Science.gov

Sample records for airborne platform flying

  1. Satellite orbit determination from an airborne platform

    NASA Astrophysics Data System (ADS)

    Shepard, M. M.; Foshee, J. J.

    This paper describes the requirements, approach, and problems associated with autonomous satellite orbit determination from an airborne platform. The ability to perform orbit determination from an airborne platform removes the reliance on ground control facilities. Aircraft orbit determination offers a more robust system in that it is less susceptible to direct attack, sabotage, or nuclear disaster. Ranging on a satellite and the processing of range/range-rate data along with INS inputs to produce a set of orbital parameters to be transmitted to user terminals are discussed. Several algorithms that could be utilized by the user terminal to recover the satellite position/velocity data from the transmitted message are presented. The ability to compress the ephemeris message to a small size while remaining autonomous for a long period of time, as would be needed in future military communication satellites, is discussed.

  2. NASA Airborne Science Program: NASA Stratospheric Platforms

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  3. CALIOPE and TAISIR airborne experiment platform

    SciTech Connect

    Chocol, C.J.

    1994-07-01

    Between 1950 and 1970, scientific ballooning achieved many new objectives and made a substantial contribution to understanding near-earth and space environments. In 1986, the Lawrence Livermore National Laboratory (LLNL) began development of ballooning technology capable of addressing issues associated with precision tracking of ballistic missiles. In 1993, the Radar Ocean Imaging Project identified the need for a low altitude (1 km) airborne platform for its Radar system. These two technologies and experience base have been merged with the acquisition of government surplus Aerostats by Lawrence Livermore National Laboratory. The CALIOPE and TAISIR Programs can benefit directly from this technology by using the Aerostat as an experiment platform for measurements of the spill facility at NTS.

  4. Laser Systems For Use With Airborne Platforms

    NASA Astrophysics Data System (ADS)

    Jepsky, Joseph

    1984-10-01

    This paper describes a family of airborne laser systems in use for terrain profiling, surveying, mapping, altimetry, collision avoidance and shipboard landing systems using fixed and rotary wing aircraft as the platforms. The laser altimeter has also been used in systems compatible with the Army T-16 and. T-22 carrier missiles (platform). Both pulsed gallium arsenide and Nd:YAG (neodymium-doped, yttrium-aluminum-garnet) laser rangefinders have been used for these applications. All of these systems use ACCI's advanced measurement techniques that permit range accuracies of 8 cm, single shot, 1 cm averaged, to be achieved. Pulse rates up to 4 Khz are employed for airborne profiling. This high data density rate provides 1 data point every 2" along the aircraft flight line at aircraft speed of 500 knots. Scanning modes for some applications are employed. Systems have been integrated with all current inertial navigation systems (Litton, Ferranti and Honeywell), as well as a number of microwave positioning systems. Removal of aircraft motion from the laser range measurements by use of an accelerometer is described. Flight data from a number of program performed by U.S. and Canadian Federal Agencies, in addition to those of commercial surveying and mapping companies are described.

  5. User definition and mission requirements for unmanned airborne platforms, revised

    NASA Technical Reports Server (NTRS)

    Kuhner, M. B.; Mcdowell, J. R.

    1979-01-01

    The airborne measurement requirements of the scientific and applications experiment user community were assessed with respect to the suitability of proposed strawman airborne platforms. These platforms provide a spectrum of measurement capabilities supporting associated mission tradeoffs such as payload weight, operating altitude, range, duration, flight profile control, deployment flexibility, quick response, and recoverability. The results of the survey are used to examine whether the development of platforms is warranted and to determine platform system requirements as well as research and technology needs.

  6. Intelligent interfaces for tactical airborne platforms

    NASA Technical Reports Server (NTRS)

    Madni, A.

    1984-01-01

    Enhanced capabilities of tactical airborne platforms have resulted in increased number of aircrew tasks, greater task complexity, and increased time-stress in task performance. Embedded intelligence in the aircrew-vehicle interface (AVI) can help alleviate aircrew workload and enhance aircrew performance by: (1) optimizing the exchange of information between the aircrew and the onboard automation; and (2) adaptively allocating functions between aircrew and automation in response to situational demands. Intelligent interface issues are addressed in this report such as: (1) how to ensure that the aircrew can cope with the information influx; (2) how to present/portray both situational and internal status information; (3) how to allocate functions between the aircrew and the onboard automation; and (4) how to explain reasoning processes employed by onboard intelligence to the aircrew.

  7. The FOSTER Project: Flying Teachers On NASA's Airborne Observatory

    NASA Astrophysics Data System (ADS)

    Koch, D.; Gillespie, C.; Devore, E.; Morrow, C.

    1993-12-01

    An educational outreach pilot project is underway at NASA Ames Research Center. The FOSTER (Flight Opportunities for Science Teacher EnRichment) project goal is to provide an educationally enriching experience for elementary and high school science teachers. The project consists of a summer workshop where the selected teachers receive insight into contemporary astrophysics, curriculum supplement materials and an orientation to their upcoming science flight. During the academic year they return to NASA/Ames when they are introduced to and fly with the Kuiper Airborne Observatory investigators as the team conducts its observing program. It is anticipated that the first-hand experience of the scientific process (its excitement, hardships, challenges, discoveries, teamwork, social relevance and educational value) will provide an enriching experience that the teachers can take back into their classrooms and use to help with their teaching.

  8. Stabilized optical tracking platform for airborne applications

    NASA Astrophysics Data System (ADS)

    Malueg, Richard; Colella, Nicholas J.; Hakala, Dennis B.

    1995-05-01

    The operations or independent small, lightweight infrared (IR) sensors, called Notifiers and Interrogators, are coordinated to detect and track theater ballistic missiles (TBMs) during boost phase from high altitude aircraft. The Notifier provides early detection of TBM launches over a wide field-of-regard facing the earth. When a target candidate is detected, an Interrogator immediately points at the object to first validate the persistence of the object, to perform TBM authentication, and to determine trajectory coordinates of the TBM. The Notifier and Interrogator sensors differ in their optical trains but otherwise are identical; the later offering nearly 3.5x higher angular resolution and a filter wheel. The sensors must rapidly assess their fields-of-regard to accomplish their roles. A unique three-axis stabilized optical tracking platform has resulted from the requirements thus imposed on angular rates, settling times, and angular stability. The line-of-sight of each earth facing sensor is pointed by a step-and-settle mirror drive that covers a hemisphere field-of-regard including nadir and the horizon. The line-of-sight is steerable through 360 degrees in azimuth and 90 degrees in elevation. This paper describes the 'proof of concept' implementation and it provides details about he designs of critical components that make up the optical tracking platform and the step-and- settle mirror drives.

  9. Identification of ground targets from airborne platforms

    NASA Astrophysics Data System (ADS)

    Doe, Josh; Boettcher, Evelyn; Miller, Brian

    2009-05-01

    The US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) sensor performance models predict the ability of soldiers to perform a specified military discrimination task using an EO/IR sensor system. Increasingly EO/IR systems are being used on manned and un-manned aircraft for surveillance and target acquisition tasks. In response to this emerging requirement, the NVESD Modeling and Simulation division has been tasked to compare target identification performance between ground-to-ground and air-to-ground platforms for both IR and visible spectra for a set of wheeled utility vehicles. To measure performance, several forced choice experiments were designed and administered and the results analyzed. This paper describes these experiments and reports the results as well as the NVTherm model calibration factors derived for the infrared imagery.

  10. The research of a gyro-stabilized platform and POS application technology in airborne remote sensing

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Du, Qi

    2009-07-01

    The distortion of the collected images usually takes place since the attitude changes along with the flying aerocraft on airborne remote sensing. In order to get original images without distortion, it is necessary to use professional gyro-stabilized platform. In addition to this, another solution of correcting the original image distortion is to utilize later geometric rectification using position & orientation system ( POS ) data. The third way is to utilize medium-accuracy stabilized platform to control the distortion at a tolerant range, and then make use of the data obtained by high-solution posture measure system to correct the low-quality remote sensing images. The third way which takes advantage of both techniques is better than using only one of the two other ways. This paper introduces several kinds of structural forms of gyro-stabilized platforms, and POS acquiring instruments respectively. Then, the essay will make some analysis of their advantages and disadvantages, key technologies and the application experiment of the third method. After the analysis, the thesis discusses the design of the gyro-stabilized platform. The thesis provides crucial information not only for the application technology of gyro-stabilized platform and POS but also for future development.

  11. Electronics design of the airborne stabilized platform attitude acquisition module

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Wei, Guiling; Cheng, Yong; Li, Baolin; Bu, Hongyi; Wang, Hao; Zhang, Zhanwei; Li, Xingni

    2014-02-01

    We present an attitude acquisition module electronics design for the airborne stabilized platform. The design scheme, which is based on Integrated MEMS sensor ADIS16405, develops the attitude information processing algorithms and the hardware circuit. The hardware circuits with a small volume of only 44.9 x 43.6 x 24.6 mm3, has the characteristics of lightweight, modularization and digitalization. The interface design of the PC software uses the combination plane chart with track line to receive the attitude information and display. Attitude calculation uses the Kalman filtering algorithm to improve the measurement accuracy of the module in the dynamic environment.

  12. Airborne Science Program: Observing Platforms for Earth Science Investigations

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.

    2009-01-01

    This slide presentation reviews the Airborne Science Program and the platforms used for conducting investigations for the Earth System Science. Included is a chart that shows some of the aircraft and the operational altitude and the endurance of the aircraft, views of the Dryden Aircraft Operation Facility, and some of the current aircraft that the facility operates, and the varieties of missions that are flown and the type of instrumentation. Also included is a chart showing the attributes of the various aircraft (i.e., duration, weight for a payload, maximum altitude, airspeed and range) for comparison

  13. An Improved Platform Levelling System for Airborne Gravity Meters.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2014-12-01

    Recent advances in sensor technology have enabled Lacoste and Romberg type relative gravity meters to improve in accuracy to the point where other non-sensor related sources of error serve to limit the overall accuracy of the system. One of these sources of error is derived from the inability of the platform, in which the sensor is mounted, to keep the sensor perfectly level during survey flight. Off level errors occur when the aircraft is unable to maintain straight and level flight along a survey line. The levelling platform of a typical Lacoste and Romberg type dynamic gravity meter utilizes a complex feedback loop involving both accelerometers and gyroscopes with an output connected to torque motors mounted to the platform to sense an off level situation and correct for it. The current system is limited by an inability of the platform to distinguish between an acceleration of the platform due to a change in heading, altitude or speed of the aircraft and a true change in the local gravity vertical. Both of these situations cause the platform to tilt in reponse however the aircraft acceleration creates an error in the gravity measurement. These off level errors can be corrected for to a limited degree depending on the algorithm used and the size and duration of the causal acceleration. High precision GPS now provides accurate real time position information which can be used to determine if an accleration is a real level change or due to an anomalous acceleration. The correct implementation of the GPS position can significantly improve the accuracy of the platform levelling including keeping the platform level during course reversals or drape flying during a survey. This can typically improve the quality of the gravity data before any processing corrections. The enhanced platform also reduces the time taken to stabilize the platform at the beginning of a survey line therefore improving the efficiency of the data collection. This paper discusses the method and

  14. A towed airborne platform for turbulence measurements over the ocean

    NASA Astrophysics Data System (ADS)

    Friehe, Carl; Khelif, Djamal

    2008-11-01

    Measurements of wind stress and associated heat and mass fluxes (water vapor and CO2) down to ˜10 meters height over the ocean are required to establish parameterizations for wave, weather, hurricane and climate models. At high winds and accompanying sea states, such measurements are difficult or impossible. A new airborne instrumented towed platform has been developed that allows measurements down to 10 meters under radar-altitude control while the tow aircraft is safely above. Measurements include the three components of the wind, temperature, humidity, infrared surface temperature, CO2, and motion and navigational parameters. The bandwidth of the sensors allows calculation of the Reynolds averaged covariance's of stress and sensible heat and evaporation fluxes. Results are compared to equivalent measurements made with an instrumented aircraft. We would like to thank Robert Bluth of the Naval Postgraduate School and Jesse Barge and Dan Bierly of Zivko Aeronautics.

  15. Fly's Eye camera system: optical imaging using a hexapod platform

    NASA Astrophysics Data System (ADS)

    Jaskó, Attila; Pál, András.; Vida, Krisztián.; Mészáros, László; Csépány, Gergely; Mező, György

    2014-07-01

    The Fly's Eye Project is a high resolution, high coverage time-domain survey in multiple optical passbands: our goal is to cover the entire visible sky above the 30° horizontal altitude with a cadence of ~3 min. Imaging is going to be performed by 19 wide-field cameras mounted on a hexapod platform resembling a fly's eye. Using a hexapod developed and built by our team allows us to create a highly fault-tolerant instrument that uses the sky as a reference to define its own tracking motion. The virtual axis of the platform is automatically aligned with the Earth's rotational axis; therefore the same mechanics can be used independently from the geographical location of the device. Its enclosure makes it capable of autonomous observing and withstanding harsh environmental conditions. We briefly introduce the electrical, mechanical and optical design concepts of the instrument and summarize our early results, focusing on sidereal tracking. Due to the hexapod design and hence the construction is independent from the actual location, it is considerably easier to build, install and operate a network of such devices around the world.

  16. Detection and tracking of humans from an airborne platform

    NASA Astrophysics Data System (ADS)

    van Eekeren, Adam W. M.; Dijk, Judith; Burghouts, Gertjan

    2014-10-01

    Airborne platforms are recording large amounts of video data. Extracting the events which are needed to see is a time-demanding task for analysts. The reason for this is that the sensors record hours of video data in which only a fraction of the footage contains events of interest. For the analyst, it is hard to retrieve such events from the large amounts of video data by hand. A way to extract information more automatically from the data is to detect all humans within the scene. This can be done in a real-time scenario (both on-board as on the ground station) for strategic and tactical purposes and in an offline scenario where the information is analyzed after recording to acquire intelligence (e.g. a daily life pattern). In this paper, we evaluate three different methods for object detection from a moving airborne platform. The first one is a static person detection algorithm. The main advantage of this method is that it can be used on single frames, and therefor does not depend on the stabilization of the platform. The main disadvantage of this method is that the number of pixels needed for the detection is pretty large. The second method is based on detection of motion-in-motion. Here the background is stabilized, and clusters of pixels that move with respect to this stabilized background are detected as moving object. The main advantage is that all moving objects are detected, the main disadvantage is that it heavily depends on the quality of the stabilization. The third method combines both previous detection methods. The detections are tracked using a histogram-based tracker, so that missed detections can be filled in and a trajectory of all objects can be determined. We demonstrate the tracking performance using the three different detections methods on the publicly available UCF-ARG aerial dataset. The performance is evaluated for two human actions (running and digging) and varying object sizes. It is shown that a combined detection approach (static person

  17. Airborne Trailblazer: Two decades with NASA Langley's 737 flying laboratory

    NASA Technical Reports Server (NTRS)

    Wallace, Lane E.

    1994-01-01

    This book is the story of a very unique aircraft and the contributions it has made to the air transportation industry. NASA's Boeing 737-100 Transport Systems Research Vehicle started life as the prototype for Boeing's 737 series of aircraft. The airplane was acquired by LaRC in 1974 to conduct research into advanced transport aircraft technologies. In the twenty years that followed, the airplane participated in more than twenty different research projects, evolving from a research tool for a specific NASA program into a national airborne research facility. It played a critical role in developing and gaining acceptance for numerous significant transport technologies including 'glass cockpits,' airborne windshear detection systems, data links for air traffic control communications, the microwave landing system, and the satellite-based global positioning system (GPS).

  18. COCAP - A compact carbon dioxide analyser for airborne platforms

    NASA Astrophysics Data System (ADS)

    Kunz, Martin; Lavrič, Jošt V.; Jeschag, Wieland; Bryzgalov, Maksym; Hök, Bertil; Heimann, Martin

    2014-05-01

    Airborne platforms are a valuable tool for atmospheric trace gas measurements due to their capability of movement in three dimensions, covering spatial scales from metres to thousands of kilometres. Although crewed research aircraft are flexible in payload and range, their use is limited by high initial and operating costs. Small unmanned aerial vehicles (UAV) have the potential for substantial cost reduction, but require lightweight, miniaturized and energy-efficient scientific equipment. We are developing a COmpact Carbon dioxide analyser for Airborne Platforms (COCAP). It contains a non-dispersive infrared CO2sensor with a nominal full scale of 3000 μmol/mol. Sampled air is dried with magnesium perchlorate before it enters the sensor. This enables measurement of the dry air mole fraction of CO2, as recommended by the World Meteorological Organization. During post-processing, the CO2 measurement is corrected for temperature and pressure variations in the gas line. Allan variance analysis shows that we achieve a precision of better than 0.4 μmol/mol for 10 s averaging time. We plan to monitor the analyser's stability during flight by measuring reference air from a miniature gas tank in regular intervals. Besides CO2, COCAP measures relative humidity, temperature and pressure of ambient air. An on-board GPS receiver delivers accurate timestamps and allows georeferencing. Data is both stored on a microSD card and simultaneously transferred over a wireless serial interface to a ground station for real-time review. The target weight for COCAP is less than 1 kg. We deploy COCAP on a commercially available fixed-wing UAV (Bormatec Explorer) with a wingspan of 2.2 metres. The UAV has high payload capacity (2.5 kg) as well as sufficient space in the fuselage (80x80x600 mm3). It is built from a shock-resistant foam material, which allows quick repair of minor damages in the field. In case of severe damage spare parts are readily available. Calculations suggest that the

  19. Demonstration of high-rate laser communications from fast airborne platform: flight campaign and results

    NASA Astrophysics Data System (ADS)

    Moll, Florian; Mitzkus, Wolfgang; Horwath, Joachim; Shrestha, Amita; Brechtelsbauer, Martin; Martin, Luis; Lozano, Alberto; Diaz Gonzalez, Dionisio

    2014-10-01

    Some current and future airborne payloads like high resolution cameras and radar systems need high channel capacity to transmit their data from air to ground in near real-time. Especially in reconnaissance and surveillance missions, it is important to downlink huge amount of data in very short contact times to a ground station during a flyby. Aeronautical laser communications can supply the necessary high data-rates for this purpose. Within the project DODfast (Demonstration of Optical Data link fast) a laser link from a fast flying platform was demonstrated. The flight platform was a Panavia Tornado with the laser communication terminal installed in an attached avionic demonstrator pod. The air interface was a small glass dome protecting the beam steering assembly. All other elements were integrated in a small box inside the Pod's fuselage. The receiver station was DLR's Transportable Optical Ground Station equipped with a free-space receiver front-end. Downlink wavelength for communication and uplink wavelength for beacon laser were chosen from the optical C-band DWDM grid. The test flights were carried out at the end of November 2013 near the Airbus Defence and Space location in Manching, Germany. The campaign successfully demonstrated the maturity and readiness of laser communication with a data-rate of 1.25 Gbit/s for aircraft downlinks. Pointing, acquisition and tracking performance of the airborne terminal and the ground station could be measured at aircraft speed up to 0.7 Mach and video data from an onboard camera has been transmitted. Link distances with stable tracking were up to 79 km and distance with data transmission over 50 km. In this paper, we describe the system architecture, the flight campaign and the results.

  20. Airborne crystalline silica concentrations at coal-fired power plants associated with coal fly ash.

    PubMed

    Hicks, Jeffrey; Yager, Janice

    2006-08-01

    This study presents measurements of airborne concentrations of respirable crystalline silica in the breathing zone of workers who were anticipated to encounter coal fly ash. Six plants were studied; two were fired with lignite coal, and the remaining four plants used bituminous and subbituminous coals. A total of 108 personal breathing zone respirable dust air samples were collected. Bulk samples were also collected from each plant site and subjected to crystalline silica analysis. Airborne dust particle size analysis was measured where fly ash was routinely encountered. The results from bituminous and subbituminous fired plants revealed that the highest airborne fly ash concentrations are encountered during maintenance activities: 0.008 mg/m3 to 96 mg/m3 (mean of 1.8 mg/m3). This group exceeded the threshold limit values (TLV) in 60% of the air samples. During normal production activities, airborne concentrations of crystalline silica ranged from nondetectable to 0.18 mg/m3 (mean value of 0.048 mg/m3). Air samples collected during these activities exceeded the current and proposed TLVs in approximately 54% and 65% of samples, respectively. Limited amounts of crystalline silica were detected in samples collected from lignite-fired plants, and approximately 20% of these air samples exceeded the current TLV. Particle size analysis in areas where breathing zone air samples were collected revealed mass median diameters typically between 3 microm and 8 microm. Bulk and air samples were analyzed for all of the common crystalline silica polymorphs, and only alpha quartz was detected. As compared with air samples, bulk samples from the same work areas consistently yielded lower relative amounts of quartz. Controls to limit coal fly ash exposures are indicated during some normal plant operations and during episodes of short term, but high concentrations of dust that may be encountered during maintenance activities, especially in areas where ash accumulations are present

  1. Airborne crystalline silica concentrations at coal-fired power plants associated with coal fly ash

    SciTech Connect

    Hicks, J.; Yager, J.

    2006-08-15

    This study presents measurements of airborne concentrations of respirable crystalline silica in the breathing zone of workers who were anticipated to encounter coal fly ash. Six plants were studied; two were fired with lignite coal, and the remaining four plants used bituminous and subbituminous coals. A total of 108 personal breathing zone respirable dust air samples were collected. Bulk samples were also collected from each plant site and subjected to crystalline silica analysis. Airborne dust particle size analysis was measured where fly ash was routinely encountered. The results from bituminous and subbituminous fired plants revealed that the highest airborne fly ash concentrations are encountered during maintenance activities: 0.008 mg/m{sup 3} to 96 mg/m{sup 3} (mean of 1.8 mg/m{sup 3}). This group exceeded the threshold limit values (TLV) in 60% of the air samples. During normal production activities, airborne concentrations of crystalline silica ranged from nondetectable to 0.18 mg/m{sup 3} (mean value of 0.048 mg/m{sup 3}). Air samples collected during these activities exceeded the current and proposed TLVs in approximately 54% and 65% of samples, respectively. Limited amounts of crystalline silica were detected in samples collected from lignite-fired plants, and approximately 20% of these air samples exceeded the current TLV. Particle size analysis in areas where breathing zone air samples were collected revealed mass median diameters typically between 3 {mu}m and 8 {mu}m. Bulk and air samples were analyzed for all of the common crystalline silica polymorphs, and only alpha quartz was detected.

  2. Unmanned Airborne Platforms for Validation of Volcanic Emission Composition and Transport Models

    NASA Astrophysics Data System (ADS)

    Pieri, D. C.; Diaz, J. A.; Bland, G.; Fladeland, M. M.

    2012-12-01

    In recent years there has been an increasing realization that current remote sensing retrieval and transport models to detect, characterize, and track airborne volcanic emissions will be much improved fundamentally, and in their application, by the acquisition of in situ validation data. This issue was highlighted by the need for operational estimates of airborne ash concentrations during the 2010 eruption at Eyjafjallajökull-Fimmvörduháls in Iceland. In response, important campaigns were mounted in Europe to conduct airborne in situ observations with manned aircraft to validate ash concentration estimates based on remote sensing data. This effort had immediate application providing crucial accuracy and precision estimates for predicting locations, trajectories, and concentrations of the drifting ash to mitigate the severe economic impacts caused by the continent-wide grounding of aircraft. Manned flying laboratories, however, sustain serious risks if flown into the areas of volcanic plumes and drifting clouds that are of the highest interest, namely the zones of most concentrated ash and gas, which are often opaque to upwelling radiation at the longer infrared wavelengths (e.g., 8-12μm), where ash and gas can be most readily detected. Unmanned airborne vehicles (UAVs), of course, can provide volcanic aerosol and gas sampling and measurement platforms with no risk to flight crews, and can penetrate the most ash-concentrated zones of plumes and drifting clouds. Current interest has been high in developing and testing small UAVs (e.g., NASA, University of Costa Rica, University of Düsseldorf; INGV-Catania and Rome, and others) for proximal sulfur dioxide and solid aerosol observations and sampling in relatively quiescently erupting plumes as a first step toward more far ranging and higher altitude deployments into drifting volcanic ash clouds at regional scales. Nevertheless, in the aftermath of the Icelandic crisis, ash and gas concentrations from analysis of

  3. Potential Use of CW High Energy Laser on an Airborne Platform

    NASA Astrophysics Data System (ADS)

    Cook, Joung R.; Cusumano, Salvatore J.; Whiteley, Mathew R.

    2006-05-01

    Beamed energy propulsion (BEP) offers advanced and intellectually satisfying options to a class of space applications by using a high energy laser (HEL) as the prime power that is external to the system being propelled. Included in this class of applications are: launching satellites into orbit, space debris clearing, and orbital maneuvering, among others. Realistic applications or demonstrations of such BEP applications have been limited by the availability of HEL devices ever since the concept was first suggested by Arthur Kantrowitz in 1972. Development of the devices needed for BEP has been slow due to technology challenges and the significant non-recurring engineering costs. In general HEL systems of viable power levels have been exclusively the domain of military research and development. With the recent investment in the airborne platform laser systems, it may now be possible to capitalize on the military successes of such a system. The next decade may hold the possibility of transitioning defense HEL technology into BEP. The transitioning of military technology into civilian applications has occurred many times in the past, so speculation on available sources for BEP is not completely without merit. The concept of an airborne platform for BEP offers mobility and mitigates the coherence, reducing atmospheric turbulence. Operating at 12 kilometers (km), an airborne platform significantly reduces the beam path issues associated with ground to space. The trade-off is that the airborne platform disturbances are much greater and require more creative stabilization solutions than one sitting on "Terra Firma." The use of jitter reduction techniques may provide a profitable compromise for an airborne versus a ground-based system for BEP. This paper concentrates on the potential benefits from the use of an airborne platform for the BEP community.

  4. Requirements analysis of airborne gravity gradiometry on moving-based platform

    NASA Astrophysics Data System (ADS)

    Tu, L.; Li, Z.; Wu, W.

    2014-12-01

    Airborne gravity and gravity gradient measurement are the most effective ways for the earth gravitational field measurement. Gravity gradient is a derivative of gravity acceleration, due to the high order feature of gravity gradient, it is more sensitive to short wave component, and can reflect the details of the source so that the gravity gradient measurement has wide applications in geophysical science, resource exploration, and inertial navigation. Airborne gravity gradient measurement uses the plane or ship as the platform, and it is efficient and high precision. In this paper, We compared the gravity and gravity gradient measurement, and analyzed the advantages of the gravity gradient measurement compared with gravity measurement. The airborne gravity gradient measurement system and the inertial stabilization platform were discussed. By setting a goal sensitivity of the gravity gradient measurement being 1 E/√Hz, the key factors of the stabilized platform, namely the pointing accuracy, pointing stability, and gyroscope random drift, are 0.5°, 0.01°/hr/√Hz, and 0.01°/hr respectively. Compared with the airborne gravity measurement whose goal sensitivity is 1mGal/√Hz, the requirements of moving-based gravity gradient measurement on the inertial stabilization platform is significantly lower and hence easy to realize, and the major reason is the differential measurement mode being used.

  5. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms.

    PubMed

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-01-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration. PMID:26522006

  6. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms

    PubMed Central

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-01-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration. PMID:26522006

  7. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms

    NASA Astrophysics Data System (ADS)

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-11-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration.

  8. First demonstration of a high performance difference frequency spectrometer on airborne platforms.

    PubMed

    Weibring, Petter; Richter, Dirk; Walega, James G; Fried, Alan

    2007-10-17

    We discuss the first airborne deployment and performance tests of a mid-IR difference frequency spectrometer system for highly sensitive measurements of formaldehyde. The laser system is based upon difference-frequency generation (DFG) at ~3.5 mum by mixing a DFB diode laser at 1562 nm and a distributed feedback (DFB) fiber laser at 1083 nm in a periodically poled LiNbO(3) (PPLN) crystal. Advanced LabVIEW software for lock-in, dual-beam optical noise subtraction, thermal control and active wavelength stabilization, renders a sensitivity of ~20 pptv (Absorbance ~7*10(-7)) for 30s of averaging. The instrument's performance characteristics spanning more than 300 flight hours during three consecutive airborne field missions MIRAGE, IMPEX and TexAQS operating on two airborne platforms, NCAR's C-130 and NOAA's P-3 aircraft are demonstrated. PMID:19550617

  9. Passive Measurement of CO2 Column from an Airborne Platform

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Kawa, S. R.; Wilson, Emily; Georgleva, Elena

    2004-01-01

    We are in the third and final year of our IIP funding to develop a sensor for very precise determination of the CO2 Column. Global measurements of this sort from a satellite platform are needed to improve our understanding of the global carbon budget. In previous reports to this meeting we have described the method by which this system operates and presented data taken during ground based tests of the instrument. Work in the final year has concentrated on building the flight hardened version of the instrument that will be used in our field trials on the Dryden DC-8. The flight unit represents an integration of three channels into a single instrument. These three channels are the CO2 channel, the oxygen pressure sensing channel, and the oxygen temperature sensing channel. Integration of the three channels into a single unit significantly decreases the size of the instrument. The flight unit also employs more rugged optical mounts and integrated optical shielding. Light enters the instrument from below first striking the right angled mirror shown extending over the edge of the platform. The light is then focused through a pinhole to define the instrument field of view, chopped and recollimated. Dichroic mirrors are used to separate the CO2 wavelength from the O2 wavelength and that light is further divided by a 50-50 beamsplitter between the 2 oxygen channels - the pressure channel and the temperature channel. The six white boxes contain the detectors for each of the three channels. The detectors on the left in the photo serve the reference channels and the detectors on the right are for the Fabry-Perots. CO2 is measured by the pair of detectors farthest from the viewer. Pressure via O2 is detected by the central pair of detectors. The closest pair is used to determine temperature via O2.

  10. Astrobee: A New Platform for Free-Flying Robotics on the International Space Station

    NASA Technical Reports Server (NTRS)

    Smith, Trey; Barlow, Jonathan; Bualat, Maria; Fong, Terrence; Provencher, Christopher; Sanchez, Hugo; Smith, Ernest

    2016-01-01

    The Astrobees are next-generation free-flying robots that will operate in the interior of the International Space Station (ISS). Their primary purpose is to provide a flexible platform for research on zero-g freeflying robotics, with the ability to carry a wide variety of future research payloads and guest science software. They will also serve utility functions: as free-flying cameras to record video of astronaut activities, and as mobile sensor platforms to conduct surveys of the ISS. The Astrobee system includes two robots, a docking station, and a ground data system (GDS). It is developed by the Human Exploration Telerobotics 2 (HET-2) Project, which began in Oct. 2014, and will deliver the Astrobees for launch to ISS in 2017. This paper covers selected aspects of the Astrobee design, focusing on capabilities relevant to potential users of the platform.

  11. Prediction and performance measures of atmospheric disturbances on an airborne imaging platform

    NASA Astrophysics Data System (ADS)

    Dayton, David C.; Gonglewski, John D.; Martin, Jeffrey B.; Kovacs, Mark A.; Cardani, Joseph C.; Maia, Francisco; Aflalo, Tyson; Shilko, Michael L., Sr.

    2004-02-01

    A series of airborne imaging experiments have been conducted on the island of Maui. The imaging platform was a Twin Otter aircraft, which circled ground target sites. The typical platform altitude was 3000 meters, with a slant range to the target of 9000 meters. This experiment was performed during the day using solar illuminated target buildings, and at night with spotlights used to simulate point sources. Imaging system performance predictions were calculated using standard atmospheric turbulence models, and aircraft boundary layer models. Several different measurement approaches were then used to estimate the actual system performance, and make comparisons with the calculations.

  12. AirSWOT: An Airborne Platform for Surface Water Monitoring

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Moller, D.; Smith, L. C.; Pavelsky, T. M.; Alsdorf, D. E.

    2010-12-01

    The SWOT mission, expected to launch in 2020, will provide global measurements of surface water extent and elevation from which storage change and discharge can be derived. SWOT-like measurements are not routinely used by the hydrology community, and their optimal use and associated errors are areas of active research. The purpose of AirSWOT, a system that has been proposed to NASA’s Instrument Incubator Program, is to provide SWOT-like measurements to the hydrology and ocean community to be used to advance the understanding and use of SWOT data in the pre-launch phase. In the post-launch phase, AirSWOT will be used as the SWOT calibration/validation platform. The AirSWOT payload will consist of Kaspar, a multi-beam Ka-band radar interferometer able to produce elevations over a 5 km swath with centimetric precision. The absolute elevation accuracy of the AirSWOT system will be achieved with a combination of high precision Inertial Motion Units (IMUs), ground calibration points, and advanced calibration techniques utilizing a priori knowledge. It is expected that the accuracy of AirSWOT will exceed or match SWOT’s accuracy requirements. In addition to elevation measurements, the AirSWOT payload will include a near-infrared camera able to provide coincident high-resolution optical imagery of the water bodies imaged by the radar. In its initial hydrology deployments, AirSWOT will investigate four field sites: the Ohio-Mississippi confluence, the lower Atchafalaya River on the Mississippi River Delta, the Yukon River basin near Fairbanks, and the Sacramento River, California. The Ohio-Mississippi confluence is targeted for its large discharge, modest slope, and control structures that modulate Ohio but not Mississippi River slopes and elevations. The lower Atchafalaya River includes low slopes, wetlands with differing vegetation types, and some open lakes. Vegetation includes Cyprus forests, floating macrophytes, and grass marshes, all of which impact radar returns

  13. Monitoring of space weather and radioactivity using small airborne platforms

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Lidgard, Jeffrey; Aplin, Karen L.; Nicoll, Keri A.

    2013-04-01

    Space Weather is increasingly considered as a hazard to society's technological systems, but the effects of energetic particles within the atmosphere - with a potential implication for climate - also present an area in which new scientific knowledge needs to be developed. Routine measurements of energetic particle fluxes made above the surface have been made by the Lebedev Institute, undertaking continuous balloon-carried measurements since 1957. An underexploited measurement opportunity is presented by the conventional weather balloons (radiosondes) launched regularly globally by meteorological services, which could potentially provide a cost-effective alternative to custom balloon flights, as well as the ability to make measurements of particle fluxes at a wide range of latitudes. This work describes the development of a small disposable ionisation sensor, exploiting the well-known response of inexpensive semiconductor devices (e.g. PIN photodiodes) to ionising radiation. Such a Photodiode Radiation Detector (PRD) is particularly suitable for balloon use, as, unlike previous Geiger tube detector systems, only low bias voltages are required, which simplifies the circuitry required, reduces power consumption and entirely removes any high voltage hazard. In addition to providing count rate information, basic energy spectrum information is in principle available from pulse amplitudes generated. We discuss the evaluation and deployment considerations for the use of a PRD on a standard radiosonde platform, to operate within and alongside the existing operational meteorological requirements.

  14. Maintaining Situation Awareness with Autonomous Airborne Observation Platforms

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Fitzgerald, Will

    2005-01-01

    Unmanned Aerial Vehicles (UAVs) offer tremendous potential as intelligence, surveillance and reconnaissance (ISR) platforms for early detection of security threats and for acquisition and maintenance of situation awareness in crisis conditions. However, using their capabilities effectively requires addressing a range of practical and theoretical problems. The paper will describe progress by the "Autonomous Rotorcraft Project," a collaborative effort between NASA and the U.S. Army to develop a practical, flexible capability for UAV-based ISR. Important facets of the project include optimization methods for allocating scarce aircraft resources to observe numerous, distinct sites of interest; intelligent flight automation software than integrates high-level plan generation capabilities with executive control, failure response and flight control functions; a system architecture supporting reconfiguration of onboard sensors to address different kinds of threats; and an advanced prototype vehicle designed to allow large-scale production at low cost. The paper will also address human interaction issues including an empirical method for determining how to allocate roles and responsibilities between flight automation and human operations.

  15. An airborne jet train that flies on a soft porous track

    NASA Astrophysics Data System (ADS)

    Mirbod, Parisa; Andreopoulos, Yiannis; Weinbaum, Sheldon

    2008-11-01

    This paper explores the quantitative feasibility of developing an airborne jet train that flies on a soft porous track within centimeters of the earth's surface at speeds approaching current commercial jet aircraft. The jet train employs a lift mechanism first proposed in Feng & Weinbaum (2000) J. Fluid Mech. 422:282 and a nearly frictionless track suggested in Wu et al. (2004) Phys. Rev. Lett. 93(19):194501. Using an asymptotic analysis for large values of the permeability parameter H/Kp, where H is the porous layer thickness and Kp the Darcy permeability, we first show that it is possible to support a 70 metric ton jet train carrying 200 passengers on a confined porous material if its Kp is approximately 5 x 10-9 m^2. For this Kp one finds that the tilt of the planform is < 0.1 degrees and the lift-off velocity is < 5 m/s. Compression tests on a fiber-fill material with these properties show that the fibers contribute < 0.2 percent of the total lift and hence the friction force of the fiber phase is negligible. Using jet engines of 10,000 lbf thrust, about 1/5 that of a 200 passenger jet aircraft, one is able to obtain a cruising velocity approaching 700 km/hr. This would allow for huge fuel savings, especially on short flights where much of the energy is used to climb to altitude and overcoming lift induced drag.

  16. Airborne imaging for heritage documentation using the Fotokite tethered flying camera

    NASA Astrophysics Data System (ADS)

    Verhoeven, Geert; Lupashin, Sergei; Briese, Christian; Doneus, Michael

    2014-05-01

    Since the beginning of aerial photography, researchers used all kinds of devices (from pigeons, kites, poles, and balloons to rockets) to take still cameras aloft and remotely gather aerial imagery. To date, many of these unmanned devices are still used for what has been referred to as Low-Altitude Aerial Photography or LAAP. In addition to these more traditional camera platforms, radio-controlled (multi-)copter platforms have recently added a new aspect to LAAP. Although model airplanes have been around for several decades, the decreasing cost, increasing functionality and stability of ready-to-fly multi-copter systems has proliferated their use among non-hobbyists. As such, they became a very popular tool for aerial imaging. The overwhelming amount of currently available brands and types (heli-, dual-, tri-, quad-, hexa-, octo-, dodeca-, deca-hexa and deca-octocopters), together with the wide variety of navigation options (e.g. altitude and position hold, waypoint flight) and camera mounts indicate that these platforms are here to stay for some time. Given the multitude of still camera types and the image quality they are currently capable of, endless combinations of low- and high-cost LAAP solutions are available. In addition, LAAP allows for the exploitation of new imaging techniques, as it is often only a matter of lifting the appropriate device (e.g. video cameras, thermal frame imagers, hyperspectral line sensors). Archaeologists were among the first to adopt this technology, as it provided them with a means to easily acquire essential data from a unique point of view, whether for simple illustration purposes of standing historic structures or to compute three-dimensional (3D) models and orthophotographs from excavation areas. However, even very cheap multi-copters models require certain skills to pilot them safely. Additionally, malfunction or overconfidence might lift these devices to altitudes where they can interfere with manned aircrafts. As such, the

  17. Survey of subsurface geophysical exploration technologies adaptable to an airborne platform

    SciTech Connect

    Taylor, K.A.

    1992-12-01

    This report has been prepared by the US Department of Energy (DOE) as part of a Research Development Demonstration Testing and Evaluation (RDDT E) project by EG G Energy Measurement's (EG G/EM) Remote Sensing Laboratory. It examines geophysical detection techniques which may be used in Environmental Restoration/Waste Management (ER/WM) surveys to locate buried waste, waste containers, potential waste migratory paths, and aquifer depths. Because of the Remote Sensing Laboratory's unique survey capabilities, only those technologies which have been adapted or are capable of being adapted to an airborne platform were studied. This survey describes several of the available subsurface survey technologies and discusses the basic capabilities of each: the target detectability, required geologic conditions, and associated survey methods. Because the airborne capabilities of these survey techniques have not been fully developed, the chapters deal mostly with the ground-based capabilities of each of the technologies, with reference made to the airborne capabilities where applicable. The information about each survey technique came from various contractors whose companies employ these specific technologies. EG G/EM cannot guarantee or verify the accuracy of the contractor information; however, the data given is an indication of the technologies that are available.

  18. Survey of subsurface geophysical exploration technologies adaptable to an airborne platform

    SciTech Connect

    Taylor, K.A.

    1992-12-01

    This report has been prepared by the US Department of Energy (DOE) as part of a Research Development Demonstration Testing and Evaluation (RDDT&E) project by EG&G Energy Measurement`s (EG&G/EM) Remote Sensing Laboratory. It examines geophysical detection techniques which may be used in Environmental Restoration/Waste Management (ER/WM) surveys to locate buried waste, waste containers, potential waste migratory paths, and aquifer depths. Because of the Remote Sensing Laboratory`s unique survey capabilities, only those technologies which have been adapted or are capable of being adapted to an airborne platform were studied. This survey describes several of the available subsurface survey technologies and discusses the basic capabilities of each: the target detectability, required geologic conditions, and associated survey methods. Because the airborne capabilities of these survey techniques have not been fully developed, the chapters deal mostly with the ground-based capabilities of each of the technologies, with reference made to the airborne capabilities where applicable. The information about each survey technique came from various contractors whose companies employ these specific technologies. EG&G/EM cannot guarantee or verify the accuracy of the contractor information; however, the data given is an indication of the technologies that are available.

  19. Source localization results for airborne acoustic platforms in the 2010 Yuma Proving Ground test

    NASA Astrophysics Data System (ADS)

    Ostashev, Vladimir E.; Collier, Sandra L.; Reiff, Christian G.; Cheinet, Sylvain; Ligon, David A.; Wilson, D. Keith; Noble, John M.; Alberts, William C.

    2013-05-01

    Acoustic sensors are being employed on airborne platforms, such as Persistent Threat Detection System (PTDS) and Persistent Ground Surveillance System (PGSS), for source localization. Under certain atmospheric conditions, airborne sensors offer a distinct advantage over ground sensors. Among other factors, the performance of airborne sensors is affected by refraction of sound signals due to vertical gradients in temperature and wind velocity. A comprehensive experiment in source localization with an aerostat-mounted acoustic system was conducted in summer of 2010 at Yuma Proving Ground (YPG). Acoustic sources on the ground consisted of one-pound TNT denotations and small arms firings. The height of the aerostat was approximately 1 km above the ground. In this paper, horizontal, azimuthal, and elevation errors in source localization and their statistics are studied in detail. Initially, straight-line propagation is assumed; then refraction corrections are introduced to improve source localization and decrease the errors. The corrections are based on a recently developed theory [Ostashev, et. al, JASA 2008] which accounts for sound refraction due to vertical profiles of temperature and wind velocity. During the 2010 YPG field test, the vertical profiles were measured only up to a height of approximately 100 m. Therefore, the European Center for Medium-range Weather Forecasts (ECMWF) is used to generate the profiles for July of 2010.

  20. Laser hazard analysis for airborne AURA (Big Sky variant) Proteus platform.

    SciTech Connect

    Augustoni, Arnold L.

    2004-02-01

    A laser safety and hazard analysis was performed for the airborne AURA (Big Sky Laser Technology) lidar system based on the 2000 version of the American National Standard Institute's (ANSI) Standard Z136.1, for the Safe Use of Lasers and the 2000 version of the ANSI Standard Z136.6, for the Safe Use of Lasers Outdoors. The AURA lidar system is installed in the instrument pod of a Proteus airframe and is used to perform laser interaction experiments and tests at various national test sites. The targets are located at various distances or ranges from the airborne platform. In order to protect personnel, who may be in the target area and may be subjected to exposures, it was necessary to determine the Maximum Permissible Exposure (MPE) for each laser wavelength, calculate the Nominal Ocular Hazard Distance (NOHD), and determine the maximum 'eye-safe' dwell times for various operational altitudes and conditions. It was also necessary to calculate the appropriate minimum Optical Density (ODmin) of the laser safety eyewear used by authorized personnel who may receive hazardous exposures during ground base operations of the airborne AURA laser system (system alignment and calibration).

  1. Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain.

    PubMed

    Givon, Lev E; Lazar, Aurel A

    2016-01-01

    We have developed an open software platform called Neurokernel for collaborative development of comprehensive models of the brain of the fruit fly Drosophila melanogaster and their execution and testing on multiple Graphics Processing Units (GPUs). Neurokernel provides a programming model that capitalizes upon the structural organization of the fly brain into a fixed number of functional modules to distinguish between these modules' local information processing capabilities and the connectivity patterns that link them. By defining mandatory communication interfaces that specify how data is transmitted between models of each of these modules regardless of their internal design, Neurokernel explicitly enables multiple researchers to collaboratively model the fruit fly's entire brain by integration of their independently developed models of its constituent processing units. We demonstrate the power of Neurokernel's model integration by combining independently developed models of the retina and lamina neuropils in the fly's visual system and by demonstrating their neuroinformation processing capability. We also illustrate Neurokernel's ability to take advantage of direct GPU-to-GPU data transfers with benchmarks that demonstrate scaling of Neurokernel's communication performance both over the number of interface ports exposed by an emulation's constituent modules and the total number of modules comprised by an emulation. PMID:26751378

  2. Development of a new platform for airborne measurements of atmospheric CO2 and CH4 and comparison with GOSAT measurements at Railroad Valley playa, Nevada

    NASA Astrophysics Data System (ADS)

    Tadic, J.; Loewenstein, M.; Iraci, L. T.; Gore, W.; Schiro, K. A.; Olson, R. A.; Sheffner, E. J.; Yates, E. L.

    2011-12-01

    XCH4) retrieved from the GOSAT. The platform proved to be a useful tool for the calibration and support both for GOSAT and future OCO-2 satellite. Apart from that, its potential as a helpful tool for calibration and support of other remote sensing platforms, like FFT ground stations and airborne remote sensing instruments, was tested by flying together with DC-8 airplane carrying in-situ and remote CO2 measurements on 28th of July, 2011, over Merced CA, USA. The concentration profiles were created simultaneously with remote measurements in the same regions of atmosphere. The results showed high degree of correlation between two platforms.

  3. Control design for image tracking with an inertially stabilized airborne camera platform

    NASA Astrophysics Data System (ADS)

    Hurák, Zdenek; Rezáč, Martin

    2010-04-01

    The paper reports on a few control engineering issues related to design and implementation of an image-based pointing and tracking system for an inertially stabilized airborne camera platform. A medium-sized platform has been developed by the authors and a few more team members within a joint governmental project coordinated by Czech Air Force Research Institute. The resulting experimental platform is based on a common double gimbal configuration with two direct drive motors and off-the-shelf MEMS gyros. Automatic vision-based tracking system is built on top of the inertial stabilization. Choice of a suitable control configuration is discussed first, because the decoupled structure for the inner inertial rate controllers does not extend easily to the outer imagebased pointing and tracking loop. It appears that the pointing and tracking controller can benefit much from availability of measurements of an inertial rate of the camera around its optical axis. The proposed pointing and tracking controller relies on feedback linearization well known in image-based visual servoing. Simple compensation of a one sample delay introduced into the (slow) visual pointing and tracking loop by the computer vision system is proposed. It relies on a simple modification of the well-known Smith predictor scheme where the prediction takes advantage of availability of the (fast and undelayed) inertial rate measurements.

  4. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  5. Efficiency of Airborne Sample Analysis Platform (ASAP) bioaerosol sampler for pathogen detection.

    PubMed

    Sharma, Anurag; Clark, Elizabeth; McGlothlin, James D; Mittal, Suresh K

    2015-01-01

    The threat of bioterrorism and pandemics has highlighted the urgency for rapid and reliable bioaerosol detection in different environments. Safeguarding against such threats requires continuous sampling of the ambient air for pathogen detection. In this study we investigated the efficacy of the Airborne Sample Analysis Platform (ASAP) 2800 bioaerosol sampler to collect representative samples of air and identify specific viruses suspended as bioaerosols. To test this concept, we aerosolized an innocuous replication-defective bovine adenovirus serotype 3 (BAdV3) in a controlled laboratory environment. The ASAP efficiently trapped the surrogate virus at 5 × 10(3) plaque-forming units (p.f.u.) [2 × 10(5) genome copy equivalent] concentrations or more resulting in the successful detection of the virus using quantitative PCR. These results support the further development of ASAP for bioaerosol pathogen detection. PMID:26074900

  6. Efficiency of Airborne Sample Analysis Platform (ASAP) bioaerosol sampler for pathogen detection

    PubMed Central

    Sharma, Anurag; Clark, Elizabeth; McGlothlin, James D.; Mittal, Suresh K.

    2015-01-01

    The threat of bioterrorism and pandemics has highlighted the urgency for rapid and reliable bioaerosol detection in different environments. Safeguarding against such threats requires continuous sampling of the ambient air for pathogen detection. In this study we investigated the efficacy of the Airborne Sample Analysis Platform (ASAP) 2800 bioaerosol sampler to collect representative samples of air and identify specific viruses suspended as bioaerosols. To test this concept, we aerosolized an innocuous replication-defective bovine adenovirus serotype 3 (BAdV3) in a controlled laboratory environment. The ASAP efficiently trapped the surrogate virus at 5 × 103 plaque-forming units (p.f.u.) [2 × 105 genome copy equivalent] concentrations or more resulting in the successful detection of the virus using quantitative PCR. These results support the further development of ASAP for bioaerosol pathogen detection. PMID:26074900

  7. Current Status of International Airborne Platform Data and Instrument Interface Standards

    NASA Astrophysics Data System (ADS)

    Freer, Matt; Webster, Chris; Freundinger, Larry

    2016-06-01

    Commission I of the International Society for Photogrammetric and Remote Sensing formed working group I/1 for the purpose of standardizing airborne platform interfaces. The primary mission of this working group is to promote the standardization of instrument interfaces, data formats, and supporting infrastructures; and to facilitate more efficient, flexible, and cost-effective international science flight operations. Within WGI/1 are a number of focused subgroups. This paper addresses the efforts of some of these subgroups having interdependent and overlapping interests; including the development of standard software interfaces for sensors, standardized approaches to management of information over potentially intermittent wireless data links, the development of standardized processing algorithms, and data archival format standards. The data in this report reflect the outcome of work-to-date in the current subgroups.

  8. Vehicle tracking in wide area motion imagery from an airborne platform

    NASA Astrophysics Data System (ADS)

    van Eekeren, Adam W. M.; van Huis, Jasper R.; Eendebak, Pieter T.; Baan, Jan

    2015-10-01

    Airborne platforms, such as UAV's, with Wide Area Motion Imagery (WAMI) sensors can cover multiple square kilometers and produce large amounts of video data. Analyzing all data for information need purposes becomes increasingly labor-intensive for an image analyst. Furthermore, the capacity of the datalink in operational areas may be inadequate to transfer all data to the ground station. Automatic detection and tracking of people and vehicles enables to send only the most relevant footage to the ground station and assists the image analysts in effective data searches. In this paper, we propose a method for detecting and tracking vehicles in high-resolution WAMI images from a moving airborne platform. For the vehicle detection we use a cascaded set of classifiers, using an Adaboost training algorithm on Haar features. This detector works on individual images and therefore does not depend on image motion stabilization. For the vehicle tracking we use a local template matching algorithm. This approach has two advantages. In the first place, it does not depend on image motion stabilization and it counters the inaccuracy of the GPS data that is embedded in the video data. In the second place, it can find matches when the vehicle detector would miss a certain detection. This results in long tracks even when the imagery is of low frame-rate. In order to minimize false detections, we also integrate height information from a 3D reconstruction that is created from the same images. By using the locations of buildings and roads, we are able to filter out false detections and increase the performance of the tracker. In this paper we show that the vehicle tracks can also be used to detect more complex events, such as traffic jams and fast moving vehicles. This enables the image analyst to do a faster and more effective search of the data.

  9. Airflow elicits a spider's jump towards airborne prey. I. Airflow around a flying blowfly

    PubMed Central

    Klopsch, Christian; Kuhlmann, Hendrik C.; Barth, Friedrich G.

    2012-01-01

    The hunting spider Cupiennius salei uses airflow generated by flying insects for the guidance of its prey-capture jump. We investigated the velocity field of the airflow generated by a freely flying blowfly close to the flow sensors on the spider's legs. It shows three characteristic phases (I–III). (I) When approaching, the blowfly induces an airflow signal near the spider with only little fluctuation (0.013 ± 0.006 m s−1) and a strength that increases nearly exponentially with time (maximum: 0.164 ± 0.051 m s−1 s.d.). The spider detects this flow while the fly is still 38.4 ± 5.6 mm away. The fluctuation of the airflow above the sensors increases linearly up to 0.037 m s−1 with the fly's altitude. Differences in the time of arrival and intensity of the fly signal at different legs probably inform the spider about the direction to the prey. (II) Phase II abruptly follows phase I with a much higher degree of fluctuation (fluctuation amplitudes: 0.114 ± 0.050 m s−1). It starts when the fly is directly above the sensor and corresponds to the time-dependent flow in the wake below and behind the fly. Its onset indicates to the spider that its prey is now within reach and triggers its jump. The spider derives information on the fly's position from the airflow characteristics, enabling it to properly time its jump. The horizontal velocity of the approaching fly is reflected by the time of arrival differences (ranging from 0.038 to 0.108 s) of the flow at different legs and the exponential velocity growth rate (16–79 s−1) during phase I. (III) The air flow velocity decays again after the fly has passed the spider. PMID:22572032

  10. Airflow elicits a spider's jump towards airborne prey. I. Airflow around a flying blowfly.

    PubMed

    Klopsch, Christian; Kuhlmann, Hendrik C; Barth, Friedrich G

    2012-10-01

    The hunting spider Cupiennius salei uses airflow generated by flying insects for the guidance of its prey-capture jump. We investigated the velocity field of the airflow generated by a freely flying blowfly close to the flow sensors on the spider's legs. It shows three characteristic phases (I-III). (I) When approaching, the blowfly induces an airflow signal near the spider with only little fluctuation (0.013 ± 0.006 m s(-1)) and a strength that increases nearly exponentially with time (maximum: 0.164 ± 0.051 m s(-1) s.d.). The spider detects this flow while the fly is still 38.4 ± 5.6 mm away. The fluctuation of the airflow above the sensors increases linearly up to 0.037 m s(-1) with the fly's altitude. Differences in the time of arrival and intensity of the fly signal at different legs probably inform the spider about the direction to the prey. (II) Phase II abruptly follows phase I with a much higher degree of fluctuation (fluctuation amplitudes: 0.114 ± 0.050 m s(-1)). It starts when the fly is directly above the sensor and corresponds to the time-dependent flow in the wake below and behind the fly. Its onset indicates to the spider that its prey is now within reach and triggers its jump. The spider derives information on the fly's position from the airflow characteristics, enabling it to properly time its jump. The horizontal velocity of the approaching fly is reflected by the time of arrival differences (ranging from 0.038 to 0.108 s) of the flow at different legs and the exponential velocity growth rate (16-79 s(-1)) during phase I. (III) The air flow velocity decays again after the fly has passed the spider. PMID:22572032

  11. FLIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flies constitute a major group of nuisance species world wide in rural and urban situations. The public and health care officials can become more aware of the potential risks from flies and other urban pests by compiling the available information into an easily readable book form. Scientists from ...

  12. Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

    PubMed Central

    2016-01-01

    We have developed an open software platform called Neurokernel for collaborative development of comprehensive models of the brain of the fruit fly Drosophila melanogaster and their execution and testing on multiple Graphics Processing Units (GPUs). Neurokernel provides a programming model that capitalizes upon the structural organization of the fly brain into a fixed number of functional modules to distinguish between these modules’ local information processing capabilities and the connectivity patterns that link them. By defining mandatory communication interfaces that specify how data is transmitted between models of each of these modules regardless of their internal design, Neurokernel explicitly enables multiple researchers to collaboratively model the fruit fly’s entire brain by integration of their independently developed models of its constituent processing units. We demonstrate the power of Neurokernel’s model integration by combining independently developed models of the retina and lamina neuropils in the fly’s visual system and by demonstrating their neuroinformation processing capability. We also illustrate Neurokernel’s ability to take advantage of direct GPU-to-GPU data transfers with benchmarks that demonstrate scaling of Neurokernel’s communication performance both over the number of interface ports exposed by an emulation’s constituent modules and the total number of modules comprised by an emulation. PMID:26751378

  13. Developing a Scalable Remote Sampling Design for the NEON Airborne Observation Platform (AOP)

    NASA Astrophysics Data System (ADS)

    Musinsky, J.; Wasser, L. A.; Kampe, T. U.; Leisso, N.; Krause, K.; Petroy, S. B.; Cawse-Nicholson, K.; van Aardt, J. A.; Serbin, S.

    2013-12-01

    The National Ecological Observatory Network (NEON) airborne observation platform (AOP) will collect co-registered high-resolution hyperspectral imagery, discrete and waveform LiDAR, and high-resolution digital photography for more than 60 terrestrial and 23 aquatic sites spread across the continental United States, Puerto Rico, Alaska and Hawaii on an annual basis over the next 30 years. These data, to be made freely available to the public, will facilitate the scaling of field-based biological, physical and chemical measurements to regional and continental scales, enabling a better understanding of the relationships between climate variability and change, land use change and invasive species, and their ecological consequences in areas not directly sampled by the NEON facilities. However, successful up-scaling of in situ measurements requires a flight sampling design that captures environmental heterogeneity and diversity (i.e., ecological and topographic gradients), is sensitive to temporal system variation (e.g., phenology), and can respond to major disturbance events. Alignment of airborne campaigns - composed of two payloads for nominal science acquisitions and one payload for PI-driven rapid-response campaigns -- with other ground, airborne (e.g., AVIRIS) and satellite (e.g., Landsat, MODIS) collections will further facilitate scaling between sensors and data sources of varying spatial and spectral resolution and extent. This presentation will discuss the approach, challenges and future goals associated with the development of NEON AOP's sampling design, using examples from the 2013 nominal flight campaigns in the Central Plains (NEON Domain 10) and the Pacific Southwest (Domain 17), and the rapid response flight campaign of the High Park Fire site outside of Fort Collins, CO. Determination of the specific flight coverage areas for each campaign involved analysis of the landscape scale ecological, geophysical and bioclimatic attributes and trends most closely

  14. Using airborne measurements and modelling to determine the leak rate of the Elgin platform in 2012

    NASA Astrophysics Data System (ADS)

    Mobbs, Stephen D.; Bauguitte, Stephane J.-B.; Wellpott, Axel; O'Shea, Sebastian

    2013-04-01

    On the 25th March 2012 the French multinational oil and gas company Total reported a gas leak at the Elgin gas field in the North Sea following an operation on well G4 on the wellhead platform. During operations to plug and decommission the well methane leaked out which lead to the evacuation of the platform. Total made immense efforts to quickly stop the leak and on the 16th May 2012 the company announced the successful "Top kill". The UK's National Centre for Atmospheric Science (NCAS) supported the Total response to the leak with flights of the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft. Between the 3rd of April and the 4th of May five missions were flown. The FAAM aircraft was equipped with a Fast Greenhouse Gas Analyser (FGGA, Model RMT-200, Los Gatos Research Inc., US) to measure CH4 mixing ratios with an accuracy of 0.07±2.48 ppbv. The measurement strategy used followed closely NOAA's during the Deepwater Horizon (DWH) spill in the Gulf of Mexico in 2010. The basis of the method is to sample the cross-wind structure of the plume at different heights downwind of the source. The measurements were then fitted to a Gaussian dispersion model which allowed the calculation of the leak rate. The first mission was flown on the 30th March 2012 only 5 days after Total reported the leak. On this day maximum CH4 concentrations exceeded 2800 ppbv. The plume was very distinct and narrow especially near the platform (10km) and it showed almost perfect Gaussian characteristics. Further downwind the plume was split up into several filaments. On this day the CH4 leak rate was estimated to be 1.1 kg/s. Between the 1st and 2nd mission (03/04/2012) the leak rate decreased significantly to about 0.5 kg/s. From the 2nd flight onwards only a minor decrease in leak rate was calculated. The last mission - while the platform was still leaking - was flown on the 4th of May, when the leak rate was estimated to be 0.3 kg/s. The FAAM aircraft measurements

  15. Supporting relief efforts of the 2010 Haitian earthquake using an airborne multimodal remote sensing platform

    NASA Astrophysics Data System (ADS)

    Faulring, Jason W.; McKeown, Donald M.; van Aardt, Jan; Casterline, May V.; Bartlett, Brent D.; Raqueno, Nina

    2011-06-01

    The small island nation of Haiti was devastated in early 2010 following a massive 7.0 earthquake that brought about widespread destruction of infrastructure, many deaths and large-scale displacement of the population in the nation's major cities. The World Bank and ImageCat, Inc tasked the Rochester Institute of Technology's (RIT) Wildfire Airborne Sensor Platform (WASP) to gather a multi-spectral and multi-modal assessment of the disaster over a seven-day period to be used for relief and reconstruction efforts. Traditionally, private sector aerial remote sensing platforms work on processing and product delivery timelines measured in days, a scenario that has the potential to reduce the value of the data in time-sensitive situations such as those found in responding to a disaster. This paper will describe the methodologies and practices used by RIT to deliver an open set of products typically within a twenty-four hour period from when they were initially collected. Response to the Haiti disaster can be broken down into four major sections: 1) data collection and logistics, 2) transmission of raw data from a remote location to a central processing and dissemination location, 3) rapid image processing of a massive amount of raw data, and 4) dissemination of processed data to global organizations utilizing it to provide the maximum benefit. Each section required it's own major effort to ensure the success of the overall mission. A discussion of each section will be provided along with an analysis of methods that could be implemented in future exercises to increase efficiency and effectiveness.

  16. Model-based sensor rendering for a DIS multisensor airborne surveillance platform

    NASA Astrophysics Data System (ADS)

    Roberts, John D.; Santapietro, John J.

    1997-07-01

    This paper reports on the continuing development of a DIS- compliant model for an airborne platform carrying a multisensor payload. This payload consists of a moving target indicator (MTI) radar, a cooperative battlefield combat identification system (BCIS), and imaging sensors. The imaging sensors are a synthetic aperture radar (SAR) and a forward looking infrared (FLIR) imager. The entire platform model is an extension to the ModSAF environment. The sensor model code is fully portable and integrated as ModSAF libraries. Relevant emission protocol data units (PDU) are generated and transmitted. The overall simulation architecture and the MTI and BCIS models have been described in detail elsewhere. The current work concentrates on the development of real-time model-based imaging functions. The software tools which provide this capability are available both in the government- owned inventory and as commercial products. The purpose of the current activity is to investigate the feasibility of integrating software of this kind with the ModSAF environment in order to produce realistic target/scene rendering similar to those obtained by high-resolution imaging sensors. To this end, we investigated real-time scene generation using two approaches. The first, through integration of the IRMA software package developed and distributed by the USAF Wright Laboratories, Eglin AFB, and the second is by use of the commercial software package SensorVisionTM, which is marketed and distributed by Paradigm Solutions, Inc. Both of these produce scene renderings in user specified wavebands by combining entity state PDU information with terrain data. The scene model information is passed to rendering software to produce an IR or SAR rendering of the scene.

  17. High Resolution Airborne Laser Scanning and Hyperspectral Imaging with a Small Uav Platform

    NASA Astrophysics Data System (ADS)

    Gallay, Michal; Eck, Christoph; Zgraggen, Carlo; Kaňuk, Ján; Dvorný, Eduard

    2016-06-01

    The capabilities of unmanned airborne systems (UAS) have become diverse with the recent development of lightweight remote sensing instruments. In this paper, we demonstrate our custom integration of the state-of-the-art technologies within an unmanned aerial platform capable of high-resolution and high-accuracy laser scanning, hyperspectral imaging, and photographic imaging. The technological solution comprises the latest development of a completely autonomous, unmanned helicopter by Aeroscout, the Scout B1-100 UAV helicopter. The helicopter is powered by a gasoline two-stroke engine and it allows for integrating 18 kg of a customized payload unit. The whole system is modular providing flexibility of payload options, which comprises the main advantage of the UAS. The UAS integrates two kinds of payloads which can be altered. Both payloads integrate a GPS/IMU with a dual GPS antenna configuration provided by OXTS for accurate navigation and position measurements during the data acquisition. The first payload comprises a VUX-1 laser scanner by RIEGL and a Sony A6000 E-Mount photo camera. The second payload for hyperspectral scanning integrates a push-broom imager AISA KESTREL 10 by SPECIM. The UAS was designed for research of various aspects of landscape dynamics (landslides, erosion, flooding, or phenology) in high spectral and spatial resolution.

  18. Operational considerations for the application of remotely sensed forest data from LANDSAT or other airborne platforms

    NASA Technical Reports Server (NTRS)

    Baker, G. R.; Fethe, T. P.

    1975-01-01

    Research in the application of remotely sensed data from LANDSAT or other airborne platforms to the efficient management of a large timber based forest industry was divided into three phases: (1) establishment of a photo/ground sample correlation, (2) investigation of techniques for multi-spectral digital analysis, and (3) development of a semi-automated multi-level sampling system. To properly verify results, three distinct test areas were selected: (1) Jacksonville Mill Region, Lower Coastal Plain, Flatwoods, (2) Pensacola Mill Region, Middle Coastal Plain, and (3) Mississippi Mill Region, Middle Coastal Plain. The following conclusions were reached: (1) the probability of establishing an information base suitable for management requirements through a photo/ground double sampling procedure, alleviating the ground sampling effort, is encouraging, (2) known classification techniques must be investigated to ascertain the level of precision possible in separating the many densities involved, and (3) the multi-level approach must be related to an information system that is executable and feasible.

  19. An Open Source Software and Web-GIS Based Platform for Airborne SAR Remote Sensing Data Management, Distribution and Sharing

    NASA Astrophysics Data System (ADS)

    Changyong, Dou; Huadong, Guo; Chunming, Han; Ming, Liu

    2014-03-01

    With more and more Earth observation data available to the community, how to manage and sharing these valuable remote sensing datasets is becoming an urgent issue to be solved. The web based Geographical Information Systems (GIS) technology provides a convenient way for the users in different locations to share and make use of the same dataset. In order to efficiently use the airborne Synthetic Aperture Radar (SAR) remote sensing data acquired in the Airborne Remote Sensing Center of the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), a Web-GIS based platform for airborne SAR data management, distribution and sharing was designed and developed. The major features of the system include map based navigation search interface, full resolution imagery shown overlaid the map, and all the software adopted in the platform are Open Source Software (OSS). The functions of the platform include browsing the imagery on the map navigation based interface, ordering and downloading data online, image dataset and user management, etc. At present, the system is under testing in RADI and will come to regular operation soon.

  20. Effects of quartz, airborne particulates and fly ash fractions from a waste incinerator on elastase release by activated and nonactivated rabbit alveolar macrophages

    SciTech Connect

    Gulyas, H.; Labedzka, M.; Schmidt, N.; Gercken, G.

    1988-01-01

    Elastase release from cultured, activated and nonactivated rabbit alveolar macrophages (AM) was investigated after stimulation by different environmentally related mineral dusts (50-1000 micrograms/10(6) cells). Eight different dusts were analyzed for element contents and grain size: one rural and three urban airborne dusts, a coarse and a fine fraction of a sieved waste incinerator fly ash, a sonicated coarse fly ash fraction, and the standard quartz dust DQ 12. The fine fly ash fraction, the sonicated coarse fly ash fraction, and the quartz dust DQ 12 enhanced elastase release by activated AM. Only one of the tested airborne dusts effected a comparable elastase release. The untreated coarse fraction of the fly ash did not cause a significant increase of extracellular elastase activities. Elastase release was dependent on particle numbers and chemical composition and correlated best with barium and tin contents. Nonactivated AM released higher elastase activities than activated AM at low-dose levels. The possible role of dust-induced elastase secretion in the pathogenesis of emphysema is discussed.

  1. A new look at inhalable metalliferous airborne particles on rail subway platforms.

    PubMed

    Moreno, Teresa; Martins, Vânia; Querol, Xavier; Jones, Tim; BéruBé, Kelly; Minguillón, Maria Cruz; Amato, Fulvio; Capdevila, Marta; de Miguel, Eladio; Centelles, Sonia; Gibbons, Wes

    2015-02-01

    Most particles breathed on rail subway platforms are highly ferruginous (FePM) and extremely small (nanometric to a few microns in size). High magnification observations of particle texture and chemistry on airborne PM₁₀ samples collected from the Barcelona Metro, combined with published experimental work on particle generation by frictional sliding, allow us to propose a general model to explain the origin of most subway FePM. Particle generation occurs by mechanical wear at the brake-wheel and wheel-rail interfaces, where magnetic metallic flakes and splinters are released and undergo progressive atmospheric oxidation from metallic iron to magnetite and maghemite. Flakes of magnetite typically comprise mottled mosaics of octahedral nanocrystals (10-20 nm) that become pseudomorphed by maghemite. Continued oxidation results in extensive alteration of the magnetic nanostructure to more rounded aggregates of non-magnetic hematite nanocrystals, with magnetic precursors (including iron metal) still preserved in some particle cores. Particles derived from steel wheel and rails contain a characteristic trace element chemistry, typically with Mn/Fe=0.01. Flakes released from brakes are chemically very distinctive, depending on the pad composition, being always carbonaceous, commonly barium-rich, and texturally inhomogeneous, with trace elements present in nanominerals incorporated within the crystalline structure. In the studied subway lines of Barcelona at least there appears to be only a minimal aerosol contribution from high temperature processes such as sparking. To date there is no strong evidence that these chemically and texturally complex inhalable metallic materials are any more or less toxic than street-level urban particles, and as with outdoor air, the priority in subway air quality should be to reduce high mass concentrations of aerosol present in some stations. PMID:25461038

  2. Lidar Measurements of Wind and Cloud Around Venus from an Orbiting or Floating/flying Platform

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Limaye, Sanjay; Emmitt, George D.; Refaat, Tamer F.; Kavaya, Michael J.; Yu, Jirong; Petros, Mulugeta

    2015-01-01

    Given the presence of clouds and haze in the upper portion of the Venus atmosphere, it is reasonable to consider a Doppler wind lidar (DWL) for making remote measurements of the 3-dimensional winds within the tops of clouds and the overlying haze layer. Assuming an orbit altitude of 250 kilometers and cloud tops at 60 kilometers (within the upper cloud layer), an initial performance assessment of an orbiting DWL was made using a numerical instrument and atmospheres model developed for both Earth and Mars. It is reasonable to expect vertical profiles of the 3-dimensional wind speed with 1 kilometer vertical resolution and horizontal spacing of 25 kilometers to several 100 kilometers depending upon the desired integration times. These profiles would begin somewhere just below the tops of the highest clouds and extend into the overlying haze layer to some to-be-determined height. Getting multiple layers of cloud returns is also possible with no negative impact on velocity measurement accuracy. The knowledge and expertise for developing coherent Doppler wind lidar technologies and techniques, for Earth related mission at NASA Langley Research Center is being leveraged to develop an appropriate system suitable for wind measurement around Venus. We are considering a fiber-laser-based lidar system of high efficiency and smaller size and advancing the technology level to meet the requirements for DWL system for Venus from an orbiting or floating/flying platform. This presentation will describe the concept, simulation and technology development plan for wind and cloud measurements on Venus.

  3. Airborne and Ground-Based Platforms for Data Collection in Small Vineyards: Examples from the UK and Switzerland

    NASA Astrophysics Data System (ADS)

    Green, David R.; Gómez, Cristina; Fahrentrapp, Johannes

    2015-04-01

    This paper presents an overview of some of the low-cost ground and airborne platforms and technologies now becoming available for data collection in small area vineyards. Low-cost UAV or UAS platforms and cameras are now widely available as the means to collect both vertical and oblique aerial still photography and airborne videography in vineyards. Examples of small aerial platforms include the AR Parrot Drone, the DJI Phantom (1 and 2), and 3D Robotics IRIS+. Both fixed-wing and rotary wings platforms offer numerous advantages for aerial image acquisition including the freedom to obtain high resolution imagery at any time required. Imagery captured can be stored on mobile devices such as an Apple iPad and shared, written directly to a memory stick or card, or saved to the Cloud. The imagery can either be visually interpreted or subjected to semi-automated analysis using digital image processing (DIP) software to extract information about vine status or the vineyard environment. At the ground-level, a radio-controlled 'rugged' model 4x4 vehicle can also be used as a mobile platform to carry a number of sensors (e.g. a Go-Pro camera) around a vineyard, thereby facilitating quick and easy field data collection from both within the vine canopy and rows. For the small vineyard owner/manager with limited financial resources, this technology has a number of distinct advantages to aid in vineyard management practices: it is relatively cheap to purchase; requires a short learning-curve to use and to master; can make use of autonomous ground control units for repetitive coverage enabling reliable monitoring; and information can easily be analysed and integrated within a GIS with minimal expertise. In addition, these platforms make widespread use of familiar and everyday, off-the-shelf technologies such as WiFi, Go-Pro cameras, Cloud computing, and smartphones or tablets as the control interface, all with a large and well established end-user support base. Whilst there are

  4. Source localization corrections for airborne acoustic platforms based on a climatological assessment of temperature and wind velocity profiles

    NASA Astrophysics Data System (ADS)

    Ostashev, Vladimir E.; Cheinet, Sylvain; Collier, Sandra L.; Reiff, Christian; Ligon, David A.; Wilson, D. Keith; Noble, John M.; Alberts, W. C. Kirkpatrick, II

    2012-06-01

    Acoustic sensors are being employed on airborne platforms, such as Persistent Threat Detection System (PTDS) and Persistent Ground Surveillance System (PGSS), for source localization. Under certain atmospheric conditions, airborne sensors oer a distinct advantage over ground sensors. The performance of both ground and airborne sensors is aected by environmental factors, such as atmospheric turbulence and wind and temperature proles. For airborne sensors, the eects of refraction must be accounted for in order to determine the source coordinates. Such a method for ground-to-air applications has been developed and is further rened here. Ideally, knowledge of the exact atmospheric proles will allow for the most accurate mitigation of refractive eects. However, acoustic sensors deployed in theater are rarely supported by atmospheric sensing systems that retrieve real-time temperature and wind elds. Atmospheric conditions evolve through seasons, time of day, and are strongly location dependent. Therefore, the development of an atmospheric proles database based on a long time series climatological assessment will provide knowledge for use in physics-based bearing estimation algorithms, where otherwise no correction would have been performed. Long term atmospheric data sets from weather modeling systems are used for a climatological assessment of the refraction corrections and localization errors over selected sites.

  5. Design and Performance Assessment of a Stable Astigmatic Herriott Cell for Trace Gas Measurements on Airborne Platforms

    NASA Technical Reports Server (NTRS)

    Dyroff, Christoph; Fried, Alan; Richter, Dirk; Walega, James G.; Zahniser, Mark S.; McManus, J. Barry

    2005-01-01

    The present paper discusses a new, more stable, astigmatic Herriott cell employing carbon fiber stabilizing rods. Laboratory tests using a near-IR absorption feature of CO at 1564.168-nm revealed a factor of two improvement in measurement stability compared with the present commercial design when the sampling pressure was changed by +/-2 Torr around 50 Torr. This new cell should significantly enhance our efforts to measure trace gases employing pathlengths of 100 to 200-meters on airborne platforms with minimum detectable line center absorbances of less than 10(exp -6).

  6. Collection, Storage and Real-Time Transmission of Housekeeping and Instrument Data Aboard Manned NASA Airborne Science Platforms

    NASA Astrophysics Data System (ADS)

    Van Gilst, D. P.; Sorenson, C. E.

    2011-12-01

    Multi-instrument aircraft-based science campaigns require a baseline level of housekeeping service to record and distribute real time data, including timing signals, aircraft state and air data. As campaigns have become more sophisticated with greater integration between aircraft, ground instrumentation, satellites and forecasters in locations around the world, the scope of the services provided by the facility data systems on NASA's airborne science aircraft have increased to include situational awareness displays, real-time interchange of data between instruments and aircraft, and ingest of data to assist in real-time targeting of flights. As the scope of services has expanded, it has become increasingly important to provide standardized interfaces to experimenters to minimize integration complexity, and to make services sufficiently reliable for mission operations to depend upon them. Within the NASA airborne science program in recent years this has been provided by systems based around the core of the REVEAL/NASDAT system, with additional services including satellite communications, data display and ingest of outside data being provided by a mix of custom and COTS hardware and software. With a strong emphasis on transmission of data over industry standard IP and ethernet based networks, this system has been proven on numerous highly diverse missions on the DC-8 over the last 4 years and is being replicated on other NASA Airborne Science Platforms.

  7. The manned hydrogen balloon - an appropriate platform for airborne Lagrange experiments in atmospheric research

    SciTech Connect

    Rabl, P.F.H.; Euskirchen, J.

    1996-10-01

    During the last decade hydrogen ballooning provided a reliable basis for special airborne measurements especially for experiments that give evidence about atmospheric chemistry and structure. Although the balloon is not quite a small particle without inertia, Lagrange-like movements of atmospheric mass can be simulated. During two experiments, the vertical gradients of ozone concentration were measured in the downwind area of Munich. The results show remarkable differences in ozone concentration and production, dependent of the daytime. 3 refs., 3 figs.

  8. [Remote sensing of chlorophyll fluorescence at airborne level based on unmanned airship platform and hyperspectral sensor].

    PubMed

    Yang, Pei-Qi; Liu, Zhi-Gang; Ni, Zhuo-Ya; Wang, Ran; Wang, Qing-Shan

    2013-11-01

    The solar-induced chlorophyll fluorescence (ChlF) has a close relationship with photosynthetic and is considered as a probe of plant photosynthetic activity. In this study, an airborne fluorescence detecting system was constructed by using a hyperspectral imager on board an unmanned airship. Both Fraunhofer Line Discriminator (FLD) and 3FLD used to extract ChlF require the incident solar irradiance, which is always difficult to receive at airborne level. Alternative FLD (aFLD) can overcome the problem by selecting non-fluorescent emitter in the image. However, aFLD is based on the assumption that reflectance is identical around the Fraunhofer line, which is not realistic. A new method, a3FLD, is proposed, which assumes that reflectance varies linearly with the wavelength around Fraunhofer line. The result of simulated data shows that ChlF retrieval error of a3FLD is significantly lower than that of aFLD when vegetation reflectance varies near the Fraunhofer line. The results of hyperspectral remote sensing data with the airborne fluorescence detecting system show that the relative values of retrieved ChlF of 5 kinds of plants extracted by both aFLD and a3FLD are consistent with vegetation growth stage and the ground-level ChlF. The ChlF values of aFLD are about 15% greater than a3FLD. In addition, using aFLD, some non-fluorescent objects have considerable ChlF value, while a3FLD can effectively overcome the problem. PMID:24555390

  9. An airborne robotic platform for mapping thermal structure in surface water bodies

    NASA Astrophysics Data System (ADS)

    Thompson, S. E.; Chung, M.; Detweiler, C.; Ore, J. P.

    2015-12-01

    The significance of thermal heterogeneities in small surface water bodies as drivers of mixing and for habitat provision is increasingly recognized, yet obtaining three-dimensionally resolved observations of the thermal structure of lakes and rivers remains challenging. For relatively shallow water bodies, observations of water temperature from aerial platforms are attractive: they do not require shoreline access, they can be quickly and easily deployed and redeployed, facilitating repeated sampling, and they can rapidly move between measurement locations, allowing multiple measurements to be made during single flights. However, they are also subject to well-known limitations including payload, flight duration and operability, and their effectiveness as a mobile platform for thermal sensing is still poorly characterized. In this talk, I will introduce an aerial thermal sensing platform that enables water temperature measurements to be made and spatially located throughout a water column, and present preliminary results from initial field experiments comparing in-situ temperature observations to those made from the UAS platform. The results highlight the potential scalability of the platform to provide high-resolution 3D thermal mapping of a ~1 ha lake in 2-3 flights (circa 1 hour), sufficient to resolve diurnal variations. Operability constraints and key needs for further development are also identified.

  10. An airborne remote sensing platform of the Helsinki University of Technology

    SciTech Connect

    Nikulainen, M.; Hallikainen, M.; Kemppinen, M.; Tauriainen, S.

    1996-10-01

    In 1994 Helsinki University of Technology acquired a Short SC7 Skyvan turboprop aircraft to be modified to carry remote sensing instruments. As the aircraft is originally designed to carry heavy and space consuming cargo, a modification program was implemented to make the aircraft feasible for remote sensing operations. The twelve-month long modification program had three design objectives: flexibility, accessibility and cost efficiency. The aircraft interior and electrical system were modified. Furthermore, the aircraft is equipped with DGPS-navigation system, multi-channel radiometer system and side looking airborne radar. Future projects include installation of local area network, attitude GPS system, imaging spectrometer and 1.4 GHz radiometer. 6 refs., 5 figs., 1 tab.

  11. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons.

    PubMed

    Hermelin, Sylvain; Takada, Shintaro; Yamamoto, Michihisa; Tarucha, Seigo; Wieck, Andreas D; Saminadayar, Laurent; Bäuerle, Christopher; Meunier, Tristan

    2011-09-22

    Electrons in a metal are indistinguishable particles that interact strongly with other electrons and their environment. Isolating and detecting a single flying electron after propagation, in a similar manner to quantum optics experiments with single photons, is therefore a challenging task. So far only a few experiments have been performed in a high-mobility two-dimensional electron gas in which the electron propagates almost ballistically. In these previous works, flying electrons were detected by means of the current generated by an ensemble of electrons, and electron correlations were encrypted in the current noise. Here we demonstrate the experimental realization of high-efficiency single-electron source and detector for a single electron propagating isolated from the other electrons through a one-dimensional channel. The moving potential is excited by a surface acoustic wave, which carries the single electron along the one-dimensional channel at a speed of 3 μm ns(-1). When this quantum channel is placed between two quantum dots several micrometres apart, a single electron can be transported from one quantum dot to the other with quantum efficiencies of emission and detection of 96% and 92%, respectively. Furthermore, the transfer of the electron can be triggered on a timescale shorter than the coherence time T(2)* of GaAs spin qubits. Our work opens new avenues with which to study the teleportation of a single electron spin and the distant interaction between spatially separated qubits in a condensed-matter system. PMID:21938064

  12. Development of a multi-sensor airborne investigation platform based on an ultra-light aircraft

    NASA Astrophysics Data System (ADS)

    Herd, Rainer; Holst, Jonathan; Lay, Michael

    2013-04-01

    In the year 2012 the chair Raw Material and Natural Resource Management of Brandenburg University of Technology Cottbus, Germany started to develop, construct and assemble a multi-sensor airborne investigation system based on an ultra-light aircraft. The conceptual ideas were born several years before and triggered by the increasing demand of spatial underground information, increasing restrictions to access private property and the lack of affordable commercially operated systems for projects with small budgets. The concept of the presented system comprehends a full composite ultra-light aircraft, the Pipistrel VIRUS which combines a low minimum (65 km/h, a high crusing speed (250 km/h, a long range (1700 km) and a low noise potential. The investigation equipment which can be modified according to the investigation target comprises actually a CsI-y-spectrometer in the fuselage, 2 K-magnetometer at the wing tips and a VLF-EM-receiver underneath the tail. This configuration enables the system to operate for mineral exploration, geological mapping, detection of freshwater resources and brines and different environmental monitoring missions. The development and actual stage of the project will be presented. The first operating flight is scheduled for spring 2013.

  13. A survey of airborne radar systems for deployment on a High Altitude Powered Platform (HAPP)

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Leung, K. C.

    1979-01-01

    A survey was conducted to find out the system characteristics of commercially available and unclassified military radars suitable for deployment on a stationary platform. A total of ten domestic and eight foreign manufacturers of the radar systems were identified. Questionnaires were sent to manufacturers requesting information concerning the system characteristics: frequency, power used, weight, volume, power radiated, antenna pattern, resolution, display capabilities, pulse repetition frequency, and sensitivity. A literature search was also made to gather the system characteristics information. Results of the survey are documented and comparisons are made among available radar systems.

  14. Icepod: A modular approach to the development of an airborne remote sensing and data acquisition platform

    NASA Astrophysics Data System (ADS)

    Frearson, N.; Bell, R. E.; Tinto, K. J.; Zappa, C. J.

    2013-12-01

    The New York Air National Guard [NYANG] provides regular airborne support to the National Science Foundation [NSF] moving science parties and their equipment onto and around the ice-sheets in both polar regions during the respective summer seasons. Icepod has been developed to utilize this readily available resource, providing the aircraft with a modular external pod attached to the rear-paratrooper door on either side of the NYANG's ski-equipped LC-130s. The pod is divided into five separate bays each approximately a 2ft cube within which can be mounted an array of remote sensors. Power, heating, sensor control and data management services are provided to each bay. An Ethernet network is used to transfer commands and data packets between the individual sensors and data acquisition system located inside the aircraft. Data for each sensor is stored on ruggedized and removable hard-drives that can be taken off the aircraft at the end of a flight for further analysis. In its current configuration the pod is equipped for the remote sensing of ice sheets and their margins and the bay's contain two radar systems, radar antennas, a vibration isolated optics bay including a scanning laser, Infra-red camera and high-definition visible wave camera. Sensor data is geo-referenced using GNSS and orientation sensors located inside the pod. A Pyrometer provides the downward looking IR Camera with the current sky temperature. In January 2013, the Icepod system was flight certified at the Stratton air base in Schenectady, New York. The system deployed to Greenland in April and July 2013 to test the instrumentation suite over ice and its ease of deployment with the NYANG. Icepod can be operated in two modes, a traditional dedicated science flight mode and a piggy-back mode. In piggy-back mode science parties and their cargo are delivered to their destinations with Icepod installed but stowed. Once they have been delivered the Icepod is deployed and measurements can be taken on the

  15. Ship emissions of SO2 and NO2: DOAS measurements from airborne platforms

    NASA Astrophysics Data System (ADS)

    Berg, N.; Mellqvist, J.; Jalkanen, J.-P.; Balzani, J.

    2012-05-01

    A unique methodology to measure gas fluxes of SO2 and NO2 from ships using optical remote sensing is described and demonstrated in a feasibility study. The measurement system is based on Differential Optical Absorption Spectroscopy using reflected skylight from the water surface as light source. A grating spectrometer records spectra around 311 nm and 440 nm, respectively, with the telescope pointed downward at a 30° angle from the horizon. The mass column values of SO2 and NO2 are retrieved from each spectrum and integrated across the plume. A simple geometric approximation is used to calculate the optical path. To obtain the total emission in kg h-1 the resulting total mass across the plume is multiplied with the apparent wind, i.e. a dilution factor corresponding to the vector between the wind and the ship speed. The system was tested in two feasibility studies in the Baltic Sea and Kattegat, from a CASA-212 airplane in 2008 and in the North Sea outside Rotterdam from a Dauphin helicopter in an EU campaign in 2009. In the Baltic Sea the average SO2 emission out of 22 ships was (54 ± 13) kg h-1, and the average NO2 emission was (33 ± 8) kg h-1, out of 13 ships. In the North Sea the average SO2 emission out of 21 ships was (42 ± 11) kg h-1, NO2 was not measured here. The detection limit of the system made it possible to detect SO2 in the ship plumes in 60% of the measurements when the described method was used. A comparison exercise was carried out by conducting airborne optical measurements on a passenger ferry in parallel with onboard measurements. The comparison shows agreement of (-30 ± 14)% and (-41 ± 11)%, respectively, for two days, with equal measurement precision of about 20%. This gives an idea of the measurement uncertainty caused by errors in the simple geometric approximation for the optical light path neglecting scattering of the light in ocean waves and direct and multiple scattering in the exhaust plume under various conditions. A tentative

  16. Airborne reconnaissance in the civilian sector - Agricultural monitoring from high-altitude powered platforms

    NASA Technical Reports Server (NTRS)

    Youngblood, J. W.; Jackson, R. D.

    1983-01-01

    Design concepts and mission applications for unmanned high-altitude powered platforms (HAPPs) are discussed. A chemically powered HAPP (operating altitude 18-21 km, wingspan 26 m, payload 91 kg, endurance 2-3 days) would use current turboprop technology. A microwave-powered HAPP (operating altitude around 21 km, wingspan 57.9 m, payload 500 kg, endurance weeks or months) would circle within or perform boost-glide maneuvers around a microwave beam of density 1.1 kw/sq m. Of two solar-powered-HAPP designs presented, the more promising uses five vertical solar-panel-bearing fins, two of which can be made horizontal at night, (wingspan 57.8/98.3 m, payload 113 kg, endurance weeks or months). The operating altitude depends on the latitude and season: this HAPP design is shown to be capable of year-round 20-km-altitude flights over the San Joaquin Valley in California, where an agricultural-monitoring mission using Landsat-like remote sensors is proposed. Other applications may be better served by the characteristics of the other HAPPs. The primary advantage of HAPPs over satellites is found to be their ability to provide rapidly available high-resolution continuous or repetitive coverage of specific areas at relatively low cost.

  17. Automated Segmentation and Classification of Coral using Fluid Lensing from Unmanned Airborne Platforms

    NASA Astrophysics Data System (ADS)

    Instrella, R.; Chirayath, V.

    2015-12-01

    In recent years, there has been a growing interest among biologists in monitoring the short and long term health of the world's coral reefs. The environmental impact of climate change poses a growing threat to these biologically diverse and fragile ecosystems, prompting scientists to use remote sensing platforms and computer vision algorithms to analyze shallow marine systems. In this study, we present a novel method for performing coral segmentation and classification from aerial data collected from small unmanned aerial vehicles (sUAV). Our method uses Fluid Lensing algorithms to remove and exploit strong optical distortions created along the air-fluid boundary to produce cm-scale resolution imagery of the ocean floor at depths up to 5 meters. A 3D model of the reef is reconstructed using structure from motion (SFM) algorithms, and the associated depth information is combined with multidimensional maximum a posteriori (MAP) estimation to separate organic from inorganic material and classify coral morphologies in the Fluid-Lensed transects. In this study, MAP estimation is performed using a set of manually classified 100 x 100 pixel training images to determine the most probable coral classification within an interrogated region of interest. Aerial footage of a coral reef was captured off the coast of American Samoa and used to test our proposed method. 90 x 20 meter transects of the Samoan coastline undergo automated classification and are manually segmented by a marine biologist for comparison, leading to success rates as high as 85%. This method has broad applications for coastal remote sensing, and will provide marine biologists access to large swaths of high resolution, segmented coral imagery.

  18. Autonomous and Remote-Controlled Airborne and Ground-Based Robotic Platforms for Adaptive Geophysical Surveying

    NASA Astrophysics Data System (ADS)

    Spritzer, J. M.; Phelps, G. A.

    2011-12-01

    Low-cost autonomous and remote-controlled robotic platforms have opened the door to precision-guided geophysical surveying. Over the past two years, the U.S. Geological Survey, Senseta, NASA Ames Research Center, and Carnegie Mellon University Silicon Valley, have developed and deployed small autonomous and remotely controlled vehicles for geophysical investigations. The purpose of this line of investigation is to 1) increase the analytical capability, resolution, and repeatability, and 2) decrease the time, and potentially the cost and map-power necessary to conduct near-surface geophysical surveys. Current technology has advanced to the point where vehicles can perform geophysical surveys autonomously, freeing the geoscientist to process and analyze the incoming data in near-real time. This has enabled geoscientists to monitor survey parameters; process, analyze and interpret the incoming data; and test geophysical models in the same field session. This new approach, termed adaptive surveying, provides the geoscientist with choices of how the remainder of the survey should be conducted. Autonomous vehicles follow pre-programmed survey paths, which can be utilized to easily repeat surveys on the same path over large areas without the operator fatigue and error that plague man-powered surveys. While initial deployments with autonomous systems required a larger field crew than a man-powered survey, over time operational experience costs and man power requirements will decrease. Using a low-cost, commercially available chassis as the base for autonomous surveying robotic systems promise to provide higher precision and efficiency than human-powered techniques. An experimental survey successfully demonstrated the adaptive techniques described. A magnetic sensor was mounted on a small rover, which autonomously drove a prescribed course designed to provide an overview of the study area. Magnetic data was relayed to the base station periodically, processed and gridded. A

  19. Tracing arctic hydrology with observations of water vapor isotopes from in situ, airborne, and satellite platforms

    NASA Astrophysics Data System (ADS)

    Cherry, J. E.; Klein, E. S.; Herman, R. L.; Young, J. M.; Leffler, J.; Worden, J.; Welker, J. M.

    2014-12-01

    During 2013, a multi-scale campaign was undertaken on Alaska's North Slope to characterize the sources and mixing of water in the atmosphere, surface waters, and ecosystems through the use of water vapor isotopes. A 3-m micrometerological tower was installed at the Toolik Lake Field Station in Northern Alaska in late winter that collected continuous measurements of (δ2H and δ18O) at four levels (surface, in canopy, above canopy, and at 3 m) from early May to late August using a Picarro laser spectrometer. A second Picarro instrument flew onboard a research aircraft, sampling water vapor at altitudes from 100 to 5000 m during three campaigns (June, July, August). These campaigns were coordinated with special collections from the Tropospheric Emissions Spectrometer (TES) onboard the Aura satellite. Finally, water isotopes from a database of measurements of surface waters and vegetation were also used to describe a climatological isoscape. Measurements were compared across spatial and temporal scales and numerical weather model trajectories were used to help analyze vapor source regions and modes of variability. There were three critical findings: a) in situ, continuous water vapor isotope δ2H, δ18O and d-excess values reflected the diurnal patterns of transpiration by moist tussock tundra and the daily to weekly variation in synoptic climatology associated with switching meteoric moisture sources; b) aircraft measurements suggested that the traceable isotopic signature of the ecohydrosphere may be limited to near ground measurements in the Arctic; c) simultaneous TES water vapor isotope values were significantly recalibrated by the aircraft measurements, showing a-priori algorithms need adjusting in the Arctic. Collectively, this multiscale approach reflects the temporal and spatial complexity of the Alaskan water isotope cycle and the value of stationary and mobile research platform coordination.

  20. Automated Segmentation and Classification of Coral using Fluid Lensing from Unmanned Airborne Platforms

    NASA Technical Reports Server (NTRS)

    Instrella, Ron; Chirayath, Ved

    2016-01-01

    In recent years, there has been a growing interest among biologists in monitoring the short and long term health of the world's coral reefs. The environmental impact of climate change poses a growing threat to these biologically diverse and fragile ecosystems, prompting scientists to use remote sensing platforms and computer vision algorithms to analyze shallow marine systems. In this study, we present a novel method for performing coral segmentation and classification from aerial data collected from small unmanned aerial vehicles (sUAV). Our method uses Fluid Lensing algorithms to remove and exploit strong optical distortions created along the air-fluid boundary to produce cm-scale resolution imagery of the ocean floor at depths up to 5 meters. A 3D model of the reef is reconstructed using structure from motion (SFM) algorithms, and the associated depth information is combined with multidimensional maximum a posteriori (MAP) estimation to separate organic from inorganic material and classify coral morphologies in the Fluid-Lensed transects. In this study, MAP estimation is performed using a set of manually classified 100 x 100 pixel training images to determine the most probable coral classification within an interrogated region of interest. Aerial footage of a coral reef was captured off the coast of American Samoa and used to test our proposed method. 90 x 20 meter transects of the Samoan coastline undergo automated classification and are manually segmented by a marine biologist for comparison, leading to success rates as high as 85%. This method has broad applications for coastal remote sensing, and will provide marine biologists access to large swaths of high resolution, segmented coral imagery.

  1. Orientation of Oblique Airborne Image Sets - Experiences from the Isprs/eurosdr Benchmark on Multi-Platform Photogrammetry

    NASA Astrophysics Data System (ADS)

    Gerke, M.; Nex, F.; Remondino, F.; Jacobsen, K.; Kremer, J.; Karel, W.; Hu, H.; Ostrowski, W.

    2016-06-01

    During the last decade the use of airborne multi camera systems increased significantly. The development in digital camera technology allows mounting several mid- or small-format cameras efficiently onto one platform and thus enables image capture under different angles. Those oblique images turn out to be interesting for a number of applications since lateral parts of elevated objects, like buildings or trees, are visible. However, occlusion or illumination differences might challenge image processing. From an image orientation point of view those multi-camera systems bring the advantage of a better ray intersection geometry compared to nadir-only image blocks. On the other hand, varying scale, occlusion and atmospheric influences which are difficult to model impose problems to the image matching and bundle adjustment tasks. In order to understand current limitations of image orientation approaches and the influence of different parameters such as image overlap or GCP distribution, a commonly available dataset was released. The originally captured data comprises of a state-of-the-art image block with very high overlap, but in the first stage of the so-called ISPRS/EUROSDR benchmark on multi-platform photogrammetry only a reduced set of images was released. In this paper some first results obtained with this dataset are presented. They refer to different aspects like tie point matching across the viewing directions, influence of the oblique images onto the bundle adjustment, the role of image overlap and GCP distribution. As far as the tie point matching is concerned we observed that matching of overlapping images pointing to the same cardinal direction, or between nadir and oblique views in general is quite successful. Due to the quite different perspective between images of different viewing directions the standard tie point matching, for instance based on interest points does not work well. How to address occlusion and ambiguities due to different views onto

  2. Photometer dewar system for NASA C141 airborne telescope (Kuiper Flying Observatory). [design analysis/performance tests

    NASA Technical Reports Server (NTRS)

    Ney, E. P.

    1974-01-01

    The design, calibration, and testing of a photometer to be used in an airborne telescope is described. A description of the cryogenics of the photometer is given, and photographs and blueprints of the photometer are included. The photometer is designed with a focal plane beam switching system so that the airplane telescope can be used in a normal optical mode at the bent Cassegrain focus and with the photometer operating in the pressurized cabin of the airplane. The concept was to produce a system which could be used in almost the same manner as ground based infrared photometers and dewars of the O'Brien Observatory at the University of Minnesota.

  3. Influence of suspended inorganic sediment on airborne laser fluorosensor measurements

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Esaias, W. E.

    1983-01-01

    The results of Poole and Esaias (1982) are presently extended to an examination of the influence of inorganic sediment on the water Raman normalization procedure, as well as an assessment of the potential for using the Raman signal to monitor surface water attenuation properties. An optically perfect lidar system is assumed which has geometric properties representative of the Airborne Oceanographic Lidar, and is mounted on an airborne platform flying at an altitude of 150 m above the water surface. The results obtained suggest that caution should be exercised in attempts to quantitatively monitor changes in optical attenuation by means of remote measurements of the Raman scattering signal.

  4. Airborne Radar Interferometric Repeat-Pass Processing

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Michel, Thierry R.; Jones, Cathleen E.; Muellerschoen, Ronald J.; Chapman, Bruce D.; Fore, Alexander; Simard, Marc; Zebker, Howard A.

    2011-01-01

    Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements.

  5. Platforms.

    PubMed

    Josko, Deborah

    2014-01-01

    The advent of DNA sequencing technologies and the various applications that can be performed will have a dramatic effect on medicine and healthcare in the near future. There are several DNA sequencing platforms available on the market for research and clinical use. Based on the medical laboratory scientist or researcher's needs and taking into consideration laboratory space and budget, one can chose which platform will be beneficial to their institution and their patient population. Although some of the instrument costs seem high, diagnosing a patient quickly and accurately will save hospitals money with fewer hospital stays and targeted treatment based on an individual's genetic make-up. By determining the type of disease an individual has, based on the mutations present or having the ability to prescribe the appropriate antimicrobials based on the knowledge of the organism's resistance patterns, the clinician will be better able to treat and diagnose a patient which ultimately will improve patient outcomes and prognosis. PMID:25219075

  6. Remote sensing for control of tsetse flies

    NASA Technical Reports Server (NTRS)

    Giddings, L. E.

    1976-01-01

    Remotely sensed information is discussed which has potential for aiding in the control or eradication of tsetse flies. Data are available from earth resources meteorological, and manned satellites, from airborne sensors, and possibly from data collection platforms. A new zone discrimination technique, based on data from meteorological satellites may also allow the identification of zones hospitable to one or another species of tsetse. For background, a review is presented of the vegetation of Tanzania and Zanzibar, and illustrations presented of automatic processing of data from these areas. In addition, a review is presented of the applicability of temperature data to tsetse areas.

  7. Implementation of a near-real time cross-border web-mapping platform on airborne particulate matter (PM) concentration with open-source software

    NASA Astrophysics Data System (ADS)

    Knörchen, Achim; Ketzler, Gunnar; Schneider, Christoph

    2015-01-01

    Although Europe has been growing together for the past decades, cross-border information platforms on environmental issues are still scarce. With regard to the establishment of a web-mapping tool on airborne particulate matter (PM) concentration for the Euregio Meuse-Rhine located in the border region of Belgium, Germany and the Netherlands, this article describes the research on methodical and technical backgrounds implementing such a platform. An open-source solution was selected for presenting the data in a Web GIS (OpenLayers/GeoExt; both JavaScript-based), applying other free tools for data handling (Python), data management (PostgreSQL), geo-statistical modelling (Octave), geoprocessing (GRASS GIS/GDAL) and web mapping (MapServer). The multilingual, made-to-order online platform provides access to near-real time data on PM concentration as well as additional background information. In an open data section, commented configuration files for the Web GIS client are being made available for download. Furthermore, all geodata generated by the project is being published under public domain and can be retrieved in various formats or integrated into Desktop GIS as Web Map Services (WMS).

  8. Coherent Doppler Lidar for Wind and Cloud Measurements on Venus from an Orbiting or Floating/Flying Platform

    NASA Astrophysics Data System (ADS)

    Singh, Upendra; Limaye, Sanjay; Emmitt, George; Kavaya, Michael; Yu, Jirong; Petros, Mulugeta

    an orbiting or floating/flying platform. This presentation will describe the concept, simulation and technology development plan for wind and cloud measurements on Venus. References [1] M.J. Kavaya, U.N. Singh, G.J. Koch, B.C. Trieu, M. Petros, and P.J. Petzar, "Development of a Compact, Pulsed, 2-Micron, Coherent-Detection, Doppler Wind Lidar Transceiver and Plans for Flights on NASA's DC-8 and WB-57 Aircraft," Coherent Laser Radar Conference, Toulouse, France, June 2009. [2] G.J. Koch, J.Y. Beyon, B.W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M.J. Kavaya, and U.N. Singh, "High-Energy 2-micron Doppler Lidar for Wind Measurements," Optical Engineering 46(11), 116201-14 (2007). [3] J.Y. Beyon and G.J. Koch, "Novel Nonlinear Adaptive Doppler Shift Estimation Technique for the Coherent Doppler Validation Lidar," Optical Engineering 46(1), 0160021-9 (2007).

  9. Monitoring and Modeling Crop Health and Water Use via in-situ, Airborne and Space-based Platforms

    NASA Astrophysics Data System (ADS)

    McCabe, M. F.

    2014-12-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress, understanding the sustainable use of available water supplies is critical. Unfortunately, this need is all too often limited by a lack of reliable observations. Techniques that balance the demand for reliable ground-based data with the rapid retrieval of spatially distributed crop characteristics represent a needed line of research. Data from in-situ monitoring coupled with advances in satellite retrievals of key land surface variables, provide the information necessary to characterize many crop health and water use features, including evaporation, leaf-chlorophyll and other common vegetation indices. With developments in UAV and quadcopter solutions, the opportunity to bridge the spatio-temporal gap between satellite and ground based sensing now exists, along with the capacity for customized retrievals of crop information. While there remain challenges in the routine application of autonomous airborne systems, the state of current technology and sensor developments provide the capacity to explore the operational potential. While this presentation will focus on the multi-scale estimation of crop-water use and crop-health characteristics from satellite-based sensors, the retrieval of high resolution spatially distributed information from near-surface airborne and ground-based systems will also be examined.

  10. Airborne polar experiment (APE): tests and qualification of the scientific instrumentation installed on the stratospheric platform M-55 aircraft

    NASA Astrophysics Data System (ADS)

    de Rossi, Giuseppe; Puccini, Massimo; Puccetti, Giuseppe

    1995-12-01

    The paper describes the environmental tests to be carried out on the scientific instrumentation to be flown on the M-55 Geophysika in the frame of the APE Program. The instruments, developed by different European research institutes, are for remote sensing and in situ measurements of the major components of the Earth's stratosphere. The paper presents the technological activities that ENEA (Ente Nazionale per le Nuove Tecnologie l'Energia e l'Ambiente) is carrying out in its laboratories to verify the correspondence of the various instruments to meet the requirements for airborne application. The reference documents used have been the RTCA/DO-160C and the MDB (Myasishchev Design Bureau) specifications.

  11. AESMIR: A New NASA Airborne Microwave Imager

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.; Hood, Robbie; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer under development by NASA. The AESMIR design is unique in that it will perform dual-polarized imaging at all AMSR frequency bands (6.9 through 89 GHz) using only one sensor head/scanner package, providing an efficient solution for AMSR-type science applications (snow, soil moisture/land parameters, precip, ocean winds, SST, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s and the Proteus. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, and ground-based deployments. Thus AESMIR can provide low-, mid-, and high altitude microwave imaging.

  12. CO2 Budget and Rectification Airborne Study

    NASA Technical Reports Server (NTRS)

    Grainger, C. A.

    2004-01-01

    The main purpose of this award was to supply a platform for the airborne measurements of gases associated with the CO2 Budget and Regional Airborne Study (COBRA). The original program was to consist of three field programs: the first was to be in 1999, the second in 2000, and the third in 2001. At the end of the second field program, it was agreed that the science could better be served by making the measurements in northern Brazil, rather than in North America. The final North American program would be postponed until after two field programs in Brazil. A substantial amount of effort was diverted into making plans and preparations for the Brazil field programs. The Brazil field programs were originally scheduled to take place in the Fall of 2002 and Spring of 2003. Carrying out the field program in Brazil was going to logistically much more involved than a program in the US. Shipping of equipment, customs, and site preparations required work to begin many months prior to the actual measurement program. Permission to fly in that country was also not trivial and indeed proved to be a major obstacle. When we were not able to get permission to fly in Brazil for the 2002 portion of the experiment, the program was pushed back to 2003. When permission by the Brazilian government was not given in time for a Spring of 2003 field program, the experiment was postponed again to begin in the Fall of 2003.

  13. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  14. Simulation Framework to Estimate the Performance of CO2 and O2 Sensing from Space and Airborne Platforms for the ASCENDS Mission Requirements Analysis

    NASA Technical Reports Server (NTRS)

    Plitau, Denis; Prasad, Narasimha S.

    2012-01-01

    The Active Sensing of CO2 Emissions over Nights Days and Seasons (ASCENDS) mission recommended by the NRC Decadal Survey has a desired accuracy of 0.3% in carbon dioxide mixing ratio (XCO2) retrievals requiring careful selection and optimization of the instrument parameters. NASA Langley Research Center (LaRC) is investigating 1.57 micron carbon dioxide as well as the 1.26-1.27 micron oxygen bands for our proposed ASCENDS mission requirements investigation. Simulation studies are underway for these bands to select optimum instrument parameters. The simulations are based on a multi-wavelength lidar modeling framework being developed at NASA LaRC to predict the performance of CO2 and O2 sensing from space and airborne platforms. The modeling framework consists of a lidar simulation module and a line-by-line calculation component with interchangeable lineshape routines to test the performance of alternative lineshape models in the simulations. As an option the line-by-line radiative transfer model (LBLRTM) program may also be used for line-by-line calculations. The modeling framework is being used to perform error analysis, establish optimum measurement wavelengths as well as to identify the best lineshape models to be used in CO2 and O2 retrievals. Several additional programs for HITRAN database management and related simulations are planned to be included in the framework. The description of the modeling framework with selected results of the simulation studies for CO2 and O2 sensing is presented in this paper.

  15. Latest Advancement In Airborne Relative Gravity Instrumentation.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2011-12-01

    new system are: - Reduce the size of the system to approximately one third of the volume of the original TAGS and reduce the weight by one half. - Use slip ring technology to eliminate cable drag on the sensor and gimbal platform. - Use a double oven system to further isolate the gravity sensor from large external temperature variations commonly experienced in airborne survey operations. - Completely redesign both the platform control system and data acquisition and recording system to eliminate reliance on standard computer and windows software enhancing reliability and data throughput. - Increase data recording rate to 20 hertz to assist in making GPS corrections to platform levelling. - Use an advanced force feedback system to increase system resolution in turbulent conditions, eliminate dependence on the spring tension counter and the need to clamp the beam during turns. - Enable the system to be used for drape flying and remove the requirement for an operator and hence be suitable for unmanned aerial vehicle (UAV) operations. Prototype testing of the mechanical and electronic components has been ongoing through the first half of 2011. Ground testing and airborne testing began in May of 2011 and will continue through until October of 2011. This paper will present the results of the full hardware testing in different environments and confirmation of the capabilities of the system.

  16. Airborne system for testing multispectral reconnaissance technologies

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Doergeloh, Heinrich; Keil, Heiko; Wetjen, Wilfried

    1999-07-01

    There is an increasing demand for future airborne reconnaissance systems to obtain aerial images for tactical or peacekeeping operations. Especially Unmanned Aerial Vehicles (UAVs) equipped with multispectral sensor system and with real time jam resistant data transmission capabilities are of high interest. An airborne experimental platform has been developed as testbed to investigate different concepts of reconnaissance systems before their application in UAVs. It is based on a Dornier DO 228 aircraft, which is used as flying platform. Great care has been taken to achieve the possibility to test different kinds of multispectral sensors. Hence basically it is capable to be equipped with an IR sensor head, high resolution aerial cameras of the whole optical spectrum and radar systems. The onboard equipment further includes system for digital image processing, compression, coding, and storage. The data are RF transmitted to the ground station using technologies with high jam resistance. The images, after merging with enhanced vision components, are delivered to the observer who has an uplink data channel available to control flight and imaging parameters.

  17. DC-8 Airborne Laboratory in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's DC-8 Airborne Science platform shown against a background of a dark blue sky on February 20, 1998. The aircraft is shown from the right rear, slightly above its plane, with the right wing in the foreground and the left wing and horizontal tail in the background. The former airliner is a 'dash-72' model and has a range of 5,400 miles. The craft can stay airborne for 12 hours and has an operational speed range between 300 and 500 knots. The research flights are made at between 500 and 41,000 feet. The aircraft can carry up to 30,000 lbs of research/science payload equipment installed in 15 mission-definable spaces. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  18. DC-8 Airborne Laboratory in flight during research mission - view from above

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The DC-8 Airborne Science Laboratroy is shown flying above a solid layer of clouds. The aircraft was transferred from the Ames Research Center to the Dryden Flight Research Center in late 1997. Over the past several years, it has undertaken a wide range of research in such fields as archeology, ecology, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, and other fields. In this photo, it is shown flying over a bank of clouds. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  19. Airborne Synthetic Aperature Radar (AIRSAR) on left rear fuselage of DC-8 Airborne Laboratory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A view of the Airborne Synthetic Aperature Radar (AIRSAR) antenna on the left rear fuselage of the DC-8. The AIRSAR captures images of the ground from the side of the aircraft and can provide precision digital elevation mapping capabilities for a variety of studies. The AIRSAR is one of a number of research systems that have been added to the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  20. Small object hyperspectral detection from a low-flying UAV

    NASA Astrophysics Data System (ADS)

    Murray-Krezan, J.; Neumann, J. G.; Leathers, R. A.

    2008-04-01

    Small object detection with a low false alarm rate remains a challenge for automated hyperspectral detection algorithms when the background environment is cluttered. In order to approach this problem we are developing a compact hyperspectral sensor that can be fielded from a small unmanned airborne platform. This platform is capable of flying low and slow, facilitating the collection of hyperspectral imagery that has a small ground-sample distance (GSD) and small atmospheric distortion. Using high-resolution hyperspectral imagery we simulate various ranges between the sensor and the objects of interest. This numerical study aids in analysis of the effects of stand-off distance on detection versus false alarm rates when using standard hyperspectral detection algorithms. Preliminary experimental evidence supports our simulation results.

  1. Flight Evaluation of the Army/NASA Variable Stability Fly-by-Wire Rotorcraft Aircrew Systems Concept Airborne Laboratory (RASCAL) JUH-60A

    NASA Technical Reports Server (NTRS)

    Arterburn, Dave

    2002-01-01

    NASA Ames Research Center and the U.S. Army Aeroflightdynamics Directorate (AFDD) have performed initial flight evaluations of the Research Flight Control System (RFCS) integrated into the Army/NASA Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A. The highly modified JUH-6OA Black Hawk helicopter is a full authority, high bandwidth, variable stability, in-flight simulator designed to support development of advanced flight control, sensor, and integrated display and control technologies in a fail safe environment. Preparation for flight test required an extensive hazard analysis and ground testing to ensure proper system operation. A hardware in the loop development facility was utilized to evaluate control law stability following software changes, assess servo hardover upset conditions during manual and monitor disengagements and provide pilot familiarization of test techniques and software changes prior to flight. First engagement of the RFCS was conducted on 31 Aug 2001. RFCS transfer system operation, envelope expansion and a limited rate monitor evaluation have been completed with low bandwidth and model following control laws.

  2. Flying wings / flying fuselages

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    2001-01-01

    The present paper has documented the historical relationships between various classes of all lifting vehicles, which includes the flying wing, all wing, tailless, lifting body, and lifting fuselage. The diversity in vehicle focus was to ensure that all vehicle types that map have contributed to or been influenced by the development of the classical flying wing concept was investigated. The paper has provided context and perspective for present and future aircraft design studies that may employ the all lifting vehicle concept. The paper also demonstrated the benefit of developing an understanding of the past in order to obtain the required knowledge to create future concepts with significantly improved aerodynamic performance.

  3. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles. PMID:7005667

  4. DC-8 Airborne Laboratory arrival at NASA Dryden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's DC-8 Airborne Science platform landing at Edwards Air Force Base, California, to join the fleet of aircraft at NASA's Dryden Flight Research Center. The white aircraft with a blue stripe running horizontally from the nose to the tail is shown with its main landing gear just above the runway. The former airliner is a 'dash-72' model and has a range of 5,400 miles. The craft can stay airborne for 12 hours and has an operational speed range between 300 and 500 knots. The research flights are made at between 500 and 41,000 feet. The aircraft can carry up to 30,000 lbs of research/science payload equipment installed in 15 mission-definable spaces. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  5. DC-8 Airborne Laboratory in flight over Mint Canyon near the San Gabriel Mountains

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA DC-8 airborne laboratory flying over Mint Canyon near the snow-covered San Gabriel Mountains of California. The mostly white aircraft is silhouetted against the darker mountains in the background. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  6. SWUIS-A: A Versatile, Low-Cost UV/VIS/IR Imaging System for Airborne Astronomy and Aeronomy Research

    NASA Technical Reports Server (NTRS)

    Durda, Daniel D.; Stern, S. Alan; Tomlinson, William; Slater, David C.; Vilas, Faith

    2001-01-01

    We have developed and successfully flight-tested on 14 different airborne missions the hardware and techniques for routinely conducting valuable astronomical and aeronomical observations from high-performance, two-seater military-type aircraft. The SWUIS-A (Southwest Universal Imaging System - Airborne) system consists of an image-intensified CCD camera with broad band response from the near-UV to the near IR, high-quality foreoptics, a miniaturized video recorder, an aircraft-to-camera power and telemetry interface with associated camera controls, and associated cables, filters, and other minor equipment. SWUIS-A's suite of high-quality foreoptics gives it selectable, variable focal length/variable field-of-view capabilities. The SWUIS-A camera frames at 60 Hz video rates, which is a key requirement for both jitter compensation and high time resolution (useful for occultation, lightning, and auroral studies). Broadband SWUIS-A image coadds can exceed a limiting magnitude of V = 10.5 in <1 sec with dark sky conditions. A valuable attribute of SWUIS-A airborne observations is the fact that the astronomer flies with the instrument, thereby providing Space Shuttle-like "payload specialist" capability to "close-the-loop" in real-time on the research done on each research mission. Key advantages of the small, high-performance aircraft on which we can fly SWUIS-A include significant cost savings over larger, more conventional airborne platforms, worldwide basing obviating the need for expensive, campaign-style movement of specialized large aircraft and their logistics support teams, and ultimately faster reaction times to transient events. Compared to ground-based instruments, airborne research platforms offer superior atmospheric transmission, the mobility to reach remote and often-times otherwise unreachable locations over the Earth, and virtually-guaranteed good weather for observing the sky. Compared to space-based instruments, airborne platforms typically offer

  7. Development of the second generation Hyperspectral Airborne Terrestrial Imager (HATI): HATI - 2500

    NASA Astrophysics Data System (ADS)

    Sandor-Leahy, S.; Thordarson, S.; Baldauf, B.; Figueroa, M.; Helmlinger, M.; Miller, H.; Reynolds, T.; Shepanski, J.

    2010-08-01

    Northrop Grumman Aerospace Systems (NGAS) has a long legacy developing and fielding hyperspectral sensors, including airborne and space based systems covering the visible through Long Wave Infrared (LWIR) wavelength ranges. Most recently NGAS has developed the Hyperspectral Airborne Terrestrial Instrument (HATI) family of hyperspectral sensors, which are compact airborne hyperspectral imagers designed to fly on a variety of platforms and be integrated with other sensors in NGAS's instrument suite. The current sensor under development is the HATI-2500, a full range Visible Near Infrared (VNIR) through Short Wave Infrared (SWIR) instrument covering the 0.4 - 2.5 micron wavelength range with high spectral resolution (3nm). The system includes a framing camera integrated with a GPS/INS to provide high-resolution multispectral imagery and precision geolocation. Its compact size and flexible acquisition parameters allow HATI-2500 to be integrated on a large variety of aerial platforms. This paper describes the HATI-2500 sensor and subsystems and its expected performance specifications.

  8. Multiple-platform localization and map building

    NASA Astrophysics Data System (ADS)

    Nettleton, Eric W.; Durrant-Whyte, Hugh F.; Gibbens, Peter W.; Goektogan, Ali H.

    2000-10-01

    This paper presents current work on decentralized data fusion (DDF) applied to multiple unmanned aerial vehicles. The benefits of decentralizing algorithms, particularly in this field, are enormous. At a mission level, multiple aircraft may fly together sharing information with one another in order to produce more accurate and coherent estimates, and hence increase the chances of success. At the single platform level, algorithms may be decentralized throughout the airframe reducing the probability of catastrophic failure by eliminating the dependency on a particular central processing facility. To this end, a complex simulator has been developed to test and evaluate decentralized picture compilation, platform localization and simultaneous localization and map building (SLAM) algorithms which are to be implemented on multiple airborne vehicles. This simulator is both comprehensive and modular, enabling multiple platforms carrying multiple distributed sensors to be modeled and interchanged easily. The map building and navigation algorithms interface with both the simulator and the real airframe in exactly the same way in order to evaluate the actual flight code as comprehensively as possible. Logged flight data can also be played back through the simulator to the navigation routines instead of simulated sensors. This paper presents the structure of both the simulator and the algorithms that have been developed. An example of decentralized map building is included, and future work in decentralized navigation and SLAM systems is discussed.

  9. CARABAS - an airborne VHF SAR system

    SciTech Connect

    Larsson, B.; Frolined, P.O.; Gustavsson, A.

    1996-11-01

    There is an increasing interest in imaging radar systems operating at low frequencies, Examples of civilian and military applications are detection of stealth-designed man-made objects, targets hidden under foliage, biomass estimation, and penetration into glaciers or ground. CARABAS (Coherent All Radio Band Sensing) is a new airborne SAR system developed by FOA. It is designed for operation in the lowest part of the VHF band (20-90 NHz), using horizontal polarisation. This frequency region gives the system a good ability to penetrate vegetation and to some extent ground. CARABAS is the first known SAR sensor with a capability of diffraction limited imaging, i.e. a resolution in magnitude of the adopted wavelengths. A Sabreliner business jet aircraft is used as the airborne platform. Critical parts in the development have been the antenna system, the receiver and the processing algorithms. Based upon the experiences gained with CARABAS I a major system upgrade is now taking place. The new CARABAS II system is scheduled to fly in May 1996. This system is designed to give operational performance while CARABAS I was used to verify the feasibility. The first major field campaigns are planned for the second half of 1996. CARABAS II is jointly developed by FOA and Ericsson Microwave Systems AB in Sweden. This paper will give an overview of the system design and data collected with the current radar system, including some results for forested regions. The achieved system performance will be discussed, with a presentation of the major modifications made in the new CARABAS 11 system. 12 refs., 7 figs., 2 tabs.

  10. Potential of Airborne Imaging Spectroscopy at Czechglobe

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Fabiánek, T.; Fajmon, L.

    2016-06-01

    Ecosystems, their services, structures and functions are affected by complex environmental processes, which are both natural and human-induced and globally changing. In order to understand how ecosystems behave in globally changing environment, it is important to monitor the current status of ecosystems and their structural and functional changes in time and space. An essential tool allowing monitoring of ecosystems is remote sensing (RS). Many ecosystems variables are being translated into a spectral response recorded by RS instruments. It is however important to understand the complexity and synergies of the key ecosystem variables influencing the reflected signal. This can be achieved by analysing high resolution RS data from multiple sources acquired simultaneously from the same platform. Such a system has been recently built at CzechGlobe - Global Change Research Institute (The Czech Academy of Sciences). CzechGlobe has been significantly extending its research infrastructure in the last years, which allows advanced monitoring of ecosystem changes at hierarchical levels spanning from molecules to entire ecosystems. One of the CzechGlobe components is a laboratory of imaging spectroscopy. The laboratory is now operating a new platform for advanced remote sensing observations called FLIS (Flying Laboratory of Imaging Spectroscopy). FLIS consists of an airborne carrier equipped with passive RS systems. The core instrument of FLIS is a hyperspectral imaging system provided by Itres Ltd. The hyperspectral system consists of three spectroradiometers (CASI 1500, SASI 600 and TASI 600) that cover the reflective spectral range from 380 to 2450 nm, as well as the thermal range from 8 to 11.5 μm. The airborne platform is prepared for mounting of full-waveform laser scanner Riegl-Q780 as well, however a laser scanner is not a permanent part of FLIS. In 2014 the installation of the hyperspectral scanners was completed and the first flights were carried out with all

  11. Experimental Validation of a Compound Control Scheme for a Two-Axis Inertially Stabilized Platform with Multi-Sensors in an Unmanned Helicopter-Based Airborne Power Line Inspection System

    PubMed Central

    Zhou, Xiangyang; Jia, Yuan; Zhao, Qiang; Yu, Ruixia

    2016-01-01

    A compound control scheme is proposed to achieve high control performance for a two-axis inertially stabilized platform (ISP) with multi-sensors applied to an unmanned helicopter (UH)-based airborne power line inspection (APLI) system. Compared with the traditional two closed-loop control scheme that is composed of a high-bandwidth rate loop and a lower bandwidth position loop, a new current loop inside rate loop is particularly designed to suppress the influences of voltage fluctuation from power supply and motor back electromotive force (BEMF) on control precision. In this way, the stabilization accuracy of the ISP is greatly improved. The rate loop, which is the middle one, is used to improve sensor’s stability precision through compensating for various disturbances. To ensure the pointing accuracy of the line of sight (LOS) of multi-sensors, the position loop is designed to be the outer one and acts as the main feedback path, by which the accurate pointing angular position is achieved. To validate the scheme, a series of experiments were carried out. The results show that the proposed compound control scheme can achieve reliable control precision and satisfy the requirements of real APLI tasks. PMID:26978371

  12. Experimental Validation of a Compound Control Scheme for a Two-Axis Inertially Stabilized Platform with Multi-Sensors in an Unmanned Helicopter-Based Airborne Power Line Inspection System.

    PubMed

    Zhou, Xiangyang; Jia, Yuan; Zhao, Qiang; Yu, Ruixia

    2016-01-01

    A compound control scheme is proposed to achieve high control performance for a two-axis inertially stabilized platform (ISP) with multi-sensors applied to an unmanned helicopter (UH)-based airborne power line inspection (APLI) system. Compared with the traditional two closed-loop control scheme that is composed of a high-bandwidth rate loop and a lower bandwidth position loop, a new current loop inside rate loop is particularly designed to suppress the influences of voltage fluctuation from power supply and motor back electromotive force (BEMF) on control precision. In this way, the stabilization accuracy of the ISP is greatly improved. The rate loop, which is the middle one, is used to improve sensor's stability precision through compensating for various disturbances. To ensure the pointing accuracy of the line of sight (LOS) of multi-sensors, the position loop is designed to be the outer one and acts as the main feedback path, by which the accurate pointing angular position is achieved. To validate the scheme, a series of experiments were carried out. The results show that the proposed compound control scheme can achieve reliable control precision and satisfy the requirements of real APLI tasks. PMID:26978371

  13. DC-8 Airborne Laboratory in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA DC-8 in a right bank over the rugged Sierra Nevada Mountains. The former airliner is a 'dash-72' model and has a range of 5,500 miles. The craft can stay airborne for 12 hours and has an operational speed range between 300 and 500 knots. The research flights are made at between 500 and 41,000 feet. The aircraft can carry up to 30,000 lbs of research/science payload equipment installed in 15 mission-definable spaces. In this photo, the aircraft is shown in flight from below, with the DC-8 silhouetted against a blue sky. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  14. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  15. Remote Sensing Observations of Greenhouse Gases from space based and airborne platforms: from SCIAMACHY and MaMap to CarbonSat

    NASA Astrophysics Data System (ADS)

    Burrows, John P.; Schneising, Oliver; Buchwitz, Michael; Bovensmann, Heinrich; Heymann, Jens; Gerilowski, Konstantin; Krings, Thomas; Krautwurst, Sven; Dickerson, Russ

    2015-04-01

    Methane, CH4, e and carbon dioxide, CO2, play an important role in the earth carbon cycle. They are the two most important long lived greenhouse gases produced by anthropogenic fossil fuel combustion. In order to assess accurately the surface fluxes of CH4 or CO2. The Scanning Imaging Absorption Spectrometer for Atmospheric ChartographY, SCIAMACHY, was a national contribution to the ESA Envisat platform: the latter being launched on the 28th February 2002 and operating successfully until April 2012. The SCIAMACHY measurements of the up-welling radiation have been used to retrieve the dry mole fraction of XCH4 and XCO2, providing a unique 10 year record at the spatial resolution of 60 kmx30 km. This data has been used to observe the changing CH4 abundance in the atmosphere and identify anthropogenic such as Fracking and natural sources such as wetlands. The Methane and carbon dioxide Mapper, MaMap, was developed as an aircraft demonstration instrument for our CarbonSat and CarbonSat Constellation concepts. CarbonSat is in Phase A B1 studies as one of two candidate missions for ESA's Earth Explorer 8 Mission. Selected results from SCIAMACHY and Mamap will be presented with a focus on methane and the perspective for CarbonSat.

  16. Airborne UV and visible spectrometer for DOAS and radiometric measurements

    NASA Astrophysics Data System (ADS)

    Petritoli, Andrea; Giovanelli, Giorgio; Bonafe, U.; Bortoli, Daniele; Kostadinov, Ivan; Ravegnani, Fabrizio

    1999-10-01

    A UV/Vis spectrometer (named GASCOD) for Differentiated Optical Absorption Spectroscopy (DOAS) has been developed at ISAO Institute and deployed for ground based measurements of stratospheric trace gases for several years at mid-latitudes and the Antarctic region. An airborne version, called GASCOD/A has been installed on board a M55-Geophysica airplane, a stratospheric research platform, capable of flying at an altitude of up to 20 Km. After a test campaign in Italy, the GASCOD/A performed successfully during the Airborne Polar Experiment in the winter 95/96. More recently, the instrument was upgraded to achieve higher sensitivity and reliability. Two additional radiometric channels were added. The input optics can turn in order to collect solar radiation from five different channels: one for detection of the zenith scattered radiation through the roof window (for DOAS measurement), two for direct and diffused radiation through two lateral windows and two for radiometric measurements through two 2(pi) optical heads mounted on the upper and bottom part of the aircraft and linked to the instrument by means of optical guides. The radiometric channels give us the possibility of calculating the photodissociation rate coefficients (J-values) of photochemical reactions involving ozone and nitrogen dioxides. The mechanical and optical layout of the instrument are presented and discussed, as well as laboratory tests and preliminary results obtained during flights onboard the M55- Geophysica.

  17. DC-8 Airborne Laboratory in flight over Palmdale, CA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The DC-8 Airborne Laboratory in a left banking turn above the airport at Palmdale, California. The right wing is silhouetted against the blue sky, while the left wing contrasts with the desert terrain. The former airliner is a 'dash-72' model and has a range of 5,400 miles. The craft can stay airborne for 12 hours and has an operational speed range between 300 and 500 knots. The research flights are made at between 500 and 41,000 feet. The aircraft can carry up to 30,000 lbs of research/science payload equipment installed in 15 mission-definable spaces. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  18. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  19. Helios: a Multi-Purpose LIDAR Simulation Framework for Research, Planning and Training of Laser Scanning Operations with Airborne, Ground-Based Mobile and Stationary Platforms

    NASA Astrophysics Data System (ADS)

    Bechtold, S.; Höfle, B.

    2016-06-01

    In many technical domains of modern society, there is a growing demand for fast, precise and automatic acquisition of digital 3D models of a wide variety of physical objects and environments. Laser scanning is a popular and widely used technology to cover this demand, but it is also expensive and complex to use to its full potential. However, there might exist scenarios where the operation of a real laser scanner could be replaced by a computer simulation, in order to save time and costs. This includes scenarios like teaching and training of laser scanning, development of new scanner hardware and scanning methods, or generation of artificial scan data sets to support the development of point cloud processing and analysis algorithms. To test the feasibility of this idea, we have developed a highly flexible laser scanning simulation framework named Heidelberg LiDAR Operations Simulator (HELIOS). HELIOS is implemented as a Java library and split up into a core component and multiple extension modules. Extensible Markup Language (XML) is used to define scanner, platform and scene models and to configure the behaviour of modules. Modules were developed and implemented for (1) loading of simulation assets and configuration (i.e. 3D scene models, scanner definitions, survey descriptions etc.), (2) playback of XML survey descriptions, (3) TLS survey planning (i.e. automatic computation of recommended scanning positions) and (4) interactive real-time 3D visualization of simulated surveys. As a proof of concept, we show the results of two experiments: First, a survey planning test in a scene that was specifically created to evaluate the quality of the survey planning algorithm. Second, a simulated TLS scan of a crop field in a precision farming scenario. The results show that HELIOS fulfills its design goals.

  20. Flying Cars

    NASA Technical Reports Server (NTRS)

    Crow, Steven

    1996-01-01

    Flying cars have nearly mythical appeal to nonpilots, a group that includes almost the whole human race. The appeal resides in the perceived utility of flying cars, vehicles that offer portal-to-portal transportation, yet break the bonds of road and traffic and travel freely through the sky at the drivers will. Part of the appeal is an assumption that flying cars can be as easy to fly as to drive. Flying cars have been part of the dream of aviation since the dawn of powered flight. Glenn Curtiss built, displayed, and maybe even flew a flying car in 1917, the Curtiss Autoplane. Many roadable airplanes were built in the 1930's, like the Waterman Arrowbile and the Fulton Airphibian. Two flying cars came close to production in the early 1950's. Ted Hall built a series of flying cars culminating in the Convaircar, sponsored by Consolidated Vultee, General Motors, and Hertz. Molt Taylor built and certified his Aerocar, and Ford came close to producing them. Three Aerocars are still flyable, two in museums in Seattle and Oshkosh, and the third owned and flown by Ed Sweeny. Flying cars do have problems, which so far have prevented commercial success. An obvious problem is complexity of the vehicle, the infrastructure, or both. Another is the difficulty of matching low power for normal driving with high power in flight. An automobile uses only about 20 hp at traffic speeds, while a personal airplane needs about 160 hp at speeds typical of flight. Many automobile engines can deliver 160 hp, but not for very long. A more subtle issue involves the drag of automobiles and airplanes. A good personal airplane can fly 30 miles per gallon of fuel at 200 mph. A good sports car would need 660 hp at the same speed and would travel only 3 miles per gallon. The difference is drag area, about 4.5 sq ft for the automobile and 1.4 sq ft for the airplane. A flying car better have the drag area of the airplane, not the car!

  1. Mapping of airborne Doppler radar data

    SciTech Connect

    Lee, W.; Dodge, P.; Marks, F.D. Jr.; Hildebrand, P.H. NOAA, Miami, FL )

    1994-04-01

    Two sets of equations are derived to (1) map airborne Doppler radar data from an aircraft-relative coordinate system to an earth-relative coordinate system, and (2) remove the platform motion from the observed Doppler velocities. These equations can be applied to data collected by the National Oceanic and Atmospheric Administration WP-3D system, the National Center for Atmospheric Research Electra Doppler Radar (ELDORA) system, and other airborne radar systems.

  2. Sandia Multispectral Airborne Lidar for UAV Deployment

    SciTech Connect

    Daniels, J.W.; Hargis,Jr. P.J.; Henson, T.D.; Jordan, J.D.; Lang, A.R.; Schmitt, R.L.

    1998-10-23

    Sandia National Laboratories has initiated the development of an airborne system for W laser remote sensing measurements. System applications include the detection of effluents associated with the proliferation of weapons of mass destruction and the detection of biological weapon aerosols. This paper discusses the status of the conceptual design development and plans for both the airborne payload (pointing and tracking, laser transmitter, and telescope receiver) and the Altus unmanned aerospace vehicle platform. Hardware design constraints necessary to maintain system weight, power, and volume limitations of the flight platform are identified.

  3. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  4. Operations Manager Tim Miller checks out software for the Airborne Synthetic Aperature Radar (AIRSAR

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Tim Miller checks out software for the Airborne Synthetic Aperture Radar (AIRSAR). He was the AIRSAR operations manager for NASA's Jet Propulsion Laboratory. The AIRSAR produces imaging data for a range of studies conducted by the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  5. DC-8 Airborne Laboratory in flight over snow-capped Sierra Nevada mountain range

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's DC-8 Airborne Laboratory during a flight over the snow-covered Sierra Nevada Mountains. Over the past several years the DC-8 has conducted research missions in such diverse places as the Pacific in spring and Sweden in winter. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  6. Ozone Hole Airborne Arctic Stratospheric Expedition (Pre-Flight)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The first segment of this video gives an overview of the Ozone Hole Airborne Arctic Stratospheric Expedition, an international effort using balloon payloads, ground based instruments, and airborne instruments to study ozone depletion and the hole in the ozone over Antarctica which occurs every spring. False color imagery taken from NASA's Nimbus 7 satellite which documents daily changes in ozone is also shown. The second segment of this video shows actual take-off and flight footage of the two aircraft used in the experiment: the DC-8 Flying Laboratory and the high flying ER-2.

  7. Inter-agency Working Group for Airborne Data and Telemetry Systems (IWGADTS)

    NASA Technical Reports Server (NTRS)

    Webster, Chris; Freudinge, Lawrence; Sorenson, Carl; Myers, Jeff; Sullivan, Don; Oolman, Larry

    2009-01-01

    The Interagency Coordinating Committee for Airborne Geosciences Research and Applications (ICCAGRA) was established to improve cooperation and communication among agencies sponsoring airborne platforms and instruments for research and applications, and to serve as a resource for senior level management on airborne geosciences issues. The Interagency Working Group for Airborne Data and Telecommunications Systems (IWGADTS) is a subgroup to ICCAGRA for the purpose of developing recommendations leading to increased interoperability among airborne platforms and instrument payloads, producing increased synergy among research programs with similar goals, and enabling the suborbital layer of the Global Earth Observing System of Systems.

  8. NASA Student Airborne Research Program

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Shetter, R. E.

    2012-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for advanced undergraduates and early graduate students majoring in the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2012, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA P-3B aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. We will discuss the results and effectiveness of the program from the first four summers and discuss plans for the future.

  9. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--March 1995

    SciTech Connect

    1995-03-01

    The objectives of the project are to construct a geophysical sensor system based on a remotely operated model helicopter (ROH) and to evaluate the efficacy of the system for characterization of hazardous environmental sites. Geophex Airborne Unmanned Survey System (GAUSS) is a geophysical survey system that uses a ROH as the survey vehicle. We have selected the ROH because of its advantages over fixed wing and ground based vehicles. Lower air speed and superior maneuverability of the ROH make it better suited for geophysical surveys than a fixed wing model aircraft. The ROH can fly close to the ground, allowing detection of weak or subtle anomalies. Unlike ground based vehicles, the ROH can traverse difficult terrain while providing a stable sensor platform. ROH does not touch the ground during the course of a survey and is capable of functioning over water and surf zones. The ROH has been successfully used in the motion picture industry and by geology companies for payload bearing applications. The only constraint to use of the airborne system is that the ROH must remain visible to the pilot. Obstructed areas within a site can be characterized by relocating the base station to alternate positions. GAUSS consists of a ROH with radio controller, a data acquisition and processing (DAP) system, and lightweight digital sensor systems. The objective of our Phase I research was to develop a DAP and sensors suitable for ROH operation. We have constructed these subsystems and integrated them to produce an automated, hand-held geophysical surveying system, referred to as the ``pre-prototype``. We have performed test surveys with the pre-prototype to determine the functionality of the and DAP and sensor subsystems and their suitability for airborne application. The objective of the Phase II effort will be to modify the existing subsystems and integrate them into an airborne prototype. Efficacy of the prototype for geophysical survey of hazardous sites will then be determined.

  10. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  11. Raytheon low temperature RSP2 cryocooler airborne testing

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. J.

    2014-01-01

    The Raytheon Cryocooler Product Line tested the Low Temperature Stirling / Pulse Tube Hybrid 2-Stage (LTRSP2) cryocooler for an airborne application during 2012. Several tests were carried out to verify the ability of the machine to operate in an airborne environment. The vacuum level and heat rejection surface temperatures were varied to determine the performance over the excursions. Vibration testing was performed to prove that the LT-RSP2 cryocooler can operate on an airborne platform. This paper will present the results of the airborne characterization testing.

  12. Raytheon low temperature RSP2 cryocooler airborne testing

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. J.

    2013-09-01

    The Raytheon Cryocooler Product Line tested the Low Temperature Stirling / Pulse Tube Hybrid 2-Stage (LTRSP2) cryocooler for an airborne application during 2012. Several tests were carried out to verify the ability of the machine to operate in an airborne environment. The vacuum level and heat rejection surface temperatures were varied to determine the performance over the excursions. Vibration testing was performed to prove that the LT-RSP2 cryocooler can operate on an airborne platform. This paper will present the results of the airborne characterization testing.

  13. Airborne GLM Simulator (FEGS)

    NASA Astrophysics Data System (ADS)

    Quick, M.; Blakeslee, R. J.; Christian, H. J., Jr.; Stewart, M. F.; Podgorny, S.; Corredor, D.

    2015-12-01

    Real time lightning observations have proven to be useful for advanced warning and now-casting of severe weather events. In anticipation of the launch of the Geostationary Lightning Mapper (GLM) onboard GOES-R that will provide continuous real time observations of total (both cloud and ground) lightning, the Fly's Eye GLM Simulator (FEGS) is in production. FEGS is an airborne instrument designed to provide cal/val measurements for GLM from high altitude aircraft. It consists of a 5 x 5 array of telescopes each with a narrow passband filter to isolate the 777.4 nm neutral oxygen emission triplet radiated by lightning. The telescopes will measure the optical radiance emitted by lightning that is transmitted through the cloud top with a temporal resolution of 10 μs. When integrated on the NASA ER-2 aircraft, the FEGS array with its 90° field-of-view will observe a cloud top area nearly equal to a single GLM pixel. This design will allow FEGS to determine the temporal and spatial variation of light that contributes to a GLM event detection. In addition to the primary telescope array, the instrument includes 5 supplementary optical channels that observe alternate spectral emission features and will enable the use of FEGS for interesting lightning physics applications. Here we present an up-to-date summary of the project and a description of its scientific applications.

  14. Geophysical flight line flying and flight path recovery utilizing the Litton LTN-76 inertial navigation system

    SciTech Connect

    Mitkus, A.F.; Cater, D.; Farmer, P.F.; Gay, S.P. Jr.

    1981-11-01

    The Litton LTN-76 Inertial Navigation Systems (INS) with Inertial Track guidance System (ITGS) software is geared toward the airborne survey industry. This report is a summary of tests performed with the LTN-76 designed to fly an airborne geophysical survey as well as to recover the subsequent flight path utilizing INS derived coordinates.

  15. Performance metrics for an airborne imaging system

    NASA Astrophysics Data System (ADS)

    Dayton, David C.; Gonglewski, John D.

    2004-11-01

    A series of airborne imaging experiments have been conducted on the island of Maui and at North Oscura Peak in New Mexico. Two platform altitudes were considered 3000 meters and 600 meters, both with a slant range to the target up to 10000 meters. The airborne imaging platform was a Twin Otter aircraft, which circled ground target sites. The second was a fixed platform on a mountain peak overlooking a valley 600 meters below. The experiments were performed during the day using solar illuminated target buildings. Imaging system performance predictions were calculated using standard atmospheric turbulence models, and aircraft boundary layer models. Several different measurement approaches were then used to estimate the actual system performance, and make comparisons with the calculations.

  16. UAVSAR - A New Airborne L-Band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Lou, Yunling

    2009-01-01

    NASA/JPL has developed a new airborne Synthetic Aperture Radar (SAR) which has become available for use by the scientific community in January, 2009. Pod mounted, the UAVSAR was designed to be portable among a variety of aircraft, including unmanned aerial systems (UAS). The instrument operates in the L-Band, has a resolution under 2m from a GPS altitude of 12Km and a swath width of approximately 20Km. UAVSAR currently flies on a modified Gulfstream-III aircraft, operated by NASA s Dryden Flight Research Center at Edwards, California. The G-III platform enables repeat-pass interferometric measurements, by using a modified autopilot and precise kinematic differential GPS to repeatedly fly the aircraft within a specified 10m tube. The antenna is electronically steered along track to assure that the antenna beam can be directed independently, regardless of speed and wind direction. The instrument can be controlled remotely, AS AN OPTION, using the Research Environment for Vehicle Embedded Analysis on Linux (REVEAL). This allows simulation of the telepresence environment necessary for flight on UAS. Potential earth science research and applications include surface deformation, volcano studies, ice sheet dynamics, and vegetation structure.

  17. Tools, flies and what to do next

    NASA Astrophysics Data System (ADS)

    Gomez-Marin, A.

    2013-01-01

    In these brief notes addressed to students and researchers, recent advances of modern neurobiology are discussed in the light of some of its challenges. I use fly larval chemotaxis as a platform to debate about how much we are able to do with the available tools as opposed to how little we actually understand what it means to decide.

  18. Flying qualities research challenges

    NASA Technical Reports Server (NTRS)

    Sliwa, Steven M.; George, Frank L.

    1987-01-01

    Traditional flying qualities requirements for airplane dynamics are based on airplane modal response characteristics derived from linear small-perturbation analysis. These requirements are supported by a large experimental data base. The challenge to the flying qualities community is to demonstrate how flying qualities, the control system and aircraft configuration are still closely linked. This is evident in the definition of flying qualities and, as far as pilots are concerned, that flying qualities are still the measure of overall design success.

  19. Versatile self-reconfigurable digital processing platform for satellite and aerospace applications

    NASA Astrophysics Data System (ADS)

    Cichocki, A.; Nowosielski, W.; Orleanski, P.

    2012-05-01

    This document presents the concept and implementation of a reconfigurable digital processing platform for airborne and satellite systems. Some recent trends visible in the technology development of on-board electronics were taken under consideration during the conceptual phase of the design. They were, namely, use of commercial-of-the-shelf (or COTS) components, utilization of FPGAs, common interfaces and system re-programmability. On the other hand, a matter that is constantly being a challenge for these types of applications that must be considered as crucial is the reliability. The key feature of described prototype device is a fusion of two different approaches: static functionality and ability of a self-reconfiguration on the fly, while retaining high availability of a system, especially when the configuration is altered by space radiation.

  20. Development of an Airborne System for Direct Validation of Regional Carbon Flux Estimates

    NASA Astrophysics Data System (ADS)

    Wolfe, G.; Kawa, S. R.; Hanisco, T. F.; Newman, P. A.

    2015-12-01

    Global distributions of greenhouse gas (GHG) sources and sinks, principally CO2 and CH4, and characterization of the processes that control them, comprise a key uncertainty in projections of future climate. A broad spectrum of tools is currently used to characterize these processes. Top-down inversions of orbital GHG column observations (e.g. ACOS/GOSAT and OCO-2) provide a global perspective, but little information is available to validate these estimates. Indirect (boundary-layer budget) or direct (tower-based eddy covariance) surface flux measurements can provide bottom-up constraints, but the former is typically focused on large point and area emission sources while the latter relies on sparse networks with limited spatial coverage. Aircraft are an ideal platform to bridge the flux representation scale from kilometers (as measured from towers) to the tens or hundreds of kilometers relevant to satellite observations and global models. In light of current measurement gaps and the emerging need for direct validation of GHG surface flux estimates, NASA is developing a sophisticated facility for airborne eddy covariance observations of carbon dioxide, methane, water vapor and other trace gases. Three components comprise the core measurement system: i) the NASA Wallops Sherpa, which is ideal for airborne eddy covariance due to its substantial payload and the ability to fly low and slow, ii) commercial GHG sensors optimized for airborne flux measurements, and iii) a custom gust-probe system for high-fidelity measurements of vertical wind velocity. These systems will be discussed in detail, along with future plans for deployment and application of measurements to improving GHG flux estimates on local, regional and global scales.

  1. Simulation system of airborne FLIR searcher

    NASA Astrophysics Data System (ADS)

    Sun, Kefeng; Li, Yu; Gao, Jiaobo; Wang, Jun; Wang, Jilong; Xie, Junhu; Ding, Na; Sun, Dandan

    2014-11-01

    Airborne Forward looking infra-red (FLIR) searcher simulation system can provide multi-mode simulated test environment that almost actual field environment, and can simulate integrated performance and external interface of airborne FLIR simulation system. Furthermore, the airborne FLIR searcher simulation system can support the algorithm optimization of image processing, and support the test and evaluation of electro-optical system, and also support the line test of software and evaluate the performance of the avionics system. The detailed design structure and information cross-linking relationship of each component are given in this paper. The simulation system is composed of the simulation center, the FLIR actuator, the FLIR emulator, and the display control terminal. The simulation center can generate the simulated target and aircraft flying data in the operation state of the airborne FLIR Searcher. The FLIR actuator can provide simulation scene. It can generate the infrared target and landform based scanning scene, response to the commands from simulation center and the FLIR actuator and operation control unit. The infrared image generated by the FLIR actuator can be processed by the FLIR emulator using PowerPC hardware framework and processing software based on VxWorks system. It can detect multi-target and output the DVI video and the multi-target detection information which corresponds to the working state of the FLIR searcher. Display control terminal can display the multi-target detection information in two-dimension situation format, and realize human-computer interaction function.

  2. Airborne Microwave Imaging of River Velocities

    NASA Technical Reports Server (NTRS)

    Plant, William J.

    2002-01-01

    The objective of this project was to determine whether airborne microwave remote sensing systems can measure river surface currents with sufficient accuracy to make them prospective instruments with which to monitor river flow from space. The approach was to fly a coherent airborne microwave Doppler radar, developed by APL/UW, on a light airplane along several rivers in western Washington state over an extended period of time. The fundamental quantity obtained by this system to measure river currents is the mean offset of the Doppler spectrum. Since this scatter can be obtained from interferometric synthetic aperture radars (INSARs), which can be flown in space, this project provided a cost effective means for determining the suitability of spaceborne INSAR for measuring river flow.

  3. Airborne Infrared Spectroscopy of 1994 Western Wildfires

    NASA Technical Reports Server (NTRS)

    Worden, Helen; Beer, Reinhard; Rinsland, Curtis P.

    1997-01-01

    In the summer of 1994 the 0.07/ cm resolution infrared Airborne Emission Spectrometer (AES) acquired spectral data over two wildfires, one in central Oregon on August 3 and the other near San Luis Obispo, California, on August 15. The spectrometer was on board a NASA DC-8 research aircraft, flying at an altitude of 12 km. The spectra from both fires clearly show features due to water vapor, carbon dioxide, carbon monoxide, ammonia, methanol, formic acid, and ethylene at significantly higher abundance and temperature than observed in downlooking spectra of normal atmospheric and ground conditions. Column densities are derived for several species, and molar ratios are compared with previous biomass fire measurements. We believe that this is the first time such data have been acquired by airborne spectral remote sensing.

  4. Integrated line-of-sight Modeling of the Airborne Aero-Optics Laboratory

    NASA Astrophysics Data System (ADS)

    Griffin, S.; Blackburn, J.; Thordahl, J.; Wittich, D.; Gordeyev, S.; Jumper, E.

    2013-09-01

    The Airborne Aero-Optics Laboratory (AAOL) is a recently completed research effort to measure the effects of turbulent flow on the wavefront of a laser projected from an airplane in flight. The flight-test system consists of two Cessna Citation Bravo aircraft flying in formation at a distance of approximately 50 m. One aircraft projects a laser beam to the other aircraft which receives the beam using an inertially stabilized turret with a high bandwidth track loop. In addition to its benefit in providing a means for understanding and correcting optical wavefront distortion due to turbulence, AAOL also provides an ideal platform for predicting line-of-sight jitter and comparing it to measured results. AAOL has the essential elements of an airborne optical beam control system and is subject to relevant aero-loading, but operates at low power and provides a relatively inexpensive platform for collecting flight data. This paper presents the integrated AAOL line-of-sight model for prediction of optical jitter due to flight disturbances. To accomplish this, a dynamic simulation model was derived from a finite element model of the system, optical sensitivities and control loops for calculation of closed loop, line-of-sight jitter. Disturbance inputs include measured in-flight base loading and pressure loading on the turret generated from an unsteady computational fluid dynamics model. The influence of model uncertainty was also addressed by considering two separate models. The first model was based on the initial hardware design before hardware assembly. The second model was updated based on modal tests performed on the assembled flight hardware. Frequency-varying model uncertainty factors for both models required to accurately predict the measured flight data were calculated. Predicted results with and without model uncertainty factors will be compared with measured flight data from AAOL.

  5. Airborne laser communication technology and flight test

    NASA Astrophysics Data System (ADS)

    Meng, Li-xin; Zhang, Li-zhong; Li, Xiao-ming; Li, Ying-chao; Jiang, Hui-lin

    2015-11-01

    Reconnaissance aircraft is an important node of the space-air-ground integrated information network, on which equipped with a large number of high-resolution surveillance equipment, and need high speed communications equipment to transmit detected information in real time. Currently RF communication methods cannot meet the needs of communication bandwidth. Wireless laser communication has outstanding advantages high speed, high capacity, security, etc., is an important means to solve the high-speed information transmission of airborne platforms. In this paper, detailed analysis of how the system works, the system components, work processes, link power and the key technologies of airborne laser communication were discussed. On this basis, a prototype airborne laser communications was developed, and high-speed, long-distance communications tests were carried out between the two fixed-wing aircraft, and the airborne precision aiming, atmospheric laser communication impacts on laser communication were tested. The experiments ultimately realize that, the communication distance is 144km, the communication rate is 2.5Gbps. The Airborne laser communication experiments provide technical basis for the application of the conversion equipment.

  6. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  7. Stable Fly Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult stable flies feed on the blood of humans, pets and livestock, inflicting painful bites. Stable flies need one and sometimes two bloodmeals each day to develop their eggs. Unlike mosquitoes where only the females bloodfeed, both male and female stable flies require blood to reproduce. Stable fl...

  8. Aeroelastic considerations for continuous patrol/high altitude surveillance platforms

    NASA Technical Reports Server (NTRS)

    Turner, C. D.; Rocketts, R. H.

    1983-01-01

    For the last several years, an investigation has been conducted regarding the feasibility of unmanned, airborne, High-Altitude Powered Platforms (HAPP), and High Surveillance Platforms for Over-the-Horizon Targeting (HI-SPOT). These airborne platforms have been proposed as a means of achieving a continuous regional communication-relay or for continuous regional surveillance for use in agricultural research or military applications, i.e., fleet support. These platforms would offer improvements over existing orbiting satellites. These improvements are related to better resolution and increased mission flexibility. The required mission endurance up to six months, would be obtained through the use of either solar power, a cryogenically fueled engine, or microwave-power. Attention is given to airborne platform configuration, structure, structural and aerodynamic modeling, modal analysis, and flutter analysis.

  9. Real-time simulation of an airborne radar for overwater approaches

    NASA Technical Reports Server (NTRS)

    Karmarkar, J.; Clark, D.

    1982-01-01

    Software developed to provide a real time simulation of an airborne radar for overwater approaches to oil rig platforms is documented. The simulation is used to study advanced concepts for enhancement of airborne radar approaches (ARA) in order to reduce crew workload, improve approach tracking precision, and reduce weather minimums. ARA's are currently used for offshore helicopter operations to and from oil rigs.

  10. Exposure level and distribution characteristics of airborne bacteria and fungi in Seoul metropolitan subway stations.

    PubMed

    Kim, Ki Youn; Kim, Yoon Shin; Kim, Daekeun; Kim, Hyeon Tae

    2011-01-01

    The exposure level and distribution characteristics of airborne bacteria and fungi were assessed in the workers' activity areas (station office, bedroom, ticket office and driver's seat) and passengers' activity areas (station precinct, inside the passenger carriage, and platform) of the Seoul metropolitan subway. Among investigated areas, the levels of airborne bacteria and fungi in the workers' bedroom and station precincts were relatively high. No significant difference was found in the concentration of airborne bacteria and fungi between the underground and above ground activity areas of the subway. The genera identified in all subway activity areas with a 5% or greater detection rate were Staphylococcus, Micrococcus, Bacillus and Corynebacterium for airborne bacteria and Penicillium, Cladosporium, Chrysosporium, Aspergillus for airborne fungi. Staphylococcus and Micrococcus comprised over 50% of the total airborne bacteria and Penicillium and Cladosporium comprised over 60% of the total airborne fungi, thus these four genera are the predominant genera in the subway station. PMID:21173524

  11. Airborne Hyperspectral Imaging System

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Cooper, Moogega; Adler, John; Jacobson, Tobias

    2012-01-01

    A document discusses a hyperspectral imaging instrument package designed to be carried aboard a helicopter. It was developed to map the depths of Greenland's supraglacial lakes. The instrument is capable of telescoping to twice its original length, allowing it to be retracted with the door closed during takeoff and landing, and manually extended in mid-flight. While extended, the instrument platform provides the attached hyperspectral imager a nadir-centered and unobstructed view of the ground. Before flight, the instrument mount is retracted and securely strapped down to existing anchor points on the floor of the helicopter. When the helicopter reaches the destination lake, the door is opened and the instrument mount is manually extended. Power to the instrument package is turned on, and the data acquisition computer is commanded via a serial cable from an onboard user-operated laptop to begin data collection. After data collection is complete, the instrument package is powered down and the mount retracted, allowing the door to be closed in preparation for landing. The present design for the instrument mount consists of a three-segment telescoping cantilever to allow for a sufficient extended length to see around the landing struts and provide a nadir-centered and unobstructed field of view for the hyperspectral imager. This instrument works on the premise that water preferentially absorbs light with longer wavelengths on the red side of the visible spectrum. This property can be exploited in order to remotely determine the depths of bodies of pure freshwater. An imager flying over such a lake receives light scattered from the surface, the bulk of the water column, and from the lake bottom. The strength of absorption of longer-wavelength light depends on the depth of the water column. Through calibration with in situ measurements of the water depths, a depth-determining algorithm may be developed to determine lake depth from these spectral properties of the

  12. Airborne multidimensional integrated remote sensing system

    NASA Astrophysics Data System (ADS)

    Xu, Weiming; Wang, Jianyu; Shu, Rong; He, Zhiping; Ma, Yanhua

    2006-12-01

    In this paper, we present a kind of airborne multidimensional integrated remote sensing system that consists of an imaging spectrometer, a three-line scanner, a laser ranger, a position & orientation subsystem and a stabilizer PAV30. The imaging spectrometer is composed of two sets of identical push-broom high spectral imager with a field of view of 22°, which provides a field of view of 42°. The spectral range of the imaging spectrometer is from 420nm to 900nm, and its spectral resolution is 5nm. The three-line scanner is composed of two pieces of panchromatic CCD and a RGB CCD with 20° stereo angle and 10cm GSD(Ground Sample Distance) with 1000m flying height. The laser ranger can provide height data of three points every other four scanning lines of the spectral imager and those three points are calibrated to match the corresponding pixels of the spectral imager. The post-processing attitude accuracy of POS/AV 510 used as the position & orientation subsystem, which is the aerial special exterior parameters measuring product of Canadian Applanix Corporation, is 0.005° combined with base station data. The airborne multidimensional integrated remote sensing system was implemented successfully, performed the first flying experiment on April, 2005, and obtained satisfying data.

  13. MODIS technical report series. Volume 3: MODIS airborne simulator level 1B data user's guide

    NASA Technical Reports Server (NTRS)

    Gumley, Liam E.; Hubanks, Paul A.; Masuoka, Edward J.

    1994-01-01

    The purpose of this document is to describe the characteristics of moderate resolution imaging spectroradiometer (MODIS) airborne simulator level 1B data, the calibration and geolocation methods used in processing, the structure and format of the level 1B data files, and methods for accessing the data. The MODIS airborne simulator is a scanning spectrometer which flies on a NASA ER-2 and provides spectral information similar to that which will be provided by the MODIS.

  14. Fly ash carbon passivation

    DOEpatents

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  15. SOFIA: Flying the Telescope

    NASA Technical Reports Server (NTRS)

    Asher, Troy A.; Cumming, Stephen B.

    2012-01-01

    The primary focus of this paper is how the flight test team for the Stratospheric Observatory For Infrared Astronomy (SOFIA) re-cast an extensive developmental test program to meet key milestones while simultaneously ensuring safe certification of the airframe and delivery of an operationally relevant platform, ultimately saving the overall program from financial demise. Following a brief introduction to the observatory and what it is designed to do, SOFIAs planned developmental test program is summarized, including analysis and design philosophy, envelope expansion, model validation and airframe certification. How NASA used lessons learned from other aircraft that employed open cavities in flight is explained as well as how and why the chosen design was selected. The approach to aerodynamic analysis, including bare airframe testing, wind tunnel testing, computational fluid dynamics and finite element modeling proved absolutely critical. Despite a solid analytical foundation, many unknowns remained. History provides several examples of disastrous effects on both systems and flight safety if cavity design is not approached properly. For these reasons, an extensive test plan was developed to ensure a safe and thorough build-up for envelope expansion, airframe certification and early science missions. Unfortunately, as is often the case, because of chronic delays in overall program execution, severe schedule and funding pressures were present. If critical milestones were not met, domestic as well as international funding was in serious jeopardy, and the demise of the entire program loomed large. Concentrating on rigorous model validation, the test team challenged certification requirements, increased test efficiency and streamlined engineering analysis. This resulted in the safe reduction of test point count by 72%, meeting all program milestones and a platform that soundly satisfied all operational science requirements. Results from early science missions are shown

  16. Developments in Airborne Oceanography and Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Melville, W. K.

    2014-12-01

    One of the earliest ocean-related flights was that of Amundsen to be first across the North Pole and Arctic from Svalbard to Alaska in the airship Norge in 1926. Twenty five years later Cox & Munk flew a B-17G "Flying Fortress" bomber over Hawaiian waters measuring sea surface slope statistics from photographs of sun glitter and wind speed from a yacht. The value of Cox & Munk's "airborne oceanography" became apparent another twenty five years later with the short-lived Seasat microwave remote-sensing mission, since interpretation of the Seasat data in geophysical variables required scattering theories that relied on their data. The universal acceptance of remote sensing in oceanography began in 1992 with the launch of, and successful analysis of sea surface height data from, the Topex/Poseidon radar altimeter. With that and the development of more realistic coupled atmosphere-ocean models it became apparent that our understanding of weather and climate variability in both the atmosphere and the ocean depends crucially on our ability to measure processes in boundary layers spanning the interface. Ten years ago UNOLS formed the Scientific Committee for Oceanographic Aircraft Research (SCOAR) "...to improve access to research aircraft facilities for ocean sciences"; an attempt to make access to aircraft as easy as access to research vessels. SCOAR emphasized then that "Aircraft are ideal for both fast-response investigations and routine, long-term measurements, and they naturally combine atmospheric measurements with oceanographic measurements on similar temporal and spatial scales." Since then developments in GPS positioning and miniaturization have made scientific measurements possible from smaller and smaller platforms, including the transition from manned to unmanned aerial vehicles (UAVs). Furthermore, ship-launched and recovered UAVs have demonstrated how they can enhance the capabilities and reach of the research vessels, "projecting" research and science

  17. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  18. Covariance analysis of the airborne laser ranging system

    NASA Technical Reports Server (NTRS)

    Englar, T. S., Jr.; Hammond, C. L.; Gibbs, B. P.

    1981-01-01

    The requirements and limitations of employing an airborne laser ranging system for detecting crustal shifts of the Earth within centimeters over a region of approximately 200 by 400 km are presented. The system consists of an aircraft which flies over a grid of ground deployed retroreflectors, making six passes over the grid at two different altitudes. The retroreflector baseline errors are assumed to result from measurement noise, a priori errors on the aircraft and retroreflector positions, tropospheric refraction, and sensor biases.

  19. Airborne Tactical Free-Electron Laser

    SciTech Connect

    Whitney, Roy; Neil, George

    2007-02-01

    The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

  20. A new stratospheric sounding platform based on unmanned aerial vehicle (UAV) droppable from meteorological balloon

    NASA Astrophysics Data System (ADS)

    Efremov, Denis; Khaykin, Sergey; Lykov, Alexey; Berezhko, Yaroslav; Lunin, Aleksey

    High-resolution measurements of climate-relevant trace gases and aerosols in the upper troposphere and stratosphere (UTS) have been and remain technically challenging. The high cost of measurements onboard airborne platforms or heavy stratospheric balloons results in a lack of accurate information on vertical distribution of atmospheric constituents. Whereas light-weight instruments carried by meteorological balloons are becoming progressively available, their usage is constrained by the cost of the equipment or the recovery operations. The evolving need in cost-efficient observations for UTS process studies has led to development of small airborne platforms - unmanned aerial vehicles (UAV), capable of carrying small sensors for in-situ measurements. We present a new UAV-based stratospheric sounding platform capable of carrying scientific payload of up to 2 kg. The airborne platform comprises of a latex meteorological balloon and detachable flying wing type UAV with internal measurement controller. The UAV is launched on a balloon to stratospheric altitudes up to 20 km, where it can be automatically released by autopilot or by a remote command sent from the ground control. Having been released from the balloon the UAV glides down and returns to the launch position. Autopilot using 3-axis gyro, accelerometer, barometer, compas and GPS navigation provides flight stabilization and optimal way back trajectory. Backup manual control is provided for emergencies. During the flight the onboard measurement controller stores the data into internal memory and transmits current flight parameters to the ground station via telemetry. Precise operation of the flight control systems ensures safe landing at the launch point. A series of field tests of the detachable stratospheric UAV has been conducted. The scientific payload included the following instruments involved in different flights: a) stratospheric Lyman-alpha hygrometer (FLASH); b) backscatter sonde; c) electrochemical

  1. Laser links for mobile airborne nodes

    NASA Astrophysics Data System (ADS)

    Griethe, Wolfgang; Knapek, Markus; Horwath, Joachim

    2015-05-01

    Remotely Piloted Aircrafts (RPA's) and especially Medium Altitude Long Endurance (MALE) and High Altitude Long Endurance (HALE) are currently operated over long distances, often across several continents. This is only made possible by maintaining Beyond Line Of Side (BLOS) radio links between ground control stations and unmanned vehicles via geostationary (GEO) satellites. The radio links are usually operated in the Ku-frequency band and used for both, vehicle command & control (C2) - it also refers to Command and Non-Payload Communication (CNPC) - as well as transmission of intelligence data - the associated communication stream also refers to Payload Link (PL). Even though this scheme of communication is common practice today, various other issues are raised thereby. The paper shows that the current existing problems can be solved by using the latest technologies combined with altered intuitive communication strategies. In this context laser communication is discussed as a promising technology for airborne applications. It is clearly seen that for tactical reasons, as for instance RPA cooperative flying, Air-to-Air communications (A2A) is more advantageous than GEO satellite communications (SatCom). Hence, together with in-flight test results the paper presents a design for a lightweight airborne laser terminal, suitable for use onboard manned or unmanned airborne nodes. The advantages of LaserCom in combination with Intelligence, Surveillance and Reconnaissance (ISR) technologies particularly for Persistent Wide Area Surveillance (PWAS) are highlighted. Technical challenges for flying LaserCom terminals aboard RPA's are outlined. The paper leads to the conclusion that by combining both, LaserCom and ISR, a new quality for an overall system arises which is more than just the sum of two separate key technologies.

  2. Open Source Software Reuse in the Airborne Cloud Computing Environment

    NASA Astrophysics Data System (ADS)

    Khudikyan, S. E.; Hart, A. F.; Hardman, S.; Freeborn, D.; Davoodi, F.; Resneck, G.; Mattmann, C. A.; Crichton, D. J.

    2012-12-01

    Earth science airborne missions play an important role in helping humans understand our climate. A challenge for airborne campaigns in contrast to larger NASA missions is that their relatively modest budgets do not permit the ground-up development of data management tools. These smaller missions generally consist of scientists whose primary focus is on the algorithmic and scientific aspects of the mission, which often leaves data management software and systems to be addressed as an afterthought. The Airborne Cloud Computing Environment (ACCE), developed by the Jet Propulsion Laboratory (JPL) to support Earth Science Airborne Program, is a reusable, multi-mission data system environment for NASA airborne missions. ACCE provides missions with a cloud-enabled platform for managing their data. The platform consists of a comprehensive set of robust data management capabilities that cover everything from data ingestion and archiving, to algorithmic processing, and to data delivery. Missions interact with this system programmatically as well as via browser-based user interfaces. The core components of ACCE are largely based on Apache Object Oriented Data Technology (OODT), an open source information integration framework at the Apache Software Foundation (ASF). Apache OODT is designed around a component-based architecture that allows for selective combination of components to create highly configurable data management systems. The diverse and growing community that currently contributes to Apache OODT fosters on-going growth and maturation of the software. ACCE's key objective is to reduce cost and risks associated with developing data management systems for airborne missions. Software reuse plays a prominent role in mitigating these problems. By providing a reusable platform based on open source software, ACCE enables airborne missions to allocate more resources to their scientific goals, thereby opening the doors to increased scientific discovery.

  3. Toolsets for Airborne Data

    Atmospheric Science Data Center

    2015-04-02

    article title:  Toolsets for Airborne Data     View larger image The ... limit of detection values. Prior to accessing the TAD Web Application ( https://tad.larc.nasa.gov ) for the first time, users must ...

  4. Developing Metadata Requirements for NASA Airborne Field Campaigns

    NASA Astrophysics Data System (ADS)

    Parker, L.; Rinsland, P. L.; Kusterer, J.; Chen, G.; Early, A. B.; Beach, A. L., III; Wang, D.; Typanski, N. D.; Rutherford, M.; Rieflin, E.

    2014-12-01

    The common definition of metadata is "data about data". NASA has developed metadata formats to meet the needs of its satellite missions and emerging users. Coverage of satellite missions is highly predictable based on orbit characteristics. Airborne missions feature complicated flight patterns to maximize science return and changes in the instrument suites. More relevant to the airborne science data holding, the metadata describes the airborne measurements, in terms of measurement location, time, platform, and instruments. The metadata organizes the data holdings and facilitates the data ordering process from the DAAC. Therefore, the metadata requirements will need to fit the type of airborne measurements and sampling strategies as well as leverage current Earth Science and Data Information System infrastructure (ECHO/Reverb, GCMD). Current airborne data is generated/produced in a variety of formats (ICARRT, ASCII, etc) with the metadata information embedded in the data file. Special readers are needed to parse data file to generate metadata needed for search and discovery. With loosely defined standards within the airborne community this process poses challenges to the data providers. It is necessary to assess the suitability of current metadata standards, which have been mostly developed for satellite observations. To be presented are the use case-based assessments of the current airborne metadata standards and suggestions for future changes.

  5. The airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven; Schall, Harold; Shattuck, Paul

    2007-05-01

    The Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the current program status.

  6. Lysimeter Platform

    NASA Astrophysics Data System (ADS)

    Klammler, Gernot; Murer, Erwin; Plieschnegger, Markus

    2014-05-01

    The existing European Lysimeter Platform (www.lysimeter.at/HP_EuLP) provides an overview of lysimeter types used in Europe and show details on equipment, research results and future perspectives of lysimeter facilities. However, this platform is not user-editable and has not been updated since 2008. Thus, the Lysimeter Research Group (www.lysimeter.at) intends to serve a new database based website called Lysimeter Platform, where existing information of the former European Lysimeter Platform will be transferred to the new Lysimeter Platform and, furthermore, registered users are able to create and edit sites where lysimeters, soil water samplers and soil hydrologic measuring profiles are operated. The Lysimeter Research Group is a scientific association and, therefore, the membership is free of charge. The new Lysimeter Platform contains general information of lysimeter sites worldwide (e.g., what is measured at which site) in a standardized form to get a quick but informative overview of the sites and can be linked to more detailed, already existing information provided by the site operators. Due to the standardized information in the database the Lysimeter Platform serves also as search-engine for soil water measurements and helps to find sites of interest and corresponding contact information worldwide. The Session "Estimation of soil-atmosphere and vadose zone water fluxes by use of precision lysimeter measurements" at the EGU General Assembly 2014 would be an excellent chance to present the idea and the concept of this new Lysimeter Platform to international site operators and scientists.

  7. Sound radiation around a flying fly

    NASA Astrophysics Data System (ADS)

    Sueur, Jérôme; Tuck, Elizabeth J.; Robert, Daniel

    2005-07-01

    Many insects produce sounds during flight. These acoustic emissions result from the oscillation of the wings in air. To date, most studies have measured the frequency characteristics of flight sounds, leaving other acoustic characteristics-and their possible biological functions-unexplored. Here, using close-range acoustic recording, we describe both the directional radiation pattern and the detailed frequency composition of the sound produced by a tethered flying (Lucilia sericata). The flapping wings produce a sound wave consisting of a series of harmonics, the first harmonic occurring around 190 Hz. In the horizontal plane of the fly, the first harmonic shows a dipolelike amplitude distribution whereas the second harmonic shows a monopolelike radiation pattern. The first frequency component is dominant in front of the fly while the second harmonic is dominant at the sides. Sound with a broad frequency content, typical of that produced by wind, is also recorded at the back of the fly. This sound qualifies as pseudo-sound and results from the vortices generated during wing kinematics. Frequency and amplitude features may be used by flies in different behavioral contexts such as sexual communication, competitive communication, or navigation within the environment.

  8. A Multi-Use Airborne Research Facility

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.

    2003-01-01

    Much of our progress in understanding the Earth system comes from measurements made in the atmosphere. Aircraft are widely used to collect in situ measurements of the troposphere and lower stratosphere, and they also serve as platforms for many remote sensing instruments. Airborne field measurement campaigns require a capable aircraft, a specially trained support team, a suite of basic instrumentation, space and power for new instruments, and data analysis and processing capabilities (e.g. Veal et al., 1977). However, these capabilities are expensive and there is a need to reduce costs while maintaining the capability to perform this type of research. To this end, NASA entered a Cooperative Agreement with the University of North Dakota (UND) to help support the operations of the UND Cessna Citation research aircraft. This Cooperative Agreement followed in form and substance a previous agreement. The Cooperative Agreement has benefited both NASA and UND. In part because of budget reductions, the NASA Airborne Science Office has elected to take advantage of outside operators of science research platforms to off-load some science requirements (Huning, 1996). UND has worked with NASA to identify those requirements that could be met more cost effectively with the UND platform. This has resulted in significant cost savings to NASA while broadening the base of researchers in the NASA science programs. At the same time, the Agreement has provided much needed support to UND to help sustain the Citation research facility. In this report, we describe the work conducted under this Cooperative Agreement.

  9. Spectra-view: A high performance, low-cost multispectral airborne imaging system

    SciTech Connect

    Helder, D.

    1996-11-01

    Although a variety of airborne platforms are available for collecting remote sensing data, a niche exists for a low cost, compact systemd capable of collecting accurate visible and infrared multispectral data in a digital format. To fill this void, an instrument known as Spectra-View was developed by Airborne Data Systems. Multispectral data is collected in the visible and near-infrared using an array of CCD cameras with appropriate spectral filtering. Infrared imaging is accomplished using commercially available cameras. Although the current system images in five spectral bands, a modular design approach allows various configurations for imaging in the visible and infrared regions with up to 10 or more channels. It was built entirely through integration of readily available commercial components, is compact enough to fly in an aircraft as small as a Cessna 172, and can record imagery at airspeeds in excess of 150 knots. A GPS-based navigation system provides a course deviation indicator for the pilot to follow and allows for georeferencing of the data. To maintain precise pointing knowledge, and at the same time keep system cost low, attitude sensors are mounted directly with the cameras rather than using a stabilized mounting system. Information is collect during camera firing of aircraft/camera attitude along the yaw, pitch, and roll axes. All data is collected in a digital format on a hard disk that is removable during flight so that virtually unlimited amounts of data may be recorded. Following collection, imagery is readily available for viewing and incorporation into computer-based systems for analysis and reduction. Ground processing software has been developed to perform radiometric calibration and georeference the imagery. Since June, 1995, the system has been collecting high-quality data in a variety of applications for numerous customers including applications in agriculture, forestry, and global change research. Several examples will be presented.

  10. Titan AVIATR - Aerial Vehicle for In Situ and Airborne Titan Reconnaissance

    NASA Astrophysics Data System (ADS)

    Kattenhorn, Simon A.; Barnes, J. W.; McKay, C. P.; Lemke, L.; Beyer, R. A.; Radebaugh, J.; Adamkovics, M.; Atkinson, D. H.; Burr, D. M.; Colaprete, T.; Foch, R.; Le Mouélic, S.; Merrison, J.; Mitchell, J.; Rodriguez, S.; Schaller, E.

    2010-10-01

    Titan AVIATR - Aerial Vehicle for In Situ and Airborne Titan Reconnaissance - is a small (120 kg), nuclear-powered Titan airplane in the Discovery/New Frontiers class based on the concept of Lemke (2008 IPPW). The scientific goals of the mission are designed around the unique flexibility offered by an airborne platform: to explore Titan's diversity of surface landforms, processes, and compositions, as well as to study and measure the atmospheric circulation, aerosols, and humidity. AVIATR would address and surpass many of the science goals of hot-air balloons in Titan flagship studies. The strawman instrument payload is narrowly focused on the stated scientific objectives. The optical remote sensing suite comprises three instruments - an off-nadir high-resolution 2-micron camera, a horizon-looking 5-micron imager, and a 1-6 micron pushbroom near-infrared spectrometer. The in situ instruments include atmospheric structure, a methane humidity sensor, and a raindrop detector. An airplane has operational advantages over a balloon. Its piloted nature allows a go-to capability to image locations of interest in real time, thereby allowing for directed exploration of many features of primary geologic interest: Titan's sand dunes, mountains, craters, channels, and lakes. Subsequent imaging can capture changes in these features during the primary mission. AVIATR can fly predesigned routes, building up large context mosaics of areas of interest before swooping down to low altitude to acquire high-resolution images at 30-cm spatial sampling, similar to that of HiRISE at Mars. The elevation flexibility of the airplane allows us to acquire atmospheric profiles as a function of altitude at any desired location. Although limited by the direct-to-Earth downlink bandwidth, the total scientific data return from AVIATR will be >40 times that returned from Huygens. To maximize the science per bit, novel data storage and downlink techniques will be employed, including lossy compression

  11. Ever Fly a Tetrahedron?

    ERIC Educational Resources Information Center

    King, Kenneth

    2004-01-01

    Few things capture the spirit of spring like flying a kite. Watching a kite dance and sail across a cloud spotted sky is not only a visually appealing experience it also provides a foundation for studies in science and mathematics. Put simply, a kite is an airfoil surface that flies when the forces of lift and thrust are greater than the forces of…

  12. Activation of fly ash

    DOEpatents

    Corbin, David R.; Velenyi, Louis J.; Pepera, Marc A.; Dolhyj, Serge R.

    1986-01-01

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  13. Activation of fly ash

    DOEpatents

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  14. A Flying Summer Camp

    ERIC Educational Resources Information Center

    Mercurio, Frank X.

    1975-01-01

    Describes a five-day summer camp which provided 12 children, ages 9-14, with a complete flying experience. The training consisted of ground school and one hour actual flying time, including the basics of aircraft control and a flight prepared and executed by the students. (MLH)

  15. The NASA Airborne Earth Science Microwave Imaging Radiometer (AESMIR): A New Sensor for Earth Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2003-01-01

    The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer recently developed by NASA. The AESMIR design is unique in that it performs dual-polarized imaging at all standard passive microwave frequency bands (6-89 GHz) using only one sensor headscanner package, providing an efficient solution for Earth remote sensing applications (snow, soil moisture/land parameters, precipitation, ocean winds, sea surface temperature, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, C-130s and ground-based deployments. Thus AESMIR can provide low-, mid-, and high- altitude microwave imaging. Parallel filter banks allow AESMIR to simultaneously simulate the exact passbands of multiple satellite radiometers: SSM/I, TMI, AMSR, Windsat, SSMI/S, and the upcoming GPM/GMI and NPOESS/CMIS instruments --a unique capability among aircraft radiometers. An L-band option is also under development, again using the same scanner. With this option, simultaneous imaging from 1.4 to 89 GHz will be feasible. And, all receivers except the sounding channels will be configured for 4-Stokes polarimetric operation using high-speed digital

  16. Airborne Gravity Data Enhances NGS Experimental Gravimetric Geoid in Alaska

    NASA Astrophysics Data System (ADS)

    Holmes, S. A.; Childers, V. A.; Li, X.; Roman, D. R.

    2014-12-01

    The U.S. National Geodetic Survey [NGS], through their Gravity for the Redefinition of the American Vertical Datum [GRAV-D] program, continues to update its gravimetry holdings by flying new airborne gravity surveys over a large fraction of the USA and its territories. By 2022, NGS intends that all orthometric heights in the USA will be determined in the field by using a reliable national gravimetric geoid model to transform from geodetic heights obtained from GPS. Several airborne campaigns have already been flown over Alaska and its coastline. Some of this Alaskan coastal data have been incorporated into a new NGS experimental geoid model - xGEOID14. The xGEOID14 model is the first in a series of annual experimental geoid models that will incorporate NGS GRAV-D airborne data. This series provides a useful benchmark for assessing and improving current techniques by which the airborne and land-survey data are filtered and cleaned, and then combined with satellite gravity models, elevation data (etc.) with the ultimate aim of computing a geoid model that can support a national physical height system by 2022. Here we will examine the NGS GRAV-D airborne data in Alaska, and assess its contribution to xGEOID14. Future prospects for xGEOID15 will also be considered.

  17. Airborne Measurement of Ecosystem Carbon Dynamics over Heterogeneous Landscapes

    NASA Astrophysics Data System (ADS)

    Wade, T. J.; Hill, T. C.; Clement, R.; Moncrieff, J.; Disney, M.; Nichol, C. J.; Williams, M. D.

    2009-12-01

    Terrestrial carbon sinks are currently believed to account for the removal and storage of approximately 25% of anthropogenic carbon emissions from the atmosphere. The processes involved are numerous and complex and many feedbacks are at play. The ability to study the dynamics of different ecosystems at scales meaningful to climatic forcing is essential for understanding the key processes involved and identifying crucial sensitivities and thresholds. Airborne platforms with the requisite instrumentation offer the opportunity to directly measure biological processes and atmospheric structures at scales that are not achievable by ground measurements alone. The current generation of small research aircraft such as the University of Edinburgh’s Diamond HK36TTC ECO Dimona present excellent platforms for measurement of both the atmosphere and terrestrial surface. In this study we present results from airborne CO2/H2O flux measuring campaigns in contrasting climatic systems to quantify spatial patterns in ecosystem photosynthesis. Several airborne campaigns were undertaken in Arctic Finland, as part of the Arctic Biosphere Atmosphere Coupling at Multiple Scales (ABACUS) project (2008), and mainland UK as part of the UK Population Biology Network (UKPopNet) 2009 project, to explore the variability in surface CO2 flux across spatial scales larger than captured using conventional ground based eddy covariance. We discuss the application of our aircraft platform as a tool to address the challenge of understanding carbon dynamics within landscapes of heterogeneous vegetation class, terrain and hydrology using complementary datasets acquired from airborne eddy covariance and remote sensing.

  18. The Airborne Laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-09-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  19. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  20. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  1. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  2. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  3. LSNR Airborne LIDAR Mapping System Design and Early Results (Invited)

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Carter, W. E.; Slatton, K. C.

    2009-12-01

    Low signal-to-noise ratio (LSNR) detection techniques allow for implementation of airborne light detection and range (LIDAR) instrumentation aboard platforms with prohibitive power, size, and weight restrictions. The University of Florida has developed the Coastal Area Tactical-mapping System (CATS), a prototype LSNR LIDAR system capable of single photon laser ranging. CATS is designed to operate in a fixed-wing aircraft flying 600 m above ground level, producing 532 nm, 480 ps, 3 μJ output pulses at 8 kHz. To achieve continuous coverage of the terrain with 20 cm spatial resolution in a single pass, a 10x10 array of laser beamlets is scanned. A Risley prism scanner (two rotating V-coated optical wedges) allows the array of laser beamlets to be deflected in a variety of patterns, including conical, spiral, and lines at selected angles to the direction of flight. Backscattered laser photons are imaged onto a 100 channel (10x10 segmented-anode) photomultiplier tube (PMT) with a micro-channel plate (MCP) amplifier. Each channel of the PMT is connected to a multi-stop 2 GHz event timer. Here we report on tests in which ranges for known targets were accumulated for repeated laser shots and statistical analyses were applied to evaluate range accuracy, minimum separation distance, bathymetric mapping depth, and atmospheric scattering. Ground-based field test results have yielded 10 cm range accuracy and sub-meter feature identification at variable scan settings. These experiments also show that a secondary surface can be detected at a distance of 15 cm from the first. Range errors in secondary surface identification for six separate trials were within 7.5 cm, or within the timing resolution limit of the system. Operating at multi-photon sensitivity may have value for situations in which high ambient noise precludes single-photon sensitivity. Low reflectivity targets submerged in highly turbid waters can cause detection issues. CATS offers the capability to adjust the

  4. SOFIA: The future of airborne astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, Edwin F.; Davidson, Jacqueline A.

    1995-01-01

    For the past 20 years, the 91 cm telescope in NASA's Kuiper Airborne Observatory (KAO) has enabled scientists to observe infrared sources which are obscured by the earth's atmosphere at ground-based sites, and to observe transient astronomical events from anywhere in the world. To augment this capability, the United States and German Space Agencies (NASA and DARA) are collaborating in plans to replace the KAO with a 2.5 meter telescope installed in a Boeing 747 aircraft: SOFIA - The Stratospheric Observatory for Infrared Astronomy. SOFIA's large aperture, wide wavelength coverage, mobility, accessibility, and sophisticated instruments will permit a broad range of scientific studies, some of which are described here. Its unique features complement the capabilities of other future space missions. In addition, SOFIA has important potential as a stimulus for development of new technology and as a national resource for education of K-12 teachers. If started in 1996, SOFIA will be flying in the year 2000.

  5. SOFIA: The future of airborne astronomy

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.; Davidson, Jacqueline A.

    For the past 20 years, the 91 cm telescope in NASA's Kuiper Airborne Observatory (KAO) has enabled scientists to observe infrared sources which are obscured by the earth's atmosphere at ground-based sites, and to observe transient astronomical events from anywhere in the world. To augment this capability, the United States and German Space Agencies (NASA and DARA) are collaborating in plans to replace the KAO with a 2.5 meter telescope installed in a Boeing 747 aircraft: SOFIA - The Stratospheric Observatory for Infrared Astronomy. SOFIA's large aperture, wide wavelength coverage, mobility, accessibility, and sophisticated instruments will permit a broad range of scientific studies, some of which are described here. Its unique features complement the capabilities of other future space missions. In addition, SOFIA has important potential as a stimulus for development of new technology and as a national resource for education of K-12 teachers. If started in 1996, SOFIA will be flying in the year 2000.

  6. MITAS: multisensor imaging technology for airborne surveillance

    NASA Astrophysics Data System (ADS)

    Thomas, John D.

    1991-08-01

    MITAS, a unique and low-cost solution to the problem of collecting and processing multisensor imaging data for airborne surveillance operations has been developed, MITAS results from integrating the established and proven real-time video processing, target tracking, and sensor management software of TAU with commercially available image exploitation and map processing software. The MITAS image analysis station (IAS) supports airborne day/night reconnaissance and surveillance missions involving low-altitude collection platforms employing a suite of sensors to perform reconnaissance functions against a variety of ground and sea targets. The system will detect, locate, and recognize threats likely to be encountered in support of counternarcotic operations and in low-intensity conflict areas. The IAS is capable of autonomous, near real-time target exploitation and has the appropriate communication links to remotely located IAS systems for more extended analysis of sensor data. The IAS supports the collection, fusion, and processing of three main imaging sensors: daylight imagery (DIS), forward looking infrared (FLIR), and infrared line scan (IRLS). The MITAS IAS provides support to all aspects of the airborne surveillance mission, including sensor control, real-time image enhancement, automatic target tracking, sensor fusion, freeze-frame capture, image exploitation, target data-base management, map processing, remote image transmission, and report generation.

  7. Optical Communications Link to Airborne Transceiver

    NASA Technical Reports Server (NTRS)

    Regehr, Martin W.; Kovalik, Joseph M.; Biswas, Abhijit

    2011-01-01

    An optical link from Earth to an aircraft demonstrates the ability to establish a link from a ground platform to a transceiver moving overhead. An airplane has a challenging disturbance environment including airframe vibrations and occasional abrupt changes in attitude during flight. These disturbances make it difficult to maintain pointing lock in an optical transceiver in an airplane. Acquisition can also be challenging. In the case of the aircraft link, the ground station initially has no precise knowledge of the aircraft s location. An airborne pointing system has been designed, built, and demonstrated using direct-drive brushless DC motors for passive isolation of pointing disturbances and for high-bandwidth control feedback. The airborne transceiver uses a GPS-INS system to determine the aircraft s position and attitude, and to then illuminate the ground station initially for acquisition. The ground transceiver participates in link-pointing acquisition by first using a wide-field camera to detect initial illumination from the airborne beacon, and to perform coarse pointing. It then transfers control to a high-precision pointing detector. Using this scheme, live video was successfully streamed from the ground to the aircraft at 270 Mb/s while simultaneously downlinking a 50 kb/s data stream from the aircraft to the ground.

  8. Airborne Infrared Spectrograph for Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Golub, L.; Cheimets, P.; DeLuca, E. E.; Samra, J.; Judge, P. G.

    2015-12-01

    Direct measurements of the coronal magnetic field have significant potential to enhance our understanding of coronal dynamics, and improve forecasting models. Of particular interest are observations of coronal field lines in the Transition Corona, the transitional region between closed and open flux systems, providing important information on eruptive instabilities and on the origin of the slow solar wind. While current instruments routinely observe the photospheric and chromospheric magnetic fields, the proposed airborne spectrometer will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. The targeted lines are five forbidden magnetic dipole transitions between 1.4 and 4 um. The airborne system will consist of a telescope, grating spectrometer and pointing/stabilization system to be flown on the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the 21 August 2017 total solar eclipse. We will discuss the scientific objectives of the 2017 flight, describe details of the instrument design, and present the observing program for the eclipse.

  9. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Knerr, T. J.; Schaffner, P. R.; Mielke, R. R.; Gilreath, M. C.

    1980-01-01

    A procedure for numerically calculating radiation patterns of fuselage-mounted airborne antennas using the Volumetric Pattern Analysis Program is presented. Special attention is given to aircraft modeling. An actual case study involving a large commercial aircraft is included to illustrate the analysis procedure.

  10. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  11. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  12. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  13. Proceedings from the 2nd International Symposium on Formation Flying Missions and Technologies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    -Ray Distributed Telescope; GNC System for the Deployment and Fine Control of the DARWIN Free-Flying Interferometer; Formation Algorithm and Simulation Testbed; and PLATFORM: A Formation Flying, RvD and Robotic Validation Test-bench.

  14. Change detection in urban areas by object-based analysis and on-the-fly comparison of multi-view ALS data

    NASA Astrophysics Data System (ADS)

    Hebel, Marcus; Arens, Michael; Stilla, Uwe

    2013-12-01

    The use of helicopters as a sensor platform offers flexible fields of application due to adaptable flying speed at low flight levels. Modern helicopters are equipped with radar altimeters, inertial navigation systems (INS), forward-looking cameras and even laser scanners for automatic obstacle avoidance. If the 3D geometry of the terrain is already available, the analysis of airborne laser scanner (ALS) measurements may also be used for terrain-referenced navigation and change detection. In this paper, we present a framework for on-the-fly comparison of current ALS data to given reference data of an urban area. In contrast to classical difference methods, our approach extends the concept of occupancy grids known from robot mapping. However, it does not blur the measured information onto the grid cells. The proposed change detection method applies the Dempster-Shafer theory to identify conflicting evidence along the laser pulse propagation path. Additional attributes are considered to decide whether detected changes are of man-made origin or occurring due to seasonal effects. The concept of online change detection has been successfully validated in offline experiments with recorded ALS data streams. Results are shown for an urban test site at which multi-view ALS data were acquired at an interval of 1 year.

  15. Tunable Infrared Laser Instruments for Airborne Atmospheric Studies

    NASA Technical Reports Server (NTRS)

    Fried, A.; Diskin, G.; Weibring, P.; Richter, D.; Walega, J. G.; Sachse, G.; Slate, T.; Rana, M.; Podolske, J.

    2008-01-01

    Tunable infrared laser-based instruments on airborne platforms have provided invaluable contributions to atmospheric studies over the past several decades. This paper presents an overview of some recent studies and developments using this approach that were presented at the 2007 Field Laser Applications in Industry and Research (FLAIR, http://www.inoa.it/flair/) conference in Florence, Italy. The present overview only covers select in situ absorption-based instruments that were presented in the airborne session at this conference. In no case are comprehensive details presented. These details can be found in the numerous references given. Additional approaches based upon cavity-enhanced and photoacoustic measurements, which are also making invaluable contributions in airborne atmospheric studies, are not discussed in this brief overview.

  16. Airborne Trace Gas Mapping During the GOSAT-COMEX Experiment

    NASA Astrophysics Data System (ADS)

    Tratt, D. M.; Leifer, I.; Buckland, K. N.; Johnson, P. D.; Van Damme, M.; Pierre-Francois, C.; Clarisse, L.

    2015-12-01

    The GOSAT-COMEX-IASI (Greenhouse gases Observing SATellite - CO2 and Methane EXperiment - Infrared Atmospheric Sounding Interferometer) experiment acquired data on 24-27 April 2015 with two aircraft, a mobile ground-based sampling suite, and the GOSAT and IASI platforms. Collections comprised the Kern Front and Kern River oil fields north of Bakersfield, Calif. and the Chino stockyard complex in the eastern Los Angeles Basin. The nested-grid experiment examined the convergence of multiple approaches to total trace gas flux estimation from the experimental area on multiple length-scales, which entailed the integrated analysis of ground-based, airborne, and space-based measurements. Airborne remote sensing was employed to map the spatial distribution of discrete emission sites - crucial information to understanding their relative aggregate contribution to the overall flux estimation. This contribution discusses the methodology in the context of the airborne GHG source mapping component of the GOSAT-COMEX experiment and its application to satellite validation.

  17. Unmanned Airborne System Deployment at Turrialba Volcano for Real Time Eruptive Cloud Measurements

    NASA Astrophysics Data System (ADS)

    Diaz, J. A.; Pieri, D. C.; Fladeland, M. M.; Bland, G.; Corrales, E.; Alan, A., Jr.; Alegria, O.; Kolyer, R.

    2015-12-01

    The development of small unmanned aerial systems (sUAS) with a variety of instrument packages enables in situ and proximal remote sensing measurements of volcanic plumes, even when the active conditions of the volcano do not allow volcanologists and emergency response personnel to get too close to the erupting crater. This has been demonstrated this year by flying a sUAS through the heavy ash driven erupting volcanic cloud of Turrialba Volcano, while conducting real time in situ measurement of gases over the crater summit. The event also achieved the collection of newly released ash samples from the erupting volcano. The interception of the Turrialba ash cloud occurred during the CARTA 2015 field campaign carried out as part of an ongoing program for remote sensing satellite calibration and validation purposes, using active volcanic plumes. These deployments are timed to support overflights of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard the NASA Terra satellite on a bimonthly basis using airborne platforms such as tethered balloons, free-flying fixed wing small UAVs at altitudes up to 12.5Kft ASL within about a 5km radius of the summit crater. The onboard instrument includes the MiniGas payload which consists of an array of single electrochemical and infrared gas detectors (SO2, H2S CO2), temperature, pressure, relative humidity and GPS sensors, all connected to an Arduino-based board, with data collected at 1Hz. Data are both stored onboard and sent by telemetry to the ground operator within a 3 km range. The UAV can also carry visible and infrared cameras as well as other payloads, such as a UAV-MS payload that is currently under development for mass spectrometer-based in situ measurements. The presentation describes the ongoing UAV- based in situ remote sensing validation program at Turrialba Volcano, the results of a fly-through the eruptive cloud, as well as future plans to continue these efforts. Work presented here was

  18. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  19. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  20. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  1. From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results

    NASA Astrophysics Data System (ADS)

    Colombo, Oscar L.

    This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.

  2. From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L. (Editor)

    1992-01-01

    This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.

  3. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  4. An update on the NAST-I airborne FTS

    NASA Astrophysics Data System (ADS)

    Larar, Allen M.; Smith, William L.; Zhou, Daniel K.; Liu, Xu; Noe, Anna; Oliver, Don; Flood, Michael; Rochette, Luc; Tian, Jialin

    2011-11-01

    The NPOESS / NASA Airborne Sounder Testbed - Interferometer (NAST-I) is a well-proven airborne remote sensing system, which has flown in 18 previous field campaigns aboard the high altitude NASA ER-2, Northrop Grumman / Scaled Composites Proteus, and NASA WB-57 aircraft since initially being flight qualified in 1998. While originally developed to provide experimental observations needed to finalize specifications and test proposed designs and data processing algorithms for the Cross-track Infrared Sounder (CrIS) to fly on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) and the Joint Polar Satellite System, JPSS (formerly NPOESS, prior to recent program restructuring), its unprecedented data quality and system characteristics have contributed to a variety of atmospheric research and measurement validation objectives. This paper will provide a program overview and update, including a summary of measurement system capabilities, select scientific results, and recent refurbishment activities.

  5. Airborne GPS kinematic positioning and its application to oceanographic mapping

    NASA Astrophysics Data System (ADS)

    Han, Shaowei; Rizos, Chris

    2000-10-01

    Precise, long-range, airborne GPS kinematic positioning requires the use of carrier phase measurements, the data processing of which suffers from the technical challenges of "on-the-fly" ambiguity resolution and cycle slip repair. In this paper the authors describe how the combination of an `ambiguity recovery' technique and a `linear bias correction' method has been used to support oceanographic mapping in Australian waters, together with the augmentation from the Laser Airborne Depth Sounder (LADS) system. Two experiments, carried out on the 4th December 1997 in the Torres Strait between Papua New Guinea and Australia, and on the 20 May 1998 at Lake Argyle in Australia, were analysed. The results indicate that the topography of the water surface can be obtained with sub-decimetre accuracy, with a spatial resolution of a few metres. The main errors are attributable to multipath interference of the GPS signals at the antennas from the aircraft surface.

  6. The use of airborne lasers in terrestrial and water environments

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Link, L. E.; Swift, R. N.

    1983-01-01

    This document has the objective to provide some information regarding the applications for which an airborne laser system can be utilized. The considered data have been collected with the NASA Airborne Oceanographic Lidar (AOL), operational since 1977 as a flying laser laboratory. The most basic mode of operation of the AOL involves operation as a profiler. The data collected are similar to those which would be collected by a ground survey party. In the fluorosensing mode, pulsed laser light is used to induce fluorescence in various pigments contained in land and water targets. A capability for reliably mapping bottom geometry in clear ocean water to depths of 10-12 meters was also demonstrated, while other studies are related to the utilization of the AOL for synoptic mapping of surface layer concentrations of chlorophyll and other photopigments contained in phytoplankton.

  7. Autonomous Flying Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2005-01-01

    The Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis,Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights.

  8. Real-time airborne hyperspectral imaging of land mines

    NASA Astrophysics Data System (ADS)

    Ivanco, Tyler; Achal, Steve; McFee, John E.; Anger, Cliff; Young, Jane

    2007-04-01

    DRDC Suffeld and Itres Research have jointly investigated the use of visible and infrared hyperspectral imaging (HSI) for surface and buried land mine detection since 1989. These studies have demonstrated reliable passive HSI detection of surface-laid mines, based on their reflectance spectra, from airborne and ground-based platforms. Commercial HSI instruments collect and store image data at aircraft speeds, but the data are analysed off- line. This is useful for humanitarian demining, but unacceptable for military countermine operations. We have developed a hardware and software system with algorithms that can process the raw hyperspectral data in real time to detect mines. The custom algorithms perform radiometric correction of the raw data, then classify pixels of the corrected data, referencing a spectral signature library. The classification results are stored and displayed in real time, that is, within a few frame times of the data acquisition. Such real-time mine detection was demonstrated for the first time from a slowly moving land vehicle in March 2000. This paper describes an improved system which can achieve real-time detection of mines from an airborne platform, with its commensurately higher data rates. The system is presently compatible with the Itres family of visible/near infrared, short wave infrared and thermal infrared pushbroom hyperspectral imagers and its broadband thermal infrared pushbroom imager. Experiments to detect mines from an airborne platform in real time were conducted at DRDC Suffield in November 2006. Surface-laid land mines were detected in real time from a slowly moving helicopter with generally good detection rates and low false alarm rates. To the authors' knowledge, this is the first time that land mines have been detected from an airborne platform in real time using hyperspectral imaging.

  9. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  10. Complexity and Fly Swarms

    NASA Astrophysics Data System (ADS)

    Cates, Grant; Murray, Joelle

    Complexity is the study of phenomena that emerge from a collection of interacting objects and arises in many systems throughout physics, biology, finance, economics and more. Certain kinds of complex systems can be described by self-organized criticality (SOC). An SOC system is one that is internally driven towards some critical state. Recent experimental work suggests scaling behavior of fly swarms-one of the hallmarks of an SOC system. Our goal is to look for SOC behavior in computational models of fly swarms.

  11. Multi Sensor and Platforms Setups for Various Airborne Applications

    NASA Astrophysics Data System (ADS)

    Kemper, G.; Vasel, R.

    2016-06-01

    To combine various sensors to get a system for specific use became popular within the last 10 years. Metric mid format cameras meanwhile reach the 100 MPix and entered the mapping market to compete with the big format sensors. Beside that also other sensors as SLR Cameras provide high resolution and enter the aerial surveying market for orthophoto production or monitoring applications. Flexibility, purchase-costs, size and weight are common aspects to design multi-sensor systems. Some sensors are useful for mapping while others are part of environmental monitoring systems. Beside classical surveying aircrafts also UL Airplanes, Para/Trikes or UAVs make use of multi sensor systems. Many of them are customer specific while other already are frequently used in the market. This paper aims to show some setup, their application, what are the results and what are the pros and cons of them are.

  12. Calibration of Electronic Site Ties Using an Airborne Platform

    NASA Astrophysics Data System (ADS)

    Beaudoin, C. J.

    2013-12-01

    Systematic errors inherent to each of the four space geodetic techniques (DORIS, GPS, SLR, and VLBI) are sufficiently large that they must be removed from GGOS observations in order to meet the 1-mm and 0.1 mm/year position and stability goals, respectively. Because these techniques, by design, operate on a global scale, station-dependent intra-technique systematic errors (e.g. VLBI reflector deformation, GPS phase center variation) are not easily estimated from operational observations because of a myriad of factors. Perhaps the most significant and uncertain of these is the Earth's atmosphere and how it uniquely influences the observations of each technique. In addition there are the inter-technique systematic errors (e.g. GGOS station clock/timing distribution) and unforeseen errors (e.g. unspecified electronics malfunction). Measurements of intra-technique systematic errors at the station-level have been achieved previously, and these measurements can provide knowledge of a particular error source inherent to a particular technique. However, it is only through incorporation of these error measurements into operational data analysis that one may gauge the improvement in the inter-technique co-location errors at a given station. Gauging the co-location errors in this manner is complicated by correlations with other globally-dependent experimental parameters (e.g. atmosphere) so that de-coupling these errors from the geodetic observations is difficult. In light of these uncertainties, a local station calibration which is free of these global uncertainties and which electronically fuses the delay observables derived from each technique is advantageous. In this presentation, a novel approach to determine the electronic co-location errors will be presented. The benefits of incorporating such a calibration method will be outlined, and the technical challenges faced in the development of such a system will also be discussed.

  13. Comparison between carbon monoxide measurements from spaceborne and airborne platforms

    NASA Technical Reports Server (NTRS)

    Connors, V. S.; Cahoon, D. R.; Reichle, H. G., Jr.; Scheel, H. E.

    1991-01-01

    The measurements of air pollution from satellites (MAPS) experiment measured the distribution of middle tropospheric carbon monoxide (CO) from the Space Shuttle during October 1984. A critical area of the experiment is the assessment of experimental error of the MAPS data. This error is determined by the comparison between the space-based CO data and concurrent, direct CO measurements taken aboard aircraft. Because of the variability in the CO measurements near land sources, a strategy for comparing the tropospheric CO measurements over the remote oceans is presented.

  14. Simulation of realistic EarthCARE spaceborne Doppler products from ARM ground-based, SPIDER airborne and CRM data

    NASA Astrophysics Data System (ADS)

    Sy, O. O.; Tanelli, S.; Takahashi, N.; Ohno, Y.; Horie, H.; Kollias, P.

    2011-12-01

    The Cloud-profiling radar on ESA and JAXA's future EarthCARE mission will be the first spaceborne Doppler radar to ever fly [1]. This W-band CPR, which operates at 94.05 GHz, should provide an unprecedented global coverage of vertical-velocity field distribution of the Earth's atmosphere, and therewith a better characterization of dynamic energy transfers in the atmosphere. Prior to EarthCARE's launch, one needs to simulate the Doppler products to be expected from such a CPR, viz. the radar reflectivity and the mean velocity. Our work addresses this need by using existing ground-based and airborne Doppler measurements to generate realistic EarthCARElike spaceborne data. The input to our algorithm consists of actual atmospheric Doppler measurements obtained either from ground-based ARM [2], or from an airborne platform such as SPIDER [3], the Japanese CPR from the National institute od Information and Communications Technologies (NICT). Several corrections are then applied to account for the spacecraft motion as well as the spaceborneantenna characteristics. The realism of the simulated products is also achieved in terms of spatial and temporal resolution. Further, the effects of random fluctuations, noise and finite temporal sampling are included. In addition to highlighting the peculiarities of the generation of Doppler products according to the source of the original input data, our paper will show the corrections that are applied to recover the mean-Doppler velocity, particularly in the presence of aliasing and non-uniform beam-filling contaminations. Several scenarii will be discussed to explore the added value of EarthCARE data at a finer spatial resolution.

  15. NASA Airborne-simulated Vertical Data in Google Earth

    NASA Astrophysics Data System (ADS)

    Chen, A.; Leptoukh, G.; Kempler, S.; Liu, Z.

    2008-12-01

    Google Earth has been widely used as a tool to visualize scientific data that have geospatial elements. The data can be two dimensional and three dimensional, or even four-dimensional. NASA A-Train constellation satellites such as CloudSat, CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation), and Aqua have been producing lots of vertical data about the atmosphere. Those data are being used for such scientific research as global climate change, weather forecast, etc. NASA also uses airplanes to load some instruments to simulate satellite flying for establishing the sensitivity, calibration, and initial validation of the instruments that will be loaded at satellites. The airborne simulated flying produces simulated vertical data of the atmosphere. Visualization of these kinds of vertical data in Google Earth is helpful for scientific research. Here, a new method is proposed to visualize the simulated vertical data in Google Earth to expose cloud, aerosol, and other atmospheric profiles in the form of curtain along the flying track of the airplane. An interface description language-based render is designed and implemented to process and display the simulated vertical data in the format of image. The image is further processed and cut into transparent small image slices according to the track of the airplane. A COLLADA (COLLAborative Design Activity) 3D model, which is supported by Google Earth, is devised to make the image slices vertically displayed in Google Earth. Using the COLLADA models and airplane flying track coordinates, an airplane track model is implemented in the format of KML (Keyhole Markup Language). The track curtain makes simulated vertical data viewable, transparently or opaquely, in Google Earth. Thus, airborne simulated vertical geospatial data are available to scientists and the general public in a popular venue.

  16. Economic Impact of Stable Flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A dynamic model was created to estimate the economic impact of stable flies on livestock production. Based upon a nationwide average of 10 stable flies per animal for 3 months per year, the model estimates the impact of stable flies to be $543 million to the dairy industry, $1.34 billion to pasture ...

  17. Flying High with Spring.

    ERIC Educational Resources Information Center

    Harrington, Carolyn Lang

    2000-01-01

    Presents an art activity for first grade that uses multicolor scratch paper. Explains that students make scratch-drawings of bird nests, then, as a class, discuss types of birds and bird positions (such as sitting or flying), and finally each creates a bird to add to the nest. (CMK)

  18. Fly on the Wall

    ERIC Educational Resources Information Center

    Berry, Dave; Korpan, Cynthia

    2009-01-01

    This paper describes the implementation of a peer observation program at the University of Victoria called the Lecture Club. The observers are not interactive during the class--they are the proverbial flies on the wall. The paper identifies the program as self-developmental, discussing the attributes of this learning-to-teach and peer-sharing…

  19. Learning to Fly.

    ERIC Educational Resources Information Center

    Weil, Patricia E.

    1983-01-01

    Presents information on where to learn to fly, which aircraft is best for this purpose, and approximate costs. Includes additional information on certificates, licenses, and ratings, and a description of the two phases of the General Aviation Manufacturers Association flight training program. (JN)

  20. Go Fly a Kite

    ERIC Educational Resources Information Center

    Klopack, Ken

    2009-01-01

    This article describes an "art kite" activity. The idea is to construct and decorate a non-flying kite that they could display for an art exhibit. Through the activity, students learn to give and take suggestions from one another, improve the quality of their work and set a wonderful atmosphere of collaboration. (Contains 1 online resource.)

  1. Fly-ash utilization

    SciTech Connect

    Lockerby, R.W.

    1984-01-01

    The over 200 references in this bibliography cover some of the uses found for fly-ash, which range from the manufacture of bricks and as a new type of concrete to the recovery of aluminum and other valuable ores from the ash. The entries are grouped under seven headings: General, Agriculture, Brickmaking, Cement/Concrete, Land Reclamation, Resource Recovery, and Other.

  2. Wisdom from the fly.

    PubMed

    Rieder, Leila E; Larschan, Erica N

    2014-11-01

    Arguably, almost all research in Drosophila can be considered basic research, yet many of the most essential and fundamental concepts of human genetics were first decoded in the fly. Although the fly genome, which is organized into only four chromosomes, is approximately one-twentieth the size of the human genome, it contains roughly the same number of genes, and up to 75% of human disease-related genes have Drosophila homologues [1]. The fly was prized for its simplicity and utility even before such compelling homology with humans was apparent. Since Thomas Hunt Morgan began his seminal experiments over a century ago (Table 1), the Drosophila system has revealed countless key mechanisms by which cells function, including the factors that maintain chromatin and the signaling pathways that control cell fate determination and organism development. More recently, the fly has emerged as a critical neurobiological tool and disease model for a range of genetic disorders. In this review, we present a brief retrospective of Drosophila as an indispensable genetic system and discuss some of the many contributions, past and present, of this facile system to human genetics. PMID:25161083

  3. Flying the Infrared Skies: An Authentic SOFIA Educator Experience

    NASA Astrophysics Data System (ADS)

    Manning, J. G.

    2015-11-01

    The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA) flagship education effort is its Airborne Astronomy Ambassadors (AAA) program. The program flies teams of teachers on SOFIA research flights as part of an educator professional development effort enabling these teachers to experience first-hand the workings of the airborne observatory, to interact with scientists and technologists, to observe research in progress and how scientists use technology—all in support of national STEM goals. The presenter will share his own experience as an EPO escort on a recent SOFIA flight including two educator teams, providing a first-hand account of how an “authentic” science experience can exploit unique NASA assets to improve science teaching, inspire students, inform local communities, and contribute to the elevation of public science literacy.

  4. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  5. Airborne radioactive contamination monitoring

    SciTech Connect

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  6. Airborne Raman lidar

    NASA Astrophysics Data System (ADS)

    Heaps, Wm. S.; Burris, J.

    1996-12-01

    We designed and tested an airborne lidar system using Raman scattering to make simultaneous measurements of methane, water vapor, and temperature in a series of flights on a NASA-operated C-130 aircraft. We present the results for methane detection, which show that the instrument has the requisite sensitivity to atmospheric trace gases. Ultimately these measurements can be used to examine the transport of chemically processed air from within the polar vortex to mid-latitudinal regions and the exchange of stratospheric air between tropical and mid-latitudinal regions.

  7. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  8. Alternative analysis of airborne laser data collected within conventional multi-parameter airborne geophysical surveys

    NASA Astrophysics Data System (ADS)

    Ahl, Andreas; Supper, R.; Motschka, K.; Schattauer, I.

    2010-05-01

    For the interpretation of airborne gamma-ray spectrometry as well as airborne electromagnetics it is of great importance to determine the distance between the geophysical sensor and the ground surface. Since radar altimeters do not penetrate vegetation, laser altimeters became popular in airborne geophysics over the past years. Currently the airborne geophysical platform of the Geological Survey of Austria (GBA) is equipped with a Riegl LD90-3800VHS-FLP high resolution laser altimeter, measuring the distances according to the first and the last reflected pulse. The goal of the presented study was to explore the possibilities of deriving additional information about the survey area from the laser data and to determine the accuracy of such results. On one hand the difference between the arrival time of the first and the last reflected pulse can be used to determine the height of the vegetation. This parameter is for example important for the correction of damping effects on airborne gamma-ray measurements caused by vegetation. Moreover especially for groundwater studies at catchment scale, this parameter can also be applied to support the spatial assessment of evapotranspiration. In combination with the altitude above geoid, determined by a GPS receiver, a rough digital elevation model of the survey area can be derived from the laser altimetry. Based on a data set from a survey area in the northern part of Austria, close to the border with the Czech Republic, the reliability of such a digital elevation model and the calculated vegetation height was tested. In this study a mean deviation of -1.4m, with a standard deviation of ±3.4m, between the digital elevation model from Upper Austria (25m spatial resolution) and the determined elevation model was determined. We also found an obvious correlation between the calculated vegetation heights greater 15m and the mapped forest published by the ‘Department of Forest Inventory' of the ‘Federal Forest Office' of Austria

  9. The Next Generation Airborne Polarimetric Doppler Radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  10. An annotated checklist of the horse flies, deer flies, and yellow flies (Diptera: Tabanidae) of Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The family Tabanidae includes the horse flies, deer flies, and yellow flies and is considered a significant pest of livestock throughout the United States, including Florida. Tabanids can easily become a major pest of man, especially salt marsh species which are known to readily feed on humans and o...

  11. Laboratory evaluation of novaluron for controlling larval horn flies, house flies, and stable flies (Diptera: Muscidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A granular formulation of novaluron (Novaluron 0.2G, 0.2% AI), a newer benzoylphenyl urea insecticide, was evaluated for its efficacy in controlling the larval stage of horn flies, Haematobia irritans (Linnaeus), house flies, Musca domestica Linnaeus, and stable flies, Stomoxys calcitrans (Linnaeus)...

  12. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  13. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  14. Airborne transmission of lyssaviruses.

    PubMed

    Johnson, N; Phillpotts, R; Fooks, A R

    2006-06-01

    In 2002, a Scottish bat conservationist developed a rabies-like disease and subsequently died. This was caused by infection with European bat lyssavirus 2 (EBLV-2), a virus closely related to Rabies virus (RABV). The source of this infection and the means of transmission have not yet been confirmed. In this study, the hypothesis that lyssaviruses, particularly RABV and the bat variant EBLV-2, might be transmitted via the airborne route was tested. Mice were challenged via direct introduction of lyssavirus into the nasal passages. Two hours after intranasal challenge with a mouse-adapted strain of RABV (Challenge Virus Standard), viral RNA was detectable in the tongue, lungs and stomach. All of the mice challenged by direct intranasal inoculation developed disease signs by 7 days post-infection. Two out of five mice challenged by direct intranasal inoculation of EBLV-2 developed disease between 16 and 19 days post-infection. In addition, a simple apparatus was evaluated in which mice could be exposed experimentally to infectious doses of lyssavirus from an aerosol. Using this approach, mice challenged with RABV, but not those challenged with EBLV-2, were highly susceptible to infection by inhalation. These data support the hypothesis that lyssaviruses, and RABV in particular, can be spread by airborne transmission in a dose-dependent manner. This could present a particular hazard to personnel exposed to aerosols of infectious RABV following accidental release in a laboratory environment. PMID:16687600

  15. Solid state recorders for airborne reconnaissance

    NASA Astrophysics Data System (ADS)

    Klang, Mark R.

    2003-08-01

    Solid state recorders have become the recorder of choice for meeting airborne ruggedized requirements for reconnaissance and flight test. The cost of solid state recorders have decreased over the past few years that they are now less expense than the traditional high speed tape recorders. CALCULEX, Inc manufactures solid state recorders called MONSSTR (Modular Non-volatile Solid State Recorder). MONSSTR is being used on many different platforms such as F/A-22, Global Hawk, F-14, F-15, F-16, U-2, RF-4, and Tornado. This paper will discuss the advantages of using solid state recorders to meet the airborne reconnaissance requirement and the ability to record instrumentation data. The CALCULEX recorder has the ability to record sensor data and flight test data in the same chassis. This is an important feature because it eliminates additional boxes on the aircraft. The major advantages to using a solid state recorder include; reliability, small size, light weight, and power. Solid state recorders also have a larger storage capacity and higher bandwidth capability than other recording devices.

  16. Calibration Matters: Advances in Strapdown Airborne Gravimetry

    NASA Astrophysics Data System (ADS)

    Becker, D.

    2015-12-01

    Using a commercial navigation-grade strapdown inertial measurement unit (IMU) for airborne gravimetry can be advantageous in terms of cost, handling, and space consumption compared to the classical stable-platform spring gravimeters. Up to now, however, large sensor errors made it impossible to reach the mGal-level using such type IMUs as they are not designed or optimized for this kind of application. Apart from a proper error-modeling in the filtering process, specific calibration methods that are tailored to the application of aerogravity may help to bridge this gap and to improve their performance. Based on simulations, a quantitative analysis is presented on how much IMU sensor errors, as biases, scale factors, cross couplings, and thermal drifts distort the determination of gravity and the deflection of the vertical (DOV). Several lab and in-field calibration methods are briefly discussed, and calibration results are shown for an iMAR RQH unit. In particular, a thermal lab calibration of its QA2000 accelerometers greatly improved the long-term drift behavior. Latest results from four recent airborne gravimetry campaigns confirm the effectiveness of the calibrations applied, with cross-over accuracies reaching 1.0 mGal (0.6 mGal after cross-over adjustment) and DOV accuracies reaching 1.1 arc seconds after cross-over adjustment.

  17. Auxiliary DCP data acquisition system. [airborne system

    NASA Technical Reports Server (NTRS)

    Snyder, R. V.

    1975-01-01

    An airborne DCP Data Aquisition System has been designed to augment the ERTS satellite data recovery system. The DCP's are data collection platforms located at pertinent sites. With the appropriate sensors they are able to collect, digitally encode and transmit environmental parameters to the ERTS satellite. The satellite in turn relays these transmissions to a ground station for processing. The satellite is available for such relay duty a minimum of two times in a 24-hour period. The equipment is to obtain continuous DCP data during periods of unusual environmental activity--storms, floods, etc. Two circumstances contributed to the decision to design such a system; (1) Wallops Station utilizes surveillance aircraft in support of rocket launches and also in support of earth resources activities; (2) the area in which Wallops is located, the Delaware and Chesapeake Bay areas, are fertile areas for DCP usage. Therefore, by developing an airborne DCP receiving station and installing it on aircraft more continuous DCP data can be provided from sites in the surrounding areas at relatively low cost.

  18. Fourth Airborne Geoscience Workshop: Summary Minutes

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The general theme for the workshop revolved around global environmental change. Over 170 individuals participated in the presentations and ensuing discussions about the many agency activities using airborne platforms and sensors in support of the U.S. Global Change Research Program (GCRP). The U.S. GCRP was developed as a central component of the U.S. Government's approach to global change and its contribution to worldwide efforts. An all-encompassing U.S. plan was developed by the Committee on Earth and Environmental Sciences (CEES), which continues as the interagency coordinating group for the program. The U.S. GCRP was established as a Presidential initiative in the FY90 budget, making it a particularly relevant topic for the workshop. The following are presented in the appendices: (1) final agenda and list of registrants; (2) final list of poster presenters; (3) steering group luncheon participants; (4) the draft resolution; and (5) selected handouts.

  19. Test What You Fly?

    NASA Technical Reports Server (NTRS)

    Margolies, Don

    2002-01-01

    It was the first time on any NASA project I know of that all the instruments on an observatory came off for rework or calibration after the full range of environmental tests, and then were reintegrated at the launch center without the benefit of an observatory environmental retest. Perhaps you've heard the expression, 'Test what you fly, fly what you test'? In theory, it's hard to argue with that. In this case, I was willing to take the risk of not testing what I flew. As the project manager for the Advanced Composition Explorer (ACE) mission, I was the one who ultimately decided what risks to take, just as it was my responsibility to get buy-in from the stakeholders.

  20. Fly-scan ptychography

    DOE PAGESBeta

    Huang, Xiaojing; Lauer, Kenneth; Clark, Jesse N.; Xu, Weihe; Nazaretski, Evgeny; Harder, Ross; Robinson, Ian K.; Chu, Yong S.

    2015-03-13

    We report an experimental ptychography measurement performed in fly-scan mode. With a visible-light laser source, we demonstrate a 5-fold reduction of data acquisition time. By including multiple mutually incoherent modes into the incident illumination, high quality images were successfully reconstructed from blurry diffraction patterns. This approach significantly increases the throughput of ptychography, especially for three-dimensional applications and the visualization of dynamic systems.

  1. Flying Saucer? Aliens?

    NASA Technical Reports Server (NTRS)

    1961-01-01

    No, it's not a flying saucer, it is the domed top to a 70 foot long vacuum tank at the Lewis Research Center's Electric Propulsion Laboratory, Cleveland, Ohio. The three technicians shown here in protective clothing had just emerged from within the tank where they had been cleaning in the toxic mercury atmosphere, left after ion engine testing in the tank. Lewis has since been renamed the John H. Glenn Research Center.

  2. Fly-scan ptychography

    PubMed Central

    Huang, Xiaojing; Lauer, Kenneth; Clark, Jesse N.; Xu, Weihe; Nazaretski, Evgeny; Harder, Ross; Robinson, Ian K.; Chu, Yong S.

    2015-01-01

    We report an experimental ptychography measurement performed in fly-scan mode. With a visible-light laser source, we demonstrate a 5-fold reduction of data acquisition time. By including multiple mutually incoherent modes into the incident illumination, high quality images were successfully reconstructed from blurry diffraction patterns. This approach significantly increases the throughput of ptychography, especially for three-dimensional applications and the visualization of dynamic systems. PMID:25766519

  3. Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.; Baxley, Brian T.

    2008-01-01

    This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners.

  4. Airborne Geodetic Imaging Using the L-band UAVSAR Instrument (Invited)

    NASA Astrophysics Data System (ADS)

    Hensley, S.; Zebker, H. A.; Jones, C. E.; Michel, T.; Chapman, B. D.; Muellerschoen, R.; Fore, A.; Simard, M.

    2009-12-01

    Radar interferometry using both airborne and spaceborne platforms has become an integral tool in geodetics sciences over the past 3 decades for both fine resolution topographic mapping and for measuring surface deformation from a variety of both natural and anthropogenic sources. The UAVSAR instrument, employing an L-band actively electronically scanned antenna, had its genesis in the ESTO Instrument Incubator Program and after 3 years of development has begun the regular collection of science data in support of various geodetic applications. System design was motivated by solid Earth applications where repeat pass radar interferometry can be used to measure subtle deformation of the surface, however flexibility and extensibility to support other applications were also major design drivers. Initial testing and deployments are being carried out with the NASA Gulfstream III aircraft, which has been modified to accommodate the radar pod and has been equipped with precision autopilot capability developed by NASA Dryden Flight Research Center. With this the aircraft can fly within a 10 m diameter tube on any specified trajectory necessary for repeat-pass radar interferometric applications. To maintain the required pointing for repeat-pass interferometric applications we have employed an actively scanned antenna steered using INU measurement data. This talk will present some early deformation results made by the UAVSAR instrument over volcanoes (Mt St Helens), landslides near Parkfield CA, ice sheet motion in Greenland and Iceland, anthropogenic induced surface deformation from oil pumping near Lost Hills, CA and changes in agricultural surfaces in California’s San Joaquin Valley. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  5. Quantification of gully volume using very high resolution DSM generated through 3D reconstruction from airborne and field digital imagery

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Zarco-Tejada, Pablo; Laredo, Mario; Gómez, Jose Alfonso

    2013-04-01

    Major advances have been made recently in automatic 3D photo-reconstruction techniques using uncalibrated and non-metric cameras (James and Robson, 2012). However, its application on soil conservation studies and landscape feature identification is currently at the outset. The aim of this work is to compare the performance of a remote sensing technique using a digital camera mounted on an airborne platform, with 3D photo-reconstruction, a method already validated for gully erosion assessment purposes (Castillo et al., 2012). A field survey was conducted in November 2012 in a 250 m-long gully located in field crops on a Vertisol in Cordoba (Spain). The airborne campaign was conducted with a 4000x3000 digital camera installed onboard an aircraft flying at 300 m above ground level to acquire 6 cm resolution imagery. A total of 990 images were acquired over the area ensuring a large overlap in the across- and along-track direction of the aircraft. An ortho-mosaic and the digital surface model (DSM) were obtained through automatic aerial triangulation and camera calibration methods. For the field-level photo-reconstruction technique, the gully was divided in several reaches to allow appropriate reconstruction (about 150 pictures taken per reach) and, finally, the resulting point clouds were merged into a unique mesh. A centimetric-accuracy GPS provided a benchmark dataset for gully perimeter and distinguishable reference points in order to allow the assessment of measurement errors of the airborne technique and the georeferenciation of the photo-reconstruction 3D model. The uncertainty on the gully limits definition was explicitly addressed by comparison of several criteria obtained by 3D models (slope and second derivative) with the outer perimeter obtained by the GPS operator identifying visually the change in slope at the top of the gully walls. In this study we discussed the magnitude of planimetric and altimetric errors and the differences observed between the

  6. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  7. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  8. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R. O.; Kratwurst, S.; Krings, T.; Luna, B.; Thorpe, A. K.

    2015-06-01

    Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and Methane Experiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s-1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace gas signature detection in an airborne science campaign, and presages many future applications.

  9. Research on the error model of airborne celestial/inertial integrated navigation system

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoqiang; Deng, Xiaoguo; Yang, Xiaoxu; Dong, Qiang

    2015-02-01

    Celestial navigation subsystem of airborne celestial/inertial integrated navigation system periodically correct the positioning error and heading drift of the inertial navigation system, by which the inertial navigation system can greatly improve the accuracy of long-endurance navigation. Thus the navigation accuracy of airborne celestial navigation subsystem directly decides the accuracy of the integrated navigation system if it works for long time. By building the mathematical model of the airborne celestial navigation system based on the inertial navigation system, using the method of linear coordinate transformation, we establish the error transfer equation for the positioning algorithm of airborne celestial system. Based on these we built the positioning error model of the celestial navigation. And then, based on the positioning error model we analyze and simulate the positioning error which are caused by the error of the star tracking platform with the MATLAB software. Finally, the positioning error model is verified by the information of the star obtained from the optical measurement device in range and the device whose location are known. The analysis and simulation results show that the level accuracy and north accuracy of tracking platform are important factors that limit airborne celestial navigation systems to improve the positioning accuracy, and the positioning error have an approximate linear relationship with the level error and north error of tracking platform. The error of the verification results are in 1000m, which shows that the model is correct.

  10. Increased efficiency for beyond line-of-sight in airborne ISR operations

    NASA Astrophysics Data System (ADS)

    Frayter, Slava; Willems, Koen

    2013-05-01

    Airborne platforms are increasingly being used as vehicles to capture intelligence data for defense, state and civil applications. The aerial vehicles are equipped with technology for both video and sensor data collection; the data is then sent to a ground mission control center for further processing. When the airborne platform is outside the reach of direct data relay due to distance or environment, satellite communications is used for Beyond Line of Sight (BLoS) communication. It is a key requirement for the satellite link in ISR (Intelligence, Surveillance and Reconnaissance) operations to get as much data and video as possible through the available bandwidth. The satellite link also needs to be available at all times during operations to insure mission critical communications and not endanger ground operations. Only by using robust satellite technology can the demand for more data and highest efficiency be satisfied while keeping OPEX costs under control. This paper will highlight both technical and practical challenges of operators in the airborne ISR missions, going from technical requirements to efficiency-driven solutions. It will also look at what the final results in the field are when transmitting ISR data and video from the airborne platform over satellite in highly adaptive environments. The existing qualified and deployed BLoS airborne solution already achieves over 20Mbps from the aircraft to the ground in active operations, but requirements and capabilities continue to increase as more comprehensive ISR data is being transmitted.

  11. Strawman payload data for science and applications space platforms

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The need for a free flying science and applications space platform to host compatible long duration experiment groupings in Earth orbit is discussed. Experiment level information on strawman payload models is presented which serves to identify and quantify the requirements for the space platform system. A description data base on the strawman payload model is presented along with experiment level and group level summaries. Payloads identified in the strawman model include the disciplines of resources observations and environmental observations.

  12. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  13. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  14. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  15. Airborne time-series measurement of soil moisture using terrestrial gamma radiation

    NASA Technical Reports Server (NTRS)

    Carroll, Thomas R.; Lipinski, Daniel M.; Peck, Eugene L.

    1988-01-01

    Terrestrial gamma radiation data and independent ground-based core soil moisture data are analyzed. They reveal the possibility of using natural terrestrial gamma radiation collected from a low-flying aircraft to make reliable real-time soil moisture measurements for the upper 20 cm of soil. The airborne data were compared to the crude ground-based soil moisture data set collected at the core sites.

  16. Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software

    NASA Technical Reports Server (NTRS)

    Hunter, George; Boisvert, Benjamin

    2013-01-01

    This document is the final report for the project entitled "Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software." This report consists of 17 sections which document the results of the several subtasks of this effort. The Probabilistic NAS Platform (PNP) is an air operations simulation platform developed and maintained by the Saab Sensis Corporation. The improvements made to the PNP simulation include the following: an airborne distributed separation assurance capability, a required time of arrival assignment and conformance capability, and a tactical and strategic weather avoidance capability.

  17. Airborne Remote Sensing of River Flow and Morphology

    NASA Astrophysics Data System (ADS)

    Zuckerman, S.; Anderson, S. P.; McLean, J.; Redford, R.

    2014-12-01

    River morphology, surface slope and flow are some of the fundamental measurements required for surface water monitoring and hydrodynamic research. This paper describes a method of combining bathymetric lidar with space-time processing of mid-wave infrared (MWIR) imagery to simultaneously measure bathymetry, currents and surface slope from an airborne platform. In May 2014, Areté installed a Pushbroom Imaging Lidar for Littoral Surveillance (PILLS) and a FLIR SC8000 MWIR imaging system sampling at 2 Hz in a small twin-engine aircraft. Data was collected over the lower Colorado River between Picacho Park and Parker. PILLS is a compact bathymetric lidar based on streak-tube sensor technology. It provides channel and bank topography and water surface elevation at 1 meter horizontal scales and 25 cm vertical accuracy. Surface currents are derived from the MWIR imagery by tracking surface features using a cross correlation algorithm. This approach enables the retrieval of currents along extended reaches at the forward speed of the aircraft with spatial resolutions down to 5 m with accuracy better than 10 cm/s. The fused airborne data captures current and depth variability on scales of meters over 10's of kilometers collected in just a few minutes. The airborne MWIR current retrievals are combined with the bathymetric lidar data to calculate river discharge which is then compared with real-time streamflow stations. The results highlight the potential for improving our understanding of complex river environments with simultaneous collections from multiple airborne sensors.

  18. ISRO's dual frequency airborne SAR pre-cursor to NISAR

    NASA Astrophysics Data System (ADS)

    Ramanujam, V. Manavala; Suneela, T. J. V. D.; Bhan, Rakesh

    2016-05-01

    The Indian Space Research Organisation (ISRO) and the National Aeronautics and Space Administration (NASA) have jointly embarked on NASA-ISRO Synthetic Aperture Radar (NISAR) operating in L-band and S-band, which will map Earth's surface every 12 days. As a pre-cursor to the NISAR mission, ISRO is planning an airborne SAR (L&S band) which will deliver NISAR analogue data products to the science community. ISRO will develop all the hardware with the aim of adhering to system design aspects of NISAR to the maximum extent possible. It is a fully polarimetric stripmap SAR and can be operated in single, dual, compact, quasi-quad and full polarimetry modes. It has wide incidence angle coverage from 24°-77° with swath coverage from 5.5km to 15 km. Apart from simultaneous imaging operations, this system can also operate in standalone L/S SAR modes. This system is planned to operate from an aircraft platform with nominal altitude of 8000meters. Antenna for this SAR will be rigidly mounted to the aircraft, whereas, motion compensation will be implemented in the software processor to generate data products. Data products for this airborne SAR will be generated in slant & ground range azimuth dimension and geocoded in HDF5/Geotiff formats. This airborne SAR will help to prepare the Indian scientific community for optimum utilization of NISAR data. In-order to collect useful science data, airborne campaigns are planned from end of 2016 onwards.

  19. Study on airborne multispectral imaging fusion detection technology

    NASA Astrophysics Data System (ADS)

    Ding, Na; Gao, Jiaobo; Wang, Jun; Cheng, Juan; Gao, Meng; Gao, Fei; Fan, Zhe; Sun, Kefeng; Wu, Jun; Li, Junna; Gao, Zedong; Cheng, Gang

    2014-11-01

    The airborne multispectral imaging fusion detection technology is proposed in this paper. In this design scheme, the airborne multispectral imaging system consists of the multispectral camera, the image processing unit, and the stabilized platform. The multispectral camera can operate in the spectral region from visible to near infrared waveband (0.4-1.0um), it has four same and independent imaging channels, and sixteen different typical wavelengths to be selected based on the different typical targets and background. The related experiments were tested by the airborne multispectral imaging system. In particularly, the camouflage targets were fused and detected in the different complex environment, such as the land vegetation background, the desert hot background and underwater. In the spectral region from 0.4 um to 1.0um, the three different characteristic wave from sixteen typical spectral are selected and combined according to different backgrounds and targets. The spectral image corresponding to the three characteristic wavelengths is resisted and fused by the image processing technology in real time, and the fusion video with typical target property is outputted. In these fusion images, the contrast of target and background is greatly increased. Experimental results confirm that the airborne multispectral imaging fusion detection technology can acquire multispectral fusion image with high contrast in real time, and has the ability of detecting and identification camouflage objects from complex background to targets underwater.

  20. Auditory system of fruit flies.

    PubMed

    Ishikawa, Yuki; Kamikouchi, Azusa

    2016-08-01

    The fruit fly, Drosophila melanogaster, is an invaluable model for auditory research. Advantages of using the fruit fly include its stereotyped behavior in response to a particular sound, and the availability of molecular-genetic tools to manipulate gene expression and cellular activity. Although the receiver type in fruit flies differs from that in mammals, the auditory systems of mammals and fruit flies are strikingly similar with regard to the level of development, transduction mechanism, mechanical amplification, and central projections. These similarities strongly support the use of the fruit fly to study the general principles of acoustic information processing. In this review, we introduce acoustic communication and discuss recent advances in our understanding on hearing in fruit flies. This article is part of a Special Issue entitled . PMID:26560238

  1. Pest Control on the "Fly"

    NASA Technical Reports Server (NTRS)

    2002-01-01

    FlyCracker(R), a non-toxic and environmentally safe pesticide, can be used to treat and control fly problems in closed environments such as milking sheds, cattle barns and hutches, equine stables, swine pens, poultry plants, food-packing plants, and even restaurants, as well as in some outdoor animal husbandry environments. The product can be applied safely in the presence of animals and humans, and was recently permitted for use on organic farms as livestock production aids. FlyCracker's carbohydrate technology kills fly larvae within 24 hours. By killing larvae before they reach the adult stages, FlyCracker eradicates another potential breeding population. Because the process is physical-not chemical-flies and other insects never develop resistance to the treatment, giving way to unlimited use of product, while still keeping the same powerful effect.

  2. NASA's Student Airborne Research Program (2009-2013)

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Shetter, R. E.

    2013-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for rising senior undergraduates majoring in any of the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2013, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA DC-8 aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. Several students will present the results of their research in science sessions at this meeting. We will discuss the results and effectiveness of the program over the past five summers and plans for the future.

  3. AVIATR - Aerial Vehicle for In-situ and Airborne Titan Reconnaissance A Titan Airplane Mission Concept

    NASA Technical Reports Server (NTRS)

    Barnes, Jason W.; Lemke, Lawrence; Foch, Rick; McKay, Christopher P.; Beyer, Ross A.; Radebaugh, Jani; Atkinson, David H.; Lorenz, Ralph D.; LeMouelic, Stephane; Rodriguez, Sebastien; Gundlach, Jay; Giannini, Francesco; Bain, Sean; Flasar, F. Michael; Hurford, Terry; Anderson, Carrie M.; Merrison, Jon; Adamkovics, Mate; Kattenhorn, Simon A.; Mitchell, Jonathan; Burr, Devon M.; Colaprete, Anthony; Schaller, Emily; Friedson, A. James; Edgett, Kenneth S.; Coradini, Angioletta; Adriani, Alberto; Sayanagi, Kunio M.; Malaska, Michael J.; Morabito, David; Reh, Kim

    2011-01-01

    We describe a mission concept for a stand-alone Titan airplane mission: Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR). With independent delivery and direct-to-Earth communications, AVIATR could contribute to Titan science either alone or as part of a sustained Titan Exploration Program. As a focused mission, AVIATR as we have envisioned it would concentrate on the science that an airplane can do best: exploration of Titan's global diversity. We focus on surface geology/hydrology and lower-atmospheric structure and dynamics. With a carefully chosen set of seven instruments-2 near-IR cameras, 1 near-IR spectrometer, a RADAR altimeter, an atmospheric structure suite, a haze sensor, and a raindrop detector-AVIATR could accomplish a significant subset of the scientific objectives of the aerial element of flagship studies. The AVIATR spacecraft stack is composed of a Space Vehicle (SV) for cruise, an Entry Vehicle (EV) for entry and descent, and the Air Vehicle (AV) to fly in Titan's atmosphere. Using an Earth-Jupiter gravity assist trajectory delivers the spacecraft to Titan in 7.5 years, after which the AVIATR AV would operate for a 1-Earth-year nominal mission. We propose a novel 'gravity battery' climb-then-glide strategy to store energy for optimal use during telecommunications sessions. We would optimize our science by using the flexibility of the airplane platform, generating context data and stereo pairs by flying and banking the AV instead of using gimbaled cameras. AVIATR would climb up to 14 km altitude and descend down to 3.5 km altitude once per Earth day, allowing for repeated atmospheric structure and wind measurements all over the globe. An initial Team-X run at JPL priced the AVIATR mission at FY10 $715M based on the rules stipulated in the recent Discovery announcement of opportunity. Hence we find that a standalone Titan airplane mission can achieve important science building on Cassini's discoveries and can likely do so within

  4. Blood feeding behavior of the stable fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable fly is a fly that looks similar to a house fly but both sexes are blood feeders. Blood is required for successful fertilization and development of eggs. Bites are painful but there is usually no pain after the fly stops feeding. The stable fly is a persistent feeder and will continue trying t...

  5. The FlyBar: Administering Alcohol to Flies

    PubMed Central

    van der Linde, Kim; Fumagalli, Emiliano; Roman, Gregg; Lyons, Lisa C.

    2014-01-01

    Fruit flies (Drosophila melanogaster) are an established model for both alcohol research and circadian biology. Recently, we showed that the circadian clock modulates alcohol sensitivity, but not the formation of tolerance. Here, we describe our protocol in detail. Alcohol is administered to the flies using the FlyBar. In this setup, saturated alcohol vapor is mixed with humidified air in set proportions, and administered to the flies in four tubes simultaneously. Flies are reared under standardized conditions in order to minimize variation between the replicates. Three-day old flies of different genotypes or treatments are used for the experiments, preferably by matching flies of two different time points (e.g., CT 5 and CT 17) making direct comparisons possible. During the experiment, flies are exposed for 1 hr to the pre-determined percentage of alcohol vapor and the number of flies that exhibit the Loss of Righting reflex (LoRR) or sedation are counted every 5 min. The data can be analyzed using three different statistical approaches. The first is to determine the time at which 50% of the flies have lost their righting reflex and use an Analysis of the Variance (ANOVA) to determine whether significant differences exist between time points. The second is to determine the percentage flies that show LoRR after a specified number of minutes, followed by an ANOVA analysis. The last method is to analyze the whole times series using multivariate statistics. The protocol can also be used for non-circadian experiments or comparisons between genotypes. PMID:24895004

  6. Ameliorative effect of fly ashes

    SciTech Connect

    Bhumbla, D.K.

    1991-01-01

    Agronomic effectiveness and environmental impact of fly ashes used to reclaim pyritic acid mine spoils were investigated in the laboratory and field. Mine spoils at two abandoned sites were amended with three rates of fly ash, three rates of rock phosphate, and seeded with alfalfa and wheat. Application of fly ash decreased bulk density and increased moisture retention capacity of spoils. Fly ash application reduced cation exchange capacity, acidity, toxic levels of Al, Fe, and Mn in soils by buffering soil pH at 6.5, and retarded pyrite oxidation. The reduction in cation exchange capacity was compensated by release of plant nutrients through diffusion and dissolution of plerospheres in fly ash. Improvement of spoil physical, chemical and microbial properties resulted in higher yield, more nitrogen fixation, and utilization of P from rock phosphate by alfalfa. Laboratory investigations demonstrated that neutralization potential and the amounts of amorphous oxides of iron were more important for classifying fly ashes than the total elemental analysis presently used in a taxonomic classification system. Contamination of the food chain through plant removal of Mo and As in fly ash treated mine spoils was observed only for Mo and only for the first year of cropping. Plant available As and Mo decreased with time. Laboratory leaching and adsorption studies and a field experiment showed that trace metals do not leach from fly ashes at near neutral pH and more oxyanions will leach from fly ashes with low neutralization potential and low amounts of amorphous oxides of iron.

  7. NAVTOLAND and flying qualities

    NASA Technical Reports Server (NTRS)

    Momiyama, T. S.

    1977-01-01

    The V/STOL operational capability is reviewed with emphasis on pilot workload and all-weather landing guidance systems. A research and development program to correlate and integrate the development of all systems and techniques involved in enabling the pilot to fly V/STOL aircraft onto ships and tactical sites is described. Aircraft design parameters that affect its control in the vertical takeoff and landing flight regimes are emphasized. Topics considered include: (1) integrated flight controls and displays; (2) low speed sensor; (3) air traffic control appraoch and landing guidance systems; (4) visual landing aids; (5) ground effect induced thrust variation problems; and (6) handling qualities.

  8. Flying wires at Fermilab

    SciTech Connect

    Gannon, J.; Crawford, C.; Finley, D.; Flora, R.; Groves, T.; MacPherson, M.

    1989-03-01

    Transverse beam profile measurement systems called ''Flying Wires'' have been installed and made operational in the Fermilab Main Ring and Tevatron accelerators. These devices are used routinely to measure the emittance of both protons and antiprotons throughout the fill process, and for emittance growth measurements during stores. In the Tevatron, the individual transverse profiles of six proton and six antiproton bunches are obtained simultaneously, with a single pass of the wire through the beam. Essential features of the hardware, software, and system operation are explained in the rest of the paper. 3 refs., 4 figs.

  9. [Otorhinolaryngologic diseases and flying].

    PubMed

    Moser, M

    2002-01-01

    Physiological and pathological aspects of pressure changes, noise, acceleration, variation of temperature, low humidity, stress and time differences in flight passengers and aircrew are discussed. Typical ear, nose, and throat clinic (ENT)-cases such as tubal function disturbances, barotrauma, hypacusis, sudden hearing loss, tinnitus, acute and chronic middle ear diseases, post ear surgery conditions, hearing aids, vertigo and motion sickness are described. The influence on flying of acute and chronic affections of the paranasal sinuses, nasal septal deviation and allergy are listed. The problem of transport of ENT-incapacitated passengers in commercial aircrafts and ambulance jets are dealt with. PMID:12385068

  10. Flying over decades

    NASA Astrophysics Data System (ADS)

    Hoeller, Judith; Issler, Mena; Imamoglu, Atac

    Levy flights haven been extensively used in the past three decades to describe non-Brownian motion of particles. In this presentation I give an overview on how Levy flights have been used across several disciplines, ranging from biology to finance to physics. In our publication we describe how a single electron spin 'flies' when captured in quantum dot using the central spin model. At last I motivate the use of Levy flights for the description of anomalous diffusion in modern experiments, concretely to describe the lifetimes of quasi-particles in Josephson junctions. Finished PhD at ETH in Spring 2015.

  11. Flying by Titan

    NASA Technical Reports Server (NTRS)

    Pelletier, Frederic J.; Antreasian, Peter G.; Ardalan, Shadan M.; Criddle, Kevin E.; Ionasescu, Rodica; Jacobson, Robert A.; Jones, Jeremy B.; Parcher, Daniel W.; Roth, Duane C.; Thompson, Paul F.; Vaughan, Andrew T.

    2008-01-01

    The Cassini spacecraft encounters the massive Titan about once every month. These encounters are essential to the mission as Titan is the only satellite of Saturn that can provide enough gravity assist to shape the orbit tour and allow outstanding science for many years. From a navigation point of view, these encounters provide many challenges, in particular those that fly close enough to the surface for the atmospheric drag to perturb the orbit. This paper discusses the dynamics models developed to successfully navigate Cassini and determine its trajectory. This includes the moon's gravity pull with its second degree zonal harmonics J2, the attitude thrust control perturbations and the acceleration of drag.

  12. ARIES: NASA Langley's Airborne Research Facility

    NASA Technical Reports Server (NTRS)

    Wusk, Michael S.

    2002-01-01

    In 1994, the NASA Langley Research Center (LaRC) acquired a B-757-200 aircraft to replace the aging B-737 Transport Systems Research Vehicle (TSRV). The TSRV was a modified B-737-100, which served as a trailblazer in the development of glass cockpit technologies and other innovative aeronautical concepts. The mission for the B-757 is to continue the three-decade tradition of civil transport technology research begun by the TSRV. Since its arrival at Langley, this standard 757 aircraft has undergone extensive modifications to transform it into an aeronautical research "flying laboratory". With this transformation, the aircraft, which has been designated Airborne Research Integrated Experiments System (ARIES), has become a unique national asset which will continue to benefit the U.S. aviation industry and commercial airline customers for many generations to come. This paper will discuss the evolution of the modifications, detail the current capabilities of the research systems, and provide an overview of the research contributions already achieved.

  13. Flying in, Flying out: Offshore Teaching in Higher Education

    ERIC Educational Resources Information Center

    Seah, Wee Tiong; Edwards, Julie

    2006-01-01

    This paper discusses the relatively new phenomenon of university education faculties offering offshore education. The analogy, "flying in, flying out" captures the intensity of such offshore experiences for visiting academics, and contrasts their professional experiences against expatriate academics. This paper reports on case studies of two…

  14. Identification of human motion signature using airborne radar data

    NASA Astrophysics Data System (ADS)

    McDonald, Michael; Damini, Anthony

    2013-09-01

    Data containing the radar signature of amoving person on the groundwere collected at ranges of up to 30 kmfroma moving airborne platform using the DRDC Ottawa X-bandWideband Experimental Airborne Radar (XWEAR). The human target radar echo returns were found to possess a characteristic amplitude modulated (AM) and frequency modulated (FM) signature which could be usefully characterized in terms of conventional AM and FM modulation parameters. Human detection performance after space time adaptive processing is frequently limited by false alarms arising from incomplete cancellation of large radar cross-section discretes during the whitening step. However, the clutter discretes possess different modulation characteristics from the human targets discussed above. The ability of pattern classification techniques to use this parameter measurement space to distinguish between human targets and clutter discretes is explored and preliminary results presented.

  15. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  16. Fly ash quality and utilization

    SciTech Connect

    Barta, L.E.; Lachner, L.; Wenzel, G.B.; Beer, M.J.

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  17. The Flying University

    NASA Astrophysics Data System (ADS)

    Friesen, Catherine

    The Flying University is solo theater performance framed as an academic lecture about Marie Curie and her discovery of radium, delivered to a group of women who have gathered in secret to further their education. As the lecture proceeds, the professor brings in her own research based on a study of Esther Horsch (1905-1991) who lived on a farm in central Illinois. She introduces data from Esther's journals, personal memories, and dreams about Esther's life. The professor's investigation of radium plays at the intersections of magical and mundane, decay and the transformation of life, and the place of ambition in these two women's lives. The intention of this piece is to explore these themes, which are full of mystery, through the traces of the daily lives of Mme. Curie and Esther. Their words and photos are used as roots from which to imagine the things that echo beyond their familiar work; elemental and also fantastically radiant. The Flying University was written and performed by Catherine Friesen April 27-29, 2012 in the Center for Performance Experiment at Hamilton College as part of the University of South Carolina MFA Acting Class of 2013 showcase, Pieces of Eight.

  18. Flies, clocks and evolution.

    PubMed Central

    Rosato, E; Kyriacou, C P

    2001-01-01

    The negative feedback model for gene regulation of the circadian mechanism is described for the fruitfly, Drosophila melanogaster. The conservation of function of clock molecules is illustrated by comparison with the mammalian circadian system, and the apparent swapping of roles between various canonical clock gene components is highlighted. The role of clock gene duplications and divergence of function is introduced via the timeless gene. The impressive similarities in clock gene regulation between flies and mammals could suggest that variation between more closely related species within insects might be minimal. However, this is not borne out because the expression of clock molecules in the brain of the giant silk moth, Antheraea pernyi, is not easy to reconcile with the negative feedback roles of the period and timeless genes. Variation in clock gene sequences between and within fly species is examined and the role of co-evolution between and within clock molecules is described, particularly with reference to adaptive functions of the circadian phenotype. PMID:11710984

  19. Physics of flying

    NASA Astrophysics Data System (ADS)

    Vetrone, Jim

    2015-05-01

    Column editor's note: As the school year comes to a close, it is important to start thinking about next year. One area that you want to consider is field trips. Many institutions require that teachers plan for a field trip well in advance. Keeping that in mind, I asked Jim Vetrone to write an article about the fantastic field trip he takes his AP Physics students on. I had the awesome opportunity to attend a professional development day that Jim arranged at iFLY in the Chicago suburbs. The experience of "flying" in a wind tunnel was fabulous. Equally fun was watching the other physics teachers come up with experiments to have the professional "flyers" perform in the tube. I could envision my students being similarly excited about the experience and about the development of their own experiments. After I returned to school, I immediately began the process of trying to get this field trip approved for the 2015-16 school year. I suggest that you start your process as well if you hope to try a new field trip next year. The key to getting the approval, in my experience, is submitting a proposal early that includes supporting documentation from sources. Often I use NGSS or state standards as justifications for my field trips. I have also quoted College Board expectations for AP Physics 1 and 2 in my documents when requesting an unusual field trip.

  20. Airborne rescue system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1991-01-01

    The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

  1. Airborne infrared hyperspectral imager for intelligence, surveillance and reconnaissance applications

    NASA Astrophysics Data System (ADS)

    Lagueux, Philippe; Puckrin, Eldon; Turcotte, Caroline S.; Gagnon, Marc-André; Bastedo, John; Farley, Vincent; Chamberland, Martin

    2012-09-01

    Persistent surveillance and collection of airborne intelligence, surveillance and reconnaissance information is critical in today's warfare against terrorism. High resolution imagery in visible and infrared bands provides valuable detection capabilities based on target shapes and temperatures. However, the spectral resolution provided by a hyperspectral imager adds a spectral dimension to the measurements, leading to additional tools for detection and identification of targets, based on their spectral signature. The Telops Hyper-Cam sensor is an interferometer-based imaging system that enables the spatial and spectral analysis of targets using a single sensor. It is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides datacubes of up to 320×256 pixels at spectral resolutions as fine as 0.25 cm-1. The LWIR version covers the 8.0 to 11.8 μm spectral range. The Hyper-Cam has been recently used for the first time in two compact airborne platforms: a bellymounted gyro-stabilized platform and a gyro-stabilized gimbal ball. Both platforms are described in this paper, and successful results of high-altitude detection and identification of targets, including industrial plumes, and chemical spills are presented.

  2. Airborne infrared hyperspectral imager for intelligence, surveillance, and reconnaissance applications

    NASA Astrophysics Data System (ADS)

    Puckrin, Eldon; Turcotte, Caroline S.; Gagnon, Marc-André; Bastedo, John; Farley, Vincent; Chamberland, Martin

    2012-06-01

    Persistent surveillance and collection of airborne intelligence, surveillance and reconnaissance information is critical in today's warfare against terrorism. High resolution imagery in visible and infrared bands provides valuable detection capabilities based on target shapes and temperatures. However, the spectral resolution provided by a hyperspectral imager adds a spectral dimension to the measurements, leading to additional tools for detection and identification of targets, based on their spectral signature. The Telops Hyper-Cam sensor is an interferometer-based imaging system that enables the spatial and spectral analysis of targets using a single sensor. It is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides datacubes of up to 320×256 pixels at spectral resolutions as fine as 0.25 cm-1. The LWIR version covers the 8.0 to 11.8 μm spectral range. The Hyper-Cam has been recently used for the first time in two compact airborne platforms: a belly-mounted gyro-stabilized platform and a gyro-stabilized gimbal ball. Both platforms are described in this paper, and successful results of high-altitude detection and identification of targets, including industrial plumes, and chemical spills are presented.

  3. Why flies are good vectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It was around 1900 when house flies were implicated in disease transmission. Flies with white powder on their feet were seen landing on food in US Army chow halls. This white powder was lime that had been sprinkled over the human excrement in open latrines not too far from the eating establishments....

  4. Passive Baited Sequential Fly Trap

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sampling fly populations associated with human populations is needed to understand diel behavior and to monitor population densities before and after control operations. Population control measures are dependent on the results of monitoring efforts as they may provide insight into the fly behavior ...

  5. A comparison of real and simulated airborne multisensor imagery

    NASA Astrophysics Data System (ADS)

    Bloechl, Kevin; De Angelis, Chris; Gartley, Michael; Kerekes, John; Nance, C. Eric

    2014-06-01

    This paper presents a methodology and results for the comparison of simulated imagery to real imagery acquired with multiple sensors hosted on an airborne platform. The dataset includes aerial multi- and hyperspectral imagery with spatial resolutions of one meter or less. The multispectral imagery includes data from an airborne sensor with three-band visible color and calibrated radiance imagery in the long-, mid-, and short-wave infrared. The airborne hyperspectral imagery includes 360 bands of calibrated radiance and reflectance data spanning 400 to 2450 nm in wavelength. Collected in September 2012, the imagery is of a park in Avon, NY, and includes a dirt track and areas of grass, gravel, forest, and agricultural fields. A number of artificial targets were deployed in the scene prior to collection for purposes of target detection, subpixel detection, spectral unmixing, and 3D object recognition. A synthetic reconstruction of the collection site was created in DIRSIG, an image generation and modeling tool developed by the Rochester Institute of Technology, based on ground-measured reflectance data, ground photography, and previous airborne imagery. Simulated airborne images were generated using the scene model, time of observation, estimates of the atmospheric conditions, and approximations of the sensor characteristics. The paper provides a comparison between the empirical and simulated images, including a comparison of achieved performance for classification, detection and unmixing applications. It was found that several differences exist due to the way the image is generated, including finite sampling and incomplete knowledge of the scene, atmospheric conditions and sensor characteristics. The lessons learned from this effort can be used in constructing future simulated scenes and further comparisons between real and simulated imagery.

  6. A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy.

    PubMed

    Fall, Mamadou Lamine; Van der Heyden, Hervé; Carisse, Odile

    2016-01-01

    Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management. PMID:26953691

  7. A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy

    PubMed Central

    Fall, Mamadou Lamine; Van der Heyden, Hervé; Carisse, Odile

    2016-01-01

    Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management. PMID:26953691

  8. SOFIA'S Challenge: Scheduling Airborne Astronomy Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy

    2005-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next generation airborne astronomical observatory, and will commence operations in 2005. The facility consists of a 747-SP modified to accommodate a 2.5 meter telescope. SOFIA is expected to fly an average of 140 science flights per year over its 20 year lifetime. Depending on the nature of the instrument used during flight, 5-15 observations per flight are expected. The SOFIA telescope is mounted aft of the wings on the port side of the aircraft and is articulated through a range of 20deg to 60deg of elevation. The telescope has minimal lateral flexibility; thus, the aircraft must turn constantly to maintain the telescope's focus on an object during observations. A significant problem in future SOFIA operations is that of scheduling flights in support of observations. Investigators are expected to propose small numbers of observations, and many observations must be grouped together to make up single flights. Flight planning for the previous generation airborne observatory, the Kuiper Airborne Observatory (KAO), was done by hand; planners had to choose takeoff time, observations to perform, and decide on setup-actions (called "dead-legs") to position the aircraft prior to observing. This task frequently required between 6-8 hours to plan one flight The scope of the flight planning problem for supporting GI observations with the anticipated flight rate for SOFIA makes the manual approach for flight planning daunting. In response, we have designed an Automated Flight Planner (AFP) that accepts as input a set of requested observations, designated flight days, weather predictions and fuel limitations, and searches automatically for high-quality flight plans that satisfy all relevant aircraft and astronomer specified constraints. The AFP can generate one candidate flight plan in 5-10 minutes, of computation time, a feat beyond the capabilities of human flight planners. The rate at which the AFP can

  9. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring.

    PubMed

    Allison, Robert S; Johnston, Joshua M; Craig, Gregory; Jennings, Sion

    2016-01-01

    For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context. PMID:27548174

  10. Microsatellites enabling multicaptor formation flying ; the Essaim demonstrator

    NASA Astrophysics Data System (ADS)

    Alary, D.; Carrin, G.

    2004-11-01

    In the last decade, the microsatellites capabilities have been strongly enhanced. On the same time, costs have been reduced to enable the conception of formation flying systems, sent to orbit with a single lauch. This kind of system is made of several identical satellites, each making an individual measurement ; all the individual measurements can be processed on ground to provide an enriched synthetic measurement, which would have required a big satellite for a less or equal level of performance. The techniques are well known since years, but micro or minisatellites can now turn them into real spaceborne applications. A few years ago, under a French MoD contract, EADS Astrium and THALES Airborne Systems started the development of the Essaim demonstrator. Essaim is designed to demonstrate the electro-magnetic signal interception feasibility from space, and the possibilities of a formation flying (swarm) system to prepare for coming fully operational systems. It is based onseveral microsatellites of 120kg each, flying in a "swarm" configuration, roughly controlled. All the microsatellites are launched simultaneously as piggyback payloads on ARIANE 5, by the end of this year. The microsatellites are built around the Myriade bus developed by CNES in cooperation with EADS Astrium. A three years experimentation phase is scheduled under the contract. This experiment opens the route to other experiments based on the same principle. Several months prior the launch, we already know that it shall be a very promising way.

  11. Fly eye radar or micro-radar sensor technology

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  12. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  13. The flying radiation case

    SciTech Connect

    Brownell, J.H.; Bowers, R.L.

    1997-04-01

    The Los Alamos foil implosion program has the goal of producing an intense, high-energy density x-ray source by converting the energy of a magnetically imploded plasma into radiation and material energy. One of the methods for converting the plasma energy into thermal energy and radiation and utilizing it for experiments is called the flying radiation case (FRC). In this paper the authors shall model the FRC and provide a physical description of the processes involved. An analytic model of a planar FRC in the hydrodynamic approximation is used to describe the assembly and shock heating of a central cushion by a conducting liner driver. The results are also used to benchmark a hydrodynamics code for modeling an FRC. They then use a radiation-hydrodynamics computational model to explore the effects of radiation production and transport when a gold plasma assembles on a CH cushion. Results are presented for the structure and evolution of the radiation hohlraum.

  14. An airborne remote sensing system for urban air quality

    NASA Technical Reports Server (NTRS)

    Duncan, L. J.; Friedman, E. J.; Keitz, E. L.; Ward, E. A.

    1974-01-01

    Several NASA sponsored remote sensors and possible airborne platforms were evaluated. Outputs of dispersion models for SO2 and CO pollution in the Washington, D.C. area were used with ground station data to establish the expected performance and limitations of the remote sensors. Aircraft/sensor support requirements are discussed. A method of optimum flight plan determination was made. Cost trade offs were performed. Conclusions about the implementation of various instrument packages as parts of a comprehensive air quality monitoring system in Washington are presented.

  15. Simplified signal processing for an airborne CO2 Doppler lidar

    NASA Technical Reports Server (NTRS)

    Schwiesow, R. L.; Spowart, M. P.

    1992-01-01

    In the development of the National Center for Atmospheric Research (NCAR) airborne infrared lidar system (NAILS), we have emphasized a simple, modular design to suit the instrument to its mission of providing measurements of atmospheric structure and dynamics from an aircraft platform. Based on our research to this point, we believe that a significant simplification of the signal processing approach compared to that now used is possible by using high speed digitization of the signal. The purpose here is to place signal processing in the context of the overall system design and to explore the basis of the alternative technique so that the community can comment on the approach.

  16. Airborne multispectral detecting system for marine mammals survey

    NASA Astrophysics Data System (ADS)

    Podobna, Yuliya; Sofianos, James; Schoonmaker, Jon; Medeiros, Dustin; Boucher, Cynthia; Oakley, Daniel; Saggese, Steve

    2010-04-01

    This work presents an electro-optical multispectral capability that detects and monitors marine mammals. It is a continuance of Whale Search Radar SBIR program funded by PMA-264 through NAVAIR. A lightweight, multispectral, turreted imaging system is designed for airborne and ship based platforms to detect and monitor marine mammals. The system tests were conducted over the Humpback whale breeding and calving area in Maui, Hawaii. The results of the tests and the system description are presented. The development of an automatic whale detection algorithm is discussed as well as methodology used to turn raw survey data into quantifiable data products.

  17. Airborne Laser Laboratory departure from Kirtland Air Force Base and a brief history of aero-optics

    NASA Astrophysics Data System (ADS)

    Kyrazis, Demos T.

    2013-07-01

    We discuss aspects of the development of the Airborne Laser Laboratory. Our discussion is historical in nature and consists of the text from a speech given on the occasion of the Airborne Laser Laboratory leaving Kirtland Air Force Base (AFB) to fly to Wright-Patterson AFB to become an exhibit at the National Museum of the United States Air Force. The last part of the discussion concerns the inception of the study of aero-optics as an area of research and some of the milestones in the understanding of the causes and prediction of aero-optical effects.

  18. Sorptivity of fly ash concretes

    SciTech Connect

    Gopalan, M.K.

    1996-08-01

    A factorial experiment was designed to measure the sorptivity of cement and fly ash concretes in order to compare the durability of fly ash concrete against the cement concrete. Sorptivity measurements based on the capillary movement of water was made on three grades of cement concrete and six grades of fly ash mixes. The effect of curing was also studied by treating the samples in two curving conditions. A functional relationship of sorptivity against the strength, curing condition and fly ash content has been presented. The results were useful to analyze the factors influencing the durability of cement and fly ash concretes and to explain why some of the previously reported findings were contradictory. Curing conditions have been found to be the most important factor that affected the durability properties of fly ash concrete. When proper curing was provided, a mix with 40% fly ash was found to reduce the sorptivity by 37%. Under inadequate curing the sorptivity was found to increase by 60%. The influence of curing on cement concrete was found to be of much less importance.

  19. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  20. Airborne laser topographic mapping results

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Link, L. E.; Swift, R. N.; Butler, M. L.

    1984-01-01

    The results of terrain mapping experiments utilizing the National Aeronautics and Space Administration (NASA) Airborne Oceanographic Lidar (AOL) over forested areas are presented. The flight tests were conducted as part of a joint NASA/U.S. Army Corps of Engineers (CE) investigation aimed at evaluating the potential of an airborne laser ranging system to provide cross-sectional topographic data on flood plains that are difficult and expensive to survey using conventional techniques. The data described in this paper were obtained in the Wolf River Basin located near Memphis, TN. Results from surveys conducted under winter 'leaves off' and summer 'leaves on' conditions, aspects of day and night operation, and data obtained from decidous and coniferous tree types are compared. Data processing techniques are reviewed. Conclusions relative to accuracy and present limitations of the AOL, and airborne lidar systems in general, to terrain mapping over forested areas are discussed.

  1. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  2. Gyrocopter-Based Remote Sensing Platform

    NASA Astrophysics Data System (ADS)

    Weber, I.; Jenal, A.; Kneer, C.; Bongartz, J.

    2015-04-01

    In this paper the development of a lightweight and highly modularized airborne sensor platform for remote sensing applications utilizing a gyrocopter as a carrier platform is described. The current sensor configuration consists of a high resolution DSLR camera for VIS-RGB recordings. As a second sensor modality, a snapshot hyperspectral camera was integrated in the aircraft. Moreover a custom-developed thermal imaging system composed of a VIS-PAN camera and a LWIR-camera is used for aerial recordings in the thermal infrared range. Furthermore another custom-developed highly flexible imaging system for high resolution multispectral image acquisition with up to six spectral bands in the VIS-NIR range is presented. The performance of the overall system was tested during several flights with all sensor modalities and the precalculated demands with respect to spatial resolution and reliability were validated. The collected data sets were georeferenced, georectified, orthorectified and then stitched to mosaics.

  3. An Overview of the Challenges with and Proposed Solutions for the Ingest and Distribution Processes For Airborne Data Management

    NASA Astrophysics Data System (ADS)

    Northup, E. A.; Beach, A. L., III; Early, A. B.; Kusterer, J.; Quam, B.; Wang, D.; Chen, G.

    2015-12-01

    The current data management practices for NASA airborne field projects have successfully served science team data needs over the past 30 years to achieve project science objectives, however, users have discovered a number of issues in terms of data reporting and format. The ICARTT format, a NASA standard since 2010, is currently the most popular among the airborne measurement community. Although easy for humans to use, the format standard is not sufficiently rigorous to be machine-readable, and there lacks a standard variable naming convention among the many airborne measurement variables. This makes data use and management tedious and resource intensive, and also create problems in Distributed Active Archive Center (DAAC) data ingest procedures and distribution. Further, most DAACs use metadata models that concentrate on satellite data observations, making them less prepared to deal with airborne data. There also exists a substantial amount of airborne data distributed by websites designed for science team use that are less friendly to users unfamiliar with operations of airborne field studies. A number of efforts are underway to help overcome the issues with airborne data discovery and distribution. The ICARTT Refresh Earth Science Data Systems Working Group (ESDSWG) was established to enable a platform for atmospheric science data providers, users, and data managers to collaborate on developing new criteria for the file format in an effort to enhance airborne data usability. In addition, the NASA Langley Research Center Atmospheric Science Data Center (ASDC) has developed the Toolsets for Airborne Data (TAD) to provide web-based tools and centralized access to airborne in situ measurements of atmospheric composition. This presentation will discuss the aforementioned challenges and attempted solutions in an effort to demonstrate how airborne data management can be improved to streamline data ingest and discoverability to a broader user community.

  4. NASA Airborne Lidar 1982-1984 Flights

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar 1982-1984 Flights Data from the 1982 NASA Langley Airborne Lidar flights following the eruption of El Chichon ... continuing to January 1984. Transcribed from the following NASA Tech Reports: McCormick, M. P., and M. T. Osborn, Airborne lidar ...

  5. Molecular Studies of Fly-Borne Pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vector-borne diseases are among the most significant threats to agriculture and human health. Mosquitoes are the most significant vectors of disease, but other biting and blood feeding flies such as black flies (Simuliidae), keds (Hippoboscidae), bot flies (Oestridae), and stable flies (Muscidae) a...

  6. Defensive platform size and survivability. [Platform survivability

    SciTech Connect

    Canavan, Gregory H.

    1988-06-01

    This report discusses the survivability of space platforms, concentrating on space based kinetic energy interceptors. It evaluates the efficacy of hardening, maneuver, self-defense, and deception in extending the survivability of platforms of varying sizes to expected threats, concluding that they should be adequate in the near and mid terms.

  7. Dewatered sewage biosolids provide a productive larval habitat for stable flies and house flies (Diptera: Muscidae).

    PubMed

    Doud, C W; Taylor, D B; Zurek, L

    2012-03-01

    Species diversity and seasonal abundance of muscoid flies (Diptera: Muscidae) developing in biosolid cake (dewatered biosolids) stored at a wastewater treatment facility in northeastern Kansas were evaluated. Emergence traps were deployed 19 May through 20 October 2009 (22 wk) and 27 May through 18 November 2010 (25 wk). In total, 11,349 muscoid flies were collected emerging from the biosolid cake. Stable flies (Stomoxys calcitrans (L.)) and house flies (Musca domestica (L.)), represented 80 and 18% of the muscoid flies, respectively. An estimated 550 stable flies and 220 house flies per square-meter of surface area developed in the biosolid cake annually producing 450,000 stable flies and 175,000 house flies. Stable fly emergence was seasonally bimodal with a primary peak in mid-July and a secondary peak in late August. House fly emergence peaked with the first stable fly emergence peak and then declined gradually for the remainder of the year. House flies tended to emerge from the biosolid cake sooner after its deposition than did stable flies. In addition, house fly emergence was concentrated around midsummer whereas stable fly emergence began earlier in the spring and continued later into the fall. Biosolid age and temperature were the most important parameters affecting emergence for house flies and stable flies, whereas precipitation was not important for either species. This study highlights the importance of biosolid cake as a larval developmental habitat for stable flies and house flies. PMID:22493845

  8. Subtropical Fruit Fly Invasions into Temperate Fruit Fly Territory in California's San Joaquin Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subtropical fruit fly species including peach fruit fly, Bactrocera zonata (Saunders); melon fly, B. cucurbitae (Coquillett); oriental fruit fly, B. dorsalis (Hendel); and Mediterranean fruit fly, Ceratitis capitata Weidemann, have been detected in the past decade in the San Joaquin Valley of Califo...

  9. Segway robotic mobility platform

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Morrell, John; Mullens, Katherine D.; Burmeister, Aaron B.; Miles, Susan; Farrington, Nathan; Thomas, Kari M.; Gage, Douglas W.

    2004-12-01

    The Segway Robotic Mobility Platform (RMP) is a new mobile robotic platform based on the self-balancing Segway Human Transporter (HT). The Segway RMP is faster, cheaper, and more agile than existing comparable platforms. It is also rugged, has a small footprint, a zero turning radius, and yet can carry a greater payload. The new geometry of the platform presents researchers with an opportunity to examine novel topics, including people-height sensing and actuation modalities. This paper describes the history and development of the platform, its characteristics, and a summary of current research projects involving the platform at various institutions across the United States.

  10. Managing the Fruit Fly Experiment.

    ERIC Educational Resources Information Center

    Jeszenszky, Arleen W.

    1997-01-01

    Describes a sophisticated version of the fruit fly experiment for teaching concepts about genetics to biology students. Provides students with the opportunity to work with live animals over an extended period. (JRH)

  11. Use of airborne electromagnetic methods for resource mapping

    NASA Astrophysics Data System (ADS)

    Palacky, G. J.

    1993-11-01

    Airborne electromagnetic (AEM) methods complement spaceborne remote sensing techniques. AEM surveys carried out from low flying aircraft are capable of detecting geological structures not visible on the surface. The flight height of AEM systems above the ground ranges from 30 to 120 m. Most systems generate primary EM fields by using a loop transmitter; conducting coils are used as antenna to measure the secondary magnetic field caused by conductive inhomogeneities in the ground. The frequency used in AEM surveys (100 Hz to 50 kHz) allows ground penetration in excess of 100 m. At present, two types of AEM systems are widely used: helicopter, frequency-domain, and fixed-wing, towed-bird, time-domain. The most common survey products are apparent conductivity maps. AEM methods are extensively used in prospecting for base and precious metal deposits, kimberlites, uranium, and also in geological mapping, groundwater exploration and environmental investigations.

  12. Airborne exposure patterns from a passenger source in aircraft cabins

    PubMed Central

    Bennett, James S.; Jones, Byron W.; Hosni, Mohammad H.; Zhang, Yuanhui; Topmiller, Jennifer L.; Dietrich, Watts L.

    2015-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. PMID:26526769

  13. High Resolution Airborne Digital Imagery for Precision Agriculture

    NASA Technical Reports Server (NTRS)

    Herwitz, Stanley R.

    1998-01-01

    The Environmental Research Aircraft and Sensor Technology (ERAST) program is a NASA initiative that seeks to demonstrate the application of cost-effective aircraft and sensor technology to private commercial ventures. In 1997-98, a series of flight-demonstrations and image acquisition efforts were conducted over the Hawaiian Islands using a remotely-piloted solar- powered platform (Pathfinder) and a fixed-wing piloted aircraft (Navajo) equipped with a Kodak DCS450 CIR (color infrared) digital camera. As an ERAST Science Team Member, I defined a set of flight lines over the largest coffee plantation in Hawaii: the Kauai Coffee Company's 4,000 acre Koloa Estate. Past studies have demonstrated the applications of airborne digital imaging to agricultural management. Few studies have examined the usefulness of high resolution airborne multispectral imagery with 10 cm pixel sizes. The Kodak digital camera integrated with ERAST's Airborne Real Time Imaging System (ARTIS) which generated multiband CCD images consisting of 6 x 106 pixel elements. At the designated flight altitude of 1,000 feet over the coffee plantation, pixel size was 10 cm. The study involved the analysis of imagery acquired on 5 March 1998 for the detection of anomalous reflectance values and for the definition of spectral signatures as indicators of tree vigor and treatment effectiveness (e.g., drip irrigation; fertilizer application).

  14. Three years of practical use of airborne gravity gradiometry

    NASA Astrophysics Data System (ADS)

    van Leeuwen, E.

    2003-04-01

    BHP Billiton has successfully built and deployed three airborne gravity gradiometer (AGG) systems, (Newton, Einstein and Galileo) based upon the Bell Airspace (now Lockheed Martin) Gravity Gradient Instruments developed for the United States Department of Defense. A second-generation gradiometer (Feynman) is presently nearing completion. The GGI technology is based on groups of four (4) accelerometers where the accelerometers are equi-spaced on a circle. The configuration successfully rejects both common mode accelerations and rotations about the axis perpendicular to the plane of the complement. The GGI is mounted within an aircraft in a specially designed, inertially stabilized platform, which significantly reduces sensitivity to noise and turbulence. The BHP Billiton AGG Technology provides high quality gravity maps with a resolution and sensitivity to map gravity anomalies associated with both minerals and hydrocarbon deposits. To date the purpose built and designed hardware and data processing algorithms, in conjunction with several other geophysical survey instruments, have been deployed against a broad range of mineral and hydrocarbon targets, a total of over 300,000km of operational flights having been made. Data will also be presented on the in-flight sensitivity of a gravity gradiometer to the airborne environment. It will also outline some of the many unexpected problems that were encountered in the 18-month flight trials required to achieve satisfactory airborne operation.

  15. Airborne exposure patterns from a passenger source in aircraft cabins.

    PubMed

    Bennett, James S; Jones, Byron W; Hosni, Mohammad H; Zhang, Yuanhui; Topmiller, Jennifer L; Dietrich, Watts L

    2013-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. PMID:26526769

  16. Airborne Precision Spacing for Dependent Parallel Operations Interface Study

    NASA Technical Reports Server (NTRS)

    Volk, Paul M.; Takallu, M. A.; Hoffler, Keith D.; Weiser, Jarold; Turner, Dexter

    2012-01-01

    This paper describes a usability study of proposed cockpit interfaces to support Airborne Precision Spacing (APS) operations for aircraft performing dependent parallel approaches (DPA). NASA has proposed an airborne system called Pair Dependent Speed (PDS) which uses their Airborne Spacing for Terminal Arrival Routes (ASTAR) algorithm to manage spacing intervals. Interface elements were designed to facilitate the input of APS-DPA spacing parameters to ASTAR, and to convey PDS system information to the crew deemed necessary and/or helpful to conduct the operation, including: target speed, guidance mode, target aircraft depiction, and spacing trend indication. In the study, subject pilots observed recorded simulations using the proposed interface elements in which the ownship managed assigned spacing intervals from two other arriving aircraft. Simulations were recorded using the Aircraft Simulation for Traffic Operations Research (ASTOR) platform, a medium-fidelity simulator based on a modern Boeing commercial glass cockpit. Various combinations of the interface elements were presented to subject pilots, and feedback was collected via structured questionnaires. The results of subject pilot evaluations show that the proposed design elements were acceptable, and that preferable combinations exist within this set of elements. The results also point to potential improvements to be considered for implementation in future experiments.

  17. Accident Flying Squad

    PubMed Central

    Snook, Roger

    1972-01-01

    This paper describes the organization, evaluation, and costing of an independently financed and operated accident flying squad. 132 accidents involving 302 casualties were attended, six deaths were prevented, medical treatment contributed to the survival of a further four, and the condition or comfort of many other casualties was improved. The calls in which survival was influenced were evenly distributed throughout the three-and-a-half-year survey and seven of the 10 so aided were over 16 and under 30 years of age, all 10 being in the working age group. The time taken to provide the service was not excessive and the expense when compared with the overall saving was very small. The scheme was seen to be equally suitable for basing on hospital or general practice or both, and working as an integrated team with the ambulance service. The use of specialized transport was found to be unnecessary. Other benefits of the scheme included use of the experience of attending accidents to ensure relevant and realistic training for emergency service personnel, and an appreciation of the effect of ambulance design on the patient. ImagesFIG. 1FIG. 4 PMID:5069642

  18. Planar electrostatic gradiometer for airborne geodesy

    NASA Astrophysics Data System (ADS)

    Foulon, B.; Christophe, B.; Lebat, V.; Boulanger, D.

    2011-12-01

    The knowledge of the gravity field of the Earth has been considerably improved for the last decades, thanks to satellites, in particular, both for gravity measurements and positioning. Gravity, and especially gravity gradiometry data are then of great interest to the study of the structure of the continental margins. Space gravity measurements, in particular with the GOCE satellite in orbit since 2009, provide an absolute gravity reference and should contribute to estimate the systematic effects that would affect the surface datasets. But the spatial resolution of those data essentially addresses the large and medium wavelengths of the field (down to a resolution of 90km) and it is therefore essential to complete them at the shorter wavelengths in particular in the littoral area. To this aim, gravity gradiometry systems may be particularly suitable by covering the land/sea transition zone with a uniform precision, and a spatial resolution higher than from gravimetry. The GREMLIT instrument is taking advantage of technologies, formerly developed by ONERA for the GRACE and GOCE space missions, by adapting them to an airborne environment, using a planar configuration for the gradiometer and designing and building a dedicated stabilized platform controlled by the common mode outputs of the instrument itself similarly to the drag free control of the GOCE satellite. The mains interests of the planar configuration are: - its definition, optimized for levitation in the Earth's gravity field ; - its intrinsic linearity, which minimizes the aliasing due to high frequency vibrations or motions generated outside the measurement bandwidth ; - its compactness, ensuring an excellent dimensional stability, a better thermal homogeneity and making the realization of the decoupling platform easier. The performance objective is 0.1 Eötvös. This lowered performance level with respect to a one hundred times better GOCE-type instrument, takes into account the difficulty of measurements

  19. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  20. Airborne fungi--a resurvey

    SciTech Connect

    Meyer, G.H.; Prince, H.E.; Raymer, W.J.

    1983-07-01

    A 15-month survey of airborne fungi at 14 geographical stations was conducted to determine the incidence of different fungal genera. Five of these stations were surveyed 25 years earlier. A comparison between previous studies and present surveys revealed similar organisms at each station with slight shifts in frequency of dominant genera.

  1. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  2. AARD - Autonomous Airborne Refueling Demonstration

    NASA Technical Reports Server (NTRS)

    Ewers, Dick

    2007-01-01

    This viewgraph document reviews the Autonomous Airborne Refueling Demonstration program, and NASA Dryden's work in the program. The primary goal of the program is to make one fully automatic probe-to-drogue engagement using the AARD system. There are pictures of the aircraft approaching to the docking.

  3. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  4. Airborne Evaluation and Demonstration of a Time-Based Airborne Inter-Arrival Spacing Tool

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Oseguera-Lohr, Rosa M.; Abbott, Terence S.; Capron, William R.; Howell, Charles T.

    2005-01-01

    An airborne tool has been developed that allows an aircraft to obtain a precise inter-arrival time-based spacing interval from the preceding aircraft. The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast (ADS-B) data to compute speed commands for the ATAAS-equipped aircraft to obtain this inter-arrival spacing behind another aircraft. The tool was evaluated in an operational environment at the Chicago O'Hare International Airport and in the surrounding terminal area with three participating aircraft flying fixed route area navigation (RNAV) paths and vector scenarios. Both manual and autothrottle speed management were included in the scenarios to demonstrate the ability to use ATAAS with either method of speed management. The results on the overall delivery precision of the tool, based on a target spacing of 90 seconds, were a mean of 90.8 seconds with a standard deviation of 7.7 seconds. The results for the RNAV and vector cases were, respectively, M=89.3, SD=4.9 and M=91.7, SD=9.0.

  5. An Advanced Fly-By-Wire Flight Control System for the RASCAL Research Rotorcraft: Concept to Reality

    NASA Technical Reports Server (NTRS)

    Rediess, Nicholas A.; Dones, Fernando; McManus, Bruce L.; Ulmer, Lon; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    Design features of a new fly-by-wire flight control system for the Rotorcraft-Aircrew Systems Concepts Airborne Laboratory (RASCAL) are described. Using a UH-60A Black Hawk helicopter as a baseline vehicle, the RASCAL will be a flying laboratory capable of supporting the research requirements of major NASA and Army guidance, control, and display research programs. The paper describes the research facility requirements of these pro-rams and the design implementation of the research flight control system (RFCS), with emphasis on safety-of-flight, adaptability to multiple requirements and performance considerations.

  6. Multisensory systems integration for high-performance motor control in flies.

    PubMed

    Frye, Mark A

    2010-06-01

    Engineered tracking systems 'fuse' data from disparate sensor platforms, such as radar and video, to synthesize information that is more reliable than any single input. The mammalian brain registers visual and auditory inputs to directionally localize an interesting environmental feature. For a fly, sensory perception is challenged by the extreme performance demands of high speed flight. Yet even a fruit fly can robustly track a fragmented odor plume through varying visual environments, outperforming any human engineered robot. Flies integrate disparate modalities, such as vision and olfaction, which are neither related by spatiotemporal spectra nor processed by registered neural tissue maps. Thus, the fly is motivating new conceptual frameworks for how low-level multisensory circuits and functional algorithms produce high-performance motor control. PMID:20202821

  7. Unique Offerings of the ISS as an Earth Observing Platform

    NASA Technical Reports Server (NTRS)

    Cooley, Victor M.

    2013-01-01

    The International Space Station offers unique capabilities for earth remote sensing. An established Earth orbiting platform with abundant power, data and commanding infrastructure, the ISS has been in operation for twelve years as a crew occupied science laboratory and offers low cost and expedited concept-to-operation paths for new sensing technologies. Plug in modularity on external platforms equipped with structural, power and data interfaces standardizes and streamlines integration and minimizes risk and start up difficulties. Data dissemination is also standardized. Emerging sensor technologies and instruments tailored for sensing of regional dynamics may not be worthy of dedicated platforms and launch vehicles, but may well be worthy of ISS deployment, hitching a ride on one of a variety of government or commercial visiting vehicles. As global acceptance of the urgent need for understanding Climate Change continues to grow, the value of ISS, orbiting in Low Earth Orbit, in complementing airborne, sun synchronous polar, geosynchronous and other platform remote sensing will also grow.

  8. Dual spectral band reconnaissance systems for multiple platforms

    NASA Astrophysics Data System (ADS)

    Wyatt, Steve H.

    2002-11-01

    Recon/Optical, Inc. (ROI) has a family of digital, dual spectral band (visible/IR) cameras that is readily applicable for reconnaissance missions on virtually any airborne platform available today. Each camera is based on a modular design that allows reconfiguration for a multitude of volumetric and mission constraints. The open architecture facilitates integration as either a reconnaissance system components or as the system master controller. Output data can be formatted to satisfy either NITF or STANAG requirements making the camera adaptable to applications throughout the world. These cameras offer several key features, including a stabilization system, that can be tuned to each platform, optional data compression to optimize data storage and data link performance, and a camera-mounted inertial measurement unit for improved pointing accuracy. These and other core capabilities are especially beneficial to users with unique platform integration requirements. Camera flexibility translates into low-risk integration to a variety of reconnaissance platforms.

  9. Stabilized floating platforms

    DOEpatents

    Thomas, David G.

    1976-01-01

    The subject invention is directed to a floating platform for supporting nuclear reactors and the like at selected offshore sites. The platform is provided with a stabilizer mechanism which significantly reduces the effects of wave action upon the platform and which comprises a pair of relatively small floats attached by rigid booms to the platform at locations spaced therefrom for reducing wave pitch, acceleration, and the resonance period of the wave.

  10. Airborne optical tracking control system design study

    NASA Astrophysics Data System (ADS)

    1992-09-01

    The Kestrel LOS Tracking Program involves the development of a computer and algorithms for use in passive tracking of airborne targets from a high altitude balloon platform. The computer receivers track error signals from a video tracker connected to one of the imaging sensors. In addition, an on-board IRU (gyro), accelerometers, a magnetometer, and a two-axis inclinometer provide inputs which are used for initial acquisitions and course and fine tracking. Signals received by the control processor from the video tracker, IRU, accelerometers, magnetometer, and inclinometer are utilized by the control processor to generate drive signals for the payload azimuth drive, the Gimballed Mirror System (GMS), and the Fast Steering Mirror (FSM). The hardware which will be procured under the LOS tracking activity is the Controls Processor (CP), the IRU, and the FSM. The performance specifications for the GMS and the payload canister azimuth driver are established by the LOS tracking design team in an effort to achieve a tracking jitter of less than 3 micro-rad, 1 sigma for one axis.

  11. Airborne pipeline leak detection: UV or IR?

    NASA Astrophysics Data System (ADS)

    Babin, François; Gravel, Jean-François; Allard, Martin

    2016-05-01

    This paper presents a study of different approaches to the measurement of the above ground vapor plume created by the spill caused by a small 0.1 l/min (or less) leak in an underground liquid petroleum pipeline. The scenarios are those for the measurement from an airborne platform. The usual approach is that of IR absorption, but in the case of liquid petroleum products, there are drawbacks that will be discussed, especially when using alkanes to detect a leak. The optical measurements studied include UV enhanced Raman lidar, UV fluorescence lidar and IR absorption path integrated lidars. The breadboards used for testing the different approaches will be described along with the set-ups for leak simulation. Although IR absorption would intuitively be the most sensitive, it is shown that UV-Raman could be an alternative. When using the very broad alkane signature in the IR, the varying ground spectral reflectance are a problem. It is also determined that integrated path measurements are preferred, the UV enhanced Raman measurements showing that the vapor plume stays very close to the ground.

  12. Multiple model adaptive tracking of airborne targets

    NASA Astrophysics Data System (ADS)

    Norton, John E.

    1988-12-01

    Over the past ten years considerable work has been accomplished at the Air Force Institute of Technology (AFIT) towards improving the ability of tracking airborne targets. Motivated by the performance advantages in using established models of tracking environment variables within a Kalman filter, an advanced tracking algorithm has been developed based on adaptive estimation filter structures. A multiple model bank of filters that have been designed for various target dynamics, which each accounting for atmospheric disturbance of the Forward Looking Infrared (FLIR) sensor data and mechanical vibrations of the sensor platform, outperforms a correlator tracker. The bank of filters provides the estimation capability to guide the pointing mechanisms of a shared aperture laser/sensor system. The data is provided to the tracking algorithm via an (8 x 8)-pixel tracking Field of View (FOV) from the FLIR image plane. Data at each sample period is compared by an enhanced correlator to a target template. These offsets are measurements to a bank of linear Kalman filters which provide estimates of the target's location in azimuth and elevation coordinates based on a Gauss-Markov acceleration model, and a reduced form of the atmospheric jitter model for the disturbance in the IR wavefront carrying future measurements.

  13. Miniaturized Airborne Imaging Central Server System

    NASA Technical Reports Server (NTRS)

    Sun, Xiuhong

    2011-01-01

    In recent years, some remote-sensing applications require advanced airborne multi-sensor systems to provide high performance reflective and emissive spectral imaging measurement rapidly over large areas. The key or unique problem of characteristics is associated with a black box back-end system that operates a suite of cutting-edge imaging sensors to collect simultaneously the high throughput reflective and emissive spectral imaging data with precision georeference. This back-end system needs to be portable, easy-to-use, and reliable with advanced onboard processing. The innovation of the black box backend is a miniaturized airborne imaging central server system (MAICSS). MAICSS integrates a complex embedded system of systems with dedicated power and signal electronic circuits inside to serve a suite of configurable cutting-edge electro- optical (EO), long-wave infrared (LWIR), and medium-wave infrared (MWIR) cameras, a hyperspectral imaging scanner, and a GPS and inertial measurement unit (IMU) for atmospheric and surface remote sensing. Its compatible sensor packages include NASA s 1,024 1,024 pixel LWIR quantum well infrared photodetector (QWIP) imager; a 60.5 megapixel BuckEye EO camera; and a fast (e.g. 200+ scanlines/s) and wide swath-width (e.g., 1,920+ pixels) CCD/InGaAs imager-based visible/near infrared reflectance (VNIR) and shortwave infrared (SWIR) imaging spectrometer. MAICSS records continuous precision georeferenced and time-tagged multisensor throughputs to mass storage devices at a high aggregate rate, typically 60 MB/s for its LWIR/EO payload. MAICSS is a complete stand-alone imaging server instrument with an easy-to-use software package for either autonomous data collection or interactive airborne operation. Advanced multisensor data acquisition and onboard processing software features have been implemented for MAICSS. With the onboard processing for real time image development, correction, histogram-equalization, compression, georeference, and

  14. Using Airborne Lidar Data from IcePod to Measure Annual and Seasonal Ice Changes Over Greenland

    NASA Astrophysics Data System (ADS)

    Frearson, N.; Bertinato, C.; Das, I.

    2014-12-01

    The IcePod is a multi-sensor airborne science platform that supports a wide suite of instruments, including a Riegl VQ-580 infrared scanning laser, GPS-inertial positioning system, shallow and deep-ice radars, visible-wave and infrared cameras, and upward-looking pyrometer. These instruments allow us to image the ice from top to bottom, including the surface of melt-water plumes that originate at the ice-ocean boundary. In collaboration with the New York Air National Guard 109th Airlift Wing, the IcePod is flown on LC-130 aircraft, which presents the unique opportunity to routinely image the Greenland ice sheet several times within a season. This is particularly important for mass balance studies, as we can measure elevation changes during the melt season. During the 2014 summer, laser data was collected via IcePod over the Greenland ice sheet, including Russell Glacier, Jakobshavn Glacier, Eqip Glacier, and Summit Camp. The Icepod will also be routinely operated in Antarctica. We present the initial testing, calibration, and error estimates from the first set of laser data that were collected on IcePod. At a survey altitude of 1000 m, the laser swath covers ~ 1000 m. A Northrop-Grumman LN-200 tactical grade IMU is rigidly attached to the laser scanner to provide attitude data at a rate of 200 Hz. Several methods were used to determine the lever arm between the IMU center of navigation and GPS antenna phase center, terrestrial scanning laser, total station survey, and optimal estimation. Additionally, initial bore sight calibration flights yielded misalignment angles within an accuracy of ±4 cm. We also performed routine passes over the airport ramp in Kangerlussuaq, Greenland, comparing the airborne GPS and Lidar data to a reference GPS-based ground survey across the ramp, spot GPS points on the ramp and a nearby GPS base station. Positioning errors can severely impact the accuracy of a laser altimeter when flying over remote regions such as across the ice sheets

  15. The Use Of Airborne Lasers In Terrestrial And Water Environments

    NASA Astrophysics Data System (ADS)

    Krabill, William B.; Link, L. E.; Swift, R. N.

    1983-09-01

    Since 1977 the NASA Airborne Oceanographic Lidar (AOL) has been utilized to evaluate the potential of airborne lidar systems for a variety of marine and terrestrial applications. The AOL is designed as a flying laser laboratory with flexibility that allows rapid modification of transmitter and receiver optical configurations as well as operation with various lasers. This flexibility in design has permitted the use of the AOL for numerous types of investigations in differing and often unrelated disciplines. The AOL can can be operated in two basic modes; backscattered signals can be temporally resolved and recorded in the bathymetric mode, while in the fluorescensing mode returning on-wavelength, water Raman, and laser induced flourescence response signals are spectrally resolved. Results of investigations conducted during the past several years over marine and terrestrial targets are discussed along with planned improvements to the lidar system. Results are presented for terrain, shoreline, and ice topography, and hydrography performed in the bathymetric mode as well as for chlorophyll a and phytoplankton photopigment investigations performed in the fluorosensing mode.

  16. The alpine Swiss-French airborne gravity survey

    NASA Astrophysics Data System (ADS)

    Verdun, Jérôme; Klingelé, Emile E.; Bayer, Roger; Cocard, Marc; Geiger, Alain; Kahle, Hans-Gert

    2003-01-01

    In February 1998, a regional-scale, airborne gravity survey was carried out over the French Occidental Alps within the framework of the GéoFrance 3-D research program.The survey consisted of 18 NS and 16 EW oriented lines with a spacing of 10 and 20 km respectively, covering the whole of the Western French Alps (total area: 50 000 km2; total distance of lines flown: 10 000 km). The equipment was mounted in a medium-size aircraft (DeHavilland Twin Otter) flowing at a constant altitude of 5100 m a.s.l, and at a mean ground speed of about 280 km h-1. Gravity was measured using a LaCoste & Romberg relative, air/sea gravimeter (type SA) mounted on a laser gyro stabilized platform. Data from 5 GPS antennae located on fuselage and wings and 7 ground-based GPS reference stations were used to determine position and aircraft induced accelerations.The gravimeter passband was derived by comparing the vertical accelerations provided by the gravimeter with those estimated from the GPS positions. This comparison showed that the gravimeter is not sensitive to very short wavelength aircraft accelerations, and therefore a simplified formulation for computing airborne gravity measurements was developed. The intermediate and short wavelength, non-gravitational accelerations were eliminated by means of digital, exponential low-pass filters (cut-off wavelength: 16 km). An important issue in airborne gravimetry is the reliability of the airborne gravity surveys when compared to ground surveys. In our studied area, the differences between the airborne-acquired Bouguer anomaly and the ground upward-continued Bouguer anomaly of the Alps shows a good agreement: the rms of these differences is equal to 7.68 mGal for a spatial resolution of 8 km. However, in some areas with rugged topography, the amplitudes of those differences have a striking correlation with the topography. We then argue that the choice of an appropriate density (reduction by a factor of 10 per cent) for computing the

  17. Molecular phylogenetic profiling of gut-associated bacteria in larvae and adults of flesh flies.

    PubMed

    Gupta, A K; Rastogi, G; Nayduch, D; Sawant, S S; Bhonde, R R; Shouche, Y S

    2014-12-01

    Flesh flies of the genus Sarcophaga (Diptera: Sarcophagidae) are carrion-breeding, necrophagous insects important in medical and veterinary entomology as potential transmitters of pathogens to humans and animals. Our aim was to analyse the diversity of gut-associated bacteria in wild-caught larvae and adult flesh flies using culture-dependent and culture-independent methods. Analysis of 16S rRNA gene sequences from cultured isolates and clone libraries revealed bacteria affiliated to Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes in the guts of larval and adult flesh flies. Bacteria cultured from larval and adult flesh fly guts belonged to the genera Acinetobacter, Bacillus, Budvicia, Citrobacter, Dermacoccus, Enterococcus, Ignatzschineria, Lysinibacillus, Myroides, Pasteurella, Proteus, Providencia and Staphylococcus. Phylogenetic analysis showed clone sequences of the genera Aeromonas, Bacillus, Bradyrhizobium, Citrobacter, Clostridium, Corynebacterium, Ignatzschineria, Klebsiella, Pantoea, Propionibacterium, Proteus, Providencia, Serratia, Sporosarcina, Weissella and Wohlfahrtiimonas. Species of clinically significant genera such as Ignatzschineria and Wohlfahrtiimonas spp. were detected in both larvae and adult flesh flies. Sequence analysis of 16S rRNA gene libraries supported culture-based results and revealed the presence of additional bacterial taxa. This study determined the diversity of gut microbiota in flesh flies, which will bolster the ability to assess microbiological risk associated with the presence of these flies. The present data thereby establish a platform for a much larger study. PMID:24805263

  18. Airborne-Managed Spacing in Multiple Arrival Streams

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan; Abbott, Terence; Krishnamurthy, Karthik

    2004-01-01

    A significant bottleneck in the current air traffic system occurs at the runway. Expanding airports and adding new runways will help solve this problem; however, this comes at a significant cost, financially, politically and environmentally. A complementary solution is to safely increase the capacity of current runways. This can be achieved by precise spacing at the runway threshold with a resulting reduction in the spacing buffer required under today s operations. At the NASA Langley Research Center, the Advanced Air Transportation Technologies (AATT) Project is investigating airborne technologies and procedures that will assist the pilot in achieving precise spacing behind another aircraft. This new spacing clearance instructs the pilot to follow speed cues from a new on-board guidance system called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR). AMSTAR receives Automatic Dependent Surveillance-Broadcast (ADS-B) reports from the leading aircraft and calculates the appropriate speed for the ownership to fly in order to achieve the desired spacing interval, time or distance-based, at the runway threshold. Since the goal is overall system capacity, the speed guidance algorithm is designed to provide system benefit over individual efficiency. This paper discusses the concept of operations and design of AMSTAR to support airborne precision spacing. Results from the previous stage of development, focused only on in-trail spacing, are discussed along with the evolution of the concept to include merging of converging streams of traffic. This paper also examines how this operation might support future wake vortex-based separation and other advances in terminal area operations. Finally, the research plan for the merging capabilities, to be performed during the summer and fall of 2004 is presented.

  19. Satellite and airborne IR sensor validation by an airborne interferometer

    SciTech Connect

    Gumley, L.E.; Delst, P.F. van; Moeller, C.C.

    1996-11-01

    The validation of in-orbit longwave IR radiances from the GOES-8 Sounder and inflight longwave IR radiances from the MODIS Airborne Simulator (MAS) is described. The reference used is the airborne University of Wisconsin High Resolution Interferometer Sounder (HIS). The calibration of each sensor is described. Data collected during the Ocean Temperature Interferometric Survey (OTIS) experiment in January 1995 is used in the comparison between sensors. Detailed forward calculations of at-sensor radiance are used to account for the difference in GOES-8 and HIS altitude and viewing geometry. MAS radiances and spectrally averaged HIS radiances are compared directly. Differences between GOES-8 and HIS brightness temperatures, and GOES-8 and MAS brightness temperatures, are found to be with 1.0 K for the majority of longwave channels examined. The same validation approach will be used for future sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). 11 refs., 2 figs., 4 tabs.

  20. Geometric rectification of airborne sensor data using GPS-based attitude and position information

    SciTech Connect

    Wilson, A.K.; Mockridge, W.

    1996-11-01

    The geometric rectification of remotely sensed data, acquired using airborne platforms, is an essential prerequisite for quantitative processing and analysis, due to the complex distortions inherent in such imagery. The Natural Environment Research Council (NERC) has implemented an Integrated Data System (IDS) on-board its survey aircraft to derive both attitude and position for use in a parametric solution to the geometric correction of data from two airborne sensors. This paper describes the elements of the NERC IDS and the complementary ground data processing system that carries out navigation pre-processing and geometric resampling of the airborne data. Test flights have been flown and processed to demonstrate the potential of this completely GPS-based solution to providing high quality, spatially referenced, data for use in environmental monitoring applications. 6 refs., 5 figs., 1 tab.

  1. Measurements of Solar Induced Chlorophyll Fluorescence at 685 nm by Airborne Plant Fluorescence Sensor (APFS)

    NASA Astrophysics Data System (ADS)

    Morgan, F.; Yee, J. H.; Boldt, J.; Cook, W. B.; Corp, L. A.

    2015-12-01

    Solar-induced chlorophyll fluorescence (ChlF) by terrestrial vegetation is linked closely to photosynthetic efficiency that can be exploited to monitor the plant health status and to assess the terrestrial carbon budget from space. The weak, broad continuum ChlF signal can be detected from the fill-in of strong O2 absorption lines or solar Fraunhofer lines in the reflected spectral radiation. The Johns Hopkins University, Applied Physics Laboratory (JHU/APL) Airborne Plant Fluorescence Sensor (APFS) is a triple etalon Fabry-Perot interferometer designed and optimized specifically for the ChlF sensing from an airborne platform using this line fill-in technique. In this paper, we will present the results of APFS ChlF measurements obtained from a NASA Langley King Air during two airborne campaigns (12/12 in 2014 and 5/20 in 2015) over various land, river, and vegetated targets in Virginia during stressed and growth seasons.

  2. The role of airborne eddy correlation measurements in global change studies

    NASA Technical Reports Server (NTRS)

    Ritter, J. A.; Barrick, J. D. W.; Sachse, G. W.; Collins, J. E., Jr.; Anderson, B. E.; Hill, G. F.; Woerner, M. A.; Harkleroad, J. E., Jr.

    1994-01-01

    We have obtained measurements of the mean and turbulent quantities of heat, moisture, momentum, O3, CO, and CH4 from an airborne platform. Species flux measurements obtained from these data provide unique regional-scale information which can be used to evaluate 'scaled-up' flux estimates based on smaller scale observations. Airborne flux data also provide a basis for assessing the uncertainties associated with large-scale ground level flux extrapolations. Airborne constituent budget analyses are possible with this suite of measurements. The local change in the mean value of a parameter can be explained in terms of horizontal advection, vertical turbulent transport, and, in the case of chemically reactive species (i.e., O3), in situ production or destruction. This technique is used to indicate a direct relationship between O3 precursors and the measured in situ production rate.

  3. Airborne volcanic plume measurements using a FTIR spectrometer, Kilauea volcano, Hawaii

    USGS Publications Warehouse

    McGee, K.A.; Gerlach, T.M.

    1998-01-01

    A prototype closed-path Fourier transform infrared spectrometer system (FTIK), operating from battery power and with a Stirling engine microcooler for detector cooling, was successfully used for airborne measurements of sulfur dioxide at Kilauea volcano. Airborne profiles of the volcanic plume emanating from the erupting Pu'u 'O'o vent on the East Rift of Kilauea revealed levels of nearly 3 ppm SO2 in the core of the plume. An emission rate of 2,160 metric tons per day of sulfur dioxide was calculated from the FTIR data, which agrees closely with simultaneous measurements by a correlation spectrometer (COSPEC). The rapid spatial sampling possible from an airborne platform distinguishes the methodology described here from previous FTIR measurements.

  4. Data correction techniques for the airborne large-aperture static image spectrometer based on image registration

    NASA Astrophysics Data System (ADS)

    Zhang, Geng; Shi, Dalian; Wang, Shuang; Yu, Tao; Hu, Bingliang

    2015-01-01

    We propose an approach to correct the data of the airborne large-aperture static image spectrometer (LASIS). LASIS is a kind of stationary interferometer which compromises flux output and device stability. It acquires a series of interferograms to reconstruct the hyperspectral image cube. Reconstruction precision of the airborne LASIS data suffers from the instability of the plane platform. Usually, changes of plane attitudes, such as yaws, pitches, and rolls, can be precisely measured by the inertial measurement unit. However, the along-track and across-track translation errors are difficult to measure precisely. To solve this problem, we propose a co-optimization approach to compute the translation errors between the interferograms using an image registration technique which helps to correct the interferograms with subpixel precision. To demonstrate the effectiveness of our approach, experiments are run on real airborne LASIS data and our results are compared with those of the state-of-the-art approaches.

  5. A Synergistic Approach to Atmospheric Compensation of Neon's Airborne Hyperspectral Imagery Utilizing an Airborne Solar Spectral Irradiance Radiometer

    NASA Astrophysics Data System (ADS)

    Wright, L.; Karpowicz, B. M.; Kindel, B. C.; Schmidt, S.; Leisso, N.; Kampe, T. U.; Pilewskie, P.

    2014-12-01

    A wide variety of critical information regarding bioclimate, biodiversity, and biogeochemistry is embedded in airborne hyperspectral imagery. Most, if not all of the primary signal relies upon first deriving the surface reflectance of land cover and vegetation from measured hyperspectral radiance. This places stringent requirements on terrain, and atmospheric compensation algorithms to accurately derive surface reflectance properties. An observatory designed to measure bioclimate, biodiversity, and biogeochemistry variables from surface reflectance must take great care in developing an approach which chooses algorithms with the highest accuracy, along with providing those algorithms with data necessary to describe the physical mechanisms that affect the measured at sensor radiance. The Airborne Observation Platform (AOP) part of the National Ecological Observatory Network (NEON) is developing such an approach. NEON is a continental-scale ecological observation platform designed to collect and disseminate data to enable the understanding and forecasting of the impacts of climate change, land use change, and invasive species on ecology. The instrumentation package used by the AOP includes a visible and shortwave infrared hyperspectral imager, waveform LiDAR, and high resolution (RGB) digital camera. In addition to airborne measurements, ground-based CIMEL sun photometers will be used to help characterize atmospheric aerosol loading, and ground validation measurements with field spectrometers will be made at select NEON sites. While the core instrumentation package provides critical information to derive surface reflectance of land surfaces and vegetation, the addition of a Solar Spectral Irradiance Radiometer (SSIR) is being investigated as an additional source of data to help identify and characterize atmospheric aerosol, and cloud contributions contributions to the radiance measured by the hyperspectral imager. The addition of the SSIR provides the opportunity to

  6. Systematic observations of Volcán Turrialba, Costa Rica, with small unmanned aircraft and aerostats (UAVs): the Costa Rican Airborne Research and Technology Applications (CARTA) missions

    NASA Astrophysics Data System (ADS)

    Pieri, D. C.; Diaz, J. A.; Bland, G.; Fladeland, M. M.; Abtahi, A.; Alan, A., Jr.; Alegria, O.; Azofeifa, S.; Berthold, R.; Corrales, E.; Fuerstenau, S.; Gerardi, J.; Herlth, D.; Hickman, G.; Hunter, G.; Linick, J.; Madrigal, Y.; Makel, D.; Miles, T.; Realmuto, V. J.; Storms, B.; Vogel, A.; Kolyer, R.; Weber, K.

    2014-12-01

    For several years, the University of Costa Rica, NASA Centers (e.g., JPL, ARC, GSFC/WFF, GRC) & NASA contractors-partners have made regular in situ measurements of aerosols & gases at Turrialba Volcano in Costa Rica, with aerostats (e.g., tethered balloons & kites), & free-flying fixed wing UAVs (e.g., Dragon Eye, Vector Wing 100, DELTA 150), at altitudes up to 12.5Kft ASL within 5km of the summit. Onboard instruments included gas detectors (e.g., SO2, CO2), visible & thermal IR cameras, air samplers, temperature pressure & humidity sensors, particle counters, & a nephelometer. Deployments are timed to support bimonthly overflights of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard the NASA Terra satellite (26 deployments to date). In situ observations of dilute plume SO2 concentrations (~1-20ppmv), plume dimensions, and associated temperature, pressure, & humidity profiles, validate detailed radiative transfer-based SO2 retrievals, as well as archive-wide ASTER band-ratio SO2 algorithms. Our recent UAV-based CO2 observations confirm high concentrations (e.g., ~3000ppmv max at summit jet), with 1000-1500ppmv flank values, and essentially global background CO2 levels (400ppmv) over distal surroundings. Transient Turrialba He detections (up to 20ppmv) were obtained with a small (~10kg) airborne mass spectrometer on a light aircraft—a UAV version (~3kg) will deploy there soon on the UCR DELTA 500. Thus, these platforms, though small (most payloads <500gm), can perform valuable systematic measurements of potential eruption hazards, as well as of volcano processes. Because they are economical, flexible, and effective, such platforms promise unprecedented capabilities for researchers and responders throughout Central and South America, undertaking volcanic data acquisitions uniquely suited to such small aircraft in close proximity to known hazards, or that were previously only available using full-sized manned aircraft. This work was

  7. AVIATR—Aerial Vehicle for In-situ and Airborne Titan Reconnaissance. A Titan airplane mission concept

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Lemke, Lawrence; Foch, Rick; McKay, Christopher P.; Beyer, Ross A.; Radebaugh, Jani; Atkinson, David H.; Lorenz, Ralph D.; Le Mouélic, Stéphane; Rodriguez, Sebastien; Gundlach, Jay; Giannini, Francesco; Bain, Sean; Flasar, F. Michael; Hurford, Terry; Anderson, Carrie M.; Merrison, Jon; Ádámkovics, Máté; Kattenhorn, Simon A.; Mitchell, Jonathan; Burr, Devon M.; Colaprete, Anthony; Schaller, Emily; Friedson, A. James; Edgett, Kenneth S.; Coradini, Angioletta; Adriani, Alberto; Sayanagi, Kunio M.; Malaska, Michael J.; Morabito, David; Reh, Kim

    2012-03-01

    We describe a mission concept for a stand-alone Titan airplane mission: Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR). With independent delivery and direct-to-Earth communications, AVIATR could contribute to Titan science either alone or as part of a sustained Titan Exploration Program. As a focused mission, AVIATR as we have envisioned it would concentrate on the science that an airplane can do best: exploration of Titan's global diversity. We focus on surface geology/hydrology and lower-atmospheric structure and dynamics. With a carefully chosen set of seven instruments—2 near-IR cameras, 1 near-IR spectrometer, a RADAR altimeter, an atmospheric structure suite, a haze sensor, and a raindrop detector—AVIATR could accomplish a significant subset of the scientific objectives of the aerial element of flagship studies. The AVIATR spacecraft stack is composed of a Space Vehicle (SV) for cruise, an Entry Vehicle (EV) for entry and descent, and the Air Vehicle (AV) to fly in Titan's atmosphere. Using an Earth-Jupiter gravity assist trajectory delivers the spacecraft to Titan in 7.5 years, after which the AVIATR AV would operate for a 1-Earth-year nominal mission. We propose a novel `gravity battery' climb-then-glide strategy to store energy for optimal use during telecommunications sessions. We would optimize our science by using the flexibility of the airplane platform, generating context data and stereo pairs by flying and banking the AV instead of using gimbaled cameras. AVIATR would climb up to 14 km altitude and descend down to 3.5 km altitude once per Earth day, allowing for repeated atmospheric structure and wind measurements all over the globe. An initial Team-X run at JPL priced the AVIATR mission at FY10 715M based on the rules stipulated in the recent Discovery announcement of opportunity. Hence we find that a standalone Titan airplane mission can achieve important science building on Cassini's discoveries and can likely do so

  8. EUFAR the unique portal for airborne research in Europe

    NASA Astrophysics Data System (ADS)

    Gérard, Elisabeth; Brown, Philip

    2016-04-01

    , the website offers easy navigation, and user friendly functionalities. New features also include a section on news and airborne research stories to keep users up-to-date on EUFAR's activities, a career section, photo galleries, and much more. By elaborating new solutions for the web portal, EUFAR continues to serve as an interactive and dynamic platform bringing together experts, early-stage researchers, operators, data users, industry and other stakeholders in the airborne research community. A main focus of the current project is the establishment of a sustainable legal structure for EUFAR. This is critical to ensuring the continuity of EUFAR and securing, at the least, partial financial independence from the European Commission who has been funding the project since its start. After carefully examining different legal forms relevant for EUFAR, the arguments are strongly in favour of establishing an International non-profit Association under the Belgian law (AISBL). Together with the implementation of an Open Access scheme by means of resource-sharing to support the mobility of personnel across countries envisaged in 2016, such a sustainable structure would contribute substantially toward broadening the user base of existing airborne research facilities in Europe and mobilising additional resources for this end. In essence, this would cement EUFAR's position as the key portal for airborne research in Europe.

  9. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R. O.; Kratwurst, S.; Krings, T.; Luna, B.; Thorpe, A. K.

    2015-10-01

    Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and MEthane eXperiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s-1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace-gas signature detection in an airborne science campaign, and presages many future applications. Post-analysis demonstrates matched filter methods providing noise-equivalent (1σ) detection sensitivity for 1.0 % CH4 column enhancements equal to 141 ppm m.

  10. Fly on the Wall

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald

    2003-01-01

    The email was addressed not only to me, but also to all the Project Knowledge Sharing Community at Ames Research Center. We were invited to sit in on a major project review as a new experiment in knowledge sharing. This first-of-its-kind opportunity had been conceived by Claire Smith, who leads the knowledge sharing program, as well as heading up the Center's Project Leadership Development Program and serving as coordinator of the APPL-West program at Ames. The objective was to offer Ames project practitioners the opportunity to observe project-review processes as they happen. Not that I haven't participated in my share of project reviews, but this seemed like a great way for me to get up-to-date about a new project, the Kepler mission, and to experience a review from a new perspective. Typically, when you're being reviewed, it's difficult to see what's happening objectively-the same way it is on a project. Presenters are always thinking, 'Okay, what's on my slides? How much time do I have left? What are they going to ask me?' So when Claire's email pinged on my computer, I quickly responded by asking her to save a place for me. It was to be an informational review about progress on the project: what the team had done, where they were going, and what they needed to do to get there. There were people on the project team from all over the United States, and it was the first time for them to get together from all aspects of the project. For our part, as observers, we were asked to abide by a couple of rules: Don't ask any questions. and don't talk about the specifics of what we saw or heard. The idea was that we weren't supposed to be noticed. We weren't to buzz around and bother people. Hence the name for this experinient: Fly on the Wall.

  11. XMM flying beautifully

    NASA Astrophysics Data System (ADS)

    1999-12-01

    The early orbit phase came to an end on 16 December after XMM had been manoeuvred to its final orbit. This required four firings of its thrusters, on successive passages at apogee, in order to increase XMM's velocity, thus elongating its orbit and raising the perigee from 826 km to 7,365 km. One burn was then made to fine tune the apogee to around 114,000km. The spacecraft, being tracked by ground stations in Perth, Kourou and Villafranca, is now circling the Earth in this highly elliptical orbit once every 48 hours. The XMM flight operations staff have found themselves controlling a spacecraft that responds exceptionally well. During these first orbits, the satellite has been oriented several times with razor-sharp precision. On board systems have responded without incident to several thousand instructions sent by controllers. "XMM is flying so beautifully" says Dietmar Heger, XMM Spacecraft Operations Manager. "The satellite is behaving better in space than all our pre-launch simulations and we have been able to adjust our shifts to this more relaxed situation". On his return from French Guiana, Robert Lainé, XMM Project Manager immediately visited the Darmstadt Mission Control Centre, at ESOC. "The perfect behaviour of XMM at this early stage reflects the constructive cooperation of European industrial companies and top scientists. Spacecraft operations are in the hands of professionals who will endeavour to fulfill the expectations of the astronomers and astrophysicists of the world. I am very happy that ESA could provide them with such a wonderful precision tool". During the early orbit phase, controllers have activated part of XMM's science payload. The three EPIC X-ray cameras have been switched on and vented. On 17 December the telescope doors were opened allowing the spacecraft's golden X-ray Multi Mirror modules to see the sky. The Optical Monitor telescope door was opened on 18 December. During this last weekend, XMM's Radiation Monitor which records

  12. Floor Plans Engine Removal Platform, Hold Down Arm Platform, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Floor Plans - Engine Removal Platform, Hold Down Arm Platform, Hydraulic Equipment Platforms, Isometric Cutaway of Engine Removal Platform, Isometric Cutaway of Hold Down Arm Platform, Isometric Cutaway of Hydraulic Platforms and Engine Support System Access - Marshall Space Flight Center, Saturn V S-IC Static Test Facility, West Test Area, Huntsville, Madison County, AL

  13. Large aperture scanning airborne lidar

    NASA Technical Reports Server (NTRS)

    Smith, J.; Bindschadler, R.; Boers, R.; Bufton, J. L.; Clem, D.; Garvin, J.; Melfi, S. H.

    1988-01-01

    A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc.

  14. Magnetic airborne survey - geophysical flight

    NASA Astrophysics Data System (ADS)

    de Barros Camara, Erick; Nei Pereira Guimarães, Suze

    2016-06-01

    This paper provides a technical review process in the area of airborne acquisition of geophysical data, with emphasis for magnetometry. In summary, it addresses the calibration processes of geophysical equipment as well as the aircraft to minimize possible errors in measurements. The corrections used in data processing and filtering are demonstrated with the same results as well as the evolution of these techniques in Brazil and worldwide.

  15. Flight Simulator Platform Motion and Air Transport Pilot Training

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.; Bussolari, Steven R.

    1989-01-01

    The influence of flight simulator platform motion on pilot training and performance was examined In two studies utilizing a B-727-200 aircraft simulator. The simulator, located at Ames Research Center, Is certified by the FAA for upgrade and transition training in air carrier operations. Subjective ratings and objective performance of experienced B-727 pilots did not reveal any reliable effects of wide variations In platform motion de- sign. Motion platform variations did, however, affect the acquisition of control skill by pilots with no prior heavy aircraft flying experience. The effect was limited to pitch attitude control inputs during the early phase of landing training. Implications for the definition of platform motion requirements in air transport pilot training are discussed.

  16. A model for forming airborne synthetic aperture radar images of underground targets

    SciTech Connect

    Doerry, A.W.

    1994-01-01

    Synthetic Aperture Radar (SAR) from an airborne platform has been proposed for imaging targets beneath the earth`s surface. The propagation of the radar`s energy within the ground, however, is much different than in the earth`s atmosphere. The result is signal refraction, echo delay, propagation losses, dispersion, and volumetric scattering. These all combine to make SAR image formation from an airborne platform much more challenging than a surface imaging counterpart. This report treats the ground as a lossy dispersive half-space, and presents a model for the radar echo based on measurable parameters. The model is then used to explore various imaging schemes, and image properties. Dynamic range is discussed, as is the impact of loss on dynamic range. Modified window functions are proposed to mitigate effects of sidelobes of shallow targets overwhelming deeper targets.

  17. Design criteria and comparison between conventional and subaperture SAR processing in airborne systems

    NASA Astrophysics Data System (ADS)

    Prats, Pau; Bara, Marc; Broquetas, Antoni

    2002-02-01

    This paper compares two different approaches for designing airborne SAR systems. The first one is the most common where conventional processing is employed, and therefore wide antenna beams are to be used in order to avoid ambiguities in the final image due to attitude variations. A second approach is proposed to lower the requirements such system imposes based on subaperture processing. The idea is to follow the azimuth variations of the Doppler centroid, without increasing the hardware requirements of the system. As it is shown in this paper, this processing procedure must be complemented with precise radiometric corrections, because the platform may experience small attitude variations, which could increase/decrease the target observation time, inducing a significant azimuth modulation in the final image. This leads to the definition of a new criterion concerning maximum attitude deviations for an airborne platform.

  18. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste. PMID:23047084

  19. Airborne lidar global positioning investigations

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.

    1988-01-01

    The Global Positioning System (GPS) network of satellites shows high promise of revolutionizing methods for conducting surveying, navigation, and positioning. This is especially true in the case of airborne or satellite positioning. A single GPS receiver (suitably adapted for aircraft deployment) can yield positioning accuracies (world-wide) in the order of 30 to 50 m vertically, as well as horizontally. This accuracy is dramatically improved when a second GPS receiver is positioned at a known horizontal and vertical reference. Absolute horizontal and vertical positioning of 1 to 2 m are easily achieved over areas of separation of tens of km. If four common satellites remain in lock in both receivers, then differential phase pseudo-ranges on the GPS L-band carrier can be utilized to achieve accuracies of + or - 10 cm and perhaps as good as + or - 2 cm. The initial proof of concept investigation for airborne positioning using the phase difference between the airborne and stationary GPS receivers was conducted and is examined.

  20. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  1. Wide-Area Persistent Airborne Video: Architecture and Challenges

    NASA Astrophysics Data System (ADS)

    Palaniappan, Kannappan; Rao, Raghuveer M.; Seetharaman, Guna

    The need for persistent video covering large geospatial areas using embedded camera networks and stand-off sensors has increased over the past decade. The availability of inexpensive, compact, light-weight, energy-efficient, high resolution optical sensors and associated digital image processing hardware has led to a new class of airborne surveillance platforms. Traditional tradeoffs posed between lens size and resolution, that is the numerical aperture of the system, can now be mitigated using an array of cameras mounted in a specific geometry. This fundamental advancement enables new imaging systems to cover very large fields of view at high resolution, albeit with spatially varying point spread functions. Airborne imaging systems capable of acquiring 88 megapixels per frame, over a wide field-of-view of 160 degrees or more at low frame rates of several hertz along with color sampling have been built using an optical array with up to eight cameras. These platforms fitted with accurate orientation sensors circle above an area of interest at constant altitude, adjusting steadily the orientation of the camera array fixed around a narrow area of interest, ideally locked to a point on the ground. The resulting image sequence maintains a persistent observation of an extended geographical area depending on the altitude of the platform and the configuration of the camera array. Suitably geo-registering and stabilizing these very large format videos provide a virtual nadir view of the region being monitored enabling a new class of urban scale activity analysis applications. The sensor geometry, processing challenges and scene interpretation complexities are highlighted.

  2. Direct Measurement of Atmospheric Ammonia from an Airborne Miniature Chemical Ionization Mass Spectrometer (miniCIMS)

    NASA Astrophysics Data System (ADS)

    Casados, K.; Schill, S.; Freeman, S.; Zoerb, M.; Bertram, T. H.; Lefer, B. L.

    2015-12-01

    Ammonia is emitted into the atmosphere from a variety of sources such as trees, ocean, diary fields, biomass burning, and fuel emissions. Previous studies have investigated the environmental impacts of atmospheric ammonia which can include chemical reactivity, nucleation of fine particulate matter 2.5 (PM 2.5 ), and implications for human health, but its chemical nature and relatively short lifetime make direct measurement of atmospheric ammonia difficult. During the 2015 NASA Student Airborne Research Program (SARP) an airborne miniature Chemical Ionization Mass Spectrometer (miniCIMS) was deployed on the NASA DC-8 flying laboratory in the Southern California region. The spatial and temporal variability of measured atmospheric ammonia concentrations will be discussed.

  3. An Overview of the NASA Test Platform Research

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Shin, J.-Y.; Cooper, E. G.; Moerder, D. D.; Khong, T. H.; Smith, M. F.

    2003-01-01

    A methodology for improving attitude stability and control for low-speed and hovering air vehicle is under development. In addition to aerodynamically induced control forces such as vector thrusting, the new approach exploits the use of bias momenta and torque actuators, similar to a class of spacecraft system, for its guidance and control needs. This approach will be validated on a free-flying research platform under development at NASA Langley Research Center. More broadly, this platform also serves as an in-house testbed for research in new technologies aimed at improving guidance and control of a Vertical Take-Off and Landing (VTOL) vehicle.

  4. Survival rate of airborne Mycobacterium bovis.

    PubMed

    Gannon, B W; Hayes, C M; Roe, J M

    2007-04-01

    Despite years of study the principle transmission route of bovine tuberculosis to cattle remains unresolved. The distribution of pathological lesions, which are concentrated in the respiratory system, and the very low dose of Mycobacterium bovis needed to initiate infection from a respiratory tract challenge suggest that the disease is spread by airborne transmission. Critical to the airborne transmission of a pathogenic microorganism is its ability to survive the stresses incurred whilst airborne. This study demonstrates that M. bovis is resistant to the stresses imposed immediately after becoming airborne, 94% surviving the first 10 min after aerosolisation. Once airborne the organism is robust, its viability decreasing with a half-life of approximately 1.5 hours. These findings support the hypothesis that airborne transmission is the principle route of infection for bovine tuberculosis. PMID:17045316

  5. Charge-coupled device data processor for an airborne imaging radar system

    NASA Technical Reports Server (NTRS)

    Arens, W. E. (Inventor)

    1977-01-01

    Processing of raw analog echo data from synthetic aperture radar receiver into images on board an airborne radar platform is discussed. Processing is made feasible by utilizing charge-coupled devices (CCD). CCD circuits are utilized to perform input sampling, presumming, range correlation and azimuth correlation in the analog domain. These radar data processing functions are implemented for single-look or multiple-look imaging radar systems.

  6. Progress in the development of airborne remote sensing instrumentation for the National Ecological Observatory Network

    NASA Astrophysics Data System (ADS)

    Kampe, Thomas U.; McCorkel, Joel; Hamlin, Louise; Green, Robert O.; Krause, Keith S.; Johnson, Brian R.

    2011-09-01

    The National Ecological Observatory Network (NEON) is a planned facility of the National Science Foundation with the mission to enable understanding and forecasting of the impacts of climate change, land use change and invasive species on continental-scale ecology. Airborne remote sensing plays a critical role by providing measurements at the scale of individual shrubs and larger plants over hundreds of square kilometers. The NEON Airborne Observation Platform is designed to bridge scales from organism and stand scales, as captured by plot and tower observations, to the scale of satellite based remote sensing. Fused airborne spectroscopy and waveform LiDAR is used to quantify vegetation composition and structure. Panchromatic photography at better than 30 cm resolution will retrieve fine-scale information on land use, roads, impervious surfaces, and built structures. NEON will build three airborne systems to allow for regular coverage of NEON sites and the capacity to respond to investigator requests for specific projects. The system design achieves a balance between performance and development cost and risk, taking full advantage of existing commercial airborne LiDAR and camera components. To reduce risk during NEON construction, an imaging spectrometer design verification unit is being developed at the Jet Propulsion Laboratory to demonstrate that operational and performance requirements can be met. As part of this effort, NEON is also focusing on science algorithm development, computing hardware prototyping and early airborne test flights with similar technologies. This paper presents an overview of the development status of the NEON airborne instrumentation in the context of the NEON mission.

  7. Fruit Flies Help Human Sleep Research

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Fruit Flies Help Human Sleep Research Past Issues / Summer ... courtesy of NIGMS Neuroscientist Chiara Cirelli uses experimental fruit flies to study sleep. Although it may be ...

  8. Rich Rogers Flying Over Greenland Icecap

    NASA Video Gallery

    Ihis is a view from the NASA P3 aircraft cockpit as it flies 1000 feet over the Greenland icecap during Operation Icebridge mission, which flies each March-May. The end of video shows an ice camp w...

  9. Fruit Flies Help Human Sleep Research

    MedlinePlus

    ... Current Issue Past Issues Fruit Flies Help Human Sleep Research Past Issues / Summer 2007 Table of Contents ... Chiara Cirelli uses experimental fruit flies to study sleep. Although it may be tough to imagine a ...

  10. Second International Airborne Remote Sensing Conference and Exhibition

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The conference provided four days of displays and scientific presentations on applications, technology, a science of sub-orbital data gathering and analysis. The twelve displayed aircraft equipped with sophisticated instrumentation represented a wide range of environmental and reconnaissance missions,including marine pollution control, fire detection, Open Skies Treaty verification, thermal mapping, hydrographical measurements, military research, ecological and agricultural observations, geophysical research, atmospheric and meterological observations, and aerial photography. The U.S. Air Force and the On-Site Inspection Agency displayed the new Open Skies Treaty verification Boeing OC 135B that promotes international monitoring of military forces and activities. SRl's Jetstream uses foliage and ground penetrating SAR for forest inventories, toxic waste delineation, and concealed target and buried unexploded ordnance detection. Earth Search Sciences's Gulfstream 1 with prototype miniaturized airborne hyperspectral imaging equipment specializes in accurate mineral differentiation, low-cost hydrocarbon exploration, and nonproliferation applications. John E. Chance and the U.S. Army Corps of Engineers displayed the Bell 2 helicopter with SHOALS that performs hydrographic surveying of navigation projects, coastal environment assessment, and nautical charting surveys. Bechtel Nevada and U.S. DOE displayed both the Beech King AIR B-200 platform equipped to provide first response to nuclear accidents and routine environmental surveillance, and the MBB BO-105 helicopter used in spectral analysis for environmental assessment and military appraisal. NASA Ames Research Center's high-altitude Lockheed ER-2 assists in earth resources monitoring research in atmospheric chemistry, oceanography, and electronic sensors; ozone and greenhouse studies and satellite calibration and data validation. Ames also showcased the Learjet 24 Airborne Observatory that completed missions in Venus

  11. A knowledge-based expert system for scheduling of airborne astronomical observations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, P. R.; Gevarter, W. B.; Stutz, J. C.; Banda, C. P.

    1985-01-01

    The Kuiper Airborne Observatory Scheduler (KAOS) is a knowledge-based expert system developed at NASA Ames Research Center to assist in route planning of a C-141 flying astronomical observatory. This program determines a sequence of flight legs that enables sequential observations of a set of heavenly bodies derived from a list of desirable objects. The possible flight legs are constrained by problems of observability, avoiding flyovers of warning and restricted military zones, and running out of fuel. A significant contribution of the KAOS program is that it couples computational capability with a reasoning system.

  12. A knowledge-based expert system for scheduling of airborne astronomical observations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, P. R.; Gevarter, W. B.; Stutz, J. C.; Banda, C. P.

    1986-01-01

    KAOS (Kuiper Airborne Observatory Scheduler) is a knowledge-based expert system developed at NASA Ames Research Center to assist in route planning of a C-141 flying astronomical observatory. This program determines a sequence of flight legs that enables sequential observations of a set of heavenly bodies derived from a list of desirable objects. The possible flight legs are constrained by problems of observability, avoiding flyovers of warning and restricted military zones, and running out of fuel. A significant contribution of the KAOS program is that it couples computational capability with a reasoning system.

  13. Omnidirectional holonomic platforms

    SciTech Connect

    Pin, F.G.; Killough, S.M.

    1994-06-01

    This paper presents the concepts for a new family of wheeled platforms which feature full omnidirectionality with simultaneous and independently controlled rotational and translational motion capabilities. The authors first present the orthogonal-wheels concept and the two major wheel assemblies on which these platforms are based. They then describe how a combination of these assemblies with appropriate control can be used to generate an omnidirectional capability for mobile robot platforms. The design and control of two prototype platforms are then presented and their respective characteristics with respect to rotational and translational motion control are discussed.

  14. Ambrosia airborne pollen concentration modelling and evaluation over Europe

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Vautard, Robert; Viovy, Nicolas; Khvorostyanov, Dmitry; Colette, Augustin

    2014-05-01

    Native from North America, Ambrosia artemisiifolia L. (Common Ragweed) is an invasive annual weed introduced in Europe in the mid-nineteenth century. It has a very high spreading potential throughout Europe and releases very allergenic pollen leading to health problems for sensitive persons. Because of its health effects, it is necessary to develop modelling tools to be able to forecast ambrosia air pollen concentration and to inform allergy populations of allergenic threshold exceedance. This study is realised within the framework of the ATOPICA project (https://www.atopica.eu/) which is designed to provide first steps in tools and estimations of the fate of allergies in Europe due to changes in climate, land use and air quality. To calculate and predict airborne concentrations of ambrosia pollen, a chain of models has been built. Models have been developed or adapted for simulating the phenology (PMP phonological modelling platform), inter-annual production (ORCHIDEE vegetation model), release and airborne processes (CHIMERE chemical transport model) of ragweed pollen. Airborne pollens follow processes similar to air quality pollutants in CHIMERE with some adaptations. The detailed methodology, formulations and input data will be presented. A set of simulations has been performed to simulate airborne concentrations of pollens over long time periods on a large European domain. Hindcast simulations (2000 - 2012) driven by ERA-Interim re-analyses are designed to best simulate past periods airborne pollens. The modelled pollen concentrations are calibrated with observations and validated against additional observations. Then, 20-year long historical simulations (1986 - 2005) are carried out using calibrated ambrosia density distribution and climate model-driven weather in order to serve as a control simulation for future scenarios. By comparison with multi-annual observed daily pollen counts we have shown that the model captures well the gross features of the pollen

  15. John Glenn: His first Flying Lesson Remembered

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Pilot Harry Clever remembers giving John Glenn his first flying lesson. From: The John Glenn Story: Summary of astronaut John Glenn's flying career, from naval aviation training to space flight. The Mercury project is featured as John Glenn flies the Friendship 7 spacecraft. President John F. Kennedy presents the NASA Distinguished service Medal to Astronaught John Glenn.

  16. Sugar feeding in adult stable flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult stable flies, (Stomoxys calcitrans (L.)), are known to feed readily on sugars in the laboratory. However, little is known concerning the extent of stable fly sugar feeding in wild populations. We examined the frequency of sugar feeding in stable flies in rural and urban environments. In additi...

  17. Utilization of fly ash in metallic composites

    SciTech Connect

    Rohatgi, P.K.; Guo, R.Q.; Golden, D.M.

    1996-10-01

    Fly ash particles have been successfully dispersed into aluminum alloy to make aluminum alloy-fly ash composites (Ashalloy) at University of Wisconsin-Milwaukee. Additions of solid and hollow particles of fly ash reduce the cost and density of aluminum castings while increasing their performance. Ashalloy represents a candidate material for high value added use of fly ash, while reducing the disposal volumes of fly ash for the electric utility industry and making the US foundries more competitive. The fly ash particle distribution in the matrix aluminum alloy and the microstructure of aluminum-fly ash composite was determined. Selected properties of cast aluminum-fly ash composites are also presented in this paper. Mechanical properties of aluminum-fly ash composites show that the composite possesses higher hardness and higher elastic modulus compared to the matrix alloy. The flow behavior of molten aluminum-fly ash slurries along with the components cast in aluminum-fly ash composites will be presented. Fly ash containing metal components have potential applications in covers, shrouds, casings, manifolds, valve covers, garden furniture, engine blocks in automotive, small engine and electromechanical industry sector.

  18. Molecular diagnostics & phylogenetics of filth fly parasitoids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several species of synanthropic muscoid flies, often referred to as filth flies, breed in animal wastes and are serious pests of humans and livestock. Pteromalid wasps are among the most promising biological control agents for these filth flies. Because of their small size and relative lack of morph...

  19. The Spider and the Fly

    ERIC Educational Resources Information Center

    Mellinger, Keith E.; Viglione, Raymond

    2012-01-01

    The Spider and the Fly puzzle, originally attributed to the great puzzler Henry Ernest Dudeney, and now over 100 years old, asks for the shortest path between two points on a particular square prism. We explore a generalization, find that the original solution only holds in certain cases, and suggest how this discovery might be used in the…

  20. Flying Training at West Point.

    ERIC Educational Resources Information Center

    Cannon, M. Hamlin

    During World War Two the United States Military Academy operated a three-year program of instruction. Superimposed on this abbreviated curriculum was full-scale pilot training program. The emphasis of this study is on the problems that arose as a result. Included is a summary of responses to a questionnaire on the value of the flying training…

  1. Physics between a Fly's Ears

    ERIC Educational Resources Information Center

    Denny, Mark

    2008-01-01

    A novel method of localizing the direction of a source of sound has evolved in the auditory system of certain small parasitic flies. A mechanical model of this design has been shown to describe the system well. Here, a simplified version of this mechanical model is presented which demonstrates the key feature: direction estimates of high accuracy…

  2. To Fly in the Sky.

    ERIC Educational Resources Information Center

    Brodie, Carolyn S.

    1995-01-01

    Suggests activities for students that focus on airplanes, famous pilots, and travel. Provides a list of suggested titles with the following topics: history of flight and airplanes; airplanes and flying information; paper and model airplanes; Charles Lindbergh; Amelia Earhart; the Wright Brothers; videos; and picture books. (AEF)

  3. Gyroscopic Instruments for Instrument Flying

    NASA Technical Reports Server (NTRS)

    Brombacher, W G; Trent, W C

    1938-01-01

    The gyroscopic instruments commonly used in instrument flying in the United States are the turn indicator, the directional gyro, the gyromagnetic compass, the gyroscopic horizon, and the automatic pilot. These instruments are described. Performance data and the method of testing in the laboratory are given for the turn indicator, the directional gyro, and the gyroscopic horizon. Apparatus for driving the instruments is discussed.

  4. Choreographing the fly's danse macabre.

    PubMed

    Poon, Peter C; Pletcher, Scott D

    2007-08-01

    In several species, immune signaling networks are emerging as critical modulators of disease resistance, energy metabolism, and aging. In this issue of Cell Metabolism, Ren et al. (2007) lay the groundwork for dissecting the mechanisms of this coordination by characterizing the interplay between microbial pathogens and aging in the fly. PMID:17681142

  5. Chemical Imaging Analysis of Environmental Particles Using the Focused Ion Beam/Scanning Electron Microscopy Technique. Microanalysis Insights into Atmospheric Chemistry of Fly Ash

    SciTech Connect

    Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.; Laskin, Alexander

    2012-11-08

    Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior of individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.

  6. Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed.

  7. Enabling Spacecraft Formation Flying in Any Earth Orbit Through Spaceborne GPS and Enhanced Autonomy Technologies

    NASA Technical Reports Server (NTRS)

    Bauer, F. H.; Bristow, J. O.; Carpenter, J. R.; Garrison, J. L.; Hartman, K. R.; Lee, T.; Long, A. C.; Kelbel, D.; Lu, V.; How, J. P.; Busse, F.

    2000-01-01

    Formation flying is quickly revolutionizing the way the space community conducts autonomous science missions around the Earth and in space. This technological revolution will provide new, innovative ways for this community to gather scientific information, share this information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, this technology will result in swarms of space vehicles flying as a virtual platform and gathering significantly more and better science data than is possible today. Formation flying will be enabled through the development and deployment of spaceborne differential Global Positioning System (GPS) technology and through innovative spacecraft autonomy techniques, This paper provides an overview of the current status of NASA/DoD/Industry/University partnership to bring formation flying technology to the forefront as quickly as possible, the hurdles that need to be overcome to achieve the formation flying vision, and the team's approach to transfer this technology to space. It will also describe some of the formation flying testbeds, such as Orion, that are being developed to demonstrate and validate these innovative GPS sensing and formation control technologies.

  8. FliO regulation of FliP in the formation of the Salmonella enterica flagellum.

    PubMed

    Barker, Clive S; Meshcheryakova, Irina V; Kostyukova, Alla S; Samatey, Fadel A

    2010-09-01

    The type III secretion system of the Salmonella flagellum consists of 6 integral membrane proteins: FlhA, FlhB, FliO, FliP, FliQ, and FliR. However, in some other type III secretion systems, a homologue of FliO is apparently absent, suggesting it has a specialized role. Deleting the fliO gene from the chromosome of a motile strain of Salmonella resulted in a drastic decrease of motility. Incubation of the ΔfliO mutant strain in motility agar, gave rise to pseudorevertants containing extragenic bypass mutations in FliP at positions R143H or F190L. Using membrane topology prediction programs, and alkaline phosphatase or GFPuv chimeric protein fusions into the FliO protein, we demonstrated that FliO is bitopic with its N-terminus in the periplasm and C-terminus in the cytoplasm. Truncation analysis of FliO demonstrated that overexpression of FliO₄₃-₁₂₅ or FliO₁-₉₅ was able to rescue motility of the ΔfliO mutant. Further, residue leucine 91 in the cytoplasmic domain was identified to be important for function. Based on secondary structure prediction, the cytoplasmic domain, FliO₄₃-₁₂₅, should contain beta-structure and alpha-helices. FliO₄₃-₁₂₅-Ala was purified and studied using circular dichroism spectroscopy; however, this domain was disordered, and its structure was a mixture of beta-sheet and random coil. Coexpression of full-length FliO with FliP increased expression levels of FliP, but coexpression with the cytoplasmic domain of FliO did not enhance FliP expression levels. Overexpression of the cytoplasmic domain of FliO further rescued motility of strains deleted for the fliO gene expressing bypass mutations in FliP. These results suggest FliO maintains FliP stability through transmembrane domain interaction. The results also demonstrate that the cytoplasmic domain of FliO has functionality, and it presumably becomes structured while interacting with its binding partners. PMID:20941389

  9. Sensor fusion for airborne landmine detection

    NASA Astrophysics Data System (ADS)

    Schatten, Miranda A.; Gader, Paul D.; Bolton, Jeremy; Zare, Alina; Mendez-Vasquez, Andres

    2006-05-01

    Sensor fusion has become a vital research area for mine detection because of the countermine community's conclusion that no single sensor is capable of detecting mines at the necessary detection and false alarm rates over a wide variety of operating conditions. The U. S. Army Night Vision and Electronic Sensors Directorate (NVESD) evaluates sensors and algorithms for use in a multi-sensor multi-platform airborne detection modality. A large dataset of hyperspectral and radar imagery exists from the four major data collections performed at U. S. Army temperate and arid testing facilities in Autumn 2002, Spring 2003, Summer 2004, and Summer 2005. There are a number of algorithm developers working on single-sensor algorithms in order to optimize feature and classifier selection for that sensor type. However, a given sensor/algorithm system has an absolute limitation based on the physical phenomena that system is capable of sensing. Therefore, we perform decision-level fusion of the outputs from single-channel algorithms and we choose to combine systems whose information is complementary across operating conditions. That way, the final fused system will be robust to a variety of conditions, which is a critical property of a countermine detection system. In this paper, we present the analysis of fusion algorithms on data from a sensor suite consisting of high frequency radar imagery combined with hyperspectral long-wave infrared sensor imagery. The main type of fusion being considered is Choquet integral fusion. We evaluate performance achieved using the Choquet integral method for sensor fusion versus Boolean and soft "and," "or," mean, or majority voting.

  10. Airborne DOAS in South Africa: escaping flatland

    NASA Astrophysics Data System (ADS)

    Broccardo, S. P.; Heue, K.; Piketh, S.; Platt, U.

    2010-12-01

    The satellite instruments SCIAMACHY, OMI and GOME-2 show high average tropospheric NO2 vertical column densities over the South African Highveld, a region with a high density of coal-fired power stations and other heavy industries. A pushbroom-imaging DOAS spectrometer was flown over the Highveld and surrounding areas in order to further investigate this feature of the satellite record. The wavelength range of the instrument includes differential absorption structures of gases relevant to air quality such as NO2 and SO2. The high spatial resolution of the instrument allows individual sources to be distinguished, while the mobility of the airborne platform allows larger-scale measurements to be made. Emissions fluxes for individual facilities are calculated. An NO flux for the city of Johannesburg is derived from the nadir DOAS column measurements. Similarly, a flux for the entire Highveld region is derived and compared to a satellite-derived flux. The Highveld provides an excellent outdoor laboratory for development of trace-gas remote sensing instrumentation. The greater Johannesburg conurbation and nearby industrial point sources are surrounded by rural areas for several hundred kilometers on all sides. Flat topography and a stable atmosphere in winter lead to plumes with high trace-gas concentrations that are easy to measure and distinguish from the background. A lightweight scanning multi-axis spectrometer is being built to measure industrial plumes from an ultra-light aircraft. Using a tomographic inversion, this instrument will give a vertical cross-section of the plume, allowing validation of dispersion models and direct comparison with in-situ measurements. Using a suitable flight path, a three dimensional representation of the plume can be built up.

  11. Development of a new airborne humidigraph system.

    SciTech Connect

    Pekour, Mikhail S.; Schmid, Beat; Chand, Duli; Hubbe, John M.; Kluzek, Celine D.; Nelson, Danny A.; Tomlinson, Jason M.; Cziczo, Daniel J.

    2012-12-06

    Modeling and measurements of aerosol properties is complicated by the hygroscopic behavior of the aerosols adding significant uncertainty to our best estimates of the direct effect aerosols exert on the radiative balance of the atmosphere. Airborne measurements of aerosol hygroscopicity are particularly challenging but critically needed. This motivated the development of a newly designed system which can measure the dependence of the aerosol light scattering coefficient (σsp) on relative humidity (RH), known as f(RH), in real-time at a rapid rate (<10 s) on an aerial platform. The new system has several advantages over existing systems. It consists of three integrating nephelometers and humidity conditioners for simultaneous measurement of the σsp at three different RHs. The humidity is directly controlled in exchanger cells without significant temperature disturbances and without particle dilution, heating or loss of volatile compounds. The single-wavelength nephelometers are illuminated by LED-based light sources thereby minimizing heating of the sample stream. The flexible design of the RH conditioners, consisting of a number of specially designed exchanger cells (driers or humidifiers), enables us to measure f(RH) under hydration or dehydration conditions (always starting with the aerosol in a known state) with a simple system re-configuration. These exchanger cells have been characterized for losses of particles using latex spheres and laboratory generated ammonium sulfate aerosols. Residence times of 6 - 9 s in the exchangers and subsequent lines is sufficient for most aerosols to attain equilibrium with the new water vapor content. The performance of this system has been assessed aboard DOE’s G-1 research aircraft during test flights over California, Oregon, and Washington.

  12. Geophex airborne unmanned survey system

    SciTech Connect

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  13. Airborne wavemeter validation and calibration

    NASA Technical Reports Server (NTRS)

    Goad, Joseph H., Jr.; Rinsland, Pamela L.; Kist, Edward H., Jr.; Geier, Erika B.; Banziger, Curtis G.

    1992-01-01

    This manuscript outlines a continuing effort to validate and verify the performance of an airborne autonomous wavemeter for tuning solid state lasers to a desired wavelength. The application is measuring the vertical profiles of atmospheric water vapor using a differential absorption lidar (DIAL) technique. Improved wavemeter performance data for varying ambient temperatures are presented. This resulted when the electronic grounding and shielding were improved. The results with short pulse duration lasers are also included. These lasers show that similar performance could be obtained with lasers operating in the continuous and the pulsed domains.

  14. High sensitive airborne radioiodine monitor.

    PubMed

    Ogata, Yoshimune; Yamasaki, Tadashi; Hanafusa, Ryuji

    2013-11-01

    Airborne radioiodine monitoring includes a problem in that commercial radioactive gas monitors have inadequate sensitivity. To solve this problem, we designed a highly sensitive monitoring system. The higher counting efficiency and lower background made it possible to perform the low-level monitoring. The characteristics of the system were investigated using gaseous (125)I. The minimum detectable activity concentration was 1 × 10(-4)Bq cm(-3) for 1 min counting, which is one tenth of the legal limit for the radiation controlled areas in Japan. PMID:23602709

  15. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.J.; Keiswetter, D.

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  16. Cyberinfrastructure for Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  17. Biological monitoring of airborne pollution

    SciTech Connect

    Ditz, D.W. )

    1990-01-01

    Common plants such as grasses, mosses, and even goldenrod may turn out to have a new high-tech role as monitors of airborne pollution from solid waste incinerators. Certain plants that respond to specific pollutants can provide continuous surveillance of air quality over long periods of time: they are bio-indicators. Other species accumulate pollutants and can serve as sensitive indicators of pollutants and of food-chain contamination: they are bio-accumulators. Through creative use of these properties, biological monitoring can provide information that cannot be obtained by current methods such as stack testing.

  18. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  19. Design distributed simulation platform for vehicle management system

    NASA Astrophysics Data System (ADS)

    Wen, Zhaodong; Wang, Zhanlin; Qiu, Lihua

    2006-11-01

    Next generation military aircraft requires the airborne management system high performance. General modules, data integration, high speed data bus and so on are needed to share and manage information of the subsystems efficiently. The subsystems include flight control system, propulsion system, hydraulic power system, environmental control system, fuel management system, electrical power system and so on. The unattached or mixed architecture is changed to integrated architecture. That means the whole airborne system is regarded into one system to manage. So the physical devices are distributed but the system information is integrated and shared. The process function of each subsystem are integrated (including general process modules, dynamic reconfiguration), furthermore, the sensors and the signal processing functions are shared. On the other hand, it is a foundation for power shared. Establish a distributed vehicle management system using 1553B bus and distributed processors which can provide a validation platform for the research of airborne system integrated management. This paper establishes the Vehicle Management System (VMS) simulation platform. Discuss the software and hardware configuration and analyze the communication and fault-tolerant method.

  20. A Newly Adopted Helicopter Platform for Geophysical and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Meyer, Uwe

    2014-05-01

    The Federal Institute for Geosciences and Natural Resources in Hannover owns a Sikorsky S-76B helicopter for geophysical and remote sensing airborne surveys. This platform has been completely refurbished and in parts newly designed to be fit for easy installations of complex geophysical instruments underneath, upon and within the helicopter. The airborne platform is equipped with a modern basic navigation equipment consisting of several GNSS antennae, state of the art inertial navigation systems, laser altimeter and video camera systems. Different other modules can be added to the helicopter as a state of the art gamma spectrometer, a laser scanner, airborne gravity meters etc. within the cabin. Moreover, external sensing systems as a photogrammetric camera, infraread camera or optional mulitspectral systems can be installed on the outer skin of the cabin. Different kinds of bird systems towed underneath the helicopter can be hooked up using standard cabling, glas fibres or wireless LAN. Available birds are equipped for frequency domain electromagnetics or gradient magnetics (IPHT Jena & Supracon, Jena). Besides, large georadar systems can be installed as well. The helicopter is able as well to carry TEM-gear or system in development. Main survey targets are groundwater systems, mineral deposits and natural hazards.

  1. Petrographic characterization of economizer fly ash

    SciTech Connect

    Valentim, B.; Hower, J.C.; Soares, S.; Guedes, A.; Garcia, C.; Flores, D.; Oliveira, A.

    2009-11-15

    Policies for reducing NOx emissions have led power plants to restrict O{sub 2}, resulting in high-carbon fly ash production. Therefore, some potentially useful fly ash, such as the economizer fly ash, is discarded without a thorough knowledge of its composition. In order to characterize this type of fly ash, samples were collected from the economizer Portuguese power plant burning two low-sulfur bituminous coals. Characterization was also performed on economizer fly ash subsamples after wet sieving, density and magnetic separation. Analysis included atomic absorption spectroscopy, loss-on-ignition, scanning electron microscopy/energy-dispersive X-ray spectroscopy, optical microscopy, and micro-Raman spectroscopy.

  2. Fly ash chemical classification based on lime

    SciTech Connect

    Fox, J.

    2007-07-01

    Typically, total lime content (CaO) of fly ash is shown in fly ash reports, but its significance is not addressed in US specifications. For certain applications a low lime ash is preferred. When a class C fly ash must be cementitious, lime content above 20% is required. A ternary S-A-C phase diagram pilot is given showing the location of fly ash compositions by coal rank and source in North America. Fly ashes from subbituminous coal from the Powder River Basin usually contain sufficient lime to be cementitious but blending with other coals may result in calcium being present in phases other than tricalcium aluminate. 9 refs., 1 fig.

  3. First test results of the airborne dispersive pushbroom imaging spectrometer APEX

    NASA Astrophysics Data System (ADS)

    Meuleman, K.; Itten, K.; Schaepman, M.

    2009-04-01

    APEX, ESA-Prodex "Airborne Prism Experiment" comprises the development of an airborne dispersive pushbroom imaging spectrometer and has originally been designed as flexible hyperspectral mission simulator and calibrator for existing and upcoming or planned future space missions. The APEX project is co-funded by Switzerland and Belgium and built by a Belgian-Swiss industrial team under the prime RUAG Aerospace (CH), responsible for the total system and the mechanical components, OIP (Oudenaarde, BE) contributing the spectrometer, and Netcetera (Zurich, CH) being responsible for the electronics. RSL (University of Zurich, CH) acts as scientific PI together with the Co-PI VITO (Mol, BE). The APEX sensor is operating between 380 nm and 2500 nm in more than 300 freely configurable bands (up to 512 bands in full spectral mode), by means of two dispersive spectrometer channels. 1000 pixels across track and a total field of view of 28° define the ground pixel size (e.g. 2,5 m from 5000 m AGL). A stabilized platform (Leica PAV-30) reduces major geometric distortions due to aircraft instabilities while a GPS/IMU system (Applanix PosAV 410) measures continuously the sensors' position and orientation allowing direct georeferencing of the acquired data . The system is currently is phase D, the calibration and test phase, and first testflights have been performed on a Do-228 in cooperation of DLR while the acquired data is currently under evaluation. Discussions are ongoing to fly APEX on the new DLR High Altitude Research Aircraft (HALO) as well. The system is currently in phase D, the calibration and test phase, and will deliver first scientific data to users by mid 2009. The APEX processing and archiving facility (PAF) is hosted by VITO in the APEX Operations Center (AOC) at Mol, Belgium . A specific level 0-1 processing software module producing uniform, radiometrically calibrated data has been developed by RSL and is integrated into the PAF by VITO. An APEX Calibration

  4. Concrete production floating platforms

    SciTech Connect

    Letourneur, O.; Falcimaigne, J.

    1981-01-01

    The floating production platforms operating in the North Sea are adapted from drilling semisubmersibles which allow only a limited payload capacity. Experience of concrete production platforms constructed for the North Sea has led Sea Tank Co. to propose a floating platform which offers large payload and oil storage capacities similar to those of existing fixed platforms. Sea Tank Co. and Institut Francais du Petrole joined forces in early 1976 to study the feasibility of a concrete floating production platform incorporating the structure and the production riser together. The results of this 3-yr program show that the concrete floating structure is economically attractive for permanent utilization on a production site. Furthermore, concrete has definite advantages over other materials, in its long term behavior.

  5. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  6. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  7. The Continuous wavelet in airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liu, L.

    2013-12-01

    Airborne gravimetry is an efficient method to recover medium and high frequency band of earth gravity over any region, especially inaccessible areas, which can measure gravity data with high accuracy,high resolution and broad range in a rapidly and economical way, and It will play an important role for geoid and geophysical exploration. Filtering methods for reducing high-frequency errors is critical to the success of airborne gravimetry due to Aircraft acceleration determination based on GPS.Tradiontal filters used in airborne gravimetry are FIR,IIR filer and so on. This study recommends an improved continuous wavelet to process airborne gravity data. Here we focus on how to construct the continuous wavelet filters and show their working principle. Particularly the technical parameters (window width parameter and scale parameter) of the filters are tested. Then the raw airborne gravity data from the first Chinese airborne gravimetry campaign are filtered using FIR-low pass filter and continuous wavelet filters to remove the noise. The comparison to reference data is performed to determinate external accuracy, which shows that continuous wavelet filters applied to airborne gravity in this thesis have good performances. The advantages of the continuous wavelet filters over digital filters are also introduced. The effectiveness of the continuous wavelet filters for airborne gravimetry is demonstrated through real data computation.

  8. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  9. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  10. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  11. Binocular interactions underlying the classic optomotor responses of flying flies.

    PubMed

    Duistermars, Brian J; Care, Rachel A; Frye, Mark A

    2012-01-01

    In response to imposed course deviations, the optomotor reactions of animals reduce motion blur and facilitate the maintenance of stable body posture. In flies, many anatomical and electrophysiological studies suggest that disparate motion cues stimulating the left and right eyes are not processed in isolation but rather are integrated in the brain to produce a cohesive panoramic percept. To investigate the strength of such inter-ocular interactions and their role in compensatory sensory-motor transformations, we utilize a virtual reality flight simulator to record wing and head optomotor reactions by tethered flying flies in response to imposed binocular rotation and monocular front-to-back and back-to-front motion. Within a narrow range of stimulus parameters that generates large contrast insensitive optomotor responses to binocular rotation, we find that responses to monocular front-to-back motion are larger than those to panoramic rotation, but are contrast sensitive. Conversely, responses to monocular back-to-front motion are slower than those to rotation and peak at the lowest tested contrast. Together our results suggest that optomotor responses to binocular rotation result from the influence of non-additive contralateral inhibitory as well as excitatory circuit interactions that serve to confer contrast insensitivity to flight behaviors influenced by rotatory optic flow. PMID:22375108

  12. Binocular Interactions Underlying the Classic Optomotor Responses of Flying Flies

    PubMed Central

    Duistermars, Brian J.; Care, Rachel A.; Frye, Mark A.

    2012-01-01

    In response to imposed course deviations, the optomotor reactions of animals reduce motion blur and facilitate the maintenance of stable body posture. In flies, many anatomical and electrophysiological studies suggest that disparate motion cues stimulating the left and right eyes are not processed in isolation but rather are integrated in the brain to produce a cohesive panoramic percept. To investigate the strength of such inter-ocular interactions and their role in compensatory sensory–motor transformations, we utilize a virtual reality flight simulator to record wing and head optomotor reactions by tethered flying flies in response to imposed binocular rotation and monocular front-to-back and back-to-front motion. Within a narrow range of stimulus parameters that generates large contrast insensitive optomotor responses to binocular rotation, we find that responses to monocular front-to-back motion are larger than those to panoramic rotation, but are contrast sensitive. Conversely, responses to monocular back-to-front motion are slower than those to rotation and peak at the lowest tested contrast. Together our results suggest that optomotor responses to binocular rotation result from the influence of non-additive contralateral inhibitory as well as excitatory circuit interactions that serve to confer contrast insensitivity to flight behaviors influenced by rotatory optic flow. PMID:22375108

  13. Isprs Benchmark for Multi-Platform Photogrammetry

    NASA Astrophysics Data System (ADS)

    Nex, F.; Gerke, M.; Remondino, F.; Przybilla, H.-J.; Bäumker, M.; Zurhorst, A.

    2015-03-01

    Airborne high resolution oblique imagery systems and RPAS/UAVs are very promising technologies that will keep on influencing the development of geomatics in the future years closing the gap between terrestrial and classical aerial acquisitions. These two platforms are also a promising solution for National Mapping and Cartographic Agencies (NMCA) as they allow deriving complementary mapping information. Although the interest for the registration and integration of aerial and terrestrial data is constantly increasing, only limited work has been truly performed on this topic. Several investigations still need to be undertaken concerning algorithms ability for automatic co-registration, accurate point cloud generation and feature extraction from multiplatform image data. One of the biggest obstacles is the non-availability of reliable and free datasets to test and compare new algorithms and procedures. The Scientific Initiative "ISPRS benchmark for multi-platform photogrammetry", run in collaboration with EuroSDR, aims at collecting and sharing state-of-the-art multi-sensor data (oblique airborne, UAV-based and terrestrial images) over an urban area. These datasets are used to assess different algorithms and methodologies for image orientation and dense matching. As ground truth, Terrestrial Laser Scanning (TLS), Aerial Laser Scanning (ALS) as well as topographic networks and GNSS points were acquired to compare 3D coordinates on check points (CPs) and evaluate cross sections and residuals on generated point cloud surfaces. In this paper, the acquired data, the pre-processing steps, the evaluation procedures as well as some preliminary results achieved with commercial software will be presented.

  14. Enhanced Formation Flying for the Earth Observing-1 (EO-1) New Millennium Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Quinn, David

    1997-01-01

    With scientific objectives for Earth observation programs becoming more ambitious and spacecraft becoming more autonomous, the need for new technical approaches on the feasibility of achieving and maintaining formations of spacecraft has come to the forefront. The trend to develop small low cost spacecraft has led many scientists to recognize the advantage of flying several spacecraft in formation, an example of which is shown in the figure below, to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, formation flying imposes additional complications on orbit maintenance, especially when each spacecraft has its own orbit requirements. However, advances in automation proposed by GSFC Codes 550 and 712 allow more of the burden in maneuver planning and execution to be placed onboard the spacecraft, mitigating some of the associated operational concerns. The purpose of this analysis is to develop the fundamentals of formation flying mechanics, concepts for understanding the relative motion of free flying spacecraft, and an operational control theory for formation maintenance of the Earth Observing-1 (EO-l) spacecraft that is part of the New Millennium. Results of this development can be used to determine the appropriateness of formation flying for a particular case as well as the operational impacts. Applications to the Mission to Planet Earth (MTPE) Earth Observing System (EOS) and New Millennium (NM) were highly considered in analysis and applications. This paper presents the proposed methods for the guidance and control of the EO-1 spacecraft to formation fly with the Landsat-7 spacecraft using an autonomous closed loop three axis navigation control, GPS, and Cross link navigation support. Simulation results using various fidelity levels of modeling, algorithms developed and implemented in MATLAB, and autonomous 'fuzzy logic' control using AutoCon will be presented. The results of these

  15. A theoretical model for airborne radars

    NASA Astrophysics Data System (ADS)

    Faubert, D.

    1989-11-01

    This work describes a general theory for the simulation of airborne (or spaceborne) radars. It can simulate many types of systems including Airborne Intercept and Airborne Early Warning radars, airborne missile approach warning systems etc. It computes the average Signal-to-Noise ratio at the output of the signal processor. In this manner, one obtains the average performance of the radar without having to use Monte Carlo techniques. The model has provision for a waveform without frequency modulation and one with linear frequency modulation. The waveform may also have frequency hopping for Electronic Counter Measures or for clutter suppression. The model can accommodate any type of encounter including air-to-air, air-to-ground (look-down) and rear attacks. It can simulate systems with multiple phase centers on receive for studying advanced clutter or jamming interference suppression techniques. An Airborne Intercept radar is investigated to demonstrate the validity and the capability of the model.

  16. Identification and sequences of the Treponema pallidum fliM', fliY, fliP, fliQ, fliR and flhB' genes.

    PubMed

    Hardham, J M; Frye, J G; Stamm, L V

    1995-12-01

    Information regarding the biology and virulence attributes of Treponema pallidum (Tp) is limited due to the lack of genetic exchange mechanisms and the inability to continuously cultivate this spirochete. We have utilized TnphoA mutagenesis of a Tp genomic DNA library in Escherichia coli (Ec) to identify genes encoding exported proteins, a subset of which are likely to be important in treponemal pathogenesis. We report here the identification and nucleotide (nt) sequence of a 5-kb treponemal DNA insert that contains seven open reading frames (ORFs). The proteins encoded by six of these ORFs have homology with members of a newly described protein family involved in the biogenesis/assembly of flagella and the control of flagellar rotation in Ec, Salmonella typhimurium (St) and Bacillus subtilis (Bs). Certain members of this family are also involved in the export of virulence factors in Yersinia (Yr) spp., St and Shigella flexneri (Sf). We have named these six ORFs fliM', fliY, fliP, fliQ, fliR and flhB'. The operon containing these ORFs has been designated as the fla operon. We hypothesize that the protein products of these genes are involved in the biogenesis/assembly of flagella and the control of flagellar rotation in Tp. PMID:8529894

  17. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  18. View from second floor platform looking up at subsequent platforms. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from second floor platform looking up at subsequent platforms. Note the Shuttle assembly outlined by the platform edges. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL

  19. a New Control Points Based Geometric Correction Algorithm for Airborne Push Broom Scanner Images Without On-Board Data

    NASA Astrophysics Data System (ADS)

    Strakhov, P.; Badasen, E.; Shurygin, B.; Kondranin, T.

    2016-06-01

    Push broom scanners, such as video spectrometers (also called hyperspectral sensors), are widely used in the present. Usage of scanned images requires accurate geometric correction, which becomes complicated when imaging platform is airborne. This work contains detailed description of a new algorithm developed for processing of such images. The algorithm requires only user provided control points and is able to correct distortions caused by yaw, flight speed and height changes. It was tested on two series of airborne images and yielded RMS error values on the order of 7 meters (3-6 source image pixels) as compared to 13 meters for polynomial-based correction.

  20. Heavy metal migration during electroremediation of fly ash from different wastes--modelling.

    PubMed

    Lima, A T; Rodrigues, P C; Mexia, J T

    2010-03-15

    Fly ash is an airborne material which is considered hazardous waste due to its enrichment on heavy metals. Depending on the waste from which they are originated, fly ash may be further valorised, e.g. as soil amendment or concrete and ceramics adjuvant, or landfilled, when defined as hazardous material. In any case, heavy metal content has to be decreased either for fly ash valorisation or for complying with landfill criteria. The electrodialytic (EDR) process is a remediation technique based on the principle of electrokinetics and dialysis, having the aim to remove heavy metals from contaminated solid media. EDR was here applied to fly ashes from the combustion of straw (ST), from the incineration of municipal solid waste (DK and PT) and from the co-combustion of wood (CW). A statistical study, using F tests, Bonferroni multiple comparison method and a categorical regression, was carried out to determine which variables ("Ash type", "Duration", "Initial pH", "Final pH", "Acidification" and "Dissolution") were the most significant for EDR efficiency. After establishing these, the selected variables were then used to characterize some kinetic parameters, from metals migration during EDR, using a biregressional design. Cd, Cr, Cu, Ca and Zn migration velocity and acceleration to the electrodes (anode and cathode) were then considered. Cd and Cu migration to the cathode were found to be significantly influenced by "Ash type", "Duration", "Final pH" and "Dissolution". PMID:19883974

  1. Airborne Four-Dimensional Flight Management in a Time-based Air Traffic Control Environment

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Green, Steven M.

    1991-01-01

    Advanced Air Traffic Control (ATC) systems are being developed which contain time-based (4D) trajectory predictions of aircraft. Airborne flight management systems (FMS) exist or are being developed with similar 4D trajectory generation capabilities. Differences between the ATC generated profiles and those generated by the airborne 4D FMS may introduce system problems. A simulation experiment was conducted to explore integration of a 4D equipped aircraft into a 4D ATC system. The NASA Langley Transport Systems Research Vehicle cockpit simulator was linked in real time to the NASA Ames Descent Advisor ATC simulation for this effort. Candidate procedures for handling 4D equipped aircraft were devised and traffic scenarios established which required time delays absorbed through speed control alone or in combination with path stretching. Dissimilarities in 4D speed strategies between airborne and ATC generated trajectories were tested in these scenarios. The 4D procedures and FMS operation were well received by airline pilot test subjects, who achieved an arrival accuracy at the metering fix of 2.9 seconds standard deviation time error. The amount and nature of the information transmitted during a time clearance were found to be somewhat of a problem using the voice radio communication channel. Dissimilarities between airborne and ATC-generated speed strategies were found to be a problem when the traffic remained on established routes. It was more efficient for 4D equipped aircraft to fly trajectories with similar, though less fuel efficient, speeds which conform to the ATC strategy. Heavy traffic conditions, where time delays forced off-route path stretching, were found to produce a potential operational benefit of the airborne 4D FMS.

  2. A configurable information display environment for airborne science

    NASA Astrophysics Data System (ADS)

    van Gilst, D. P.

    2010-12-01

    With the introduction the multi-instrument, long duration Global Hawk UAV to the the airborne science community and increasing network connectivity on other airborne platforms, there is growing need for tools to provide real-time aircraft data to a wide range of personnel, many of whom may not e located on site. With the web based tools developed for the NASA Global Hawk and DC-8, we aimed to enhance awareness of engineering, science and aircraft operations to personnel both on-site and off over extended periods of time to allow for the effective management of 24+ hour flights. A system for building user-configurable displays was created based on web-based open standards to provide science, engineering and weather data to science and operations personnel, with off site personnel utilizing the same tools as those who were present in the control center. These tools have significantly improved the ability of teams to utilize personnel who would not otherwise be accessible to support mission activities through the monitoring of the instruments, data gathering and aircraft status.

  3. An automated data exploitation system for airborne sensors

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike

    2014-06-01

    Advanced wide area persistent surveillance (WAPS) sensor systems on manned or unmanned airborne vehicles are essential for wide-area urban security monitoring in order to protect our people and our warfighter from terrorist attacks. Currently, human (imagery) analysts process huge data collections from full motion video (FMV) for data exploitation and analysis (real-time and forensic), providing slow and inaccurate results. An Automated Data Exploitation System (ADES) is urgently needed. In this paper, we present a recently developed ADES for airborne vehicles under heavy urban background clutter conditions. This system includes four processes: (1) fast image registration, stabilization, and mosaicking; (2) advanced non-linear morphological moving target detection; (3) robust multiple target (vehicles, dismounts, and human) tracking (up to 100 target tracks); and (4) moving or static target/object recognition (super-resolution). Test results with real FMV data indicate that our ADES can reliably detect, track, and recognize multiple vehicles under heavy urban background clutters. Furthermore, our example shows that ADES as a baseline platform can provide capability for vehicle abnormal behavior detection to help imagery analysts quickly trace down potential threats and crimes.

  4. Airborne multisensor system for the autonomous detection of land mines

    NASA Astrophysics Data System (ADS)

    Scheerer, Klaus

    1997-07-01

    A concept of a modular multisensor system for use on an airborne platform is presented. THe sensor system comprises two high resolution IR sensors working in the mid and far IR spectral regions, a RGB video camera with its sensitivity extended to the near IR in connection with a laser illuminator, and a radar with a spatial resolution adapted to the expected mine sizes. The sensor concept emerged from the evaluation of comprehensive static and airborne measurements on numerous buried and unburied mines. The measurements were performed on single mines and on minefields, layed down according to military requirements. The system has an on-board realtime image processing capability and is intended to operate autonomously with a data link to a mobile groundstation. Data from a navigation unit serve to transform the location of identified mines into a geodetic coordinate system. The system will be integrated into a cylindrical structure of about 40 cm diameter. This may be a drone or simply a tube which can be mounted on any carrier whatever. The realization of a simplified demonstrator for captive flight tests is planned by 1998.

  5. Airborne Optical Communications Demonstrator Design And Preflight Test Results

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Page, N.; Neal, J.; Zhu, D.; Wright, M.; Ovtiz, G.; Farr, W. H.; Hernnzati, H.

    2005-01-01

    A second generation optical communications demonstrator (OCD-2) intended for airborne applications like air-to-ground and air-to-air optical links is under development at JPL. This development provides the capability for unidirectional high data rate (2.5-Gbps) transmission at 1550-nm, with the ability to receive an 810-nm beacon to aid acquisition pointing and tracking. The transmitted beam width is nominally 200-(micro)rad. A 3x3 degree coarse field-of-view (FOV) acquisition sensor with a much smaller 3-mrad FOV tracking sensor is incorporated. The OCD-2 optical head will be integrated to a high performance gimbal turret assembly capable of providing pointing stability of 5- microradians from an airborne platform. Other parts of OCD-2 include a cable harness, connecting the optical head in the gimbal turret assembly to a rugged electronics box. The electronics box will house: command and control processors, laser transmitter, data-generation-electronics, power conversion/distribution hardware and state-of-health monitors. The entire assembly will be integrated and laboratory tested prior to a planned flight demonstrations.

  6. An airborne real-time hyperspectral target detection system

    NASA Astrophysics Data System (ADS)

    Skauli, Torbjorn; Haavardsholm, Trym V.; Kåsen, Ingebjørg; Arisholm, Gunnar; Kavara, Amela; Opsahl, Thomas Olsvik; Skaugen, Atle

    2010-04-01

    An airborne system for hyperspectral target detection is described. The main sensor is a HySpex pushbroom hyperspectral imager for the visible and near-infrared spectral range with 1600 pixels across track, supplemented by a panchromatic line imager. An optional third sensor can be added, either a SWIR hyperspectral camera or a thermal camera. In real time, the system performs radiometric calibration and georeferencing of the images, followed by image processing for target detection and visualization. The current version of the system implements only spectral anomaly detection, based on normal mixture models. Image processing runs on a PC with a multicore Intel processor and an Nvidia graphics processing unit (GPU). The processing runs in a software framework optimized for large sustained data rates. The platform is a Cessna 172 aircraft based close to FFI, modified with a camera port in the floor.

  7. Multisensor airborne imagery collection and processing onboard small unmanned systems

    NASA Astrophysics Data System (ADS)

    Linne von Berg, Dale; Anderson, Scott A.; Bird, Alan; Holt, Niel; Kruer, Melvin; Walls, Thomas J.; Wilson, Michael L.

    2010-04-01

    FEATHAR (Fusion, Exploitation, Algorithms, and Targeting for High-Altitude Reconnaissance) is an ONR funded effort to develop and test new tactical sensor systems specifically designed for small manned and unmanned platforms (payload weight < 50 lbs). This program is being directed and executed by the Naval Research Laboratory (NRL) in conjunction with the Space Dynamics Laboratory (SDL). FEATHAR has developed and integrated EyePod, a combined long-wave infrared (LWIR) and visible to near infrared (VNIR) optical survey & inspection system, with NuSAR, a combined dual band synthetic aperture radar (SAR) system. These sensors are being tested in conjunction with other ground and airborne sensor systems to demonstrate intelligent real-time cross-sensor cueing and in-air data fusion. Results from test flights of the EyePod and NuSAR sensors will be presented.

  8. Platform Precision Autopilot Overview and Flight Test Results

    NASA Technical Reports Server (NTRS)

    Lin, V.; Strovers, B.; Lee, J.; Beck, R.

    2008-01-01

    The Platform Precision Autopilot is an instrument landing system interfaced autopilot system, developed to enable an aircraft to repeatedly fly nearly the same trajectory hours, days, or weeks later. The Platform Precision Autopilot uses a novel design to interface with a NASA Gulfstream III jet by imitating the output of an instrument landing system approach. This technique minimizes, as much as possible, modifications to the baseline Gulfstream III jet and retains the safety features of the aircraft autopilot. The Platform Precision Autopilot requirement is to fly within a 5-m (16.4-ft) radius tube for distances to 200 km (108 nmi) in the presence of light turbulence for at least 90 percent of the time. This capability allows precise repeat-pass interferometry for the Uninhabited Aerial Vehicle Synthetic Aperture Radar program, whose primary objective is to develop a miniaturized, polarimetric, L-band synthetic aperture radar. Precise navigation is achieved using an accurate differential global positioning system developed by the Jet Propulsion Laboratory. Flight-testing has demonstrated the ability of the Platform Precision Autopilot to control the aircraft within the specified tolerance greater than 90 percent of the time in the presence of aircraft system noise and nonlinearities, constant pilot throttle adjustments, and light turbulence.

  9. Airborne detection of asperities: Linking aerogravimetry surveys and earthquake studies

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Boedecker, G.

    2003-04-01

    During the last decade, airborne gravimetric surveys have become a reliable and useful geophysical method to explore mid to large scale geologic settings. Ocean continent boundaries down to seamounts are detectable using conventional scalar, platform stabilized airborne gravimetry systems. New systems such as 3-D strap-down instruments promise a better spatial resolution recovering the gravity vector. Airborne gravimetric gradiometer systems are already able to detect small scale gradients in high spatial resolution. Following this trend in aerogravimetry, new research applications are emerging. One of the most challenging and interesting new aspects of airborne gravimetry is the systematic search for asperity structures. Asperities are patches of the oceanic or continental crust that are able to store more stress than the surrounding material. If due to stress overload or other mechanic forces the asperity breaks, up to mega-thrust earthquakes are triggered. The character of an asperity to carry more stress than the weaker environment must be related to its physical properties such as composition, thickness and density. Questions connected to define and detect an asperity are: How large is an asperity? Do asperities have sharp boundaries? Are asperities isolated structures? Do asperities have special gravimetric signatures? Wells et al. (2000) found that off southern Chile slip maxima from earthquakes coincide with forearc gravity lows. It is well accepted that in this region seismicity is a product of the subduction on the active continental margin. It is still debated whether subducted asperities from the oceanic plate are individual earthquake sources or if they i.e. trigger the break of asperities in the continental crust. Apart from this, very few investigations have been made trying to connect gravimetry and asperities. Therefore, the GeoForschungsZentrum Potsdam in collaboration with Bayerische Akademie der Wissenschaften in Munich , FU Berlin

  10. Reassessment of offshore platforms

    SciTech Connect

    Nair, V.V.D.; Kuhn, J.M. )

    1993-05-01

    Data from Hurricane Andrew demonstrated that the systems and procedures in place for evacuating offshore workers and minimizing oil spills and environmental damage functioned as planned. While the vast majority of the platforms survived the storm with no damage, a few of the older platforms (installed prior to 1972) either collapsed or suffered severe damage. The collapsed platforms were designed with insufficient deck height to clear the storm waves. In recent years, the API RP 2A has introduced guidance for minimum air gap, minimum structures, platform inspection and platform reuse. These provisions, coupled with natural attribution of the older platforms, will significantly improve the performance of platforms in the future. The reliability of NDT techniques to detect major structural defects should be improved through continued research. While flooded member detection is used by several operators as a screening tool to detect major defects underwater, its reliability is not always good and further research is needed in this area. Another area of high priority research is related to the use of Remotely Operated Vehicles (ROV) to perform underwater inspection of structures. 51 refs., 7 figs.

  11. JORNEX: An airborne campaign to quantify rangeland vegetation change and plant community-atmospheric interactions

    SciTech Connect

    Ritchie, J.C.; Rango, A.; Kustas, W.P.

    1996-11-01

    The Jornada Experimental Range in New Mexico provides a unique opportunity to integrate hydrologic-atmospheric fluxes and surface states, vegetation types, cover, and distribution, and vegetation response to changes in hydrologic states and atmospheric driving forces. The Jornada Range is the site of a long-term ecological research program to investigate the processes leading to desertification. In concert with ongoing ground measurements, remotely sensed data are being collected from ground, airborne, and satellite platforms during JORNEX (the JORNada Experiment) to provide spatial and temporal distribution of vegetation state using laser altimeter and multispectral aircraft and satellite data and surface energy balance estimates from a combination of parameters and state variables derived from remotely sensed data. These measurements will be used as inputs to models to quantify the hydrologic budget and the plant response to changes in components in the water and energy balance. Intensive three day study periods for ground and airborne campaigns have been made in May 1995 (dry season) and September 1995 (wet season), February 1996 (Winter) and are planned for wet and dry seasons of 1996. An airborne platform is being used to collect thermal, multispectral, 3-band video, and laser altimetry profile data. Bowen ratio-energy balance stations were established in shrub and grass communities in May 1995 and are collecting data continuously. Additional energy flux measurements were made using eddy correlation techniques during the September 1995 campaign. Ground-based measurements during the intensive campaigns include thermal and multispectral measurements made using yoke-based platforms and hand-held instruments, LAI, and other vegetation data. Ground and aircraft measurements are acquired during Landsat overpasses so the effect of scale on measurements can be studied. This paper discusses preliminary results from the 1995 airborne campaign. 24 refs., 13 figs., 1 tab.

  12. Mapping Slumgullion Landslide in Colorado, USA Using Airborne Repeat-Pass InSAR

    NASA Astrophysics Data System (ADS)

    Lee, H.; Shrestha, R. L.; Carter, W. E.; Glennie, C. L.; Wang, G.; Lu, Z.; Fernandez-Diaz, J. C.; Cao, N.; Zaugg, E.

    2015-12-01

    Interferometric Synthetic Aperture Radar (InSAR) uses two or more SAR images over the same area to determine landscape topography or ground deformation. An interferogram, generated by the phase components of two coherent SAR images, depicts range changes between the radar and the ground resolution elements, and can be used to derive both landscape topography and subtle changes in surface elevation. However, spaceborne repeat-pass interferometry has two main drawbacks: effects due to differences in atmospheric temperature, pressure, and water vapour at two observation times, and loss of coherence due to long spatial and temporal baselines between observations. Airborne repeat-pass interferometry does not suffer from these drawbacks. The atmospheric effect in case of airborne DInSAR becomes negligible due to smaller swath coverage, and the coherence can be maintained by using smaller spatial and temporal baselines. However, the main technical limitation concerning airborne DInSAR is the need of precise motion compensation with an accurate navigation system to correct for the significant phase errors due to typical flight instability from air turbulence. Here, we present results from a pilot study conducted on July 2015 using both X-band and L-band SlimSAR airborne system over the Slumgullion landslide in Colorado in order to (1) acquire the differential interferograms from the airborne platform, (2) understand their source of errors, and (3) pave a way to improve the precision of the derived surface deformation. The landslide movement estimated from airborne DInSAR is also compared with coincident GPS, terrestrial laser scanning (TLS), airborne LiDAR, and spaceborne DInSAR measurements using COSMO-SkyMed images. The airborne DInSAR system has a potential to provide time-transient variability in land surface topography with high-precision and high-resolution, and provide researchers with greater flexibility in selecting the temporal and spatial baselines of the data

  13. The buzzing of flies' wings

    NASA Astrophysics Data System (ADS)

    Easton, Don

    1999-02-01

    The object of this science-fair project was to determine the wing-beat frequency of common house flies from the frequency of the sound produced when they buzz their wings. The data produced a pattern that I have seen many times and felt sure that I knew what was going on. Like many interesting and seemingly simple phenomena, the longer that I look at this one the more intriguing and less explicable it becomes.

  14. Notes on flying and dying.

    PubMed

    Meyer, B C

    1983-07-01

    Focused on selected details in the lives and creative works of Samuel Johnson, Edgar Allan Poe, and Houdini, this paper explores a seeming antinomy between claustrophobic annihilation and aviation. At first glance the latter appears as an antidote to the threat of entrapment and death. On a deeper level the distinction fades as the impression arises that in the examples cited, flying may represent an unconscious expression of a wish for death and ultimate reunion. PMID:6351146

  15. Motion Systems Role in Flight Simulators for Flying Training. Final Report for Period June 1977-June 1978.

    ERIC Educational Resources Information Center

    Cyrus, Michael L.

    This report reviews the literature as it relates to the use of platform motion systems in flight simulators for flying training. Motion is discussed in terms of its effect on compensatory, pursuit, and precognitive tasks, within both the simulator and transfer contexts. Although both skilled and unskilled behaviors are addressed, the former are…

  16. An Airborne Infrared Spectrometer for Solar Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Samra, Jenna; DeLuca, Edward E.; Golub, Leon; Cheimets, Peter; Philip, Judge

    2016-05-01

    The airborne infrared spectrometer (AIR-Spec) is an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). AIR-Spec will image five infrared coronal emission lines to determine whether they may be useful probes of coronal magnetism.The solar magnetic field provides the free energy that controls coronal heating, structure, and dynamics. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections and ultimately drives space weather. Therefore, direct coronal field measurements have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind.While current instruments routinely observe only the photospheric and chromospheric magnetic fields, AIR-Spec will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. During the total solar eclipse of 2017, AIR-Spec will observe five magnetically sensitive coronal emission lines between 1.4 and 4 µm from the HIAPER Gulfstream V at an altitude above 14.9 km. The instrument will measure emission line intensity, width, and Doppler shift, map the spatial distribution of infrared emitting plasma, and search for waves in the emission line velocities.AIR-Spec consists of an optical system (feed telescope, grating spectrometer, and infrared detector) and an image stabilization system, which uses a fast steering mirror to correct the line-of-sight for platform perturbations. To ensure that the instrument meets its research goals, both systems are undergoing extensive performance modeling and testing. These results are shown with reference to the science requirements.

  17. Ladder attachment platform

    DOEpatents

    Swygert,; Richard, W [Springfield, SC

    2012-08-28

    A ladder attachment platform is provided that includes a base for attachment to a ladder that has first and second side rails and a plurality of rungs that extend between in a lateral direction. Also included is a user platform for having a user stand thereon that is carried by the base. The user platform may be positioned with respect to the ladder so that it is not located between a first plane that extends through the first side rail and is perpendicular to the lateral direction and a second plane that extends through the second side rail and is perpendicular to the lateral direction.

  18. FlyVar: a database for genetic variation in Drosophila melanogaster

    PubMed Central

    Wang, Fei; Jiang, Lichun; Chen, Yong; Haelterman, Nele A.; Bellen, Hugo J.; Chen, Rui

    2015-01-01

    FlyVar is a publicly and freely available platform that addresses the increasing need of next generation sequencing data analysis in the Drosophila research community. It is composed of three parts. First, a database that contains 5.94 million DNA polymorphisms found in Drosophila melanogaster derived from whole genome shotgun sequencing of 612 genomes of D. melanogaster. In addition, a list of 1094 dispensable genes has been identified. Second, a graphical user interface (GUI) has been implemented to allow easy and flexible queries of the database. Third, a set of interactive online tools enables filtering and annotation of genomic sequences obtained from individual D. melanogaster strains to identify candidate mutations. FlyVar permits the analysis of next generation sequencing data without the need of extensive computational training or resources. Database URL: www.iipl.fudan.edu.cn/FlyVar. PMID:26289428

  19. Motor control of fly feeding.

    PubMed

    McKellar, Claire E

    2016-06-01

    Following considerable progress on the molecular and cellular basis of taste perception in fly sensory neurons, the time is now ripe to explore how taste information, integrated with hunger and satiety, undergo a sensorimotor transformation to lead to the motor actions of feeding behavior. I examine what is known of feeding circuitry in adult flies from more than 250 years of work in larger flies and from newer work in Drosophila. I review the anatomy of the proboscis, its muscles and their functions (where known), its motor neurons, interneurons known to receive taste inputs, interneurons that diverge from taste circuitry to provide information to other circuits, interneurons from other circuits that converge on feeding circuits, proprioceptors that influence the motor control of feeding, and sites of integration of hunger and satiety on feeding circuits. In spite of the several neuron types now known, a connected pathway from taste inputs to feeding motor outputs has yet to be found. We are on the threshold of an era where these individual components will be assembled into circuits, revealing how nervous system architecture leads to the control of behavior. PMID:27309215

  20. Observations of Florida Convective Storms using Dual Wavelength Airborne Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Heymsfield, A. J.; Belcher, L.

    2004-01-01

    NASA conducted the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) during July 2002 for improved understanding of tropical cirrus. One of the goals was to improve the understanding of cirrus generation by convective updrafts. The reasons why some convective storms produce extensive cirrus anvils is only partially related to convective instability and the vertical transport ice mass by updrafts. Convective microphysics must also have an important role on cirrus generation, for example, there are hypotheses that homogeneous nucleation in convective updrafts is a major source of anvil ice particles. In this paper, we report on one intense CRYSTAL-FACE convective case on 16 July 2002 that produced extensive anvil. During CRYSTAL-FACE, up to 5 aircraft flying from low- to high-altitudes, were coordinated for the study of thunderstorm-generated cirrus. The NASA high-altitude (20 km) ER-2 aircraft with remote sensing objectives flew above the convection, and other aircraft such as the WB-57 performing in situ measurements flew below the ER-2. The ER-2 remote sensing instruments included two nadir viewing airborne radars. The CRS 94 GHz radar and the EDOP 9.6 GHz radar were flown together for the first time during CRYSTAL-FACE and they provided a unique opportunity to examine the structure of 16 July case from a dual-wavelength perspective. EDOP and CRS are complementary for studying convection and cirrus since CRS is more sensitive than EDOP for cirrus, and EDOP is considerably less attenuating in convective regions. In addition to the aircraft, coordinated ground-based radar measurements were taken with the NPOL S-Band (3 GHz) multiparameter radar. One of the initial goals was to determine whether dual-wavelength airborne measurements could identify supercooled water regions.

  1. House fly oviposition inhibition by larvae ofHermetia illucens, the black soldier fly.

    PubMed

    Bradley, S W; Sheppard, D C

    1984-06-01

    Wild populations of house flies were inhibited from ovipositing into poultry manure containing larvae of the black soldier fly,Hermetia illucens (L.). A laboratory strain of house fly responded differently, readily ovipositing into manure with lower densities of soldier fly larvae, but avoiding the higher densities tested. The amount of timeH. illucens larvae occupy the manure prior to an oviposition test influences ovipositional responses of house flies. Manure conditioned byH. illucens larvae for 4-5 days did not significantly inhibit house fly oviposition. We suggest that some type of interspecific chemical communication (allomone) is present. PMID:24318779

  2. The Multi-Center Airborne Coherent Atmospheric Wind Sensor: Recent Measurements and Future Applications

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Howell, James N.; Darby, Lisa S.; Tratt, David M.; Menzies, Robert T.

    1999-01-01

    The coherent Doppler lidar, when operated from an airborne platform, offers a unique measurement capability for study of atmospheric dynamical and physical properties. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are at a disadvantage in terms of spatial resolution and coverage. Recent experience suggests airborne coherent Doppler lidar can yield unique wind measurements of--and during operation within--extreme weather phenomena. This paper presents the first airborne coherent Doppler lidar measurements of hurricane wind fields. The lidar atmospheric remote sensing groups of National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, and Jet Propulsion Laboratory jointly developed an airborne lidar system, the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS). The centerpiece of MACAWS is the lidar transmitter from the highly successful NOAA Windvan. Other field-tested lidar components have also been used, when feasible, to reduce costs and development time. The methodology for remotely sensing atmospheric wind fields with scanning coherent Doppler lidar was demonstrated in 1981; enhancements were made and the system was reflown in 1984. MACAWS has potentially greater scientific utility, compared to the original airborne scanning lidar system, owing to a factor of approx. 60 greater energy-per-pulse from the NOAA transmitter. MACAWS development was completed and the system was first flown in 1995. Following enhancements to improve performance, the system was re-flown in 1996 and 1998. The scientific motivation for MACAWS is three-fold: obtain fundamental measurements of subgrid scale (i.e., approx. 2-200 km) processes and features which may be used to improve parameterizations in hydrological, climate, and general

  3. Identifying glass compositions in fly ash

    NASA Astrophysics Data System (ADS)

    Aughenbaugh, Katherine; Stutzman, Paul; Juenger, Maria

    2016-01-01

    In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS), calcium aluminosilicate glasses (CAS), a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  4. A Wireless Multi-Sensor Dielectric Impedance Spectroscopy Platform.

    PubMed

    Ghaffari, Seyed Alireza; Caron, William-O; Loubier, Mathilde; Rioux, Maxime; Viens, Jeff; Gosselin, Benoit; Messaddeq, Younes

    2015-01-01

    This paper describes the development of a low-cost, miniaturized, multiplexed, and connected platform for dielectric impedance spectroscopy (DIS), designed for in situ measurements and adapted to wireless network architectures. The platform has been tested and used as a DIS sensor node on ZigBee mesh and was able to interface up to three DIS sensors at the same time and relay the information through the network for data analysis and storage. The system is built from low-cost commercial microelectronics components, performs dielectric spectroscopy ranging from 5 kHz to 100 kHz, and benefits from an on-the-fly calibration system that makes sensor calibration easy. The paper describes the microelectronics design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the testing of the platform for in situ dielectric impedance spectroscopy applications pertaining to fertilizer sensing, water quality sensing, and touch sensing. PMID:26393587

  5. A Wireless Multi-Sensor Dielectric Impedance Spectroscopy Platform

    PubMed Central

    Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Rioux, Maxime; Viens, Jeff; Gosselin, Benoit; Messaddeq, Younes

    2015-01-01

    This paper describes the development of a low-cost, miniaturized, multiplexed, and connected platform for dielectric impedance spectroscopy (DIS), designed for in situ measurements and adapted to wireless network architectures. The platform has been tested and used as a DIS sensor node on ZigBee mesh and was able to interface up to three DIS sensors at the same time and relay the information through the network for data analysis and storage. The system is built from low-cost commercial microelectronics components, performs dielectric spectroscopy ranging from 5 kHz to 100 kHz, and benefits from an on-the-fly calibration system that makes sensor calibration easy. The paper describes the microelectronics design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the testing of the platform for in situ dielectric impedance spectroscopy applications pertaining to fertilizer sensing, water quality sensing, and touch sensing. PMID:26393587

  6. The FOSTER Project: Teacher Enrichment Through Participation in NASA's Airborne Astronomy Program

    NASA Technical Reports Server (NTRS)

    Koch, David; Hull, G.; Gillespie, C., Jr.; DeVore, E.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    NASA's airborne astronomy program offers a unique opportunity for K-12 science teacher enrichment and for NASA to reach out and serve the educational community. Learning from a combination of summer workshops, curriculum supplement materials, training in Internet skills and ultimately flying on NASA's C-141 airborne observatory, the teachers are able to share the excitement of scientific discovery with their students and convey that excitement from first hand experience rather than just from reading about science in a textbook. This year the program has expanded to include teachers from the eleven western states served by NASA Ames Research Center's Educational Programs Office as well as teachers from communities from around the country where the scientist who fly on the observatory reside. Through teacher workshops and inservice presentations, the FOSTER (Flight Opportunities for Science Teacher EnRichment) teachers are sharing the resources and experiences with many hundreds of other teachers. Ultimately, the students are learning first hand about the excitement of science, the scientific method in practice, the team work involved, the relevance of science to their daily lives and the importance of a firm foundation in math and science in today's technologically oriented world.

  7. Exposure to airborne particulate matter in the subway system.

    PubMed

    Martins, Vânia; Moreno, Teresa; Minguillón, María Cruz; Amato, Fulvio; de Miguel, Eladio; Capdevila, Marta; Querol, Xavier

    2015-04-01

    The Barcelona subway system comprises eight subway lines, at different depths, with different tunnel dimensions, station designs and train frequencies. An extensive measurement campaign was performed in this subway system in order to characterise the airborne particulate matter (PM) measuring its concentration and investigating its variability, both inside trains and on platforms, in two different seasonal periods (warmer and colder), to better understand the main factors controlling it, and therefore the way to improve air quality. The majority of PM in the underground stations is generated within the subway system, due to abrasion and wear of rail tracks, wheels and braking pads caused during the motion of the trains. Substantial variation in average PM concentrations between underground stations was observed, which might be associated to different ventilation and air conditioning systems, characteristics/design of each station and variations in the train frequency. Average PM2.5 concentrations on the platforms in the subway operating hours ranged from 20 to 51 and from 41 to 91 μg m(-3) in the warmer and colder period, respectively, mainly related to the seasonal changes in the subway ventilation systems. The new subway lines with platform screen doors showed PM2.5 concentrations lower than those in the conventional system, which is probably attributable not only to the more advanced ventilation setup, but also to the lower train frequency and the design of the stations. PM concentrations inside the trains were generally lower than those on the platforms, which is attributable to the air conditioning systems operating inside the trains, which are equipped with air filters. This study allows the analysis and quantification of the impact of different ventilation settings on air quality, which provides an improvement on the knowledge for the general understanding and good management of air quality in the subway system. PMID:25616190

  8. Spectral characterization of forest damage occurring on Whiteface Mountain, NY - Studies with the Fluorescence Line Imager (FLI) and ground-based spectrometers

    NASA Technical Reports Server (NTRS)

    Rock, B. N.; Moss, D. M.; Miller, J. R.; Freemantle, J. R.; Boyer, M. G.

    1990-01-01

    Ground-based spectral characteristics of fir wave damage and an analysis of calibrated FLI data acquired along the same fir wave utilized for the in situ measurements are presented. Derivative curve data were produced from both in situ and FLI reflectance measurements for the red edge spectral region for birch and for various portions of a fir wave. The results suggested that with proper atmospheric correction of airborne imaging spectrometer data sets, the derivative curve approach will provide an accurate means of assessing red edge parameters, and that such data will permit identification of specific types of forest damage on the basis of spectral fine features.

  9. ARM for Platform Application

    NASA Astrophysics Data System (ADS)

    Patte, Mathieu; Poupat, Jean-Luc; Le Meur, Patrick

    2015-09-01

    The activities described in this paper are part of the CNES R&T “Study of a Cortex-R ARM based architecture” performed by Airbus DS Space System & Electronics in 2014. With the support of CNES, Airbus DS has performed the porting of a representative space application software on an ARM based demonstration platform. This paper presents the platform itself, the activities performed at software level and the first results on this evaluation study.

  10. Repairing damaged platforms

    SciTech Connect

    Moore, R.E.; Kwok, P.H.; Wang, S.S.

    1995-10-01

    This paper introduces a unique method for strengthening of platforms and replacing damaged members. Extending the life of existing infrastructure is approved means of decreasing cash expenditures for new platforms and facilities. Platforms can be affected by corrosion, overloading and fatigue. The renovation and repair of existing offshore installations is an important part of offshore engineering. The basis behind this paper is an April, 1993 incident in the Arabian Gulf. A vessel broke loose from its moorings in a severe storm and collided with a wellhead platform. The collision severely damaged the platform buckling seven major support members and cracking joints throughout the structure. In view of the significant damage, there was an urgent need to repair the structure to avoid any further damage from potentially sever winter storm conditions. Various means of repair and their associated costs were evaluated: traditional dry hyperbaric welding, adjacent platforms, grouted clamped connections, and mechanical pipe connectors. The repair was completed using an innovative combination of clamps and wet welding to attach external braces to the structure.

  11. Modis-N airborne simulator

    NASA Technical Reports Server (NTRS)

    Cech, Steven D.

    1992-01-01

    All required work associated with the above referenced contract has been successfully completed at this time. The Modis-N Airborne Simulator has been developed from existing AB184 Wildfire spectrometer parts as well as new detector arrays, optical components, and associated mechanical and electrical hardware. The various instrument components have been integrated into an operational system which has undergone extensive laboratory calibration and testing. The instrument has been delivered to NASA Ames where it will be installed on the NASA ER-2. The following paragraphs detail the specific tasks performed during the contract effort, the results obtained during the integration and testing of the instrument, and the conclusions which can be drawn from this effort.

  12. Airborne imaging spectrometer development tasks

    NASA Astrophysics Data System (ADS)

    Bolten, John

    The tasks that must be completed to design and build an airborne imaging spectrometer are listed. The manpower and resources required to do these tasks must be estimated by the people responsible for that work. The tasks are broken down by instrument subsystem or discipline. The instrument performance can be assessed at various stages during the development. The initial assessment should be done with the preliminary computer model. The instrument calibration facilities should be designed, but no calibration facilities are needed. The intermediate assessment can be done when the front end has been assembled. The preliminary instrument calibration facility should be available at this stage. The final assessment can only be done when the instrument is complete and ready for flight. For this, the final instrument calibration facility and the flight qualification facilities must be ready. The final assessment is discussed in each discipline under the section on integration and test.

  13. Research on MLS airborne antenna

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1976-01-01

    Numerical solutions for the radiation patterns of antennas mounted on aircraft are developed. The airborne antenna problems associated with the Microwave Landing System (MLS) are emphasized. Based on the requirements of the MLS, volumetric pattern solutions are essential. Previous attempts at solving for the volumetric patterns were found to be far too complex and very inefficient. However as a result of previous efforts, it is possible to combine the elevation and roll plane pattern solutions to give the complete volumetric pattern. This combination is described as well as the aircraft simulation models used in the analysis. A numerical technique is presented to aid in the simulation of the aircraft studied. Finally, a description of the input data used in the computer code is given.

  14. Global deposition of airborne dioxin.

    PubMed

    Booth, Shawn; Hui, Joe; Alojado, Zoraida; Lam, Vicky; Cheung, William; Zeller, Dirk; Steyn, Douw; Pauly, Daniel

    2013-10-15

    We present a global dioxin model that simulates one year of atmospheric emissions, transport processes, and depositions to the earth's terrestrial and marine habitats. We map starting emission levels for each land area, and we also map the resulting deposits to terrestrial and marine environments. This model confirms that 'hot spots' of deposition are likely to be in northern Europe, eastern North America, and in parts of Asia with the highest marine dioxin depositions being the northeast and northwest Atlantic, western Pacific, northern Indian Ocean and the Mediterranean. It also reveals that approximately 40% of airborne dioxin emissions are deposited to marine environments and that many countries in Africa receive more dioxin than they produce, which results in these countries being disproportionately impacted. Since human exposure to dioxin is largely through diet, this work highlights food producing areas that receive higher atmospheric deposits of dioxin than others. PMID:23962732

  15. An EWS-FLI1-Induced Osteosarcoma Model Unveiled a Crucial Role of Impaired Osteogenic Differentiation on Osteosarcoma Development

    PubMed Central

    Komura, Shingo; Semi, Katsunori; Itakura, Fumiaki; Shibata, Hirofumi; Ohno, Takatoshi; Hotta, Akitsu; Woltjen, Knut; Yamamoto, Takuya; Akiyama, Haruhiko; Yamada, Yasuhiro

    2016-01-01

    Summary EWS-FLI1, a multi-functional fusion oncogene, is exclusively detected in Ewing sarcomas. However, previous studies reported that rare varieties of osteosarcomas also harbor EWS-ETS family fusion. Here, using the doxycycline-inducible EWS-FLI1 system, we established an EWS-FLI1-dependent osteosarcoma model from murine bone marrow stromal cells. We revealed that the withdrawal of EWS-FLI1 expression enhances the osteogenic differentiation of sarcoma cells, leading to mature bone formation. Taking advantage of induced pluripotent stem cell (iPSC) technology, we also show that sarcoma-derived iPSCs with cancer-related genetic abnormalities exhibited an impaired differentiation program of osteogenic lineage irrespective of the EWS-FLI1 expression. Finally, we demonstrate that EWS-FLI1 contributed to secondary sarcoma development from the sarcoma iPSCs after osteogenic differentiation. These findings demonstrate that modulating cellular differentiation is a fundamental principle of EWS-FLI1-induced osteosarcoma development. This in vitro cancer model using sarcoma iPSCs should provide a unique platform for dissecting relationships between the cancer genome and cellular differentiation. PMID:26997645

  16. An EWS-FLI1-Induced Osteosarcoma Model Unveiled a Crucial Role of Impaired Osteogenic Differentiation on Osteosarcoma Development.

    PubMed

    Komura, Shingo; Semi, Katsunori; Itakura, Fumiaki; Shibata, Hirofumi; Ohno, Takatoshi; Hotta, Akitsu; Woltjen, Knut; Yamamoto, Takuya; Akiyama, Haruhiko; Yamada, Yasuhiro

    2016-04-12

    EWS-FLI1, a multi-functional fusion oncogene, is exclusively detected in Ewing sarcomas. However, previous studies reported that rare varieties of osteosarcomas also harbor EWS-ETS family fusion. Here, using the doxycycline-inducible EWS-FLI1 system, we established an EWS-FLI1-dependent osteosarcoma model from murine bone marrow stromal cells. We revealed that the withdrawal of EWS-FLI1 expression enhances the osteogenic differentiation of sarcoma cells, leading to mature bone formation. Taking advantage of induced pluripotent stem cell (iPSC) technology, we also show that sarcoma-derived iPSCs with cancer-related genetic abnormalities exhibited an impaired differentiation program of osteogenic lineage irrespective of the EWS-FLI1 expression. Finally, we demonstrate that EWS-FLI1 contributed to secondary sarcoma development from the sarcoma iPSCs after osteogenic differentiation. These findings demonstrate that modulating cellular differentiation is a fundamental principle of EWS-FLI1-induced osteosarcoma development. This in vitro cancer model using sarcoma iPSCs should provide a unique platform for dissecting relationships between the cancer genome and cellular differentiation. PMID:26997645

  17. Airborne remote sensing of forest biomes

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  18. Ultrasonic Vocalizations Emitted by Flying Squirrels

    PubMed Central

    Murrant, Meghan N.; Bowman, Jeff; Garroway, Colin J.; Prinzen, Brian; Mayberry, Heather; Faure, Paul A.

    2013-01-01

    Anecdotal reports of ultrasound use by flying squirrels have existed for decades, yet there has been little detailed analysis of their vocalizations. Here we demonstrate that two species of flying squirrel emit ultrasonic vocalizations. We recorded vocalizations from northern (Glaucomys sabrinus) and southern (G. volans) flying squirrels calling in both the laboratory and at a field site in central Ontario, Canada. We demonstrate that flying squirrels produce ultrasonic emissions through recorded bursts of broadband noise and time-frequency structured frequency modulated (FM) vocalizations, some of which were purely ultrasonic. Squirrels emitted three types of ultrasonic calls in laboratory recordings and one type in the field. The variety of signals that were recorded suggest that flying squirrels may use ultrasonic vocalizations to transfer information. Thus, vocalizations may be an important, although still poorly understood, aspect of flying squirrel social biology. PMID:24009728

  19. Ultrasonic vocalizations emitted by flying squirrels.

    PubMed

    Murrant, Meghan N; Bowman, Jeff; Garroway, Colin J; Prinzen, Brian; Mayberry, Heather; Faure, Paul A

    2013-01-01

    Anecdotal reports of ultrasound use by flying squirrels have existed for decades, yet there has been little detailed analysis of their vocalizations. Here we demonstrate that two species of flying squirrel emit ultrasonic vocalizations. We recorded vocalizations from northern (Glaucomys sabrinus) and southern (G. volans) flying squirrels calling in both the laboratory and at a field site in central Ontario, Canada. We demonstrate that flying squirrels produce ultrasonic emissions through recorded bursts of broadband noise and time-frequency structured frequency modulated (FM) vocalizations, some of which were purely ultrasonic. Squirrels emitted three types of ultrasonic calls in laboratory recordings and one type in the field. The variety of signals that were recorded suggest that flying squirrels may use ultrasonic vocalizations to transfer information. Thus, vocalizations may be an important, although still poorly understood, aspect of flying squirrel social biology. PMID:24009728

  20. Airflow elicits a spider's jump towards airborne prey. II. Flow characteristics guiding behaviour.

    PubMed

    Klopsch, Christian; Kuhlmann, Hendrik C; Barth, Friedrich G

    2013-05-01

    When hungry, the wandering spider Cupiennius salei is frequently seen to catch flying insect prey. The success of its remarkable prey-capture jump from its sitting plant into the air obviously depends on proper timing and sensory guidance. In this study, it is shown that particular features of the airflow generated by the insect suffice to guide the spider. Vision and the reception of substrate vibrations and airborne sound are not needed. The behavioural reactions of blinded spiders were examined by exposing them to natural and synthetic flows imitating the fly-generated flow or particular features of it. Thus, the different roles of the three phases previously identified in the fly-generated flow and described in the companion paper could be demonstrated. When exposing the spider to phase I flow only (exponentially increasing flow velocity with very little fluctuation and typical of the fly's approach), an orienting behaviour could be observed but a prey-capture jump never be elicited. Remarkably, the spider reacted to the onset of phase II (highly fluctuating flow) of a synthetically generated flow field with a jump as frequently as it did when exposed to natural fly-generated flows. In all cases using either natural or artificial flows, the spider's jump was triggered before its flow sensors were hit by phase III flow (steadily decreasing airflow velocity). Phase III may tell the spider that the prey has passed by already in case of no prey-capture reaction. Our study underlines the relevance of airflow in spider behaviour. It also reflects the sophisticated workings of their flow sensors (trichobothria) previously studied in detail. Presumably, the information contained in prey-generated airflows plays a similar role in many other arthropods. PMID:23427092

  1. Development status of the planar electrostatic gradiometer GREMLIT for airborne geodesy

    NASA Astrophysics Data System (ADS)

    Foulon, B.; Christophe, B.; Douch, K.; Panet, I.

    2012-12-01

    The GREMLIT airborne gravity gradiometer is taking advantage of technologies, formerly developed by ONERA for the GRACE and GOCE space missions. Built using a planar configuration with four proof-masses at the corners of a square, the gradiometer is mounted on a dedicated stabilized platform which is controlled by the common mode outputs of the instrument itself to achieve a sufficient rejection ratio of the perturbations/vibrations induced by the airborne environment in the horizontal directions. The levitation of the proof-masses along the normal gravity and the vibration isolation of the platform are designed to allow the instrument to support between +2.5 g and 0 g along the vertical axis. With the help of additional fiber gyro data, the gradiometer differential measurements provide the necessary information to extract the 3 Tyy, Tzz and Tyz independent components of the gravity gradient tensor at the location of the instrument. In addition to be especially well suited to sustain the proof-mass levitation in the Earth's gravity field, such a planar configuration also presents an intrinsic linearity of the horizontal control loops which minimizes the aliasing due to high frequency vibrations or motions generated outside the measurement bandwidth. The compactness of the gradiometer design, with all the electrodes of the 4 accelerometers engrave on the same ULE plate, ensures excellent dimensional stability, good thermal homogeneity and makes the conception of the stabilized platform easier. The detailed error budget of the gradiometer instrument associated with the estimated performance of the platform and the assumed characteristics of the additional attitude, rate and position sensors lead to expect a performance objective between 0.1 and 1 Eötvös taking into account the difficulty of measurements onboard an aircraft by comparison to the particularly conducive satellite measurement environment. The GREMLIT gravity gradiometer systems is more particularly

  2. Leveraging Realtime Data in Airborne Campaigns: From COMEX to Disaster Response

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Thompson, D. R.; Bovensmann, H.; Eastwood, M. L.; Fladeland, M. M.; Gerilowski, K.; Green, R. O.; Krautwurst, S.; Krings, T.; Luna, B.; Di Benedetto, J.; Morey, M.

    2015-12-01

    The COMEX (CO2 and Methane eXperiment) campaign leveraged real-time remote sensing and in situ data spanning multiple airborne and surface mobile platforms and interplatform communications to improve dramatically science outcomes. COMEX realtime remote sensing of strong methane plumes released from a producing oil field in Southern California by the non-imaging spectrometer MAMAP (Methane Airborne MAPper) were used to shift the survey strategy of the AVIRIS NG (Airborne Visual InfraRed Imaging Spectrometer-Next Generation) instrument on a separate airplane from an area of few plumes to an area of high activity. Concurrently, a ground team was re-directed to collect mobile surface validation data by the AMOG (AutoMObile gas) Surveyor in the new area. On all platforms, realtime analysis were used to adapt the survey patterns such as making tactical decisions to repeat certain swaths or flight lines by AVIRIS NG and by MAMAP and to adapt surface survey patterns. The AVIRIS-NG realtime algorithms were developed for methane; however, oil exhibits spectral features that are similar, enabling their testing on AVIRIS-NG data acquired during the Santa Barbara Oil Spill. The effort determined that realtime oil mapping currently is feasible. For oil spill disaster response as well as other disaster response applications, the tactical advantages of realtime remote sensing for time-critical data collections will facilitate greater roles played by remote sensing in future disaster response.

  3. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  4. Airborne DOAS observations of tropospheric NO2 using an UltraLight Trike and flux calculation

    NASA Astrophysics Data System (ADS)

    Constantin, Daniel-Eduard; Voiculescu, Mirela; Merlaud, Alexis; Dragomir, Carmelia; Georgescu, Lucian; Hendrick, Francois; Van Roozendael, Michel

    2016-04-01

    In this paper we present airborne DOAS observations of tropospheric NO2 using an Ultralight Trike (ULT) and associated flux calculation. The instrument onboard the ULT was developed for measuring the tropospheric NO2 Vertical Column Density (VCD). Measurements were performed for several days during 2011-2014, in a region SE of Romania, over the cities of Galati (45.43°N, 28.03°E) and Braila (45.26°N, 27.95°E). Measurements of the NO2 column in the same area were performed using car-DOAS observations. The correlation between the tropospheric NO2 VCD from airborne and mobile ground-based DOAS observations was used to validate the airborne observations. A specific AMF for each case was calculated using the radiative transfer model (RTM) UVspec/DISORT. We present also a comparison between SCDstrato derived from DOMINO (Dutch OMI NO2) and the SCDstrato obtained from ground and airborne measurements. Due to the mobility and flexibility of the ULT flights, this aerial platform provides a promising tool for satellite validation, especially for space observations by high resolution sensors such as the future TROPOMI instrument. A key added value of the ULT-DOAS, illustrated in this work, is the capacity to investigate the spatial variability of NO2 inside the horizontal extent of satellite pixels, e.g. above plant exhaust plumes.

  5. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Technical Reports Server (NTRS)

    Meadows, Byron; Davis, Ken; Barrick, John; Browell, Edward; Chen, Gao; Dobler, Jeremy; Fried, Alan; Lauvaux, Thomas; Lin, Bing; McGill, Matt; Miles, Natasha; Nehrir, Amin; Obland, Michael; O'Dell, Chris; Sweeney, Colm; Yang, Melissa

    2015-01-01

    NASA announced the research opportunity Earth Venture Suborbital -2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport -America (ACT -America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT -America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  6. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Astrophysics Data System (ADS)

    Meadows, B.; Davis, K.; Barrick, J. D. W.; Browell, E. V.; Chen, G.; Dobler, J. T.; Fried, A.; Lauvaux, T.; Lin, B.; McGill, M. J.; Miles, N. L.; Nehrir, A. R.; Obland, M. D.; O'Dell, C.; Sweeney, C.; Yang, M. M.

    2015-12-01

    NASA announced the research opportunity Earth Venture Suborbital - 2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport - America (ACT - America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT - America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2 and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  7. Airborne megawatt class free-electron laser for defense and security

    SciTech Connect

    Roy Whitney; David Douglas; George Neil

    2005-03-01

    An airborne megawatt (MW) average power Free-Electron Laser (FEL) is now a possibility. In the process of shrinking the FEL parameters to fit on ship, a surprisingly lightweight and compact design has been achieved. There are multiple motivations for using a FEL for a high-power airborne system for Defense and Security: Diverse mission requirements can be met by a single system. The MW of light can be made available with any time structure for time periods from microseconds to hours, i.e. there is a nearly unlimited magazine. The wavelength of the light can be chosen to be from the far infrared (IR) to the near ultraviolet (UV) thereby best meeting mission requirements. The FEL light can be modulated for detecting the same pattern in the small fraction of light reflected from the target resulting in greatly enhanced targeting control. The entire MW class FEL including all of its subsystems can be carried by large commercial size airplanes or on an airship. Adequate electrical power can be generated on the plane or airship to run the FEL as long as the plane or airship has fuel to fly. The light from the FEL will work well with relay mirror systems. The required R&D to achieve the MW level is well understood. The coupling of the capabilities of an airborne FEL to diverse mission requirements provides unique opportunities.

  8. Ground testing and campaign intercomparisons with the NAST-I airborne FTS

    NASA Astrophysics Data System (ADS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.; Rochette, Luc; Noe, Anna; Oliver, Don; Tian, Jialin

    2014-10-01

    The NASA / JPSS Airborne Sounder Testbed - Interferometer (NAST-I) is a well-proven airborne remote sensing system, which has flown in 19 previous field campaigns aboard the high altitude NASA ER-2, Northrop Grumman / Scaled Composites Proteus, and NASA WB-57 aircraft since initially being flight qualified in 1998. While originally developed to provide experimental observations needed to finalize specifications and test proposed designs and data processing algorithms for the Cross-track Infrared Sounder (CrIS) flying aboard the Suomi National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (SNPP) and the Joint Polar Satellite System, JPSS (formerly NPOESS, prior to program restructuring), its unprecedented data quality and system characteristics have contributed to a variety of atmospheric research and measurement validation objectives. This paper will provide a program overview and update, including a summary of measurement system capabilities, with a primary focus on postmission ground testing and characterization performed subsequent to the recently conducted Suomi NPP (SNPP) airborne field campaign.

  9. Use Of Fly Iarvae In Space Agriculture

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Mitsuhashi, Jun; Hachiya, Natumi; Miyashita, Sachiko; Hotta, Atuko

    The concept of space agriculture is full use of biological and ecological components ot drive materials recycle loop. In an ecological system, producers, consumers and decomposers are its member. At limited resources acailable for space agriculture, full use of members' function is required to avoid food shortage and catastrophe.Fly is categrized to a decomposer at its eating excreta and rotten materials. However, is it could be edible, certainly it is eaten in several food culture of the world, it functions as a converter of inedible biomass ot edible substance. This conversion enhances the efficiency of usage of resource that will be attributed to space agriculture. In this context, we examine the value of melon fly, Dacus cucurbitae, as a candidate fly species ofr human food. Nutrients in 100g of melon fly larvae were protein 12g, lipid 4.6g Fe 4.74mg, Ca 275mg, Zn 6.37mg, Mn 4.00mg. Amino acids compositon in 100g of larvae was glutamic acid 1.43g and aspartic acid 1.12g. Because of high contents of these amino acids taste of fly larva might be good. Life time of adult melon fly is one to two month, and lays more than 1,000 eggs in total during the life. Larvae hatch after one to two days, and metamorphose after 8 to 15 days to pupae. Srxual maturity is reached after 22 days the earliest from it egg. Sixteen generations could be succeeded in a year for melon fly at maximum. The rate of proliferation of fly is quite high compared to silkworm that can have 8.7 generations per year. The wide food habit of fly, compared to mulberry leaf for silkworm, is another advantage to choose fly for entomophage. Rearing technology of melon fly is well established, since large scaled production of sterile male fly has been conducted in order ot exterminate melon fly in the field. Feeding substance for melon fly larvae in production line is a mixture of wheat, bran, raw sugar, olara, beer yeast, tissue paper, and additive chemicals. A 1 kg of feed substance can be converted to

  10. Passive Baited Sequential Filth Fly Trap.

    PubMed

    Aldridge, Robert L; Britch, Seth C; Snelling, Melissa; Gutierez, Arturo; White, Gregory; Linthicum, Kenneth J

    2015-09-01

    Filth fly control measures may be optimized with a better understanding of fly population dynamics measured throughout the day. We describe the modification of a commercial motorized sequential mosquito trap to accept liquid odorous bait and leverage a classic inverted-cone design to passively confine flies in 8 modified collection bottles corresponding to 8 intervals. Efficacy trials in a hot-arid desert environment indicate no significant difference (P  =  0.896) between the modified sequential trap and a Rid-Max® fly trap. PMID:26375911

  11. An algorithm for enhanced formation flying of satellites in low earth orbit

    NASA Astrophysics Data System (ADS)

    Folta, David C.; Quinn, David A.

    1998-01-01

    With scientific objectives for Earth observation programs becoming more ambitious and spacecraft becoming more autonomous, the need for innovative technical approaches on the feasibility of achieving and maintaining formations of spacecraft has come to the forefront. The trend to develop small low-cost spacecraft has led many scientists to recognize the advantage of flying several spacecraft in formation to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, formation flying imposes additional complications on orbit maintenance, especially when each spacecraft has its own orbit requirements. However, advances in automation and technology proposed by the Goddard Space Flight Center (GSFC) allow more of the burden in maneuver planning and execution to be placed onboard the spacecraft, mitigating some of the associated operational concerns. The purpose of this paper is to present GSFC's Guidance, Navigation, and Control Center's (GNCC) algorithm for Formation Flying of the low earth orbiting spacecraft that is part of the New Millennium Program (NMP). This system will be implemented as a close-loop flight code onboard the NMP Earth Orbiter-1 (EO-1) spacecraft. Results of this development can be used to determine the appropriateness of formation flying for a particular case as well as operational impacts. Simulation results using this algorithm integrated in an autonomous `fuzzy logic' control system called AutoCon™ are presented.

  12. Current status of the Fly's Eye Camera System

    NASA Astrophysics Data System (ADS)

    Meszaros, Laszlo; Pál, András; Jasko, Attila; Vida, Krisztián; Oláh, Katalin; Csepany, Gergely

    2015-08-01

    In this presentation we summarize the current status of the Fly's Eye project. This project aims to provide a low resolution and multiple-passband full-sky survey with an imaging cadence of a few minutes. Based on our earlier tests, we found that a novel type of astronomical telescope mount on a hexapod platform can provide the accuracy of sidereal tracking needed by our instrumentation. The fully configured Fly's Eye device contains 19 wide-field cameras equipped with fast focal ratio optics which are arranged in a mosaic form and have an effective resolution of 20 arcseconds per pixel. The scientific goal of this project is to continuously monitor stellar brightness variations in the full Sloan photometric system down to the magnitude of r=15 or the limit of apparent stellar confusion. The data acquisition will then cover roughly 6 magnitudes of the time domain, from the scales of minutes up to the several years of planned operations. Fly's Eye data yield is complementary to that of the Large Synoptic Survey Telescope since the saturation magnitude of LSST is close to the faint limit of the Fly's Eye setup.One of the main scientific yields of this survey is to recover time-domains of photometric variability of stars with magnetic activity. These timescales range from minutes through hours to years, just like in the case of the Sun. If active stars are monitored continuously, the measurements will give us data in the broad time range of the magnetic phenomena. By now, the Sun is the only active star, on which we have full picture of the manifestation of the magnetic field. In the solar active nests spots, faculae, plages and flares are observed and their spatial correlation studied. The Fly's Eye device allows similar research on different kinds of active stars individually, observing in five bandpasses from ultraviolet to near-infrared (365 to 900 nm) which is unprecedented. The results give us a broader view of the magnetic activity of stars of different ages

  13. The probability of laser caused ocular injury to the aircrew of undetected aircraft violating the exclusion zone about the airborne aura LIDAR.

    SciTech Connect

    Augustoni, Arnold L.

    2006-12-01

    The probability of a laser caused ocular injury, to the aircrew of an undetected aircraft entering the exclusion zone about the AURA LIDAR airborne platform with the possible violation of the Laser Hazard Zone boundary, was investigated and quantified for risk analysis and management.

  14. Formation Flying and Deformable Instruments

    SciTech Connect

    Rio, Yvon

    2009-05-11

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  15. Fly-by-Wireless Update

    NASA Technical Reports Server (NTRS)

    Studor, George

    2010-01-01

    The presentation reviews what is meant by the term 'fly-by-wireless', common problems and motivation, provides recent examples, and examines NASA's future and basis for collaboration. The vision is to minimize cables and connectors and increase functionality across the aerospace industry by providing reliable, lower cost, modular, and higher performance alternatives to wired data connectivity to benefit the entire vehicle/program life-cycle. Focus areas are system engineering and integration methods to reduce cables and connectors, vehicle provisions for modularity and accessibility, and a 'tool box' of alternatives to wired connectivity.

  16. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  17. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  18. SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH

    EPA Science Inventory

    Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....

  19. Transactional Network Platform: Applications

    SciTech Connect

    Katipamula, Srinivas; Lutes, Robert G.; Ngo, Hung; Underhill, Ronald M.

    2013-10-31

    In FY13, Pacific Northwest National Laboratory (PNNL) with funding from the Department of Energy’s (DOE’s) Building Technologies Office (BTO) designed, prototyped and tested a transactional network platform to support energy, operational and financial transactions between any networked entities (equipment, organizations, buildings, grid, etc.). Initially, in FY13, the concept demonstrated transactions between packaged rooftop air conditioners and heat pump units (RTUs) and the electric grid using applications or "agents" that reside on the platform, on the equipment, on a local building controller or in the Cloud. The transactional network project is a multi-lab effort with Oakridge National Laboratory (ORNL) and Lawrence Berkeley National Laboratory (LBNL) also contributing to the effort. PNNL coordinated the project and also was responsible for the development of the transactional network (TN) platform and three different applications associated with RTUs. This document describes two applications or "agents" in details, and also summarizes the platform. The TN platform details are described in another companion document.

  20. Sensor motion control and mobile platforms for aquatic remote sensing

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.

    2006-09-01

    Modern remote sensing systems used in repetitive environmental monitoring and surveillance applications are used on various platforms. These platforms can be categorized as stationary (fixed) or moving platforms. The sensing systems monitor the ambient environment which also may have inherent motion, such as the water surface with water waves. This is particularly the case for airborne or ship borne sensing of aquatic environments and is true for ground based walking or crawling systems. The time sequential comparison and spatial registration of sensor images, particularly "hyperspectral imagery" requires pixel to pixel registration for science based change and target (or medium) detection applications. These applications require sensor motion control combined with platform motion control. If the pixel sizes are small - on the order of 1 meter to less than 1 mm, then "nano-positioning accuracy" may be necessary for various aspects of the camera or surveillance sensor system, and/or related sensors used to control the moving platform. In this paper and presentation, an overview of converging technologies to sensor motion control and nano-positioning is discussed. The paper and presentation will demonstrate that the technologies converging on this aspect of remote sensing monitoring systems will require professionals with a combination of skills that are not readily available in today's workforce nor taught in educational programs today - especially at the undergraduate level. Thus there is a need to consider new avenues for educating professionals necessary to engineer and apply these converging technologies to important social environmental monitoring and surveillance needs.

  1. A wing pod-based millimeter wavelength airborne cloud radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Ellis, S.; Tsai, P.; Loew, E.; Lee, W. C.; Emmett, J.; Dixon, M.; Burghart, C.; Rauenbuehler, S.

    2015-04-01

    This paper describes a novel, airborne pod-based millimeter wavelength radar. Its frequency of operation is 94 GHz (3 mm wavelength). The radar has been designed to fly on the NCAR Gulfstream V HIAPER aircraft; however, it could be deployed on other similarly equipped aircraft. The pod-based configuration occupies minimum cabin space and maximizes scan coverage. The radar system is capable of collecting observations in a staring mode between zenith and nadir or in a scanning mode. Standard pulse-pair estimates of moments and raw time series of backscattered signals are recorded. The radar system design and characteristics, as well as techniques for calibrating reflectivity and correcting Doppler velocity for aircraft attitude and motion are described. The radar can alternatively be deployed in a ground-based configuration, housed in the 20 ft shipping container it shares with the High Spectral Resolution Lidar (HSRL). The radar was tested both on the ground and in flight. Preliminary measurements of Doppler and polarization measurements were collected and examples are presented.

  2. A wing pod-based millimeter wavelength airborne cloud radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Ellis, S.; Tsai, P.; Loew, E.; Lee, W.-C.; Emmett, J.; Dixon, M.; Burghart, C.; Rauenbuehler, S.

    2015-08-01

    This paper describes a novel, airborne pod-based millimeter (mm) wavelength radar. Its frequency of operation is 94 GHz (3 mm wavelength). The radar has been designed to fly on the NCAR Gulfstream V HIAPER aircraft; however, it could be deployed on other similarly equipped aircraft. The pod-based configuration occupies minimum cabin space and maximizes scan coverage. The radar system is capable of collecting observations in a staring mode between zenith and nadir or in a scanning mode. Standard pulse-pair estimates of moments and raw time series of backscattered signals are recorded. The radar system design and characteristics as well as techniques for calibrating reflectivity and correcting Doppler velocity for aircraft attitude and motion are described. The radar can alternatively be deployed in a ground-based configuration, housed in the 20 ft shipping container it shares with the High Spectral Resolution Lidar (HSRL). The radar was tested both on the ground and in flight. Preliminary measurements of Doppler and polarization measurements were collected and examples are presented.

  3. Airborne lidar intensity calibration and application for land use classification

    NASA Astrophysics Data System (ADS)

    Li, Dong; Wang, Cheng; Luo, She-Zhou; Zuo, Zheng-Li

    2014-11-01

    Airborne Light Detection and Ranging (LiDAR) is an active remote sensing technology which can acquire the topographic information efficiently. It can record the accurate 3D coordinates of the targets and also the signal intensity (the amplitude of backscattered echoes) which represents reflectance characteristics of targets. The intensity data has been used in land use classification, vegetation fractional cover and leaf area index (LAI) estimation. Apart from the reflectance characteristics of the targets, the intensity data can also be influenced by many other factors, such as flying height, incident angle, atmospheric attenuation, laser pulse power and laser beam width. It is therefore necessary to calibrate intensity values before further applications. In this study, we analyze the factors affecting LiDAR intensity based on radar range equation firstly, and then applying the intensity calibration method, which includes the sensor-to-target distance and incident angle, to the laser intensity data over the study area. Finally the raw LiDAR intensity and normalized intensity data are used for land use classification along with LiDAR elevation data respectively. The results show that the classification accuracy from the normalized intensity data is higher than that from raw LiDAR intensity data and also indicate that the calibration of LiDAR intensity data is necessary in the application of land use classification.

  4. Microwave Temperature Profiler Mounted in a Standard Airborne Research Canister

    NASA Technical Reports Server (NTRS)

    Mahoney, Michael J.; Denning, Richard F.; Fox, Jack

    2009-01-01

    Many atmospheric research aircraft use a standard canister design to mount instruments, as this significantly facilitates their electrical and mechanical integration and thereby reduces cost. Based on more than 30 years of airborne science experience with the Microwave Temperature Profiler (MTP), the MTP has been repackaged with state-of-the-art electronics and other design improvements to fly in one of these standard canisters. All of the controlling electronics are integrated on a single 4 5-in. (.10 13- cm) multi-layer PCB (printed circuit board) with surface-mount hardware. Improved circuit design, including a self-calibrating RTD (resistive temperature detector) multiplexer, was implemented in order to reduce the size and mass of the electronics while providing increased capability. A new microcontroller-based temperature controller board was designed, providing better control with fewer components. Five such boards are used to provide local control of the temperature in various areas of the instrument, improving radiometric performance. The new stepper motor has an embedded controller eliminating the need for a separate controller board. The reference target is heated to avoid possible emissivity (and hence calibration) changes due to moisture contamination in humid environments, as well as avoiding issues with ambient targets during ascent and descent. The radiometer is a double-sideband heterodyne receiver tuned sequentially to individual oxygen emission lines near 60 GHz, with the line selection and intermediate frequency bandwidths chosen to accommodate the altitude range of the aircraft and mission.

  5. High resolution airborne geophysics at hazardous waste disposal sites

    SciTech Connect

    Beard, L.P.; Nyquist, J.E.; Doll, W.E.; Chong Foo, M.; Gamey, T.J.

    1995-06-01

    In 1994, a high resolution helicopter geophysical survey was conducted over portions of the Oak Ridge Reservation, Tennessee. The 1800 line kilometer survey included multi-frequency electromagnetic and magnetic sensors. The areas covered by the high resolution portion of the survey were selected on the basis of their importance to the environmental restoration effort and on data obtained from the reconnaissance phase of the airborne survey in which electromagnetic, magnetic, and radiometric data were collected over the entire Oak Ridge Reservation in 1992--1993. The high resolution phase had lower sensor heights, more and higher EM frequencies, and tighter line spacings than did the reconnaissance survey. When flying over exceptionally clear areas, the high resolution bird came within a few meters of the ground surface. Unfortunately, even sparse trees and power or phone lines could prevent the bird from being towed safely at low altitude, and over such areas it was more usual for it to be flown at about the same altitude as the bird in the reconnaissance survey, about 30m. Even so, the magnetometers used in the high resolution phase were 20m closer to the ground than in the reconnaissance phase because they were mounted on the tail of the bird rather than on the tow cable above the bird. The EM frequencies used in the high resolution survey ranged from 7400Hz to 67000Hz. Only the horizontal coplanar loop configuration was used in the high resolution flyovers.

  6. Airborne laser systems for atmospheric sounding in the near infrared

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Jia, Huamin; Zammit-Mangion, David

    2012-06-01

    This paper presents new techniques for atmospheric sounding using Near Infrared (NIR) laser sources, direct detection electro-optics and passive infrared imaging systems. These techniques allow a direct determination of atmospheric extinction and, through the adoption of suitable inversion algorithms, the indirect measurement of some important natural and man-made atmospheric constituents, including Carbon Dioxide (CO2). The proposed techniques are suitable for remote sensing missions performed by using aircraft, satellites, Unmanned Aerial Vehicles (UAV), parachute/gliding vehicles, Roving Surface Vehicles (RSV), or Permanent Surface Installations (PSI). The various techniques proposed offer relative advantages in different scenarios. All are based on measurements of the laser energy/power incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Experimental results are presented relative to ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft above ground level. Future activities are planned to validate the atmospheric retrieval algorithms developed for CO2 column density measurements, with emphasis on aircraft related emissions at airports and other high air-traffic density environments.

  7. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  8. Challenges and Opportunities of Airborne Metagenomics

    PubMed Central

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  9. Assembly States of FliM and FliG within the Flagellar Switch Complex

    PubMed Central

    Sircar, Ria; Borbat, Peter P.; Lynch, Michael J.; Bhatnagar, Jaya; Beyersdorf, Matthew S.; Halkides, Christopher J.; Freed, Jack H.; Crane, Brian R.

    2015-01-01

    At the base of the bacterial flagella a cytoplasmic rotor (the C-ring) generates torque and reverses rotation sense in response to stimuli. The bulk of the C-ring forms from many copies of the proteins FliG, FliM, and FliN, which together constitute the switch complex. To help resolve outstanding issues regarding C-ring architecture, interactions between FliM and FliG from Thermotoga maritima have been investigated with x-ray crystallography and pulsed dipolar electron spin resonance spectroscopy (PDS). A new crystal structure of an 11-unit FliG:FliM complex produces a large arc with a curvature consistent with the dimensions of the C-ring. Previously determined structures along with this new structure provided a basis to test switch complex assembly models. PDS combined with mutational studies and targeted cross-linking reveal that FliM and FliG interact through their middle domains to form both parallel and antiparallel arrangements in solution. Residue substitutions at predicted interfaces disrupt higher-order complexes that are primarily mediated by contacts between the C-terminal domain of FliG and the middle domain of a neighboring FliG molecule. Spin separations among multi-labeled component proteins fit to a self-consistent model that agrees well with electron microscopy images of the C-ring. An activated form of the response regulator CheY destabilizes the parallel arrangement of FliM molecules to perturb FliG alignment in a process that may reflect the onset of rotation switching. This data suggest a model of C-ring assembly in which intermolecular contacts among FliG domains provide a template for FliM assembly and cooperative transitions. PMID:25536293

  10. Universal visualization platform

    NASA Astrophysics Data System (ADS)

    Gee, Alexander G.; Li, Hongli; Yu, Min; Smrtic, Mary Beth; Cvek, Urska; Goodell, Howie; Gupta, Vivek; Lawrence, Christine; Zhou, Jainping; Chiang, Chih-Hung; Grinstein, Georges G.

    2005-03-01

    Although there are a number of visualization systems to choose from when analyzing data, only a few of these allow for the integration of other visualization and analysis techniques. There are even fewer visualization toolkits and frameworks from which one can develop ones own visualization applications. Even within the research community, scientists either use what they can from the available tools or start from scratch to define a program in which they are able to develop new or modified visualization techniques and analysis algorithms. Presented here is a new general-purpose platform for constructing numerous visualization and analysis applications. The focus of this system is the design and experimentation of new techniques, and where the sharing of and integration with other tools becomes second nature. Moreover, this platform supports multiple large data sets, and the recording and visualizing of user sessions. Here we introduce the Universal Visualization Platform (UVP) as a modern data visualization and analysis system.

  11. Geostationary multipurpose platforms

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Bowman, R. M.

    1981-01-01

    In addition to the advantages generally associated with orbital platforms, such as improved reliability, economies of scale, simple connectivity of elements, reduced tracking demands and the restraint of orbital object population growth, geostationary platforms yield: (1) continuous access by fixed ground antennas for communications services; (2) continuous monitoring of phenomena over chosen regions of the earth's surface; (3) a preferred location for many solar-terrestrial physics experiments. The geostationary platform also offers a low-risk and economical solution to the impending saturation of the orbital arc/frequency spectrum, maximizing the capacity of individual slots and increasing the utility of the entire arc. It also allows the use of many small, simple and inexpensive earth stations through complexity inversion and high power per beam. Block diagram and operational flowcharts are provided.

  12. Simulation of a weather radar display for over-water airborne radar approaches

    NASA Technical Reports Server (NTRS)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  13. Airborne measurements of formaldehyde employing a high-performance tunable diode laser absorption system

    NASA Astrophysics Data System (ADS)

    Fried, Alan; Wert, Bryan P.; Walega, James G.; Richter, Dirk A.; Potter, William T.

    2002-09-01

    Formaldehyde (CH2O) is a ubiquitous component of both the remote atmosphere as well as the polluted urban atmosphere. This important gas-phase intermediate is a primary emission product from hydrocarbon combustion sources as well as from oxidation of natural hydrocarbons emitted by plants and trees. Through its subsequent decomposition, formaldehyde is a source of reactive hydrogen radicals, which control the oxidation capacity of the atmosphere. Because ambient CH2O concentrations attain levels as high as several tens of parts-per-billion (ppbv) in urban areas to levels as low as tens of parts-per-trillion (pptv) in the remote background atmosphere, ambient measurements become quite challenging, particularly on airborne platforms. The present paper discusses an airborne tunable diode laser absorption spectrometer, which has been developed and refined over the past 6 years, for such demanding measurements. The results from a recent study will be presented.

  14. The 1979 Southeastern Virginia Urban Plume Study (SEV-UPS): Surface and airborne studies

    NASA Technical Reports Server (NTRS)

    White, J. H.; Eaton, W. C.; Saeger, M. L.; Strong, R. B.; Tommerdahl, J. B.

    1980-01-01

    The operation of two surface monitoring stations (one in downtown Norfolk, Virginia, one south of the city near the Great Dismal Swamp) and the collection of 40 hours of airborne measurements is described. Surface site measurements of ozone, oxides of nitrogen, sulfur dioxide, temperature, dew point, b sub seat, and condensation nuclei were made. Instrument calibrations, quality assurance audits, and preliminary data analysis in support of the Urban Plume Study were also made. The air pollution problems that were addressed are discussed. Data handling procedures followed for the surface stations are presented. The operation of the aircraft sampling platform is described. Aircraft sampling procedures are discussed. A preliminary descriptive analysis of the aircraft data is given along with data or plots for surface sites, airborne studies, hydrocarbon species, and instrument performance audits. Several of the aircraft flights clearly show the presence of an urban ozone plume downwind of Norfolk in the direction of the mean wind flow.

  15. The Personal Motion Platform

    NASA Technical Reports Server (NTRS)

    Park, Brian Vandellyn

    1993-01-01

    The Neutral Body Posture experienced in microgravity creates a biomechanical equilibrium by enabling the internal forces within the body to find their own balance. A patented reclining chair based on this posture provides a minimal stress environment for interfacing with computer systems for extended periods. When the chair is mounted on a 3 or 6 axis motion platform, a generic motion simulator for simulated digital environments is created. The Personal Motion Platform provides motional feedback to the occupant in synchronization with their movements inside the digital world which enhances the simulation experience. Existing HMD based simulation systems can be integrated to the turnkey system. Future developments are discussed.

  16. Electric Propulsion Orbital Platform

    NASA Technical Reports Server (NTRS)

    Friedly, V. J.; Ruyten, Wilhelmus M.; Litchford, R. J.; Garrison, G. W.

    1993-01-01

    This paper describes the Electric Propulsion Orbital Platform (EPOP), of which the primary objective is to provide an instrumented platform for testing electric propulsion devices in space. It is anticipated that the first flight, EPOP-1, will take place on the Shuttle-deployed Wake Shield Facility in 1996, and will be designed around a commercial 1.8 kW arcjet system which will be operated on gaseous hydrogen propellant. Specific subsystems are described, including the arcjet system, the propellant and power systems, and the diagnostics systems.

  17. Coordinated Airborne, Spaceborne and Ground-based Measurements of Massive Thick Aerosol Layers during the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J. R.; Torres, O.

    2003-01-01

    During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of aerosol optical depth (lambda = 0.354- 1.557 microns), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data (MPL-Net), and with measurements from a downward pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths fiom the Sun photometer and those retrieved over land and over water using four spaceborne sensors (TOMS, MODIS, MISR, and ATSR-2).

  18. Coordinated Airborne, Spaceborne, and Ground-Based Measurements of Massive, Thick Aerosol Layers During the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J.; Torres, O.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    During the dry-season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), unique coordinated observations were made of massive, thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sunphotometer measurements of aerosol optical depth (lambda=354-1558 nm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data MPL-Net), and with measurements from a downward-pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sunphotometer and those retrieved over land and over water using four spaceborne sensors (TOMS (Total Ozone Mapping Spectrometer), MODIS (Moderate Resolution Imaging Spectrometer), MISR (Multiangle Imaging Spectroradiometer) and ATSR-2 (Along Track Scanning Radiometer)).

  19. Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 νm.

    PubMed

    Targ, R; Steakley, B C; Hawley, J G; Ames, L L; Forney, P; Swanson, D; Stone, R; Otto, R G; Zarifis, V; Brockman, P; Calloway, R S; Klein, S H; Robinson, P A

    1996-12-20

    The use of airborne laser radar (lidar) to measure wind velocities and to detect turbulence in front of an aircraft in real time can significantly increase fuel efficiency, flight safety, and terminal area capacity. We describe the flight-test results for two coherent lidar airborne shear sensor (CLASS) systems and discuss their agreement with our theoretical simulations. The 10.6-μm CO(2) system (CLASS-10) is a flying brassboard; the 2.02-μm Tm:YAG solid-state system (CLASS-2) is configured in a rugged, light-weight, high-performance package. Both lidars have shown a wind measurement accuracy of better than 1 m/s. PMID:21151317

  20. Testing for Mutagens Using Fruit Flies.

    ERIC Educational Resources Information Center

    Liebl, Eric C.

    1998-01-01

    Describes a laboratory employed in undergraduate teaching that uses fruit flies to test student-selected compounds for their ability to cause mutations. Requires no prior experience with fruit flies, incorporates a student design component, and employs both rigorous controls and statistical analyses. (DDR)