca and Fe) were measured by ICP-AES, and trace elements (Li, Be, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, Ba and Pb) were measured by ICP-MS. It was observed that the APM concentration was higher between the winter and the spring, compared to during the summer. The enrichment factor was calculated for each element in each set of APM (d < 2 microm, 2-11 microm and >11 microm). Seasonal trends of enrichment factors were examined, and the elements were classified into 3 groups according to the common seasonal behavior. It is likely that the elements in the same group have common origins. Toxic pollutant elements (Sb, Se, Cd, Pb and As) were found in small particles with d of <2 microm in concentrated levels. Antimony (Sb) had the highest enrichment factor, and the results suggested that Sb level in APM was extremely high. The origins of Sb were sought, and wastes from plastic incineration and brake pad wears of automobiles were suspected. Each set of APM (d < 2 microm, 2-11 microm and >11 microm) was classified by the shape, and the shape-dependent constituents of a single APM particle were quantitatively measured by SEM-EDX. High concentration of Sb was found in APM <2 microm and square particles. Particles less than 2 microm and square shaped particles were major particles produced by actual car braking experiments. From these experimental results it was concluded that the source of Sb in squared APM <2 microm is considered to be from brake pad wear. PMID:16307066

  7. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling.

    PubMed

    Boone, Eric J; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B; Stirm, Brian H; Pratt, Kerri A

    2015-07-21

    Cloudwater and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry (HRMS) with nanospray desorption electrospray ionization (nano-DESI) and direct infusion electrospray ionization (ESI) were utilized to compare the organic composition of the particle and cloudwater samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloudwater, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloudwater samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloudwater when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.

  8. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling

    SciTech Connect

    Boone, Eric J.; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B.; Stirm, Brian H.; Pratt, Kerri A.

    2015-07-21

    Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.

  9. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling.

    PubMed

    Boone, Eric J; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B; Stirm, Brian H; Pratt, Kerri A

    2015-07-21

    Cloudwater and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry (HRMS) with nanospray desorption electrospray ionization (nano-DESI) and direct infusion electrospray ionization (ESI) were utilized to compare the organic composition of the particle and cloudwater samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloudwater, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloudwater samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloudwater when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol. PMID:26068538

  10. Natural-color and color-infrared image mosaics of the Colorado River corridor in Arizona derived from the May 2009 airborne image collection

    USGS Publications Warehouse

    Davis, Philip A.

    2013-01-01

    The Grand Canyon Monitoring and Research Center (GCMRC) of the U.S. Geological Survey (USGS) periodically collects airborne image data for the Colorado River corridor within Arizona (fig. 1) to allow scientists to study the impacts of Glen Canyon Dam water release on the corridor’s natural and cultural resources. These data are collected from just above Glen Canyon Dam (in Lake Powell) down to the entrance of Lake Mead, for a total distance of 450 kilometers (km) and within a 500-meter (m) swath centered on the river’s mainstem and its seven main tributaries (fig. 1). The most recent airborne data collection in 2009 acquired image data in four wavelength bands (blue, green, red, and near infrared) at a spatial resolution of 20 centimeters (cm). The image collection used the latest model of the Leica ADS40 airborne digital sensor (the SH52), which uses a single optic for all four bands and collects and stores band radiance in 12-bits. Davis (2012) reported on the performance of the SH52 sensor and on the processing steps required to produce the nearly flawless four-band image mosaic (sectioned into map tiles) for the river corridor. The final image mosaic has a total of only 3 km of surface defects in addition to some areas of cloud shadow because of persistent inclement weather during data collection. The 2009 four-band image mosaic is perhaps the best image dataset that exists for the entire Arizona part of the Colorado River. Some analyses of these image mosaics do not require the full 12-bit dynamic range or all four bands of the calibrated image database, in which atmospheric scattering (or haze) had not been removed from the four bands. To provide scientists and the general public with image products that are more useful for visual interpretation, the 12-bit image data were converted to 8-bit natural-color and color-infrared images, which also removed atmospheric scattering within each wavelength-band image. The conversion required an evaluation of the

  11. Natural-color and color-infrared image mosaics of the Colorado River corridor in Arizona derived from the May 2009 airborne image collection

    USGS Publications Warehouse

    Davis, Philip A.

    2013-01-01

    The Grand Canyon Monitoring and Research Center (GCMRC) of the U.S. Geological Survey (USGS) periodically collects airborne image data for the Colorado River corridor within Arizona (fig. 1) to allow scientists to study the impacts of Glen Canyon Dam water release on the corridor’s natural and cultural resources. These data are collected from just above Glen Canyon Dam (in Lake Powell) down to the entrance of Lake Mead, for a total distance of 450 kilometers (km) and within a 500-meter (m) swath centered on the river’s mainstem and its seven main tributaries (fig. 1). The most recent airborne data collection in 2009 acquired image data in four wavelength bands (blue, green, red, and near infrared) at a spatial resolution of 20 centimeters (cm). The image collection used the latest model of the Leica ADS40 airborne digital sensor (the SH52), which uses a single optic for all four bands and collects and stores band radiance in 12-bits. Davis (2012) reported on the performance of the SH52 sensor and on the processing steps required to produce the nearly flawless four-band image mosaic (sectioned into map tiles) for the river corridor. The final image mosaic has a total of only 3 km of surface defects in addition to some areas of cloud shadow because of persistent inclement weather during data collection. The 2009 four-band image mosaic is perhaps the best image dataset that exists for the entire Arizona part of the Colorado River. Some analyses of these image mosaics do not require the full 12-bit dynamic range or all four bands of the calibrated image database, in which atmospheric scattering (or haze) had not been removed from the four bands. To provide scientists and the general public with image products that are more useful for visual interpretation, the 12-bit image data were converted to 8-bit natural-color and color-infrared images, which also removed atmospheric scattering within each wavelength-band image. The conversion required an evaluation of the

  12. Morphological and chemical composition characteristics of summertime atmospheric particles collected at Tokchok Island, Korea

    NASA Astrophysics Data System (ADS)

    Geng, Hong; Jung, Hae-Jin; Park, YooMyung; Hwang, HeeJin; Kim, HyeKyeong; Kim, Yoo Jung; Sunwoo, Young; Ro, Chul-Un

    Determination of the chemical compositions of atmospheric single particles in the Yellow Sea region is critical for evaluating the environmental impact caused by air pollutants emitted from mainland China and the Korean peninsula. After ambient aerosol particles were collected by the Dekati PM10 cascade impactor on July 17-23, 2007 at Tokchok Island (approximately 50 km west of the Korean coast nearby Seoul), Korea, overall 2000 particles (on stage 2 and 3 with cut-off diameters of 2.5-10 μm and 1.0-2.5 μm, respectively) in 10 samples were determined by using low- Z particle electron probe X-ray microanalysis. X-ray spectral and secondary electron image (SEI) data showed that soil-derived and sea-salt particles which had reacted or were mixed with SO 2 and NO x (or their acidic products) outnumbered the primary and "genuine" ones (59.2% vs. 19.2% in the stage 2 fraction and 41.3% vs. 9.9% in the stage 3 fraction). Moreover, particles containing nitrate in the secondary soil-derived species greatly outnumbered those containing sulfate. Organic particles, mainly consisting of marine biogenic species, were more abundant in the stage 2 fraction than in the stage 3 fraction (11.6% vs. 5.1%). Their relative abundance was greater than the sum of carbon-rich, K-containing, Fe-containing, and fly ash particles, which exhibited low frequencies in all the samples. In addition, many droplets rich in C, N, O, and S were observed. They tended to be small, exhibiting a dark round shape on SEI, and generally included 8-20 at.% C, 0-12 at.% N, 60-80 at.% O, and 4-10 at.% S (sometimes with <3 at.% Mg and Na). They were attributed to be a mixture of carbonaceous matter, H 2SO 4, and NH 4HSO 4/(NH 4) 2SO 4, mostly from the reaction of atmospheric SO 2 with NH 3 under high relative humidity. The analysis of the relationship between the aerosol particle compositions and 72-h backward air-mass trajectories suggests that ambient aerosols at Tokchok Island are strongly affected not only

  13. Comparative Toxicity of Size-Fractionated Airborne Particulate Matter Collected at Different Distances from an Urban Highway

    PubMed Central

    Cho, Seung-Hyun; Tong, Haiyan; McGee, John K.; Baldauf, Richard W.; Krantz, Q. Todd; Gilmour, M. Ian

    2009-01-01

    Background Epidemiologic studies have reported an association between proximity to highway traffic and increased cardiopulmonary illnesses. Objectives We investigated the effect of size-fractionated particulate matter (PM), obtained at different distances from a highway, on acute cardiopulmonary toxicity in mice. Methods We collected PM for 2 weeks in July–August 2006 using a three-stage (ultrafine, < 0.1 μm; fine, 0.1–2.5 μm; coarse, 2.5–10 μm) high-volume impactor at distances of 20 m [near road (NR)] and 275 m [far road (FR)] from an interstate highway in Raleigh, North Carolina. Samples were extracted in methanol, dried, diluted in saline, and then analyzed for chemical constituents. Female CD-1 mice received either 25 or 100 μg of each size fraction via oropharyngeal aspiration. At 4 and 18 hr postexposure, mice were assessed for pulmonary responsiveness to inhaled methacholine, biomarkers of lung injury and inflammation; ex vivo cardiac pathophysiology was assessed at 18 hr only. Results Overall chemical composition between NR and FR PM was similar, although NR samples comprised larger amounts of PM, endotoxin, and certain metals than did the FR samples. Each PM size fraction showed differences in ratios of major chemical classes. Both NR and FR coarse PM produced significant pulmonary inflammation irrespective of distance, whereas both NR and FR ultrafine PM induced cardiac ischemia–reperfusion injury. Conclusions On a comparative mass basis, the coarse and ultrafine PM affected the lung and heart, respectively. We observed no significant differences in the overall toxicity end points and chemical makeup between the NR and FR PM. The results suggest that PM of different size-specific chemistry might be associated with different toxicologic mechanisms in cardiac and pulmonary tissues. PMID:20049117

  14. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  15. Source identifications of airborne fine particles using positive matrix factorization and U.S. Environmental Protection Agency positive matrix factorization.

    PubMed

    Kim, Eugene; Hopke, Philip K

    2007-07-01

    The widely used source apportionment model, positive matrix factorization (PMF2), has been applied to various air pollution data. Recently, U.S. Environmental Protection Agency (EPA) developed EPA positive matrix factorization (PMF), a version of PMF that will be freely distributed by EPA. The objectives of this study were to conduct source apportionment studies for particulate matter less than 2.5 microm in aerodynamic diameter (PM(2.5)) speciation data using PMF2 and EPA PMF (version 1.1) and to compare identified sources between the two models. In the present study, ambient PM(2.5) compositional datasets of 24-hr integrated samples collected at EPA Speciation Trends Network monitoring sites in Chicago, IL, and Portland, OR, were analyzed. Both PMF2 and EPA PMF extracted eight sources for the Chicago data and 10 sources for the Portland data. The model-resolved source profiles were similar between two models for both datasets. However, in several sources, the average contributions did not agree well and the time series contributions were not highly correlated. The differences between PMF2 and EPA PMF solutions were caused by the different least-square algorithm and the different nonnegativity constraints. Most of the average source contributions resolved by both models were within 5-95% uncertainty provided by EPA PMF, indicating that the sources resolved by both models were reproducible.

  16. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    NASA Astrophysics Data System (ADS)

    Leoni, S.

    2016-05-01

    The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets), with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic "hybrid" model is introduced: it is based on the coupling between core excitations (both collective and non-collective) of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  17. Chemical composition of nucleation and accumulation mode particles collected in Vienna, Austria

    NASA Astrophysics Data System (ADS)

    Puxbaum, Hans; Wopenka, Brigitte

    Atmospheric aerosol samples were collected by six-stage low pressure impactors in Vienna downtown. Aerosol particles were deposited on aluminum foils in five size fractions in the size range of 0.04-25 μm AD. The concentration of the components Cl -, Br -, NO 3-, SO 42-, Ca, Cu, Fe, Mg, Pb. Sr, Zn and total C was determined by multi-element analytical methods. A comparison of the relative composition of the size fractions containing nucleation mode and accumulation mode particles showed the components derived from traffic emissions (Pb, Br - and C) to be significantly enriched in the nucleation mode size fraction. On the other hand, each of the components Cl -, SO 42-,Ca, Cu, Fe, Mg and Sr has a similar relative concentration in the nucleation mode and in the accumulation mode size fraction. For all samples collected on days with prevailing westerly winds a strong negative correlation between wind speed and sulfate particle size as well as sulfate concentration was observed.

  18. Physical, Chemical, and Mineralogical Properties of Comet 81P/Wild 2 Particles Collected by Stardust

    SciTech Connect

    Flynn, G.

    2008-01-01

    NASA's Stardust spacecraft collected dust from the coma of Comet 81P/Wild 2 by impact into aerogel capture cells or into Al-foils. The first direct, laboratory measurement of the physical, chemical, and mineralogical properties of cometary dust grains ranging from <10-15 to ?10-4 g were made on this dust. Deposition of material along the entry tracks in aerogel and the presence of compound craters in the Al-foils both indicate that many of the Wild 2 particles in the size range sampled by Stardust are weakly bound aggregates of a diverse range of minerals. Mineralogical characterization of fragments extracted from tracks indicates that most tracks were dominated by olivine, low-Ca pyroxene, or Fe-sulfides, although one track was dominated by refractory minerals similar to Ca-Al inclusions in primitive meteorites. Minor mineral phases, including Cu-Fe-sulfide, Fe-Zn-sulfide, carbonate and metal oxides, were found along some tracks. The high degree of variability of the element/Fe ratios for S, Ca, Ti, Cr, Mn, Ni, Cu, Zn, and Ga among the 23 tracks from aerogel capture cells analyzed during Stardust Preliminary Examination is consistent with the mineralogical variability. This indicates Wild 2 particles have widely varying compositions at the largest size analyzed (>10 ?m). Because Stardust collected particles from several jets, sampling material from different regions of the interior of Wild 2, these particles are expected to be representative of the non-volatile component of the comet over the size range sampled. Thus, the stream of particles associated with Comet Wild 2 contains individual grains of diverse elemental and mineralogical compositions, some rich in Fe and S, some in Mg, and others in Ca and Al. The mean refractory element abundance pattern in the Wild 2 particles that were examined is consistent with the CI meteorite pattern for Mg, Si, Cr, Fe, and Ni to 35%, and for Ca, Ti and Mn to 60%, but S/Si and Fe/Si both show a statistically significant

  19. Search for multiply charged Heavy Stable Charged Particles in data collected with the CMS detector

    SciTech Connect

    Veeraraghavan, Venkatesh

    2013-10-30

    Several models of new physics yield particles that are massive, long-lived, and have an electric charge, Q, greater than that of the electron, e. A search for evidence of such particles was performed using 5.0 fb-1 and 18.8 fb-1 of proton-proton collision data collected at √s = 7 TeV and √s = 8 TeV, respectively, with the Compact Muon Solenoid detector at the Large Hadron Collider. The distinctive detector signatures of these particles are that they are slow-moving and highly ionizing. Ionization energy loss and time-of- flight measurements were made using the inner tracker and the muon system, respectively. The search is sensitive to 1e ≤ |Q| ≤ 8e. Data were found to be consistent with standard model expectations and upper limits on the production cross section of these particles were computed using a Drell-Yan-like production model. Masses below 517, 687, 752, 791, 798, 778, 753, and 724 GeV are excluded for |Q| = 1e, 2e, 3e, 4e, 5e, 6e, 7e, and 8e, respectively.

  20. Visible-IR and Raman micro-spectroscopic investigation of three Itokawa particles collected by Hayabusa

    NASA Astrophysics Data System (ADS)

    Brunetto, R.; Bonal, L.; Beck, P.; Dartois, E.; Dionnet, Z.; Djouadi, Z.; Füri, E.; Kakazu, Y.; Oudayer, P.; Quirico, E.; Engrand, C.

    2014-07-01

    HAYABUSA grains offer a unique perspective to better understand the link between asteroids and cosmomaterials available in the laboratory and to get an insight on the early stages of surface space weathering. The scientific objectives of our consortium are threefold: (i) the characterization of asteroidal surface processes (e.g., space weathering alteration); (ii) the assessment of parent-body alteration processes; (iii) the search for a possible association between S-type asteroids and micrometeorites. To this aim, our strategy is based on a combination of analytical techniques. Here we report a first series of results obtained through Visible-Infrared and Raman spectroscopy of three Itokawa particles (RA-QD02-0163, -0174, and -0213) collected by the Hayabusa spacecraft and provided by JAXA for our consortium. In a first step, our main objective was to collect maximum information without altering the particles. Reported results were thus obtained on the raw particles, both (i) in their original containers, and (ii) deposited on diamond windows. Raman and IR confocal spectra were acquired at the SMIS beamline of the French national synchrotron facility SOLEIL and at the Lyon Raman national facility using spots of 2 μ m for the Raman, and 10--20 μ m for the IR analyses. Point analyses and automatic mapping were performed. Analytical parameters (e.g., laser power on the sample) were optimized to prevent any damage. Diffuse reflectance spectra (i=45°, e=0°) in the visible and near-IR wavelengths were obtained with an IAS-CSNSM in-home system coupling a fiber spectrometer to an optical microscope, providing a 20-μ m spot on sample. In the case of particle -0163, Raman and IR results reveal a heterogeneous mixing of minerals, mostly olivine (Fo76), and Ca-rich (En50, Wo50) and Ca-poor (En85) pyroxenes. The modal distribution of these minerals is determined based on the spectral maps. The mineral compositions of -0163 are consistent with those previously reported on

  1. Hypersensitivity of prediabetic JCR:LA-cp rats to fine airborne combustion particle-induced direct and noradrenergic-mediated vascular contraction.

    PubMed

    Proctor, Spencer D; Dreher, Kevin L; Kelly, Sandra E; Russell, James C

    2006-04-01

    Particulate matter with mean aerodynamic diameter < or =2.5 microm (PM(2.5)), from diesel exhaust, coal or residual oil burning, and from industrial plants, is a significant component of airborne pollution. Type 2 diabetes is associated with enhanced risk of adverse cardiovascular events following exposure to PM(2.5). Particle properties, sources, and pathophysiological mechanisms responsible are unknown. We studied effects of residual oil fly ash (ROFA) from a large U.S. powerplant on vascular function in a prediabetic, hyperinsulinemic model, the JCR:LA-cp rat. Residual oil fly ash leachate (ROFA-L) was studied using aortic rings from young-adult, obese, insulin-resistant rats and lean normal rats in vitro. Contractile response to phenylephrine and relaxant response to acetylcholine were determined in the presence and absence of L-NAME (N(G)-nitro-L-arginine methyl ester). In a separate series of studies, the direct contractile effects of ROFA-L on repeated exposure were determined. ROFA-L (12.5 microg ml(-1)) increased phenylephrine-mediated contraction in obese (p < 0.05), but not in lean rat aortae, with the effect being exacerbated by L-NAME, and it reduced acetylcholine-mediated relaxation of both obese and lean aortae (p < 0.0001). Initial exposure of aortae to ROFA-L caused a small contractile response (<0.05 g), which was markedly greater on second exposure in the obese (approximately 0.6 g, p < 0.0001) aortae but marginal in lean (approximately 0.1 g) aortae. Our data demonstrate that bioavailable constituents of oil combustion particles enhance noradrenergic-mediated vascular contraction, impair endothelium-mediated relaxation, and induce direct vasocontraction in prediabetic rats. These observations provide the first direct evidence of the causal properties of PM(2.5) and identify the pathophysiological role of the early prediabetic state in susceptibility to environmentally induced cardiovascular disease. These are important implications for public

  2. Flue gas conditioning for improved particle collection in electrostatic precipitators. Quarterly technical report

    SciTech Connect

    Durham, M.D.

    1992-04-27

    The purpose of this research program is to identify and evaluate a variety of additives capable of increasing particle cohesion which could be used for improving collection efficiency in an ESP. A three-phase screening process will be used to provide the, evaluation of many additives in a logical and cost-effective manner. The three step approach involves the following experimental setups: 1. Provide a preliminary screening in the laboratory by measuring the effects of various conditioning agents on reentrainment of flyash particles in an electric field operating at simulated flue gas conditions. 2. Evaluate the successful additives using a 100 acfm bench-scale ESP operating on actual flue gas. 3. Obtain the data required for scaling up the technology by testing the two or three most promising conditioning agents at the pilot scale.

  3. Soft particle production and study of collective phenomena with the ALICE detector at the LHC

    NASA Astrophysics Data System (ADS)

    Guerzoni, B.

    2016-01-01

    After the successful completion of the first LHC run, a comprehensive set of light flavour hadron measurements at midrapidity in pp, p-Pb and Pb-Pb collisions is available for detailed comparisons with soft particle-production models. The observation of a medium in local thermal equilibrium in nucleus-nucleus collisions is supported by the success of thermal and hydrodynamic models in the description of hadron yields and spectral shapes, respectively. However, the presence of collective phenomena in small systems created in pp and p-Pb collisions is still debated. In this paper, similarities and differences between large and small collision systems with respect to a mass dependent evolution of the spectral shapes will be highlighted. In addition, the experimental significance of the deviations of particle yields observed between data and thermal model expectations will be discussed.

  4. Nonlinear delta(f) Simulations of Collective Effects in Intense Charged Particle Beams

    SciTech Connect

    Hong Qin

    2003-01-21

    A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, et al., in Proc. of the Particle Accelerator Conference, Chicago, 2001 (IEEE, Piscataway, NJ, 2001), Vol. 1, p. 688.] at the Los Alamos National Laboratory agree well with experimental observations. Large-scale parallel simulations have also been carried out for the ion-electron two-stream instability in the very-high-intensity heavy ion beams envisioned for heavy ion fusion applications. In both cases, the simulation results indicate that the dominant two-stream instability has a dipole-mode (hose-like) structure and can be stabilized by a modest axial momentum spread of the beam particles.

  5. Chaos and collective relaxation in galaxies and charged-particle beams

    SciTech Connect

    Bohn, Courtlandt; Kandrup, Henry E.; Kishek, Rami A.; O'Shea, Patrick G.; Reiser, Martin; Sideris, Ioannis V.; /Florida U. /Northern Illinois U.

    2003-01-01

    Both galaxies and charged particle beams can exhibit collective relaxation on surprisingly short time scales. This can be attributed to the effects of chaos, often triggered by resonances caused by time-dependences in the bulk potential, which act almost identically for attractive gravitational and repulsive electrostatic forces. These similarities suggest that many physical processes at work in galaxies, albeit not subject to direct controlled experiments, can be tested indirectly using facilities such as the University of Maryland Electron Ring (UMER) currently nearing completion.

  6. Collective and Single-Particle Motion in Beyond Mean Field Approaches.

    PubMed

    Egido, J Luis; Borrajo, Marta; Rodríguez, Tomás R

    2016-02-01

    We present a novel nuclear energy density functional method to calculate spectroscopic properties of atomic nuclei. Intrinsic nuclear quadrupole deformations and rotational frequencies are considered simultaneously as the degrees of freedom within a symmetry conserving configuration mixing framework. The present method allows the study of nuclear states with collective and single-particle character. We calculate the fascinating structure of the semimagic ^{44}S nucleus as a first application of the method, obtaining an excellent quantitative agreement both with the available experimental data and with state-of-the-art shell model calculations. PMID:26894706

  7. Chemical and statistical interpretation of sized aerosol particles collected at an urban site in Thessaloniki, Greece.

    PubMed

    Tsitouridou, Roxani; Papazova, Petia; Simeonova, Pavlina; Simeonov, Vasil

    2013-01-01

    The size distribution of aerosol particles (PM0.015-PM18) in relation to their soluble inorganic species and total water soluble organic compounds (WSOC) was investigated at an urban site of Thessaloniki, Northern Greece. The sampling period was from February to July 2007. The determined compounds were compared with mass concentrations of the PM fractions for nano (N: 0.015 < Dp < 0.06), ultrafine (UFP: 0.015 < Dp < 0.125), fine (FP: 0.015 < Dp < 2.0) and coarse particles (CP: 2.0 < Dp < 8.0) in order to perform mass closure of the water soluble content for the respective fractions. Electrolytes were the dominant species in all fractions (24-27%), followed by WSOC (16-23%). The water soluble inorganic and organic content was found to account for 53% of the nanoparticle, 48% of the ultrafine particle, 45% of the fine particle and 44% of the coarse particle mass. Correlations between the analyzed species were performed and the effect of local and long-range transported emissions was examined by wind direction and backward air mass trajectories. Multivariate statistical analysis (cluster analysis and principal components analysis) of the collected data was performed in order to reveal the specific data structure. Possible sources of air pollution were identified and an attempt is made to find patterns of similarity between the different sized aerosols and the seasons of monitoring. It was proven that several major latent factors are responsible for the data structure despite the size of the aerosols - mineral (soil) dust, sea sprays, secondary emissions, combustion sources and industrial impact. The seasonal separation proved to be not very specific. PMID:24007436

  8. Dust particles from comets and asteroids collected at the Earth's orbit: Parent-daughter relationships

    NASA Technical Reports Server (NTRS)

    Jackson, A. A.; Zook, H. A.

    1991-01-01

    The relative contributions of comets and asteroids to the reservoir of dust in the interplanetary medium is not well known. There are direct observations of dust released from comets and there is evidence to associate the IRAS dust bands with possible collisions of Asteroids in the main belt. It is believed that one may combine lab analysis of the physics and chemistry of captured particles with orbital data in order to identify comet and asteroid parent bodies. It is possible to use the collected orbits of the dust to connect with its source in two ways. One is to consider the long time orbit evolution of the dust under Poynting-Robertson drag. The other is to look at the prompt orbit change of dust from comets onto trajectories that intersect the earth's orbit. In order to characterize the orbits of dust particles evolved over a long period of time, a study of its orbital evolution was undertaken. Various parameters associated with these dust orbits as they cross the Earth's orbit were considered in order to see if one may discriminate between particles evolved from comets and asteroids. The method was to calculate by a numerical procedure the orbits of dust particles after they left their parent bodies. It appears that as the particles pass the Earth's orbit, asteroidal grains and cometary grains can be differentiated on the basis of their measured orbital eccentricities even after much planetary perturbation. Broad parent daughter associations can be made on this basis from measurement of their trajectories intercepted in earth orbit.

  9. Enhanced Recovery of Airborne T3 Coliphage and Pasteurella pestis Bacteriophage by Means of a Presampling Humidification Technique

    PubMed Central

    Hatch, M. T.; Warren, J. C.

    1969-01-01

    This paper reports a series of experiments in which two methods of collecting airborne bacteriophage particles were compared. A standard aerosol sampler, the AGI-30, was evaluated for its competence in measuring the content of bacteriophage aerosols. It was used alone or with a prewetting or humidification device (humidifier bulb) to recover T3 coliphage and Pasteurella pestis bacteriophage particles from aerosols maintained at 21 C and varied relative humidity. Collection of bacteriophage particles via the humidifier bulb altered both the initial recovery level and the apparent biological decay. Sampling airborne bacteriophage particles by the AGI-30 alone yielded data that apparently underestimated the maximal number of potentially viable particles within the aerosol, sometimes by as much as 3 logs. PMID:4891719

  10. Multi-element analysis by inductively coupled plasma optical emission spectrometry of airborne particulate matter collected with a low-pressure cascade impactor.

    PubMed

    Robache, A; Mathé, F; Galloo, J C; Guillermo, R

    2000-10-01

    A method was developed for the elemental analysis of size segregated particles ranging from 0.03 to 10 microns. Sampling and analysis problems are discussed in this paper. Particles were collected with a Dekati low-pressure cascade impactor. PTFE filters coated with oleic acid were used as substrate. Particles were microwave digested in closed vessels. The optimum digestion mixture was composed of HNO3 (1 mL), HF (50 microL) and H2O (1 mL). The optimal power setting and digestion time were studied in order to achieve an efficient digestion. A ca. 35 min microwave digestion cycle at a 650 W maximum power allowed complete digestion of the samples. Special emphasis was placed on the pressure in the closed vessels to avoid sample losses. Solution samples were analysed by inductively coupled plasma optical emission spectrometry using an ultrasonic nebuliser for 18 elements (Al, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, S, Sr, Ti, V, Zn). This procedure was tested with NIST Standard Reference Material 1648 Urban Particulate. Recoveries for certified elements ranged from 95 to 105% except for Al (90%). The influence of cascade impactor materials was investigated with 44 field samples. Strong artefacts due to contamination were shown for analysis at environmental concentrations of Al, Cr, Mn and Ni.

  11. Unique flow transitions and particle collection switching phenomena in a microchannel induced by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tan, Ming K.; Yeo, Leslie Y.; Friend, James R.

    2010-12-01

    We present an experimental approach for controlled switching between uniform flow for pumping and vortical flow for mixing in a microchannel fabricated onto a piezoelectric substrate. For particle laden fluids, this arrangement permits a choice between transport and alignment of microparticles. Using surface acoustic waves with amplitudes beyond 1 nm, the transition from uniform to mixing flows occurs when the acoustic wavelength in the fluid is reduced to a dimension smaller than the channel width, i.e., λf≥Wch for uniform flow and λfparticles in an initially homogeneous suspension agglomerate into equally spaced lines with a separation of λf/2. Switching the transducer between its fundamental resonant frequency f0 and its first harmonic frequency f1+˜2f0 causes a switch between uniform and mixing flow, while switching between large and small amplitude excitation allows one to choose whether to collect the particles in the flow along nodal lines parallel to the channel. These results are uniquely achieved without requiring the microfabrication of complex microchannel architectures and control schemes; the switching is simply achieved by adjusting two parameters: the acoustic excitation frequency and amplitude.

  12. Particle Number Conserving Approach to the Collective States in a Small Fermi-System

    NASA Astrophysics Data System (ADS)

    Glick, Jennifer; Zelevinsky, Vladimir

    2014-03-01

    The standard Bardeen-Cooper-Schrieffer (BCS) description of pairing theory, random phase approximation (RPA) and Hartree-Fock-Bogoliubov (HFB) methods, routinely used in macroscopic many-body physics when the dimension of the Hamiltonian matrix is prohibitively large, include features which are not well suited to describe mesoscopic systems such as nuclei or cold atoms in traps. Two important disadvantages are the non-conservation of exact particle number through the introduction of quasiparticles, and the absence of a non-trivial paired solution in the discrete spectrum with weak pairing. We develop the pairing theory based on the exact particle number conservation, whose first applications to the ground state physics presented in [A. Volya and V. Zelevinsky, in 50 Years of Nuclear BCS, World Scientific, 2012] demonstrated that such an approach avoids well known deficiencies of the standard treatment, especially in the region of weak pairing. Now, we use the method for low-lying collective excitations which in many cases are even more sensitive to conservation laws. We show that the RPA version based on solving the operator equations of motion is reduced to the set of recurrence relations for neighboring systems which precisely conserve the exact particle number. Supported by the NSF grant PHY-1068217.

  13. The influence of unburned carbon particles on electrostatic precipitator collection efficiency

    NASA Astrophysics Data System (ADS)

    Jędrusik, M.; Świerczok, A.

    2011-06-01

    Laboratory tests have shown that the chemical composition of fly ash (in that unburned coal) as well as its size distribution has significant influence on the dust cleaning process. Likewise the design of discharge electrodes has shown a strong influence on the dust cleaning. Tests of precipitation efficiency were carried out on a laboratory electrostatic precipitator (ESP) model using fly ash samples of diverse size distribution and unburned coal content collected from several grate boilers. Test results show explicit dependency of the ESP precipitation efficiency on physical and chemical characteristics of the fly ash, design of discharge electrodes and amount of electrical energy delivered to the ESP. Mercury concentration measurements show higher levels in the fly ash than in the fired coal indicating high sorption capacity of the fly ash. Prior observation suggests good mercury adsorption on fine fly ash particles in the presence of elemental coal. Hence the improvement of ESP collection efficiency of fine particles containing unburned coal may help decrease the emission of mercury.

  14. System for particle concentration and detection

    DOEpatents

    Morales, Alfredo M.; Whaley, Josh A.; Zimmerman, Mark D.; Renzi, Ronald F.; Tran, Huu M.; Maurer, Scott M.; Munslow, William D.

    2013-03-19

    A new microfluidic system comprising an automated prototype insulator-based dielectrophoresis (iDEP) triggering microfluidic device for pathogen monitoring that can eventually be run outside the laboratory in a real world environment has been used to demonstrate the feasibility of automated trapping and detection of particles. The system broadly comprised an aerosol collector for collecting air-borne particles, an iDEP chip within which to temporarily trap the collected particles and a laser and fluorescence detector with which to induce a fluorescence signal and detect a change in that signal as particles are trapped within the iDEP chip.

  15. Effects of plasma parameters and collection region on synthesis of iron and nickel aluminide composite particles during thermal plasma processing

    NASA Astrophysics Data System (ADS)

    Suresh, K.; Selvarajan, V.

    2010-02-01

    Iron and Nickel aluminide composite particles were synthesized by non-transferred DC plasma spray torch at atmospheric pressure. Irregular shaped ball milled, micron sized powders were fed in to the plasma flame using argon as carrier gas. The particles got molten and vaporized. The vapour condensed on the walls of the reaction chamber and nanoparticles were formed. The molten particles got spheroidized due to surface tension forces. Powders as formed were collected in the plasma reactor at three different sections (Section A, B and C). These powder particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The particle size and morphology of the composite particles strongly varied depending on the processing parameters and collection region. The results were discussed.

  16. Flue gas conditioning for improved particle collection in electrostatic precipitators. First topical report, Results of laboratory screening of additives

    SciTech Connect

    Durham, M.D.

    1993-04-16

    Several tasks have been completed in a program to evaluate additives to improve fine particle collection in electrostatic precipitators. Screening tests and laboratory evaluations of additives are summarized in this report. Over 20 additives were evaluated; four were found to improve flyash precipitation rates. The Insitec particle analyzer was also evaluated; test results show that the analyzer will provide accurate sizing and counting information for particles in the size range of {le} 10 {mu}m dia.

  17. Evolution of the typology of cometary particles collected by the COSIMA instrument from before to after perihelion

    NASA Astrophysics Data System (ADS)

    Langevin, Yves; Hilchenbach, Martin; Ligier, Nicolas; Merouane, Sihane; Hornung, Klaus; Cosima Team

    2016-04-01

    The COSIMA mass spectrometer on-board COSIMA has collected particles since August 2014 in orbit around comet Churyumov-Gerasimenko. After perihelion in August 2015, the spacecraft performed an excursion into the tail, and it has been orbiting at distances lower than 200 km since late november 2015. The evolution of the typology of dust particles as imaged by the COSISCOPE microscope, the particle detection device of COSIMA

  18. Effect of face velocity and the nature of aerosol on the collection of submicrometer particles by electrostatic precipitator.

    PubMed

    Morawska, L; Agranovski, V; Ristovski, Z; Jamriska, M

    2002-06-01

    Despite the electrostatic collection of aerosol particles as one of the most widely used air cleaning methods, there has not been sufficient amount of effort devoted to investigate its performance in the full range of operating conditions. This paper reports results of the tests of a two-stage electrostatic precipitator (ESP) conducted in the particle size range of 0.018-1.2 microns over a range of flow rates using NaCl and Environmental Tobacco Smoke (ETS) test aerosols. The total collection efficiency of the precipitator was found to increase with an increase in the count median diameter (CMD) of the particles, to have polynomial dependence on flow rate and no significant dependence on the type of test aerosol. The fractional efficiency of the precipitator was found to be dependent on flow rate. However, the 'critical' particle size of about 1.2 microns was found to exist when the fractional collection efficiency becomes independent of flow rate. For submicrometer particles, the collection efficiency was found to be independent of particle size at flow rates below 560 l/s. A minimum in the efficiency was observed in the 0.1-0.45 micron particle size range and for particles smaller than about 0.02 micron.

  19. Particle sizing calibration with refractive index correction for light scattering optical particle counters and impacts upon PCASP and CDP data collected during the Fennec campaign

    NASA Astrophysics Data System (ADS)

    Rosenberg, P. D.; Dean, A. R.; Williams, P. I.; Dorsey, J. R.; Minikin, A.; Pickering, M. A.; Petzold, A.

    2012-05-01

    Optical particle counters (OPCs) are used regularly for atmospheric research, measuring particle scattering cross sections to generate particle size distribution histograms. This manuscript presents two methods for calibrating OPCs with case studies based on a Passive Cavity Aerosol Spectrometer Probe (PCASP) and a Cloud Droplet Probe (CDP), both of which are operated on the Facility for Airborne Atmospheric Measurements BAe-146 research aircraft. A probability density function based method is provided for modification of the OPC bin boundaries when the scattering properties of measured particles are different to those of the calibration particles due to differences in refractive index or shape. This method provides mean diameters and widths for OPC bins based upon Mie-Lorenz theory or any other particle scattering theory, without the need for smoothing, despite the highly nonlinear and non-monotonic relationship between particle size and scattering cross section. By calibrating an OPC in terms of its scattering cross section the optical properties correction can be applied with minimal information loss, and performing correction in this manner provides traceable and transparent uncertainty propagation throughout the whole process. Analysis of multiple calibrations has shown that for the PCASP the bin centres differ by up to 30% from the manufacturer's nominal values and can change by up to approximately 20% when routine maintenance is performed. The CDP has been found to be less sensitive than the manufacturer's specification with differences in sizing of between 1.6 ± 0.8 μm and 4.7 ± 1.8 μm for one flight. Over the course of the Fennec project in the Sahara the variability of calibration was less than the calibration uncertainty in 6 out of 7 calibrations performed. As would be expected from Mie-Lorenz theory, the impact of the refractive index corrections has been found to be largest for absorbing materials and the impact on Saharan dust measurements made

  20. Fine particle collection of an electrostatic precipitator in CO2-rich gas conditions for oxy-fuel combustion.

    PubMed

    Han, Bangwoo; Kim, Hak Joon; Kim, Yong Jin

    2010-10-01

    The collection of particles in CO(2)-enriched environments has long been important for the capture of CO(2) in order to clean gases via oxy-fuel combustion. We here report on the collection characteristics of fine and ultrafine particles using an electrostatic precipitator (ESP) in a CO(2)-enriched atmosphere. In order to understand the characteristics of particle collection in CO(2)-rich gas mixtures, the ionic properties of a CO(2)-enriched atmosphere was also investigated. The electrical mobility of the ions in a CO(2)-enriched atmosphere was found to be about 0.56 times that found in a conventional air atmosphere, due to the higher mass of CO(2) gas compared to that of air. The low electrical mobility of ions resulted in a low corona current under CO(2)-enriched conditions. The collection efficiency of particles in a CO(2)-rich atmosphere for a given power consumption was thus somewhat lower than that found in air, due to the low quantity of particle charging in CO(2)-enriched air. At the same time, higher temperatures led to the higher electrical mobility of ions, which resulted in a greater collection efficiency for a given power. The presence of a negative corona also led to a greater collection efficiency of particles in an ESP than that achieved for a positive corona.

  1. Flue gas conditioning for enhanced collection of fine particles in ESPs

    SciTech Connect

    Bustard, C.J.; Baldrey, K.E.; Durham, M.D.; Martin, C.E.

    1997-12-31

    Extensive studies on the emission and control of air toxics by the Electric Power Research Institute shows that most of the solid phase particulate air toxics can be controlled by the existing particulate collectors, such as electrostatic precipitators (ESP) and baghouses. However, there are still many particulate control devices that are not performing at optimum levels because of design flaws or changes in the type of coal fired. One area that has a long history of emission problems are ESPs that operate above 400 F. At these high temperatures, conventional flue gas conditioning is inefficiency or ineffective. With Department of Energy funding, a new flue gas conditioning technology was developed by ADA Technologies, Inc. that is effective at high temperatures. This technology is especially important for hot-side ESPs and cold-side ESPs that operate above 375 F. For hot-side ESPs, ADA`s flue gas conditioning agent reduces the surface resistivity of the particulate layer on the collection plates. This overcomes the detrimental effects of sodium depletion and permits the ESP to operate at designed power levels. For high temperature cold-side ESPs, conditioning reduces resistivity of particles in the flue gas which increases the efficiency of their collection. Results from several full-scale demonstrations lasting two weeks to six weeks will be presented. These will include ESPs collecting flyash from Powder River Basin, low sulfur eastern, and a blend of coals. It is anticipated that results from testing at oil refineries will also be available.

  2. Mismatch in aeroallergens and airborne grass pollen concentrations

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Hernández-Ceballos, M. A.; Galán, C.

    2016-11-01

    An accurate estimation of the allergen concentration in the atmosphere is essential for allergy sufferers. The major cause of pollinosis all over Europe is due to grass pollen and Phl p 5 has the highest rates of sensitization (>50%) in patients with grass pollen-induced allergy. However, recent research has shown that airborne pollen does not always offer a clear indicator of exposure to aeroallergens. This study aims to evaluate relations between airborne grass pollen and Phl p 5 concentrations in Córdoba (southern Spain) and to study how meteorological parameters influence these atmospheric records. Monitoring was carried out from 2012 to 2014. Hirst-type volumetric spore trap was used for pollen collection, following the protocol recommended by the Spanish Aerobiology Network (REA). Aeroallergen sampling was performed using a low-volume cyclone sampler, and allergenic particles were quantified by ELISA assay. Besides, the influence of main meteorological factors on local airborne pollen and allergen concentrations was surveyed. A significant correlation was observed between grass pollen and Phl p 5 allergen concentrations during the pollen season, but with some sporadic discrepancy episodes. The cumulative annual Pollen Index also varied considerably. A significant correlation has been obtained between airborne pollen and minimum temperature, relative humidity and precipitation, during the three studied years. However, there is no clear relationship between allergens and weather variables. Our findings suggest that the correlation between grass pollen and aeroallergen Phl p 5 concentrations varies from year-to-year probably related to a complex interplay of meteorological variables.

  3. Typology of dust particles collected by the COSIMA mass spectrometer in the inner coma of 67P/Churyumov Gerasimenko

    NASA Astrophysics Data System (ADS)

    Langevin, Y.; Hilchenbach, M.; Ligier, N.; Merouane, S.; Hornung, K.; Engrand, C.; Schulz, R.; Kissel, J.; Rynö, J.; Eng, P.

    2016-06-01

    The COSIMA mass spectrometer on board the ROSETTA orbiter has collected dust in the near coma of comet 67P/Churyumov-Gerasimenko since August 11, 2014. The collected dust particles are identified by taking images with a microscope (COSISCOPE) under grazing incidence illumination before and after exposure of the target to cometary dust. More than 10,000 dust particles >14 μm in size collected from August 11, 2014 to April 3, 2015 have been detected on three distinct target assemblies, including ˜500 dust particles with sizes ranging from 50 to more than 500 μm, that can be resolved by COSISCOPE (pixel size 14 μm). During this period, the heliocentric distance decreased from 3.5 AU to less than 2 AU. The collection efficiency on targets covered with "metal black" has been very high, due to the low relative velocity of incoming dust. Therefore, the COSISCOPE observations provide the first optical characterization of an unbiased sample of particles collected in the inner coma of a comet. The typology of particles >100 μm in size is dominated by clusters with a wide range of structure and strength, most originating from the disruption of large aggregates (>1 mm in size) shortly before collection. A generic relationship between these clusters and IDPs/Antarctic meteorites is likely in the framework of accretion models. About 15% of particles larger than 100 μm are compact particles with two likely contributions, one being linked to clusters and another leaving the cometary nucleus as single compact particles.

  4. Cytotoxicity and Characterization of Particles Collected From an Indium–Tin Oxide Production Facility

    PubMed Central

    Badding, Melissa A.; Stefaniak, Aleksandr B.; Fix, Natalie R.; Cummings, Kristin J.; Leonard, Stephen S.

    2014-01-01

    Occupational exposure to indium compound particles has recently been associated with lung disease among workers in the indium–tin oxide (ITO) industry. Previous studies suggested that excessive alveolar surfactant and reactive oxygen species (ROS) may play a role in the development of pulmonary lesions following exposure to indium compounds. However, toxicity at the cellular level has not been comprehensively evaluated. Thus, the aim of this study was to assess which, if any, compounds encountered during ITO production are toxic to cultured cells and ultimately contribute to the pathogenesis of indium lung disease. The compounds used in this study were collected from eight different processing stages at an ITO production facility. Enhanced dark field imaging showed 5 of the compounds significantly associated with cells within 1 h, suggesting that cellular reactions to the compound particles may be occurring rapidly. To examine the potential cytotoxic effects of these associations, ROS generation, cell viability, and apoptosis were evaluated following exposures in RAW 264.7 mouse monocyte macrophage and BEAS-2B human bronchial epithelial cell lines. Both exhibited reduced viability with exposures, while apoptosis only occurred in RAW 264.7 cells. Our results suggested that excessive ROS production is likely not the predominant mechanism underlying indium-induced lung disease. However, the effects on cell viability reveal that several of the compounds are cytotoxic, and therefore, exposures need to be carefully monitored in the industrial setting. PMID:25208660

  5. Collective motion of self-propelled particles with density-dependent switching effect

    NASA Astrophysics Data System (ADS)

    Chen, Qiu-shi; Ma, Yu-qiang

    2016-05-01

    We study the effect of density-dependent angular response on large scale collective motion, that particles are more likely to switch their moving direction within lower local density region. We show that the presence of density-dependent angular response leads to three typical phases: polar liquid, micro-phase separation and disordered gas states. In our model, the transition between micro-phase separation and disordered gas is discontinuous. Giant number fluctuation is observed in polar liquid phase with statistically homogeneous order. In the micro-phase separation parameter space, high order and high density bands dominate the dynamics. We also compare our results with Vicsek model and show that the density-dependent directional switching response can stabilize the band state to very low noise condition. This band stripe could recruit almost all the particles in the system, which greatly enhances the coherence of the system. Our results could be helpful for understanding extremely coherent motion in nature and also would have practical implications for designing novel self-organization pattern.

  6. Technical Note: A novel rocket-based in situ collection technique for mesospheric and stratospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Reid, W.; Achtert, P.; Ivchenko, N.; Magnusson, P.; Kuremyr, T.; Shepenkov, V.; Tibert, G.

    2013-03-01

    A technique for collecting aerosol particles between altitudes of 17 and 85 km is described. Spin-stabilized collection probes are ejected from a sounding rocket allowing for multi-point measurements. Each probe is equipped with 110 collection samples that are 3 mm in diameter. The collection samples are one of three types: standard transmission electron microscopy carbon grids, glass fibre filter paper or silicone gel. Collection samples are exposed over a 50 m to 5 km height range with a total of 45 separate ranges. Post-flight electron microscopy will give size-resolved information on particle number, shape and elemental composition. Each collection probe is equipped with a suite of sensors to capture the probe's status during the fall. Parachute recovery systems along with GPS-based localization will ensure that each probe can be located and recovered for post-flight analysis.

  7. Stochastic collective dynamics of charged-particle beams in the stability regime.

    PubMed

    Petroni, N C; De Martino, S; De Siena, S; Illuminati, F

    2001-01-01

    We introduce a description of the collective transverse dynamics of charged (proton) beams in the stability regime by suitable classical stochastic fluctuations. In this scheme, the collective beam dynamics is described by time-reversal invariant diffusion processes deduced by stochastic variational principles (Nelson processes). By general arguments, we show that the diffusion coefficient, expressed in units of length, is given by lambda(c)sqrt[N], where N is the number of particles in the beam and lambda(c) the Compton wavelength of a single constituent. This diffusion coefficient represents an effective unit of beam emittance. The hydrodynamic equations of the stochastic dynamics can be easily recast in the form of a Schrödinger equation, with the unit of emittance replacing the Planck action constant. This fact provides a natural connection to the so-called "quantum-like approaches" to beam dynamics. The transition probabilities associated to Nelson processes can be exploited to model evolutions suitable to control the transverse beam dynamics. In particular we show how to control, in the quadrupole approximation to the beam-field interaction, both the focusing and the transverse oscillations of the beam, either together or independently.

  8. Stochastic collective dynamics of charged-particle beams in the stability regime.

    PubMed

    Petroni, N C; De Martino, S; De Siena, S; Illuminati, F

    2001-01-01

    We introduce a description of the collective transverse dynamics of charged (proton) beams in the stability regime by suitable classical stochastic fluctuations. In this scheme, the collective beam dynamics is described by time-reversal invariant diffusion processes deduced by stochastic variational principles (Nelson processes). By general arguments, we show that the diffusion coefficient, expressed in units of length, is given by lambda(c)sqrt[N], where N is the number of particles in the beam and lambda(c) the Compton wavelength of a single constituent. This diffusion coefficient represents an effective unit of beam emittance. The hydrodynamic equations of the stochastic dynamics can be easily recast in the form of a Schrödinger equation, with the unit of emittance replacing the Planck action constant. This fact provides a natural connection to the so-called "quantum-like approaches" to beam dynamics. The transition probabilities associated to Nelson processes can be exploited to model evolutions suitable to control the transverse beam dynamics. In particular we show how to control, in the quadrupole approximation to the beam-field interaction, both the focusing and the transverse oscillations of the beam, either together or independently. PMID:11304370

  9. Composition and Sources of Fine and Coarse Particles Collected during 2002–2010 in Boston, MA

    PubMed Central

    Masri, Shahir; Kang, Choong-Min; Koutrakis, Petros

    2016-01-01

    Identifying the sources, composition, and temporal variability of fine (PM2.5) and coarse (PM2.5-10) particles is a crucial component in understanding PM toxicity and establishing proper PM regulations. In this study, a Harvard Impactor was used to collect daily integrated fine and coarse particle samples every third day for nine years at a single site in Boston, MA. A total of 1,960 filters were analyzed for elements, black carbon (BC), and total PM mass. Positive Matrix Factorization (PMF) was used to identify source types and quantify their contributions to ambient PM2.5 and PM2.5-10. BC and 17 elements were identified as the main constituents in our samples. Results showed that BC, S, and Pb were associated exclusively with the fine particle mode, while 84% of V and 79% of Ni were associated with this mode. Elements mostly found in the coarse mode, over 80%, included Ca, Mn (road dust), and Cl (sea salt). PMF identified six source types for PM2.5 and three source types for PM2.5-10. Source types for PM2.5 included regional pollution, motor vehicles, sea salt, crustal/road dust, oil combustion, and wood burning. Regional pollution contributed the most, accounting for 48% of total PM2.5 mass, followed by motor vehicles (21%) and wood burning (19%). Source types for PM2.5-10 included crustal/road dust (62%), motor vehicles (22%), and sea salt (16%). A linear decrease in PM concentrations with time was observed for both fine (−5.2%/yr) and coarse (−3.6%/yr) particles. The fine-mode trend was mostly related to oil combustion and regional pollution contributions. Average PM2.5 concentrations peaked in summer (10.4 μg/m3) while PM2.5-10 concentrations were lower and demonstrated little seasonal variability. The findings of this study show that PM25 is decreasing more sharply than PM2.5-10 over time. This suggests the increasing importance of PM2.5-10 and traffic-related sources for PM exposure and future policies. PMID:25947125

  10. Measurement of Lung Phosphatidylcholines in Exhaled Breath Particles by a Convenient Collection Procedure.

    PubMed

    Ullah, Shahid; Sandqvist, Sören; Beck, Olof

    2015-11-17

    An analytical method based on high-performance liquid chromatography coupled to quadrupole tandem mass spectrometry was developed for the quantitative determination of four phosphatidylcholines (PCs) in human exhaled breath particles. Analytes were conveniently collected on an electrostatic polymer filter and extracted with methanol prior to analysis. Chromatographic separation was performed on an ultraperformance liquid chromatographic ethylene bridged hybrid phenyl column using a mobile phase consisting of water and methanol containing 4 mM ammonium formate and 0.1% ammonia. The mass spectrometer operated in positive electrospray ionization and selected reaction monitoring mode. Detection limits for PC 16:0/16:0 (dipalmitoylphosphatidylcholine, DPPC), PC 16:0/18:1, PC 16:0/18:2, and PC 18:0/18:2 were <0.01 ng/filter. Method recoveries at concentration levels of 0.1 and 10 ng/filter were 100-110% and 101-121%, respectively. Acceptable precision with coefficients of variation <20% and accuracies of 100% ± 20% were achieved. Identification of the individual PCs was performed on the basis of two product ions with correct ion ratios and chromatographic retention times. The highest amount in exhaled breath was found for DPPC with median concentration 1.14 ng/filter (range 0.6-21 ng/filter), and median molar ratios of DPPC/PC (16:0/18:1) of 1.98 (range 0.48-2.75). A different pattern with lower molar ratio (∼0.15) was found for oral fluid. The most significant element of this study was to use a precolumn in the LC system and to collecting exhaled particles in an electret polymer filter. Due to chromatographic interference by background contamination, an isolator column (PFC kit) was installed in between eluent mixer and injector to reduce contamination. This is the first LC/MS study where the method was successfully applied to analyze PCs in human exhaled breath by using a simple and convenient collection procedure. PMID:26505278

  11. Vegetation collection efficiency of ultrafine particles: From single fiber to porous media

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Yeng; Khlystov, Andrey; Katul, Gabriel G.

    2014-01-01

    A number of parameterization schemes are available to determine the collection efficiency of ultrafine particles (UFP) onto vegetated surfaces. One approach represents the vegetated elements as a fibrous filter with a characteristic fiber size that is difficult to a priori determine, while the other, a more conventional approach, represents vegetation as a porous medium. To date, no attempts have been made to compare the performance of these two distinct approaches or bridge them so as to show the necessary conditions leading to their potential equivalence. In a wind tunnel study, the UFP collection efficiencies of pine branches at five different wind speeds, two branch orientations, and two packing densities were measured and analyzed using these two vegetation representations. This vegetation type was selected because pines are a dominant species in the Southeastern United States and pine needles geometrically resemble fibrous material with a well-defined foliage diameter. The porous media and the fibrous filter representations described well observed UFP deposition at the branch scale. Conditions promoting their equivalence are thus explored. The difficult to determine effective fiber diameter was recovered from conventional canopy attributes such as the leaf area index by matching the collection efficiencies of UFP for the two vegetation representations. These results provide a working "aerodynamic" definition of the effective single-fiber diameter thereby rendering the simplified single-fiber formulation usable in large-scale atmospheric deposition models. Furthermore, the aerodynamic correction factor allows upscaling of pine needles to an effective leaf area index and provides some quantification of the effect of needle spatial clustering on UFP deposition. The applicability of the results to other vegetation species remains to be verified.

  12. Collective Thomson scattering energetic particle diagnostic in high performance tokamaks. Final report

    SciTech Connect

    Cheung, P.Y.; Aamodt, R.E.; Russell, D.A.

    1997-07-08

    This report summarizes the work performed under DOE grant DE-FG03-95ER54334. Lodestar was an active participant in the low power Collective Thomson Scattering (CTS) diagnostic experiment at TFTR in collaboration with MIT. A simple and effective fitting technique was developed to extract key parameters from the scattered data. Utilizing this new technique, the concept of lower hybrid resonance scattering was adapted for a feasibility study of a low/medium power collective scattering diagnostic for ITER. The implementation and the testing of such a technique for actual parameter extraction using TFTR data, however, was severely limited due to experimental and instrumentation complications. Based on the studies the authors have performed up to date, it is believed that a combination of non-physics related effects such as multiple wall reflection of incident signal and spectral impurity problem o the gyrotron can account for the anomalous signal strength. A collaborative effort with GA was initiated and a feasibility study of developing and implementing a collective thomson scattering (CTS) diagnostic for the detection of energetic particles at DIII-D was completed. Specifically, the process of selecting an optimum receiver location for the diagnostic is discussed in detailed. Results presented here include detailed signal to noise calculations and ray-tracing studies. Critical physics issues and selection criteria are discussed and a procedure to detect anisotropic energetic ion temperatures is also outlined. Favorable results, obtained in the feasibility study, indicate that it should be possible to develop and implement a CTS diagnostic at DIII-D.

  13. Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon

    NASA Astrophysics Data System (ADS)

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-12-01

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam-laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements are used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam-particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.

  14. Observations of Particle Organic Nitrate from Airborne and Ground Platforms in North America: Insights into Vertical and Geographical Distributions, Gas/Particle Partitioning, Losses, and Contributions to Total Particle Nitrate.

    NASA Astrophysics Data System (ADS)

    Day, D. A.; Campuzano Jost, P.; Palm, B. B.; Hu, W.; Nault, B.; Wooldridge, P. J.; Cohen, R. C.; Docherty, K. S.; Wagner, N. L.; Jimenez, J. L.

    2015-12-01

    Organic nitrate formation in the atmosphere represents a sink of NOx and a termination of the HOx/NOx­ O3-formation cycles, can act as a NOx reservoir transporting reactive nitrogen, and contributes to secondary organic aerosol (SOA) formation. However, particle organic nitrates (pRONO2) are rarely measured and thus poorly understood. We use measurements of pRONO2 and total (gas+particle) organic nitrate (totRONO2), OA, and ammonium nitrate from the DC3 and SEAC4RS aircraft and several ground campaigns to investigate vertical and geographical distributions, gas/particle partitioning, losses, and contributions to total particle nitrate (pTotNO3). Quantification with aerosol mass spectrometry is evaluated. The fraction of pTotNO3 that is pRONO2 shows a steep inverse relationship with pTotNO3, approaching 100% at low pTotNO3, primarily at rural and remote locations. pRONO2 was typically 10-30% of totRONO2 with little vertical gradient in gas/particle partitioning from the boundary layer (BL) to the upper troposphere (UT). However, pRONO2 and totRONO2 concentrations show strong vertical gradients, with a steep decrease from the top of the BL up through the residual layer. pRONO2 contribution to OA shows a moderate increase with lower OA loadings in the BL and free troposphere (~2-3% by mass of nitrate group) with higher contributions at the lowest OA (5-8%), mostly observed in the UT. In the BL, RONO2 gas/particle partitioning shows a trend with temperature, with higher particle fraction at lower temperatures, as expected from partitioning theory. However, the temperature trend is much weaker than for single compound partitioning, which may be due to a broad mixture of species. Little to no dependence of pRONO­2/OA on RH or estimated particle water was observed in the BL, suggesting that losses of pRONO2 species due to hydrolysis are too rapid to observe in this dataset and there may be a substantial fraction of pRONO2 species that are not prone to rapid hydrolysis.

  15. Chemical analysis of refractory stratospheric aerosol particles collected within the arctic vortex and inside polar stratospheric clouds

    NASA Astrophysics Data System (ADS)

    Ebert, Martin; Weigel, Ralf; Kandler, Konrad; Günther, Gebhard; Molleker, Sergej; Grooß, Jens-Uwe; Vogel, Bärbel; Weinbruch, Stephan; Borrmann, Stephan

    2016-07-01

    Stratospheric aerosol particles with diameters larger than about 10 nm were collected within the arctic vortex during two polar flight campaigns: RECONCILE in winter 2010 and ESSenCe in winter 2011. Impactors were installed on board the aircraft M-55 Geophysica, which was operated from Kiruna, Sweden. Flights were performed at a height of up to 21 km and some of the particle samples were taken within distinct polar stratospheric clouds (PSCs). The chemical composition, size and morphology of refractory particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis. During ESSenCe no refractory particles with diameters above 500 nm were sampled. In total 116 small silicate, Fe-rich, Pb-rich and aluminum oxide spheres were found. In contrast to ESSenCe in early winter, during the late-winter RECONCILE mission the air masses were subsiding inside the Arctic winter vortex from the upper stratosphere and mesosphere, thus initializing a transport of refractory aerosol particles into the lower stratosphere. During RECONCILE, 759 refractory particles with diameters above 500 nm were found consisting of silicates, silicate / carbon mixtures, Fe-rich particles, Ca-rich particles and complex metal mixtures. In the size range below 500 nm the presence of soot was also proven. While the data base is still sparse, the general tendency of a lower abundance of refractory particles during PSC events compared to non-PSC situations was observed. The detection of large refractory particles in the stratosphere, as well as the experimental finding that these particles were not observed in the particle samples (upper size limit ˜ 5 µm) taken during PSC events, strengthens the hypothesis that such particles are present in the lower polar stratosphere in late winter and have provided a surface for heterogeneous nucleation during PSC formation.

  16. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  17. Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy.

    PubMed

    Bertolini, Valentina; Gandolfi, Isabella; Ambrosini, Roberto; Bestetti, Giuseppina; Innocente, Elena; Rampazzo, Giancarlo; Franzetti, Andrea

    2013-07-01

    Despite airborne microorganisms representing a relevant fraction of atmospheric suspended particles, only a small amount of information is currently available on their abundance and diversity and very few studies have investigated the environmental factors influencing the structure of airborne bacterial communities. In this work, we used quantitative PCR and Illumina technology to provide a thorough description of airborne bacterial communities in the urban area of Milan (Italy). Forty samples were collected in 10-day sampling sessions, with one session per season. The mean bacterial abundance was about 10⁴ ribosomal operons per m³ of air and was lower in winter than in the other seasons. Communities were dominated by Actinobacteridae, Clostridiales, Sphingobacteriales and few proteobacterial orders (Burkholderiales, Rhizobiales, Sphingomonadales and Pseudomonadales). Chloroplasts were abundant in all samples. A higher abundance of Actinobacteridae, which are typical soil-inhabiting bacteria, and a lower abundance of chloroplasts in samples collected on cold days were observed. The variation in community composition observed within seasons was comparable to that observed between seasons, thus suggesting that airborne bacterial communities show large temporal variability, even between consecutive days. The structure of airborne bacterial communities therefore suggests that soil and plants are the sources which contribute most to the airborne communities of Milan atmosphere, but the structure of the bacterial community seems to depend mainly on the source of bacteria that predominates in a given period of time.

  18. Raman microscopy of size-segregated aerosol particles, collected at the Sonnblick Observatory in Austria

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Kasper-Giebl, Anneliese; Kistler, Magdalena; Matzl, Julia; Schauer, Gerhard; Hitzenberger, Regina; Lohninger, Johann; Lendl, Bernhard

    2014-05-01

    Size classified aerosol samples were collected using low pressure impactors in July 2013 at the high alpine background site Sonnnblick. The Sonnblick Observatory is located in the Austrian Alps, at the summit of Sonnblick 3100 m asl. Sampling was performed in parallel on the platform of the Observatory and after the aerosol inlet. The inlet is constructed as a whole air inlet and is operated at an overall sampling flow of 137 lpm and heated to 30 °C. Size cuts of the eight stage low pressure impactors were from 0.1 to 12.8 µm a.d.. Alumina foils were used as sample substrates for the impactor stages. In addition to the size classified aerosol sampling overall aerosol mass (Sharp Monitor 5030, Thermo Scientific) and number concentrations (TSI, CPC 3022a; TCC-3, Klotz) were determined. A Horiba LabRam 800HR Raman microscope was used for vibrational mapping of an area of about 100 µm x 100 µm of the alumina foils at a resolution of about 0.5 µm. The Raman microscope is equipped with a laser with an excitation wavelength of 532 nm and a grating with 300 gr/mm. Both optical images and the related chemical images were combined and a chemometric investigation of the combined images was done using the software package Imagelab (Epina Software Labs). Based on the well-known environment, a basic assignment of Raman signals of single particles is possible at a sufficient certainty. Main aerosol constituents e.g. like sulfates, black carbon and mineral particles could be identified. First results of the chemical imaging of size-segregated aerosol, collected at the Sonnblick Observatory, will be discussed with respect to standardized long-term measurements at the sampling station. Further, advantages and disadvantages of chemical imaging with subsequent chemometric investigation of the single images will be discussed and compared to the established methods of aerosol analysis. The chemometric analysis of the dataset is focused on mixing and variation of single compounds at

  19. A method for the direct measurement of surface tension of collected atmospherically relevant aerosol particles using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Hritz, Andrew D.; Raymond, Timothy M.; Dutcher, Dabrina D.

    2016-08-01

    Accurate estimates of particle surface tension are required for models concerning atmospheric aerosol nucleation and activation. However, it is difficult to collect the volumes of atmospheric aerosol required by typical instruments that measure surface tension, such as goniometers or Wilhelmy plates. In this work, a method that measures, ex situ, the surface tension of collected liquid nanoparticles using atomic force microscopy is presented. A film of particles is collected via impaction and is probed using nanoneedle tips with the atomic force microscope. This micro-Wilhelmy method allows for direct measurements of the surface tension of small amounts of sample. This method was verified using liquids, whose surface tensions were known. Particles of ozone oxidized α-pinene, a well-characterized system, were then produced, collected, and analyzed using this method to demonstrate its applicability for liquid aerosol samples. It was determined that oxidized α-pinene particles formed in dry conditions have a surface tension similar to that of pure α-pinene, and oxidized α-pinene particles formed in more humid conditions have a surface tension that is significantly higher.

  20. Aerosol Sampling System for Collection of Capstone Depleted Uranium Particles in a High-Energy Environment

    SciTech Connect

    Holmes, Thomas D.; Guilmette, Raymond A.; Cheng, Yung-Sung; Parkhurst, MaryAnn; Hoover, Mark D.

    2009-03-01

    The Capstone Depleted Uranium Aerosol Study was undertaken to obtain aerosol samples resulting from a kinetic-energy cartridge with a large-caliber depleted uranium (DU) penetrator striking an Abrams or Bradley test vehicle. The sampling strategy was designed to (1) optimize the performance of the samplers and maintain their integrity in the extreme environment created during perforation of an armored vehicle by a DU penetrator, (2) collect aerosols as a function of time post-impact, and (3) obtain size-classified samples for analysis of chemical composition, particle morphology, and solubility in lung fluid. This paper describes the experimental setup and sampling methodologies used to achieve these objectives. Custom-designed arrays of sampling heads were secured to the inside of the target in locations approximating the breathing zones of the vehicle commander, loader, gunner, and driver. Each array was designed to support nine filter cassettes and nine cascade impactors mounted with quick-disconnect fittings. Shielding and sampler placement strategies were used to minimize sampler loss caused by the penetrator impact and the resulting fragments of eroded penetrator and perforated armor. A cyclone train was used to collect larger quantities of DU aerosol for chemical composition and solubility. A moving filter sample was used to obtain semicontinuous samples for depleted uranium concentration determination. Control for the air samplers was provided by five remotely located valve control and pressure monitoring units located inside and around the test vehicle. These units were connected to a computer interface chassis and controlled using a customized LabVIEW engineering computer control program. The aerosol sampling arrays and control systems for the Capstone study provided the needed aerosol samples for physicochemical analysis, and the resultant data were used for risk assessment of exposure to DU aerosol.

  1. Estimation of the Human Extrathoracic Deposition Fraction of Inhaled Particles Using a Polyurethane Foam Collection Substrate in an IOM Sampler.

    PubMed

    Sleeth, Darrah K; Balthaser, Susan A; Collingwood, Scott; Larson, Rodney R

    2016-03-01

    Extrathoracic deposition of inhaled particles (i.e., in the head and throat) is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling). However, the International Organization for Standardization (ISO) has recently adopted particle deposition sampling conventions (ISO 13138), including conventions for extrathoracic (ET) deposition into the anterior nasal passage (ET₁) and the posterior nasal and oral passages (ET₂). For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm-44.3 µm) were used as a test dust in a low speed (0.2 m/s) wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device. PMID:26959046

  2. Estimation of the Human Extrathoracic Deposition Fraction of Inhaled Particles Using a Polyurethane Foam Collection Substrate in an IOM Sampler

    PubMed Central

    Sleeth, Darrah K.; Balthaser, Susan A.; Collingwood, Scott; Larson, Rodney R.

    2016-01-01

    Extrathoracic deposition of inhaled particles (i.e., in the head and throat) is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling). However, the International Organization for Standardization (ISO) has recently adopted particle deposition sampling conventions (ISO 13138), including conventions for extrathoracic (ET) deposition into the anterior nasal passage (ET1) and the posterior nasal and oral passages (ET2). For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm–44.3 µm) were used as a test dust in a low speed (0.2 m/s) wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device. PMID:26959046

  3. Characterizing the size distribution of particles in urban stormwater by use of fixed-point sample-collection methods

    USGS Publications Warehouse

    Selbig, William R.; Bannerman, Roger T.

    2011-01-01

    The U.S Geological Survey, in cooperation with the Wisconsin Department of Natural Resources (WDNR) and in collaboration with the Root River Municipal Stormwater Permit Group monitored eight urban source areas representing six types of source areas in or near Madison, Wis. in an effort to improve characterization of particle-size distributions in urban stormwater by use of fixed-point sample collection methods. The types of source areas were parking lot, feeder street, collector street, arterial street, rooftop, and mixed use. This information can then be used by environmental managers and engineers when selecting the most appropriate control devices for the removal of solids from urban stormwater. Mixed-use and parking-lot study areas had the lowest median particle sizes (42 and 54 (u or mu)m, respectively), followed by the collector street study area (70 (u or mu)m). Both arterial street and institutional roof study areas had similar median particle sizes of approximately 95 (u or mu)m. Finally, the feeder street study area showed the largest median particle size of nearly 200 (u or mu)m. Median particle sizes measured as part of this study were somewhat comparable to those reported in previous studies from similar source areas. The majority of particle mass in four out of six source areas was silt and clay particles that are less than 32 (u or mu)m in size. Distributions of particles ranging from 500 (u or mu)m were highly variable both within and between source areas. Results of this study suggest substantial variability in data can inhibit the development of a single particle-size distribution that is representative of stormwater runoff generated from a single source area or land use. Continued development of improved sample collection methods, such as the depth-integrated sample arm, may reduce variability in particle-size distributions by mitigating the effect of sediment bias inherent with a fixed-point sampler.

  4. Distribution and identification of culturable airborne microorganisms in a Swiss milk processing facility.

    PubMed

    Brandl, Helmut; Fricker-Feer, Claudia; Ziegler, Dominik; Mandal, Jyotshna; Stephan, Roger; Lehner, Angelika

    2014-01-01

    Airborne communities (mainly bacteria) were sampled and characterized (concentration levels and diversity) at 1 outdoor and 6 indoor sites within a Swiss dairy production facility. Air samples were collected on 2 sampling dates in different seasons, one in February and one in July 2012 using impaction bioaerosol samplers. After cultivation, isolates were identified by mass spectrometry (matrix-assisted laser desorption/ionization-time-of-flight) and molecular (sequencing of 16S rRNA and rpoB genes) methods. In general, total airborne particle loads and total bacterial counts were higher in winter than in summer, but remained constant within each indoor sampling site at both sampling times (February and July). Bacterial numbers were generally very low (<100 cfu/m(3) of air) during the different steps of milk powder production. Elevated bacterial concentrations (with mean values of 391 ± 142 and 179 ± 33 cfu/m(3) of air during winter and summer sampling, respectively; n=15) occurred mainly in the "logistics area," where products in closed tins are packed in secondary packaging material and prepared for shipping. However, total bacterial counts at the outdoor site varied, with a 5- to 6-fold higher concentration observed in winter compared with summer. Twenty-five gram-positive and gram-negative genera were identified as part of the airborne microflora, with Bacillus and Staphylococcus being the most frequent genera identified. Overall, the culturable microflora community showed a composition typical and representative for the specific location. Bacterial counts were highly correlated with total airborne particles in the size range 1 to 5 µm, indicating that a simple surveillance system based upon counting of airborne particles could be implemented. The data generated in this study could be used to evaluate the effectiveness of the dairy plant's sanitation program and to identify potential sources of airborne contamination, resulting in increased food safety.

  5. Apparatus to collect, classify, concentrate, and characterize gas-borne particles

    DOEpatents

    Rader, Daniel J.; Torczynski, John R.; Wally, Karl; Brockmann, John E.

    2002-01-01

    An aerosol lab-on-a-chip (ALOC) integrates one or more of a variety of aerosol collection, classification, concentration (enrichment), and characterization processes onto a single substrate or layered stack of such substrates. By taking advantage of modern micro-machining capabilities, an entire suite of discrete laboratory aerosol handling and characterization techniques can be combined in a single portable device that can provide a wealth of data on the aerosol being sampled. The ALOC offers parallel characterization techniques and close proximity of the various characterization modules helps ensure that the same aerosol is available to all devices (dramatically reducing sampling and transport errors). Micro-machine fabrication of the ALOC significantly reduces unit costs relative to existing technology, and enables the fabrication of small, portable ALOC devices, as well as the potential for rugged design to allow operation in harsh environments. Miniaturization also offers the potential of working with smaller particle sizes and lower pressure drops (leading to reduction of power consumption).

  6. Collective Bacterial Dynamics Revealed Using a Three-Dimensional Population-Scale Defocused Particle Tracking Technique

    PubMed Central

    Wu, Mingming; Roberts, John W.; Kim, Sue; Koch, Donald L.; DeLisa, Matthew P.

    2006-01-01

    An ability to monitor bacterial locomotion and collective dynamics is crucial to our understanding of a number of well-characterized phenotypes including biofilm formation, chemotaxis, and virulence. Here, we report the tracking of multiple swimming Escherichia coli cells in three spatial dimensions and at single-cell resolution using a novel three-dimensional (3D) defocused particle tracking (DPT) method. The 3D trajectories were generated for wild-type Escherichia coli strain RP437 as well as for isogenic derivatives that display smooth swimming due to a cheA deletion (strain RP9535) or incessant tumbling behavior due to a cheZ deletion (strain RP1616). The 3D DPT method successfully differentiated these three modes of locomotion and allowed direct calculation of the diffusion coefficient for each strain. As expected, we found that the smooth swimmer diffused more readily than the wild type, and both the smooth swimmer and the wild-type cells exhibited diffusion coefficients that were at least two orders of magnitude larger than that of the tumbler. Finally, we found that the diffusion coefficient increased with increasing cell density, a phenomenon that can be attributed to the hydrodynamic disturbances caused by neighboring bacteria. PMID:16820497

  7. Interplanetary dust particles collected in the stratosphere: observations of atmospheric heating and constraints on their interrelationships and sources.

    PubMed

    Sandford, S A; Bradley, J P

    1989-01-01

    The majority of the interplanetary dust particles (IDPs) collected in the stratosphere belong to one of three major classes, the first two dominated by the anhydrous minerals olivine and pyroxene, and the third by hydrous layer-lattice silicates. Infrared spectroscopy and transmission electron microscopy studies show that the different IDP classes represent different types of dust that exist as individual particles in interplanetary space. The majority of the collected IDPs smaller than 30 micrometers in diameter in the layer-lattice silicate and pyroxene classes appear not to have been heated to temperatures above 600 degrees C during atmospheric entry. The relatively low maximum temperatures experienced by these IDPs during atmospheric entry imply that they arrive at the top of the atmosphere with low geocentric encounter velocities. This limits the possible encounter trajectories for these particles to relatively circular, prograde orbits. As a result, it is unlikely that these IDPs are from Earth-crossing comets or asteroids. Asteroids, and comets having low inclinations and perihelia outside 1.2 AU, appear to be the best candidates for the parent bodies of the pyroxene and layer-lattice silicate particles. Chemical and mineralogical information suggests that the pyroxene-rich IDPs are from comets and the layer-lattice silicate-rich IDPs are from asteroids. The collected IDPs dominated by olivine appear to include a larger fraction of particles heating above 600 degrees C, suggesting that these particles were captured from more eccentric orbits. This, and the observation of the infrared spectral features of olivine in several comets suggest these particles have a cometary origin. Since much of the collected dust has apparently been captured from nearly circular, prograde orbits and since there are no appropriate parent bodies presently in such orbits, these results provide an experimental confirmation that the Poynting-Robertson effect exists as a

  8. Interstellar dust. Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft.

    PubMed

    Westphal, Andrew J; Stroud, Rhonda M; Bechtel, Hans A; Brenker, Frank E; Butterworth, Anna L; Flynn, George J; Frank, David R; Gainsforth, Zack; Hillier, Jon K; Postberg, Frank; Simionovici, Alexandre S; Sterken, Veerle J; Nittler, Larry R; Allen, Carlton; Anderson, David; Ansari, Asna; Bajt, Saša; Bastien, Ron K; Bassim, Nabil; Bridges, John; Brownlee, Donald E; Burchell, Mark; Burghammer, Manfred; Changela, Hitesh; Cloetens, Peter; Davis, Andrew M; Doll, Ryan; Floss, Christine; Grün, Eberhard; Heck, Philipp R; Hoppe, Peter; Hudson, Bruce; Huth, Joachim; Kearsley, Anton; King, Ashley J; Lai, Barry; Leitner, Jan; Lemelle, Laurence; Leonard, Ariel; Leroux, Hugues; Lettieri, Robert; Marchant, William; Ogliore, Ryan; Ong, Wei Jia; Price, Mark C; Sandford, Scott A; Sans Tresseras, Juan-Angel; Schmitz, Sylvia; Schoonjans, Tom; Schreiber, Kate; Silversmit, Geert; Solé, Vicente A; Srama, Ralf; Stadermann, Frank; Stephan, Thomas; Stodolna, Julien; Sutton, Stephen; Trieloff, Mario; Tsou, Peter; Tyliszczak, Tolek; Vekemans, Bart; Vincze, Laszlo; Von Korff, Joshua; Wordsworth, Naomi; Zevin, Daniel; Zolensky, Michael E

    2014-08-15

    Seven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory. The seven candidate interstellar particles are diverse in elemental composition, crystal structure, and size. The presence of crystalline grains and multiple iron-bearing phases, including sulfide, in some particles indicates that individual interstellar particles diverge from any one representative model of interstellar dust inferred from astronomical observations and theory.

  9. Experimental technique for handling and analysis of particles collected after nuclear explosions

    NASA Astrophysics Data System (ADS)

    Andersson, L. H.; Carlsson, L. E.

    1983-08-01

    Methods for handling radioactive particles are described. Particles with diameters 2 to 10 microns were fixed in a thin collodion layer on a glass plate and mounted on carbon or plastic foils prior to X-ray analysis in electron and proton microprobes. Calcium fluoride particles containing low concentrations of uranium tetrafluoride were used. A uranium level of 0.1% is demonstrated in a particle of 5 microns. A plutonium concentration of 0.2% is detected in a particle consisting of Al, Si, K, Ca, Zn, Sr and Ba.

  10. Surface scattering properties estimated from modeling airborne multiple emission angle reflectance data

    NASA Technical Reports Server (NTRS)

    Guinness, Edward A.; Arvidson, Raymond E.; Irons, J. R.; Harding, D. J.

    1991-01-01

    Here, researchers apply the Hapke function to airborne bidirectional reflectance data collected over three terrestrial surfaces. The objectives of the study were to test the range of natural surfaces that the Hapke model fits and to evaluate model parameters in terms of known surface properties. The data used are multispectral and multiple emission angle data collected during the Geologic Remote Sensing Field Experiment (GRSFE) over a mud-cracked playa, an artificially roughened playa, and a basalt cobble strewn playa at Lunar Lake Playa in Nevada. Airborne remote sensing data and associated field measurements were acquired at the same time. The airborne data were acquired by the Advanced Solid State Array Spectroradiometer (ASAS) instrument, a 29-spectral band imaging system. ASAS reflectance data for a cobble-strewn surface and an artificially rough playa surface on Lunar Lake Playa can be explained with the Hanke model. The cobble and rough playa sites are distinguishable by a single scattering albedo, which is controlled by material composition; by the roughness parameter, which appears to be controlled by the surface texture and particle size; and the symmetry factor of the single particle phase function, which is controlled by particle size and shape. A smooth playa surface consisting of compacted, fine-grained particles has reflectance variations that are also distinct from either the cobble site or rough playa site. The smooth playa appears to behave more like a Lambertian surface that cannot be modeled with the Hapke function.

  11. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  12. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery.

    PubMed

    Miller, Arthur; Drake, Pamela L; Hintz, Patrick; Habjan, Matt

    2010-07-01

    An air quality survey was conducted at a precious metals refinery in order to evaluate worker exposures to airborne metals and to provide detailed characterization of the aerosols. Two areas within the refinery were characterized: a furnace room and an electro-refining area. In line with standard survey practices, both personal and area air filter samples were collected on 37-mm filters and analyzed for metals by inductively coupled plasma-atomic emission spectroscopy. In addition to the standard sampling, measurements were conducted using other tools, designed to provide enhanced characterization of the workplace aerosols. The number concentration and number-weighted particle size distribution of airborne particles were measured with a fast mobility particle sizer (FMPS). Custom-designed software was used to correlate particle concentration data with spatial location data to generate contour maps of particle number concentrations in the work areas. Short-term samples were collected in areas of localized high concentrations and analyzed using transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) to determine particle morphology and elemental chemistry. Analysis of filter samples indicated that all of the workers were exposed to levels of silver above the Occupational Safety and Health Administration permissible exposure limit of 0.01 mg m(-3) even though the localized ventilation was functioning. Measurements with the FMPS indicated that particle number concentrations near the furnace increased up to 1000-fold above the baseline during the pouring of molten metal. Spatial mapping revealed localized elevated particle concentrations near the furnaces and plumes of particles rising into the stairwells and traveling to the upper work areas. Results of TEM/EDS analyses confirmed the high number of nanoparticles measured by the FMPS and indicated the aerosols were rich in metals including silver, lead, antimony, selenium, and zinc. Results of

  13. THE BIMODAL DISTRIBUTION: DEVELOPMENT OF THE CONCEPT OF FINE AND COARSE PARTICLES AS SEPARATE AND DISTINCT COMPONENTS OF AIRBORNE PARTICULATE MATTER

    EPA Science Inventory

    In the early 1970s, it was understood that combustion particles were formed mostly in sizes below 1 um diameter, and windblown dust was suspended in sizes mostly above 1 um diameter. However, particle size distribution was thought of as a single mode. Particles were thought to f...

  14. Ablation of silicate particles in high-speed continuum and transition flow with application to the collection of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Rulison, Aaron J.; Flagan, Richard C.; Ahrens, Thomas J.; Miller, Wayne F.

    1991-01-01

    The ablative deceleration of spheres in the continuum and slip regimes is studied using spherical 7.1-micron-diam soda-lime glass particles launched from vacuum at about 4500 m/sec speed through a 13-micron-thick plastic film into a capture chamber containing Xe at 0.1 or 0.2 atm pressure and 295 K temperature. The results of SEM examinations of the collected ablated particles showed that the ratio of the ablated-particle radius (Rf) to the initial radius (R0) increased with gas pressure (from Rf/R0 about 0.67 at 0.1 atm, to about 0.88 at 0.2 atm). A model was developed to describe the ablation and deceleration of spheres in high-speed continuum and slip flow. The pressure dependence predicted by the model agreed with experimental results.

  15. Flue gas conditioning for improved particle collection in electrostatic precipitators. Quarterly technical report, [October--December 1991

    SciTech Connect

    Durham, M.D.

    1992-01-14

    Electrostatic precipitators (ESP) serve as the primary air pollution control device for the majority of coal-fired utility boilers in the Eastern and Midwestern regions of the United States. Since most of these ESPs are collecting flyash generated from medium- and high-sulfur coal, they are not experiencing operational limitations which are common when treating high-resistivity particles and are performing at an efficiency that is as high as could be expected. However, there are indications that the collection efficiency could be improved with flue gas conditioning. Conditioning is commonly used for solving operational problems associated with high-resistivity dusts. The purpose of conditioning for low- and moderate-resistivity applications is to increase the adhesive characteristics of the dust. Flue gas conditioning that increases particle adhesion has the potential to improve collection efficiency because a large percentage of particulate emissions from a well-performing ESP is due to reentrainment. Improved ESP performance should result if particle reentrainment could be reduced by making the particles more adhesive. This could produce a significant reduction in emissions from and ESP from the Following mechanisms: reduced erosion-type reentrainment; reduced rapping emissions; reduced hopper reentrainment; increased agglomeration of fine particles.

  16. Exposure to airborne allergens: a review of sampling methods.

    PubMed

    Renström, Anne

    2002-10-01

    A number of methods are used to assess exposure to high-molecular weight allergens. In the occupational setting, airborne dust is often collected on filters using pumps, the filters are eluted and allergen content in the eluate analysed using immunoassays. Collecting inhalable dust using person-carried pumps may be considered the gold standard. Other allergen sampling methods are available. Recently, a method that collects nasally inhaled dust on adhesive surfaces within nasal samplers has been developed. Allergen content can be analysed in eluates using sensitive enzyme immunoassays, or allergen-bearing particles can be immunostained using antibodies, and studied under the microscope. Settling airborne dust can be collected in petri dishes, a cheap and simple method that has been utilised in large-scale exposure studies. Collection of reservoir dust from surfaces using vacuum cleaners with a dust collector is commonly used to measure pet or mite allergens in homes. The sampling methods differ in properties and relevance to personal allergen exposure. Since methods for all steps from sampling to analysis differ between laboratories, determining occupational exposure limits for protein allergens is today unfeasible. A general standardisation of methods is needed.

  17. Particle morphologies and formation mechanisms of fine volcanic ash aerosol collected from the 2006 eruption of Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Rinkleff, P. G.; Cahill, C. F.

    2010-12-01

    Fine volcanic ash aerosol (35-0.09um) erupted in 2006 by Augustine Volcano, southwest of Anchorage, Alaska was collected by a DRUM cascade impactor and analyzed by scanning electron microscopy for individual particle chemistry and morphology. Results of these analyses show ash particles occur as either individual glass shard and mineral phase (plagioclase, magnetite, ilmenite, hornblende, etc.) particles or aggregates thereof. Individual glass shard ash particles are angular, uniformly-sized, consist of calc-alkaline whole-rock elements (Si, Al, Fe, Na, and Ca) and are not collocated on the sample media with non-silicate, Cl and S bearing sea salt particles. Aggregate particles occur as two types: pure ash aggregates and sea salt-cored aggregates. Pure ash aggregates are made up of only ash particles and contain no other constituents. Sea salt-cored aggregates are ash particles commingled with sea salts. Determining the formation processes of the different ash particle types need further investigation but some possibilities are proposed here. Individual ash particles may exist when the ambient air is generally dry, little electrical charge exists on ash particles, the eruptive cloud is generally dry, or the number of individual particles exceeds the scavenging capacity of the water droplets present. Another possibility is that ash aggregates may break apart as relative humidity drops over time and causes ash-laden water droplets to evaporate and subsequently break apart. Pure ash aggregates may form when the ambient air and plume is relatively dry but the ash has a significant charge to cause ash to aggregate. Or they could form during long-range transport when turbulent or Brownian motion can cause ash particles to collide and coagulate. Pure ash aggregates could also form as a result of water droplet scavenging and subsequent evaporation of water droplets, leaving behind only ash. In this case, droplets would not have interacted with a sea salt

  18. Modeling for Airborne Contamination

    SciTech Connect

    F.R. Faillace; Y. Yuan

    2000-08-31

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift

  19. Laboratory studies of collection efficiency of sub-micrometer aerosol particles by cloud droplets on a single droplet basis

    NASA Astrophysics Data System (ADS)

    Ardon-Dryer, K.; Huang, Y.-W.; Cziczo, D. J.

    2015-03-01

    An experimental setup has been constructed to measure the Collection Efficiency (CE) of sub-micrometer aerosol particles by cloud droplets. Water droplets of a dilute aqueous ammonium sulfate solution with a radius of ~20 μm fall freely into a chamber and collide with sub-micrometer Polystyrene Latex Sphere (PSL) particles of variable size and concentrations. Two RH conditions, ~15 and ~88%, hereafter termed "Low" and "High", respectively, were varied with different particles size and concentrations. After passing through the chamber, the droplets and aerosol particles were sent to the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument to determine chemical compositions on a single particle basis. Coagulated droplets had mass spectra that contain signatures from both an aerosol particle and a droplet residual. CE values range from 5.7 × 10-3 to 4.6 × 10-2 for the Low RH and from 6.4 × 10-3 to 2.2 × 10-2 for the High RH cases. CE values were, within experimental uncertainty, independent of the aerosol concentrations. CE values in this work were found to be in agreement with previous experimental and theoretical studies. To our knowledge, this is the first coagulation experiment performed on a single droplet basis.

  20. Survival of Airborne MS2 Bacteriophage Generated from Human Saliva, Artificial Saliva, and Cell Culture Medium

    PubMed Central

    Kuehn, Thomas H.; Bekele, Aschalew Z.; Mor, Sunil K.; Verma, Harsha; Goyal, Sagar M.; Raynor, Peter C.; Pui, David Y. H.

    2014-01-01

    Laboratory studies of virus aerosols have been criticized for generating airborne viruses from artificial nebulizer suspensions (e.g., cell culture media), which do not mimic the natural release of viruses (e.g., from human saliva). The objectives of this study were to determine the effect of human saliva on the infectivity and survival of airborne virus and to compare it with those of artificial saliva and cell culture medium. A stock of MS2 bacteriophage was diluted in one of three nebulizer suspensions, aerosolized, size selected (100 to 450 nm) using a differential mobility analyzer, and collected onto gelatin filters. Uranine was used as a particle tracer. The resulting particle size distribution was measured using a scanning mobility particle sizer. The amounts of infectious virus, total virus, and fluorescence in the collected samples were determined by infectivity assays, quantitative reverse transcription-PCR (RT-PCR), and spectrofluorometry, respectively. For all nebulizer suspensions, the virus content generally followed a particle volume distribution rather than a number distribution. The survival of airborne MS2 was independent of particle size but was strongly affected by the type of nebulizer suspension. Human saliva was found to be much less protective than cell culture medium (i.e., 3% tryptic soy broth) and artificial saliva. These results indicate the need for caution when extrapolating laboratory results, which often use artificial nebulizer suspensions. To better assess the risk of airborne transmission of viral diseases in real-life situations, the use of natural suspensions such as saliva or respiratory mucus is recommended. PMID:24561592

  1. Collection efficiency of the Soot-Particle Aerosol Mass Spectrometer (SP-AMS) for internally mixed particulate black carbon

    DOE PAGES

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-05-26

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore » used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of two. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less

  2. Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon

    DOE PAGES

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-12-18

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore » used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less

  3. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  4. Comprehensive analysis of airborne contaminants from recent Spacelab missions

    NASA Technical Reports Server (NTRS)

    Matney, M. L.; Boyd, J. F.; Covington, P. A.; Leano, H. J.; Pierson, D. L.; Limero, T. F.; James, J. T.

    1993-01-01

    The Shuttle experiences unique air contamination problems because of microgravity and the closed environment. Contaminant build-up in the closed atmosphere and the lack of a gravitational settling mechanism have produced some concern in previous missions about the amount of solid and volatile airborne contaminants in the Orbiter and Spacelab. Degradation of air quality in the Orbiter/Spacelab environment, through processes such as chemical contamination, high solid-particulate levels, and high microbial levels, may affect crew performance and health. A comprehensive assessment of the Shuttle air quality was undertaken during STS-40 and STS-42 missions, in which a variety of air sampling and monitoring techniques were employed to determine the contaminant load by characterizing and quantitating airborne contaminants. Data were collected on the airborne concentrations of volatile organic compounds, microorganisms, and particulate matter collected on Orbiter/Spacelab air filters. The results showed that STS-40/42 Orbiter/Spacelab air was toxicologically safe to breathe, except during STS-40 when the Orbiter Refrigerator/Freezer unit was releasing noxious gases in the middeck. On STS-40, the levels of airborne bacteria appeared to increase as the mission progressed; however, this trend was not observed for the STS-42 mission. Particulate matter in the Orbiter/Spacelab air filters was chemically analyzed in order to determine the source of particles. Only small amounts of rat hair and food bar (STS-40) and traces of soiless medium (STS-42) were detected in the Spacelab air filters, indicating that containment for Spacelab experiments was effective.

  5. Abundance and Community Structure of Bacteria on Asian Dust Particles Collected in Beijing, China, during the Asian Dust Season.

    PubMed

    Yamaguchi, Nobuyasu; Baba, Takashi; Ichijo, Tomoaki; Himezawa, Yuka; Enoki, Kanami; Saraya, Makoto; Li, Pin-Fang; Nasu, Masao

    2016-01-01

    Approximately 180 t/km(2) of Asian dust particles are estimated to fall annually on Beijing, China, and there is significant concern about the influence of microbes transported by Asian dust events on human health and downwind ecosystems. In this study, we collected Asian dust particles in Beijing, and analyzed the bacterial communities on these particles by culture-independent methods. Bacterial cells on Asian dust particles were visualized first by laser scanning microscopy, which demonstrated that Asian dust particles carry bacterial cells to Beijing. Bacterial abundance, as determined by quantitative polymerase chain reaction (PCR), was 10(8) to 10(9) cells/g, a value about 10 times higher than that in Asian dust source soils. Inter-seasonal variability of bacterial community structures among Asian dust samples, as compared by terminal restriction fragment length polymorphism (T-RFLP), was low during the Asian dust season. Several viable bacteria, including intestinal bacteria, were found in Asian dust samples by denaturing gradient gel electrophoresis (DGGE). Clone library analysis targeting 16S ribosomal RNA (rRNA) gene sequences demonstrated that bacterial phylogenetic diversity was high in the dust samples, and most of these were environmental bacteria distributed in soil and air. The dominant species in the clone library was Segetibacter aerophilus (Bacteroidetes), which was first isolated from an Asian dust sample collected in Korea. Our results also indicate the possibility of a change in the bacterial community structure during transportation and increases in desiccation-tolerant bacteria such as Firmicutes.

  6. Airborne particles in the Miyagi Museum of Art in Sendai, Japan, studied by electron probe X-ray microanalysis and energy dispersive X-ray fluorescence analysis.

    PubMed

    Injuk, Jasna; Osán, Janos; Van Grieken, René; Tsuji, Kouichi

    2002-05-01

    The presented work provides baseline data on the existing airborne conditions in the Miyagi Museum of Art in Sendai, Japan, during the summer of 2000. The chemical composition, size and indoor and outdoor origin of the suspended particulate matter were identified using a number of advanced X-ray techniques, such as Electron Probe X-Ray Microanalysis (EPXMA) and Energy Dispersive X-Ray Fluorescence Analysis (EDXRF). Our results, to the best of our knowledge, represent the first detailed study of the chemical nature of the indoor particulate matter in a Japanese museum and, as such, may contribute to future improvements of the air quality inside museums and to the lasting conservation of works of art.

  7. Direct analysis of airborne mite allergen (Der f1) in the residential atmosphere by chemifluorescent immunoassay using bioaerosol sampler.

    PubMed

    Miyajima, Kumiko; Suzuki, Yurika; Miki, Daisuke; Arai, Moeka; Arakawa, Takahiro; Shimomura, Hiroji; Shiba, Kiyoko; Mitsubayashi, Kohji

    2014-06-01

    Dermatophagoides farinae allergen (Der f1) is one of the most important indoor allergens associated with allergic diseases in humans. Mite allergen Der f1 is usually associated with particles of high molecular weight; thus, Der f1 is generally present in settled dust. However, a small quantity of Der f1 can be aerosolized and become an airborne component. Until now, a reliable method of detecting airborne Der f1 has not been developed. The aim of this study was to develop a fiber-optic chemifluorescent immunoassay for the detection of airborne Der f1. In this method, the Der f1 concentration measured on the basis of the intensity of fluorescence amplified by an enzymatic reaction between the labeled enzyme by a detection antibody and a fluorescent substrate. The measured Der f1 concentration was in the range from 0.49 to 250 ng/ml and a similar range was found by enzyme-linked immunosorbent assay (ELISA). This method was proved to be highly sensitive to Der f1 compared with other airborne allergens. For the implementation of airborne allergen measurement in a residential environment, a bioaerosol sampler was constructed. The airborne allergen generated by a nebulizer was conveyed to a newly sampler we developed for collecting airborne Der f1. The sampler was composed of polymethyl methacrylate (PMMA) cells for gas/liquid phases and some porous membranes which were sandwiched in between the two phases. Der f1 in air was collected by the sampler and measured using the fiber-optic immunoassay system. The concentration of Der f1 in aerosolized standards was in the range from 0.125 to 2.0 mg/m(3) and the collection rate of the device was approximately 0.2%.

  8. Source Identification Of Airborne Antimony On The Basis Of The Field Monitoring And The Source Profiling

    NASA Astrophysics Data System (ADS)

    Iijima, A.; Sato, K.; Fujitani, Y.; Fujimori, E.; Tanabe, K.; Ohara, T.; Shimoda, M.; Kozawa, K.; Furuta, N.

    2008-12-01

    The results of the long-term monitoring of airborne particulate matter (APM) in Tokyo indicated that APM have been extremely enriched with antimony (Sb) compared to crustal composition. This observation suggests that the airborne Sb is distinctly derived from human activities. According to the material flow analysis, automotive brake abrasion dust and fly ash from waste incinerator were suspected as the significant Sb sources. To clarify the emission sources of the airborne Sb, elemental composition, particle size distribution, and morphological profiles of dust particles collected from two possible emission sources were characterized and compared to the field observation data. Brake abrasion dust samples were generated by using a brake dynamometer. During the abrasion test, particle size distribution was measured by an aerodynamic particle sizer spectrometer. Concurrently, size- classified dust particles were collected by an Andersen type air sampler. Fly ash samples were collected from several municipal waste incinerators, and the bulk ash samples were re-dispersed into an enclosed chamber. The measurement of particle size distribution and the collection of size-classified ash particles were conducted by the same methodologies as described previously. Field observations of APM were performed at a roadside site and a residential site by using an Andersen type air sampler. Chemical analyses of metallic elements were performed by an inductively coupled plasma atomic emission spectrometry and an inductively coupled plasma mass spectrometr. Morphological profiling of the individual particle was conducted by a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. High concentration of Sb was detected from both of two possible sources. Particularly, Sb concentrations in a brake abrasion dust were extremely high compared to that in an ambient APM, suggesting that airborne Sb observed at the roadside might have been largely derived from

  9. A method of simultaneously measuring particle shape parameter and aerodynamic size

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Zhang, JinBi; Zheng, HaiYang; Wang, YingPing; Fang, Li

    2016-08-01

    For the purpose of classification of airborne particles, this paper describes an experimental apparatus for simultaneously measuring shape characteristics and aerodynamic size at single particle level. The shape of a particle is indicated through near forward scattering light collected by 3 PMTs placed at 120-degree offset azimuthal angles and the aerodynamic diameter is obtained by time-of-flight that a particle takes to traverse double laser beams. Laboratory experiments are performed on sampled aerosol particles in spherical, cuboid and elongated shape, and preliminary results indicate that the experimental apparatus has a good capability of discriminating between spherical and irregular particles. A variance factor of scattered light related to shape of ambient airborne particles under different conditions are also presented, which can be modeled using lognormal probability density distribution. Combined with aerodynamic size information, these results suggest potential uses in environmental aerosol monitoring for characterizing constituents of particles.

  10. Modeling Airborne Beryllium Concentrations From Open Air Dynamic Testing

    NASA Astrophysics Data System (ADS)

    Becker, N. M.

    2003-12-01

    A heightened awareness of airborne beryllium contamination from industrial activities was reestablished during the late 1980's and early 1990's when it became recognized that Chronic Beryllium Disease (CBD) had not been eradicated, and that the Occupational Health and Safety Administration standards for occupational air exposure to beryllium may not be sufficiently protective. This was in response to the observed CBD increase in multiple industrial settings where beryllium was manufactured and/or machined, thus producing beryllium particulates which are then available for redistribution by airborne transport. Sampling and modeling design activities were expanded at Los Alamos National Laboratory in New Mexico to evaluate potential airborne beryllium exposure to workers who might be exposed during dynamic testing activities associated with nuclear weapons Stockpile Stewardship. Herein is presented the results of multiple types of collected air measurements that were designed to characterize the production and dispersion of beryllium used in components whose performance is evaluated during high explosive detonation at open air firing sites. Data from fallout, high volume air, medium volume air, adhesive film, particle size impactor, and fine-particulate counting techniques will be presented, integrated, and applied in dispersion modeling to assess potential onsite and offsite personal exposures resulting from dynamic testing activities involving beryllium.

  11. High-gradient permanent magnet apparatus and its use in particle collection

    DOEpatents

    Cheng, Mengdawn; Ludtka, Gerard Michael; Avens, Larry R.

    2016-07-12

    A high-gradient permanent magnet apparatus for capturing paramagnetic particles, the apparatus comprising: (i) at least two permanent magnets positioned with like poles facing each other; (ii) a ferromagnetic spacer separating the like poles; and (iii) a magnetizable porous filling material in close proximity to the at least two permanent magnets. Also described is a method for capturing paramagnetic particles in which a gas or liquid sample containing the paramagnetic particles is contacted with the high-gradient permanent magnet apparatus described above; wherein, during the contacting step, the gas or liquid sample contacts the magnetizable porous filling material of the high-gradient permanent magnet apparatus, and at least a portion of the paramagnetic particles in the gas or liquid sample is captured on the magnetizable porous filling material.

  12. Direct determination of 90Sr and 147Pm in Chernobyl hot particles collected in Kiev using beta absorption method.

    PubMed

    Papp, Z; Bolyós, A; Dezsó, Z; Daróczy, S

    1997-12-01

    59 hot particles were collected in Kiev, Ukraine, in 1987. All but one were prepared from a moss carpet of 360 cm2 area. Radionuclide composition of the hot particles was investigated by gamma-spectrometry and beta absorption method. Pure beta emitters 90Sr and 147Pm were determined in 25 hot particles measuring the beta absorption curves of the hot particles with an end-window Geiger-Müller counter and decomposing the curves in order to obtain the contributions of 90Sr and 147Pm to the total beta counting rate. All but one of the hot particles were found to be the debris of the fuel. The activity ratio 90Sr:l44Ce was 0.052 in good agreement with theoretical calculations on core inventories. This means that strontium behaved as a nonvolatile element in the process of the formation of the hot particles investigated. The activity ratio 147Pm:144Ce was 0.078 which is half of the theoretical result. Although 147Pm is considered to be a refractory nuclide, it seems that significant part of 147Pm went to the homogeneous fraction of the general fallout. The surface density of hot particles (of higher than about 50 Bq activity) was about 1,600 m(-2) and that of the activities of the nuclides 90Sr, 106Ru, 134Cs, 137Cs, 144Ce and 147Pm as components of hot particles was 12.2, 54.3, 5.9, 9.7, 234 and 18.3 kBq m(-2) (activity values counted for 26 April 1986), respectively, in downtown Kiev city in 1987.

  13. Airborne in-situ investigations of the Eyjafjallajökull volcanic ash plume on Iceland and over north-western Germany with light aircrafts and optical particle counters

    NASA Astrophysics Data System (ADS)

    Weber, K.; Eliasson, J.; Vogel, A.; Fischer, C.; Pohl, T.; van Haren, G.; Meier, M.; Grobéty, B.; Dahmann, D.

    2012-03-01

    During the time period of the eruption of the Icelandic volcano Eyjafjallajökull in April/May 2010 the Duesseldorf University of Applied Sciences has performed 14 research flights in situations with and without the volcanic ash plume over Germany. In parallel to the research flights in Germany three measurement flights have been performed by the University of Iceland in May 2010 over the western part of Iceland. During two of these flights the outskirts of the eruption plume were entered directly, delivering most direct measurements within the eruption plume during this eruptive event. For all the measurement flights reported here, light durable piston-motor driven aircrafts were used, which were equipped with optical particle counters for in-situ measurements. Real-time monitoring of the particle concentrations was possible during the flights. As different types of optical particle counters have been used in Iceland and Germany, the optical particle counters have been re-calibrated after the flights to the same standard using gravimetric reference methods and original Eyjafjallajökull volcanic ash samples. In-situ measurement results with high spatial resolution, directly from the eruption plume in Iceland as well as from the dispersed and several days old plume over Germany, are therefore presented here for the first time. They are normalized to the same ash concentration calibration standard. Moreover, airborne particles could be sampled directly out of the eruption plume in Iceland as well as during the flights over Germany. During the research flights over Iceland from 9 May 2011 to 11 May 2011 the ash emitted from the vent of the volcano turned out to be concentrated in a narrow well-defined plume of about 10 km width at a distance of 45-60 km away from the vent. Outside this plume the airborne ash concentrations could be proved to be below 50 μg m -3 over western Iceland. However, by entering the outskirts of the plume directly the research aircraft could

  14. Concentration and distribution of platinum group elements (Pt, Pd, Rh) in airborne particulate matter in Frankfurt am Main, Germany.

    PubMed

    Zereini, Fathi; Alt, Friedrich; Messerschmidt, Jürge; von Bohlen, Alex; Liebl, Karlheinz; Püttmann, Wilhelm

    2004-03-15

    The concentrations and distribution of platinum group elements (Pt, Pd, Rh) in airborne particulate matter were studied in a period of one year from August 2001 to July 2002 in urban and in nonurban areas. Airborne dust samples were collected as a total amount (particles with an aerodynamic diameter <22 microm) and classified using an eight-stage Andersen impactor (<10 microm) at three locations with different traffic density roads in the Frankfurt am Main and nonurban areas. Sampling at the three locations was performed simultaneously for total airborne dust and fractionated airborne dust. Pd was determined by total reflection X-ray fluorescence after Hg coprecipitation. Pt and Rh were analyzed by adsorptive striping voltammetry after HPA digestion. The results show that the PGE concentrations in airborne samples depend on the traffic density. The highest PGE concentrations in air were found in the vicinity of major roads with heavy traffic, and the lowest ones were found in the nonurban area. The presence of PGE at the sampling station relatively free of traffic in a nonurban area hints to a transport of some of the emitted PGE from the city to this station by wind. At all three sampling locations, a heterogeneous distribution of the Pd, Pt, and Rh concentrations during the sampling year can be observed. The sum of PGE concentrations in total airborne dust is comparable with the sum of impactor samples. However, the concentration of Pt and Rh in total airborne dust (<22 microm) is on average higher than in impactor samples (<10 microm). On the contrary, Pd concentration is higher in impactor samples in most cases. The airborne PGE distribution is dominated by Pt, followed by Pd and Rh. The impactor samples are dominated by Pd, followed by Pt and Rh. This fact indicates that palladium occurs mainly in relatively fine airborne particles. The main fraction of PGE is found on average in particle sizes between 1.1 and 4.7 microm. Knowledge of the size distribution of

  15. Airborne single particle mass spectrometers (SPLAT II & miniSPLAT) and new software for data visualization and analysis in a geo-spatial context.

    PubMed

    Zelenyuk, Alla; Imre, Dan; Wilson, Jacqueline; Zhang, Zhiyuan; Wang, Jun; Mueller, Klaus

    2015-02-01

    Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles-two fundamental properties that determine an aerosol's optical properties and ability to serve as cloud condensation or ice nuclei. Here we present our aircraft-compatible single particle mass spectrometers, SPLAT II and its new, miniaturized version, miniSPLAT that measure in-situ and in real-time the size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. Although miniSPLAT's size, weight, and power consumption are significantly smaller, its performance is on par with SPLAT II. Both instruments operate in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations, size distributions, density, and asphericity with high temporal resolution. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle compositions and their activity as cloud condensation nuclei.

  16. Airborne Single Particle Mass Spectrometers (SPLAT II & miniSPLAT) and New Software for Data Visualization and Analysis in a Geo-Spatial Context

    SciTech Connect

    Zelenyuk, Alla; Imre, D.; Wilson, Jacqueline M.; Zhang, Zhiyuan; Wang, Jun; Mueller, Klaus

    2015-02-01

    Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles - two fundamental properties that determine an aerosol’s optical properties and ability to serve as cloud condensation or ice nuclei. Here we present miniSPLAT, our new aircraft compatible single particle mass spectrometer, that measures in-situ and in real-time size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. miniSPLAT operates in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations, size distributions, density, and asphericity with high temporal resolution. When compared to our previous instrument, SPLAT II, miniSPLAT has been significantly reduced in size, weight, and power consumption without loss in performance. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle composition and their activity as cloud condensation nuclei.

  17. Collecting apparatus

    DOEpatents

    Duncan, Charles P.

    1983-01-01

    An improved collecting apparatus for small aquatic or airborne organisms such as plankton, larval fish, insects, etc. The improvement constitutes an apertured removal container within which is retained a collecting bag, and which is secured at the apex of a conical collecting net. Such collectors are towed behind a vessel or vehicle with the open end of the conical net facing forward for trapping the aquatic or airborne organisms within the collecting bag, while allowing the water or air to pass through the apertures in the container. The container is readily removable from the collecting net whereby the collecting bag can be quickly removed and replaced for further sample collection. The collecting bag is provided with means for preventing the bag from being pulled into the container by the water or air flowing therethrough.

  18. Elemental composition of airborne dust in the Shale Shaker House during an offshore drilling operation.

    PubMed

    Hansen, A B; Larsen, E; Hansen, L V; Lyngsaae, M; Kunze, H

    1991-12-01

    During 2 days of an offshore drilling operation in the North Sea, 16 airborne dust samples from the atmosphere of the Shale Shaker House were collected onto filters. During this operation, drilling mud composed of a water slurry of barite (BaSO4) together with minor amounts of additives, among them chrome lignosulphonate and chrome lignite, was circulated between the borehole and the Shale Shaker House. The concentration of airborne dust in the atmosphere was determined and the elemental composition of the particles analysed by both PIXE (proton-induced X-ray emission) and ICP-MS (inductively coupled plasma-mass spectrometry). The total amount of dust collected varied from 0.04 to 1.41 mg m-3 with barium (Ba) as the single most abundant element. The open shale shakers turned out to be the major cause of generation of dust from the solid components of the drilling mud.

  19. Elemental composition of airborne dust in the Shale Shaker House during an offshore drilling operation.

    PubMed

    Hansen, A B; Larsen, E; Hansen, L V; Lyngsaae, M; Kunze, H

    1991-12-01

    During 2 days of an offshore drilling operation in the North Sea, 16 airborne dust samples from the atmosphere of the Shale Shaker House were collected onto filters. During this operation, drilling mud composed of a water slurry of barite (BaSO4) together with minor amounts of additives, among them chrome lignosulphonate and chrome lignite, was circulated between the borehole and the Shale Shaker House. The concentration of airborne dust in the atmosphere was determined and the elemental composition of the particles analysed by both PIXE (proton-induced X-ray emission) and ICP-MS (inductively coupled plasma-mass spectrometry). The total amount of dust collected varied from 0.04 to 1.41 mg m-3 with barium (Ba) as the single most abundant element. The open shale shakers turned out to be the major cause of generation of dust from the solid components of the drilling mud. PMID:1768013

  20. Analysis of Diffusion-Controlled Dissolution from Polydisperse Collections of Drug Particles with an Assessed Mathematical Model.

    PubMed

    Wang, Yanxing; Abrahamsson, Bertil; Lindfors, Lennart; Brasseur, James G

    2015-09-01

    We introduce a "hierarchical" modeling strategy designed to be systematically extensible to increase the detail of dissolution predictions from polydisperse collections of drug particles and to be placed on firm mathematical and physical foundations with diffusion-dominated dissolution at its core to predict dissolution and the evolution of particle size distribution. We assess the model with experimental data and demonstrate higher accuracy by treating the polydisperse nature of dissolution. A level in the hierarchy is applied to study elements of diffusion-driven dissolution, in particular the role of particle-size distribution width with varying dose level and the influences of "confinement" on the process of dissolution. Confinement influences surface molecular flux, directly by the increase in bulk concentration and indirectly by the relative volume of particles to container. We find that the dissolution process can be broadly categorized within three "regimes" defined by the ratio of total concentration Ctot to solubility CS . Sink conditions apply in the first regime, when C tot /CS<∼0.1. When C tot /CS>∼5 (regime 3) dissolution is dominated by confinement and normalized saturation time follows a simple power law relationship. Regime 2 is characterized by a "saturation singularity" where dissolution is sensitive to both initial particle size distribution and confinement. PMID:25989144