Science.gov

Sample records for airborne polarimetric synthetic

  1. Initial assessment of an airborne Ku-band polarimetric SAR.

    SciTech Connect

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940's. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analyst's understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  2. Airborne system for multispectral, multiangle polarimetric imaging.

    PubMed

    Bowles, Jeffrey H; Korwan, Daniel R; Montes, Marcos J; Gray, Deric J; Gillis, David B; Lamela, Gia M; Miller, W David

    2015-11-01

    In this paper, we describe the design, fabrication, calibration, and deployment of an airborne multispectral polarimetric imager. The motivation for the development of this instrument was to explore its ability to provide information about water constituents, such as particle size and type. The instrument is based on four 16 MP cameras and uses wire grid polarizers (aligned at 0°, 45°, 90°, and 135°) to provide the separation of the polarization states. A five-position filter wheel provides for four narrow-band spectral filters (435, 550, 625, and 750 nm) and one blocked position for dark-level measurements. When flown, the instrument is mounted on a programmable stage that provides control of the view angles. View angles that range to ±65° from the nadir have been used. Data processing provides a measure of the polarimetric signature as a function of both the view zenith and view azimuth angles. As a validation of our initial results, we compare our measurements, over water, with the output of a Monte Carlo code, both of which show neutral points off the principle plane. The locations of the calculated and measured neutral points are compared. The random error level in the measured degree of linear polarization (8% at 435) is shown to be better than 0.25%. PMID:26560615

  3. The Next Generation Airborne Polarimetric Doppler Radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  4. Digital Beamforming Synthetic Aperture Radar (DBSAR) Polarimetric Upgrade

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Perrine, Martin; McLinden, Matthew; Valett, Susan

    2011-01-01

    The Digital Beamforming Synthetic Aperture Radar (DBSAR) is a state-of-the-art radar system developed at NASA/Goddard Space Flight Center for the development and implementation of digital beamforming radar techniques. DBSAR was recently upgraded to polarimetric operation in order to enhance its capability as a science instrument. Two polarimetric approaches were carried out which will be demonstrated in upcoming flight campaigns.

  5. Analysis of polarimetric synthetic aperture radar and passive visible light polarimetric imaging data fusion for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Maitra, Sanjit

    The recent launch of spaceborne (TerraSAR-X, RADARSAT-2, ALOS-PALSAR, RISAT) and airborne (SIRC, AIRSAR, UAVSAR, PISAR) polarimetric radar sensors, with capability of imaging through day and night in almost all weather conditions, has made polarimetric synthetic aperture radar (PolSAR) image interpretation and analysis an active area of research. PolSAR image classification is sensitive to object orientation and scattering properties. In recent years, significant work has been done in many areas including agriculture, forestry, oceanography, geology, terrain analysis. Visible light passive polarimetric imaging has also emerged as a powerful tool in remote sensing for enhanced information extraction. The intensity image provides information on materials in the scene while polarization measurements capture surface features, roughness, and shading, often uncorrelated with the intensity image. Advantages of visible light polarimetric imaging include high dynamic range of polarimetric signatures and being comparatively straightforward to build and calibrate. This research is about characterization and analysis of the basic scattering mechanisms for information fusion between PolSAR and passive visible light polarimetric imaging. Relationships between these two modes of imaging are established using laboratory measurements and image simulations using the Digital Image and Remote Sensing Image Generation (DIRSIG) tool. A novel low cost laboratory based S-band (2.4GHz) PolSAR instrument is developed that is capable of capturing 4 channel fully polarimetric SAR image data. Simple radar targets are formed and system calibration is performed in terms of radar cross-section. Experimental measurements are done using combination of the PolSAR instrument with visible light polarimetric imager for scenes capturing basic scattering mechanisms for phenomenology studies. The three major scattering mechanisms studied in this research include single, double and multiple bounce. Single

  6. Multibaseline polarimetric synthetic aperture radar tomography of forested areas using wavelet-based distribution compressive sensing

    NASA Astrophysics Data System (ADS)

    Liang, Lei; Li, Xinwu; Gao, Xizhang; Guo, Huadong

    2015-01-01

    The three-dimensional (3-D) structure of forests, especially the vertical structure, is an important parameter of forest ecosystem modeling for monitoring ecological change. Synthetic aperture radar tomography (TomoSAR) provides scene reflectivity estimation of vegetation along elevation coordinates. Due to the advantages of super-resolution imaging and a small number of measurements, distribution compressive sensing (DCS) inversion techniques for polarimetric SAR tomography were successfully developed and applied. This paper addresses the 3-D imaging of forested areas based on the framework of DCS using fully polarimetric (FP) multibaseline SAR interferometric (MB-InSAR) tomography at the P-band. A new DCS-based FP TomoSAR method is proposed: a new wavelet-based distributed compressive sensing FP TomoSAR method (FP-WDCS TomoSAR method). The method takes advantage of the joint sparsity between polarimetric channel signals in the wavelet domain to jointly inverse the reflectivity profiles in each channel. The method not only allows high accuracy and super-resolution imaging with a low number of acquisitions, but can also obtain the polarization information of the vertical structure of forested areas. The effectiveness of the techniques for polarimetric SAR tomography is demonstrated using FP P-band airborne datasets acquired by the ONERA SETHI airborne system over a test site in Paracou, French Guiana.

  7. Forest stand structure from airborne polarimetric InSAR

    NASA Astrophysics Data System (ADS)

    Balzter, H.; Saich, P.; Luckman, A. J.; Skinner, L.; Grant, J.

    2002-01-01

    Interferometric SAR at short wavelengths can be used to retrieve stand height of forests. We evaluate the precision of tree height estimation from airborne single-pass interferometric E-SAR data at X-band VV polarisation and repeat-pass L-band polarimetric data. General yield class curves were used to estimate tree height from planting year, tree species and yield class data provided by the Forest Enterprise. The data were compared to tree height estimates from X-VV single-pass InSAR and repeat-pass polarimetric InSAR at L-band acquired by DLR's E-SAR during the SHAC campaign 2000. The effect of gap structure and incidence angle on retrieval precision of tree height from interferometric SAR is analysed. Appropriate correction methods to improve tree height retrieval are proposed. The coherent microwave model CASM is used with a Lindenmayer system tree model to simulate the observed underestimation of stand height in the presence of gaps.

  8. Characterizing Levees using Polarimetric and Interferometric Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Dabbiru, L.; Aanstoos, J. V.; Mahrooghy, M.; Gokaraju, B.; Nobrega, R. A.; Younan, N. H.

    2011-12-01

    Monitoring the physical condition of levees is vital in order to protect them from flooding. The dynamics of subsurface water events can cause damage on levee structures which could lead to slough slides, sand boils or through seepage. Synthetic Aperture Radar (SAR) technology, due to its high spatial resolution and soil penetration capability, is a good choice to identify such problem areas so that they can be treated to avoid possible catastrophic failure. The radar polarimetric and interferometric data is capable of identifying variations in soil properties of the areas which might cause levee failure. The study area encompasses portion of levees of the lower Mississippi river in the United States. The methodology of this research is mainly categorized into two streams: 1) polarimetric data analysis and classification, and 2) interferometric analysis. Two sources of SAR imagery are used: a) quad-polarized, L-band data from Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) for polarimetric classification, and b) high resolution dual-polarized Terrasar-X data for interferometric analysis. NASA's UAVSAR imagery acquired between 2009 and 2011 are used for the analysis. The polarimetric classification is performed based on the decomposition parameters: entropy (H), anisotropy (A) and alpha (α) and the results detected slough slides on the levees and potential future slides. In the interferometric approach, the Terrasar-X SAR images acquired at different times in the year 2011 are combined into pairs to exploit the phase difference of the signals. The interferometric information is used to find evidence of potential small-scale deformations which could be pre-cursors to levee failure.

  9. The NASA/JPL Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Kim,Yunjin; vanZyl, Jakob

    1996-01-01

    In this paper we will briefly describe the instrument characteristics, the evolution of various radar modes, the instrument performance and improvement in the knowledge of the positioning and attitude information of the NASA/JPL airborne synthetic aperture radar (SAR). This system operates in the fully polarimetric mode in the P, L, and C band simultaneously or in the interferometric mode in both the L and C band simultaneously. We also summarize the progress of the data processing effort, especially in the interferometry processing and we address the issue of processing and calibrating the cross-track interferometry data.

  10. Classification And Monitoring Of Salt Marsh Habitats With Multi-Polarimetric Airborne SAR

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Comber, Alexis; Lamb, Alistair

    2013-12-01

    Within the Copernicus programme there is much interest in the ability of remote sensing technology to deliver operational solutions to many areas of life including environmental management. This paper describes research focused on the application of Earth Observation for Integrated Coastal Zone Management. The main topic of this research is to explore to which extent salt marsh vegetation habitats can be identified from polarimetric SAR remotely sensed data. Multi- frequency, multi-polarimetric SAR images from airborne (S- and X-Band quad-polarimetric from the Astrium airborne SAR Demonstrator) is used to examine salt marsh habitat classification potential in the Llanrhidian salt marshes in South Wales, UK. This is achieved by (1) using both supervised and unsupervised classification routines, using several polarimetric SAR data layers as backscatter intensity, band ratios and polarimetric decomposition products, and by (2) statistical analysis by regression of these different SAR data layers and botanical parameters acquired from recent ecological fieldwork.

  11. Target detection beneath foliage using polarimetric synthetic aperture radar interferometry

    NASA Astrophysics Data System (ADS)

    Cloude, S. R.; Corr, D. G.; Williams, M. L.

    2004-04-01

    In this paper, we demonstrate how the new technology of polarimetric synthetic aperture radar (SAR) interferometry can be used to enhance the detection of targets hidden beneath foliage. The key idea is to note that for random volume scattering, the interferometric coherence is invariant to changes in wave polarization. On the other hand, in the presence of a target the coherence changes with polarization. We show that under general symmetry constraints this change is linear in the complex coherence plane. These observations can be used to devise a filter to suppress the returns from foliage clutter while maintaining the signal from hidden targets. We illustrate the algorithm by applying it to coherent L-band SAR simulations of corner reflectors hidden in a forest. The simulations are performed using a voxel-based vector wave propagation and scattering code coupled to detailed structural models of tree architecture. In this way, the spatial statistics and radar signal fluctuations closely match those observed for natural terrain. We demonstrate significant improvements in the detection of hidden targets, which suggests that this technology has great potential for future foliage penetration (FOPEN) applications.

  12. Oil detection in a coastal marsh with polarimetric Synthetic Aperture Radar (SAR)

    USGS Publications Warehouse

    Ramsey, Elijah W., III; Rangoonwala, Amina; Suzuoki, Yukihiro; Jones, Cathleen E.

    2011-01-01

    The National Aeronautics and Space Administration's airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) was deployed in June 2010 in response to the Deepwater Horizon oil spill in the Gulf of Mexico. UAVSAR is a fully polarimetric L-band Synthetic Aperture Radar (SAR) sensor for obtaining data at high spatial resolutions. Starting a month prior to the UAVSAR collections, visual observations confirmed oil impacts along shorelines within northeastern Barataria Bay waters in eastern coastal Louisiana. UAVSAR data along several flight lines over Barataria Bay were collected on 23 June 2010, including the repeat flight line for which data were collected in June 2009. Our analysis of calibrated single-look complex data for these flight lines shows that structural damage of shoreline marsh accompanied by oil occurrence manifested as anomalous features not evident in pre-spill data. Freeman-Durden (FD) and Cloude-Pottier (CP) decompositions of the polarimetric data and Wishart classifications seeded with the FD and CP classes also highlighted these nearshore features as a change in dominant scattering mechanism. All decompositions and classifications also identify a class of interior marshes that reproduce the spatially extensive changes in backscatter indicated by the pre- and post-spill comparison of multi-polarization radar backscatter data. FD and CP decompositions reveal that those changes indicate a transform of dominant scatter from primarily surface or volumetric to double or even bounce. Given supportive evidence that oil-polluted waters penetrated into the interior marshes, it is reasonable that these backscatter changes correspond with oil exposure; however, multiple factors prevent unambiguous determination of whether UAVSAR detected oil in interior marshes.

  13. Use of airborne polarimetric SAR, optical and elevation data for mapping and monitoring of salt marsh vegetation habitats

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Comber, Alexis; Lamb, Alistair

    2014-10-01

    Within the Copernicus programme there is much interest in the ability of remote sensing technology to deliver operational solutions to many areas of life including environmental management. This paper describes research focused on the application of Earth Observation for Integrated Coastal Zone Management. The main topic of this research is to explore to which extent salt marsh vegetation habitats can be identified from polarimetric SAR remotely sensed data. Multi-frequency, multi-polarimetric SAR images from airborne (S- and X-Band quad-polarimetric from the Astrium airborne SAR Demonstrator) is used to examine salt marsh habitat classification potential in the Llanrhidian salt marshes in South Wales, UK. This is achieved by (1) using both supervised and unsupervised classification routines, using several polarimetric SAR data layers as backscatter intensity, band ratios and polarimetric decomposition products, and by (2) statistical analysis by regression of these different SAR data layers and botanical parameters acquired from recent ecological fieldwork.

  14. Polarimetric Synthetic Aperture Radar data for Crop Cover Classification

    NASA Astrophysics Data System (ADS)

    Ramana, K. V.; Srikanth, P.; Deepika, U.; Sesha Sai, M. V. R.

    2014-11-01

    The interest in crop inventory through the use of microwave sensors is on the rise owing to need for accurate crop forecast and the availability of multi polarization data. Till recently, the temporal amplitude data has been used for crop discrimination as well as acreage estimation. With the availability of dual and quadpol data, the differential response of crop geometry at various crop growth stages to various polarizations is being exploited for discrimination and classification of crops. An attempt has been made in the current study with RISAT1 and Radarsat2 C-band single, dual, fully and hybrid polarimetric data for crop inventory. The single date hybrid polarimetric data gave comparable results to the three date single polarization data as well as with the single date fully polarimetric data for crops like rice and cotton.

  15. Unsupervised segmentation of polarimetric SAR data using the covariance matrix

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J. M.; Chellappa, Rama; Dubois, Pascale C.

    1992-01-01

    A method for unsupervised segmentation of polarimetric synthetic aperture radar (SAR) data into classes of homogeneous microwave polarimetric backscatter characteristics is presented. Classes of polarimetric backscatter are selected on the basis of a multidimensional fuzzy clustering of the logarithm of the parameters composing the polarimetric covariance matrix. The clustering procedure uses both polarimetric amplitude and phase information, is adapted to the presence of image speckle, and does not require an arbitrary weighting of the different polarimetric channels; it also provides a partitioning of each data sample used for clustering into multiple clusters. Given the classes of polarimetric backscatter, the entire image is classified using a maximum a posteriori polarimetric classifier. Four-look polarimetric SAR complex data of lava flows and of sea ice acquired by the NASA/JPL airborne polarimetric radar (AIRSAR) are segmented using this technique. The results are discussed and compared with those obtained using supervised techniques.

  16. Validation of Distributed Soil Moisture: Airborne Polarimetric SAR vs. Ground-based Sensor Networks

    NASA Astrophysics Data System (ADS)

    Jagdhuber, T.; Kohling, M.; Hajnsek, I.; Montzka, C.; Papathanassiou, K. P.

    2012-04-01

    The knowledge of spatially distributed soil moisture is highly desirable for an enhanced hydrological modeling in terms of flood prevention and for yield optimization in combination with precision farming. Especially in mid-latitudes, the growing agricultural vegetation results in an increasing soil coverage along the crop cycle. For a remote sensing approach, this vegetation influence has to be separated from the soil contribution within the resolution cell to extract the actual soil moisture. Therefore a hybrid decomposition was developed for estimation of soil moisture under vegetation cover using fully polarimetric SAR data. The novel polarimetric decomposition combines a model-based decomposition, separating the volume component from the ground components, with an eigen-based decomposition of the two ground components into a surface and a dihedral scattering contribution. Hence, this hybrid decomposition, which is based on [1,2], establishes an innovative way to retrieve soil moisture under vegetation. The developed inversion algorithm for soil moisture under vegetation cover is applied on fully polarimetric data of the TERENO campaign, conducted in May and June 2011 for the Rur catchment within the Eifel/Lower Rhine Valley Observatory. The fully polarimetric SAR data were acquired in high spatial resolution (range: 1.92m, azimuth: 0.6m) by DLR's novel F-SAR sensor at L-band. The inverted soil moisture product from the airborne SAR data is validated with corresponding distributed ground measurements for a quality assessment of the developed algorithm. The in situ measurements were obtained on the one hand by mobile FDR probes from agricultural fields near the towns of Merzenhausen and Selhausen incorporating different crop types and on the other hand by distributed wireless sensor networks (SoilNet clusters) from a grassland test site (near the town of Rollesbroich) and from a forest stand (within the Wüstebach sub-catchment). Each SoilNet cluster

  17. Ionospheric effects on a wide-bandwidth, polarimetric, space-based, synthetic-aperture radar

    NASA Astrophysics Data System (ADS)

    Brock, B. C.

    1993-01-01

    The earth's ionosphere consists of an ionized plasma which will interact with any electromagnetic wave propagating through it. The interaction is particularly strong at vhf and uhf frequencies but decreases for higher microwave frequencies. These interaction effects and their relationship to the operation of a wide-bandwidth, synthetic-aperture, space-based radar are examined. Emphasis is placed on the dispersion effects and the polarimetric effects. Results show that high-resolution (wide-bandwidth) and high-quality coherent polarimetrics will be very difficult to achieve below 1 GHz.

  18. Contribution of multitemporal polarimetric synthetic aperture radar data for monitoring winter wheat and rapeseed crops

    NASA Astrophysics Data System (ADS)

    Betbeder, Julie; Fieuzal, Remy; Philippets, Yannick; Ferro-Famil, Laurent; Baup, Frederic

    2016-04-01

    This paper aims to evaluate the contribution of multitemporal polarimetric synthetic aperture radar (SAR) data for winter wheat and rapeseed crops parameters [height, leaf area index, and dry biomass (DB)] estimation, during their whole vegetation cycles in comparison to backscattering coefficients and optical data. Angular sensitivities and dynamics of polarimetric indicators were also analyzed following the growth stages of these two common crop types using, in total, 14 radar images (Radarsat-2), 16 optical images (Formosat-2, Spot-4/5), and numerous ground data. The results of this study show the importance of correcting the angular effect on SAR signals especially for copolarized signals and polarimetric indicators associated to single-bounce scattering mechanisms. The analysis of the temporal dynamic of polarimetric indicators has shown their high potential to detect crop growth changes. Moreover, this study shows the high interest of using SAR parameters (backscattering coefficients and polarimetric indicators) for crop parameters estimation during the whole vegetation cycle instead of optical vegetation index. They particularly revealed their high potential for rapeseed height and DB monitoring [i.e., Shannon entropy polarimetry (r2=0.70) and radar vegetation index (r2=0.80), respectively].

  19. Agricultural crop harvest progress monitoring by fully polarimetric synthetic aperture radar imagery

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Zhao, Chunjiang; Yang, Guijun; Li, Zengyuan; Chen, Erxue; Yuan, Lin; Yang, Xiaodong; Xu, Xingang

    2015-01-01

    Dynamic mapping and monitoring of crop harvest on a large spatial scale will provide critical information for the formulation of optimal harvesting strategies. This study evaluates the feasibility of C-band polarimetric synthetic aperture radar (PolSAR) for monitoring the harvesting progress of oilseed rape (Brassica napus L.) fields. Five multitemporal, quad-pol Radarsat-2 images and one optical ZY-1 02C image were acquired over a farmland area in China during the 2013 growing season. Typical polarimetric signatures were obtained relying on polarimetric decomposition methods. Temporal evolutions of these signatures of harvested fields were compared with the ones of unharvested fields in the context of the entire growing cycle. Significant sensitivity was observed between the specific polarimetric parameters and the harvest status of oilseed rape fields. Based on this sensitivity, a new method that integrates two polarimetric features was devised to detect the harvest status of oilseed rape fields using a single image. The validation results are encouraging even for the harvested fields covered with high residues. This research demonstrates the capability of PolSAR remote sensing in crop harvest monitoring, which is a step toward more complex applications of PolSAR data in precision agriculture.

  20. a Robust Change Detector for Multilook Polarimetric Synthetic Aperture Radar Data

    NASA Astrophysics Data System (ADS)

    Ghanbari; Akbari; Abkar; Sahebi; Liu

    2014-10-01

    In this paper, we propose a robust unsupervised change detection algorithm for multilook polarimetric synthetic aperture radar (PolSAR) data. The Hotelling-Lawley trace (HLT) statistic is used as a test statistic to measure the similarity of two covariance matrices. The generalized Kittler and Illingworth (K&I) minimum-error thresholding algorithm is then applied on the test statistic image to accurately discriminates changed and unchanged areas. The algorithm, tested on real PolSAR images, provides satisfactory results.

  1. Improved superpixel-based polarimetric synthetic aperture radar image classification integrating color features

    NASA Astrophysics Data System (ADS)

    Xing, Yanxiao; Zhang, Yi; Li, Ning; Wang, Robert; Hu, Guixiang

    2016-04-01

    Various polarimetric features including scattering matrix, covariance matrix, polarimetric decomposition results, and textural or spatial information have already been used for polarimetric synthetic aperture radar (PolSAR) image classification. However, color features are rarely involved. We propose an improved superpixel-based PolSAR image classification integrating color features. First, we extract the color information using polarimetric decomposition. Second, by combining the color and spatial information of pixels, modified simple linear iterative clustering is used to generate small regions called superpixels. Then we apply Wishart distance to the superpixels to classify them into different classes. This method is demonstrated using the L-band Flevoland PolSAR data from AirSAR and Oberpfaffenhofen PolSAR data from ESAR. The results show that this method works well for areas with homogeneous terrains like farms in terms of both classification accuracy and computational efficiency. Furthermore, the success of the proposed method signifies that more color features can be discovered in the future research works.

  2. STORM: A New Airborne Polarimetric Real-Aperture Radar for Earth Observations

    NASA Astrophysics Data System (ADS)

    Podvin, D. Hauser. T.; Dechambre, M.; Valentin, R.; Caudal, G.; Daloze, J.-F.

    2003-04-01

    The successful launch of the Envisat in March 2002 offers new possibilities for estimating geophysical quantities characterizing continental or sea surface using the multi-polarization ASAR. In addition, in the context of the preparation of future missions which will embark polarimetric SAR (e.g. RADARSAT2) it is important to better assess the benefit of multi-polarization or polarimetric SAR systems. Airborne radar systems remain a very useful way to validate satellite measurements and to develop or validate algorithms needed to retrieve geophysical quantities from the radar measurements. CETP has designed and developed a new airborne radar called STORM] , which has a full polarimetric capability. STORM is derived from two previous versions of airborne radars developed at CETP, namely RESSAC (Hauser et al, JGR 1992) and RENE (Leloch-Duplex et al, Annales of Telecommunications, 1996). STORM is a real-aperture, C-Band system with a FM/CW transmission and with a rotating antenna to explore in azimuth. It offers a polarization diversity, receiving the complex signal in amplitude and phase simultaneously in H and V polarizations, which makes it possible to analyze the radar cross-section in HH, VV, HV, and other cross-polarized terms related to the scattering matrix. The antenna are pointed towards the surface with a mean incidence angle of 20° and a 3-dB aperture of about 30° in elevation and 8° in azimuth. The backscattered signal is analyzed from nadir to about 35° along the look-direction in 1012 range gates every 1.53m. The first tests with this system have been carried out in October 2001 over corner reflectors , over grass and ocean. In this workshop, we will present a validation of this system based on the results obtained with this first data set. In particular, we will present the calibration method of the complex signal (amplitude, phase), and distribution of phase differences (HH/VV, HV/VH) obtained over the different scatters (corner reflectors, grass

  3. Detection of Built-Up Areas Using Polarimetric Synthetic Aperture Radar Data and Hyperspectral Image

    NASA Astrophysics Data System (ADS)

    Bordbari, R.; Maghsoudi, Y.; Salehi, M.

    2015-12-01

    Polarimetric synthetic aperture radar (POLSAR) is an advantageous data for information extraction about objects and structures by using the wave scattering and polarization properties. Hyperspectral remote sensing exploits the fact that all materials reflect, absorb, and emit electromagnetic energy, at specific wavelengths, in distinctive patterns related to their molecular composition. As a result of their fine spectral resolution, Hyperspectral image (HIS) sensors provide a significant amount of information about the physical and chemical composition of the materials occupying the pixel surface. In target detection applications, the main objective is to search the pixels of an HSI data cube for the presence of a specific material (target). In this research, a hierarchical constrained energy minimization (hCEM) method using 5 different adjusting parameters has been used for target detection from hyperspectral data. Furthermore, to detect the built-up areas from POLSAR data, building objects discriminated from surrounding natural media presented on the scene using Freeman polarimetric target decomposition (PTD) and the correlation coefficient between co-pol and cross-pol channels. Also, target detection method has been implemented based on the different polarization basis for using the more information. Finally a majority voting method has been used for fusing the target maps. The polarimetric image C-band SAR data acquired by Radarsat-2, over San Francisco Bay area was used for the evaluation of the proposed method.

  4. Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) observations during several 2013 NASA field campaigns

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Garay, M. J.; Xu, F.; Kalashnikova, O.; Rheingans, B.; Geier, S.; Val, S.; Bull, M.; Jovanovic, V.; Bruegge, C.; Seidel, F. C.; Daugherty, B.; Chipman, R.; Davis, A.

    2013-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is an ultraviolet/visible/near-infrared pushbroom camera mounted on a single-axis gimbal to acquire multiangle imagery over a ×67° along-track range. The instrument flies aboard NASA's high-altitude ER-2 aircraft, and acquires Earth imagery with ~10 m spatial resolution across an 11-km wide swath. Intensity (I) images are obtained in eight spectral bands (355, 380, 445, 470, 555, 660, 865, and 935 nm). Dual photoelastic modulators (PEMs), achromatic quarter-wave plates, and wire-grid polarizers enable imagery of the linear polarization Stokes components Q and U at 470, 660, and 865 nm. The data are used to derive degree of linear polarization (DOLP) and angle of linear polarization (AOLP). Example flight data acquired during various NASA field campaigns in 2013, including the Aerosol-Cloud-Ecosystem (ACE) Polarimeter Definition Experiment (PODEX), Hyperspectral Infrared Imager (HyspIRI), and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) are presented. Observations of aerosols, low- and mid-level cloud fields, cirrus, and different types of surfaces under clear skies were obtained for a variety of land and ocean targets. Radiance and polarization imagery for several scenes, along with modeling of aerosol, cloud, and surface scattering, are presented to illustrate quantitatively some of the instrument's capabilities. Laboratory and vicarious calibration results are also discussed.

  5. Poyang Lake wetland vegetation biomass inversion using polarimetric RADARSAT-2 synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    Shen, Guozhuang; Liao, Jingjuan; Guo, Huadong; Liu, Ju

    2015-01-01

    Poyang Lake is the largest freshwater lake in China and one of the most important wetlands in the world. Vegetation, an important component of wetland ecosystems, is one of the main sources of the carbon in the atmosphere. Biomass can quantify the contribution of wetland vegetation to carbon sinks and carbon sources. Synthetic aperture radar (SAR), which can operate in all day and weather conditions and penetrate vegetation to some extent, can be used to retrieve information about vegetation structure and the aboveground biomass. In this study, RADARSAT-2 polarimetric SAR data were used to retrieve aboveground vegetation biomass in the Poyang Lake wetland. Based on the canopy backscatter model, the vegetation backscatter characteristics in the C-band were studied, and a good relation between simulated backscatter and backscatter in the RADARSAT-2 imagery was achieved. Using the backscatter model, pairs of training data were built and used to train the back propagation artificial neural network. The biomass was retrieved using this ANN and compared with the field survey results. The root-mean-square error in the biomass estimation was 45.57 g/m2. This shows that the combination of the model and polarimetric decomposition components can efficiently improve the inversion precision.

  6. A comparative study on the current de-speckle methods for polarimetric synthetic aperture radar imagery processing

    NASA Astrophysics Data System (ADS)

    Xu, Zhijia; Sun, Sheng; Yang, Changcai; Zhang, Xiaobo

    2015-12-01

    Speckle filtering seems to be a never-ending topic for polarimetric synthetic aperture radar imagery processing. Constantly emerging literatures demonstrate that this issue deserves further research effort, especially in the context of much more high spatial resolution. A comparative study will be performed in this paper for recently proposed method such as non-local SAR speckle filtering, Extended Sigma filter proposed by Lee, non-local means filter, Bilateral filter, and so on. Their performance on spatial details preserving and polarimetric properties preserving should be measured thoroughly. Further more the computing performance on large-scale dataset should also be measured.

  7. An Analytical Calibration Approach for the Polarimetric Airborne C Band Radiometer

    NASA Technical Reports Server (NTRS)

    Pham, Hanh; Kim, Edward J.

    2004-01-01

    Passive microwave remote sensing is sensitive to the quantity and distribution of water in soil and vegetation. During summer 2000, the Microwave Geophysics Group a t the University of Michigan conducted the seventh Radiobrighness Energy Balance Experiment (REBEX-7) over a corn canopy in Michigan. Long time series of brightness temperatures, soil moisture and micrometeorology on the plot were taken. This paper addresses the calibration of the NASA GSFC polarimetric airborne C band microwave radiometer (ACMR) that participated in REBEX-7. These passive polarimeters are typically calibrated using an end-to-end approach based upon a standard artificial target or a well-known geophysical target. Analyzing the major internal functional subsystems offers a different perspective. The primary goal of this approach is to provide a transfer function that not only describes the system in its entire5 but also accounts for the contributions of each subsystem toward the final modified Stokes parameters. This approach does not assume that the radiometric system is linear as it does not take polarization isolation for granted, and it also serves as a realistic instrument simulator, a useful tool for future designs. The ACMR architecture can be partitioned into functional subsystems. The characteristics of each subsystem was extensively measured and the estimated parameters were imported into the overall dosed form system model. Inversion of the model yields a calibration for the modeled Stokes parameters with uncertainties of 0.2 K for the V and H polarizations and 2.4 K for the 3rd and 4th parameters. Application to the full Stokes parameters over a senescent cornfield is presented.

  8. The NASA/JPL Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Kim, Yun-Jin; Lou, Yun-Ling; vanZyl, Jakob

    1996-01-01

    The NASA/JPL airborne SAR (AIRSAR) system operates in the fully polarimetric mode at P-, L- and C-band simultaneously or in the interferometric mode in both L- and C-band simultaneously. The system became operational in late 1987 and flew its first mission aboard a DC-8 aircraft operated by NASA's Ames Research Center in Mountain View, California. Since then, the AIRSAR has flown missions every year and acquired images in North, Central and South America, Europe and Australia. In this paper, we will briefly describe the instrument characteristics, the evolution of the various radar modes, the instrument performance, and improvement in the knowledge of the positioning and attitude information of the radar. In addition, we will summarize the progress of the data processing effort especially in the interferometry processing. Finally, we will address the issue of processing and calibrating the cross-track interferometry (XTI) data.

  9. Airborne Polarimetric, Two-Color Laser Altimeter Measurements of Lake Ice Cover: A Pathfinder for NASA's ICESat-2 Spaceflight Mission

    NASA Technical Reports Server (NTRS)

    Harding, David; Dabney, Philip; Valett, Susan; Yu, Anthony; Vasilyev, Aleksey; Kelly, April

    2011-01-01

    The ICESat-2 mission will continue NASA's spaceflight laser altimeter measurements of ice sheets, sea ice and vegetation using a new measurement approach: micropulse, single photon ranging at 532 nm. Differential penetration of green laser energy into snow, ice and water could introduce errors in sea ice freeboard determination used for estimation of ice thickness. Laser pulse scattering from these surface types, and resulting range biasing due to pulse broadening, is assessed using SIMPL airborne data acquired over icecovered Lake Erie. SIMPL acquires polarimetric lidar measurements at 1064 and 532 nm using the micropulse, single photon ranging measurement approach.

  10. Marsh dieback, loss, and recovery mapped with satellite optical, airborne polarimetric radar, and field data

    USGS Publications Warehouse

    Ramsey, Elijah W., III; Rangoonwala, Amina; Chi, Zhaohui; Jones, Cathleen E.; Bannister, Terri

    2014-01-01

    Landsat Thematic Mapper and Satellite Pour l'Observation de la Terre (SPOT) satellite based optical sensors, NASA Uninhabited Aerial Vehicle synthetic aperture radar (UAVSAR) polarimetric SAR (PolSAR), and field data captured the occurrence and the recovery of an undetected dieback that occurred between the summers of 2010, 2011, and 2012 in the Spartina alterniflora marshes of coastal Louisiana. Field measurements recorded the dramatic biomass decrease from 2010 to 2011 and a biomass recovery in 2012 dominated by a decrease of live biomass, and the loss of marsh as part of the dieback event. Based on an established relationship, the near-infrared/red vegetation index (VI) and site-specific measurements delineated a contiguous expanse of marsh dieback encompassing 6649.9 ha of 18,292.3 ha of S. alterniflora marshes within the study region. PolSAR data were transformed to variables used in biophysical mapping, and of this variable suite, the cross-polarization HV (horizontal send and vertical receive) backscatter was the best single indicator of marsh dieback and recovery. HV backscatter exhibited substantial and significant changes over the dieback and recovery period, tracked measured biomass changes, and significantly correlated with the live/dead biomass ratio. Within the context of regional trends, both HV and VI indicators started higher in pre-dieback marshes and exhibited substantially and statistically higher variability from year to year than that exhibited in the non-dieback marshes. That distinct difference allowed the capturing of the S. alterniflora marsh dieback and recovery; however, these changes were incorporated in a regional trend exhibiting similar but more subtle biomass composition changes.

  11. Observation of Planetary Oceans with Fully Polarimetric Synthetic Aperture Radar (SAR)

    NASA Astrophysics Data System (ADS)

    Moon, Wooil M.

    Synthetic Aperture Radar (SAR) is one of the most cost effective and powerful all weather tools for observation of planetary surface without sun light. The SAR systems can observe planetary surfaces with the very high resolution and large spatial coverage. We have developed and improved the algorithms for extracting quantitative information on geophysical parameters using various types of SAR data available on Earth's surface, both space-borne SAR (ERS-1/2, RADARSAT, and ENVISAT ASAR) and airborne SAR (NASA(JPL) AIRSAR). SAR is the only system that can provide a synoptic view of find wind fields near the coastal area on Earth. Many SAR images including RADARSAT and ENVISAT ASAR's alternating polarization mode and wide swath mode were to investigate the ability of retrieving sea surface wind field and the results are quite accurate and operationally acceptable. We installed corner reflectors on the nearby beach to calibrate the SAR data, and we obtained in-situ measurements from the several coast-based automatic weather systems and ocean buoys. Using the simultaneously acquired polarization ENVISAT ASAR data (HH and VV), the most appropriate polarization ratio was evaluated and applied for improving the wind retrieval model. In addition, the best combinations depending on given sea states and incidence angle ranges were investigated. The characteristics of short-period and long-period (near-inertial) internal waves are also investigated with several space-borne SAR systems. The possibility of inferring characteristics of the interior ocean dynamics from the SAR image associated with internal solitary waves was tested using a hydrodynamic interaction model (action balance equation) and a radar backscattering model (two-scale tilted Bragg model). These models were used iteratively to fit the observed SAR data to the simulated SAR. The estimated results were compared with in-situ measurements. The typical scales and the spatial and temporal characteristics of internal

  12. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; Lu, Daniel

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  13. Polarimetric synthetic aperture radar image classification using fuzzy logic in the H/α-Wishart algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Teng; Yu, Jie; Li, Xiaojuan; Yang, Jie

    2015-01-01

    To solve the problem that the H/α-Wishart unsupervised classification algorithm can generate only inflexible clusters due to arbitrarily fixed zone boundaries in the clustering processing, a refined fuzzy logic based classification scheme called the H/α-Wishart fuzzy clustering algorithm is proposed in this paper. A fuzzy membership function was developed for the degree of pixels belonging to each class instead of an arbitrary boundary. To devise a unified fuzzy function, a normalized Wishart distance is proposed during the clustering step in the new algorithm. Then the degree of membership is computed to implement fuzzy clustering. After an iterative procedure, the algorithm yields a classification result. The new classification scheme is applied to two L-band polarimetric synthetic aperture radar (PolSAR) images and an X-band high-resolution PolSAR image of a field in LingShui, Hainan Province, China. Experimental results show that the classification precision of the refined algorithm is greater than that of the H/α-Wishart algorithm and that the refined algorithm performs well in differentiating shadows and water areas.

  14. Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.; Kucera, Paul A.

    2004-01-01

    This report describes the work performed by the University of North Dakota (UND) under NASA Grant NAG5-11509, titled Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE. This work focused on the collection of data by two key platforms: the UND Citation II research aircraft and the NASA NPOL radar system. The CRYSTAL-FACE (C-F) mission addresses several key issues from the NASA Earth System Enterprise, including the variability of water in the atmosphere, the forcing provided by tropical cirrus and the response of the Earth system to this forcing. In situ measurements and radar observations of tropical convection, cirrus clouds and their environment are core elements of C-F. One of the primary issues that C-F is addressing is the relationship of tropical cirrus anvils to precipitating deep convection. The in situ measurements from C-F are being used to validate remote sensing of Earth-Atmosphere properties, increase our knowledge of upper tropospheric water vapor and its distribution, and increase our knowledge of tropical cirrus cloud morphology and composition. Radar measurements, especially polarimetric diversity observations available fiom the NASA NPOL radar, are providing essential information about the initiation, modulation, and dissipation of convective cores and the generation of associated anvils in tropical convection. Specifically, NPOL radar measurements contain information about convective intensity and its vertical structure for comparison with thermodynamic and kinematic environmental measurements observed from soundings. Because of the polarimetric diversity of MOL, statistics on bulk microphysical properties can be retrieved and compared to the other characteristics of convection and associated cirrus anvils. In summary, the central objectives of this proposal were to deploy the UND Citation research aircraft as an in situ sensing platform for this mission and to provide collaborative

  15. The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI): a new tool for aerosol and cloud remote sensing

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Xu, F.; Garay, M. J.; Martonchik, J. V.; Rheingans, B. E.; Geier, S.; Davis, A.; Hancock, B. R.; Jovanovic, V. M.; Bull, M. A.; Capraro, K.; Chipman, R. A.; McClain, S. C.

    2013-08-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is an eight-band (355, 380, 445, 470, 555, 660, 865, 935 nm) pushbroom camera, measuring polarization in the 470, 660, and 865 nm bands, mounted on a gimbal to acquire multiangular observations over a ±67° along-track range. The instrument has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI employs a photoelastic modulator-based polarimetric imaging technique to enable accurate measurements of the degree and angle of linear polarization in addition to spectral intensity. A description of the AirMSPI instrument and ground data processing approach is presented. Example images of clear, hazy, and cloudy scenes over the Pacific Ocean and California land targets obtained during flights between 2010 and 2012 are shown, and quantitative interpretations of the data using vector radiative transfer theory and scene models are provided to highlight the instrument's capabilities for determining aerosol and cloud microphysical properties and cloud 3-D spatial distributions. Sensitivity to parameters such as aerosol particle size distribution, ocean surface wind speed and direction, cloud-top and cloud-base height, and cloud droplet size is discussed. AirMSPI represents a major step toward realization of the type of imaging polarimeter envisioned to fly on NASA's Aerosol-Cloud-Ecosystem (ACE) mission in the next decade.

  16. The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI): a new tool for aerosol and cloud remote sensing

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Xu, F.; Garay, M. J.; Martonchik, J. V.; Rheingans, B. E.; Geier, S.; Davis, A.; Hancock, B. R.; Jovanovic, V. M.; Bull, M. A.; Capraro, K.; Chipman, R. A.; McClain, S. C.

    2013-02-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is an eight-band (355, 380, 445, 470, 555, 660, 865, 935 nm) pushbroom camera, measuring polarization in the 470, 660, and 865 nm bands, mounted on a gimbal to acquire multiangular observations over a ± 67° along-track range. The instrument has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI employs a photoelastic modulator-based polarimetric imaging technique to enable accurate measurements of the degree and angle of linear polarization in addition to spectral intensity. A description of the AirMSPI instrument and ground data processing approach is presented. Example images of clear, hazy, and cloudy scenes over the Pacific Ocean and California land targets obtained during flights between 2010 and 2012 are shown, and quantitative interpretations of the data using vector radiative transfer theory and scene models are provided to highlight the instrument's capabilities for determining aerosol and cloud microphysical properties and cloud 3-D spatial distributions. Sensitivity to parameters such as aerosol particle size distribution, ocean surface wind speed and direction, cloud-top and cloud-base height, and cloud droplet size is discussed. AirMSPI represents a major step toward realization of the type of imaging polarimeter envisioned to fly on NASA's Aerosol-Cloud-Ecosystem (ACE) mission in the next decade.

  17. Proceedings of the Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J. (Editor)

    1991-01-01

    The Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop was held on 23-24 May 1991 at JPL. Thirty oral presentations were made and 18 poster papers displayed during the workshop. Papers from these 25 presentations are presented which include analyses of AIRSAR operations and studies in SAR remote sensing, ecology, hydrology, soil science, geology, oceanography, volcanology, and SAR mapping and data handling. Results from these studies indicate the direction and emphasis of future orbital radar-sensor missions that will be launched during the 1990's.

  18. EcoSAR: NASA's P-band fully polarimetric single pass interferometric airborne radar

    NASA Astrophysics Data System (ADS)

    Osmanoglu, B.; Rincon, R. F.; Fatoyinbo, T. E.; Lee, S. K.; Sun, G.; Daniyan, O.; Harcum, M. E.

    2014-12-01

    EcoSAR is a new airborne synthetic aperture radar imaging system, developed at the NASA Goddard Space Flight Center. It is a P-band sensor that employs a non-conventional and innovative design. The EcoSAR system was designed as a multi-disciplinary instrument to image the 3-dimensional surface of the earth from a single pass platform with two antennas. EcoSAR's principal mission is to penetrate the forest canopy to return vital information about the canopy structure and estimate biomass. With a maximum bandwidth of 200 MHz in H and 120 MHz in V polarizations it can provide sub-meter resolution imagery of the study area. EcoSAR's dual antenna, 32 transmit and receive channel architecture provides a test-bed for developing new algorithms in InSAR data processing such as single pass interferometry, full polarimetry, post-processing synthesis of multiple beams, simultaneous measurement over both sides of the flight track, selectable resolution and variable incidence angle. The flexible architecture of EcoSAR will create new opportunities in radar remote sensing of forest biomass, permafrost active layer thickness, and topography mapping. EcoSAR's first test flight occurred between March 27th and April 1st, 2014 over the Andros Island in Bahamas and Corcovado and La Selva National Parks in Costa Rica. The 32 channel radar system collected about 6 TB of radar data in about 12 hours of data collection. Due to the existence of radio and TV communications in the operational frequency band, acquired data contains strong radar frequency interference, which had to be removed prior to beamforming and focusing. Precise locations of the antennas are tracked using high-rate GPS and inertial navigation units, which provide necessary information for accurate processing of the imagery. In this presentation we will present preliminary imagery collected during the test campaign, show examples of simultaneous dual track imaging, as well as a single pass interferogram. The

  19. Case studies of aerosol remote sensing with the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI)

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Xu, F.; Garay, M. J.; Martonchik, J. V.; Kalashnikova, O. V.; Davis, A. B.; Rheingans, B.; Geier, S.; Jovanovic, V.; Bull, M.

    2012-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is an 8-band (355, 380, 445, 470, 555, 660, 865, 935 nm) pushbroom camera, measuring polarization in the 470, 660, and 865 nm bands, mounted on a gimbal to acquire multiangular observations over a ±67° along-track range with 10-m spatial resolution across an 11-km wide swath. Among the instrument objectives are exploration of methodologies for combining multiangle, multispectral, polarimetric, and imaging observations to retrieve the optical depth and microphysical properties of tropospheric aerosols. AirMSPI was integrated on NASA's ER-2 high-altitude aircraft in 2010 and has successfully completed a number of flights over land and ocean targets in the Southern California vicinity. In this paper, we present case studies of AirMSPI imagery, interpreted using vector radiative transfer theory. AirMSPI observations over California's Central Valley are compared with model calculations using aerosol properties reported by the Fresno AERONET sunphotometer. Because determination of the radiative impact of different types of aerosols requires accurate attribution of the source of the reflected light along with characterization of the aerosol optical and microphysical properties, we explore the sensitivity of the Fresno measurements to variations in different aerosol properties, demonstrating the value of combining intensity and polarimetry at multiple view angles and spectral bands for constraining particle microphysical properties. Images over ocean to be presented include scenes over nearly cloud-free skies and scenes containing scattered clouds. It is well known that imperfect cloud screening confounds the determination of aerosol impact on radiation; it is perhaps less well appreciated that the effect of cloud reflections in the water can also be problematic. We calculate the magnitude of this effect in intensity and polarization and discuss its potential impact on aerosol retrievals, underscoring the value

  20. Monitoring flooding and vegetation on seasonally inundated floodplains with multifrequency polarimetric synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Hess, Laura Lorraine

    The ability of synthetic aperture radar to detect flooding and vegetation structure was evaluated for three seasonally inundated floodplain sites supporting a broad variety of wetland and upland vegetation types: two reaches of the Solimoes floodplain in the central Amazon, and the Magela Creek floodplain in Northern Territory, Australia. For each site, C- and L-band polarimetric Shuttle Imaging Radar-C (SIR-C) data was obtained at both high- and low-water stages. Inundation status and vegetation structure were documented simultaneous with the SIR-C acquisitions using low-altitude videography and ground measurements. SIR-C images were classified into cover states defined by vegetation physiognomy and presence of standing water, using a decision-tree model with backscattering coefficients at HH, VV, and HV polarizations as input variables. Classification accuracy was assessed using user's accuracy, producer's accuracy, and kappa coefficient for a test population of pixels. At all sites, both C- and L-band were necessary to accurately classify cover types with two dates. HH polarization was most. useful for distinguishing flooded from non-flooded vegetation (C-HH for macrophyte versus pasture, L-HH for flooded versus non-flooded forest), and cross-polarized L-band data provided the best separation between woody and non-woody vegetation. Increases in L-HH backscattering due to flooding were on the order of 3--4 dB for closed-canopy varzea and igapo forest, and 4--7 dB, for open Melaleuca woodland. The broad range of physiognomies and stand structures found in both herbaceous and woody wetland communities, combined with the variation in the amount of emergent canopy caused by water level fluctuations and phenologic changes, resulted in a large range in backscattering characteristics of wetland communities both within and between sites. High accuracies cannot be achieved for these communities using single-date, single-band, single-polarization data, particularly in the

  1. Assessing Natural Disaster Impacts and Recovery Using Multifrequency, Fully-Polarimetric Synthetic Aperture Radar (SAR) and Optical Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Weissel, J. K.; Czuchlewski, K. R.; Kim, Y.

    2002-12-01

    Many natural disasters involving landslides, volcanic eruptions, fires, or floods entail terrain resurfacing, followed by subsequent recovery. Modern satellite and airborne remote sensing technologies, which combine broad spatial coverage and high spatial resolution with time-sequential site revisit capability, can provide important information on the extent and duration of major landscape disturbance. In humid climate settings, these hazards temporarily remove or replace a natural vegetation cover and in doing so, modify the physical properties of the land surface. In optical remote sensing, removal of vegetation alters surface albedo in the visible -- near infrared (V-NIR) waveband, particularly the high reflectance from vegetation in the NIR. For SAR remote sensing, removal of vegetation cover causes a change in dominant microwave scattering mechanism for the areas affected. SAR has operational advantages over optical sensors for rapid disaster assessment because of its day/night acquisition capability, the ability to ``see through'' smoke, clouds and dust, and the side-looking viewing geometry, which is an advantage whenever data collection directly above the site would prove dangerous. We show how multifrequency, fully-polarimetric airborne SAR data can be ``inverted'' for parameters that reflect scattering mechanism signatures diagnostic of different surface cover types. We apply a uniform approach to map landslides resulting from the 1999 Mw 7.6 Chi-Chi earthquake in Taiwan, volcanic flows from the major 1996 eruption of Manam volcano in Papua New Guinea, and the extent of damage from the summer 2002 Rodeo -- Chediski wildfire in Arizona. In addition, earlier work has shown that multifrequency SAR polarimetric backscatter is sensitive to total above-ground biomass. This attribute can be exploited to calculate vegetation loss during a disaster and for assessment of regrowth during the recovery phase.

  2. Urban change detection with polarimetric Advanced Land Observing Satellite phased array type L-band synthetic aperture radar data: a case study of Tai'an, China

    NASA Astrophysics Data System (ADS)

    Xu, Jinyan; Zhang, Lu; Wang, Yong; Wang, He; Liao, Mingsheng

    2013-01-01

    Change detection in Tai'an city of eastern China using a pair of qual-polarimetric Advanced Land Observing Satellite phased array type L-band synthetic aperture radar (ALOS PALSAR) data was studied. The procedures consisted of polarimetric features extraction, optimal polarimetric feature group selection, supervised classification, and result accuracy assessment. Feature extraction from PALSAR data was performed first, and then the polarimetric features were categorized into several groups. Polarimetric optimum index factor (POIF) and distance factor (DF) were selected to measure and evaluate the suitability of each feature group for urban change detection. The best group of features was identified including linear polarization correlation coefficient (ρ), right-left (R-L) circular polarization correlation coefficient (ρ), total power (TP), and cross-polarization isolation (XPI). Afterward, four difference images of the identified features extracted from the two PALSAR data were derived, respectively. Then, the random forest (RF) classifier was employed to perform a supervised classification of the four difference images. Three classes were quantified, including no-change, change from undeveloped area to developed area, and vice versa. The overall accuracy of change detection was about 84% and Cohen's Kappa coefficient was 0.71. Consequently, satisfactory outcomes were obtained in the application of the polarimetric ALOS PALSAR data of moderate resolution in detecting urban land use and land cover type changes.

  3. Ice island detection and characterization with airborne synthetic aperture radar

    SciTech Connect

    Jeffries, M.O.; Sackinger, W.M. )

    1990-04-15

    A 1:300,000 scale airborne synthetic aperture radar (SAR) image of an area of the Arctic Ocean adjacent to the Queen Elizabeth Islands, Canadian High Arctic, is examined to determine the number and characteristics of ice islands in the image and to assess the capability of airborne and satellite SAR to detect ice islands. Twelve ice islands have been identified, and their dimensions range from as large as 5.7 km by 8.7 km to as small as 0.15 km by 0.25 km. A significant SAR characteristic of the shelf ice portions of ice islands is a return with a ribbed texture of alternating lighter and darker grey tones resulting from the indulating shelf ice surfaces of the ice islands. The appearance of the ribbed texture varies according to the ice islands' orientation relative to the illumination direction and consequently the incidence angle. Some ice islands also include extensive areas of textureless dark tone attached to the shelf ice. The weak returns correspond to (1) multiyear landfast sea ice that was attached to the front of the Ward Hunt Ice Shelf at the time of calving and which has remained attached since then and (2) multiyear pack ice that has become attached and consolidated since the calving, indicating that ice islands can increase their area and mass significantly as they drift. Ice islands are easily discernible in SAR images and for the future SAR represents a promising technique to obtain a census of ice islands in the Arctic Ocean. However, any SAR-based census probably will be conservative because ice islands smaller than 300-400 m across are likely to remain undetected, particularly in areas of heavy ice ridging which produces strong SAR clutter.

  4. Airborne Synthetic Aperature Radar (AIRSAR) on left rear fuselage of DC-8 Airborne Laboratory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A view of the Airborne Synthetic Aperature Radar (AIRSAR) antenna on the left rear fuselage of the DC-8. The AIRSAR captures images of the ground from the side of the aircraft and can provide precision digital elevation mapping capabilities for a variety of studies. The AIRSAR is one of a number of research systems that have been added to the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  5. Polarimetric Remote Sensing of Geophysical Medium Structures

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.; Nguyen, D. T.

    1993-01-01

    Polarimetric remote sensing of structures in geophysical media is studied in this paper based on their symmetry properties. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is defined to study scattering structures in geophysical media. Experimental observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented to illustrate the use of symmetry properties. For forests, the coniferous forest in Mount Shasta area and mixed forests neir Presque Isle show evidence of the centrical symmetry at C band. In sea ice from the Beaufort Sea, multiyear sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. For first-year sea ice, e is much smaller than e(sub 0) as a result of preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering sea, it is observed that e and e(sub 0) are increasing with incident angle and e is greater than e(sub 0) at L band because of the directional feature of sea surface waves. Use of symmetry properties of geophysical media for polarimetric radar calibration is also suggested.

  6. Polarimetric Measurements Over the Sea-Surface with the Airborne STORM Radar in the Context of the Geophysical Validation of the ENVISAT ASAR

    NASA Astrophysics Data System (ADS)

    Podvin, D. Hauser. T.; Dechambre, M.; Valentin, R.; Caudal, G.; Daloze, J.-F.; Mouche, A.

    2003-04-01

    Among the new specificities of the ENVISAT/ASAR particular polarization diversity make the instrument very promising, but require complementary studies in addition to those already completed with the ERS data. Moreover, in the context of the preparation of other missions which will embark polarimetric SAR (e.g. RADARSAT2) it is important to better assess the benefit of multi-polarization or polarimetric SAR systems. In particular, over the ocean the question remains open regarding the estimate of wind speed, directional spectra of surface ocean waves and maybe other parameters related to wave breaking. CETP has designed and developed a new airborne radar called STORM], which has a full polarimetric capability. STORM is a new-version of the RESSAC airborne radar already used in previous experiments (Hauser et al, JGR 1992). STORM is a real-aperture, C-Band system with a FM/CW transmission and with a rotating antenna to explore in azimuth. In addition to RESSAC (which was mono-polarized) it offers a polarization diversity (receiving simultaneously in H and V polarizations) which enables us to analyze the radar cross- section in HH, VV, HV, and other cross-polarized terms related to the scattering matrix. In the context of the validation of the ASAR wave mode of ENVISAT, a field experiment will be carried out in October and November 2002 over the ocean (offshore the coasts of Brittany, France), with STORM] embarked on the MERLIN-IV aircraft of Meteo-France. We intend to perform about 20 flights under the ENVISAT SAR swath during a one-month experiment, with overpasses over a directional wave buoy also equipped with wind measurements. The ASAR image mode (in HH or VV) or alternating polarization mode will be requested during these flights. STORM will be used in a mode which will permit to measure the full complex scattering matrix over the sea surface at incidence angles ranging from 10 to 35°. In addition to conventional analysis of the radar cross-sections in HH

  7. Object-oriented fusion of RADARSAT-2 polarimetric synthetic aperture radar and HJ-1A multispectral data for land-cover classification

    NASA Astrophysics Data System (ADS)

    Xiao, Yan; Jiang, Qigang; Wang, Bin; Li, Yuanhua; Liu, Shu; Cui, Can

    2016-04-01

    The contribution of the integration of optical and polarimetric synthetic aperture radar (PolSAR) data to accurate land-cover classification was investigated. For this purpose, an object-oriented classification methodology that consisted of polarimetric decomposition, hybrid feature selection, and a support vector machine (SVM) was proposed. A RADARSAT-2 Fine Quad-Pol image and an HJ-1A CCD2 multispectral image were used as data sources. First, polarimetric decomposition was implemented for the RADARSAT-2 image. Sixty-one polarimetric parameters were extracted using different polarimetric decomposition methods and then merged with the main diagonal elements (T11, T22, T33) of the coherency matrix to form a multichannel image with 64 layers. Second, the HJ-1A and the multichannel images were divided into numerous image objects by implementing multiresolution segmentation. Third, 1104 features were extracted from the HJ-1A and the multichannel images for each image object. Fourth, the hybrid feature selection method that combined the ReliefF filter approach and the genetic algorithm (GA) wrapper approach (ReliefF-GA) was used. Finally, land-cover classification was performed by an SVM classifier on the basis of the selected features. Five other classification methodologies were conducted for comparison to verify the contribution of optical and PolSAR data integration and to test the superiority of the proposed object-oriented classification methodology. Comparison results show that HJ-1A data, RADARSAT-2 data, polarimetric decomposition, ReliefF-GA, and SVM have a significant contribution by improving land-cover classification accuracy.

  8. Remote estimation of dielectric permittivity of lunar surface regolith using compact polarimetric synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    Bhattacharya, A.; Porwal, A.; Dhingra, S.; De, S.; Venkataraman, G.

    2015-12-01

    A new model has been developed to estimate the dielectric permittivity of the lunar surface regolith using S-band hybrid compact polarimetric SAR data obtained from Mini-RF aboard LRO. The surface regolith is modeled as a random medium consisting of elementary ellipsoidal particles smaller than the incident wavelength of S-band. The data, available in the form of Stokes vector, are used to derive a coherency matrix, under the reflection symmetry condition, whose elements are used to calculate the particle anisotropy parameter. Since the anisotropy is bounded by the dielectric permittivity, its relationship with the latter is used for the required estimation. The method is applied to compute the dielectric permittivity of Apollo 17 landing site in Taurus-Littrow valley and to a part of Sinus Iridum. The estimated mean dielectric permittivity values (2.87 ± 0.31) and (3.04 ± 0.31), respectively, are consistent with the previous estimates. The dielectric permittivity values have also been used to discern different units of regolith in both the regions. The advantage of our model is that it does not require any a priori knowledge about the density or composition of the regolith. The available data in the form of Stokes parameters are sufficient for the computation. The model predicts a thin layer of low density, porous fine grained dust on the lunar surface.

  9. Analysis of polarimetric SAR signatures of vegetated areas

    NASA Technical Reports Server (NTRS)

    French, Nancy H. F.; Bourgeau-Chavez, Laura L.; Kasischke, Eric S.; Sheen, Daniel R.

    1991-01-01

    Several techniques to quantitatively analyze the information in the polarimetric signature are discussed, including: (1) a shape (texture) parameter; (2) fractional polarization; (3) the phase difference signature; and (4) the correlation coefficient. These techniques are applied to airborne synthetic aperture radar imagery collected over several different vegetation communities, including a mangrove swamp, a mixed-age loblolly pine forest, and a flooded bald cypress forest.

  10. Calibration of a polarimetric imaging SAR

    NASA Technical Reports Server (NTRS)

    Sarabandi, K.; Pierce, L. E.; Ulaby, F. T.

    1991-01-01

    Calibration of polarimetric imaging Synthetic Aperture Radars (SAR's) using point calibration targets is discussed. The four-port network calibration technique is used to describe the radar error model. The polarimetric ambiguity function of the SAR is then found using a single point target, namely a trihedral corner reflector. Based on this, an estimate for the backscattering coefficient of the terrain is found by a deconvolution process. A radar image taken by the JPL Airborne SAR (AIRSAR) is used for verification of the deconvolution calibration method. The calibrated responses of point targets in the image are compared both with theory and the POLCAL technique. Also, response of a distributed target are compared using the deconvolution and POLCAL techniques.

  11. Symmetry in polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.

    1993-01-01

    Relationships among polarimetric backscattering coefficients are derived from the viewpoint of symmetry groups. For both reciprocal and non-reciprocal media, symmetry encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered. The derived properties are general and valid to all scattering mechanisms, including volume and surface scatterings and their interactions, in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is also discussed. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is then defined to study scattering structures in geophysical media. Observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented. Experimental evidences of the symmetry relationships are shown and their use in polarimetric remote sensing is illustrated. For forests, the coniferous forest in Mt. Shasta area (California) and mixed forest near Presque Isle (Maine) exhibit characteristics of the centrical symmetry at C-band. For sea ice in the Beaufort Sea, multi-year sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. First-year sea ice has e much smaller than e(sub 0) due to the preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering Sea, it is

  12. Precipitation observations from high frequency spaceborne polarimetric synthetic aperture radar and ground-based radar: Theory and model validation

    NASA Astrophysics Data System (ADS)

    Fritz, Jason P.

    Global weather monitoring is a very useful tool to better understand the Earth's hydrological cycle and provide critical information for emergency and warning systems in severe cases. Developed countries have installed numerous ground-based radars for this purpose, but they obviously are not global in extent. To address this issue, the Tropical Rainfall Measurement Mission (TRMM) was launched in 1997 and has been quite successful. The follow-on Global Precipitation Measurement (GPM) mission will replace TRMM once it is launched. However, a single precipitation radar satellite is still limited, so it would be beneficial if additional existing satellite platforms can be used for meteorological purposes. Within the past few years, several X-band Synthetic Aperture Radar (SAR) satellites have been launched and more are planned. While the primary SAR application is surface monitoring, and they are heralded as "all weather'' systems, strong precipitation induces propagation and backscatter effects in the data. Thus, there exists a potential for weather monitoring using this technology. The process of extracting meteorological parameters from radar measurements is essentially an inversion problem that has been extensively studied for radars designed to estimate these parameters. Before attempting to solve the inverse problem for SAR data, however, the forward problem must be addressed to gain knowledge on exactly how precipitation impacts SAR imagery. This is accomplished by simulating storms in SAR data starting from real measurements of a storm by ground-based polarimetric radar. In addition, real storm observations by current SAR platforms are also quantitatively analyzed by comparison to theoretical results using simultaneous acquisitions by ground radars even in single polarization. For storm simulation, a novel approach is presented here using neural networks to accommodate the oscillations present when the particle scattering requires the Mie solution, i

  13. Polarimetric C-/X-band Synthetic Aperture Radar Observations of Melting Sea Ice in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Casey, J. A.; Beckers, J. F.; Brossier, E.; Haas, C.

    2013-12-01

    Operational ice information services rely heavily on space-borne synthetic aperture radar (SAR) data for the production of ice charts to meet their mandate of providing timely and accurate sea ice information to support safe and efficient marine operations. During the summer melt period, the usefulness of SAR data for sea ice monitoring is limited by the presence of wet snow and melt ponds on the ice surface, which can mask the signature of the underlying ice. This is a critical concern for ice services whose clients (e.g. commercial shipping, cruise tourism, resource exploration and extraction) are most active at this time of year when sea ice is at its minimum extent, concentration and thickness. As a result, there is a need to further quantify the loss of ice information in SAR data during the melt season and to identify what information can still be retrieved about ice surface conditions and melt pond evolution at this time of year. To date the majority of studies have been limited to analysis of single-polarization C-band SAR data. This study will investigate the potential complimentary and unique sea ice information that polarimetric C- and X-band SAR data can provide to supplement the information available from traditional single co-polarized C-band SAR data. A time-series of polarimetric C- and X-band SAR data was acquired over Jones Sound in the Canadian Arctic Archipelago, in the vicinity of the Grise Fiord, Nunavut. Five RADARSAT-2 Wide Fine Quad-pol images and 11 TerraSAR-X StripMap dual-pol (HH/VV) images were acquired. The time-series begins at the onset of melt in early June and extends through advanced melt conditions in late July. Over this period several ponding and drainage events and two snowfall events occurred. Field observations of sea ice properties were collected using an Ice Mass Balance (IMB) buoy, hourly photos from a time-lapse camera deployed on a coastal cliff, and manual in situ measurements of snow thickness and melt pond depth

  14. Recent advances in airborne terrestrial remote sensing with the NASA airborne visible/infrared imaging spectrometer (AVIRIS), airborne synthetic aperture radar (SAR), and thermal infrared multispectral scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Evans, Diane L.; Kahle, Anne B.

    1989-01-01

    Significant progress in terrestrial remote sensing from the air has been made with three NASA-developed sensors that collectively cover the solar-reflected, thermal infrared, and microwave regions of the electromagnetic spectrum. These sensors are the airborne visible/infrared imaging spectrometer (AVIRIS), the thermal infrared mapping spectrometer (TIMS) and the airborne synthetic aperture radar (SAR), respectively. AVIRIS and SAR underwent extensive in-flight engineering testing in 1987 and 1988 and are scheduled to become operational in 1989. TIMS has been in operation for several years. These sensors are described.

  15. Determining the mixing of oil and sea water using polarimetric synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Minchew, Brent

    2012-08-01

    Knowledge of the characteristics of spilled oil in the ocean is important for cleanup operations, predictions of the impact on wildlife, and studies of the nature of the ocean surface and currents. Herein I discuss a method for evaluating the characteristics of oil in a marine environment using synthetic aperture radar (SAR) and present a new, simple classification, called the oil/water mixing index (Mdex), to quickly assess the results. I link the Mdex results to the Bonn Agreement for Oil Appearance Codes (BAOAC) for aerial observers and demonstrate the Mdex on Uninhabited Aerial Vehicle SAR (UAVSAR) data collected June 23, 2010 over the former site of the Deepwater Horizon (DWH) drilling rig. The Mdex map shows a more heterogeneous oil swath than do radar backscatter images and features within the oil are consistent with features present in previously published, near-coincident optical imagery. The Mdex results indicate that most of the oil near the DWH was mixed with sea water to a minimum depth of a few millimeters, though some areas containing relatively thin films are observed.

  16. Similarity measures of full polarimetric SAR images fusion for improved SAR image matching

    NASA Astrophysics Data System (ADS)

    Ding, H.

    2015-06-01

    China's first airborne SAR mapping system (CASMSAR) developed by Chinese Academy of Surveying and Mapping can acquire high-resolution and full polarimetric (HH, HV, VH and VV) Synthetic aperture radar (SAR) data. It has the ability to acquire X-band full polarimetric SAR data at a resolution of 0.5m. However, the existence of speckles which is inherent in SAR imagery affects visual interpretation and image processing badly, and challenges the assumption that conjugate points appear similar to each other in matching processing. In addition, researches show that speckles are multiplicative speckles, and most similarity measures of SAR image matching are sensitive to them. Thus, matching outcomes of SAR images acquired by most similarity measures are not reliable and with bad accuracy. Meanwhile, every polarimetric SAR image has different backscattering information of objects from each other and four polarimetric SAR data contain most basic and a large amount of redundancy information to improve matching. Therefore, we introduced logarithmically transformation and a stereo matching similarity measure into airborne full polarimetric SAR imagery. Firstly, in order to transform the multiplicative speckles into additivity ones and weaken speckles' influence on similarity measure, logarithmically transformation have to be taken to all images. Secondly, to prevent performance degradation of similarity measure caused by speckles, measure must be free or insensitive of additivity speckles. Thus, we introduced a stereo matching similarity measure, called Normalized Cross-Correlation (NCC), into full polarimetric SAR image matching. Thirdly, to take advantage of multi-polarimetric data and preserve the best similarity measure value, four measure values calculated between left and right single polarimetric SAR images are fused as final measure value for matching. The method was tested for matching under CASMSAR data. The results showed that the method delivered an effective

  17. Hierarchical ship detection and recognition with high-resolution polarimetric synthetic aperture radar imagery

    NASA Astrophysics Data System (ADS)

    Lang, Haitao; Zhang, Jie; Zhang, Ting; Zhao, Di; Meng, Junmin

    2014-01-01

    Ship surveillance by remote sensing technology has become a valuable tool for protecting marine environments. In recent years, the successful launch of advanced synthetic aperture radar (SAR) sensors that have high resolution and multipolarimetric modes has enabled researchers to use SAR imagery for not only ship detection but also ship category recognition. A hierarchical ship detection and recognition scheme is proposed. The complementary information obtained from multipolarimetric modes is used to improve both the detection precision and the recognition accuracy. In the ship detection stage, a three-class fuzzy c-means clustering algorithm is used to calculate the segmenting threshold for prescreening ship candidates. To reduce the false alarm rate (FAR), we use a two-step discrimination strategy. In the first step, we fuse the detection results from multipolarimetric channels to reduce the speckle noise, ambiguities, sidelobes, and other sources of interference. In the second step, we use a binary classifier, which is trained with prior data collected on ships and nonships, to reduce the FAR even further. In the ship category recognition stage, we concatenate texture-based descriptors extracted from multiple polarmetric channels to construct a robust ship representation for category recognition. Furthermore, we construct and release a ship category database with real SAR data. We hope that it can be used to promote investigations of SAR ship recognition in the remote sensing and related academic communities. The proposed method is validated by a comprehensive experimental comparison to the state-of-the-art methods. The validation procedure showed that the proposed method outperforms all of the competing methods by about 5% and 15% in terms of ship detection and recognition, respectively.

  18. Retrievals of Stratocumulus Drop Size Distributions from Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) Observations

    NASA Astrophysics Data System (ADS)

    Garay, Michael; Diner, David

    2013-04-01

    Data from the Polarization and Directionality of the Earth's Reflectances (POLDER) satellite instruments have been used for many years to retrieve information about the mean and dispersion of cloud droplet size distributions. The position of specific features in scattering angle space corresponding to supernumerary bows in the polarized phase function are extremely sensitive to the effective radius of the cloud droplets, while the amplitude of these features carries information on the dispersion of droplet sizes. Due to the relatively coarse angular sampling of POLDER multiangular views (~10°), variations in scattering angle from pixel to pixel are used instead to obtain fine sampling in angle, which requires the clouds to be homogeneous on scales of 150 km × 150 km in the POLDER retrievals. We will describe high-resolution polarimetric observations of marine stratocumulus clouds made off the coast of California by the AirMSPI instrument, which files on the NASA ER-2 high-altitude research aircraft. AirMSPI is an eight-band pushbroom camera mounted on a controllable gimbal, which allows the instrument to make observations over a ±67° range in the direction of aircraft motion. AirMSPI's eight spectral bands are 355, 380, 445, 470, 555, 660, 865, and 935 nm in the ultraviolet to the near-infrared range. Polarimetric observations are made in the 470, 660, and 865 nm bands using photoelastic modulators (PEMs) to rapidly vary the orientation of the linearly polarized component (Stokes Q and U) of the incoming light, enabling measurement of the relative ratios of these parameters to intensity from individual pixels. From the nominal 20 km altitude of the aircraft, AirMSPI can provide imagery mapped to a 25 m grid using a sweep scanning strategy in which the gimbal controlling the pointing of the instrument is slewed back and forth along the direction of aircraft motion. The AirMSPI observations of the polarimetric features of marine stratocumulus clouds have been

  19. Towards a Semantic Interpretation of Urban Areas with Airborne Synthetic Aperture Radar Tomography

    NASA Astrophysics Data System (ADS)

    D'Hondt, O.; Guillaso, S.; Hellwich, O.

    2016-06-01

    In this paper, we introduce a method to detect and reconstruct building parts from tomographic Synthetic Aperture Radar (SAR) airborne data. Our approach extends recent works in two ways: first, the radiometric information is used to guide the extraction of geometric primitives. Second, building facades and roofs are extracted thanks to geometric classification rules. We demonstrate our method on a 3 image L-Band airborne dataset over the city of Dresden, Germany. Experiments show how our technique allows to use the complementarity between the radiometric image and the tomographic point cloud to extract buildings parts in challenging situations.

  20. Segmentation Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J. M.; Chellappa, Rama

    1994-01-01

    Report presents one in continuing series of studies of segmentation of polarimetric synthetic-aperture-radar, SAR, image data into regions. Studies directed toward refinement of method of automated analysis of SAR data.

  1. A model for forming airborne synthetic aperture radar images of underground targets

    SciTech Connect

    Doerry, A.W.

    1994-01-01

    Synthetic Aperture Radar (SAR) from an airborne platform has been proposed for imaging targets beneath the earth`s surface. The propagation of the radar`s energy within the ground, however, is much different than in the earth`s atmosphere. The result is signal refraction, echo delay, propagation losses, dispersion, and volumetric scattering. These all combine to make SAR image formation from an airborne platform much more challenging than a surface imaging counterpart. This report treats the ground as a lossy dispersive half-space, and presents a model for the radar echo based on measurable parameters. The model is then used to explore various imaging schemes, and image properties. Dynamic range is discussed, as is the impact of loss on dynamic range. Modified window functions are proposed to mitigate effects of sidelobes of shallow targets overwhelming deeper targets.

  2. MAX-91: Polarimetric SAR results on Montespertoli site

    NASA Technical Reports Server (NTRS)

    Baronti, S.; Luciani, S.; Moretti, S.; Paloscia, S.; Schiavon, G.; Sigismondi, S.

    1993-01-01

    The polarimetric Synthetic Aperture Radar (SAR) is a powerful sensor for high resolution ocean and land mapping and particularly for monitoring hydrological parameters in large watersheds. There is currently much research in progress to assess the SAR operational capability as well as to estimate the accuracy achievable in the measurements of geophysical parameters with the presently available airborne and spaceborne sensors. An important goal of this research is to improve our understanding of the basic mechanisms that control the interaction of electro-magnetic waves with soil and vegetation. This can be done both by developing electromagnetic models and by analyzing statistical relations between backscattering and ground truth data. A systematic investigation, which aims at a better understanding of the information obtainable from the multi-frequency polarimetric SAR to be used in agro-hydrology, is in progress by our groups within the framework of SIR-C/X-SAR Project and has achieved a most significant milestone with the NASA/JPL Aircraft Campaign named MAC-91. Indeed this experiment allowed us to collect a large and meaningful data set including multi-temporal multi-frequency polarimetric SAR measurements and ground truth. This paper presents some significant results obtained over an agricultural flat area within the Montespertoli site, where intensive ground measurements were carried out. The results are critically discussed with special regard to the information associated with polarimetric data.

  3. a Modified Method for Polarimetric SAR Calibration Algorithm

    NASA Astrophysics Data System (ADS)

    Liao, L.; Li, P.; Yang, J.

    2013-07-01

    Present fully polarimetric synthetic aperture radar (SAR) systems often update calibration techniques to further enhance the accuracy to the polarimetric data. In this paper, we propose a modified method to estimate the value of crosstalk based on the corrected observed value. Since Ainsworth calibration algorithm firstly set the value of k to be one. And the value of k relates to the copolarization channel imbalance .We consider the effects of value of k and analyze it. Through comparison to crosstalk results between the stimulated parameters and the estimated parameters, we assume high co-polarization channel imbalance will be obviously to affect crosstalk results. Then, used covariance observation value of the initial value of k rewrites the model to solve related parameters. And crosstalk parameter is calculated by the same iterative method. To verify the effect of the modified calibration method, this letter compares the accuracy of the two methods using the simulated polarimetric SAR data and Chinese airborne X-band polarimetric SAR data. The results confirm that the modified method tends to get more accurate crosstalk results.

  4. On the accuracy of crosstalk calibration of polarimetric SAR using natural clutter statistics

    SciTech Connect

    Cordey, R.A. )

    1993-03-01

    A method for the routine correction of fully polarimetric synthetic aperture radar (SAR) images has been proposed by van Zyl which uses assumed statistical properties of natural distributed targets. The method has the potential to improve dramatically the accuracy of polarimetric imagery contaminated by antenna crosstalk and may be of importance for future spaceborne polarimetric SAR's as well as current airborne systems. The accuracy of the method is assessed here when the statistics of clutter deviate from the assumed form, and limits are placed on likely acceptable deviations. An investigation is presented of these statistics for a heterogeneous forestry and agricultural scene imaged by the NASA/JPL radar. The only significant deviations were found over certain man-made targets, including villages, and a single agricultural field. The results lend support to the routine use of the van Zyl method in such applications.

  5. Extracting DEM from airborne X-band data based on PolInSAR

    NASA Astrophysics Data System (ADS)

    Hou, X. X.; Huang, G. M.; Zhao, Z.

    2015-06-01

    Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) is a new trend of SAR remote sensing technology which combined polarized multichannel information and Interferometric information. It is of great significance for extracting DEM in some regions with low precision of DEM such as vegetation coverage area and building concentrated area. In this paper we describe our experiments with high-resolution X-band full Polarimetric SAR data acquired by a dual-baseline interferometric airborne SAR system over an area of Danling in southern China. Pauli algorithm is used to generate the double polarimetric interferometry data, Singular Value Decomposition (SVD), Numerical Radius (NR) and Phase diversity (PD) methods are used to generate the full polarimetric interferometry data. Then we can make use of the polarimetric interferometric information to extract DEM with processing of pre filtering , image registration, image resampling, coherence optimization, multilook processing, flat-earth removal, interferogram filtering, phase unwrapping, parameter calibration, height derivation and geo-coding. The processing system named SARPlore has been exploited based on VC++ led by Chinese Academy of Surveying and Mapping. Finally compared optimization results with the single polarimetric interferometry, it has been observed that optimization ways can reduce the interferometric noise and the phase unwrapping residuals, and improve the precision of DEM. The result of full polarimetric interferometry is better than double polarimetric interferometry. Meanwhile, in different terrain, the result of full polarimetric interferometry will have a different degree of increase.

  6. Indoor experimental facility for airborne synthetic aperture radar (SAR) configurations - rail-SAR

    NASA Astrophysics Data System (ADS)

    Kirose, Getachew; Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Koenig, Francois; Narayanan, Ram M.

    2014-05-01

    The Army Research Laboratory (ARL) is developing an indoor experimental facility to evaluate and assess airborne synthetic-aperture-radar-(SAR)-based detection capabilities. The rail-SAR is located in a multi-use facility that also provides a base for research and development in the area of autonomous robotic navigation. Radar explosive hazard detection is one key sensordevelopment area to be investigated at this indoor facility. In particular, the mostly wooden, multi-story building houses a two (2) story housing structure and an open area built over a large sandbox. The housing structure includes reconfigurable indoor walls which enable the realization of multiple See-Through-The-Wall (STTW) scenarios. The open sandbox, on the other hand, allows for surface and buried explosive hazard scenarios. The indoor facility is not rated for true explosive hazard materials so all targets will need to be inert and contain surrogate explosive fills. In this paper we discuss the current system status and describe data collection exercises conducted using canonical targets and frequencies that may be of interest to designers of ultra-wideband (UWB) airborne, ground penetrating SAR systems. A bi-static antenna configuration will be used to investigate the effects of varying airborne SAR parameters such as depression angle, bandwidth, and integration angle, for various target types and deployment scenarios. Canonical targets data were used to evaluate overall facility capabilities and limitations. These data is analyzed and summarized for future evaluations. Finally, processing techniques for dealing with RF multi-path and RFI due to operating inside the indoor facility are described in detail. Discussion of this facility and its capabilities and limitations will provide the explosive hazard community with a great airborne platform asset for sensor to target assessment.

  7. Automatic oil spill detection on quad polarimetric UAVSAR imagery

    NASA Astrophysics Data System (ADS)

    Rahnemoonfar, Maryam; Dhakal, Shanti

    2016-05-01

    Oil spill on the water bodies has adverse effects on coastal and marine ecology. Oil spill contingency planning is of utmost importance in order to plan for mitigation and remediation of the oceanic oil spill. Remote sensing technologies are used for monitoring the oil spills on the ocean and coastal region. Airborne and satellite sensors such as optical, infrared, ultraviolet, radar and microwave sensors are available for remote surveillance of the ocean. Synthetic Aperture Radar (SAR) is used most extensively for oil-spill monitoring because of its capability to operate during day/night and cloud-cover condition. This study detects the possible oil spill regions on fully polarimetric Uninhabited Aerial Vehicle - Synthetic Aperture Radar (UAVSAR) images. The UAVSAR image is decomposed using Cloude-Pottier polarimetric decomposition technique to obtain entropy and alpha parameters. In addition, other polarimetric features such as co-polar correlation and degree of polarization are obtained for the UAVSAR images. These features are used to with fuzzy logic based classification to detect oil spill on the SAR images. The experimental results show the effectiveness of the proposed method.

  8. Progress report on the NASA/JPL airborne synthetic aperture radar system

    NASA Technical Reports Server (NTRS)

    Lou, Y.; Imel, D.; Chu, A.; Miller, T.; Moller, D.; Skotnicki, W.

    2001-01-01

    AIRSAR has served as a test-bed for both imaging radar techniques and radar technologies for over a decade. In fact, the polarimetric, cross-track interferometric, and along-track introferometric radar techniques were all developed using AIRSAR.

  9. Operations Manager Tim Miller checks out software for the Airborne Synthetic Aperature Radar (AIRSAR

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Tim Miller checks out software for the Airborne Synthetic Aperture Radar (AIRSAR). He was the AIRSAR operations manager for NASA's Jet Propulsion Laboratory. The AIRSAR produces imaging data for a range of studies conducted by the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  10. Enhanced Feature Based Mosaicing Technique for Visually and Geometrically Degraded Airborne Synthetic Aperture Radar Images

    NASA Astrophysics Data System (ADS)

    Manikandan, S.; Vardhini, J. P.

    2015-11-01

    In airborne synthetic aperture radar (SAR), there was a major problem encountered in the area of image mosaic in the absence of platform information and sensor information (geocoding), when SAR is applied in large-scale scene and the platform faces large changes. In order to enhance real-time performance and robustness of image mosaic, enhancement based Speeded-Up Robust Features (SURF) mosaic method for airborne SAR is proposed in this paper. SURF is a novel scale-invariant and rotation-invariant feature. It is perfect in its high computation, speed and robustness. In this paper, When the SAR image is acquired, initially the image is enhanced by using local statistic techniques and SURF is applied for SAR image matching accord to its characteristic, and then acquires its invariant feature for matching. In the process of image matching, the nearest neighbor rule for initial matching is used, and the wrong points of the matches are removed through RANSAC fitting algorithm. The proposed algorithm is implemented in different SAR images with difference in scale change, rotation change and noise. The proposed algorithm is compared with other existing algorithms and the quantitative and qualitative measures are calculated and tabulated. The proposed algorithm is robust to changes and the threshold is varied accordingly to increase the matching rate more than 95 %.

  11. Polarimetric analysis of radar backscatter from ground-based scatterometers and wheat biomass monitoring with advanced synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    He, Lei; Tong, Ling; Li, Yuxia; Chen, Yan; Tan, Longfei; Guo, Caizheng

    2016-04-01

    This article presents an analysis of the scattering measurements for an entire wheat growth cycle by ground-based scatterometers at a frequency of 5.3 GHz. Since wheat ears are related to wheat growth and yield, the radar backscatter of wheat was analyzed at two different periods, i.e., with and without wheat ears. Simultaneously, parameters such as wheat and soil characteristics as well as volume scattering and soil scattering were analyzed for the two periods during the entire growth cycle. Wheat ears have been demonstrated to have a great influence on radar backscatter; therefore, a modified version of water-cloud model used for retrieving biomass should consider the effect of wheat ears. This work presents two retrieval models based on the water-cloud model and adopts the advanced integral equation model to simulate the soil backscatter before the heading stage and the backscatter from the layer under wheat ears after the heading stage. The research results showed that the biomass retrieved from the advanced synthetic aperture radar (ASAR) images to agree well with the data measured in situ after setting the modified water-cloud model for the growth stages with ears. Furthermore, it was concluded that wheat ears should form an essential component of theoretical modeling as they influence the final yield.

  12. Synthetic aperture radar imagery of airports and surrounding areas: Study of clutter at grazing angles and their polarimetric properties

    NASA Technical Reports Server (NTRS)

    Onstott, Robert G.; Gineris, Denise J.; Clinthorne, James T.

    1991-01-01

    The statistical description of ground clutter at an airport and in the surrounding area is addressed. These data are being utilized in a program to detect microbursts. Synthetic aperture radar data were collected at the Denver Stapleton Airport. Mountain terrain data were examined to determine if they may potentially contribute to range ambiguity problems and degrade microburst detection. Results suggest that mountain clutter may not present a special problem source. The examination of clutter at small grazing angles was continued by examining data collected at especially low altitudes. Cultural objects such as buildings produce strong sources of backscatter at angles of about 85 deg, with responses of 30 dB to 60 dB above the background. Otherwise there are a few sources which produce significant scatter. The polarization properties of hydrospheres and clutter were examined with the intent of determining the optimum polarization. This polarization was determined to be dependent upon the ratio of VV and HH polarizations of both rain and ground clutter.

  13. Classification of fully polarimetric F-SAR ( X / S ) airborne radar images using decomposition methods. (Polish Title: Klasyfikacja treści polarymetrycznych obrazów radarowych z wykorzystaniem metod dekompozycji na przykładzie systemu F-SAR ( X / S ))

    NASA Astrophysics Data System (ADS)

    Mleczko, M.

    2014-12-01

    Polarimetric SAR data is not widely used in practice, because it is not yet available operationally from the satellites. Currently we can distinguish two approaches in POL - In - SAR technology: alternating polarization imaging (Alt - POL) and fully polarimetric (QuadPol). The first represents a subset of another and is more operational, while the second is experimental because classification of this data requires polarimetric decomposition of scattering matrix in the first stage. In the literature decomposition process is divided in two types: the coherent and incoherent decomposition. In this paper the decomposition methods have been tested using data from the high resolution airborne F - SAR system. Results of classification have been interpreted in the context of the land cover mapping capabilities

  14. Processing of polarimetric SAR data for soil moisture estimation over Mahantango watershed area

    NASA Technical Reports Server (NTRS)

    Rao, K. S.; Teng, W. L.; Wang, J. R.

    1992-01-01

    Microwave remote sensing technique has a high potential for measuring soil moisture due to the large contrast in dielectric constant of dry and wet soils. Recent work by Pults et al. demonstrated the use of X/C-band data for quantitative surface soil moisture extraction from Airborne Synthetic Aperture Radar (SAR) system. Similar technique was adopted using polarimetric SAR data acquired with the JPL-AIRSAR system over the Mahantango watershed area in central Pennsylvania during July 1990. The data sets reported include C-, L-, and P-bands of 10, 13, 15, and 17 July 1990.

  15. Segmentation of multifrequency polarimetric radar images to facilitate the inference of geophysical parameters

    NASA Technical Reports Server (NTRS)

    Burnette, C F.; Dubois, P. C.; Van Zyl, J. J.

    1989-01-01

    An unsupervised clustering algorithm is used to segment multifrequency polarimetric radar data from the NASA/JPL airborne SAR (synthetic aperture radar). Twenty-two parameters are evaluated for their discriminatory capability for each pixel of an image. A clustering analysis is then performed using different subsets of these parameters. This analysis relies on data taken as part of an intensive field experiment during the summer of 1988 in the vicinity of the Pisgah lava flow in the Mojave Desert in southern California. As part of the experiment, extensive ground truth was acquired, including dielectric constant and topography measurements. Segmentation results show good agreement with these measurements.

  16. Determinations of airborne synthetic musks by polyurethane foam coupled with triple quadrupole gas chromatography tandem mass spectrometer.

    PubMed

    Wang, I-Ting Ivy; Cheng, Shu-Fang; Tsai, Shih-Wei

    2014-02-21

    Synthetic musk is widely used in various scented consumer products. However, the exposure via inhalation is often ignored due to pleasant smells. In addition, the information regarding the distribution of synthetic musk in air is limited. Hence, this research is aimed to develop a highly sensitive and widely applicable method for the determination of airborne synthetic musk. In this study, polyurethane foam (PUF) and filter were employed for active air sampling. Microwave assisted extraction (MAE) and nitrogen evaporator were performed for sample preparation. A gas chromatography coupled with triple quadrupole tandem mass spectrometer (GC/MS-MS) with specific multiple reaction monitoring (MRM) transition pairs was applied for sample analysis. Compared with using selected ion monitoring (SIM) mode traditionally, the sensitivities were improved in this study about an order at least. In terms of air concentration, as low as 0.48ngm(-3) can be determined when sampling at 3.5Lmin(-1) for 8h. The method established was further applied to the analysis of synthetic musk compounds in air samples collected in a cosmetics plant. The results showed that the airborne concentrations of gaseous polycyclic musk, gaseous nitro-musk, and particle-phase polycyclic musk were 6.4×10(2), 4.0×10(1) and 3.1×10(2)ngm(-3), respectively. Meanwhile, Cashmeran, Celstolide, Galaxolide, and Tonalide were found as the dominant musk compounds in the factory investigated. PMID:24480734

  17. Unsupervised Segmentation Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Dubois, Pascale; Van Zyl, Jakob; Kwok, Ronald; Chellappa, Rama

    1994-01-01

    Method of unsupervised segmentation of polarimetric synthetic-aperture-radar (SAR) image data into classes involves selection of classes on basis of multidimensional fuzzy clustering of logarithms of parameters of polarimetric covariance matrix. Data in each class represent parts of image wherein polarimetric SAR backscattering characteristics of terrain regarded as homogeneous. Desirable to have each class represent type of terrain, sea ice, or ocean surface distinguishable from other types via backscattering characteristics. Unsupervised classification does not require training areas, is nearly automated computerized process, and provides nonsubjective selection of image classes naturally well separated by radar.

  18. Unsupervised segmentation of polarimetric SAR data using the covariance matrix

    NASA Technical Reports Server (NTRS)

    Rignot, Eric; Chellappa, Rama; Dubois, Pascale; Kwok, Ronald; Van Zyl, Jacob

    1991-01-01

    An unsupervised selection of polarimetric features useful for the segmentation and analysis of polarimetric synthetic aperture radar (SAR) data is presented. The technique is based on multidimensional clustering of the parameters composing the polarimetric covariance matrix of the data. Clustering is performed on the logarithm of these quantities. Once the polarimetric cluster centers have been determined, segmentation of the polarimetric data into regions is performed using a maximum likelihood polarimetric classifier. Segmentation maps are further improved using a Markov random field to describe the statistics of the regions and computing the maximum of the product of the local conditional densities. Examples with real polarimetric SAR imagery are given to illustrate the potential of this method.

  19. MAPSAR Image Simulation Based on L-band Polarimetric Data from the SAR-R99B Airborne Sensor (SIVAM System)

    PubMed Central

    Mura, José Claudio; Paradella, Waldir Renato; Dutra, Luciano Vieira; dos Santos, João Roberto; Rudorff, Bernardo Friedrich Theodor; de Miranda, Fernando Pellon; da Silva, Mario Marcos Quintino; da Silva, Wagner Fernando

    2009-01-01

    This paper describes the methodology applied to generate simulated multipolarized L-band SAR images of the MAPSAR (Multi-Application Purpose SAR) satellite from the airborne SAR R99B sensor (SIVAM System). MAPSAR is a feasibility study conducted by INPE (National Institute for Space Research) and DLR (German Aerospace Center) targeting a satellite L-band SAR innovative mission for assessment, management and monitoring of natural resources. Examples of simulated products and their applications are briefly discussed. PMID:22389590

  20. Multi-temporal airborne synthetic aperture radar data for crop classification

    NASA Technical Reports Server (NTRS)

    Foody, G. M.; Curran, P. J.; Groom, G. B.; Munro, D. C.

    1989-01-01

    This paper presents an approach to the classification of crop type using multitemporal airborne SAR data. Following radiometric correction of the data, the accuracy of a per-field crop classification reached 90 percent for three classes using data acquired on four dates. A comparable accuracy of 88 percent could be obtained for a classification of the same classes using data acquired on only two dates. Increasing the number of classes from three to seven reduced the classification accuracies to 55 percent and 69 percent when using data from two and four dates respectively.

  1. Internal wave observations made with an airborne synthetic aperture imaging radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Apel, J. R.

    1976-01-01

    Synthetic aperture L-band radar flown aboard the NASA CV-990 has observed periodic striations on the ocean surface off the coast of Alaska which have been interpreted as tidally excited oceanic internal waves of less than 500 m length. These radar images are compared to photographic imagery of similar waves taken from Landsat 1. Both the radar and Landsat images reveal variations in reflectivity across each wave in a packet that range from low to high to normal. The variations point to the simultaneous existence of two mechanisms for the surface signatures of internal waves: roughening due to wave-current interactions, and smoothing due to slick formation.

  2. Recent Advances in Radar Polarimetry and Polarimetric SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Boerner, Wolfgang-Martin

    2005-01-01

    The development of Radar Polarimetry and Radar Interferometry is advancing rapidly, and these novel radar technologies are revamping Synthetic Aperture Radar Imaging decisively. In this exposition the successive advancements are sketched; beginning with the fundamental formulations and high-lighting the salient points of these diverse remote sensing techniques. Whereas with radar polarimetry the textural fine-structure, target-orientation and shape, symmetries and material constituents can be recovered with considerable improvements above that of standard amplitude-only Polarization Radar ; with radar interferometry the spatial (in depth) structure can be explored. In Polarimetric-Interferometric Synthetic Aperture Radar (POL-IN-SAR) Imaging it is possible to recover such co-registered textural plus spatial properties simultaneously. This includes the extraction of Digital Elevation Maps (DEM) from either fully Polarimetric (scattering matrix) or Interferometric (dual antenna) SAR image data takes with the additional benefit of obtaining co-registered three-dimensional POL-IN-DEM information. Extra-Wide-Band POL-IN-SAR Imaging - when applied to Repeat-Pass Image Overlay Interferometry - provides differential background validation and measurement, stress assessment, and environmental stress-change monitoring capabilities with hitherto unattained accuracy, which are essential tools for improved global biomass estimation. More recently, by applying multiple parallel repeat-pass EWB-POL-D(RP)-IN-SAR imaging along stacked (altitudinal) or displaced (horizontal) flight-lines will result in Tomographic (Multi- Interferometric) Polarimetric SAR Stereo-Imaging , including foliage and ground penetrating capabilities. It is shown that the accelerated advancement of these modern EWB-POL-D(RP)-IN-SAR imaging techniques is of direct relevance and of paramount priority to wide-area dynamic homeland security surveillance and local-to-global environmental ground-truth measurement

  3. Airborne synthetic aperture radar observations and simulations for waves in ice

    NASA Technical Reports Server (NTRS)

    Vachon, Paris W.; Olsen, Richard B.; Krogstad, Harald E.; Liu, Antony K.

    1993-01-01

    The Canada Centre for Remote Sensing CV-580 aircraft collected C-band SAR data over the marginal ice zone off the east coast of Newfoundland during the Labrador Ice Margin Experiment (LIMEX) in March 1989. One component of the LIMEX '89 program was the study of ocean waves penetrating the marginal ice zone. We consider nearly coincidental observations of waves in ice by airborne SAR and wave-induced ice motion measurements. We explain the wave patterns observed in the SAR imagery, and the corresponding SAR image spectra, in terms of SAR wave imaging models. These include the well-known tilt cross-section modulation, linear, quasi-linear, and nonlinear velocity bunching forward mapping models (FMMs), and the assertion that the concept of coherence time limitation applies differently to the cases of waves in ice and open water. We modify the concept of the scene coherence time to include two parts: first, a decorrelation time deduced from the inherent azimuth cutoff in the nonlinear velocity bunching FMM; and second, the intrinsic scene coherence time which is a measure of the time scale over which an open water Bragg scattering patch retains its phase structure. Either of these coherence time scales could dominate the SAR image formation process, depending upon the environmental conditions (the wave spectrum and the wind speed, for example). Observed SAR image spectra and forward mapped ice motion package spectra are favorably compared.

  4. Polarimetric Doppler Weather Radar

    NASA Astrophysics Data System (ADS)

    Bringi, V. N.; Chandrasekar, V.

    2001-10-01

    This work provides a detailed introduction to the principles of Doppler and polarimetric radar, focusing in particular on their use in the analysis of weather systems. The authors first discuss underlying topics such as electromagnetic scattering, polarization, and wave propagation. They then detail the engineering aspects of pulsed Doppler polarimetric radar, before examining key applications in meteorology and remote sensing. The book is aimed at graduate students of electrical engineering and atmospheric science as well as practitioners involved in the applications of polarimetric radar.

  5. Supervised fully polarimetric classification of the Black Forest test site: From MAESTROI to MAC Europe

    NASA Technical Reports Server (NTRS)

    Degrandi, G.; Lavalle, C.; Degroof, H.; Sieber, A.

    1992-01-01

    A study on the performance of a supervised fully polarimetric maximum likelihood classifier for synthetic aperture radar (SAR) data when applied to a specific classification context: forest classification based on age classes and in the presence of a sloping terrain is presented. For the experimental part, the polarimetric AIRSAR data at P, L, and C-band, acquired over the German Black Forest near Freiburg in the frame of the 1989 MAESTRO-1 campaign and the 1991 MAC Europe campaign was used, MAESTRO-1 with an ESA/JRC sponsored campaign, and MAC Europe (Multi-sensor Aircraft Campaign); in both cases the multi-frequency polarimetric JPL Airborne Synthetic Aperture Radar (AIRSAR) radar was flown over a number of European test sites. The study is structured as follows. At first, the general characteristics of the classifier and the dependencies from some parameters, like frequency bands, feature vector, calibration, using test areas lying on a flat terrain are investigated. Once it is determined the optimal conditions for the classifier performance, we then move on to the study of the slope effect. The bulk of this work is performed using the Maestrol data set. Next the classifier performance with the MAC Europe data is considered. The study is divided into two stages: first some of the tests done on the Maestro data are repeated, to highlight the improvements due to the new processing scheme that delivers 16 look data. Second we experiment with multi images classification with two goals: to assess the possibility of using a training set measured from one image to classify areas in different images; and to classify areas on critical slopes using different viewing angles. The main points of the study are listed and some of the results obtained so far are highlighted.

  6. Application of symmetry properties to polarimetric remote sensing with JPL AIRSAR data

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, Simon H.; Kwok, R.; Li, F. K.

    1992-01-01

    Based on symmetry properties, polarimetric remote sensing of geophysical media is studied. From the viewpoint of symmetry groups, media with reflection, rotation, azimuthal, and centrical symmetries are considered. The symmetries impose relations among polarimetric scattering coefficients, which are valid to all scattering mechanisms in the symmetrical configurations. Various orientation distributions of non-spherical scatterers can be identified from the scattering coefficients by a comparison with the symmetry calculations. Experimental observations are then analyzed for many geophysical scenes acquired with the Jet Propulsion Laboratory (JPL) airborne polarimetric SAR at microwave frequencies over sea ice and vegetation. Polarimetric characteristics of different ice types are compared with symmetry behaviors. The polarimetric response of a tropical rain forest reveals characteristics close to the centrical symmetry properties, which can be used as a distributed target to relatively calibrate polarimetric radars without any deployment of manmade calibration targets.

  7. 3D polarimetric purity

    NASA Astrophysics Data System (ADS)

    Gil, José J.; San José, Ignacio

    2010-11-01

    From our previous definition of the indices of polarimetric purity for 3D light beams [J.J. Gil, J.M. Correas, P.A. Melero and C. Ferreira, Monogr. Semin. Mat. G. de Galdeano 31, 161 (2004)], an analysis of their geometric and physical interpretation is presented. It is found that, in agreement with previous results, the first parameter is a measure of the degree of polarization, whereas the second parameter (called the degree of directionality) is a measure of the mean angular aperture of the direction of propagation of the corresponding light beam. This pair of invariant, non-dimensional, indices of polarimetric purity contains complete information about the polarimetric purity of a light beam. The overall degree of polarimetric purity is obtained as a weighted quadratic average of the degree of polarization and the degree of directionality.

  8. Polarimetric properties of asteroids

    NASA Astrophysics Data System (ADS)

    Shestopalov, D. I.; Golubeva, L. F.

    2015-11-01

    Quite frequently astronomic polarimetric observations of different celestial bodies do not guarantee a proper phase angle coverage that is required for estimating all of the attributes of their polarization phase curves with a high accuracy. To approximate the phase dependences of polarization observed for particulate surfaces, we use a simple empiric formula recently suggested by Shestopalov (2004). The efficiency of the approximating function in a wide range of phase angles is illustrated with the use of the results of polarimetric measurements of lunar areas, lunar samples, and near-Earth asteroids. For asteroids of various types, we can reproduce their negative polarization branches with adequate accuracy and roughly estimate a probable value of the maximum polarization degree at an appropriate phase angle. From the polarimetric database available at NASA PDS [Asteroid Polarimetric Database V7.0 (2012)] we calculated the main parameters of 153 polarimetric curves of asteroids in various spectral bands with the accuracy comparable to the observation errors. One more purpose of our analysis was to find correlations between the polarimetric and photometric properties of asteroids. For C-, M-, S-, E-type asteroids, the characteristics of the negative branch of polarization curves turned out to correlate closely with the phase coefficient of the photometric function of asteroids and the photometric roughness of asteroid surfaces. This implies that the complex geometry of the surface microrelief affects the polarization properties of asteroids. In particular, the data scattering around regression lines on the plots of the albedo versus the depth of negative polarization branch and the slope of the polarimetric function at inversion angle strongly depends on the differences in the photometric roughness of asteroid surfaces.

  9. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment

    NASA Astrophysics Data System (ADS)

    Koch, Barbara

    2010-11-01

    This is a review of the latest developments in different fields of remote sensing for forest biomass mapping. The main fields of research within the last decade have focused on the use of small footprint airborne laser scanning systems, polarimetric synthetic radar interferometry and hyperspectral data. Parallel developments in the field of digital airborne camera systems, digital photogrammetry and very high resolution multispectral data have taken place and have also proven themselves suitable for forest mapping issues. Forest mapping is a wide field and a variety of forest parameters can be mapped or modelled based on remote sensing information alone or combined with field data. The most common information required about a forest is related to its wood production and environmental aspects. In this paper, we will focus on the potential of advanced remote sensing techniques to assess forest biomass. This information is especially required by the REDD (reducing of emission from avoided deforestation and degradation) process. For this reason, new types of remote sensing data such as fullwave laser scanning data, polarimetric radar interferometry (polarimetric systhetic aperture interferometry, PolInSAR) and hyperspectral data are the focus of the research. In recent times, a few state-of-the-art articles in the field of airborne laser scanning for forest applications have been published. The current paper will provide a state-of-the-art review of remote sensing with a particular focus on biomass estimation, including new findings with fullwave airborne laser scanning, hyperspectral and polarimetric synthetic aperture radar interferometry. A synthesis of the actual findings and an outline of future developments will be presented.

  10. Pyxis handheld polarimetric imager

    NASA Astrophysics Data System (ADS)

    Chenault, David B.; Pezzaniti, J. Larry; Vaden, Justin P.

    2016-05-01

    The instrumentation for measuring infrared polarization signatures has seen significant advancement over the last decade. Previous work has shown the value of polarimetric imagery for a variety of target detection scenarios including detection of manmade targets in clutter and detection of ground and maritime targets while recent work has shown improvements in contrast for aircraft detection and biometric markers. These data collection activities have generally used laboratory or prototype systems with limitations on the allowable amount of target motion or the sensor platform and usually require an attached computer for data acquisition and processing. Still, performance and sensitivity have been steadily getting better while size, weight, and power requirements have been getting smaller enabling polarimetric imaging for a greater or real world applications. In this paper, we describe Pyxis®, a microbolometer based imaging polarimeter that produces live polarimetric video of conventional, polarimetric, and fused image products. A polarization microgrid array integrated in the optical system captures all polarization states simultaneously and makes the system immune to motion artifacts of either the sensor or the scene. The system is battery operated, rugged, and weighs about a quarter pound, and can be helmet mounted or handheld. On board processing of polarization and fused image products enable the operator to see polarimetric signatures in real time. Both analog and digital outputs are possible with sensor control available through a tablet interface. A top level description of Pyxis® is given followed by performance characteristics and representative data.

  11. Efficient polarimetric BRDF model.

    PubMed

    Renhorn, Ingmar G E; Hallberg, Tomas; Boreman, Glenn D

    2015-11-30

    The purpose of the present manuscript is to present a polarimetric bidirectional reflectance distribution function (BRDF) model suitable for hyperspectral and polarimetric signature modelling. The model is based on a further development of a previously published four-parameter model that has been generalized in order to account for different types of surface structures (generalized Gaussian distribution). A generalization of the Lambertian diffuse model is presented. The pBRDF-functions are normalized using numerical integration. Using directional-hemispherical reflectance (DHR) measurements, three of the four basic parameters can be determined for any wavelength. This simplifies considerably the development of multispectral polarimetric BRDF applications. The scattering parameter has to be determined from at least one BRDF measurement. The model deals with linear polarized radiation; and in similarity with e.g. the facet model depolarization is not included. The model is very general and can inherently model extreme surfaces such as mirrors and Lambertian surfaces. The complex mixture of sources is described by the sum of two basic models, a generalized Gaussian/Fresnel model and a generalized Lambertian model. Although the physics inspired model has some ad hoc features, the predictive power of the model is impressive over a wide range of angles and scattering magnitudes. The model has been applied successfully to painted surfaces, both dull and glossy and also on metallic bead blasted surfaces. The simple and efficient model should be attractive for polarimetric simulations and polarimetric remote sensing. PMID:26698753

  12. Fully polarimetric data from the ARL RailSAR

    NASA Astrophysics Data System (ADS)

    Ranney, Kenneth; Kirose, Getachew; Phelan, Brian; Sherbondy, Kelly

    2016-05-01

    The U.S. Army Research Laboratory (ARL) has recently upgraded the indoor, rail-mounted synthetic aperture radar (SAR) system, RailSAR, to enable collection of large amounts of low-frequency, ultrawideband (UWB) data. Our intent is to provide a research tool that is capable of emulating airborne SAR configuration and associated data collection geometries against surrogate explosive hazard threat deployments. By having such a capability, ARL's facility will afford a more rapid response to the ever changing improvised characteristics associated with explosive hazards today and in the future. Therefore, upgrades to this RailSAR tool to improve functionality and performance are needed to meet the potential rapid response assessments to be carried out. The new, lighter RailSAR cart puts less strain on the radar positioning hardware and allows the system to move smoothly along a specified portion of the rail. In previous papers, we have presented co-polarized SAR data collected using the ARL RailSAR. Recently, however, researchers at ARL have leveraged this asset to collect polarimetric data against multiple targets. This paper presents the SAR imagery resulting from these experiments and documents characteristics of certain target signatures that should be of interest to developers of automatic target detection (ATD) algorithms.

  13. Validation of Forested Inundation Extent Revealed by L-Band Polarimetric and Interferometric SAR Data

    NASA Technical Reports Server (NTRS)

    Chapman, Bruce; Celi, Jorge; Hamilton, Steve; McDonald, Kyle

    2013-01-01

    UAVSAR, NASA's airborne Synthetic Aperture Radar (SAR), conducted an extended observational campaign in Central and South America in March 2013, primarily related to volcanic deformations along the Andean Mountain Range but also including a large number of flights studying other scientific phenomena. During this campaign, the L-Band SAR collected data over the Napo River in Ecuador. The objectives of this experiment were to acquire polarimetric and interferometric L-Band SAR data over an inundated tropical forest in Ecuador simultaneously with on-the-ground field work ascertaining the extent of inundation, and to then derive from this data a quantitative estimate for the error in the SAR-derived inundation extent. In this paper, we will first describe the processing and preliminary analysis of the SAR data. The polarimetric SAR data will be classified by land cover and inundation state. The interferometric SAR data will be used to identify those areas where change in inundation extent occurred, and to measure the change in water level between two observations separated by a week. Second, we will describe the collection of the field estimates of inundation, and have preliminary comparisons of inundation extent measured in the field field versus that estimated from the SAR data.

  14. Overview and Applications of UAVSAR's Multi-Squint Polarimetric Imaging Mode

    NASA Technical Reports Server (NTRS)

    Scott Hensley; Chen, Curtis; Michel, Thierry; Jones, Cathleen; Chapman, Bruce; Muellerschoen, Ron

    2011-01-01

    NASA's Jet Propulsion Laboratory has developed a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data for application to monitoring surface deformation and vegetation structure measurements. The system employs a precision autopilot developed by NASA Dryden that allows the plane to fly precise trajectories usually within a 5 m tube. Also required for robust repeat pass applications is the ability to point the antenna in the same direction on repeat passes to a fraction of an azimuth beamwidth (8? for UAVSAR). This precise pointing is achieved using an electronically scanned antenna whose pointing is based on inertial navigation unit (INU) attitude angle data. The radar design is fully polarimetric with an 80 MHz bandwidth (2 m range resolution) and has a greater than 20 km range swath when flying at its nominal altitude of 12500 m. The ability to electronically steer the beam on a pulse-to-pulse basis has allowed a new mode of SAR data acquisition whereby the radar beam is steered to different squint angles on successive pulses thereby simultaneously generating images at multiple squint angles. This mode offers the possibility of generating vector deformation measurements with a single pair of repeat passes and to obtain greater kz diversity for vegetation studies with a reduced number of passes. This paper will present an overview of the mode, discuss its potential for deformation and vegetation, and show some examples using UAVSAR data.

  15. Fitting a three-component scattering model to polarimetric SAR data

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Durden, S.

    1992-01-01

    A new technique for fitting a three-component scattering mechanism model to the polarimetric synthetic aperture radar (SAR) data itself, without utilizing any ground truth measurements, is presented. The three scattering mechanism components included in the model are volume scatter from randomly oriented dipoles, first-order Bragg surface scatter and a dihedral scattering mechanism for two surfaces with different dielectric constants. The model fit yields an estimate of the contribution to the total backscatter of each of the three components. The backscatter contributions can also be compared to give the relative percentage weight of each. The model fit has an equal number of input parameters (the polarimetric radar backscatter measurements) and output parameters (the backscatter parameters describing them). The model can be applied to entire images or to small areas within an image to give a first-order estimate of the relevant scattering mechanisms. The model was applied to many C-, L- and P-band Airborne SAR (AIRSAR) images of different types of terrain. Results were presented at the workshop.

  16. Imaging of buried and foliage-obscured objects with an ultrawide-bandwidth polarimetric SAR

    NASA Astrophysics Data System (ADS)

    Sheen, Dan R.; Lewis, Terry B.; Wei, Susan C.; Kletzli, D. W., Jr.

    1993-11-01

    The Environmental Research Institute of Michigan (ERIM) has developed a unique ground- based, portable, synthetic aperture radar (SAR). This SAR images targets in their natural backgrounds without the expense of an airborne sensor and with higher performance (bandwidth, resolution) than existing airborne systems. A horizontal 36-foot long aluminum truss supports a rail and an antenna cartridge, which is moved along the rail to allow synthetic aperture focusing. The system is fully-polarimetric and has collected data over the frequency band of 400 - 1300 MHz resulting in a nominal resolution of 0.17 m in range and 0.5 m in cross-range. The low frequency range of the system allows for penetration of soil (to shallow depths) as well as foliage and the system has been used to collect images of buried and foliage- obscured targets. The ground imagery collected to date includes steel oil drums buried at depths of up to one-meter. Both the drums as well as the disturbances due to digging the holes are visible in the imagery. Foliage imagery includes portions of a Lear jet under a mature hardwood forest. Due to the low frequency and wide bandwidth of the sensor (400 - 1300 MHz), obscured objects are clearly visible in the SAR imagery. Other responses in the foliage imagery are due to the dihedral-like ground-trunk reflections.

  17. Performance of Polarimetric Processing Techniques using NAWC P-3 SAR Imagery

    NASA Technical Reports Server (NTRS)

    Teti, J. G., Jr.; Lee, R. R.-Y.; Verdi, J. S.; Boerner, W.-M.

    1996-01-01

    The use of synthetic aperture radar (SAR) polarimetric processing for enhancing the detection, classification, and/or identification of scene scattering features is described. This paper describes and compares the results obtained from applying the polarimetric techniques that have been developed and/or advanced by researchers at MIT Lincoln Laboratory, and basic polarimetric match filter (PMF) techniques that have been modified to treat distributed scatterers. The paper describes the individual polarimetric processing techniques and the formulation used fro their application to polarimetric imagery obtained from the NAWC P-3 SAR. In all cases, the polarimetric techniques have been applied to enhance the detection of distributed scatterers in clutter The emphasis arises from considering most complex scatterers of interest (either man made or natural) as distributed scatterers consisting of multiple scattering centers, and many modern polarimetric radar systems have the resolution performance to resolve the multiple scattering centers. Furthermore, the individual scattering centers of a distributed target can often exhibit different polarimetric scattering characteristics, and consequently do not respond favorably to polarimetric processing techniques derived for individual point scatterers. The treatment of distributed scatterers also includes concepts for tuning the polarimetric ensemble response of individual scattering centers.

  18. Effect of Medium Symmetries on Limiting the Number of Parameters Estimated with Polarimetric SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.

    1999-01-01

    The addition of interferometric backscattering pairs to the conventional polarimetric synthetic aperture radar (SAR) data over forests and other vegetated areas increases the dimensionality of the data space, in principle enabling the estimation of a larger number of parameters.

  19. Polarimetric road ice detection

    NASA Astrophysics Data System (ADS)

    Drummond, Krista

    This thesis investigated the science behind polarimetric road ice detection systems. Laboratory Mueller matrix measurements of a simulated road under differing surface conditions were collected searching for a discriminatory polarization property. These Mueller matrices were decomposed into depolarization, diattenuation, and retardance. Individual sample surface polarization properties were then calculated from these three unique matrices and compared. Specular and off-specular reflection responses of each sample were collected. Four polarization properties stood out for having high separation between dry and iced measurements: Depolarization Index, Linear Diattenuation, Linear Polarizance, and Linear Retardance. Through our investigation polarimetric ice detection is possible. Continued research of the polarization properties of road ice can result in the development of a road ice detection system. Proposed deployment methods of such a system have been outlined following the analysis of the data collected in this experiment.

  20. ISRO's dual frequency airborne SAR pre-cursor to NISAR

    NASA Astrophysics Data System (ADS)

    Ramanujam, V. Manavala; Suneela, T. J. V. D.; Bhan, Rakesh

    2016-05-01

    The Indian Space Research Organisation (ISRO) and the National Aeronautics and Space Administration (NASA) have jointly embarked on NASA-ISRO Synthetic Aperture Radar (NISAR) operating in L-band and S-band, which will map Earth's surface every 12 days. As a pre-cursor to the NISAR mission, ISRO is planning an airborne SAR (L&S band) which will deliver NISAR analogue data products to the science community. ISRO will develop all the hardware with the aim of adhering to system design aspects of NISAR to the maximum extent possible. It is a fully polarimetric stripmap SAR and can be operated in single, dual, compact, quasi-quad and full polarimetry modes. It has wide incidence angle coverage from 24°-77° with swath coverage from 5.5km to 15 km. Apart from simultaneous imaging operations, this system can also operate in standalone L/S SAR modes. This system is planned to operate from an aircraft platform with nominal altitude of 8000meters. Antenna for this SAR will be rigidly mounted to the aircraft, whereas, motion compensation will be implemented in the software processor to generate data products. Data products for this airborne SAR will be generated in slant & ground range azimuth dimension and geocoded in HDF5/Geotiff formats. This airborne SAR will help to prepare the Indian scientific community for optimum utilization of NISAR data. In-order to collect useful science data, airborne campaigns are planned from end of 2016 onwards.

  1. Fitting a Two-Component Scattering Model to Polarimetric SAR Data from Forests

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    2007-01-01

    Two simple scattering mechanisms are fitted to polarimetric synthetic aperture radar (SAR) observations of forests. The mechanisms are canopy scatter from a reciprocal medium with azimuthal symmetry and a ground scatter term that can represent double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants or Bragg scatter from a moderately rough surface, which is seen through a layer of vertically oriented scatterers. The model is shown to represent the behavior of polarimetric backscatter from a tropical forest and two temperate forest sites by applying it to data from the National Aeronautic and Space Agency/Jet Propulsion Laboratory's Airborne SAR (AIRSAR) system. Scattering contributions from the two basic scattering mechanisms are estimated for clusters of pixels in polarimetric SAR images. The solution involves the estimation of four parameters from four separate equations. This model fit approach is justified as a simplification of more complicated scattering models, which require many inputs to solve the forward scattering problem. The model is used to develop an understanding of the ground-trunk double-bounce scattering that is present in the data, which is seen to vary considerably as a function of incidence angle. Two parameters in the model fit appear to exhibit sensitivity to vegetation canopy structure, which is worth further exploration. Results from the model fit for the ground scattering term are compared with estimates from a forward model and shown to be in good agreement. The behavior of the scattering from the ground-trunk interaction is consistent with the presence of a pseudo-Brewster angle effect for the air-trunk scattering interface. If the Brewster angle is known, it is possible to directly estimate the real part of the dielectric constant of the trunks, a key variable in forward modeling of backscatter from forests. It is also shown how, with a priori knowledge of the forest height, an estimate for the

  2. Measurement of ocean wave spectra using polarimetric AIRSAR data

    NASA Technical Reports Server (NTRS)

    Schuler, D. L.

    1993-01-01

    A polarimetric technique for improving the visibility of waves, whose propagation direction has an azimuthal component, in RAR (real aperture radar) or SAR (synthetic aperture radar) images has been investigated. The technique shows promise as a means of producing more accurate 2-D polarimetric RAR ocean wave spectra. For SAR applications domination by velocity-bunching effects may limit its usefulness to long ocean swell. A modification of this technique involving measurement of polarization signature modulations in the image is useful for detecting waves in SAR images and, potentially, estimating RMS wave slopes.

  3. Detailed Aerosol Characterization using Polarimetric Measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, Otto; di Noia, Antonio; Stap, Arjen; Rietjens, Jeroen; Smit, Martijn; van Harten, Gerard; Snik, Frans

    2016-04-01

    Anthropogenic aerosols are believed to cause the second most important anthropogenic forcing of climate change after greenhouse gases. In contrast to the climate effect of greenhouse gases, which is understood relatively well, the negative forcing (cooling effect) caused by aerosols represents the largest reported uncertainty in the most recent assessment of the International Panel on Climate Change (IPCC). To reduce the large uncertainty on the aerosol effects on cloud formation and climate, accurate satellite measurements of aerosol optical properties (optical thickness, single scattering albedo, phase function) and microphysical properties (size distribution, refractive index, shape) are essential. There is growing consensus in the aerosol remote sensing community that multi-angle measurements of intensity and polarization are essential to unambiguously determine all relevant aerosol properties. This presentations adresses the different aspects of polarimetric remote sensing of atmospheric aerosols, including retrieval algorithm development, validation, and data needs for climate and air quality applications. During past years, at SRON-Netherlands Instite for Space Research retrieval algorithms have been developed that make full use of the capabilities of polarimetric measurements. We will show results of detailed aerosol properties from ground-based- (groundSPEX), airborne- (NASA Research Scanning Polarimeter), and satellite (POLDER) measurements. Also we will discuss observational needs for future instrumentation in order to improve our understanding of the role of aerosols in climate change and air quality.

  4. Digital Beamforming Synthetic Aperture Radar (DBSAR): Performance Analysis During the Eco-3D 2011 and Summer 2012 Flight Campaigns

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Carter, Lynn; Ranson, K. Jon; Vega, Manuel; Osmanoglu, Batuhan; Lee, SeungKuk; Sun, Guoqing

    2014-01-01

    The Digital Beamforming Synthetic Aperture radar (DBSAR) is a state-of-the-art airborne radar developed at NASA/Goddard for the implementation, and testing of digital beamforming techniques applicable to Earth and planetary sciences. The DBSAR measurements have been employed to study: The estimation of vegetation biomass and structure - critical parameters in the study of the carbon cycle; The measurement of geological features - to explore its applicability to planetary science by measuring planetary analogue targets. The instrument flew two test campaigns over the East coast of the United States in 2011, and 2012. During the campaigns the instrument operated in full polarimetric mode collecting data from vegetation and topography features.

  5. Estimating lava volume by precision combination of multiple baseline spaceborne and airborne interferometric synthetic aperture radar: The 1997 eruption of Okmok Volcano, Alaska

    USGS Publications Warehouse

    Lu, Zhiming; Fielding, E.; Patrick, M.R.; Trautwein, C.M.

    2003-01-01

    Interferometric synthetic aperture radar (InSAR) techniques are used to calculate the volume of extrusion at Okmok volcano, Alaska by constructing precise digital elevation models (DEMs) that represent volcano topography before and after the 1997 eruption. The posteruption DEM is generated using airborne topographic synthetic aperture radar (TOPSAR) data where a three-dimensional affine transformation is used to account for the misalignments between different DEM patches. The preeruption DEM is produced using repeat-pass European Remote Sensing satellite data; multiple interferograms are combined to reduce errors due to atmospheric variations, and deformation rates are estimated independently and removed from the interferograms used for DEM generation. The extrusive flow volume associated with the 1997 eruption of Okmok volcano is 0.154 ?? 0.025 km3. The thickest portion is approximately 50 m, although field measurements of the flow margin's height do not exceed 20 m. The in situ measurements at lava edges are not representative of the total thickness, and precise DEM data are absolutely essential to calculate eruption volume based on lava thickness estimations. This study is an example that demonstrates how InSAR will play a significant role in studying volcanoes in remote areas.

  6. Polarimetric Multispectral Imaging Technology

    NASA Technical Reports Server (NTRS)

    Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.

    1993-01-01

    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.

  7. Polarimetric Signatures of Initiating Convection During MC3E

    NASA Technical Reports Server (NTRS)

    Emory, Amber

    2012-01-01

    One of the goals of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was to provide constraints for space-based rainfall retrieval algorithms over land. This study used datasets collected during the 2011 field campaign to combine radiometer and ground-based radar polarimetric retrievals in order to better understand hydrometeor type, habit and distribution for initiating continental convection. Cross-track and conically scanning nadir views from the Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) were compared with ground-based polarimetric radar retrievals along the ER-2 flight track. Polarimetric signatures for both airborne radiometers and ground-based radars were well co-located with deep convection to relate radiometric signatures with low-level polarimetric radar data for hydrometeor identification and diameter estimation. For the time period of study, Z(sub DR) values indicated no presence of hail at the surface. However, the Z(sub DR) column extended well above the melting level into the mixed phase region, suggesting a possible source of frozen drop embryos for the future formation of hail. The results shown from this study contribute ground truth datasets for GPM PR algorithm development for convective events, which is an improvement upon previous stratiform precipitation centered framework.

  8. Efficient polarimetric BRDF transformations

    NASA Astrophysics Data System (ADS)

    Björkert, Stefan; Renhorn, Ingmar G. E.

    2016-05-01

    In order to characterize a target, the basic information that is of interest is spectral, polarization and distance. Imaging spectropolarimetry is a powerful tool for obtaining the polarization state of a scene and to discriminate manmade objects in a cluttered background. With respect to polarization, often the measurements are limited to the first three components of the Stokes vector, excluding circular polarization. The scene is therefore characterized in four directions of linear polarization, I0, I90, I45 and I135. An efficient polarimetric BRDF model defined in a local coordinate system has recently been published. The model will now be extended to a global coordinate system for linear polarized radiation. This includes the first three elements of the Stokes vector. We will provide examples for surface of intrinsically different scattering materials, bulk scattering materials and clear coated surfaces.

  9. An Integrated Navigation System using GPS Carrier Phase for Real-Time Airborne Synthetic Aperture Radar (SAR)

    SciTech Connect

    Fellerhoff, J. Rick; Kim, Theodore J.; Kohler, Stewart M.

    1999-06-24

    A Synthetic Aperture Radar (SAR) requires accu- rate measurement of the motion of the imaging plat- form to produce well-focused images with minimal absolute position error. The motion measurement (MoMeas) system consists of a inertial measurement unit (IMU) and a P-code GPS receiver that outputs corrected ephemeris, L1 & L2 pseudoranges, and L1 & L2 carrier phase measurements. The unknown initial carrier phase biases to the GPS satellites are modeled as states in an extended Kalman filter and the resulting integrated navigation solution has po- sition errors that change slowly with time. Position error drifts less than 1- cm/sec have been measured from the SAR imagery for various length apertures.

  10. Polarimetric SAR image signatures of the ocean and gulf stream features

    SciTech Connect

    Schuler, D.L.; Lee, Jong Sen; Hoppel, K.W.

    1993-11-01

    Polarimetric signatures and related polarimetric properties of microwave ocean backscatter have been analyzed for both the ambient ocean and for ocean features such as those associated with the Gulf Stream. Interpretation of the polarimetric signatures for the ocean surface was accomplished using a tilted-Bragg theoretical model. This model was used to calculate the EM fields, to second order, necessary to compute the full Stokes matrix and, ultimately, the polarimetric signature. The polarimetric studies led to a technique for potentially improving the visibility of all azimuthally traveling waves in real-aperture radar (RAR) images and, very long waves in synthetic-aperture radar (SAR) images. This technique utilizes linear polarization signatures to maximize the instrument sensitivity to azimuthally traveling waves. Wave tilts create a modulation of the cell polarization orientation which, in turn, modulates the backscatter. Critical to the success of this technique are the properties that ocean polarimetric signatures are sharply peaked (i.e., returns are highly polarized). The polarimetric contribution to the overall modulation transfer function has also been evaluated.

  11. Geologic Studies of Planetary Surfaces Using Radar Polarimetric Imaging

    NASA Technical Reports Server (NTRS)

    Carter, Lynn M.; Campbell, Donald B.; Campbell, Bruce A.

    2010-01-01

    Radar is a useful remote sensing tool for studying planetary geology because it is sensitive to the composition, structure, and roughness of the surface and can penetrate some materials to reveal buried terrain. The Arecibo Observatory radar system transmits a single sense of circular polarization, and both senses of circular polarization are received, which allows for the construction of the Stokes polarization vector. From the Stokes vector, daughter products such as the circular polarization ratio, the degree of linear polarization, and linear polarization angle are obtained. Recent polarimetric imaging using Arecibo has included Venus and the Moon. These observations can be compared to radar data for terrestrial surfaces to better understand surface physical properties and regional geologic evolution. For example, polarimetric radar studies of volcanic settings on Venus, the Moon and Earth display some similarities, but also illustrate a variety of different emplacement and erosion mechanisms. Polarimetric radar data provides important information about surface properties beyond what can be obtained from single-polarization radar. Future observations using polarimetric synthetic aperture radar will provide information on roughness, composition and stratigraphy that will support a broader interpretation of surface evolution.

  12. A new method to extract forest height from repeat-pass polarimetric and interferometric radar data

    NASA Astrophysics Data System (ADS)

    Lavalle, M.; Hensley, S.; Dubayah, R.

    2012-12-01

    The objective of this paper is to present a new remote sensing method and a new physical model that will potentially enable estimating forest height and vegetation 3D structure using radar technology. The method is based on repeat-pass polarimetric-interferometric radar technique; the model is termed random-motion-over-ground (RMoG) model [1, 2]. We will describe a step-by-step procedure that will help the ecosystem community to monitor ecosystems at regional and global scale using radar data available from the forthcoming radar missions. We will show first results of forest height estimated from UAVSAR data and compared against LVIS data. We will quantify the error associated to our method. We will also discuss the improvements that we plan on including in future works. Our ultimate goal is to measure low and large biomass stocks using the large amount of radar data that will be available in the near future. The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is a fully polarimetric L-band airborne radar developed at the Jet Propulsion Laboratory (JPL). UAVSAR acquires repeat-pass interferometric data for measuring vegetation structure and monitoring crustal deformations. The UAVSAR team at JPL has acquired and processed several polarimetric-interferometric (Pol-InSAR) datasets over the Harvard Forest in Massachusetts (United States) that allows testing repeat-pass Pol-InSAR technique. Pol-InSAR technique was proposed 15 years ago to estimate vegetation biomass and overcome the inherent saturation of radar backscatter versus biomass [3]. The advantage of Pol-InSAR is the ability to estimate the 3D structure of vegetation using a small number of interferometric acquisitions. In order to extract vegetation properties from Pol-InSAR UAVSAR data, we use a model of temporal-volumetric coherence, the RMoG model, suitable for repeat-pass interferometry. In the RMoG model the vegetation is idealized as a two-layer scattering scenario constituted by a

  13. Bird Migration Echoes Observed by Polarimetric Radar

    NASA Astrophysics Data System (ADS)

    Minda, Haruya; Furuzawa, Fumie A.; Satoh, Shinsuke; Nakamura, Kenji

    A C-band polarimetric radar on Okinawa Island successfully observed large-scale bird migrations over the western Pacific Ocean. The birds generated interesting polarimetric signatures. This paper describes the signatures and speculates bird behavior.

  14. Real time polarimetric dehazing.

    PubMed

    Mudge, Jason; Virgen, Miguel

    2013-03-20

    Remote sensing is a rich topic due to its utility in gathering detailed accurate information from locations that are not economically feasible traveling destinations or are physically inaccessible. However, poor visibility over long path lengths is problematic for a variety of reasons. Haze induced by light scatter is one cause for poor visibility and is the focus of this article. Image haze comes about as a result of light scattering off particles and into the imaging path causing a haziness to appear on the image. Image processing using polarimetric information of light scatter can be used to mitigate image haze. An imaging polarimeter which provides the Stokes values in real time combined with a "dehazing" algorithm can automate image haze removal for instant applications. Example uses are to improve visual display providing on-the-spot detection or imbedding in an active control loop to improve viewing and tracking while on a moving platform. In addition, removing haze in this manner allows the trade space for a system operational waveband to be opened up to bands which are object matched and not necessarily restricted by scatter effects. PMID:23518739

  15. Polarimetric observations of Hungaria asteroids

    NASA Astrophysics Data System (ADS)

    Gil-Hutton, R.; Lazzaro, D.; Benavidez, P.

    2007-06-01

    Aims:We present the results of a polarimetric program at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina. The aim of this campaign is to estimate the polarimetric properties of asteroids belonging to the Hungaria dynamical group. Methods: The data were obtained with the Casprof polarimeter at the 2.15 m telescope. The Casprof polarimeter is a two-hole aperture polarimeter with rapid modulation. The campaign began in 2000, and data on a sample of 24 members of the Hungaria group were obtained. We use the slope - albedo or P_min - albedo relationships to get polarimetric albedos for 18 of these objects. Results: Only two Xe-type objects, 434 Hungaria and 3447 Burkhalter, shown a polarimetric behavior compatible with a high albedo object. The A-type asteroid 1600 Vyssotsky has a polarimetric behavior similar to what was observed by Fornasier et al. (2006) for 863 Benkolea, and four objects show P_min values consistent with dark surfaces. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  16. Summary of results from a foliage penetration experiment with a three-frequency polarimetric SAR

    NASA Astrophysics Data System (ADS)

    Fleischman, Jack G.; Toups, Michael F.; Ayasli, Serpil

    1992-08-01

    As a part of the MIT Lincoln Laboratory Critical Mobile Target program an experiment was conducted jointly by the Jet Propulsion Laboratory and MIT Lincoln Laboratory in July 1990 using the NASA/JPL airborne SAR system, to investigate the effects of foliage on Synthetic Aperture Radar (SAR) imaging of targets concealed by trees. A large number of 8-ft corner reflectors were deployed for the investigation of two-way propagation through foliage, and tone generators were deployed at four locations to investigate one-way pulse-to-pulse phase and amplitude fluctuations to study possible SAR beam distortions caused by trees. In addition, a 40 km2 area was imaged over five passes at each of 30 degree(s), 45 degree(s), and 60 degree(s) depression angles, simultaneously at C-, L-band and UHF frequencies, fully polarimetrically. Several trucks of varying sizes were also deployed in the open and behind trees for limited testing of target detection. Analysis of the data is near completion. This paper will summarize results on attenuation and clutter statistics, SAR pattern distortion through trees as well as results on multichannel processing of the images containing vehicle masked by foliage.

  17. Metamaterials for terahertz polarimetric devices

    SciTech Connect

    O'hara, John F; Taylor, Antoinette J; Smirnova, Evgenya; Azad, Abul

    2008-01-01

    We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at terahertz frequencies, it may find applications in other frequency ranges as well.

  18. Metamaterials for terahertz polarimetric devices

    SciTech Connect

    O'hara, John F; Taylor, Antoinette J; Smirnova, Evgenya; Azad, Abul; Chen, Hou-tong; Peralta, Xomalin G; Brener, Igal

    2008-01-01

    We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at tcrahertz frequencies, it may find applications in other frequency ranges as well.

  19. External calibration of polarimetric radar images using distributed targets

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Nghiem, S. V.; Kwok, R.

    1992-01-01

    A new technique is presented for calibrating polarimetric synthetic aperture radar (SAR) images using only the responses from natural distributed targets. The model for polarimetric radars is assumed to be X = cRST where X is the measured scattering matrix corresponding to the target scattering matrix S distorted by the system matrices T and R (in general T does not equal R(sup t)). To allow for the polarimetric calibration using only distributed targets and corner reflectors, van Zyl assumed a reciprocal polarimetric radar model with T = R(sup t); when applied for JPL SAR data, a heuristic symmetrization procedure is used by POLCAL to compensate the phase difference between the measured HV and VH responses and then take the average of both. This heuristic approach causes some non-removable cross-polarization responses for corner reflectors, which can be avoided by a rigorous symmetrization method based on reciprocity. After the radar is made reciprocal, a new algorithm based on the responses from distributed targets with reflection symmetry is developed to estimate the cross-talk parameters. The new algorithm never experiences problems in convergence and is also found to converge faster than the existing routines implemented for POLCAL. When the new technique is implemented for the JPL polarimetric data, symmetrization and cross-talk removal are performed on a line-by-line (azimuth) basis. After the cross-talks are removed from the entire image, phase and amplitude calibrations are carried out by selecting distributed targets either with azimuthal symmetry along the looking direction or with some well-known volume and surface scattering mechanisms to estimate the relative phases and amplitude responses of the horizontal and vertical channels.

  20. Polarimetric SAR Models for Oil Fields Monitoring in China Seas

    NASA Astrophysics Data System (ADS)

    Buono, A.; Nunziata, F.; Li, X.; Wei, Y.; Ding, X.

    2014-11-01

    In this study, physical-based models for polarimetric Synthetic Aperture Radar (SAR) oil fields monitoring are proposed. They all share a physical rationale relying on the different scattering mechanisms that characterize a free sea surface, an oil slick-covered sea surface, and a metallic target. In fact, sea surface scattering is well modeled by a Bragg-like behaviour, while a strong departure from Bragg scattering is in place when dealing with oil slicks and targets. Furthermore, the proposed polarimetric models aim at addressing simultaneously target and oil slick detection, providing useful extra information with respect to single-pol SAR data in order to approach oil discrimination and classification. Experiments undertaken over East and South China Sea from actual C-band RadarSAT-2 full-pol SAR data witness the soundness of the proposed rationale.

  1. The potential of linear discriminative Laplacian eigenmaps dimensionality reduction in polarimetric SAR classification for agricultural areas

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Zhang, Lefei; Zhao, Lingli; Yang, Jie; Li, PingXiang; Zhang, Liangpei

    2013-12-01

    In this paper, the linear discriminative Laplacian eigenmaps (LDLE) dimensionality reduction (DR) algorithm is introduced to C-band polarimetric synthetic aperture radar (PolSAR) agricultural classification. A collection of homogenous areas of the same crop class usually presents physical parameter variation, such as the biomass and soil moisture. Furthermore, the local incidence angle also impacts a lot on the same crop category when the vegetation layer is penetrable with C-band radar. We name this phenomenon as the "observed variation of the same category" (OVSC). The most common PolSAR features, e.g., the Freeman-Durden and Cloude-Pottier decompositions, show an inadequate performance with OVSC. In our research, more than 40 coherent and incoherent PolSAR decomposition models are stacked into the high-dimensionality feature cube to describe the various physical parameters. The LDLE algorithm is then performed on the observed feature cube, with the aim of simultaneously pushing the local samples of the same category closer to each other, as well as maximizing the distance between local samples of different categories in the learnt subspace. Finally, the classification result is obtained by nearest neighbor (NN) or Wishart classification in the reduced feature space. In the simulation experiment, eight crop blocks are picked to generate a test patch from the 1991 Airborne Synthetic Aperture Radar (AIRSAR) C-band fully polarimetric data from of Flevoland test site. Locality preserving projections (LPP) and principal component analysis (PCA) are then utilized to evaluate the DR results of the proposed method. The classification results show that LDLE can distinguish the influence of the physical parameters and achieve a 99% overall accuracy, which is better than LPP (97%), PCA (88%), NN (89%), and Wishart (88%). In the real data experiment, the Chinese Hailaer nationalized farm RadarSat2 PolSAR test set is used, and the classification accuracy is around 94%, which

  2. Forest Structure Characterization Using Jpl's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    NASA Technical Reports Server (NTRS)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  3. Forest Structure Characterization Using JPL's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    NASA Technical Reports Server (NTRS)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  4. Characterization of wetland, forest, and agricultural ecosystems in Belize with airborne radar (AIRSAR)

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Rey-Benayas, Jose Maria; Paris, Jack F.

    1992-01-01

    The Shuttle Imaging Radar-C/X-SAR (Synthetic Aperture Radar) Experiment includes the study of wetland dynamics in the seasonal tropics. In preparation for these wetland studies, airborne P, L, and C band radar (AIRSAR) data of Belize, Guatemala, and Mexico acquired by NASA and JPL in March 1990 were analyzed. The first phase of our study focuses on AIRSAR data from the Gallon Jug test site in northwestern Belize, for which ground data were also collected during the three days prior to the overflight. One of the main objectives of the Gallon Jug study is to develop a method for characterizing wetland vegetation types and their flooding status with multifrequency polarimetric radar data.

  5. Space-Based Remote Sensing of Atmospheric Aerosols: The Multi-Angle Spectro-Polarimetric Frontier

    NASA Technical Reports Server (NTRS)

    Kokhanovsky, A. A.; Davis, A. B.; Cairns, B.; Dubovik, O.; Hasekamp, O. P.; Sano, I.; Mukai, S.; Rozanov, V. V.; Litvinov, P.; Lapyonok, T.; Martin, W.; Wasilewski, A.; Xu, F.; Natraj, V.

    2015-01-01

    The review of optical instrumentation, forward modeling, and inverse problem solution for the polarimetric aerosol remote sensing from space is presented. The special emphasis is given to the description of current airborne and satellite imaging polarimeters and also to modern satellite aerosol retrieval algorithms based on the measurements of the Stokes vector of reflected solar light as detected on a satellite. Various underlying surface reflectance models are discussed and evaluated.

  6. Retrieval of thin ice thickness from multifrequency polarimetric SAR data

    SciTech Connect

    Kwok, R.; Nghiem, S.V.; Yueh, S.H.; Huynh, D.D.

    1995-03-01

    The authors discuss the observed C- and L-band polarimetric signatures of thin lead ice in one Synthetic Aperture Radar (SAR) image based on the expected ice properties and results from a scattering model. In this article, the authors focus on thin ice with thicknesses in the range of 0-10 cm. The layered scattering model used here allows for the inclusion of surface and volume scattering contributions from a slush layer, an ice layer, and roughness at the interfaces. The sensitivity of the signatures to the model parameters is explored. A highly saline surface skim formed on the top surface during ice growth significantly affects the electromagnetic properties of the medium and helps to explain the magnitude of the copolarized returns at high incidence angles. Based on these model predictions, the authors demonstrate an approach to retrieve the ice thickness from polarimetric SAR observations. The approach includes the training of a neural network with model predictions and using this neural network to estimate the ice thickness distribution using polarimetric observations from SAR data. The results from this ice thickness retrieval process are discussed

  7. The NASA Polarimetric Radar (NPOL)

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Wolff, David B.

    2013-01-01

    Characteristics of the NASA NPOL S-band dual-polarimetric radar are presented including its operating characteristics, field configuration, scanning capabilities and calibration approaches. Examples of precipitation science data collections conducted using various scan types, and associated products, are presented for different convective system types and previous field campaign deployments. Finally, the NASA NPOL radar location is depicted in its home base configuration within the greater Wallops Flight Facility precipitation research array supporting NASA Global Precipitation Measurement Mission ground validation.

  8. Polarimetric Retrievals of Cloud Droplet Number Concentrations

    NASA Astrophysics Data System (ADS)

    Sinclair, K.; Cairns, B.; Hair, J. W.; Hu, Y.; Hostetler, C. A.

    2014-12-01

    Cloud droplet number concentration (CDNC) is one of the most significant microphysical properties of liquid clouds and is essential for the understanding of aerosol-cloud interaction. It impacts radiative forcing, cloud evolution, precipitation, global climate and, through observation, can be used to monitor the cloud albedo effect, or the first indirect effect. The IPCC's Fifth Assessment Report continues to consider aerosol-cloud interactions as one of the largest uncertainties in radiative forcing of climate. The SABOR experiment, which was a NASA-led ship and air campaign off the east coast of the United States during July and August of 2014, provided an opportunity for the Research Scanning Polarimeter (RSP) to develop and cross-validate a new approach of sensing CDNC with the High Spectral Resolution Lidar (HSRL). The RSP is an airborne prototype of the Aerosol Polarimetry Sensor (APS) that was on-board the Glory satellite. It is a scanning sensor that provides high-precision measurements of polarized and full-intensity radiances at multiple angles over a wide spectral range. The distinctive feature of the polarimetric technique is that it does not make any assumption of the liquid water profile within the cloud. The approach involves (1) estimating the droplet size distribution from polarized reflectance observations in the rainbow, (2) using polarized reflectance to estimate above cloud water vapor and total reflectance to find how much near infra-red light is being absorbed in clouds, (3) finding cloud physical thickness from the absorption and cloud top pressure retrievals assuming a saturated mixing ratio for water vapor and (4) determining the cloud droplet number concentration from the physical thickness and droplet size distribution retrievals. An overview of the polarimetric technique will be presented along with the results of applying the new approach to SABOR campaign data. An analysis of the algorithm's performance when compared with the HSRL

  9. A fine resolution multifrequency polarimetric FM radar

    NASA Technical Reports Server (NTRS)

    Bredow, J.; Gogineni, S.; Leung, T.; Moore, R. K.

    1988-01-01

    A fine resolution polarimetric FM SAR was developed for optimization of polarimetric SARs and interpretation of SAR data via controlled experiments with surface-base sensors. The system is designed for collecting polarimetric data at 5.3 and 10 GHz over incidence angles from 0 to 60 deg. Features of the system include broad bandwidth to obtain fine range resolution, phase stabilization and linearization loop circuitry, and digital signal processing capability. The system is used in a research program to collect polarimetric backscatter data from artificial sea ice research and design trade-offs, laboratory and field evaluation, as well as results from experiments on artificial sea ice are presented.

  10. Accounting For Gains And Orientations In Polarimetric SAR

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    1992-01-01

    Calibration method accounts for characteristics of real radar equipment invalidating standard 2 X 2 complex-amplitude R (receiving) and T (transmitting) matrices. Overall gain in each combination of transmitting and receiving channels assumed different even when only one transmitter and one receiver used. One characterizes departure of polarimetric Synthetic Aperture Radar (SAR) system from simple 2 X 2 model in terms of single parameter used to transform measurements into format compatible with simple 2 X 2 model. Data processed by applicable one of several prior methods based on simple model.

  11. Multi-frequency, polarimetric SAR analysis for archaeological prospection

    NASA Astrophysics Data System (ADS)

    Stewart, Christopher; Lasaponara, Rosa; Schiavon, Giovanni

    2014-05-01

    The aim of this study is to assess the sensitivity to buried archaeological structures of C- and L-band Synthetic Aperture Radar (SAR) in various polarisations. In particular, single and dual polarised data from the Phased Array type L-band SAR (PALSAR) sensor on-board the Advanced Land Observing Satellite (ALOS) is used, together with quadruple polarised (quad pol) data from the SAR sensor on Radarsat-2. The study region includes an isolated area of open fields in the eastern outskirts of Rome where buried structures are documented to exist. Processing of the SAR data involved multitemporal averaging, analysis of target decompositions, study of the polarimetric signatures over areas of suspected buried structures and changes of the polarimetric bases in an attempt to enhance their visibility. Various ancillary datasets were obtained for the analysis, including geological and lithological charts, meteorological data, Digital Elevation Models (DEMs), optical imagery and an archaeological chart. For the Radarsat-2 data analysis, results show that the technique of identifying the polarimetric bases that yield greatest backscatter over anomaly features, and subsequently changing the polarimetric bases of the time series, succeeded in highlighting features of interest in the study area. It appeared possible that some of the features could correspond with structures documented on the reference archaeological chart, but there was not a clear match between the chart and the results of the Radarsat-2 analysis. A similar conclusion was reached for the PALSAR data analysis. For the PALSAR data, the volcanic nature of the soil may have hindered the visibility of traces of buried features. Given the limitations of the accuracy of the archaeological chart and the spatial resolution of both the SAR datasets, further validation would be required to draw any precise conclusions on the sensitivity of the SAR data to buried structures. Such a validation could include geophysical

  12. UAVSAR: A New NASA Airborne SAR System for Science and Technology Research

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Shaffer, Scott; Muellerschoen, Ron; Jones, Cathleen; Zebker, Howard; Madsen, Soren

    2006-01-01

    NASA's Jet Propulsion Laboratory is currently building a reconfigurable, polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. Differentian interferometry can provide key deformation measurements, important for studies of earthquakes, volcanoes and other dynamically changing phenomena. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar will be designed to be operable on a UAV (Unpiloted Aria1 Vehicle) but will initially be demonstrated on a NASA Gulfstream III. The radar will be fully polarimetric, with a range bandwidth of 80 MHz (2 m range resolution), and will support a 16 km range swath. The antenna will be electronically steered along track to assure that the antenna beam can be directed independently, regardless of the wind direction and speed. Other features supported by the antenna include elevation monopulse and pulse-to-pulse re-steering capabilities that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  13. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    to ingest raw data from other SARs on the input side. The combination of the airborne and the ground segment, augmented by the transfer of technological knowledge needed to operate the system, will provide for an autonomous capability of the system user/owner. The PHARUS project has so far resulted in the construction of a C-band, VV-polarized research SAR (PHARS) with a 1- look resolution of 1.5 multiplied by 5 meter (5 multiplied by 5 meter at 7 independent looks) and a swath width of 6 km. This system has been extensively used for research and application projects in Europe, for purposes of mapping, land use inventory, change detection, coastal bathymetry, ship detection and ocean wave measurement. The next system recently completed is a fully polarimetric C-band system with adjustable resolution and swath width (the latter up to 20 km); this system is expected to be operational autumn 1995. The polarimetric capability will provide for a much enhanced discerning power (discrimination between e.g. forest/cultivated, various forest types, etc.). Discrimination by polarimetric signature is an alterative approach, with different possibilities and limitations, to e.g. the use of several frequencies. This paper gives an overview of the SAR research system and the results obtained with this system. The PHARUS design and use are discussed.

  14. Reduction of mine suspected areas by multisensor airborne measurements: first results

    NASA Astrophysics Data System (ADS)

    Keller, Martin; Milisavljevic, Nada; Suess, Helmut; Acheroy, Marc P. J.

    2002-08-01

    Humanitarian demining is a very dangerous, cost and time intensive work, where a lot of effort is usually wasted in inspecting suspected areas that turn out to be mine-free. The main goal of the project SMART (Space and airborne Mined Area Reduction Tools) is to apply a multisensor approach towards corresponding signature data collection, developing adapted data understanding and data processing tools for improving the efficiency and reliability of level 1 minefield surveys by reducing suspected mined areas. As a result, the time for releasing mine-free areas for civilian use should be shortened. In this paper, multisensor signature data collected at four mine suspected areas in different parts of Croatia are presented, their information content is discussed, and first results are described. The multisensor system consists of a multifrequency multipolarization SAR system (DLR Experimental Synthetic Aperture Radar E-SAR), an optical scanner (Daedalus) and a camera (RMK) for color infrared aerial views. E-SAR data were acquired in X-, C-, L- and P- bands, the latter two being fully polarimetric interferometric. This provides pieces of independent information, ranging from high spatial resolution (X-band) to very good penetration abilities (P-band), together with possibilities for polarimetric and interferometric analysis. The Daedalus scanner, with 12 channels between visible and thermal infrared, has a very high spatial resolution. For each of the sensors, the applied processing, geocoding and registration is described. The information content is analyzed in sense of the capability and reliability in describing conditions inside suspected mined areas, as a first step towards identifying their mine-free parts, with special emphasis set on polarimetric and interferometric information.

  15. Application of neural networks for sea ice classification in polarimetric SAR images

    SciTech Connect

    Hara, Yoshihisa; Atkins, R.G.; Shin, R.T.; Kong, J.A.; Yueh, S.H.; Kwok, R.

    1995-05-01

    Classification of sea ice types using polarimetric radar is an area of considerable current interest and research. Several automatic methods have been developed to classify sea ice types from fully polarimetric synthetic aperture radar (SAR) images, and these techniques are generally grouped into supervised and unsupervised approaches. In previous work, supervised methods have been shown to yield higher accuracy than unsupervised techniques, but suffer from the need for human interaction to determine classes and training regions. In contrast, unsupervised methods determine classes automatically, but generally show limited ability to accurately divide terrain into natural classes. In this paper, a new classification technique is applied to determine sea ice types in polarimetric and multifrequency SAR images, utilizing an unsupervised neural network to provide automatic classification, and employing an iterative algorithm to improve the performance.

  16. Study of Oil spill in Norwegian area using Decomposition Techniques on RISAT-1 Hybrid Polarimetric Data.

    NASA Astrophysics Data System (ADS)

    Jayasri, P. V.; Usha Sundari, H. S. V.; Kumari, E. V. S. Sita; Prasad, A. V. V.

    2014-11-01

    Over past few years Synthetic Aperture Radar(SAR) has received a considerable attention for monitoring and detection of oil spill due to its unique capabilities to provide wide-area surveillance and day and night measurements, almost independently from atmospheric conditions. The critical part of the oil spill detection is to distinguish oil spills from other natural phenomena. Stokes vector analysis of the image data is studied to estimate the polarized circular and linear components of the backscatter signal which essentially utilize the degree of polarization(m) and relative phase (δ) of the target. In a controlled oil spill experiment conducted at Norwegian bay during 17th to 22nd June 2014, RISAT-1 hybrid polarimetry images were utilized to study the characteristics of oil spill in the sea. The preliminary results obtained by using polarimetric decomposition technique on hybrid polarimetric data to decipher the polarimetric characteristics of oil spills from natural waters are discussed in the paper.

  17. Development and validation of P-MODTRAN7 and P-MCScene, 1D and 3D polarimetric radiative transfer models

    NASA Astrophysics Data System (ADS)

    Hawes, Frederick T.; Berk, Alexander; Richtsmeier, Steven C.

    2016-05-01

    A validated, polarimetric 3-dimensional simulation capability, P-MCScene, is being developed by generalizing Spectral Sciences' Monte Carlo-based synthetic scene simulation model, MCScene, to include calculation of all 4 Stokes components. P-MCScene polarimetric optical databases will be generated by a new version (MODTRAN7) of the government-standard MODTRAN radiative transfer algorithm. The conversion of MODTRAN6 to a polarimetric model is being accomplished by (1) introducing polarimetric data, by (2) vectorizing the MODTRAN radiation calculations and by (3) integrating the newly revised and validated vector discrete ordinate model VDISORT3. Early results, presented here, demonstrate a clear pathway to the long-term goal of fully validated polarimetric models.

  18. Polarimetric radar data decomposition and interpretation

    NASA Technical Reports Server (NTRS)

    Sun, Guoqing; Ranson, K. Jon

    1993-01-01

    Significant efforts have been made to decompose polarimetric radar data into several simple scattering components. The components which are selected because of their physical significance can be used to classify SAR (Synthetic Aperture Radar) image data. If particular components can be related to forest parameters, inversion procedures may be developed to estimate these parameters from the scattering components. Several methods have been used to decompose an averaged Stoke's matrix or covariance matrix into three components representing odd (surface), even (double-bounce) and diffuse (volume) scatterings. With these decomposition techniques, phenomena, such as canopy-ground interactions, randomness of orientation, and size of scatters can be examined from SAR data. In this study we applied the method recently reported by van Zyl (1992) to decompose averaged backscattering covariance matrices extracted from JPL SAR images over forest stands in Maine, USA. These stands are mostly mixed stands of coniferous and deciduous trees. Biomass data have been derived from field measurements of DBH and tree density using allometric equations. The interpretation of the decompositions and relationships with measured stand biomass are presented in this paper.

  19. Long-range polarimetric imaging through fog.

    PubMed

    Fade, Julien; Panigrahi, Swapnesh; Carré, Anthony; Frein, Ludovic; Hamel, Cyril; Bretenaker, Fabien; Ramachandran, Hema; Alouini, Mehdi

    2014-06-20

    We report an experimental implementation of long-range polarimetric imaging through fog over kilometric distance in real field atmospheric conditions. An incoherent polarized light source settled on a telecommunication tower is imaged at a distance of 1.3 km with a snapshot polarimetric camera including a birefringent Wollaston prism, allowing simultaneous acquisition of two images along orthogonal polarization directions. From a large number of acquisitions datasets and under various environmental conditions (clear sky/fog/haze, day/night), we compare the efficiency of using polarized light for source contrast increase with different signal representations (intensity, polarimetric difference, polarimetric contrast, etc.). With the limited-dynamics detector used, a maximum fourfold increase in contrast was demonstrated under bright background illumination using polarimetric difference image. PMID:24979415

  20. Polarimetric thermal emission from periodic water surfaces

    NASA Technical Reports Server (NTRS)

    Yueh, S. H.; Nghiem, S. V.; Kwok, R.; Wilson, W. J.; Li, F. K.; Johnson, J. T.; Kong, J. A.

    1993-01-01

    Experimental results and theoretical calculations are presented to study the polarimetric emission from water surfaces with directional features. For our ground-based Ku-band radiometer measurements, a water pool was constructed on the roof of a building in the Jet Propulsion Laboratory, and a fiberglass surface with periodic corrugations in one direction was impressed on the top of the water surface to create a stationary water surface underneath it. It is observed that the measured Stokes parameters of corrugated fiberglass-covered water surfaces are functions of azimuth angles and agree very well with the theoretical calculations. The theory, after being verified by the experimental data, was then used to calculate the Stokes parameters of periodic surfaces without fiberglass surface layer and with rms height of the order of wind-generated water ripples. The magnitudes of the azimuthal variation of the calculated emissivities at horizontal and vertical polarizations corresponding to the first two Stokes parameters are found to be comparable to the values measured by airborne radiometers and SSM/I. In addition, the third Stokes parameter not shown in the literature is seen to have approximately twice the magnitude of the azimuth variation of either T(sub h) or T(sub v), which may make it more sensitive to the row direction, while less susceptive to noises because the atmospheric and system noises tend to be unpolarized and are expected to be cancelled out when the third Stokes parameter is derived as the difference of two or three power measurements, as indicated by another experiment carried out at a swimming pool with complicated surroundings. The results indicate that passive polarimetry is a potential technology in the remote sensing of ocean wind vector which is a crucial component in the understanding of global climate change. Issues related to the application of microwave passive polarimetry to ocean wind are also discussed.

  1. Detection and Monitoring of Inundation with Polarimetric L-Band SAR

    NASA Astrophysics Data System (ADS)

    Chapman, B. D.; Celi, J. E.; Hamilton, S. K.; McDonald, K. C.

    2014-12-01

    It has been known for decades that at wavelengths L-band or longer, SAR is a sensitive indicator of inundation underneath forest canopies. The high resolution detection of below-canopy inundation is difficult to accomplish at regional to continental scales using other types of remote sensing sensors, making it a compelling SAR measurement especially useful for studying wetland inundation dynamics, particularly in difficult-to-reach access, canopy-covered tropical forest environments. Most results have utilized spaceborne SAR observations with less than fully polarimetric data. Since one of the objectives of the NISAR mission is to characterize and understand the fundamental process that drives changes to ecosystems such as wetland inundated areas, we will discuss the sensitivity of L-band SAR to inundation. We will illustrate the detection of inundation using fully polarimetric L-band SAR data from UAVSAR, NASA's airborne SAR, over a tropical forest region in Ecuador and Peru. At the same time as the data collection, measurements were made on the ground to characterize vegetation and inundation characteristics. The field data were used to validate the results of classifying the vanZyl decomposition of the polarimetric data. We compare this classification with that possible with a reduced subset of the polarimetric observations.

  2. Polarimetric remote sensing of the Earth from satellites: a perspective

    NASA Astrophysics Data System (ADS)

    Mishchenko, M. I.; Glory APS Science Team

    2011-12-01

    attempt to launch a more accurate aerosol-cloud polarimeter, called APS, as part of the NASA Glory Mission failed on 4 March 2011. However, much useful information has been obtained with the air-borne version of APS called RSP. In this talk I will briefly summarize the main results obtained with POLDER and RSP and discuss the prospects of polarimetric remote sensing from Earth-orbiting satellites.

  3. The polarimetric capabilities of NICMOS

    NASA Technical Reports Server (NTRS)

    Hines, D. C.; Schmidt, G. D.; Lytle, Dyer

    1997-01-01

    The polarimetric capabilities of Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) are demonstrated from data obtained during the Early Release Observations of IRC+10216 and CRL 2688 (the Egg Nebula). Preflight Thermal Vacuum tests revealed that each polarizer has a unique polarizing efficiency, and that the position angle offsets differ from the nominal positions of O deg, 120 deg and 240 deg. Therefore an algorithm different from that of an ideal polarizer is required for proper reduction of astronomical polarimetry data. We discuss this new algorithm and the results of its application to NICMOS data. We also present preliminary estimates of the Instrumental Polarization, the sensitivity of the grisms to polarized light, and the accuracy of NICMOS imaging polarimetry for faint and low polarization objects. Finally, we suggest strategies for maximizing the success of NICMOS polarimetry observations.

  4. Polarimetric Imager for Comets : PICO

    NASA Astrophysics Data System (ADS)

    Furusho, R.; Kawakita, H.; Ikeda, Y.; Kasuga, T.; Sato, Y.; Watanabe, J.

    2005-08-01

    We developed the optical polarimetric imager (named ``PICO") for the study on cometary dust grains. In order to avoid the influences on measurements caused by the change in sky conditions, the PICO was designed as a double-beam type polarimeter (for linear polarization). Here we introduce some recent results by PICO for comet C/2002 T7 (LINEAR), C/2001 Q4 (NEAT), 81P/Gehrels 2, and C/2004 Q4 (Machholz) in 2003 --- 2005. Usually I-band (Kron-Cousins) or i'-band (Gunn) filter was used to obtain the images of the reflected sunlight by cometary dust grains (we used some narrow-band filters for a bright comet only). Comet C/2001 Q4 (NEAT) showed a prominent jet feature (higher polarized region) in the map of polarization degree at near its perihelion passage. We discuss on this higher polarized region.

  5. Polarimetric observations of (6) Hebe

    NASA Astrophysics Data System (ADS)

    Broglia, P.; Manara, A.; Farinella, P.

    1994-05-01

    The S-type, 200-km-sized asteroid (6) Hebe has been recently indicated as a potential parent body of the ordinary chondrite meteorites. We report polarimetric observations of Hebe, which show a 0.17% variation of the degree of linear polarization p over a rotational cycle, and a small variation of the position angle theta of the polarization plane with a frequency of twice the rotation rate. These results indicate that Hebe's surface is optically heterogeneous, probably as a consequence of albedo and/or texture changes. Rotationally resolved spectroscopic observations are needed to assess whether the surface is also compositionally heterogeneous. This would rule it out as a possible source of undifferentiated meteorites, such as the ordinary chondrites.

  6. Asteroid Polarimetric Database V5.0

    NASA Astrophysics Data System (ADS)

    Lupishko, D.

    2006-07-01

    The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko of Karazin Kharkiv National University, Ukraine. It is intended to include most asteroid polarimetry available through March 21, 2006.

  7. Asteroid Polarimetric Database V8.0

    NASA Astrophysics Data System (ADS)

    Lupishko, D.

    2014-07-01

    The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko of Karazin Kharkiv National University, Ukraine. It is intended to include most asteroid polarimetry available through Feb. 10, 2014.

  8. An algorithm for segmenting polarimetric SAR imagery

    NASA Astrophysics Data System (ADS)

    Geaga, Jorge V.

    2015-05-01

    We have developed an algorithm for segmenting fully polarimetric single look TerraSAR-X, multilook SIR-C and 7 band Landsat 5 imagery using neural nets. The algorithm uses a feedforward neural net with one hidden layer to segment different surface classes. The weights are refined through an iterative filtering process characteristic of a relaxation process. Features selected from studies of fully polarimetric complex single look TerraSAR-X data and multilook SIR-C data are used as input to the net. The seven bands from Landsat 5 data are used as input for the Landsat neural net. The Cloude-Pottier incoherent decomposition is used to investigate the physical basis of the polarimetric SAR data segmentation. The segmentation of a SIR-C ocean surface scene into four classes is presented. This segmentation algorithm could be a very useful tool for investigating complex polarimetric SAR phenomena.

  9. Detection of land degradation with polarimetric SAR

    NASA Astrophysics Data System (ADS)

    Ray, Terrill W.; Farr, Tom G.; van Zyl, Jakob J.

    1992-08-01

    Land degradation is a crucial problem facing the human race. With an ever-increasing population placing increasing stress on agricultural lands, land impoverishment has the potential for adversely impacting the food supply in many regions of the world. The Manix Basin Area of the Mojave desert has been cropped using center pivot irrigation, but since 1973 many fields have been abandoned for economic reasons. Data were collected using the JPL Airborne Synthetic Aperture Radar (AIRSAR), a multi-spectral radar polarimeter. Analysis of these data revealed unusual polarization responses which we attribute to the formation of wind ripples on the surfaces of fields which had been abandoned for more than 5 years. This conjecture was confirmed through field observations, and the observed polarization responses were effectively modelled using a second-order small perturbation model. These results demonstrate the usefulness of remote sensing techniques supported by limited field work for study of land degradation at synoptic scales.

  10. The Geologic Remote Sensing Field Experiment (GRSFE): The first geology multisensor airborne campaign

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.; Arvidson, Raymond E.

    1991-01-01

    The primary objective of the Geologic Remote Sensing Field Experiment (GRSFE) is to acquire relevant data for geological sites that can be used to test models for extraction of surface property information from remote sensing data for earth, Mars and Venus in support of the Earth Observing System (EOS), Mars Observer, and Magellan, respectively. Over forty scientists from eight universities and three NASA centers are participating in GRSFE which is co-sponsored by the NASA Planetary Geology and Geophysics Program and the NASA Geology Program. Highlights of the airborne campaign included the first simultaneous acquisition of Airborne Visible and Infrared Imaging Spectrometer (AVRIS) and Thermal Infrared Multispectral Scanner (TIMS) data on September 29, 1989, and acquisition of Advanced Solid-State Array Spectroradiometer (ASAS), Polarimetric Synthetic Aperture Radar (AIRSAR), and Airborne Terrain Laser Altimeter System (ATLAS) data all within three months of each other. The sites covered were Lunar Crater Volcanic Field and Fish Lake Valley in Nevada; and Cima Volcanic Field, Death Valley, and Ubehebe Crater in California. Coincident field measurements included meteorological and atmospheric measurements, visible/near-infrared and thermal spectra, and characterization of geology and vegetation cover. The GRSFE airborne and field data will be reduced to a suite of standard products and submitted, along with appropriate documentation, to the Planetary Data System (PDS) and the Pilot Land Data System (PLDS). These data will be used for a variety of investigations including paleoclimatic studies in the arid southwestern United States, and analysis of Magellan data. GRSFE data will also be used to support Mars Observer Laser Altimeter (MOLA) and Mars Rover Sample Return (MRSR) simulation studies.

  11. Rice growth monitoring using simulated compact polarimetric C band SAR

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Li, Kun; Liu, Long; Shao, Yun; Brisco, Brian; Li, Weiguo

    2014-12-01

    In this study, a set of nine compact polarimetric (CP) images were simulated from polarimetric RADARSAT-2 data acquired over a test site containing two types of rice field in Jiangsu province, China. The types of rice field in the test site were (1) transplanted hybrid rice fields, and (2) direct-sown japonica rice fields. Both types have different yields and phenological stages. As a first step, the two types of rice field were distinguished with 94% and 86% accuracy respectively through analyzing CP synthetic aperture radar (SAR) observations and their behavior in terms of scattering mechanisms during the rice growth season. The focus was then on phenology retrieval for each type of rice field. A decision tree (DT) algorithm was built to fulfill the precise retrieval of rice phenological stages, in which seven phenological stages were discriminated. The key criterion for each phenological stage was composed of 1-4 CP parameters, some of which were first used for rice phenology retrieval and found to be very sensitive to rice phenological changes. The retrieval results were verified at parcel level for a set of 12 stands of rice and up to nine observation dates per stand. This gave an accuracy of 88-95%. Throughout the phenology retrieval process, only simulated CP data were used, without any auxiliary data. These results demonstrate the potential of CP SAR for rice growth monitoring applications.

  12. Polarimetric synthetic aperture radar utilized to track oil spills

    NASA Astrophysics Data System (ADS)

    Migliaccio, Maurizio; Nunziata, Ferdinando; Brown, Carl E.; Holt, Benjamin; Li, Xiaofeng; Pichel, William; Shimada, Masanobu

    2012-04-01

    The continued demand for crude oil and related petroleum products along with the resulting upward spiral of the market price of oil have forced oil exploration and production companies to seek out new reserves farther offshore and in deeper waters. The United States is among the top five nations globally in terms of estimated offshore oil reserves and petroleum production. Yet deepwater drilling to extract these reserves is a major engineering challenge for oil companies. Moreover, such drilling activity also comes with a significant environmental risk, and the extremely high pressures associated with deepwater oil wells mean that the mitigation of accidental releases from a deepwater spill is truly a challenging endeavor.

  13. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 2; AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Kim, Yun-Jin (Editor)

    1996-01-01

    The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop.

  14. Analysis of Scattering Components from Fully Polarimetric SAR Images for Improving Accuracies of Urban Density Estimation

    NASA Astrophysics Data System (ADS)

    Susaki, J.

    2016-06-01

    In this paper, we analyze probability density functions (PDFs) of scatterings derived from fully polarimetric synthetic aperture radar (SAR) images for improving the accuracies of estimated urban density. We have reported a method for estimating urban density that uses an index Tv+c obtained by normalizing the sum of volume and helix scatterings Pv+c. Validation results showed that estimated urban densities have a high correlation with building-to-land ratios (Kajimoto and Susaki, 2013b; Susaki et al., 2014). While the method is found to be effective for estimating urban density, it is not clear why Tv+c is more effective than indices derived from other scatterings, such as surface or double-bounce scatterings, observed in urban areas. In this research, we focus on PDFs of scatterings derived from fully polarimetric SAR images in terms of scattering normalization. First, we introduce a theoretical PDF that assumes that image pixels have scatterers showing random backscattering. We then generate PDFs of scatterings derived from observations of concrete blocks with different orientation angles, and from a satellite-based fully polarimetric SAR image. The analysis of the PDFs and the derived statistics reveals that the curves of the PDFs of Pv+c are the most similar to the normal distribution among all the scatterings derived from fully polarimetric SAR images. It was found that Tv+c works most effectively because of its similarity to the normal distribution.

  15. Polarimetric imaging of underwater targets

    NASA Astrophysics Data System (ADS)

    Gilerson, Alex; Carrizo, Carlos; Tonizzo, Alberto; Ibrahim, Amir; El-Habashi, Ahmed; Foster, Robert; Ahmed, Samir

    2013-06-01

    Underwater imaging is challenging because of the significant attenuation of light due to absorption and scattering of light in water. Using polarization properties of light is one of the options for improving image quality. We present results of imaging of a polarized target in open ocean (Curacao) and coastal (NY Bight) waters. The target in the shape of a square is divided into several smaller squares, each of which is covered with a polarizing film with different polarization orientations or transmission coefficients was placed on a mirror and imaged under water by a green-band full-Stokes polarimetric video camera at the full range of azimuth angles against the Sun. The values of the Stokes vector components from the images are compared with the modeled image of the target using radiative transfer code for the atmosphere-ocean system combined with the simple imaging model. It is shown that even in clear water the impact of the water body on the polarized underwater image is very significant and retrieval of target polarization characteristics from the image is extremely challenging.

  16. Contrast optimization in broadband polarimetric imaging

    NASA Astrophysics Data System (ADS)

    Thomas, Lijo; Hu, Haofeng; Boffety, Matthieu; Goudail, François

    2016-05-01

    For the sake of polarimetric accuracy, polarization imaging systems based on liquid crystal modulators often work at one given wavelength due to the strong chromatic properties of the liquid crystal retarders. This often requires the use of narrowband filters which reduces the amount of light in the system and thus the signal-to-noise ratio. For applications where the main parameter of interest is the target/background discriminability rather than polarimetric accuracy, spectral filtering may not be the best option. In this work, we investigate the impact of broadening the spectrum of the light entering the system on the discriminability performance of passive and active polarimetric systems. Through simulations, we show that broadening the bandwidth of the illumination can increase the contrast between two regions, as the increase of light flux compensates for the loss of polarimetric precision. Moreover, we show that taking into account the chromatic characteristics of the components of the imaging system can further enhance the contrast. We validate these findings through experiments in passive and active configurations, and demonstrate that the illumination bandwidth can be seen as an additional parameter to optimize polarimetric imaging set-ups.

  17. Laboratory goniometer approach for spectral polarimetric directionality

    NASA Astrophysics Data System (ADS)

    Furey, John; Zahniser, Shellie; Morgan, Cliff

    2016-05-01

    A two meter inner diameter goniometer provides approximately 0.1° angular positioning precision for a series of spectral and polarimetric instruments to enable measurements of the directionality of polarized reflectance from soils in the laboratory, at 10° increments along the azimuth and zenith. Polarimetric imaging instruments to be mounted on the goniometer, with linear polarizers in rotators in front of each instrument, include broadband focal plane array imagers in the Visible band (Vis), Near InfraRed (NIR), Short Wave InfraRed (SWIR), and Long Wave InfraRed (LWIR) spectral bands, as well as a hyperspectral imager in the Vis through NIR. Two additional hyperspectral polarimetric imagers in the Vis through NIR, and SWIR, are to be mounted separately with angles measured by laser on the goniometer frame.

  18. Symmetry properties in polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.; Li, F. K.

    1992-01-01

    This paper presents the relations among polarimetric backscattering coefficients from the viewpoint of symmetry groups. Symmetry of geophysical media encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered for both reciprocal and nonreciprocal cases. On the basis of the invariance under symmetry transformations in the linear polarization basis, the scattering coefficients are related by a set of equations which restrict the number of independent parameters in the polarimetric covariance matrix. The properties derived under these transformations are general and apply to all scattering mechanisms in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the derived symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is discussed. As a practical application, the results from this paper provide new methods for the external calibration of polarimetric radars without the deployment of man-made calibration targets.

  19. Stellar Rotation Effects in Polarimetric Microlensing

    NASA Astrophysics Data System (ADS)

    Sajadian, Sedighe

    2016-07-01

    It is well known that the polarization signal in microlensing events of hot stars is larger than that of main-sequence stars. Most hot stars rotate rapidly around their stellar axes. The stellar rotation creates ellipticity and gravity-darkening effects that break the spherical symmetry of the source's shape and the circular symmetry of the source's surface brightness respectively. Hence, it causes a net polarization signal for the source star. This polarization signal should be considered in polarimetric microlensing of fast rotating stars. For moderately rotating stars, lensing can magnify or even characterize small polarization signals due to the stellar rotation through polarimetric observations. The gravity-darkening effect due to a rotating source star creates asymmetric perturbations in polarimetric and photometric microlensing curves whose maximum occurs when the lens trajectory crosses the projected position of the rotation pole on the sky plane. The stellar ellipticity creates a time shift (i) in the position of the second peak of the polarimetric curves in transit microlensing events and (ii) in the peak position of the polarimetric curves with respect to the photometric peak position in bypass microlensing events. By measuring this time shift via polarimetric observations of microlensing events, we can evaluate the ellipticity of the projected source surface on the sky plane. Given the characterizations of the FOcal Reducer and low dispersion Spectrograph (FORS2) polarimeter at the Very Large Telescope, the probability of observing this time shift is very small. The more accurate polarimeters of the next generation may well measure these time shifts and evaluate the ellipticity of microlensing source stars.

  20. Polarimetric applications to identify bee honey

    NASA Astrophysics Data System (ADS)

    Espinosa-Luna, Rafael; Saucedo-Orozco, Izcoatl; Santiago-Lona, Cynthia V.; Franco-Sánchez, Juan M.; Magallanes-Luján, Alejandro

    2011-10-01

    A polarimetric characterization, consisting of the Mueller matrix determination and the measurement of the refractive index, is employed to study bee honey and corn syrup differences. Two samples of commercial marks of bee honey and one sample of commercial mark corn syrup are studied. Results show the corn syrup and one of the bee honey samples have a similar polarimetric behavior, which differs from the second bee honey sample. This behavior can be employed as a simple, qualitative test, to discriminate true bee honey from corn syrup or from adulterated bee honey.s-powe

  1. Polarimetric target detection under uneven illumination.

    PubMed

    Huang, Bingjing; Liu, Tiegen; Han, Jiahui; Hu, Haofeng

    2015-09-01

    In polarimetric imaging, the uneven illumination could cause the significant spatial intensity fluctuations in the scene, and thus hampers the target detection. In this paper, we propose a method of illumination compensation and contrast optimization for Stokes polarimetric imaging, which allows significantly increasing the performance of target detection under uneven illumination. We show with numerical simulation and real-world experiment that, based on the intensity information contained in the polarization information, the contrast can be effectively enhanced by proper approach, which is of particular importance in practical applications with spatial illumination fluctuations, such as remote sensing. PMID:26368458

  2. Theoretical models for polarimetric radar clutter

    NASA Technical Reports Server (NTRS)

    Borgeaud, M.; Shin, R. T.; Kong, J. A.

    1987-01-01

    The Mueller matrix and polarization covariance matrix are described for polarimetric radar systems. The clutter is modeled by a layer of random permittivity, described by a three-dimensional correlation function, with variance, and horizontal and vertical correlation lengths. This model is applied, using the wave theory with Born approximations carried to the second order, to find the backscattering elements of the polarimetric matrices. It is found that 8 out of 16 elements of the Mueller matrix are identically zero, corresponding to a covariance matrix with four zero elements. Theoretical predictions are matched with experimental data for vegetation fields.

  3. Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features

    NASA Astrophysics Data System (ADS)

    Du, Peijun; Samat, Alim; Waske, Björn; Liu, Sicong; Li, Zhenhong

    2015-07-01

    Fully Polarimetric Synthetic Aperture Radar (PolSAR) has the advantages of all-weather, day and night observation and high resolution capabilities. The collected data are usually sorted in Sinclair matrix, coherence or covariance matrices which are directly related to physical properties of natural media and backscattering mechanism. Additional information related to the nature of scattering medium can be exploited through polarimetric decomposition theorems. Accordingly, PolSAR image classification gains increasing attentions from remote sensing communities in recent years. However, the above polarimetric measurements or parameters cannot provide sufficient information for accurate PolSAR image classification in some scenarios, e.g. in complex urban areas where different scattering mediums may exhibit similar PolSAR response due to couples of unavoidable reasons. Inspired by the complementarity between spectral and spatial features bringing remarkable improvements in optical image classification, the complementary information between polarimetric and spatial features may also contribute to PolSAR image classification. Therefore, the roles of textural features such as contrast, dissimilarity, homogeneity and local range, morphological profiles (MPs) in PolSAR image classification are investigated using two advanced ensemble learning (EL) classifiers: Random Forest and Rotation Forest. Supervised Wishart classifier and support vector machines (SVMs) are used as benchmark classifiers for the evaluation and comparison purposes. Experimental results with three Radarsat-2 images in quad polarization mode indicate that classification accuracies could be significantly increased by integrating spatial and polarimetric features using ensemble learning strategies. Rotation Forest can get better accuracy than SVM and Random Forest, in the meantime, Random Forest is much faster than Rotation Forest.

  4. Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features

    NASA Astrophysics Data System (ADS)

    Rezaeian, A.; Homayouni, S.; Safari, A.

    2015-12-01

    Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  5. Classification and monitoring of reed belts using dual-polarimetric TerraSAR-X time series

    NASA Astrophysics Data System (ADS)

    Heine, Iris; Jagdhuber, Thomas; Itzerott, Sibylle

    2016-04-01

    The shorelines of lakes in northeastern Germany are often covered by reed. These reed belts fulfill an important function as erosion protection, biotope for animals, carbon storage, and as cleaning filter for lake water. However, despite their importance for the limnic ecosystem, reed vegetation in northeastern Germany is not regularly monitored. In this research study we investigate the potential of synthetic aperture radar polarimetry (PolSAR) for seasonal monitoring of reed vegetation. SAR imagery enables sunlight- and (almost) weather-independent monitoring. Polarimetric decomposition techniques allow the physical characterization of the scattering scenario and the involved scatterers. Our study is based on 19 dual-polarimetric (HH/VV) TerraSAR-X images acquired between August 2014 and May 2015. We calculated different polarimetric indices comprising the HH and VV intensities, the dual-polarimetric coherency matrix with dominant and mean alpha scattering angles, entropy and anisotropy (normalized eigen-value difference) as well as combinations of entropy and anisotropy for the analysis of the scattering scenarios. The reed areas in the TerraSAR-X images were classified using a random forest algorithm and validated with high-resolution digital orthophotos. The time series analysis of the reed belts revealed significant seasonal changes in the double bounce sensitive parameters (intensity ratio HH/VV and intensity difference HH-VV, the co-polarimetric coherence phase and the dominant and mean alpha scattering angles). Additionally, the dual-polarimetric coherence (amplitude), anisotropy, entropy, and anisotropy-entropy-combinations showed seasonal changes of reed. In summer, the reed areas are characterized within the X-band SAR data by volume scattering, whereas in winter double-bounce scattering dominates. The volume scattering in summer is caused predominantly by reed leaves. In autumn, the leaves start to wither and fall off, so that in winter predominately

  6. Comparison of automatic segmentation of full polarimetric SAR sea ice images with manually drawn ice charts

    NASA Astrophysics Data System (ADS)

    Moen, M.-A. N.; Doulgeris, A. P.; Anfinsen, S. N.; Renner, A. H. H.; Hughes, N.; Gerland, S.; Eltoft, T.

    2013-06-01

    In this paper we investigate the performance of an algorithm for automatic segmentation of full polarimetric, synthetic aperture radar (SAR) sea ice scenes. The algorithm uses statistical and polarimetric properties of the backscattered radar signals to segment the SAR image into a specified number of classes. This number was determined in advance from visual inspection of the SAR image and by available in-situ measurements. The segmentation result was then compared to ice charts drawn by ice service analysts. The comparison revealed big discrepancies between the charts of the analysts, and between the manual and the automatic segmentations. In the succeeding analysis, the automatic segmentation chart was labeled into ice types by sea ice experts, and the SAR features used in the segmentation were interpreted in terms of physical sea ice properties. Studies of automatic and robust estimation of the number of ice classes in SAR sea ice scenes will be highly relevant for future work.

  7. Subsurface polarimetric migration imaging for full polarimetric ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Feng, Xuan; Yu, Yue; Liu, Cai; Fehler, Michael

    2015-08-01

    Polarization is a property of electromagnetic wave that generally refers to the locus of the electric field vector, which can be used to characterize surface properties by polarimetric radar. However, its use has been less common in the ground-penetrating radar (GPR) community. Full polarimetric GPR data include scattering matrices, by which the polarization properties can be extracted, at each survey point. Different components of the measured scattering matrix are sensitive to different types of subsurface objects, which offers a potential improvement in the detection ability of GPR. This paper develops a polarimetric migration imaging method. By merging the Pauli polarimetric decomposition technique with the Krichhoff migration equation, we develop a polarimetric migration algorithm, which can extract three migrated coefficients that are sensitive to different types of objects. Then fusing the three migrated coefficients, we can obtain subsurface colour-coded reconstructed object images, which can be employed to interpret both the geometrical information and the scattering mechanism of the subsurface objects. A 3-D full polarimetric GPR data set was acquired in a laboratory experiment and was used to test the method. In the laboratory experiment, four objects-a scatterer, a ball, a plate and a dihedral target-were buried in homogeneous dry sand under a flat ground surface. By merging the reconstructed image with polarization properties, we enhanced the subsurface image and improved the classification ability of GPR.

  8. Asteroid Polarimetric Database V6.0

    NASA Astrophysics Data System (ADS)

    Lupishko, D. F.; Vasilyev, S. V.

    2008-07-01

    The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko and S.V. Vasiliev of Karazin Kharkiv National University, Ukraine. It is intended to include most asteroid polarimetry available through January 22, 2008.

  9. Asteroid Polarimetric Database V7.0

    NASA Astrophysics Data System (ADS)

    Lupishko, D. F.; Vasilyev, S. V.

    2012-06-01

    The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko and S.V. Vasiliev of Karazin Kharkiv National University, Ukraine. It is intended to include most asteroid polarimetry available through March 7, 2012.

  10. Passive Polarimetric Microwave Signatures Observed Over Antarctica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    WindSat satellite-based fully polarimetric passive microwave observations, expressed in the form of the Stokes vector, were analyzed over the Antarctic ice sheet. The vertically and horizontally polarized brightness temperatures (first two Stokes components) from WindSat are shown to be consistent w...

  11. Hyperspectral and Polarimetric Signatures of Vegetation from AirMSPI and AVIRIS Measurements

    NASA Astrophysics Data System (ADS)

    Yang, B.; Knyazikhin, Y.; Seidel, F. C.; Chen, C.; Yan, K.; Park, T.; CHOI, S.; Mottus, M.; Rautiainen, M.; Stenberg, P.; Myneni, R. B.; Yan, L.

    2015-12-01

    Leaf scattering spectrum is the only optical variable that conveys information about leaf biochemistry. It cannot be directly measured from space because the radiation measured by the sensor is affected by the canopy structure and the atmosphere. Multiangle remote sensing data provide information critical to account for such effects, including structural contributions to measurements of leaf optics. Some radiation is scattered at the surface of leaves, which contains no information on the leaf interior. This represents an additional confounding factor, unless it can be accounted for. Polarization measurements are useful to quantify leaf surface characteristics because radiation scattered at the surface of leaves is partly polarized whereas that from the leaf interior is not. This poster presents analyses of surface reflectance data from Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Our results indicate that 1) sensitivity of spectral reflectance corrected for canopy structure effects to foliar nitrogen (N) content is negatively related to the leaf degree of linear polarization (DOLP); 2) polarized canopy BRF (pBRF) in oblique directions can account up to 52% of reflected radiation; 3) pBRF varies with species, suggesting that leaf surface properties cannot be neglected when interpreting BRF; 4) canopy reflects radiation specularly in all directions. In general our results suggest that hyperspectral, multiangle and polarimetric data are required to monitor leaf biochemistry from space.

  12. Photometric and polarimetric mapping of water turbidity and water depth

    NASA Technical Reports Server (NTRS)

    Halajian, J.; Hallock, H.

    1973-01-01

    A Digital Photometric Mapper (DPM) was used in the Fall of 1971 in an airborne survey of New York and Boston area waters to acquire photometric, spectral and polarimetric data. The object of this study is to analyze these data with quantitative computer processing techniques to assess the potential of the DPM in the measurement and regional mapping of water turbidity and depth. These techniques have been developed and an operational potential has been demonstrated. More emphasis is placed at this time on the methodology of data acquisition, analysis and display than on the quantity of data. The results illustrate the type, quantity and format of information that could be generated operationally with the DPM-type sensor characterized by high photometric stability and fast, accurate digital output. The prototype, single-channel DPM is suggested as a unique research tool for a number of new applications. For the operational mapping of water turbidity and depth, the merits of a multichannel DPM coupled with a laser system are stressed.

  13. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  14. Evaluation of applicability of high-resolution multiangle imaging photo-polarimetric observations for aerosol atmospheric correction

    NASA Astrophysics Data System (ADS)

    Kalashnikova, Olga; Garay, Michael; Xu, Feng; Diner, David; Seidel, Felix

    2016-07-01

    Multiangle spectro-polarimetric measurements have been advocated as an additional tool for better understanding and quantifying the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of this work is the assessment of the effects of absorbing aerosol properties on remote sensing reflectance measurement uncertainty caused by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. In this work a vector Markov Chain radiative transfer code including bio-optical models was used to quantitatively evaluate in water leaving radiances between atmospheres containing realistic UV-enhanced and non-spherical aerosols and the SEADAS carbonaceous and dust-like aerosol models. The phase matrices for the spherical smoke particles were calculated using a standard Mie code, while those for non-spherical dust particles were calculated using the numerical approach developed for modeling dust for the AERONET network of ground-based sunphotometers. As a next step, we have developed a retrieval code that employs a coupled Markov Chain (MC) and adding/doubling radiative transfer method for joint retrieval of aerosol properties and water leaving radiance from Airborne Multiangle SpectroPolarimetric Imager-1 (AirMSPI-1) polarimetric observations. The AirMSPI-1 instrument has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI typically acquires observations of a target area at 9 view angles between ±67° at 10 m resolution. AirMSPI spectral channels are centered at 355, 380, 445, 470, 555, 660, and 865 nm, with 470, 660, and 865 reporting linear polarization. We

  15. Polarimetric phenomenology of photons with lung cancer tissue

    NASA Astrophysics Data System (ADS)

    Giakos, G. C.; Marotta, S.; Narayan, C.; Petermann, J.; Shrestha, S.; Baluch, J.; Pingili, D.; Sheffer, D. B.; Zhang, L.; Zervakis, M.; Livanos, G.; Kounelakis, M.

    2011-11-01

    The objective of this study is to explore the polarimetric phenomenology of light interaction with healthy and early-stage lung cancer tissue samples by applying efficient polarimetric backscattering detection techniques combined with polarimetric exploratory data analysis. Preliminary results indicate that enhanced discrimination signatures can be obtained for certain types of early-stage lung cancers based on their depolarization, backscattered intensity and retardance characteristics.

  16. Object-oriented change detection based on weighted polarimetric scattering differences on POLSAR images

    NASA Astrophysics Data System (ADS)

    Shi, X.; Lu, L.; Yang, S.; Huang, G.; Zhao, Z.

    2015-06-01

    For wide application of change detection with SAR imagery, current processing technologies and methods are mostly based on pixels. It is difficult for pixel-based technologies to utilize spatial characteristics of images and topological relations of objects. Object-oriented technology takes objects as processing unit, which takes advantage of the shape and texture information of image. It can greatly improve the efficiency and reliability of change detection. Recently, with the development of polarimetric synthetic aperture radar (PolSAR), more backscattering features on different polarization state can be available for usage of object-oriented change detection study. In this paper, the object-oriented strategy will be employed. Considering the fact that the different target or target's state behaves different backscattering characteristics dependent on polarization state, an object-oriented change detection method that based on weighted polarimetric scattering difference of PolSAR images is proposed. The method operates on the objects generated by generalized statistical region merging (GSRM) segmentation processing. The merit of GSRM method is that image segmentation is executed on polarimetric coherence matrix, which takes full advantages of polarimetric backscattering features. And then, the measurement of polarimetric scattering difference is constructed by combining the correlation of covariance matrix and the difference of scattering power. Through analysing the effects of the covariance matrix correlation and the scattering echo power difference on the polarimetric scattering difference, the weighted method is used to balance the influences caused by the two parts, so that more reasonable weights can be chosen to decrease the false alarm rate. The effectiveness of the algorithm that proposed in this letter is tested by detection of the growth of crops with two different temporal radarsat-2 fully PolSAR data. First, objects are produced by GSRM algorithm

  17. Phenomenology of fully polarimetric imaging radars

    NASA Astrophysics Data System (ADS)

    Geaga, Jorge V.

    2011-06-01

    We have previously reported on the analysis of fully polarimetric single look and multilook SIR-C data. We have reported that the Stokes(Kennaugh) matrices for each pixel have one and only one eigenvector that satisfies the property of a Stokes Vector. We now report on new analysis of fully polarimetric SIR-C data and ISAR data from the Submillimeter-Wave Technology Laboratory at the University of Massachussetts Lowell which shows that the remaining three eigenvectors of the Stokes matrix are quaternions which represent rotations. Furthermore, the three direction vectors of these quaternions form an orthogonal cartesian set of axes. We also discuss relationships between the angles of the Stokes Vector with the Euler parameters initially proposed by Huynen.

  18. Contour-Mapping Synthetic-Aperture Radar

    NASA Technical Reports Server (NTRS)

    Goldstein, R. M.; Caro, E. R.; Wu, C.

    1985-01-01

    Airborne two-antenna synthetic-aperture-radar (SAR) interferometric system provides data processed to yield terrain elevation as well as reflectedintensity information. Relative altitudes of terrain points measured to within error of approximately 25 m.

  19. Impact of cross-polarization isolation on polarimetric target decomposition and target detection

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Wang, Haipeng; Jin, Ya-Qiu; Liu, Xiuqing; Wang, Robert; Deng, Yunkai

    2015-04-01

    Cross-polarization isolation is one of the key engineering parameters for a polarimetric radar system. Previous studies focused more on the calibration of cross-talk contamination. This paper presents a numerical evaluation of the requirement for cross-polarization isolation from the data users' perspective, i.e., the quantitative impact of polarization cross talk on polarimetric target decomposition and the associated applications such as classification and detection. Sensitivity analyses of several commonly used target decomposition parameters suggest that a theoretical lower bound of -32 dB isolation level is preferred to avoid any significant impact on these parameters. Our analyses with both simulated and real synthetic aperture radar (SAR) data show that a level of -25 dB would be acceptable for general terrain surface classification. This requirement is also true for man-made target detection application. Using simulated SAR images of man-made targets in natural environment, sensitivity analyses on two polarimetric detectors, Yang and Marino, both suggest that target detection performance would break down rapidly if isolation deteriorates from -25 dB to -20 dB.

  20. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  1. Polarimetric studies of polyethylene terephtalate flexible substrates

    NASA Astrophysics Data System (ADS)

    Stchakovsky, M.; Garcia-Caurel, E.; Warenghem, M.

    2008-12-01

    Polymer sheets are currently used worldwide in a wide range of applications. The manufacturing process of these sheets involves extruding machines that stretch the material in both lateral and longitudinal directions with respect to the machine direction, thus inducing birefringence. In most cases, the film obtained is optically biaxial. Polarimetric spectroscopy (Ellipsometry and Mueller Matrix) combined with conoscopic observation are the methods of choice to study these properties. In this work we report an analysis of commercially available polyethylene terephtalate (PET) films used as substrate for food packaging as well as for embedded electronic devices such as solar cells or flexible displays. Initial observation of these films through polarizing microscope in conoscopic mode reveals first the trace of optical axis plane with respect to the film surface and second, whether the optical axis is acute or not. This preliminary study allows optimal sample positioning for further polarimetric studies. The measurements and modelling are done in both reflection and transmission mode on several spectroscopic polarimetric setups from UV to NIR. The models give as a main result, the dielectric tensor of the film as well as its orientation with respect to the laboratory reference frame.

  2. Advanced Unsupervised Classification Methods to Detect Anomalies on Earthen Levees Using Polarimetric SAR Imagery.

    PubMed

    Marapareddy, Ramakalavathi; Aanstoos, James V; Younan, Nicolas H

    2016-01-01

    Fully polarimetric Synthetic Aperture Radar (polSAR) data analysis has wide applications for terrain and ground cover classification. The dynamics of surface and subsurface water events can lead to slope instability resulting in slough slides on earthen levees. Early detection of these anomalies by a remote sensing approach could save time versus direct assessment. We used L-band Synthetic Aperture Radar (SAR) to screen levees for anomalies. SAR technology, due to its high spatial resolution and soil penetration capability, is a good choice for identifying problematic areas on earthen levees. Using the parameters entropy (H), anisotropy (A), alpha (α), and eigenvalues (λ, λ₁, λ₂, and λ₃), we implemented several unsupervised classification algorithms for the identification of anomalies on the levee. The classification techniques applied are H/α, H/A, A/α, Wishart H/α, Wishart H/A/α, and H/α/λ classification algorithms. In this work, the effectiveness of the algorithms was demonstrated using quad-polarimetric L-band SAR imagery from the NASA Jet Propulsion Laboratory's (JPL's) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The study area is a section of the lower Mississippi River valley in the Southern USA, where earthen flood control levees are maintained by the US Army Corps of Engineers. PMID:27322270

  3. Advanced Unsupervised Classification Methods to Detect Anomalies on Earthen Levees Using Polarimetric SAR Imagery

    PubMed Central

    Marapareddy, Ramakalavathi; Aanstoos, James V.; Younan, Nicolas H.

    2016-01-01

    Fully polarimetric Synthetic Aperture Radar (polSAR) data analysis has wide applications for terrain and ground cover classification. The dynamics of surface and subsurface water events can lead to slope instability resulting in slough slides on earthen levees. Early detection of these anomalies by a remote sensing approach could save time versus direct assessment. We used L-band Synthetic Aperture Radar (SAR) to screen levees for anomalies. SAR technology, due to its high spatial resolution and soil penetration capability, is a good choice for identifying problematic areas on earthen levees. Using the parameters entropy (H), anisotropy (A), alpha (α), and eigenvalues (λ, λ1, λ2, and λ3), we implemented several unsupervised classification algorithms for the identification of anomalies on the levee. The classification techniques applied are H/α, H/A, A/α, Wishart H/α, Wishart H/A/α, and H/α/λ classification algorithms. In this work, the effectiveness of the algorithms was demonstrated using quad-polarimetric L-band SAR imagery from the NASA Jet Propulsion Laboratory’s (JPL’s) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The study area is a section of the lower Mississippi River valley in the Southern USA, where earthen flood control levees are maintained by the US Army Corps of Engineers. PMID:27322270

  4. Method for providing a polarization filter for processing synthetic aperture radar image data

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C. (Inventor); Vanzyl, Jakob J. (Inventor)

    1990-01-01

    A polarization filter can maximize the signal-to-noise ratio of a polarimetric synthetic aperture radar (SAR) and help discriminate between targets or enhance image features, e.g., enhance contrast between different types of target. The method disclosed is based on the Stokes matrix/ Stokes vector representation, so the targets of interest can be extended targets, and the method can also be applied to the case of bistatic polarimetric radars.

  5. Water-Body types identification in urban areas from radarsat-2 fully polarimetric SAR data

    NASA Astrophysics Data System (ADS)

    Xie, Lei; Zhang, Hong; Wang, Chao; Chen, Fulong

    2016-08-01

    This paper presents a novel method for supervised water-body extraction and water-body types identification from Radarsat-2 fully polarimetric (FP) synthetic aperture radar (SAR) data in complex urban areas. First, supervised water-body extraction using the Wishart classifier is performed, and the false alarms that are formed in built-up areas are removed using morphological processing methods and spatial contextual information. Then, the support vector machine (SVM), the classification and regression tree (CART), TreeBagger (TB), and random forest (RF) classifiers are introduced for water-body types (rivers, lakes, ponds) identification. In SAR images, certain other objects that are misclassified as water are also considered in water-body types identification. Several shape and polarimetric features of each candidate water-body are used for identification. Radarsat-2 PolSAR data that were acquired over Suzhou city and Dongguan city in China are used to validate the effectiveness of the proposed method, and the experimental results are evaluated at both the object and pixel levels. We compared the water-body types classification results using only shape features and the combination of shape and polarimetric features, the experimental results show that the polarimetric features can eliminate the misclassifications from certain other objects like roads to water areas, and the increasement of classification accuracy embodies at both the object and pixel levels. The experimental results show that the proposed methods can achieve satisfactory accuracies at the object level [89.4% (Suzhou), 95.53% (Dongguan)] and the pixel level [96.22% (Suzhou), 97.95% (Dongguan)] for water-body types classification, respectively.

  6. Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data

    NASA Astrophysics Data System (ADS)

    Jiao, Xianfeng; Kovacs, John M.; Shang, Jiali; McNairn, Heather; Walters, Dan; Ma, Baoluo; Geng, Xiaoyuan

    2014-10-01

    The aim of this paper is to assess the accuracy of an object-oriented classification of polarimetric Synthetic Aperture Radar (PolSAR) data to map and monitor crops using 19 RADARSAT-2 fine beam polarimetric (FQ) images of an agricultural area in North-eastern Ontario, Canada. Polarimetric images and field data were acquired during the 2011 and 2012 growing seasons. The classification and field data collection focused on the main crop types grown in the region, which include: wheat, oat, soybean, canola and forage. The polarimetric parameters were extracted with PolSAR analysis using both the Cloude-Pottier and Freeman-Durden decompositions. The object-oriented classification, with a single date of PolSAR data, was able to classify all five crop types with an accuracy of 95% and Kappa of 0.93; a 6% improvement in comparison with linear-polarization only classification. However, the time of acquisition is crucial. The larger biomass crops of canola and soybean were most accurately mapped, whereas the identification of oat and wheat were more variable. The multi-temporal data using the Cloude-Pottier decomposition parameters provided the best classification accuracy compared to the linear polarizations and the Freeman-Durden decomposition parameters. In general, the object-oriented classifications were able to accurately map crop types by reducing the noise inherent in the SAR data. Furthermore, using the crop classification maps we were able to monitor crop growth stage based on a trend analysis of the radar response. Based on field data from canola crops, there was a strong relationship between the phenological growth stage based on the BBCH scale, and the HV backscatter and entropy.

  7. Random Forest Classification of Sediments on Exposed Intertidal Flats Using ALOS-2 Quad-Polarimetric SAR Data

    NASA Astrophysics Data System (ADS)

    Wang, W.; Yang, X.; Liu, G.; Zhou, H.; Ma, W.; Yu, Y.; Li, Z.

    2016-06-01

    Coastal zones are one of the world's most densely populated areas and it is necessary to propose an accurate, cost effective, frequent, and synoptic method of monitoring these complex ecosystems. However, misclassification of sediments on exposed intertidal flats restricts the development of coastal zones surveillance. With the advent of SAR (Synthetic Aperture Radar) satellites, polarimetric SAR satellite imagery plays an increasingly important role in monitoring changes in coastal wetland. This research investigated the necessity of combining SAR polarimetric features with optical data, and their contribution in accurately sediment classification. Three experimental groups were set to make assessment of the most appropriate descriptors. (i) Several SAR polarimetric descriptors were extracted from scattering matrix using Cloude-Pottier, Freeman-Durden and Yamaguchi methods; (ii) Optical remote sensing (RS) data with R, G and B channels formed the second feature combinations; (iii) The chosen SAR and optical RS indicators were both added into classifier. Classification was carried out using Random Forest (RF) classifiers and a general result mapping of intertidal flats was generated. Experiments were implemented using ALOS-2 L-band satellite imagery and GF-1 optical multi-spectral data acquired in the same period. The weights of descriptors were evaluated by VI (RF Variable Importance). Results suggested that optical data source has few advantages on sediment classification, and even reduce the effect of SAR indicators. Polarimetric SAR feature sets show great potentials in intertidal flats classification and are promising in classifying mud flats, sand flats, bare farmland and tidal water.

  8. Clustering of Multi-Temporal Fully Polarimetric L-Band SAR Data for Agricultural Land Cover Mapping

    NASA Astrophysics Data System (ADS)

    Tamiminia, H.; Homayouni, S.; Safari, A.

    2015-12-01

    Recently, the unique capabilities of Polarimetric Synthetic Aperture Radar (PolSAR) sensors make them an important and efficient tool for natural resources and environmental applications, such as land cover and crop classification. The aim of this paper is to classify multi-temporal full polarimetric SAR data using kernel-based fuzzy C-means clustering method, over an agricultural region. This method starts with transforming input data into the higher dimensional space using kernel functions and then clustering them in the feature space. Feature space, due to its inherent properties, has the ability to take in account the nonlinear and complex nature of polarimetric data. Several SAR polarimetric features extracted using target decomposition algorithms. Features from Cloude-Pottier, Freeman-Durden and Yamaguchi algorithms used as inputs for the clustering. This method was applied to multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Canada, during June and July in 2012. The results demonstrate the efficiency of this approach with respect to the classical methods. In addition, using multi-temporal data in the clustering process helped to investigate the phenological cycle of plants and significantly improved the performance of agricultural land cover mapping.

  9. The NASA Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Kim, Yunjin; van Zyl, Jakob

    1996-01-01

    None given. (From introduction): ...we will briefly describe the instrument characteristics, the evolution of the various radar modes, the instrument performance and improvement in the knowledge of the positioning and attitude information of the radar. In addition, we will summarize the [rogress of the data processing effort, especially in the interferometry processing. Finally, we will address the issue of processing and calibrating the cross-track interferometry (XTI) data.

  10. Detection comparisons between LWIR and MWIR polarimetric sensors

    NASA Astrophysics Data System (ADS)

    Malone, Neil R.; Hampp, Andreas; Gordon, Eli E.; Liguori, Michael V.; Thai, Yen; Vodicka, Jim; Bangs, James W.

    2008-04-01

    Polarimetry sensor development has been in work for some time to determine the best use of polarimetry to differentiate between manmade objects and objects made by nature. Both MWIR and LWIR Focal Plane Arrays (FPAs) have been built at Raytheon Vision Systems each with exceedingly higher extinction ratios. This paper compares field imagery between MWIR and LWIR micro-grid polarimetric sensors independently and during simultaneous image collects. LWIR polarimetry has the largest polarimetric signal level and an emissive polarimetric signature which allows detection at thermal crossover and is less dependent on sun angles. Polished angled glass and metal objects are easily detected using LWIR polarimetry. While LWIR polarimetry has many advantages its resolution is not as good as MWIR. MWIR polarimetry has higher resolution than LWIR. With good sun angles plastic drums, and wet surfaces provide good polarization signatures. With poor sun angles detection can be challenging. To gain acceptance polarimetric sensors must provide intelligence signatures that are better than existing nonpolarimetric Infrared sensors. This paper shows several examples of images without polarimetric processing and identical images with MWIR and/or LWIR polarimetric fusion onto the non-polarized images to show the improvement of detection using polarimetric sensors. It is the author's belief that the fastest way to gain acceptance of polarimetric remote sensing is through field demonstration as shown in Figure 1.

  11. Polarimetric characteristics of floating ice derived from the SMOS mission

    NASA Astrophysics Data System (ADS)

    Slominska, E.; Marczewski, W.; Slominski, J.

    2012-12-01

    Even though, major objectives for ESA SMOS mission are to provide global coverage of soil moisture (SM) observations over land and sea surface salinity over oceans, SMOS L-band brightness temperature data are a valuable source of information also for cryospheric studies, at high latitude in the presence of sea ice or drifting icebergs. In the current study, area of interest is limited to the Southern Hemisphere, with particular interest in two separate sets of 8-12 SMOS DGG pixels drifting along the Antarctic coast. These two objects, characterised by an excess in brightness temperature of approximately 30K, when compared to surrounding open water, were identified as icebergs. Additional region of interest is the sharp boundary between open water and thin ice, which for the first Stokes parameter belongs to the same brightness temperature regime as observed icebergs. The study makes us of full polarisation SMOS brightness temperature data, essential for detailed investigation of polarimetric characteristics. Measurements, transformed from the antenna frame to the Earth`s frame, are compared with reconstructed synthetic Tb. Discussion concentrates on the temporal evolution of Tbv and Tbh and first Stokes parameter, when the melting processes were observed. The final stage of analysis leads to the description of dielectric properties of observed areas.

  12. [Monitoring of organic pollutants in river based on polarimetric SAR].

    PubMed

    Chen, Jiong; Jia, Hai-Feng; Yang, Jian; Chen, Yu-Rong

    2010-09-01

    The rivers with the distinct gradient of water quality in the southern region of China were selected as a case study. The objective of this study was to develop the monitoring and evaluating technology of the water quality based on C-band polarimetric synthetic aperture radar (POLSAR). The random rough surface scattering model to describe the electromagnetic scattering characteristics of polluted water was briefly introduced. The potential effect of organic pollutants to the scattering model and backscattering coefficient were explored. The simultaneously obtained POLSAR data and the measured water quality indexes were analyzed. By comparing the POLSAR data and the water quality indexes, it could be observed that the chemical oxygen demand (COD) was in proportional to the ratio between HH and VV backscattering coefficients, which matched the analysis based on electromagnetic scattering theory. A fitting model was proposed to retrieve the chemical oxygen demand by ratio between HH and VV channel backscattering coefficients using least square method, with the fit coefficient of 0.90. In this study, the model using the ratio between HH and VV backscattering coefficients was established, which was mainly based on the analysis of experimental results, and was also supported by theoretical interpretation. PMID:21072918

  13. Polarimetric 3D integral imaging in photon-starved conditions.

    PubMed

    Carnicer, Artur; Javidi, Bahram

    2015-03-01

    We develop a method for obtaining 3D polarimetric integral images from elemental images recorded in low light illumination conditions. Since photon-counting images are very sparse, calculation of the Stokes parameters and the degree of polarization should be handled carefully. In our approach, polarimetric 3D integral images are generated using the Maximum Likelihood Estimation and subsequently reconstructed by means of a Total Variation Denoising filter. In this way, polarimetric results are comparable to those obtained in conventional illumination conditions. We also show that polarimetric information retrieved from photon starved images can be used in 3D object recognition problems. To the best of our knowledge, this is the first report on 3D polarimetric photon counting integral imaging. PMID:25836861

  14. Field observations using an AOTF polarimetric imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Hamilton, Mike; Mahoney, Colin; Reyes, George

    1993-01-01

    This paper reports preliminary results of recent field observations using a prototype acousto-optic tunable filter (AOTF) polarimetric imaging spectrometer. The data illustrate application potentials for geoscience. The operation principle of this instrument is different from that of current airborne multispectral imaging instruments, such as AVIRIS. The AOTF instrument takes two orthogonally polarized images at a desired wavelength at one time, whereas AVIRIS takes a spectrum over a predetermined wavelength range at one pixel at a time and the image is constructed later. AVIRIS does not have any polarization measuring capability. The AOTF instrument could be a complement tool to AVIRIS. Polarization measurement is a desired capability for many applications in remote sensing. It is well know that natural light is often polarized due to various scattering phenomena in the atmosphere. Also, scattered light from canopies is reported to have a polarized component. To characterize objects of interest correctly requires a remote sensing imaging spectrometer capable of measuring object signal and background radiation in both intensity and polarization so that the characteristics of the object can be determined. The AORF instrument has the capability to do so. The AOTF instrument has other unique properties. For example, it can provide spectral images immediately after the observation. The instrument can also allow observations to be tailored in real time to perform the desired experiments and to collect only required data. Consequently, the performance in each mission can be increased with minimal resources. The prototype instrument was completed in the beginning of this year. A number of outdoor field experiments were performed with the objective to evaluate the capability of this new technology for remote sensing applications and to determine issues for further improvements.

  15. Polarimetric Imaging using Two Photoelastic Modulators

    NASA Technical Reports Server (NTRS)

    Wang, Yu; Cunningham, Thomas; Diner, David; Davis, Edgar; Sun, Chao; Hancock, Bruce; Gutt, Gary; Zan, Jason; Raouf, Nasrat

    2009-01-01

    A method of polarimetric imaging, now undergoing development, involves the use of two photoelastic modulators in series, driven at equal amplitude but at different frequencies. The net effect on a beam of light is to cause (1) the direction of its polarization to rotate at the average of two excitation frequencies and (2) the amplitude of its polarization to be modulated at the beat frequency (the difference between the two excitation frequencies). The resulting modulated optical light beam is made to pass through a polarizing filter and is detected at the beat frequency, which can be chosen to equal the frame rate of an electronic camera or the rate of sampling the outputs of photodetectors in an array. The method was conceived to satisfy a need to perform highly accurate polarimetric imaging, without cross-talk between polarization channels, at frame rates of the order of tens of hertz. The use of electro-optical modulators is necessitated by a need to obtain accuracy greater than that attainable by use of static polarizing filters over separate fixed detectors. For imaging, photoelastic modulators are preferable to such other electrio-optical modulators as Kerr cells and Pockels cells in that photoelastic modulators operate at lower voltages, have greater angular acceptances, and are easier to use. Prior to the conception of the present method, polarimetric imaging at frame rates of tens of hertz using photoelastic modulators was not possible because the resonance frequencies of photoelastic modulators usually lie in the range from about 20 to about 100 kHz.

  16. Polarimetric measurements of precipitation over urban environments

    NASA Astrophysics Data System (ADS)

    Pereira Filho, A. J.

    2009-04-01

    This study presents recent results of weather radar polarimetric measurements of clouds and rainfall system over Eastern S„o Paulo, Brazil, more specifically in the metropolitan area of S„o Paulo (MASP). Local direct circulation associated to its urban heat island and sea breeze inflow tends to generate very deep convection similar to the Amazon region in a matter of minutes. It is investigated the impact of pollutants on the cloud microphysics and induced effects on downdrafts, lighting, hail and others such as flash floods.

  17. Polarimetric thermal emission from rough surfaces

    NASA Technical Reports Server (NTRS)

    Johnson, J. T.; Kong, J. A.; Shin, R. T.; Staelin, D. H.; Yueh, S. H.; Nghiem, S. V.; Kwok, R.; Oneill, K.; Lohanick, A.

    1993-01-01

    Recent theoretical works have suggested the potential of passive polarimetry in the remote sensing of geophysical media. It was shown that the third Stokes parameter U of the thermal emission may become larger for azimuthally asymmetric fields of observation. In order to investigate the potential applicability of passive polarimetry to the remote sensing of ocean surface, measurements of the polarimetric thermal emission from a sinusoidal water surface and a numerical study of the polarimetric thermal emission from randomly rough ocean surfaces were performed. Measurements of sinusoidal water surface thermal emission were performed using a sinusoidal water surface which was created by placing a thin sheet of fiberglass with a sinusoidal profile in two dimensions extended infinitely in the third dimension onto a water surface. The theory of thermal emission from a 'two-layer' periodic surface is derived and the exact solution is performed using both the extended boundary condition method (EBC) and the method of moments (MOM). The theoretical predictions are found to be in good agreement with the experimental results once the effects of the radiometer antenna pattern are included and the contribution of background noise to the measurements is modeled. The experimental results show that the U parameter indicates the direction of periodicity of the water surface and can approach values of up to 30 K for the surface observed. Next, a numerical study of polarimetric thermal emission from randomly rough surfaces was performed. A Monte Carlo technique utilizing an exact method for calculating thermal emission was chosen for the study to avoid any of the limitations of the commonly used approximate methods in rough surface scattering. In this Monte Carlo technique, a set of finite rough surface profiles in two dimensions with desired statistics was generated and extended periodically. The polarimetric thermal emission from each surface of the set was then calculated using

  18. Polarimetric clutter modeling: Theory and application

    NASA Technical Reports Server (NTRS)

    Kong, J. A.; Lin, F. C.; Borgeaud, M.; Yueh, H. A.; Swartz, A. A.; Lim, H. H.; Shim, R. T.; Novak, L. M.

    1988-01-01

    The two-layer anisotropic random medium model is used to investigate fully polarimetric scattering properties of earth terrain media. The polarization covariance matrices for the untilted and tilted uniaxial random medium are evaluated using the strong fluctuation theory and distorted Born approximation. In order to account for the azimuthal randomness in the growth direction of leaves in tree and grass fields, an averaging scheme over the azimuthal direction is also applied. It is found that characteristics of terrain clutter can be identified through the analysis of each element of the covariance matrix. Theoretical results are illustrated by the comparison with experimental data provided by MIT Lincoln Laboratory for tree and grass fields.

  19. Utilization of AERONET polarimetric measurements for improving retrieval of aerosol microphysics: GSFC, Beijing and Dakar data analysis

    NASA Astrophysics Data System (ADS)

    Fedarenka, Anton; Dubovik, Oleg; Goloub, Philippe; Li, Zhengqiang; Lapyonok, Tatyana; Litvinov, Pavel; Barel, Luc; Gonzalez, Louis; Podvin, Thierry; Crozel, Didier

    2016-08-01

    The study presents the efforts on including the polarimetric data to the routine inversion of the radiometric ground-based measurements for characterization of the atmospheric aerosols and analysis of the obtained advantages in retrieval results. First, to operationally process the large amount of polarimetric data the data preparation tool was developed. The AERONET inversion code adapted for inversion of both intensity and polarization measurements was used for processing. Second, in order to estimate the effect from utilization of polarimetric information on aerosol retrieval results, both synthetic data and the real measurements were processed using developed routine and analyzed. The sensitivity study has been carried out using simulated data based on three main aerosol models: desert dust, urban industrial and urban clean aerosols. The test investigated the effects of utilization of polarization data in the presence of random noise, bias in measurements of optical thickness and angular pointing shift. The results demonstrate the advantage of polarization data utilization in the cases of aerosols with pronounced concentration of fine particles. Further, the extended set of AERONET observations was processed. The data for three sites have been used: GSFC, USA (clean urban aerosol dominated by fine particles), Beijing, China (polluted industrial aerosol characterized by pronounced mixture of both fine and coarse modes) and Dakar, Senegal (desert dust dominated by coarse particles). The results revealed considerable advantage of polarimetric data applying for characterizing fine mode dominated aerosols including industrial pollution (Beijing). The use of polarization corrects particle size distribution by decreasing overestimated fine mode and increasing the coarse mode. It also increases underestimated real part of the refractive index and improves the retrieval of the fraction of spherical particles due to high sensitivity of polarization to particle shape

  20. Wind speed estimation using C-band compact polarimetric SAR for wide swath imaging modes

    NASA Astrophysics Data System (ADS)

    Denbina, Michael; Collins, Michael J.

    2016-03-01

    We have investigated the use of C-band compact polarimetric synthetic aperture radar for estimation of ocean surface wind speeds. Using 1399 buoy observations collocated with Radarsat-2 scenes, compact polarimetric data was simulated for two of the Radarsat Constellation's planned wide swath imaging modes. Provided the wind direction is known or can be estimated, our results demonstrate that wind speed can be estimated from the right-vertical polarization channel of the compact polarimetry using a combination of the CMOD5 geophysical model function and a linear model. If wind speed estimation without wind direction input is desired, the randomly-polarized component of the backscattered power can be used in a similar fashion to that of the linear cross-polarizations, but is less affected by increases in the noise effective sigma-zero of the data. A model is proposed for the randomly-polarized power as a function of incidence angle and wind speed, independent of wind direction. The results suggest that compact polarimetry is a strong alternative to linearly polarized synthetic aperture radar data for wind speed estimation applications, particularly for wide swath imaging modes with a high noise floor.

  1. [Modeling and Simulation of Spectral Polarimetric BRDF].

    PubMed

    Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu

    2016-01-01

    Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances. PMID:27228737

  2. Polarimetric remote sensing of the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Snik, Frans

    2013-04-01

    Aerosols constitute the largest unknown factor within climate change, and may pose severe health hazards. Remote sensing of aerosols can be performed by analyzing the sunlight that has been scattered by them. Many aerosol properties are accessible by measuring the polarization of the scattered light as a function of scattering angle and wavelength. Information on the number density, size distribution and the chemical composition (through the refractive index) can thus be obtained. I provide an overview of ground-based and space-based polarimetric instrumentation that is built for remote observations of aerosols. In particular, I introduce our range of SPEX instruments. One version currently operates on the ground, and the development for operation of SPEX on a satellite platform is ongoing. Now we also have a version that operates on a smartphone: iSPEX. In the summer of 2013 we will organize a large citizen science experiment in the Netherlands during which thousands of participants perform a polarimetric measurement of the blue sky. The goal is to create a flexible measurement network that can produce detailed maps of aerosols.

  3. Analysis of polarimetric terahertz imaging for non-destructive detection of subsurface defects in wind turbine blades

    NASA Astrophysics Data System (ADS)

    Martin, Robert Warren

    During the manufacture of wind turbine blades, internal defects can form which negatively affect their structural integrity and can lead to premature failure. These defects are often not detected before the final installation of the blades onto wind turbines in the field. The purpose of this research was to investigate the advantages of using fully-polarimetric inverse synthetic aperture radar (ISAR) terahertz imaging techniques for scanning the interior structure of the wind turbine blades in order to detect and identify any defects in the blade's internal structure before the blade leaves the manufacturer. Additionally, the research has investigated the use of the Euler parameter polarimetric transformation in improving defect detection, and increasing understanding of the scattering properties of such defects. Use of an image compositing algorithm and of the Euler parameters was found to enhance defect detection.

  4. A proposed standard method for polarimetric calibration and calibration verification

    NASA Astrophysics Data System (ADS)

    Persons, Christopher M.; Jones, Michael W.; Farlow, Craig A.; Morell, L. Denise; Gulley, Michael G.; Spradley, Kevin D.

    2007-09-01

    Accurate calibration of polarimetric sensors is critical to reducing and analyzing phenomenology data, producing uniform polarimetric imagery for deployable sensors, and ensuring predictable performance of polarimetric algorithms. It is desirable to develop a standard calibration method, including verification reporting, in order to increase credibility with customers and foster communication and understanding within the polarimetric community. This paper seeks to facilitate discussions within the community on arriving at such standards. Both the calibration and verification methods presented here are performed easily with common polarimetric equipment, and are applicable to visible and infrared systems with either partial Stokes or full Stokes sensitivity. The calibration procedure has been used on infrared and visible polarimetric imagers over a six year period, and resulting imagery has been presented previously at conferences and workshops. The proposed calibration method involves the familiar calculation of the polarimetric data reduction matrix by measuring the polarimeter's response to a set of input Stokes vectors. With this method, however, linear combinations of Stokes vectors are used to generate highly accurate input states. This allows the direct measurement of all system effects, in contrast with fitting modeled calibration parameters to measured data. This direct measurement of the data reduction matrix allows higher order effects that are difficult to model to be discovered and corrected for in calibration. This paper begins with a detailed tutorial on the proposed calibration and verification reporting methods. Example results are then presented for a LWIR rotating half-wave retarder polarimeter.

  5. Nonlinear Polarimetric Microscopy for Biomedical Imaging

    NASA Astrophysics Data System (ADS)

    Samim, Masood

    A framework for the nonlinear optical polarimetry and polarimetric microscopy is developed. Mathematical equations are derived in terms of linear and nonlinear Stokes Mueller formalism, which comprehensively characterize the polarization properties of the incoming and outgoing radiations, and provide structural information about the organization of the investigated materials. The algebraic formalism developed in this thesis simplifies many predictions for a nonlinear polarimetry study and provides an intuitive understanding of various polarization properties for radiations and the intervening medium. For polarimetric microscopy experiments, a custom fast-scanning differential polarization microscope is developed, which is also capable of real-time three-dimensional imaging. The setup is equipped with a pair of high-speed resonant and galvanometric scanning mirrors, and supplemented by advanced adaptive optics and data acquisition modules. The scanning mirrors when combined with the adaptive optics deformable mirror enable fast 3D imaging. Deformable membrane mirrors and genetic algorithm optimization routines are employed to improve the imaging conditions including correcting the optical aberrations, maximizing signal intensities, and minimizing point-spread-functions of the focal volume. A field-programmable-gate array (FPGA) chip is exploited to rapidly acquire and process the multidimensional data. Using the nonlinear optical polarimetry framework and the home-built polarization microscope, a few biologically important tissues are measured and analyzed to gain insight as to their structure and dynamics. The structure and distribution of muscle sarcomere myosins, connective tissue collagen, carbohydrate-rich starch, and fruit fly eye retinal molecules are characterized with revealing polarization studies. In each case, using the theoretical framework, polarization sensitive data are analyzed to decipher the molecular orientations and nonlinear optical

  6. Polarimetric measures of selected variable stars

    NASA Astrophysics Data System (ADS)

    Elias, N. M., II; Koch, R. H.; Pfeiffer, R. J.

    2008-10-01

    Aims: The purpose of this paper is to summarize and interpret unpublished optical polarimetry for numerous program stars that were observed over the past decades at the Flower and Cook Observatory (FCO), University of Pennsylvania. We also make the individual calibrated measures available for long-term comparisons with new data. Methods: We employ three techniques to search for intrinsic variability within each dataset. First, when the observations for a given star and filter are numerous enough and when a period has been determined previously via photometry or spectroscopy, the polarimetric measures are plotted versus phase. If a statistically significant pattern appears, we attribute it to intrinsic variability. Second, we compare means of the FCO data to means from other workers. If they are statistically different, we conclude that the object exhibits long-term intrinsic variability. Third, we calculate the standard deviation for each program star and filter and compare it to the standard deviation estimated from comparable polarimetric standards. If the standard deviation of the program star is at least three times the value estimated from the polarimetric standards, the former is considered intrinsically variable. All of these statements are strengthened when variability appears in multiple filters. Results: We confirm the existence of an electron-scattering cloud at L1 in the β Per system, and find that LY Aur and HR 8281 possess scattering envelopes. Intrinsic polarization was detected for Nova Cas 1993 as early as day +3. We detected polarization variability near the primary eclipse of 32 Cyg. There is marginal evidence for polarization variability of the β Cepheid type star γ Peg. The other objects of this class exhibited no variability. All but one of the β Cepheid objects (ES Vul) fall on a tight linear relationship between linear polarization and E(B-V), in spite of the fact that the stars lay along different lines of sight. This dependence falls

  7. MCM Polarimetric Radiometers for Planar Arrays

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Dawson, Douglas; Gaier, Todd

    2007-01-01

    A polarimetric radiometer that operates at a frequency of 40 GHz has been designed and built as a prototype of multiple identical units that could be arranged in a planar array for scientific measurements. Such an array is planned for use in studying the cosmic microwave background (CMB). All of the subsystems and components of this polarimetric radiometer are integrated into a single multi-chip module (MCM) of substantially planar geometry. In comparison with traditional designs of polarimetric radiometers, the MCM design is expected to greatly reduce the cost per unit in an array of many such units. The design of the unit is dictated partly by a requirement, in the planned CMB application, to measure the Stokes parameters I, Q, and U of the CMB radiation with high sensitivity. (A complete definition of the Stokes parameters would exceed the scope of this article. In necessarily oversimplified terms, I is a measure of total intensity of radiation, while Q and U are measures of the relationships between the horizontally and vertically polarized components of radiation.) Because the sensitivity of a single polarimeter cannot be increased significantly, the only way to satisfy the high-sensitivity requirement is to make a large array of polarimeters that operate in parallel. The MCM includes contact pins that can be plugged into receptacles on a standard printed-circuit board (PCB). All of the required microwave functionality is implemented within the MCM; any required supporting non-microwave ("back-end") electronic functionality, including the provision of DC bias and control signals, can be implemented by standard PCB techniques. On the way from a microwave antenna to the MCM, the incoming microwave signal passes through an orthomode transducer (OMT), which splits the radiation into an h + i(nu) beam and an h - i(nu) beam (where, using complex-number notation, h denotes the horizontal component, nu denotes the vertical component, and +/-i denotes a +/-90deg phase

  8. Fiber-optic polarimetric strain gauge

    NASA Astrophysics Data System (ADS)

    Bock, Wojtek J.; Wolinski, Tomasz R.

    A prototype fiber-optic polarimetric strain gauge based on the polarization mode coupling that occurs in highly birefringent optical fibers under the influence of axial strain is presented. Measurement set-up for a bonded strain gauge and its metrological characteristics are discussed together with the interpretation of observed physical effects in terms of changes in beat-length parameter under axial strain. The device is far more sensitive than conventional strain gauges, and can also be readily adjusted to a specified range of strain through an appropriate choice of fiber length and optical signal wavelength. The temperature drift of the device can be compensated in a straightforward procedure. The device is immune to electromagnetic interference, and is intrinsically safe in electrically dangerous, hazardous or explosive environments. Another attraction of this technology is its direct compatibility with fiber-optic telemetry, optical data transmission systems and multiplexing / demultiplexing technology.

  9. Polarimetric characterization of birefringent filter components.

    PubMed

    Mudge, Jason; Mitchell, Keith; Tarbell, Theodore

    2015-01-10

    Over the past 75 years, birefringent filter technology has evolved significantly. For nearly that same period of time, these filters have been designed and used by solar scientists to study the Sun. Prior to assembling these types of filters, each component, e.g., polarizers and wave plates, is characterized to determine its polarimetric parameters to ensure the desired filter design performance. With time and cost becoming an ever increasing issue, it is imperative to test components designated for a birefringent filter efficiently. This article addresses a shift to increased efficiency when testing components of very low volume (<5 units) solar research filters that minimizes high-priced hardware expenditures, i.e., Mueller matrix spectropolarimeter. PMID:25967624

  10. Integrated, Dual Orthogonal Antennas for Polarimetric Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Pauli, Mario; Wiesbeck, Werner

    2015-04-01

    Ground penetrating radar systems are mostly equipped with single polarized antennas, for example with single linear polarization or with circular polarization. The radiated waves are partly reflected at the ground surface and very often the penetrating waves are distorted in their polarization. The distortion depends on the ground homogeneity and the orientation of the antennas relative to the ground structure. The received signals from the reflecting objects may most times only be classified according to their coverage and intensity. This makes the recognition of the objects difficult or impossible. In airborne and spaceborne Remote Sensing the systems are meanwhile mostly equipped with front ends with dual orthogonal polarized antennas for a full polarimetric operation. The received signals, registered in 2x2 scattering matrices according to co- and cross polarization, are processed for the evaluation of all features of the targets. Ground penetrating radars could also profit from the scientific results of Remote Sensing. The classification of detected objects for their structure and orientation requires more information in the reflected signal than can be measured with a single polarization [1, 2]. In this paper dual linear, orthogonal polarized antennas with a common single, frequency independent phase center, are presented [3]. The relative bandwidth of these antennas can be 1:3, up to 1:4. The antenna is designed to work in the frequency range between 3 GHz and 11 GHz, but can be easily adapted to the GPR frequency range by scaling. The size of the antenna scaled for operation in typical GPR frequencies would approximately be 20 by 20 cm2. By the implementation in a dielectric carrier it could be reduced in size if required. The major problem for ultra wide band, dual polarized antennas is the frequency independent feed network, realizing the required phase shifts. For these antennas a network, which is frequency independent over a wide range, has been

  11. Enhanced facial recognition for thermal imagery using polarimetric imaging.

    PubMed

    Gurton, Kristan P; Yuffa, Alex J; Videen, Gorden W

    2014-07-01

    We present a series of long-wave-infrared (LWIR) polarimetric-based thermal images of facial profiles in which polarization-state information of the image-forming radiance is retained and displayed. The resultant polarimetric images show enhanced facial features, additional texture, and details that are not present in corresponding conventional thermal imagery. It has been generally thought that conventional thermal imagery (MidIR or LWIR) could not produce the detailed spatial information required for reliable human identification due to the so-called "ghosting" effect often seen in thermal imagery of human subjects. By using polarimetric information, we are able to extract subtle surface features of the human face, thus improving subject identification. Polarimetric image sets considered include the conventional thermal intensity image, S0, the two Stokes images, S1 and S2, and a Stokes image product called the degree-of-linear-polarization image. PMID:24978755

  12. Stokes vector analysis of LWIR polarimetric in adverse weather

    NASA Astrophysics Data System (ADS)

    Michalson, Jacob L.; Romano, Joao M.; Roth, Luz

    2011-10-01

    It is understood that Long Wave Infrared (LWIR) polarimetric imagery has the potential for detecting man-made objects in natural clutter backgrounds. Unlike Spectral and conventional broadband, polarimetric imagery takes advantage of the polarized signals emitted by the smooth surfaces of man-made materials. Studying the effect of how meteorological conditions affect polarization signals is imperative in order to understand where and how polarimetric technology can be beneficial to the war fighter. In this paper we intend to demonstrate the effects of weather on the performance of Stokes vector components, S0, S1, S2, and the Degree of Linear Polarization (DOLP) as detectors of man-made materials. Using the Hyperspectral Polarimetric Image Collection Experiment (SPICE) data collection, we analyze approximately one thousand images and correlate the performance of each of the detection metrics to individual meteorological measurements.

  13. Evaluation of polarimetric SAR parameters for soil moisture retrieval

    NASA Technical Reports Server (NTRS)

    Shi, Jian-Cheng; Vanzyl, Jakob J.; Engman, Edwin T.

    1992-01-01

    Results of ongoing efforts to develop an algorithm for soil moisture retrieval from Synthetic Aperture Radar (SAR) imagery are reported. Estimates of soil moisture are of great importance in numerous environmental studies, including hydrology, meteorology, and agriculture. Previous studies using extensive scatterometer measurements have established the optimum parameters for moisture retrieval as C-band HH radar operating at incidence angles between 10 to 15 deg. However, these parameters were not tested or verified with imaging radar systems. The results from different investigators showed considerable variability in the relationship between soil moisture and radar backscattering. This variability suggests that those algorithms are site-specific. Furthermore, the small incidence angle requirement limits the spatial application, especially for airborne radar systems.

  14. Detecting oil on water using polarimetric imaging

    NASA Astrophysics Data System (ADS)

    Iler, Amber L.; Hamilton, Patrick D.

    2015-05-01

    Integrity Applications Incorporated (IAI) collected electro-optical polarimetric imagery (PI) to evaluate its effectiveness for detecting oil on water. Data was gathered at multiple sun angles for vegetable oil and crude oil to demonstrate PI sensitivity to different liquids and collection geometries. Unique signatures for oil relative to water were observed. Both oils consistently displayed higher degree of linear polarization (DOLP) values than water, which was expected based on the lower index of refraction of water (1.33) relative to vegetable oil and crude oil (1.47 and 1.47-1.57, respectively). The strength of the polarimetric signatures was found to vary as a function of collection angle relative to the sun, with peak linear polarizations ranging from 40-70% for crude oil and 20-50% for vegetable oil. IAI found that independently scaled DOLP was particularly useful for discriminating these liquids, because it demonstrated the least sensitivity to collection angle, compared to other PI products. Specifically, the DOLP signature of vegetable oil was approximately 20% lower than for crude oil, regardless of collection angle. This finding is consistent with the lower index of refraction values for vegetable oil compared to crude. Based on the promising results presented here, IAI recommends further testing and development of PI for oceanic remote sensing applications such as oil spill/leak detection and for supporting oil cleanup efforts. With additional work, PI may also be applicable to other oceanic environmental issues such as detection of agricultural runoff or effluent from industrial facilities or watercraft.

  15. Robust materials classification based on multispectral polarimetric BRDF imagery

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Zhao, Yong-qiang; Luo, Li; Liu, Dan; Pan, Quan

    2009-07-01

    When light is reflected from object surface, its spectral characteristics will be affected by surface's elemental composition, while its polarimetric characteristics will be determined by the surface's orientation, roughness and conductance. Multispectral polarimetric imaging technique records both the spectral and polarimetric characteristics of the light, and adds dimensions to the spatial intensity typically acquired and it also could provide unique and discriminatory information which may argument material classification techniques. But for the sake of non-Lambert of object surface, the spectral and polarimetric characteristics will change along with the illumination angle and observation angle. If BRDF is ignored during the material classification, misclassification is inevitable. To get a feature that is robust material classification to non-Lambert surface, a new classification methods based on multispectral polarimetric BRDF characteristics is proposed in this paper. Support Vector Machine method is adopted to classify targets in clutter grass environments. The train sets are obtained in the sunny, while the test sets are got from three different weather and detected conditions, at last the classification results based on multispectral polarimetric BRDF features are compared with other two results based on spectral information, and multispectral polarimetric information under sunny, cloudy and dark conditions respectively. The experimental results present that the method based on multispectral polarimetric BRDF features performs the most robust, and the classification precision also surpasses the other two. When imaging objects under the dark weather, it's difficult to distinguish different materials using spectral features as the grays between backgrounds and targets in each different wavelength would be very close, but the method proposed in this paper would efficiently solve this problem.

  16. Second harmonic generation double stokes Mueller polarimetric microscopy of myofilaments

    PubMed Central

    Kontenis, Lukas; Samim, Masood; Karunendiran, Abiramy; Krouglov, Serguei; Stewart, Bryan; Barzda, Virginijus

    2016-01-01

    The experimental implementation of double Stokes Mueller polarimetric microscopy is presented. This technique enables a model-independent and complete polarimetric characterization of second harmonic generating samples using 36 Stokes parameter measurements at different combinations of incoming and outgoing polarizations. The degree of second harmonic polarization and the molecular nonlinear susceptibility ratio are extracted for individual focal volumes of a fruit fly larva wall muscle. PMID:26977362

  17. Polarimetric SAR Data for Urban Land Cover Classification Using Finite Mixture Model

    NASA Astrophysics Data System (ADS)

    Mahdianpari, Masoud; Akbari, Vahid; Mohammadimanesh, Fariba; Alioghli Fazel, Mohammad

    2013-04-01

    Image classification techniques play an important role in automatic analysis of remote sensing data. This paper demonstrates the potential of polarimetric synthetic aperture radar (PolSAR) for urban land cover mapping using an unsupervised classification approach. Analysis of PolSAR images often shows that non-Gaussian models give better representation of the scattering vector statistics. Hence, processing algorithms based on non-Gaussian statistics should improve performance, compared to complex Gaussian distributions. Several distributions could be used to model SAR image texture with different spatial correlation properties and various degrees of inhomogeneity [1-3]. Statistical properties are widely used for image segmentation and land cover classification of PolSAR data. The pixel-based approaches cluster individual pixels through analysis of their statistical properties. Those methods work well on the relatively coarse spatial resolution images. But classification results based on pixelwise analysis demonstrate the pepper-salt effect of speckle in medium and high resolution applications such as urban area monitoring [4]. Therefore, the expected improvement of the classification results is hindered by the increase of textural differences within a class. In such situation, enhancement could be made through exploring the contextual correlation among pixels by Markov random field (MRF) models [4, 5]. The potential of MRF models to retrieve spatial contextual information is desired to improve the accuracy and reliability of image classification. Unsupervised contextual polarimetric SAR image segmentation is addressed by combining statistical modeling and spatial context within an MRF framework. We employ the stochastic expectation maximization (SEM) algorithm [6] to jointly perform clustering of the data and parameter estimation of the statistical distribution conditioned to each image cluster and the MRF model. This classification method is applied on medium

  18. Comparison of feature based segmentation of full polarimetric SAR satellite sea ice images with manually drawn ice charts

    NASA Astrophysics Data System (ADS)

    Moen, M.-A. N.; Doulgeris, A. P.; Anfinsen, S. N.; Renner, A. H. H.; Hughes, N.; Gerland, S.; Eltoft, T.

    2013-11-01

    In this paper we investigate the performance of an algorithm for automatic segmentation of full polarimetric, synthetic aperture radar (SAR) sea ice scenes. The algorithm uses statistical and polarimetric properties of the backscattered radar signals to segment the SAR image into a specified number of classes. This number was determined in advance from visual inspection of the SAR image and by available in situ measurements. The segmentation result was then compared to ice charts drawn by ice service analysts. The comparison revealed big discrepancies between the charts of the analysts, and between the manual and the automatic segmentations. In the succeeding analysis, the automatic segmentation chart was labeled into ice types by sea ice experts, and the SAR features used in the segmentation were interpreted in terms of physical sea ice properties. Utilizing polarimetric information in sea ice charting will increase the efficiency and exactness of the maps. The number of classes used in the segmentation has shown to be of significant importance. Thus, studies of automatic and robust estimation of the number of ice classes in SAR sea ice scenes will be highly relevant for future work.

  19. Non-Local Means Filter for Polarimetric SAR Speckle Reduction-Experiments Using Terrasar-X Data

    NASA Astrophysics Data System (ADS)

    Hu, J.; Guo, R.; Zhu, X.; Baier, G.; Wang, Y.

    2015-03-01

    The speckle is omnipresent in synthetic aperture radar (SAR) images as an intrinsic characteristic. However, it is unwanted in certain applications. Therefore, intelligent filters for speckle reduction are of great importance. It has been demonstrated in several literatures that the non-local means filter can reduce noise while preserving details. This paper discusses non-local means filter for polarimetric SAR (PolSAR) speckle reduction. The impact of different similarity approaches, weight kernels, and parameters in the filter were analysed. A data-driven adaptive weight kernel was proposed. Combined with different similarity measures, it is compared with existing algorithms, using fully polarimetric TerraSAR-X data acquired during the commissioning phase. The proposed approach has overall the best performance in terms of speckle reduction, detail preservation, and polarimetric information preservation. This study suggests the high potential of using the developed non- local means filer for speckle reduction of PolSAR data acquired by the next generation SAR missions, e.g. TanDEM-L and TerraSAR-X NG.

  20. Design and analysis of an Euler transformation algorithm applied to full-polarimetric ISAR imagery

    NASA Astrophysics Data System (ADS)

    Baird, Christopher Stanford

    2007-12-01

    Use of an Inverse Synthetic Aperture Radar (ISAR) enables the construction of spatial images of an object's electromagnetic backscattering properties. A set of fully polarimetric ISAR images contains sufficient information to construct the coherent scattering matrix for each resolution cell in the image. A diagonalization of the scattering matrix is equivalent to a transformation to a common basis, which allows the extraction of phenomenological parameters. These phenomenological scattering parameters, referred to as Euler parameters, better quantify the physical scattering properties of the object than the original polarization parameters. The accuracy and meaning of the Euler parameters are shown to be degraded by transform ambiguities as well as by azimuthal nonpersistence. The transform ambiguities are shown to be removed by a case-wise characterization and redefinition of the Euler parameters. The azimuthal nonpersistence is shown to be a result of multiple scattering centers occupying the same cell. An optimized Euler transformation algorithm is presented that removes transform ambiguities and minimizes the impact of cells containing multiple scattering centers. The accuracy of the algorithm is analyzed by testing its effectiveness in Automatic Target Recognition (ATR) using polarimetric scattering signatures obtained at the University of Massachusetts Lowell Submillimeter-Wave Technology Laboratory and the U.S. Army National Ground Intelligence Center. Finally, a complete ATR algorithm is presented and analyzed which uses the optimized Euler transformation without any previous knowledge and without human intervention. The algorithm is shown to enable successful automatic target recognition.

  1. Urban-area extraction from polarimetric SAR image using combination of target decomposition and orientation angle

    NASA Astrophysics Data System (ADS)

    Zou, Bin; Lu, Da; Wu, Zhilu; Qiao, Zhijun G.

    2016-05-01

    The results of model-based target decomposition are the main features used to discriminate urban and non-urban area in polarimetric synthetic aperture radar (PolSAR) application. Traditional urban-area extraction methods based on modelbased target decomposition usually misclassified ground-trunk structure as urban-area or misclassified rotated urbanarea as forest. This paper introduces another feature named orientation angle to improve urban-area extraction scheme for the accurate mapping in urban by PolSAR image. The proposed method takes randomness of orientation angle into account for restriction of urban area first and, subsequently, implements rotation angle to improve results that oriented urban areas are recognized as double-bounce objects from volume scattering. ESAR L-band PolSAR data of the Oberpfaffenhofen Test Site Area was used to validate the proposed algorithm.

  2. Polarimetric SAR Tomopgraphy With TerraSAR-X By Means Of Distributed Compressed Sensing

    NASA Astrophysics Data System (ADS)

    Aguilera, E.; Nannini, M.; Antonello, A.; Marotti, L.; Prats, P.; Reigber, A.

    2012-01-01

    In SAR tomography, the vertical reflectivity function for every azimuth-range pixel is usually recovered by processing data collected using a defined repeat-pass acquisition geometry. A common and appealing approach is to generate a synthetic aperture in the elevation direction through imaging from parallel tracks. However, the quality of conventional reconstruction methods is generally dictated by the Nyquist rate, which can be considerably high. In an attempt to reduce this rate, we propose a new tomographic focusing approach that exploits correlations between neighboring azimuth-range pixels and polarimetric channels. As a matter of fact, this can be done under the framework of Distributed Com- pressed Sensing (DCS), which stems from Compressed Sensing (CS) theory, thus also exploiting sparsity in the tomographic signal. Results demonstrating the potential of the DCS methodology will be validated, for the first time, using dual-polarized data acquired at X-band by the TerraSAR-X spaceborne system.

  3. Multispectral polarimetric system for glucose monitoring

    NASA Astrophysics Data System (ADS)

    Cote, Gerard L.; Gorde, Harshal; Janda, Joseph; Cameron, Brent D.

    1998-05-01

    In this preliminary investigation, a two wavelength optical polarimetric system was used to show the potential of the approach to be used as an in vivo noninvasive glucose monitor. The dual wavelength method is shown as a means of overcoming two of them ore important problems with this approach for glucose monitoring, namely, motion artifact and the presence of other optically chiral components. The use of polarized light is based on the fact that the polarization vector of the light rotates when it interacts with an optically active material such as glucose. The amount of rotation of the light polarization is directly proportional to the optically active molecular concentration and to the sample path length. The end application of this system would be to estimate blood glucose concentrations indirectly by measuring the amount of rotation of the light beam's polarization state due to glucose variations within the aqueous humor of the anterior chamber of the eye. The system was evaluated in vitro in the presence of motion artifact and in combination with albumin, another interfering optical rotatory chemical component. It was shown that the dual wavelength approach has potential for overcoming these problems.

  4. Polarimetric imaging and radiometry in shallow waters

    NASA Astrophysics Data System (ADS)

    Tonizzo, Alberto; Gilerson, Alexander; Carrizo, Carlos; Israel, Jean-Paul; Ahmed, Sam

    2012-06-01

    Imaging in scattering media with the purpose of object identification has always been a challenging task. In the ocean, and especially in coastal areas, the situation is one of the worst: absorption and scattering by suspended and dissolved particles take away most of the information and blur the image of the target to be identified. In addition, one has also to take into account the variability of the bottom which, being close to the surface, plays an important role in the resulting integrated light field. Our goal in this study is to gain insight into the effects of the variable environments on the complex polarized underwater realm. We analyze the polarized tridimensional underwater environment. The instruments deployed were an underwater hyperspectral and multi-angular polarimeter, whose accuracy and exactness of results have been previously validated by the means of different radiative transfer calculations; and a green band full-Stokes polarimetric video camera, enclosed in a custom made underwater housing. The results presented here were collected during the first field deployment of the imaging camera. An in-situ validation of the camera with the polarimeter has been obtained and the results have been used to validate the values of the Stokes elements in the images, both for the water column itself and for the underlying bottom.

  5. Polarimetric Radar Observations of Hail Formation.

    NASA Astrophysics Data System (ADS)

    Kennedy, Patrick C.; Rutledge, Steven A.; Petersen, Walter A.; Bringi, V. N.

    2001-08-01

    Analyses are made of the evolution of selected polarimetric radar data fields during periods immediately preceding the onset of near-surface hail indicators [high reflectivity and low differential reflectivity (Zdr)] in two nonsupercellular northeastern Colorado hailstorms. The primary data were obtained from the 11-cm-wavelength, dual-polarization Colorado State University (CSU)-University of Chicago and Illinois State Water Survey radar. In one of the storms, dual-Doppler wind field syntheses were available using additional velocity data collected by the CSU Pawnee S-band radar. In both events, linear depolarization ratio (LDR) values exceeding 25 dB began to appear in the right flank of the 50-dBZ echo core region, within the 0° to 20°C environmental temperature range, approximately 10 minutes prior to the onset of hail at the surface. Scattering calculations suggest that the LDR enhancement may have been caused by an increasing water fraction within the growing hailstones (spongy hail), or the development of a liquid water coat under wet growth conditions. Vertical structure of the Zdr fields was also examined. As hypothesized by Conway and Zrni, it was found that the distinctness of the positive Zdr column associated with supercooled raindrops and incompletely frozen particles above the 0°C height varies from storm to storm.

  6. Estimating vegetation biomass using synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Baronti, Stefano; Luciani, S.; Paloscia, Simonetta; Schiavon, G.; Sigismondi, S.; Solimini, Domenico

    1994-12-01

    A significant experiment for evaluating the potential of Synthetic Aperture Radar (SAR) in monitoring soil and vegetation parameters is being carried out on an agricultural area located in Central Italy. The site has been imaged in 1991 by NASA/JPL AIRSAR during the MAC-91 Campaign and subsequently by ESA/ERS-1 and NASDA JERS-1 in 1992. The sensitivity to vegetation biomass of backscattering coefficient measured by ERS-1 and JERS-1 radars is discussed and compared with the best results achieved using the multifrequency polarimetric AIRSAR data.

  7. On the calibration of polarimetric Thomson scattering by Raman polarimetry

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Pasqualotto, R.

    2015-12-01

    Polarimetric Thomson scattering (TS) is an alternative method for the analysis of Thomson scattering spectra in which the plasma temperature T e is determined from the depolarization of the TS radiation. This is a relativistic effect and therefore the technique is suitable only for very hot plasmas (T e  >  10 keV) such as those of ITER. The practical implementation of polarimetric TS requires a method to calibrate the polarimetric response of the collection optics carrying the TS light to the detection system, and in particular to measure the additional depolarization of the TS radiation introduced by the plasma-exposed first mirror. Rotational Raman scattering of laser light from diatomic gases such as H2, D2, N2 and O2 can provide a radiation source of predictable intensity and polarization state from a well-defined volume inside the vacuum vessel and is therefore suitable for these calibrations. In this paper we discuss Raman polarimetry as a technique for the calibration of a hypothetical polarimetric TS system operating in the same conditions of the ITER core TS system and suggest two calibration methods for the measurement of the additional depolarization introduced by the plasma-exposed first mirror, and in general for calibrating the polarimetric response of the detection system.

  8. Observations on the polarimetric imagery collection experiment database

    NASA Astrophysics Data System (ADS)

    Woolley, Mark; Michalson, Jacob; Romano, Joao

    2011-10-01

    The Spectral and Polarimetric Imagery Collection Experiment (SPICE) is an ongoing collaborative effort that commenced in February 2010 between the US Army ARDEC and Army Research Laboratory (ARL). SPICE is focused on the collection of mid-wave and long-wave infrared imagery using hyperspectral, polarimetric, and broadband sensors. The overall objective of SPICE is to collect a comprehensive database of the different modalities spanning multiple years to capture sensor performance encompassing a wide variety of meteorological (MET) conditions, diurnal, and seasonal changes inherent to Picatinny's northern New Jersey location. Utilizing the Precision Armament Laboratory (PAL) tower at Picatinny Arsenal, the sensors are autonomously collecting the desired data around the clock at multiple ranges containing surrogate 2S3 Self-Propelled Howitzer targets positioned at different orientations in an open woodland field. This database allows for: 1) Understanding of signature variability under adverse weather conditions; 2) Development of robust algorithms; 3) Development of new sensors; 4) Evaluation of polarimetric technology; and 5) Evaluation of fusing the different sensor modalities. In this paper, we will revisit the SPICE data collection objectives and the sensors deployed. We will present, in a statistical sense, the integrity of the data in the long-wave infrared (LWIR) polarimetric database collected from February through September 2010 and issues and lessons learned associated with a fully autonomous, around the clock data collection. We will also demonstrate sample LWIR polarimetric imagery and the performance of the Stokes parameters under adverse weather conditions.

  9. Polarimetric Ground Based Interferometric Radar for Surface Deformation Mapping

    NASA Astrophysics Data System (ADS)

    Legarsky, J. J.; Gomez, F. G.; Rosenblad, B.; Loehr, E.; Deng, H.; Held, B.; Jenkins, W.

    2011-12-01

    Ground based interferometric radar (GBIR) measurements of surface deformation at sub-millimeter sensitivity may be desirable for a number of earth science applications including terrain mapping and monitoring of landslide movements. Through University of Missouri (MU) led efforts, a portable polarimetric GBIR has been developed for surface deformation mapping. Fully polarimetric capabilities allow the application of polarimetric interferometry, scatterer decomposition, and other advanced polarimetric methods. Using open literature techniques, polarimetric calibration and absolute radiometric calibration using known targets may be performed. The MU GBIR radiates electromagnetic waves at a number of free space wavelengths including C-band approximately 5.7 cm and Ku-band about 1.8 cm. The initial mechanical deployment setup time is typically about 10 minutes. For image formation, the MU GBIR employs azimuth scanning, which may collect data for a single pass interferogram in 20 seconds for a 180 degree azimuth sweep. Initial inteferograms may be formed at the deployment site in near real time. Moreover, the MU GBIR can be removed and re-positioned at the same point with relatively high (geodetic-grade) precision. A number of field experiments have been performed at various sites using the system. Demonstration of millimeter and better sensitivity to deformation over the course of a day of data collects has been performed at a test site using the MU GBIR. Study results and further development progress will be presented. This project is sponsored by a grant from the National Science Foundation.

  10. Characterization of L-band synthetic aperture radar (SAR) backscatter from floating and grounded thermokarst lake ice in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Engram, M.; Anthony, K. W.; Meyer, F. J.; Grosse, G.

    2013-11-01

    Radar remote sensing is a well-established method to discriminate lakes retaining liquid-phase water beneath winter ice cover from those that do not. L-band (23.6 cm wavelength) airborne radar showed great promise in the 1970s, but spaceborne synthetic aperture radar (SAR) studies have focused on C-band (5.6 cm) SAR to classify lake ice with no further attention to L-band SAR for this purpose. Here, we examined calibrated L-band single- and quadrature-polarized SAR returns from floating and grounded lake ice in two regions of Alaska: the northern Seward Peninsula (NSP) where methane ebullition is common in lakes and the Arctic Coastal Plain (ACP) where ebullition is relatively rare. We found average backscatter intensities of -13 dB and -16 dB for late winter floating ice on the NSP and ACP, respectively, and -19 dB for grounded ice in both regions. Polarimetric analysis revealed that the mechanism of L-band SAR backscatter from floating ice is primarily roughness at the ice-water interface. L-band SAR showed less contrast between floating and grounded lake ice than C-band; however, since L-band is sensitive to ebullition bubbles trapped by lake ice (bubbles increase backscatter), this study helps elucidate potential confounding factors of grounded ice in methane studies using SAR.

  11. The classification of ambiguity in polarimetric reconstruction of coronal mass ejection

    SciTech Connect

    Dai, Xinghua; Wang, Huaning; Huang, Xin; Du, Zhanle; He, Han

    2014-01-10

    The Thomson scattering theory indicates that there exist explicit and implicit ambiguities in polarimetric analyses of coronal mass ejection (CME) observations. We suggest a classification for these ambiguities in CME reconstruction. Three samples, including double explicit, mixed, and double implicit ambiguity, are shown with the polarimetric analyses of STEREO CME observations. These samples demonstrate that this classification is helpful for improving polarimetric reconstruction.

  12. The use of polarimetric and interferometric SAR data in floodplain mapping

    NASA Technical Reports Server (NTRS)

    Zyl, J. J. van; Kim, Y.

    2003-01-01

    Recent advances in polarimetric SAR show promise for augmenting the capability of traditional interferometric SAR. In particular, a polarimetric topography technique provides useful slope information, and polarimetric interferometry may be used to decompose the response into vegetation and ground surface contributions.

  13. Cross-calibration between airborne SAR sensors

    NASA Technical Reports Server (NTRS)

    Zink, Manfred; Olivier, Philippe; Freeman, Anthony

    1993-01-01

    As Synthetic Aperture Radar (SAR) system performance and experience in SAR signature evaluation increase, quantitative analysis becomes more and more important. Such analyses require an absolute radiometric calibration of the complete SAR system. To keep the expenditure on calibration of future multichannel and multisensor remote sensing systems (e.g., X-SAR/SIR-C) within a tolerable level, data from different tracks and different sensors (channels) must be cross calibrated. The 1989 joint E-SAR/DC-8 SAR calibration campaign gave a first opportunity for such an experiment, including cross sensor and cross track calibration. A basic requirement for successful cross calibration is the stability of the SAR systems. The calibration parameters derived from different tracks and the polarimetric properties of the uncalibrated data are used to describe this stability. Quality criteria for a successful cross calibration are the agreement of alpha degree values and the consistency of radar cross sections of equally sized corner reflectors. Channel imbalance and cross talk provide additional quality in case of the polarimetric DC-8 SAR.

  14. A new polarimetric active radar calibrator and calibration technique

    NASA Astrophysics Data System (ADS)

    Tang, Jianguo; Xu, Xiaojian

    2015-10-01

    Polarimetric active radar calibrator (PARC) is one of the most important calibrators with high radar cross section (RCS) for polarimetry measurement. In this paper, a new double-antenna polarimetric active radar calibrator (DPARC) is proposed, which consists of two rotatable antennas with wideband electromagnetic polarization filters (EMPF) to achieve lower cross-polarization for transmission and reception. With two antennas which are rotatable around the radar line of sight (LOS), the DPARC provides a variety of standard polarimetric scattering matrices (PSM) through the rotation combination of receiving and transmitting polarization, which are useful for polarimatric calibration in different applications. In addition, a technique based on Fourier analysis is proposed for calibration processing. Numerical simulation results are presented to demonstrate the superior performance of the proposed DPARC and processing technique.

  15. Radiative transfer theory for polarimetric remote sensing of pine forest

    NASA Technical Reports Server (NTRS)

    Hsu, C. C.; Han, H. C.; Shin, Robert T.; Kong, Jin AU; Beaudoin, A.; Letoan, T.

    1992-01-01

    The radiative transfer theory is applied to interpret polarimetric radar backscatter from pine forest with clustered vegetation structures. To take into account the clustered structures with the radiative transfer theory, the scattering function of each cluster is calculated by incorporating the phase interference of scattered fields from each component. Subsequently, the resulting phase matrix is used in the radiative transfer equations to evaluate the polarimetric backscattering coefficients from random medium layers embedded with vegetation clusters. Upon including the multi-scale structures, namely, trunks, primary and secondary branches, as well as needles, we interpret and simulate the polarimetric radar responses from pine forest for different frequencies and looking angles. The preliminary results are shown to be in good agreement with the measured backscattering coefficients at the Landes maritime pine forest during the MAESTRO-1 experiment.

  16. Narrow band 3 × 3 Mueller polarimetric endoscopy

    PubMed Central

    Qi, Ji; Ye, Menglong; Singh, Mohan; Clancy, Neil T.; Elson, Daniel S.

    2013-01-01

    Mueller matrix polarimetric imaging has shown potential in tissue diagnosis but is challenging to implement endoscopically. In this work, a narrow band 3 × 3 Mueller matrix polarimetric endoscope was designed by rotating the endoscope to generate 0°, 45° and 90° linearly polarized illumination and positioning a rotating filter wheel in front of the camera containing three polarisers to permit polarization state analysis for backscattered light. The system was validated with a rotating linear polarizer and a diffuse reflection target. Initial measurements of 3 × 3 Mueller matrices on a rat are demonstrated, followed by matrix decomposition into the depolarization and retardance matrices for further analysis. Our work shows the feasibility of implementing polarimetric imaging in a rigid endoscope conveniently and economically in order to reveal diagnostic information. PMID:24298405

  17. Variable waveplate-based polarimeter for polarimetric metrology

    NASA Astrophysics Data System (ADS)

    Peinado, Alba; Lizana, Angel; Vidal, Josep; Iemmi, Claudio; Márquez, Andrés; Moreno, Ignacio; Campos, Juan

    2009-06-01

    Polarimetry is an optical technique currently used in many research fields as biomedicine, polarimetric metrology or material characterization, where the knowledge of the state of polarization of light beams and the polarizing properties of polarizing samples is required. As a consequence, in such as applications it is necessary to use polarimeters which by means of radiomentric measurements, lead to the obtaining of some important polarimetric information. As is known, polarimeters include a state of polarization detector (PSD), which is typically formed by combinations of waveplates and polarizers. Then, intensity measurements corresponding to the projection of the analyzed state of polarization upon different configurations of the PSD used, leads to the determination of the polarimetric properties of light beams. Here, we have studied and optimized a polarimeter based on PSD system containing two electronically variable retardance waveplates. The variable waveplates are based on the Liquid Crystal Display technology, allowing the implementation of a complete polarimeter without mechanical movements.

  18. Radiative transfer theory for polarimetric remote sensing of pine forest

    NASA Technical Reports Server (NTRS)

    Hsu, C. C.; Han, H. C.; Shin, R. T.; Kong, J. A.; Beaudoin, A.; Le Toan, T.

    1992-01-01

    The radiative transfer theory is applied to interpret polarimetric radar backscatter from pine forest with clustered vegetation structures. The scattering function of each cluster is calculated by incorporating the phase interference of scattered fields from each component. The resulting phase matrix is used in the radiative transfer equations to evaluate the polarimetric backscattering coefficients from random medium layers embedded with vegetation clusters. Upon including multiscale structures (trunks, primary and secondary branches, and needles), polarimetric radar responses from pine forest for different frequencies and looking angles are interpreted and simulated. Preliminary results are shown to be in good agreement with the measured backscattering coefficients at the Landes maritime pine forest during the MAESTRO-1 experiment.

  19. Detection of land degradation with polarimetric SAR

    NASA Technical Reports Server (NTRS)

    Ray, Terrill W.; Farr, Tom G.; Van Zyl, Jakob J.

    1992-01-01

    Multispectral radar polarimeter data were collected over the Manix Basin Area of the Mojave desert using an airborne SAR. An analysis of the data reveals unusual polarization responses which are attributed to the formation of wind ripples on the surfaces of fields that have been abandoned for more than 5 years. This hypothesis has been confirmed through field observations, and a second-order perturbation model is shown to effectively model the polarization responses. The results demonstrate the usefulness of remote sensing techniques for the study of land degradation at synoptic scales.

  20. Synthetic fuels

    SciTech Connect

    Sammons, V.O.

    1980-01-01

    This guide is designed for those who wish to learn more about the science and technology of synthetic fuels by reviewing materials in the collections of the Library of Congress. This is not a comprehensive bibliography, it is designed to put the reader on target. Subject headings used by the Library of Congress under which books on synthetic fuels can be located are: oil-shale industry; oil-shales; shale oils; synthetic fuels; synthetic fuels industry; coal gasification; coal liquefaction; fossil fuels; hydrogen as fuel; oil sands; petroleum, synthesis gas; biomass energy; pyrolysis; and thermal oil recovery. Basic texts, handbooks, government publications, journals, etc. were included. (DP)

  1. Polarimetric Remote Sensing of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Hasekamp, O. P.; Stap, A.; di Noia, A.; Rietjens, J.; Smit, M.; van Harten, G.; Snik, F.

    2014-12-01

    To reduce the large uncertainty on the aerosol effects on cloud formation and climate, accurate satellite measurements of aerosol optical properties (optical thickness, single scattering albedo, phase function) and microphysical properties (size distribution, refractive index, shape) are essential. Satellite instruments that perform multi-angle photopolarimetric measurements have the capability to provide these aerosol properties with sufficient accuracy. The only satellite instrument that provided a multi-year data set of multi-angle photopolarimetric measurements is the POLDER-3 instrument onboard the PARASOL microsatellite that operated between 2005-2013. PARASOL provides measurements of a ground scene under (up to) 16 viewing geometries in 9 spectral bands (3 for polarization). In order to make full use of the capability of PARASOL measurements of intensity and polarization properties of reflected light at multiple viewing angles and multiple wavelengths, we developed a retrieval algorithm that considers a continuous parameter space for aerosol microphysical properties (size distribution and refractive index) and properly accounts for land or ocean reflection by retrieving land and ocean parameters simultaneously with aerosol properties. Here, we present the key aspects of our PARASOL retrievals (inverse method, forward model, information content, cloud screening, computational aspects) as well as a validation of retrieved aerosol properties with ground-based measurements of the AERONET network. Also, we discuss required improvements for the next generation of polarimetric instruments dedicated to aerosol remote sensing and introduce a new spectropolarimetric instrument named SPEX. We will demonstrate the capabilities of SPEX based on ground based field measurements and characterization measurements in the labatory.

  2. POLARIMETRIC OBSERVATIONS OF {sigma} ORIONIS E

    SciTech Connect

    Carciofi, A. C.; Faes, D. M.; Townsend, R. H. D.; Bjorkman, J. E.

    2013-03-20

    Some massive stars possess strong magnetic fields that confine plasma in the circumstellar environment. These magnetospheres have been studied spectroscopically, photometrically, and, more recently, interferometrically. Here we report on the first firm detection of a magnetosphere in continuum linear polarization, as a result of monitoring {sigma} Ori E at the Pico dos Dias Observatory. The non-zero intrinsic polarization indicates an asymmetric structure whose minor elongation axis is oriented 150. Degree-Sign 0 east of the celestial north. A modulation of the polarization was observed with a period of half of the rotation period, which supports the theoretical prediction of the presence of two diametrally opposed, corotating blobs of gas. A phase lag of -0.085 was detected between the polarization minimum and the primary minimum of the light curve, suggestive of a complex shape of the plasma clouds. We present a preliminary analysis of the data with the Rigidly Rotating Magnetosphere model, which could not reproduce simultaneously the photometric and polarimetric data. A toy model comprising two spherical corotating blobs joined by a thin disk proved more successful in reproducing the polarization modulation. With this model we were able to determine that the total scattering mass of the thin disk is similar to the mass of the blobs (2M{sub b}/M{sub d} = 1.2) and that the blobs are rotating counterclockwise on the plane of the sky. This result shows that polarimetry can provide a diagnostic of the geometry of clouds, which will serve as an important constraint for improving the Rigidly Rotating Magnetosphere model.

  3. The X-ray polarimetric view of astrophysical black holes

    NASA Astrophysics Data System (ADS)

    Matt, Giorgio

    2016-07-01

    Our current X-ray view of astrophysical black holes is based on spectroscopic, imaging and timing analysis. In this talk I will discuss the importance of adding the polarimetric view. The geometry of the X-ray emitting corona, the distribution of accreting matter, the magnetic field in jets and even the space-time close to the event horizon can be probed by X-ray polarimetry. I will also discuss the observational perspectives in view of the X-ray polarimetric missions currently under study at NASA and ESA.

  4. Optimization of Polarimetric Contrast Enhancement Based on Fisher Criterion

    NASA Astrophysics Data System (ADS)

    Deng, Qiming; Chen, Jiong; Yang, Jian

    The optimization of polarimetric contrast enhancement (OPCE) is a widely used method for maximizing the received power ratio of a desired target versus an undesired target (clutter). In this letter, a new model of the OPCE is proposed based on the Fisher criterion. By introducing the well known two-class problem of linear discriminant analysis (LDA), the proposed model is to enlarge the normalized distance of mean value between the target and the clutter. In addition, a cross-iterative numerical method is proposed for solving the optimization with a quadratic constraint. Experimental results with the polarimetric SAR (POLSAR) data demonstrate the effectiveness of the proposed method.

  5. Two-Dimensional Synthetic-Aperture Radiometer

    NASA Technical Reports Server (NTRS)

    LeVine, David M.

    2010-01-01

    spatial resolution is most critical and (2) imaging airborne instruments that operate in this wavelength range and have adequate spatial resolution are difficult to build and will be needed in future experiments to validate approaches for remote sensing of soil moisture and ocean salinity. The two-dimensional instrument includes a rectangular array of patch antennas arranged in the form of a cross. The ESTAR uses analog correlation for one dimension, whereas the two-dimensional instrument uses digital correlation. In two dimensions, many more correlation pairs are needed and low-power digital correlators suitable for application in spaceborne remote sensing will help enable this technology. The two-dimensional instrument is dual-polarized and, with modification, capable of operating in a polarimetric mode. A flight test of the instrument took place in June 2003 and it participated in soil moisture experiments during the summers of 2003 and 2004.

  6. Automated Data Production for a Novel Airborne Multiangle Spectropolarimetric Imager (airmspi)

    NASA Astrophysics Data System (ADS)

    Jovanovic, V. M.; Bull, M.; Diner, D. J.; Geier, S.; Rheingans, B.

    2012-07-01

    A novel polarimetric imaging technique making use of rapid retardance modulation has been developed by JPL as a part of NASA's Instrument Incubator Program. It has been built into the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) under NASA's Airborne Instrument Technology Transition Program, and is aimed primarily at remote sensing of the amounts and microphysical properties of aerosols and clouds. AirMSPI includes an 8-band (355, 380, 445, 470, 555, 660, 865, 935 nm) pushbroom camera that measures polarization in a subset of the bands (470, 660, and 865 nm). The camera is mounted on a gimbal and acquires imagery in a configurable set of along-track viewing angles ranging between +67° and -67° relative to nadir. As a result, near simultaneous multi-angle, multi-spectral, and polarimetric measurements of the targeted areas at a spatial resolution ranging from 7 m to 20 m (depending on the viewing angle) can be derived. An automated data production system is being built to support high data acquisition rate in concert with co-registration and orthorectified mapping requirements. To date, a number of successful engineering checkout flights were conducted in October 2010, August-September 2011, and January 2012. Data products resulting from these flights will be presented.

  7. Automated Data Production For A Novel Airborne Multiangle Spectropolarimetric Imager (AIRMSPI)

    NASA Technical Reports Server (NTRS)

    Jovanovic, V .M.; Bull, M.; Diner, D. J.; Geier, S.; Rheingans, B.

    2012-01-01

    A novel polarimetric imaging technique making use of rapid retardance modulation has been developed by JPL as a part of NASA's Instrument Incubator Program. It has been built into the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) under NASA's Airborne Instrument Technology Transition Program, and is aimed primarily at remote sensing of the amounts and microphysical properties of aerosols and clouds. AirMSPI includes an 8-band (355, 380, 445, 470, 555, 660, 865, 935 nm) pushbroom camera that measures polarization in a subset of the bands (470, 660, and 865 nm). The camera is mounted on a gimbal and acquires imagery in a configurable set of along-track viewing angles ranging between +67 deg and -67 deg relative to nadir. As a result, near simultaneous multi-angle, multi-spectral, and polarimetric measurements of the targeted areas at a spatial resolution ranging from 7 m to 20 m (depending on the viewing angle) can be derived. An automated data production system is being built to support high data acquisition rate in concert with co-registration and orthorectified mapping requirements. To date, a number of successful engineering checkout flights were conducted in October 2010, August-September 2011, and January 2012. Data products resulting from these flights will be presented.

  8. Determination of the Wind-Velocity Vector Above the Ocean Surface Using the Image Spectrum of a Polarimetric Radar with Synthesized Aperture

    NASA Astrophysics Data System (ADS)

    Panfilova, M. A.; Kanevsky, M. B.; Balandina, G. N.; Karaev, V. Yu.; Stoffelen, A.; Verkhoev, A.

    2015-09-01

    We propose a new method for determining the wind-velocity vector above the ocean surface using the data of a polarimetric synthetic aperture radar. The preliminary calculations show that for wind waves, the location of the maximum in the radar image is unambiguously related to the wind velocity, whereas the wind direction is retrieved with an uncertainty of 180°, which is related to the central symmetry of the image spectrum. To eliminate the ambiguity when determining the wind direction, a criterion based on the information on the sign of the coefficient of correlation among the complex signals on the co- and cross polarizations is used. It is shown that using the polarimetric radar, it is theoretically possible to obtain information on both the wind velocity and direction without exact radar calibration.

  9. New cases of unusual polarimetric behavior in asteroids

    NASA Astrophysics Data System (ADS)

    Gil-Hutton, R.; Mesa, V.; Cellino, A.; Bendjoya, P.; Peñaloza, L.; Lovos, F.

    2008-04-01

    Aims: Results of different polarimetric campaigns at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina are presented. The aim of these campaigns was to search for objects exhibiting anomalous polarimetric properties, similar to those shown by the Ld-class asteroid (234) Barbara, among members of the same or similar taxonomic classes. Methods: The data have been obtained with Torino and CASPROF polarimeters at the 2.15 m telescope. The Torino polarimeter is an instrument that allows simultaneous measurement of polarization in five different bands, and CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The campaigns began in 2005, and we found four new asteroids with Barbara-like polarimetric properties: the L-class objects (172) Baucis, (236) Honoria and (980) Anacostia, and the K-class asteroid (679) Pax. The polarimetric properties of the phase-polarization curves of these objects may be produced by a mixture of high- and low-albedo particles in their regolith as a result of the fragmentation of a substrate that is spectrally analog to the CO3/CV3 chondrites. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  10. Polarimetric Signatures of Sea Ice. Part 1; Theoretical Model

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.

    1995-01-01

    Physical, structural, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarimetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies for interpretation of sea ice polarimetric signatures.

  11. Conceptual design of a polarimetric Thomson scattering diagnostic in ITER

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Bassan, M.; Orsitto, F. P.; Pasqualotto, R.; Kempenaars, M.; Flanagan, J.

    2016-01-01

    Polarimetric Thomson scattering (TS) is a novel diagnostic technique proposed as an alternative to conventional (spectral) TS, for the measurement of the electron temperature Te and density ne in very hot fusion plasmas. Contrary to spectral TS, which is based on the reconstruction of the Doppler broadened frequency spectrum, in polarimetric TS Te is determined from the depolarization of the scattered radiation. The technique is suitable for ITER, where it is expected to be competitive with conventional spectral TS for measurements in the highest Te range, specially in backward-like conditions with the scattering angle 90° ll θ <= 180°. In this paper we consider a hypothetical polarimetric TS diagnostic for ITER and evaluate its performance for the θ = 145° scattering condition typical of the core TS system and also for a different scattering geometry in which, using a tangential laser beam, the central region of the ITER plasma can be observed under a scattering angle θ ~ 75°. In both cases we calculate the expected errors on the measured Te and ne that can be obtained with a simple, two-channel polarimeter, and taking into account that only a fraction of the TS wavelength spectrum is detected. In both cases the expected performances are compared with those of the conventional spectral core TS diagnostic to determine the plasma conditions in which the polarimetric technique is more advantageous. A measurement of the depolarization effect of the TS radiation using the JET High Resolution TS system of JET is also discussed.

  12. Calibration methodology and performance characterization of a polarimetric hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Holder, Joel G.; Martin, Jacob A.; Pitz, Jeremey; Pezzaniti, Joseph L.; Gross, Kevin C.

    2014-05-01

    Polarimetric hyperspectral imaging (P-HSI) has the potential to improve target detection, material identification, and background characterization over conventional hyperspectral imaging and polarimetric imaging. To fully exploit the spectro-polarimetric signatures captured by such an instrument, a careful calibration process is required to remove the spectrally- and polarimetrically-dependent system response (gain). Calibration of instruments operating in the long-wave infrared (LWIR, 8μm to 12 μm) is further complicated by the polarized spectral radiation generated within the instrument (offset). This paper presents a calibration methodology developed for a LWIR Telops Hyper-Cam modified for polarimetry by replacing the entrance window with a rotatable holographic wire-grid polarizer (4000 line/mm, ZnSe substrate, 350:1 extinction ratio). A standard Fourier-transform spectrometer (FTS) spectro-radiometric calibration is modified to include a Mueller-matrix approach to account for polarized transmission through and polarized selfemission from each optical interface. It is demonstrated that under the ideal polarizer assumption, two distinct blackbody measurements at polarizer angles of 0°, 45°, 90°, and 135° are sufficient to calibrate the system for apparent degree-of-linear-polarization (DoLP) measurements. Noise-equivalent s1, s2, and DoLP are quantified using a wide-area blackbody. A polarization-state generator is used to determine the Mueller deviation matrix. Finally, a realistic scene involving buildings, cars, sky radiance, and natural vegetation is presented.

  13. Polarimetric scattering from layered media with multiple species of scatterers

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Kong, J. A.; Hsu, C. C.; Tassoudji, M. A.; Shin, R. T.

    1995-01-01

    Geophysical media are usually heterogeneous and contain multiple species of scatterers. In this paper a model is presented to calculate effective permittivities and polarimetric backscattering coefficients of multispecies-layered media. The same physical description is consistently used in the derivation of both permittivities and scattering coefficients. The strong permittivity fluctuation theory is extended to account for the multiple species of scatterers with a general ellipsoidal shape whose orientations are randomly distributed. Under the distorted Born approximation, polarimetric scattering coefficients are obtained. These calculations are applicable to the special cases of spheroidal and spherical scatterers. The model is used to study effects of scatterer shapes and multispecies mixtures on polarimetric signatures of heterogeneous media. The multispecies model accounts for moisture content in scattering media such as snowpack in an ice sheet. The results indicate a high sensitivity of backscatter to moisture with a stronger dependence for drier snow and ice grain size is important to the backscatter. For frost-covered saline ice, model results for bare ice are compared with measured data at C band and then the frost flower formation is simulated with a layer of fanlike ice crystals including brine infiltration over a rough interface. The results with the frost cover suggest a significant increase in scattering coefficients and a polarimetric signature closer to isotropic characteristics compared to the thin saline ice case.

  14. ARMOR Dual-Polarimetric Radar Observations of Tornadic Debris Signatures

    NASA Technical Reports Server (NTRS)

    Petersen, W. A,; Carey, L. D.; Knupp, K. R.; Schultz, C.; Johnson, E.

    2008-01-01

    During the Super-Tuesday tornado outbreak of 5-6 February 2008, two EF-4 tornadoes occurred in Northern Alabama within 75 km range of the University of Alabama in Huntsville (UAH) Advanced Radar for Meteorological and Operational Research (ARMOR, C-band dual-polarimetric). This study will present an analysis of ARMOR radar-indicated dual-polarimetric tornadic debris signatures. The debris signatures were associated with spatially-confined large decreases in the copolar correlation coefficient (rho(hv)hv) that were embedded within broader mesocyclone "hook" signatures. These debris signatures were most obviously manifest during the F-3 to F-4 intensity stages of the tornado(s) and extended to altitudes of approximately 3 km. The rho(hv) signatures of the tornadic debris were the most easily distinguished relative to other polarimetric and radial velocity parameters (e.g., associated with large hail and/or the incipient mesocyclone). Based on our analysis, and consistent with the small number of studies found in the literature, we conclude that dual-polarimetric radar data offer at least the possibility for enhancing specificity and confidence in the process of issuing tornado warnings based only on radar detection of threatening circulation features.

  15. Airborne Ku-Band Polarimetric Radar Remote Sensing of Terrestrial Snow Cover

    NASA Technical Reports Server (NTRS)

    Yueh, Simon; Cline, Donald; Elder, Kelly

    2008-01-01

    Preliminary analyses of the POLSCAT data acquired from the CLPX-II in winter 2006-2007 are described in this paper. The data showed the response of the Ku-band radarechoes to snowpack changes for various types of background vegetation. We observed about 0.2 to 0.4 dB increases in backscatter for every 1 cm SWE accumulation for sage brush and agricultural fields. The co-polarized VV and HH radar resposnes are similar, while the corss-polarized (VH or HV) echoes showedgreater resposne to the change of SWE. The data also showed the impact of surface hoar growth and freeze/thaw cycles, whichcreated large snow grain sizes and ice lenses, respectively, and consequently increased the radar signals by a few dBs.

  16. UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.

    2009-01-01

    The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.

  17. Material classification based on multi-band polarimetric images fusion

    NASA Astrophysics Data System (ADS)

    Zhao, Yongqiang; Pan, Quan; Zhang, Hongcai

    2006-05-01

    Polarization imparted by surface reflections contains unique and discriminatory signatures which may augment spectral target-detection techniques. With the development of multi-band polarization imaging technology, it is becoming more and more important on how to integrate polarimetric, spatial and spectral information to improve target discrimination. In this study, investigations were performed on combining multi-band polarimetric images through false color mapping and wavelet integrated image fusion method. The objective of this effort was to extend the investigation of the use of polarized light to target detection and material classification. As there is great variation in polarization in and between each of the bandpasses, and this variation is comparable to the magnitude of the variation intensity. At the same time, the contrast in polarization is greater than for intensity, and that polarization contrast increases as intensity contrast decreases. It is also pointed out that chromaticity can be used to make targets stand out more clearly against background, and material can be divided into conductor and nonconductor through polarization information. So, through false color mapping, the difference part of polarimetric information between each of the bandpasses and common part of polarimetric information in each of the bandpasses are combined, in the resulting image the conductor and nonconductor are assigned different color. Then panchromatic polarimetric images are fused with resulting image through wavelet decomposition, the final fused image have more detail information and more easy identification. This study demonstrated, using digital image data collected by imaging spectropolarimeter, multi-band imaging polarimetry is likely to provide an advantage in target detection and material classification.

  18. Lightning Initiation Forecasting: An Operational Dual-Polarimetric Radar Technique

    NASA Technical Reports Server (NTRS)

    Woodard, Crystal J.; Carey, L. D.; Petersen, W. A.; Roeder, W. P.

    2011-01-01

    The objective of this NASA MSFC and NOAA CSTAR funded study is to develop and test operational forecast algorithms for the prediction of lightning initiation utilizing the C-band dual-polarimetric radar, UAHuntsville's Advanced Radar for Meteorological and Operational Research (ARMOR). Although there is a rich research history of radar signatures associated with lightning initiation, few studies have utilized dual-polarimetric radar signatures (e.g., Z(sub dr) columns) and capabilities (e.g., fuzzy-logic particle identification [PID] of precipitation ice) in an operational algorithm for first flash forecasting. The specific goal of this study is to develop and test polarimetric techniques that enhance the performance of current operational radar reflectivity based first flash algorithms. Improving lightning watch and warning performance will positively impact personnel safety in both work and leisure environments. Advanced warnings can provide space shuttle launch managers time to respond appropriately to secure equipment and personnel, while they can also provide appropriate warnings for spectators and players of leisure sporting events to seek safe shelter. Through the analysis of eight case dates, consisting of 35 pulse-type thunderstorms and 20 non-thunderstorm case studies, lightning initiation forecast techniques were developed and tested. The hypothesis is that the additional dual-polarimetric information could potentially reduce false alarms while maintaining high probability of detection and increasing lead-time for the prediction of the first lightning flash relative to reflectivity-only based techniques. To test the hypothesis, various physically-based techniques using polarimetric variables and/or PID categories, which are strongly correlated to initial storm electrification (e.g., large precipitation ice production via drop freezing), were benchmarked against the operational reflectivity-only based approaches to find the best compromise between

  19. Artificial intelligence techniques for clutter identification with polarimetric radar signatures

    NASA Astrophysics Data System (ADS)

    Islam, Tanvir; Rico-Ramirez, Miguel A.; Han, Dawei; Srivastava, Prashant K.

    2012-06-01

    The use of different artificial intelligence (AI) techniques for clutter signals identification in the context of radar based precipitation estimation is presented. The clutter signals considered are because of ground clutter, sea clutter and anomalous propagation whereas the explored AI techniques include the support vector machine (SVM), the artificial neural network (ANN), the decision tree (DT), and the nearest neighbour (NN) systems. Eight different radar measurement combinations comprising of various polarimetric spectral signatures — the reflectivity (ZH), differential reflectivity (ZDR), differential propagation phase (ΦDP), cross-correlation coefficient (ρHV), velocity (V) and spectral width (W) from a C-band polarimetric radar are taken into account as input vectors to the AI systems. The results reveal that all four AI classifiers can identify the clutter echoes with around 98-99% accuracy when all radar input signatures are used. As standalone input vectors, the polarimetric textures of the ΦDP and the ZDR have also demonstrated excellent skills distinguishing clutter echoes with an accuracy of 97-98% approximately. If no polarimetric signature is available, a combination of the texture of ZH, V and W representing typical measurements from a single-polarization Doppler radar may be used for clutter identification, but with a lower accuracy when compared to the use of polarimetric radar measurements. In contrast, the use of ZH or W alone is found less reliable for clutter classification. Among the AI techniques, the SVM has a slightly better score in terms of various clutter identification indicators as compared to the others. Conversely, the NN algorithm has shown a lower performance in identifying the clutter echoes correctly considering the standalone radar signatures as inputs. Despite this, the performance among the different AI techniques is comparable indicating the suitability of the developed systems, and this is further supported when

  20. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 1; AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1996-01-01

    This publication contains the summaries for the Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996. The main workshop is divided into two smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on March 4-6. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on March 6-8. The summaries for this workshop appear in Volume 2.

  1. MAPIR: An Airborne Polarmetric Imaging Radiometer in Support of Hydrologic Satellite Observations

    NASA Technical Reports Server (NTRS)

    Laymon, C.; Al-Hamdan, M.; Crosson, W.; Limaye, A.; McCracken, J.; Meyer, P.; Richeson, J.; Sims, W.; Srinivasan, K.; Varnevas, K.

    2010-01-01

    In this age of dwindling water resources and increasing demands, accurate estimation of water balance components at every scale is more critical to end users than ever before. Several near-term Earth science satellite missions are aimed at global hydrologic observations. The Marshall Airborne Polarimetric Imaging Radiometer (MAPIR) is a dual beam, dual angle polarimetric, scanning L band passive microwave radiometer system developed by the Observing Microwave Emissions for Geophysical Applications (OMEGA) team at MSFC to support algorithm development and validation efforts in support of these missions. MAPIR observes naturally-emitted radiation from the ground primarily for remote sensing of land surface brightness temperature from which we can retrieve soil moisture and possibly surface or water temperature and ocean salinity. MAPIR has achieved Technical Readiness Level 6 with flight heritage on two very different aircraft, the NASA P-3B, and a Piper Navajo.

  2. A three-component method for timely detection of land cover changes using polarimetric SAR images

    NASA Astrophysics Data System (ADS)

    Qi, Zhixin; Yeh, Anthony Gar-On; Li, Xia; Zhang, Xiaohu

    2015-09-01

    This study proposes a new three-component method for timely detection of land cover changes using polarimetric synthetic aperture radar (PolSAR) images. The three components are object-oriented image analysis (OOIA), change vector analysis (CVA), and post-classification comparison (PCC). First, two PolSAR images acquired over the same area at different dates are segmented hierarchically to delineate land parcels (image objects). Then, parcel-based CVA is performed with the coherency matrices of the PolSAR data to detect changed parcels. Finally, PCC based on a parcel-based classification algorithm integrating polarimetric decomposition, decision tree algorithms, and support vector machines is used to determine the type of change for the changed parcels. Compared with conventional PCC based on the widely used Wishart supervised classification, the three-component method achieves much higher accuracy for land cover change detection with PolSAR images. The contribution of each component is evaluated by excluding it from the method. The integration of OOIA in the method greatly reduces the false alarms caused by speckle noise in PolSAR images as well as improves the accuracy of PolSAR image classification. CVA contributes to the method by significantly reducing the effect of the classification errors on the change detection. The use of PCC in the method not only identifies different types of land cover change but also reduces the false alarms introduced by the change in the environment. The three-component method is validated in land development detection, which is important to many developing countries that are confronting a growing problem of unauthorized construction land expansion. The results show that the three-component method is effective in detecting land developments with PolSAR images.

  3. Image Enhancement and Speckle Reduction of Full Polarimetric SAR Data by Gaussian Markov Random Field

    NASA Astrophysics Data System (ADS)

    Mahdian, M.; Motagh, M.; Akbari, V.

    2013-09-01

    In recent years, the use of Polarimetric Synthetic Aperture Radar (PolSAR) data in different applications dramatically has been increased. In SAR imagery an interference phenomenon with random behavior exists which is called speckle noise. The interpretation of data encounters some troubles due to the presence of speckle which can be considered as a multiplicative noise affecting all coherent imaging systems. Indeed, speckle degrade radiometric resolution of PolSAR images, therefore it is needful to perform speckle filtering on the SAR data type. Markov Random Field (MRF) has proven to be a powerful method for drawing out eliciting contextual information from remotely sensed images. In the present paper, a probability density function (PDF), which is fitted well with the PolSAR data based on the goodness-of-fit test, is first obtained for the pixel-wise analysis. Then the contextual smoothing is achieved with the MRF method. This novel speckle reduction method combines an advanced statistical distribution with spatial contextual information for PolSAR data. These two parts of information are combined based on weighted summation of pixel-wise and contextual models. This approach not only preserves edge information in the images, but also improves signal-to-noise ratio of the results. The method maintains the mean value of original signal in the homogenous areas and preserves the edges of features in the heterogeneous regions. Experiments on real medium resolution ALOS data from Tehran, and also high resolution full polarimetric SAR data over the Oberpfaffenhofen test-site in Germany, demonstrate the effectiveness of the algorithm compared with well-known despeckling methods.

  4. Synthetic oils

    NASA Technical Reports Server (NTRS)

    Hatton, R. E.

    1973-01-01

    Synthetic lubricants are discussed by chemical class and their general strengths and weaknesses in terms of lubrication properties are analyzed. Comparative ratings are given for 14 chemical classes and are used as a guide for lubricant selection. The effects of chemical structure on the properties of the lubricant are described with special emphasis on thermal stability. The diversity of synthetic lubricants which is provided by the wide range of properties permits many applications, some of which are reported.

  5. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  6. Unsupervised polarimetric SAR urban area classification based on model-based decomposition with cross scattering

    NASA Astrophysics Data System (ADS)

    Xiang, Deliang; Tang, Tao; Ban, Yifang; Su, Yi; Kuang, Gangyao

    2016-06-01

    Since it has been validated that cross-polarized scattering (HV) is caused not only by vegetation but also by rotated dihedrals, in this study, we use rotated dihedral corner reflectors to form a cross scattering matrix and propose an extended four-component model-based decomposition method for PolSAR data over urban areas. Unlike other urban area decomposition techniques which need to discriminate the urban and natural areas before decomposition, this proposed method is applied on PolSAR image directly. The building orientation angle is considered in this scattering matrix, making it flexible and adaptive in the decomposition. Therefore, we can separate cross scattering of urban areas from the overall HV component. Further, the cross and helix scattering components are also compared. Then, using these decomposed scattering powers, the buildings and natural areas can be easily discriminated from each other using a simple unsupervised K-means classifier. Moreover, buildings aligned and not aligned along the radar flight direction can be also distinguished clearly. Spaceborne RADARSAT-2 and airborne AIRSAR full polarimetric SAR data are used to validate the performance of our proposed method. The cross scattering power of oriented buildings is generated, leading to a better decomposition result for urban areas with respect to other state-of-the-art urban decomposition techniques. The decomposed scattering powers significantly improve the classification accuracy for urban areas.

  7. Synthetic environments

    NASA Astrophysics Data System (ADS)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  8. Classification comparisons between dual-pol, compact polarimetric and quad-pol SAR imagery

    NASA Astrophysics Data System (ADS)

    Ainsworth, T. L.; Kelly, J. P.; Lee, J.-S.

    We present a study of the polarimetric information content of dual-pol imaging modes and dual-pol imaging extended by polarimetric scattering models. We compare Wishart classifications both among the partial polarimetric datasets and against the full quad-pol dataset. Our emphasis is the inter-comparisons between the classification results based on dual-pol modes, compact polarimetric modes and scattering model extensions of the compact polarimetric modes. We primarily consider novel dual-pol modes, e.g. transmitting a circular polarization and receiving horizontal and vertical polarizations, and the pseudo-quad-pol data derived from polarimetric scattering models based on dual-pol data. We show that the overall classification accuracy of the pseudo-quad-pol data is essential the same as the classification accuracy obtained directly employing the underlying dual-pol imagery.

  9. Synthetic Jets

    NASA Technical Reports Server (NTRS)

    Milanovic, Ivana M.

    2003-01-01

    Current investigation of synthetic jets and synthetic jets in cross-flow examined the effects of orifice geometry and dimensions, momentum-flux ratio, cluster of orifices, pitch and yaw angles as well as streamwise development of the flow field. This comprehensive study provided much needed experimental information related to the various control strategies. The results of the current investigation on isolated and clustered synthetic jets with and without cross-flow will be further analyzed and documented in detail. Presentations at national conferences and publication of peer- reviewed journal articles are also expected. Projected publications will present both the mean and turbulent properties of the flow field, comparisons made with the data available in an open literature, as well as recommendations for the future work.

  10. Passive three-dimensional imaging using polarimetric diversity.

    PubMed

    Sadjadi, Firooz A

    2007-02-01

    The results of experiments in developing a method for extracting three-dimensional information from a scene by means of a polarimetric passive imaging sensor are summarized. This sensor provides a full Stokes vector at each sensor pixel location from which degree and angle of linear polarization are computed. The angle of linear polarization provides the azimuth angle of the surface normal vector. The depression angle of this surface normal vector is obtained in terms of the emitting object's index of refraction from the solution of an equation derived from Fresnel equations, Snell's law, and percent of linear polarization. Results of the application of this approach to simulated infrared polarimetric data are provided. PMID:17215928

  11. Validation of simulated hurricane drop size distributions using polarimetric radar

    NASA Astrophysics Data System (ADS)

    Brown, Bonnie R.; Bell, Michael M.; Frambach, Andrew J.

    2016-01-01

    Recent upgrades to the U.S. radar network now allow for polarimetric measurements of landfalling hurricanes, providing a new data set to validate cloud microphysical parameterizations used in tropical cyclone simulations. Polarimetric radar reflectivity and differential reflectivity simulated by the Weather Research and Forecasting model were compared with real radar observations from 2014 in Hurricanes Arthur and Ana. Six different microphysics parameterizations were tested that were able to capture the major features of both hurricanes, including accurate tracks, precipitation asymmetry, and the approximate intensity of the storms. A high correlation between simulated intensity and rainfall across schemes suggests an intimate link between the latent heating produced by the microphysics and the storm dynamics. Most of the parameterizations produced a higher frequency of larger raindrops than observed. The Thompson aerosol-aware bulk and explicit spectral bin microphysical schemes showed the best fidelity to the observations at a higher computational cost.

  12. Ensemble polarimetric SAR image classification based on contextual sparse representation

    NASA Astrophysics Data System (ADS)

    Zhang, Lamei; Wang, Xiao; Zou, Bin; Qiao, Zhijun

    2016-05-01

    Polarimetric SAR image interpretation has become one of the most interesting topics, in which the construction of the reasonable and effective technique of image classification is of key importance. Sparse representation represents the data using the most succinct sparse atoms of the over-complete dictionary and the advantages of sparse representation also have been confirmed in the field of PolSAR classification. However, it is not perfect, like the ordinary classifier, at different aspects. So ensemble learning is introduced to improve the issue, which makes a plurality of different learners training and obtained the integrated results by combining the individual learner to get more accurate and ideal learning results. Therefore, this paper presents a polarimetric SAR image classification method based on the ensemble learning of sparse representation to achieve the optimal classification.

  13. C-band polarimetric scatterometer for soil studies

    NASA Astrophysics Data System (ADS)

    D'Alessio, Angelo C.; Mongelli, Antonio; Notarnicola, Claudia; Paparella, Giuseppina; Posa, Francesco; Sabatelli, Vincenzo

    2003-03-01

    The aim of this study is to evaluate the performances of a polarimetric scatterometer. This sensor can measure the module of the electromagnetic backscattering matrix elements. The knowledge of this matrix permits the computation of all the possible polarisation combinations of transmitted and received signals through a Polarisation Synthesis approach. Scatterometer data are useful for monitoring a large number of soil physical parameters. In particular, the sensitivity of a C-band radar to different growing conditions of vegetation depends on the wave polarisation. As consequences, the possibility of acquiringi both polarisation components presents a great advantage in the vegetarian studies. In addition, this type of ground sensor can permit a fast coverage of the areas of interest. A first test of the polarimetric scatterometer has been performed over an asphalt surface, which has a well-known electromagnetic response. Moreover, a calibration procedure has been tested using both passive (Trihedral Corner Reflector, TCR) and active (Active Radar Calibrator, ARC) radar calibrator.

  14. New scheme for polarimetric glucose sensing without polarizers

    NASA Astrophysics Data System (ADS)

    Winkler, Amy M.; Bonnema, Garret T.; Barton, Jennifer K.

    2010-02-01

    Polarimetric glucose sensing is a promising method for noninvasive estimation of blood glucose concentration. Published methods of polarimetric glucose sensing generally rely on measuring the rotation of light as it traverses the aqueous humor of the eye. In this article, an interferometer is described that can detect polarization changes due to glucose without the use of polarization control or polarization analyzing elements. Without polarizers, this system is sensitive to optical activity, inherent to glucose, but minimally sensitive to linear retardance, inherent to the cornea. The underlying principle of the system was experimentally verified using spectral domain optical coherence tomography. A detection scheme involving amplitude modulation was simulated, demonstrating sensitivity to clinically relevant glucose concentrations and an acceptable error due to time varying linear birefringence of the cornea using Clarke Error Grid Analysis.

  15. The orbital inclination of Cygnus XR-1 measured polarimetrically

    SciTech Connect

    Dolan, J.F.; Tapia, S.; Steward Observatory, Tucson, AZ )

    1989-09-01

    The X-ray binary Cyg XR-1/HDE 226868 was observed polarimetrically over one orbit at three different optical wavelengths. The standard theory of Brown, et al. (1978) is used to derive an orbital inclination i = 62 deg (+5 deg, -37 deg), where the error is the 90-percent-confidence interval derived by the method of Simmons, et al. (1980). The value of the orbital inclination is significantly lower than values based on polarimetric observations. The difference is a result of the observational protocols used. A bias toward larger values of the inclination caused by the tidal distortion of the primary is still found in the present result. The inclination derived corresponds to a mass of the compact component of 6.3 solar masses, above the maximum mass of any degenerate configuration consistent with general relativity except a black hole. 37 refs.

  16. Measurement of Pancharatnam's phase by robust interferometric and polarimetric methods

    SciTech Connect

    Loredo, J. C.; Ortiz, O.; De Zela, F.; Weingaertner, R.

    2009-07-15

    We report on theoretical calculations and experimental observations of Pancharatnam's phase originating from arbitrary SU(2) transformations applied to polarization states of light. We have implemented polarimetric and interferometric methods, which allow us to cover the full Poincare sphere. As a distinctive feature, our interferometric array is robust against mechanical and thermal disturbances, showing that the polarimetric method is not inherently superior over the interferometric one, as previously assumed. Our strategy effectively amounts to feeding an interferometer with two copropagating beams that are orthogonally polarized with respect to each other. It can be applied to different types of standard arrays, such as a Michelson, a Sagnac, or a Mach-Zehnder interferometer. We exhibit the versatility of our arrangement by performing measurements of Pancharatnam's phases and fringe visibilities that closely fit the theoretical predictions. Our approach can be easily extended to deal with mixed states and to study decoherence effects.

  17. Integrated quantitative fractal polarimetric analysis of monolayer lung cancer cells

    NASA Astrophysics Data System (ADS)

    Shrestha, Suman; Zhang, Lin; Quang, Tri; Farrahi, Tannaz; Narayan, Chaya; Deshpande, Aditi; Na, Ying; Blinzler, Adam; Ma, Junyu; Liu, Bo; Giakos, George C.

    2014-05-01

    Digital diagnostic pathology has become one of the most valuable and convenient advancements in technology over the past years. It allows us to acquire, store and analyze pathological information from the images of histological and immunohistochemical glass slides which are scanned to create digital slides. In this study, efficient fractal, wavelet-based polarimetric techniques for histological analysis of monolayer lung cancer cells will be introduced and different monolayer cancer lines will be studied. The outcome of this study indicates that application of fractal, wavelet polarimetric principles towards the analysis of squamous carcinoma and adenocarcinoma cancer cell lines may be proved extremely useful in discriminating among healthy and lung cancer cells as well as differentiating among different lung cancer cells.

  18. Passive fully polarimetric W-band millimeter-wave imaging

    NASA Astrophysics Data System (ADS)

    Bernacki, B. E.; Kelly, J. F.; Sheen, D. M.; McMakin, D. L.; Tedeschi, J. R.; Harris, R. V.; Mendoza, A.; Hall, T. E.; Hatchell, B. K.; Valdez, P. L. J.

    2012-03-01

    We present the theory, design, and experimental results obtained from a scanning passive W-band fully polarimetric imager. Passive millimeter-wave imaging offers persistent day/nighttime imaging and the ability to penetrate dust, clouds and other obscurants, including clothing and dry soil. The single-pixel scanning imager includes both far-field and near-field fore-optics for investigation of polarization phenomena. Using both fore-optics, a variety of scenes including natural and man-made objects was imaged and these results are presented showing the utility of polarimetric imaging for anomaly detection. Analysis includes conventional Stokes-parameter based approaches as well as multivariate image analysis methods.

  19. Retrieval of the thickness of undeformed sea ice from simulated C-band compact polarimetric SAR images

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Dierking, Wolfgang; Zhang, Jie; Meng, Junmin; Lang, Haitao

    2016-07-01

    In this paper we introduce a parameter for the retrieval of the thickness of undeformed first-year sea ice that is specifically adapted to compact polarimetric (CP) synthetic aperture radar (SAR) images. The parameter is denoted as the "CP ratio". In model simulations we investigated the sensitivity of the CP ratio to the dielectric constant, ice thickness, ice surface roughness, and radar incidence angle. From the results of the simulations we deduced optimal sea ice conditions and radar incidence angles for the ice thickness retrieval. C-band SAR data acquired over the Labrador Sea in circular transmit and linear receive (CTLR) mode were generated from RADARSAT-2 quad-polarization images. In comparison with results from helicopter-borne measurements, we tested different empirical equations for the retrieval of ice thickness. An exponential fit between the CP ratio and ice thickness provides the most reliable results. Based on a validation using other compact polarimetric SAR images from the same region, we found a root mean square (rms) error of 8 cm and a maximum correlation coefficient of 0.94 for the retrieval procedure when applying it to level ice between 0.1 and 0.8 m thick.

  20. MidIR and LWIR polarimetric sensor comparison study

    NASA Astrophysics Data System (ADS)

    Gurton, Kristan; Felton, Melvin; Mack, Robert; LeMaster, Daniel; Farlow, Craig; Kudenov, Michael; Pezzaniti, Larry

    2010-04-01

    We present a comparative study involving five distinctly different polarimetric imaging platforms that are designed to record calibrated Stokes images (and associated polarimetric products) in either the MidIR or LWIR spectral regions. The data set used in this study was recorded during April 14-18, 2008, at the Russell Tower Measurement Facility, Redstone Arsenal, Huntsville, AL. Four of the five camera systems were designed to operate in the LWIR (approx. 8-12μm), and used either cooled mercury cadmium telluride (MCT) focal-plane-arrays (FPA), or a near-room temperature microbolometer. The lone MidIR polarimetric sensor was based on a liquid nitrogen (LN2) cooled indium antimonide (InSb) FPA, resulting in an approximate wavelength response of 3-5μm. The selection of cameras was comprised of the following optical designs: a LWIR "super-pixel," or division-of-focal plane (DoFP) sensor; two LWIR spinning-achromatic-retarder (SAR) based sensors; one LWIR division-of-amplitude (DoAM) sensor; and one MidIR division-of-aperture (DoA) sensor. Cross-sensor comparisons were conducted by examining calibrated Stokes images (e.g., S0, S1, S2, and degree-of-linear polarization (DOLP)) recorded by each sensor for a given target at approximately the same test periods to ensure that data sets were recorded under similar atmospheric conditions. Target detections are applied to the image set for each polarimetric sensor for further comparison, i.e., conventional receiver operating characteristic (ROC) curve analysis and an effective contrast ratio are considered.

  1. Noninvasive Polarimetric-Based Glucose Monitoring: An in Vivo Study

    PubMed Central

    Purvinis, Georgeanne; Cameron, Brent D; Altrogge, Douglas M

    2011-01-01

    Background: Since 1990, there has been significant research devoted toward development of a noninvasive physiological glucose sensor. In this article, we report on the use of optical polarimetry for the noninvasive measurement of physiological glucose concentration in the anterior chamber of the eye of New Zealand white (NZW) rabbits. Method: Measurements were acquired using a custom-designed laser-based optical polarimetry system in a total of seven NZW rabbits anesthetized using an isoflurane-only anesthesia protocol. Aqueous humor-based polarimetric measurements were obtained by coupling light through the anterior chamber of the eye. Blood glucose levels were first stabilized and then altered with intravenous dextrose and insulin administration and measured every 3–5 min with a standard glucometer and intermittently with a YSI 2300 glucose analyzer. Acquired polarimetric glucose signals are calibrated to measured blood glucose concentration. Results: Based on a total of 41 data points, Clarke error grid analysis indicated 93% in zone A, 7% in zone B, and 0% in zones C and D, with reference concentrations between 93 and 521 mg/dl. Errors in prediction are shown to be related to gross movement of the rabbit during the procedures, incurring time-varying corneal birefringence effects that directly affect the measured polarimetric signal. These effects can be compensated for with appropriate design modifications. Conclusions: An optical polarimetry technique was used for in vivo physiological glucose monitoring. The technique demonstrated provides a basis for the development of a noninvasive polarimetric glucose monitor for home, personal, or hospital use. PMID:21527109

  2. Comparing a MWIR and LWIR polarimetric imager for surface swimmer detection

    NASA Astrophysics Data System (ADS)

    Harchanko, John S.; Pezzaniti, Larry; Chenault, David; Eades, Graham

    2008-04-01

    Previously, we have investigated the use of Long-Wave Infra-Red (LWIR) polarimetric imaging for the detection of surface swimmers in a maritime environment. While better contrast and longer range are expected with Mid-Wave Infra-Red (MWIR) polarimetric imaging, the cost of such a system is higher than a polarimetric imager operating in the LWIR due to the advent of higher-performance micro-bolometer imaging arrays. The actual performance of a MWIR polarimetric imager to detect a person in the water is presented. A comparative analysis of system cost between MWIR and LWIR systems is also discussed.

  3. Comparing a MWIR and LWIR polarimetric imaging for surface swimmer detection

    NASA Astrophysics Data System (ADS)

    Harchanko, John S.; Pezzaniti, Larry; Chenault, David; Eades, Graham

    2008-04-01

    Previously, we have investigated the use of Long-Wave Infra-Red (LWIR) polarimetric imaging for the detection of surface swimmers in a maritime environment. While better contrast and longer range are expected with Mid-Wave Infra-Red (MWIR) polarimetric imaging, the cost of such a system is higher than a polarimetric imager operating in the LWIR due to the advent of higher-performance micro-bolometer imaging arrays. The actual performance of a MWIR polarimetric imager to detect a person in the water is presented. A comparative analysis of system cost between MWIR and LWIR systems is also discussed.

  4. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  5. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  6. Improving cross-modal face recognition using polarimetric imaging.

    PubMed

    Short, Nathaniel; Hu, Shuowen; Gurram, Prudhvi; Gurton, Kristan; Chan, Alex

    2015-03-15

    We investigate the performance of polarimetric imaging in the long-wave infrared (LWIR) spectrum for cross-modal face recognition. For this work, polarimetric imagery is generated as stacks of three components: the conventional thermal intensity image (referred to as S0), and the two Stokes images, S1 and S2, which contain combinations of different polarizations. The proposed face recognition algorithm extracts and combines local gradient magnitude and orientation information from S0, S1, and S2 to generate a robust feature set that is well-suited for cross-modal face recognition. Initial results show that polarimetric LWIR-to-visible face recognition achieves an 18% increase in Rank-1 identification rate compared to conventional LWIR-to-visible face recognition. We conclude that a substantial improvement in automatic face recognition performance can be achieved by exploiting the polarization-state of radiance, as compared to using conventional thermal imagery. PMID:25768137

  7. Polarimetric signatures of sea ice. 1: Theoretical model

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.

    1995-01-01

    Physical, structral, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarmetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies to interpretation of sea ice polarimetric signatures.

  8. Long wave infrared polarimetric model: theory, measurements and parameters

    NASA Astrophysics Data System (ADS)

    Wellems, David; Ortega, Steve; Bowers, David; Boger, Jim; Fetrow, Matthew

    2006-10-01

    Material parameters, which include the complex index of refraction, (n,k), and surface roughness, are needed to determine passive long wave infrared (LWIR) polarimetric radiance. A single scatter microfacet bi-direction reflectance distribution function (BRDF) is central to the energy conserving (EC) model which determines emitted and reflected polarized surface radiance. Model predictions are compared to LWIR polarimetric data. An ellipsometry approach is described for finding an effective complex index of refraction or (n,k) averaged over the 8.5-9.5 µm wavelength range. The reflected S3/S2 ratios, where S2 and S3 are components of the Stokes (Born and Wolf 1975 Principles of Optics (London: Pergamon) p 30) vector, are used to determine (n,k). An imaging polarimeter with a rotating retarder is utilized to measure the Stokes vector. Effective (n,k) and two EC optical roughness parameters are presented for roughened glass and several unprepared, typical outdoor materials including metals and paints. A two parameter slope distribution function is introduced which is more flexible in modelling the source reflected intensity profiles or BRDF data than one parameter Cauchy or Gaussian distributions (Jordan et al 1996 Appl. Opt. 35 3585-90 Priest and Meier 2002 Opt. Eng. 41 992). The glass results show that the (n,k) needed to model polarimetric emission and scatter differ from that for a smooth surface and that surface roughness reduces the degree of linear polarization.

  9. Resolving polarized stellar features thanks to polarimetric interferometry

    NASA Astrophysics Data System (ADS)

    Rousselet-Perraut, Karine; Chesneau, Olivier; Vakili, Farrokh; Mourard, Denis; Janel, Sebastien; Lavaud, Laurent; Crocherie, Axel

    2003-02-01

    Polarimetry is a powerful means for detecting and constraining various physical phenomena, such as scattering processes or magnetic fields, occuring in a large panel of stellar objects: extended atmospheres of hot stars, CP stars, Young Stellar Objects, Active Galaxy Nuclei, ... However, the lack of angular resolution is generally a strong handicap to drastically constrain the physical parameters and the geometry of the polarizing phenomena because of the cancelling of the polarized signal. In fact, even if stellar features are strongly polarized, the (spectro-)polarimetric signal integrated over the stellar surface rarely exceeds few percents. Coupling polarimetric and interferometric devices allows to resolve these local polarized structures and thus to constrain complex patchy stellar surfaces and/or environments such as disk topology in T Tauri stars, hot stars radiative winds or oscillations in Be star envelopes. In this article, we explain how interfero-polarimetric observables, basically the contrast and the position of the interference fringe patterns versus polarization (and even versus wavelength) are powerful to address the above scientific drivers and we emphasize on the key point of instrumental and data calibrations: since interferometric measurements are differential ones between 2 or more beams, this strongly relaxes the calibration requirements for the fringe phase observable. Prospects induced by the operation of the optical aperture synthesis arrays are also discussed.

  10. Probing surface properties of Jupiter Trojans by polarimetric observations

    NASA Astrophysics Data System (ADS)

    Belskaya, I.; Bagnulo, S.; Stinson, A.; Christou, A.; Muinonen, K.

    2014-07-01

    We present the first polarimetric observations of six Jupiter Trojans, namely (588) Achilles, (1583) Antilochus, (3548) Eurybates, (4543) Phoinix, (6545) 1986 TR_6, and (21601) 1998 XO_{89}. All these objects belong to the L4 population of Jupiter Trojans and have diameters in the range of 50-160 km (Grav et al. 2011). The observations were carried out in 2013 at ESO VLT. Each object was observed at 3-4 different phase angles in the phase-angle range from 7 deg up to 11-12 deg, the largest possible phase angles in the ground-based observations of Trojans. Observations were made in the R band with a typical accuracy of 0.05 %. We have measured negative polarization branch for each object with polarization minima varying from -1 % to -1.3 %. The polarization-phase-angle behavior of the observed Trojans is found to be very similar to that of some low-albedo main-belt asteroids, in particular, the P-type asteroids. We compare photometric and polarimetric phase dependencies of Trojans to the phase curves of inner and outer Solar System bodies. Possible relationships of phase-curve parameters with albedos and spectral properties are investigated. Constraints on the surface properties of Jupiter Trojans from the polarimetric observations are discussed.

  11. Hydrometeor classification from polarimetric radar measurements: a clustering approach

    NASA Astrophysics Data System (ADS)

    Grazioli, J.; Tuia, D.; Berne, A.

    2015-01-01

    A data-driven approach to the classification of hydrometeors from measurements collected with polarimetric weather radars is proposed. In a first step, the optimal number of hydrometeor classes (nopt) that can be reliably identified from a large set of polarimetric data is determined. This is done by means of an unsupervised clustering technique guided by criteria related both to data similarity and to spatial smoothness of the classified images. In a second step, the nopt clusters are assigned to the appropriate hydrometeor class by means of human interpretation and comparisons with the output of other classification techniques. The main innovation in the proposed method is the unsupervised part: the hydrometeor classes are not defined a priori, but they are learned from data. The approach is applied to data collected by an X-band polarimetric weather radar during two field campaigns (from which about 50 precipitation events are used in the present study). Seven hydrometeor classes (nopt = 7) have been found in the data set, and they have been identified as light rain (LR), rain (RN), heavy rain (HR), melting snow (MS), ice crystals/small aggregates (CR), aggregates (AG), and rimed-ice particles (RI).

  12. Hydrometeor classification from polarimetric radar measurements: a clustering approach

    NASA Astrophysics Data System (ADS)

    Grazioli, J.; Tuia, D.; Berne, A.

    2014-08-01

    A data-driven approach to the classification of hydrometeors from measurements collected with polarimetric weather radars is proposed. In a first step, the optimal number nopt of hydrometeor classes that can be reliably identified from a large set of polarimetric data is determined. This is done by means of an unsupervised clustering technique guided by criteria related both to data similarity and to spatial smoothness of the classified images. In a second step, the nopt clusters are assigned to the appropriate hydrometeor class by means of human interpretation and comparisons with the output of other classification techniques. The main innovation in the proposed method is the unsupervised part: the hydrometeor classes are not defined a-priori, but they are learned from data. The proposed approach is applied to data collected by an X-band polarimetric weather radar during two field campaigns (totalling about 3000 h of precipitation). Seven hydrometeor classes have been found in the data set and they have been associated to drizzle (DZ), light rain (LR), heavy rain (HR), melting snow (MS), ice crystals/small aggregates (CR), aggregates (AG), rimed particles (RI).

  13. From Maxwell's Equations to Polarimetric SAR Images: A Simulation Approach

    PubMed Central

    Sant'Anna, Sidnei J. S.; da S. Lacava, J. C.; Fernandes, David

    2008-01-01

    A new electromagnetic approach for the simulation of polarimetric SAR images is proposed. It starts from Maxwell's equations, employs the spectral domain full-wave technique, the moment method, and the stationary phase method to compute the far electromagnetic fields scattered by multilayer structures. A multilayer structure is located at each selected position of a regular rectangular grid of coordinates, which defines the scene area under imaging. The grid is determined taking into account the elementary scatter size and SAR operational parameters, such as spatial resolution, pixel spacing, look angle and platform altitude. A two-dimensional separable “sinc” function to represent the SAR spread point function is also considered. Multifrequency sets of single-look polarimetric SAR images are generated, in L-, C- and X-bands and the images are evaluated using several measurements commonly employed in SAR data analysis. The evaluation shows that the proposed simulation process is working properly, since the obtained results are in accordance with those presented in the literature. Therefore, this new approach becomes suitable for carrying out theoretical and practical studies using polarimetric SAR images.

  14. CASMSAR: the first Chinese airborne SAR mapping system

    NASA Astrophysics Data System (ADS)

    Zhang, Jixian; Wang, Zhang; Huang, Guoman; Zhao, Zheng; Lu, Lijun

    2010-09-01

    In this paper, we present an overall description of the newest Chinese airborne SAR mapping system CASMSAR, which is developed by a group led by Chinese Academy of Surveying and Mapping (CASM). Since CASMSAR is equipped with two independent high-resolution SAR sensors (X-band and P-band), it allows the integration of interferometric and fully polarimetric functions. Another novel feature of CASMSAR is the software control of system monitoring and flight navigation display, which makes the whole system very intelligent and operational. The data processing software systems of CASMSAR consists of five subsystems. CASMSAR works in several modes. The most important two of them are used for mapping in scale of 1:10,000 and 1:50,000. Initial data were acquired during several testing flight campaigns in last year, and experimental results have proved that the system works well and the performance is better than expectation.

  15. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  16. Monitoring land use and degradation using satellite and airborne data

    NASA Technical Reports Server (NTRS)

    Ray, Terrill W.; Farr, Thomas G.; Blom, Ronald G.; Crippen, Robert E.

    1993-01-01

    In July 1990 AVIRIS and AIRSAR data were collected over the Manix Basin Area of the Mojave Desert to study land degradation in an arid area where centerpivot irrigation had been in use. The Manix Basin is located NE of Barstow, California, along Interstate-15 at 34 deg 57 min N 116 deg 35 min W. This region was covered by a series of lakes during the Late Pleistocence and Early Holocene. Beginning in the 1960's, areas were cleared of the native creosote bush-dominated plant community to be used for agricultural purposes. Starting in 1972 fields have been abandoned due to the increased cost of electricity needed to pump the irrigation water, with some fields abandoned as recently as 1988 and 1992. These circumstances provide a time series of abandoned fields which provide the possibility of studying the processes which act on agricultural fields in arid regions when they are abandoned. Ray et al. reported that polarimetric SAR (AIRSAR) could detect that the concentric circular planting furrows plowed on these fields persists for a few years after abandonment and then disappear over time and that wind ripples which form on these fields over time due to wind erosion can be detected with polarimetric radar. Ray et al. used Landsat Thematic Mapper (TM) bandpasses to generate NDVI images of the Manix Basin which showed that the fields abandoned for only a few years had higher NDVI's than the undisturbed desert while the fields abandoned for a longer time had NDVI levels lower than that of the undisturbed desert. The purpose of this study is to use a fusion of a time series of satellite data with airborne data to provide a context for the airborne data. The satellite data time series will additionally help to validate the observation and analysis of time-dependent processes observed in the single AVIRIS image of fields abandoned for different periods of time.

  17. Airborne Microwave Imaging of River Velocities

    NASA Technical Reports Server (NTRS)

    Plant, William J.

    2002-01-01

    The objective of this project was to determine whether airborne microwave remote sensing systems can measure river surface currents with sufficient accuracy to make them prospective instruments with which to monitor river flow from space. The approach was to fly a coherent airborne microwave Doppler radar, developed by APL/UW, on a light airplane along several rivers in western Washington state over an extended period of time. The fundamental quantity obtained by this system to measure river currents is the mean offset of the Doppler spectrum. Since this scatter can be obtained from interferometric synthetic aperture radars (INSARs), which can be flown in space, this project provided a cost effective means for determining the suitability of spaceborne INSAR for measuring river flow.

  18. Bistatic synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  19. Synthetic chromosomes.

    PubMed

    Schindler, Daniel; Waldminghaus, Torsten

    2015-11-01

    What a living organism looks like and how it works and what are its components-all this is encoded on DNA, the genetic blueprint. Consequently, the way to change an organism is to change its genetic information. Since the first pieces of recombinant DNA have been used to transform cells in the 1970s, this approach has been enormously extended. Bigger and bigger parts of the genetic information have been exchanged or added over the years. Now we are at a point where the construction of entire chromosomes becomes a reachable goal and first examples appear. This development leads to fundamental new questions, for example, about what is possible and desirable to build or what construction rules one needs to follow when building synthetic chromosomes. Here we review the recent progress in the field, discuss current challenges and speculate on the appearance of future synthetic chromosomes. PMID:26111960

  20. Toolsets for Airborne Data

    Atmospheric Science Data Center

    2015-04-02

    article title:  Toolsets for Airborne Data     View larger image The ... limit of detection values. Prior to accessing the TAD Web Application ( https://tad.larc.nasa.gov ) for the first time, users must ...

  1. Near-Subsurface Science from a Digital Beamforming Polarimetric Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Rincon, R. F.

    2015-10-01

    Many important questions in planetary science depends on our ability to detect and map surface and subsurface layers of planetary bodies. We are developing a P-band (435 MHz, 70 cm wavelength) digital beamforming radar, called Space Exploration SAR (SESAR), capable of providing the measurement flexibility needed to address multiple types of science goals. SESAR will provide high spatial resolution imaging, full polarimetry, multibeam scatterometry and altimetry of planetary targets such as the Moon and Mars by using beamforming technology that can adjust the radar experiment to meet the specific science goals of each target.

  2. Studies of ice clouds using 95 GHz airborne radar

    NASA Astrophysics Data System (ADS)

    Wolde, Mengistu Yirdaw

    2000-12-01

    This study presents results from analyses of 95 GHz airborne polarimetric radar measurements and other in situ data in a variety of ice clouds. Measurements were made in winter clouds over Wyoming and Colorado. Radar parameters analyzed were the differential reflectivity factor (ZDR) and the linear depolarization ratio (LDR). Examination of the specific signatures for different crystal forms, and the dependence of the signatures on beam angle, led to a diagnostic matrix in terms ZDR and LDR values. Planar crystals, columnar crystals, and melting particles can be differentiated based on combined ZDR and LDR measurements at various radar elevation angles. Unique LDR signatures were also observed in Cu con. clouds containing large graupel particles and high concentrations of small particles. It is also shown that among planar crystals P1a and P1d types can be differentiated from P1e types. Overall, the frequencies of occurrence of significant polarimetric signatures were only few percent in the cloud volumes examined, but can approach near 100% in certain clouds. Polarimetric signatures were found to be most frequent in the temperature interval -10 to -18°C due to plate-like crystals growing there. The presence of significant polarimetric signatures is associated with the absence of riming and provides a means of identifying cloud regions where diffusional crystal growth dominates. In the second part of the dissertation, cloud structure and crystal growth in Ns clouds sampled in Wyoming and Oregon are presented. In spite of differences in location and time, the two Ns data sets have shown similar features. In both cases, generating cells were present near cloud top and the melting layer was well defined in the radar images. Thin dry layers just above the melting layer were also observed in both cases. In accordance with earlier studies, particle spectra in these clouds are adequately described by exponential relationships. The slope and intercept parameters of the

  3. The airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven; Schall, Harold; Shattuck, Paul

    2007-05-01

    The Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the current program status.

  4. Joint retrieval of aerosol and water-leaving radiance from multispectral, multiangular and polarimetric measurements over ocean

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Dubovik, Oleg; Zhai, Peng-Wang; Diner, David J.; Kalashnikova, Olga V.; Seidel, Felix C.; Litvinov, Pavel; Bovchaliuk, Andrii; Garay, Michael J.; van Harten, Gerard; Davis, Anthony B.

    2016-07-01

    An optimization approach has been developed for simultaneous retrieval of aerosol properties and normalized water-leaving radiance (nLw) from multispectral, multiangular, and polarimetric observations over ocean. The main features of the method are (1) use of a simplified bio-optical model to estimate nLw, followed by an empirical refinement within a specified range to improve its accuracy; (2) improved algorithm convergence and stability by applying constraints on the spatial smoothness of aerosol loading and Chlorophyll a (Chl a) concentration across neighboring image patches and spectral constraints on aerosol optical properties and nLw across relevant bands; and (3) enhanced Jacobian calculation by modeling and storing the radiative transfer (RT) in aerosol/Rayleigh mixed layer, pure Rayleigh-scattering layers, and ocean medium separately, then coupling them to calculate the field at the sensor. This approach avoids unnecessary and time-consuming recalculations of RT in unperturbed layers in Jacobian evaluations. The Markov chain method is used to model RT in the aerosol/Rayleigh mixed layer and the doubling method is used for the uniform layers of the atmosphere-ocean system. Our optimization approach has been tested using radiance and polarization measurements acquired by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) over the AERONET USC_SeaPRISM ocean site (6 February 2013) and near the AERONET La Jolla site (14 January 2013), which, respectively, reported relatively high and low aerosol loadings. Validation of the results is achieved through comparisons to AERONET aerosol and ocean color products. For comparison, the USC_SeaPRISM retrieval is also performed by use of the Generalized Retrieval of Aerosol and Surface Properties algorithm (Dubovik et al., 2011). Uncertainties of aerosol and nLw retrievals due to random and systematic instrument errors are analyzed by truth-in/truth-out tests with three Chl a concentrations, five aerosol loadings

  5. Snow mapping in alpine regions with synthetic aperture radar

    SciTech Connect

    Shi, J.; Dozier, J. ); Rott, H. . Inst. for Meteorology and Geophysics)

    1994-01-01

    For climatological and hydrological investigations, the areas covered by snow and glacial ice are important parameters. Active microwave sensors can discriminate snow from other surfaces in all weather conditions, and their spatial resolution is compatible with the topographic variation in alpine regions. Using data acquired with the NASA AIRSAR in the Oetztal Alps in 1989 and 1991, the authors examine the usage of synthetic aperture radar (SAR) to map snow- and glacier-covered areas. By comparing polarimetric SAR data to images from the Landsat Thematic Mapper obtained under clear conditions one week after the SAR flight, they find that SAR data at 5.3 GHz (C-band) can discriminate between areas covered by snow from those that are ice-free. However, they are less suited to discrimination of glacier ice from snow and rock. The overall pixel-by-pixel accuracies--74% from VV polarization alone with topographic information, 76% from polarimetric SAR without any topographic information, and 79% from polarimetric SAR with topographic information--are high enough to justify the use of SAR as the data source in areas that are too cloud-covered to obtain data from the Thematic Mapper. This is especially true for snow discrimination, where accuracies exceed 80%, because mapping of a transient snow cover during a cloudy melt season is often difficult with an optical sensor. The AIRSAR survey was carried out in summer during a heavy rainstorm, when the snow surfaces were unusually rough.

  6. Even Shallower Exploration with Airborne Electromagnetics

    NASA Astrophysics Data System (ADS)

    Auken, E.; Christiansen, A. V.; Kirkegaard, C.; Nyboe, N. S.; Sørensen, K.

    2015-12-01

    Airborne electromagnetics (EM) is in many ways undergoing the same type rapid technological development as seen in the telecommunication industry. These developments are driven by a steadily increasing demand for exploration of minerals, groundwater and geotechnical targets. The latter two areas demand shallow and accurate resolution of the near surface geology in terms of both resistivity and spatial delineation of the sedimentary layers. Airborne EM systems measure the grounds electromagnetic response when subject to either a continuous discrete sinusoidal transmitter signal (frequency domain) or by measuring the decay of currents induced in the ground by rapid transmission of transient pulses (time domain). In the last decade almost all new developments of both instrument hardware and data processing techniques has focused around time domain systems. Here we present a concept for measuring the time domain response even before the transient transmitter current has been turned off. Our approach relies on a combination of new instrument hardware and novel modeling algorithms. The newly developed hardware allows for measuring the instruments complete transfer function which is convolved with the synthetic earth response in the inversion algorithm. The effect is that earth response data measured while the transmitter current is turned off can be included in the inversion, significantly increasing the amount of available information. We demonstrate the technique using both synthetic and field data. The synthetic examples provide insight on the physics during the turn off process and the field examples document the robustness of the method. Geological near surface structures can now be resolved to a degree that is unprecedented to the best of our knowledge, making airborne EM even more attractive and cost-effective for exploration of water and minerals that are crucial for the function of our societies.

  7. Surface plasmonic enhanced polarimetric longwave infrared photodetection with band pass spectral filtering

    NASA Astrophysics Data System (ADS)

    Vasinajindakaw, Puminun; Vaillancourt, Jarrod; Gu, Guiru; Lu, Xuejun

    2012-06-01

    In this paper, we report a surface plasmonic enhanced polarimetric longwave infrared (LWIR) photodetector. Polarization-selective detection of LWIR incidence with different polarizations is achieved at different plasmonic resonant modes. Band-pass spectral filtering is also provided at the plasmonic resonant modes by the plasmonic enhancement. The extinction ratio (ER) of the polarimetric detection and its limiting factor is discussed.

  8. Structural classification of marshes with Polarimetric SAR highlighting the temporal mapping of marshes exposed to oil

    USGS Publications Warehouse

    Ramsey III, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2015-01-01

    Empirical relationships between field-derived Leaf Area Index (LAI) and Leaf Angle Distribution (LAD) and polarimetric synthetic aperture radar (PolSAR) based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC) correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.             

  9. ISAR imaging at low SNR level based on polarimetric whitening filter

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Gang; Tian, Biao; Chen, Zeng-Ping

    2013-10-01

    ISAR (inverse synthetic aperture radar) can generate 2D image of a non-cooperative moving target and be used for military and civilian purpose. For moving target - well-focused ISAR images can be achieved using appropriate motion compensation and image reconstruction algorithm. The ISAR image will be difficultly when the echo is at a low signal-to-noise level. For polarimetric ISAR system which transmits and receives different polarisation signal in both two channels, the fusion of HRRP (high range resolution profile) from different channels will improve significantly the SNR of the signal. The method proposed in this paper firstly fuses the different channels HRRP to get a higher SNR signal. Then the target region is extracted in fused HRRP. Finally, the motion compensation for ISAR imaging is carried out only on the extracted target region data in the sense of using image reconstruction method to gain a focused ISAR image. The real measured data shows the validity of the algorithm.

  10. Statistical modeling of targets and clutter in single-look non-polarimetric SAR imagery

    SciTech Connect

    Salazar, J.S.; Hush, D.R.; Koch, M.W.; Fogler, R.J.; Hostetler, L.D.

    1998-08-01

    This paper presents a Generalized Logistic (gLG) distribution as a unified model for Log-domain synthetic aperture Radar (SAR) data. This model stems from a special case of the G-distribution known as the G{sup 0}-distribution. The G-distribution arises from a multiplicative SAR model and has the classical K-distribution as another special case. The G{sup 0}-distribution, however, can model extremely heterogeneous clutter regions that the k-distribution cannot model. This flexibility is preserved in the unified gLG model, which is capable of modeling non-polarimetric SAR returns from clutter as well as man-made objects. Histograms of these two types of SAR returns have opposite skewness. The flexibility of the gLG model lies in its shape and shift parameters. The shape parameter describes the differing skewness between target and clutter data while the shift parameter compensates for movements in the mean as the shape parameter changes. A Maximum Likelihood (ML) estimate of the shape parameter gives an optimal measure of the skewness of the SAR data. This measure provides a basis for an optimal target detection algorithm.

  11. Probing the Martian Subsurface with Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Campbell, B. A.; Maxwell, T. A.; Freeman, A.

    2005-01-01

    Many regions of the martian surface are covered by fine-grained materials emplaced by volcanic, fluvial, or aeolian processes. These mantling deposits likely hide ancient channel systems (particularly at smaller scale lengths) and volcanic, impact, glacial, or shoreline features. Synthetic aperture radar (SAR) offers the capability to probe meters below the surface, with imaging resolution in the 10 s of m range, to reveal the buried terrain and enhance our understanding of Mars geologic and climate history. This presentation focuses on the practical applications of a Mars orbital SAR, methods for polarimetric and interferometric radar studies, and examples of such techniques for Mars-analog sites on the Moon and Earth.

  12. Synthetic aperture radar capabilities in development

    SciTech Connect

    Miller, M.

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  13. Summaries of the Seventh JPL Airborne Earth Science Workshop January 12-16, 1998. Volume 1; AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1998-01-01

    This publication contains the summaries for the Seventh JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 12-16, 1998. The main workshop is divided into three smaller workshops, and each workshop has a volume as follows: (1) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop; (2) Airborne Synthetic Aperture Radar (AIRSAR) Workshop; and (3) Thermal Infrared Multispectral Scanner (TIMS) Workshop. This Volume 1 publication contains 58 papers taken from the AVIRIS workshop.

  14. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, March 4-8, 1996. Volume 2; AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Kim, Yunjin (Editor)

    1996-01-01

    This publication contains the summaries for the Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996. The main workshop is divided into two smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on March 4-6. The summaries for this workshop appear in Volume 1. The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on March 6-8. The summaries for this workshop appear in Volume 2.

  15. Dependence of Polarimetric Scattering Mechanisms on Land Cover

    NASA Astrophysics Data System (ADS)

    Atwood, D. K.; Meyer, F.

    2011-03-01

    A method for statistically representing the polarimetric SAR scattering mechanisms of individual land cover classes is introduced and applied to ALOS PALSAR L-band quad-pol data. PALSAR scattering signatures are correlated with land cover classification maps to determine typical scattering mechanisms. The approach utilizes two free, open-source software tools, ESA's PolSARpro and the Alaska Satellite Facility's MapReady Remote Sensing Toolbox as well as Geographic Information System (GIS) tools, to compute the probability density functions of normalized decomposition components for each land cover class.The proposed method provides the ability to compare polarimetric decompositions, investigate scattering mechanisms, detect change in land cover classification, and discover inhomogeneities in the spectral characteristics of individual classes. The approach is first employed to compare the Freeman and Van Zyl three-component decomposition techniques, where the former is shown to introduce many pixels with 100% volume saturation.Ideally, the method yields distinctive scattering peaks for each land cover class with minimal variance in the individual scattering components. However, in some instances, bimodal peaks are found. These are shown to either represent changes between the original land classification and the SAR acquisitions, or the existence of spectral subclasses that were not differentiated in the original classification. Last, the method is used to determine the impact of Polarimetric Orientation Angle (POA) correction on the scattering signatures of urban land cover classes. POA compensation is shown to bring about a significant reduction in the volume scattering component.A method for statistically representing the polarimetric SAR scattering mechanisms of individual land cover classes is introduced and applied to ALOS PALSAR L-band quad-pol data. PALSAR scattering signatures are correlated with land cover classification maps to determine typical

  16. Synthetic Cathinones ("Bath Salts")

    MedlinePlus

    ... still unknown about how synthetic cathinones affect the human brain. Researchers do know that synthetic cathinones are chemically ... of the chemicals in synthetic cathinones affect the human brain. Synthetic cathinones can cause: nosebleeds paranoia increased sociability ...

  17. Micropolarizer arrays in the MWIR for snapshot polarimetric imaging

    NASA Astrophysics Data System (ADS)

    Kemme, S. A.; Cruz-Cabrera, A. A.; Nandy, R.; Boye, R. R.; Wendt, J. R.; Carter, T. R.; Samora, S.

    2007-04-01

    We report on the design, fabrication, and simulation of a four-state pixelated subwavelength optical device that enables mid-wave infrared (MWIR) or long-wave infrared (LWIR) snapshot polarimetric imaging. The polarization information can help to classify imaged materials and identify objects of interest for remote sensing and military applications. The fabricated pixelated polarizers have measured extinction ratios larger than 100:1 for pixel sizes greater than 9 microns by 9 microns, with transmitted signals greater than 50%. That exceeds, by 7 times, previously reported device extinction ratios for 15 micron by 15 micron pixels. Traditionally, sequential polarimetric imaging sensors produce scenes with polarization information through a series of assembled images. Snapshot polarimetric imaging collects the spatial distribution of all four Stokes' parameters simultaneously. In this way any noise due to scene movement from one frame to the next is eliminated. In this paper, we will quantify near-field and diffractive effects of the finite pixel apertures upon detection. We have designed and built an experimental setup that models a pixel within a focal plane array (FPA) to measure crosstalk from adjacent gold wiregrid micropolarizers. This configuration simulates a snapshot polarization imaging device where the two substrates are stacked; micropolarizer array substrate on top of an FPA. Modeling and measured data indicate crosstalk between the adjacent pixels up to a few microns behind the polarizer plane. Crosstalk between adjacent pixels increases uncertainty in the measured polarization states in a scene of interest. Measured and simulated data confirm that the extinction ratio of a micropolarizer pixel in a super-cell will be reduced by 17% when moving the FPA from 0.5 microns to 1.0 microns away from the polarizer. These changes in extinction ratio are significant since typical glue separation is on the order of 10 microns.

  18. Application of polarimetric sounding to HF ionospheric remote sensing

    NASA Astrophysics Data System (ADS)

    Bezrodny, V. G.; Ponomarenko, P. V.; Yampolski, Y. M.

    1997-01-01

    It is shown that the scattering of electromagnetic waves by refractive index inhomogeneities in a continuous random medium is accompanied by a certain polarimetric phenomenon that is analogous to the Brewster effect of classic electrodynamics. In this paper, an observational method and results are discussed for the case of bistatic HF radar sounding of small-scale ionospheric inhomogeneities at frequencies above MUF. The height of the scattering layer, its thickness, and characteristic plasma drift velocity in the ionosphere are estimated as a result of statistical processing.

  19. Hydrometeor classification using data mining techniques and polarimetric radar observations

    NASA Astrophysics Data System (ADS)

    Berne, A.; Grazioli, J.; Tuia, D.

    2013-12-01

    Hydrometeor classification aims at identifying the dominant type of hydrometeors in the sampling volume of a (polarimetric) weather radar. To do so, classical techniques make use of scattering simulations and fuzzy logic. A set of hydrometeor classes must be selected a-priori, and the scattering simulations are used to reproduce radar observations related with each class. Fuzzy logic is eventually used to link actually collected measurements with the simulated sets. With these methods, the number and type of hydrometeor categories undergoing identification is selected arbitrarily, the scattering simulations can be based on unreliable assumptions especially in case of solid particles and the effect of the noise on the measurements is not taken into account. In the present work, we develop a new approach to the classification problem, based on observations instead of scattering simulations. The goal is to provide objective criteria in the selection of the number of hydrometeor classes that can be reliably identified, by looking at how polarimetric observations collected over a set of different precipitation events form clusters in the multi-dimensional space of the polarimetric variables. Additional information is given by the spatial smoothness of the classified fields and by the altitude with respect to the zero degree level. Two polarimetric datasets, collected by an X-band radar are employed in this study. The two datasets cover weather conditions ranging from alpine precipitation collected in the Swiss Alps to Mediterranean orographic events, collected during the special observation period (SOP) 2012 of the HyMeX campaign. The optimal number of clusters is iteratively determined as a trade-off between the spatial smoothness of the classified domains and the complexity of the partitions , using an unsupervised clustering technique based on a correlation metrics. Eight clusters have been identified, 3 of them associated with liquid precipitation, 4 with solid

  20. Phase of Target Scattering for Wetland Characterization using Polarimetric C-Band SAR

    SciTech Connect

    Touzi, R; Deschamps, Mireille C; Rother, Gernot

    2009-09-01

    Wetlands continue to be under threat, and there is a major need for mapping and monitoring wetlands for better management and protection of these sensitive areas. Only a few studies have been published on wetland characterization using polarimetric synthetic aperture radars (SARs). The most successful results have been obtained using the phase difference between HH and VV polarizations, phi{sub HH} - phi{sub VV}, which has shown promise for separating flooded wetland classes. Recently, we have introduced a new decomposition, the Touzi decomposition, which describes target scattering type in terms of a complex entity, the symmetric scattering type. Huynen's target helicity is used to assess the symmetric nature of target scattering. In this paper, the new complex-scattering-type parameters, the magnitude alphas and phase Phi{sub alpha} s, are investigated for wetland characterization. The use of the dominant-scattering-type phase Phi{sub alpha} s makes it possible to discriminate shrub bogs from poor (sedge or shrub) fens. These two classes cannot be separated using phi{sub HH} - phi{sub VV}, or the radiometric scattering information provided by alphas, the Cloude alpha, the entropy H, and the multipolarization HH-HV-VV channels. phi{sub alpha} s, which cannot detect deep (45 cm below the peat surface) water flow in a bog, is more sensitive to the shallower (10-20-cm) fen beneath water, and this makes possible the separation of poor fens from shrub bogs. Phi{sub alpha} s also permits the discrimination of conifer-dominated treed bog from upland deciduous forest under leafy conditions. Target helicity information is exploited to introduce a new parameter, the target asymmetry. The latter is shown very promising for detection of forest changes between leafy and no-leaf conditions. The analysis of low-entropy marsh scattering showed that both the scattering-type magnitude and phas- - e alphas and Phi{sub alpha} s, respectively, as well as the maximum polarization

  1. Linear polarizer local characterizations by polarimetric imaging for applications to polarimetric sensors for torque measurement for hybrid cars

    NASA Astrophysics Data System (ADS)

    Georges, F.; Remouche, M.; Meyrueis, P.

    2011-06-01

    Usually manufacturer's specifications do not deal with the ability of linear sheet polarizers to have a constant transmittance function over their geometric area. These parameters are fundamental for developing low cost polarimetric sensors(for instance rotation, torque, displacement) specifically for hybrid car (thermic + electricity power). It is then necessary to specially characterize commercial polarizers sheets to find if they are adapted to this kind of applications. In this paper, we present measuring methods and bench developed for this purpose, and some preliminary characterization results. We state conclusions for effective applications to hybrid car gearbox control and monitoring.

  2. Classification of Forest Regrowth Stage using Polarimetric Decomposition and Foliage Projective Cover

    NASA Astrophysics Data System (ADS)

    Clewley, D.; Lucas, R.; Bunting, P.; Moghaddam, M.

    2012-12-01

    Within Queensland, Australia extensive clearing of vegetation for agriculture has occurred within the Brigalow Belt Bioregion (BBB), reducing forests dominated by Acacia harpophylla (brigalow) to 10 % of their former extent. Where cleared land is left abandoned or unmanaged regeneration is rapid, Regenerating vegetation represents a more efficient and cost effective method for carbon sequestration than direct planting and offers a number of benefits over plantation forest, particularly in terms of provision of habitat for native fauna. To effectively protect regenerating vegetation, maps of the distribution of forests at different stages of regeneration are required. Whilst mapping approaches have traditionally focused on optical data, the high canopy cover of brigalow regrowth in all but the very early stages limits discrimination of forests at different stages of growth. The combination of optical data, namely Landsat derived Foliage Projective Cover (FPC) and Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (SAR) backscatter data have previously been investigated for mapping regrowth. This study therefore aimed to investigate the potential of the alpha-Entropy (α/H) decomposition (S Cloude and E Pottier, "An entropy based classification scheme for land applications of polarimetric SAR," 1997, IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 1, pp. 68-78) applied to polarimetric ALOS PALSAR backscatter for mapping regrowth stage combined with FPC data to account for canopy variations. The study focused on the Tara Downs subregion, located in the Western Darling Downs, within the south of the BBB. PALSAR data were acquired over the study site in fully-polarimetric mode (incidence angle mid swath ~ 26 degrees). From these data α/H layers were generated and stacked with FPC data. Considering only those areas known to contain brigalow prior to clearing and with an FPC > 9 %, k-means clustering was applied, with

  3. A high definition Mueller polarimetric endoscope for tissue characterisation

    PubMed Central

    Qi, Ji; Elson, Daniel S.

    2016-01-01

    The contrast mechanism of medical endoscopy is mainly based on metrics of optical intensity and wavelength. As another fundamental property of light, polarization can not only reveal tissue scattering and absorption information from a different perspective, but can also provide insight into directional tissue birefringence properties to monitor pathological changes in collagen and elastin. Here we demonstrate a low cost wide field high definition Mueller polarimetric endoscope with minimal alterations to a rigid endoscope. We show that this novel endoscopic imaging modality is able to provide a number of image contrast mechanisms besides traditional unpolarized radiation intensity, including linear depolarization, circular depolarization, cross-polarization, directional birefringence and dichroism. This enhances tissue features of interest, and additionally reveals tissue micro-structure and composition, which is of central importance for tissue diagnosis and image guidance for surgery. The potential applications of the Mueller polarimetric endoscope include wide field early epithelial cancer diagnosis, surgical margin detection and energy-based tissue fusion monitoring, and could further benefit a wide range of endoscopic investigations through intra-operative guidance. PMID:27173145

  4. A high definition Mueller polarimetric endoscope for tissue characterisation.

    PubMed

    Qi, Ji; Elson, Daniel S

    2016-01-01

    The contrast mechanism of medical endoscopy is mainly based on metrics of optical intensity and wavelength. As another fundamental property of light, polarization can not only reveal tissue scattering and absorption information from a different perspective, but can also provide insight into directional tissue birefringence properties to monitor pathological changes in collagen and elastin. Here we demonstrate a low cost wide field high definition Mueller polarimetric endoscope with minimal alterations to a rigid endoscope. We show that this novel endoscopic imaging modality is able to provide a number of image contrast mechanisms besides traditional unpolarized radiation intensity, including linear depolarization, circular depolarization, cross-polarization, directional birefringence and dichroism. This enhances tissue features of interest, and additionally reveals tissue micro-structure and composition, which is of central importance for tissue diagnosis and image guidance for surgery. The potential applications of the Mueller polarimetric endoscope include wide field early epithelial cancer diagnosis, surgical margin detection and energy-based tissue fusion monitoring, and could further benefit a wide range of endoscopic investigations through intra-operative guidance. PMID:27173145

  5. Single layer spectro-polarimetric filter for advanced LWIR FPAs

    NASA Astrophysics Data System (ADS)

    Jones, A. M.; Kemme, S. A.; Scrymgeour, D. A.; Norwood, R. A.

    2012-06-01

    We explore the spectral and angular selectivity of near surface normal transmission of grating modified metallic surfaces and their ultimate potential for application as narrow-band spectro-polarimetric planar filter components in the development of advanced infrared focal plane arrays. The developed photonic microstructures exhibit tailored spectral transmission characteristics in the long wavelength infrared, and can be fabricated to preferentially transmit a given linear polarization within the design band. Modification of the material and structural properties of the diffractive optical element enables sub-pixel tuning of the spectro-polarimetric response of the device allowing for intelligent engineering of planar filter components for development of advanced focal plane arrays in the long wavelength infrared. The planar nature of the developed components leaves them immune to fabrication issues that typically plague thin film interference filters used for similar applications in the infrared, namely, deposition of multiple low-stress quarter-wavelength films and modification of the film thicknesses for each pixel. The solution developed here presents the opportunity for subpixel modification of the spectral response leading to an efficient, versatile filter component suitable for direct integration with commercially available focal plane array technologies via standard fabrication techniques. We will discuss the theoretical development and analysis of the described components and compare the results to the current state-of-the-art.

  6. Detection of disturbed earth using passive LWIR polarimetric imaging

    NASA Astrophysics Data System (ADS)

    Gurton, Kristan P.; Felton, Melvin

    2009-08-01

    We report test results of a study to assess the applicability for using passive polarimetric imaging in the long-wave infrared (LWIR) to detect regions of recently altered road-type surfaces, e.g., soil, gravel, asphalt, etc. The field test was conducted at the U.S. Army Research Laboratory, Adelphi, MD, on a test surface best described as a well traveled dirt road consisting of a gravel clay-soil mixture that was well compacted. During this initial proof-of-concept test, a LWIR polarimetric camera system was positioned at a slant-path of 10 degrees with respect to the line-of-site (LOS) and the natural lay of the surface, approximately 15 meters from the target test-bed. Stokes images, S0, S1, and S2, were recorded using the LWIR polarimeter that utilizes a spinning achromatic retarder design mated to Mercury Cadmium Telluride (MCT) focal plane array (FPA). Various surrogate targets were buried near the surface and great care was taken to camouflage the area to eliminate any "visible" signs of disturbance. Thermal gradients resulting from the unearthing of cool soil were allowed to dissipate. Two metrics were used to evaluate performance, i.e., conventional receiver operating characteristic (ROC) curve analysis and an effective contrast ratio between the target and background. Results showed particularly good detectability in the S2 imagery, with less in S1, and no detectability in S0, i.e., the conventional LWIR thermal image.

  7. A fully polarimetric scattering model for a coniferous forest

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.; Lopes, A.; Mougin, E.

    1991-01-01

    For an elliptically polarized plane wave exciting a coniferous forested canopy a fully polarimetric scattering model has been developed to account for the size and orientation distributions of each forest constituent. A canopy is divided into three layers over a rough interface. The upper two layers represent the crown with its constituents (leaves, stems, and branches). The lower layer stands for the trunks and the rough interface is the canopy-ground interface. For a plane wave exciting the canopy, the explicit expressions for the bistatic scattering coefficient associated with each scattering mechanism are given. For an elliptically polarized incidence wave, the present model can be recast in a form suitable for polarimetric wave synthesis. The model validation is justified by comparing the measured and the calculated values of the backscattering coefficients for a linearly polarized incident wave. The comparison is made over a wide range of frequencies and incident angles. Numerical simulations are conducted to calculate the radar polarization signature of the canopy for different incident frequencies and angles.

  8. SIMULTANEOUS PHOTOMETRIC AND POLARIMETRIC OBSERVATIONS OF ASTEROID 3 JUNO

    SciTech Connect

    Takahashi, S.; Yoshida, F.; Shinokawa, K.; Mukai, T.; Kawabata, K. S.

    2009-09-15

    Simultaneous photometric and polarimetric observations of asteroid 3 Juno have been carried out with a low-resolution spectropolarimeter HBS at Okayama Astrophysical Observatory from 2000 August 4 to 8. The amplitude of the light curve was 0.14 mag with almost the same brightness maxima and 0.10 mag different minima. Polarimetric data showed one maximum and minimum in the absolute values of polarization degree |P{sub r} |, and the difference attained 0.149% in the V band. The minimum of |P{sub r} | appeared around the second minimum of the light curve, which means that a bright area exists on the surface of 3 Juno. We found that the values of |P{sub r} | tend to increase 0.1%-0.2% with wavelength, and this result is consistent with the general tendency of S-type asteroids. In addition, we might find that the increase rate of |P{sub r} | is steeper in wavelengths longer than 7000 A. From the variation of polarization degree with the rotation of 3 Juno, we estimated the albedo of the bright area with a simple model and obtained a range of 0.19-0.41.

  9. Polarimetric scattering behavior of rough dielectric materials at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Digiovanni, David Anthony

    Technologies in the terahertz region of the spectrum are finding increased usage in areas such as communications, remote sensing, and imaging, For example, driven by the promise of greater data transfer rates, free-space communication that traditionally operate in the radio and microwave bands are being developed at terahertz frequencies. Successful transition of communication systems to higher frequencies, particularly for systems located in indoor or urban environments, will require a thorough understanding of the reflection, transmission, absorption, and scattering behavior of a wide variety of materials and surface types. Scattering properties of rough surfaces have been studied extensively at radio and microwave frequencies, however, such properties have only recently become of interest at higher frequencies. The goal of this thesis was to develop a better understanding of electromagnetic scattering from dielectric rough surfaces at millimeter wavelengths and terahertz frequencies. This goal was achieved by measuring the polarimetric scattering behavior of dielectric materials and comparing the measured data to predictions made by rough surface scattering theory. The dielectric properties and the roughness of the samples were tailored in order to provide a controlled parameter space to investigate. Fully polarimetric radar imagery of the rough surfaces were acquired at 160 GHz, 240 GHz, and 1.55 THz. The backscattering measurements were collected as a function of polarization, incident angle, and frequency. The applicability of various rough surface scattering theories was determined for the different roughness regimes studied.

  10. An improved method for polarimetric image restoration in interferometry

    NASA Astrophysics Data System (ADS)

    Pratley, Luke; Johnston-Hollitt, Melanie

    2016-06-01

    Interferometric radio astronomy data require the effects of limited coverage in the Fourier plane to be accounted for via a deconvolution process. For the last 40 years this process, known as `cleaning', has been performed almost exclusively on all Stokes parameters individually as if they were independent scalar images. However, here we demonstrate for the case of the linear polarisation mathcal {P}, this approach fails to properly account for the complex vector nature resulting in a process which is dependant on the axis under which the deconvolution is performed. We present here an improved method, `Generalised Complex CLEAN', which properly accounts for the complex vector nature of polarised emission and is invariant under rotations of the deconvolution axis. We use two Australia Telescope Compact Array datasets to test standard and complex CLEAN versions of the Högbom and SDI CLEAN algorithms. We show that in general the Complex CLEAN version of each algorithm produces more accurate clean components with fewer spurious detections and lower computation cost due to reduced iterations than the current methods. In particular we find that the Complex SDI CLEAN produces the best results for diffuse polarised sources as compared with standard CLEAN algorithms and other Complex CLEAN algorithms. Given the move to widefield, high resolution polarimetric imaging with future telescopes such as the Square Kilometre Array, we suggest that Generalised Complex CLEAN should be adopted as the deconvolution method for all future polarimetric surveys and in particular that the complex version of a SDI CLEAN should be used.

  11. Integrated computational imaging system for enhanced polarimetric measurements

    NASA Astrophysics Data System (ADS)

    Haider, Shahid A.; Kazemzadeh, Farnoud; Clausi, David A.; Wong, Alexander

    2015-09-01

    Polarimetry is a common technique used in chemistry for solution characterization and analysis, giving insight into the molecular structure of a solution measured through the rotation of linearly polarized light. This rotation is characterized by the Boits law. Without large optical path lengths, or high concentrations of solution, these optical rotations are typically very small, requiring elaborate and costly apparatuses. To ensure that the rotation measurements are accurate, these devices usually perform complex optical procedures or time-averaged point measurements to ensure that any intensity variation seen is a product of optical rotation and not from inherent noise sources in the system, such as sensor or shot noise. Time averaging is a lengthy process and rarely utilizes all of the information available on the sensor. To this end, we have developed a novel integrated, miniature, computational imaging system that enhances polarimetric measurements by taking advantage of the full spot size observed on an array detector. This computational imaging system is capable of using a single acquisition at unity gain to enhance the polarimetric measurements using a probabilistic framework, which accounts for inherent noise and optical characteristics in the acquisition process, to take advantage of spatial intensity relations. This approach is faster than time-averaging methods and can better account for any measurement uncertainties. In preliminary experiments, this system has produced comparably consistent measurements across multiple trials with the same chemical solution than time averaging techniques.

  12. Long-wave infrared polarimetric cluster-based vehicle detection.

    PubMed

    Dickson, Christopher N; Wallace, Andrew M; Kitchin, Matthew; Connor, Barry

    2015-12-01

    The sensory perception of other vehicles in cluttered environments is an essential component of situational awareness for a mobile vehicle. However, vehicle detection is normally applied to visible imagery sequences, while in this paper we investigate how polarized, infrared imagery can add additional discriminatory power. Using knowledge about the properties of the objects of interest and the scene environment, we have developed a polarimetric cluster-based descriptor to detect vehicles using long-wave infrared radiation in the range of 8-12 μm. Our approach outperforms both intensity and polarimetric image histogram descriptors applied to the infrared data. For example, at a false positive rate of 0.01 per detection window, our cluster approach results in a true positive rate of 0.63 compared to a rate of 0.05 for a histogram of gradient descriptor trained and tested on the same dataset. In conclusion, we discuss the potential of this new approach in comparison with state-of-the-art infrared and conventional video detection. PMID:26831384

  13. A high definition Mueller polarimetric endoscope for tissue characterisation

    NASA Astrophysics Data System (ADS)

    Qi, Ji; Elson, Daniel S.

    2016-05-01

    The contrast mechanism of medical endoscopy is mainly based on metrics of optical intensity and wavelength. As another fundamental property of light, polarization can not only reveal tissue scattering and absorption information from a different perspective, but can also provide insight into directional tissue birefringence properties to monitor pathological changes in collagen and elastin. Here we demonstrate a low cost wide field high definition Mueller polarimetric endoscope with minimal alterations to a rigid endoscope. We show that this novel endoscopic imaging modality is able to provide a number of image contrast mechanisms besides traditional unpolarized radiation intensity, including linear depolarization, circular depolarization, cross-polarization, directional birefringence and dichroism. This enhances tissue features of interest, and additionally reveals tissue micro-structure and composition, which is of central importance for tissue diagnosis and image guidance for surgery. The potential applications of the Mueller polarimetric endoscope include wide field early epithelial cancer diagnosis, surgical margin detection and energy-based tissue fusion monitoring, and could further benefit a wide range of endoscopic investigations through intra-operative guidance.

  14. Determining index of refraction from polarimetric hyperspectral radiance measurements

    NASA Astrophysics Data System (ADS)

    Martin, Jacob A.; Gross, Kevin C.

    2015-09-01

    Polarimetric hyperspectral imaging (P-HSI) combines two of the most common remote sensing modalities. This work leverages the combination of these techniques to improve material classification. Classifying and identifying materials requires parameters which are invariant to changing viewing conditions, and most often a material's reflectivity or emissivity is used. Measuring these most often requires assumptions be made about the material and atmospheric conditions. Combining both polarimetric and hyperspectral imaging, we propose a method to remotely estimate the index of refraction of a material. In general, this is an underdetermined problem because both the real and imaginary components of index of refraction are unknown at every spectral point. By modeling the spectral variation of the index of refraction using a few parameters, however, the problem can be made overdetermined. A number of different functions can be used to describe this spectral variation, and some are discussed here. Reducing the number of spectral parameters to fit allows us to add parameters which estimate atmospheric downwelling radiance and transmittance. Additionally, the object temperature is added as a fit parameter. The set of these parameters that best replicate the measured data is then found using a bounded Nelder-Mead simplex search algorithm. Other search algorithms are also examined and discussed. Results show that this technique has promise but also some limitations, which are the subject of ongoing work.

  15. Probing dusty circumstellar environments with polarimetric aperture-masking interferometry

    NASA Astrophysics Data System (ADS)

    Norris, Barnaby R. M.; Tuthill, Peter G.; Ireland, Michael J.; Lacour, Sylvestre; Zijlstra, Albert A.; Lykou, Foteini; Evans, Thomas M.; Stewart, Paul; Bedding, Timothy R.; Guyon, Olivier; Martinache, Frantz

    2012-07-01

    Aperture-masking interferometry allows diffraction-limited images to be recovered despite the turbulent atmo­ sphere. Here, this approach has been combined with polarimetry to form a novel technique allowing the dusty environments of mass-losing stars (so-called AGB stars) and proto-planetary and debris disks to be imaged, the characterisation of which is key to understanding the recycling of matter and the formation of new planetary systems. Polarimetric aperture-masking interferometry produces images by exploiting the fact that starlight scattered by circumstellar dust becomes strongly polarised. Essentially, aperture-masking allows access to the small spatial scales (rv1Omas) necessary while polarimetry allows light from the dust and star to be differentiated. Furthermore, measurements at multiple wavelengths allow dust grain sizes to be calculated using Mie scattering theory. Excellent results have already been obtained at near-IR wavelengths using the NACO instrument at the VLT. The next step is to leverage the higher spatial resolution and polarisation signal found in the visible, rather than near-IR. To this end, a new instrument allowing precision polarimetric aperture masking interferometry at 600-800nm is being developed for an 8m class telescope, details of which will also be presented.

  16. Retrieval of short ocean wave slope using polarimetric imaging

    NASA Astrophysics Data System (ADS)

    Zappa, Christopher J.; Banner, Michael L.; Schultz, Howard; Corrada-Emmanuel, Andres; Wolff, Lawrence B.; Yalcin, Jacob

    2008-05-01

    We present a passive optical remote sensing technique for recovering shape information about a water surface, in the form of a two-dimensional slope map. The method, known as polarimetric slope sensing (PSS), uses the relationship between surface orientation and the change in polarization of reflected light to infer the instantaneous two-dimensional slope across the field-of-view of an imaging polarimeter. For unpolarized skylight, the polarization orientation and degree of linear polarization of the reflected skylight provide sufficient information to determine the local surface slope vectors. A controlled laboratory experiment was carried out in a wave tank with mechanically generated gravity waves. A second study was performed from a pier on the Hudson River, near Lamont-Doherty Earth Observatory. We demonstrated that the two-dimensional slope field of short gravity waves could be recovered accurately without interfering with the fluid dynamics of the air or water, and water surface features appear remarkably realistic. The combined field and laboratory results demonstrate that the polarimetric camera gives a robust characterization of the fine-scale surface wave features that are intrinsic to wind-driven air-sea interaction processes.

  17. Atmospheric correction for ocean spectra retrievals from high-altitude multi-angle, multi-spectral photo-polarimetric remote sensing observations: Results for coastal ocean waters.

    NASA Astrophysics Data System (ADS)

    Chowdhary, J.; van Diedenhoven, B.; Knobelspiesse, K. D.; Cairns, B.; Wasilewski, A. P.; McCubbin, I.

    2015-12-01

    A major challenge for spaceborne observations of ocean color is to correct for atmospheric scattering, which typically contributes ≥85% to the top-of-atmosphere (TOA) radiance and varies substantially with aerosols. Ocean color missions traditionally analyze TOA radiance in the near-infrared (NIR), where the ocean is black, to constrain the TOA atmospheric scattering in the visible (VIS). However, this procedure is limited by insufficient sensitivity of NIR radiance to absorption and vertical distribution of aerosols, and by uncertainties in the extrapolation of aerosol properties from the NIR to the VIS.To improve atmospheric correction for ocean color observations, one needs to change the traditional procedure for this correction and/or increase the aerosol information. The instruments proposed to increase the aerosol information content for the Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) mission include ultraviolet and Oxygen A-band observations, as well as multispectral and multiangle polarimetry. However few systematic studies have been performed to quantify the improvement such measurements bring to atmospheric correction. To study the polarimetric atmospheric correction capabilities of PACE-like instruments, we conducted field experiments off the Coast of California to obtain high-altitude (65,000 ft) and ship-based observations of water-leaving radiance. The airborne data sets consist of hyperspectral radiance between 380-2500 nm by the Airborne Visible/Infrared Imaging Spectrometer, and multi-spectral multi-angle polarimetric data between 410-2250 nm by the Research Scanning Polarimeter. We discuss examples of retrieved atmosphere and ocean state vectors, and of corresponding ocean color spectra obtained by subtracting the computed atmospheric scattering contribution from the high-altitude radiance measurements. The ocean color spectra thus obtained are compared with those measured from the ship.

  18. The Airborne Laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-09-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  19. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  20. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  1. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  2. Comparison of the inversion periods for MidIR and LWIR polarimetric and conventional thermal imagery

    NASA Astrophysics Data System (ADS)

    Felton, M.; Gurton, K. P.; Pezzaniti, J. L.; Chenault, D. B.; Roth, L. E.

    2010-04-01

    We report the results of a diurnal study in which radiometrically calibrated polarimetric and conventional thermal imagery are recorded in the MidIR and LWIR to identify and compare the respective time periods in which minimum target contrast is achieved. The MidIR polarimetric sensor is based on a division-of-aperture approach and has a 640x512 InSb focal-plane array, while the LWIR polarimetric sensor uses a spinning achromatic retarder to perform the polarimetric filtering and has a 324x256 microbolometer focal-plane array. The images used in this study include the S0 and S1 Stokes images of a scene containing a military vehicle and the natural background. In addition, relevant meteorological parameters measured during the test period include air temperature, ambient loading in the LWIR, relative humidity, cloud cover, height, and density. The data shows that the chief factors affecting polarimetric contrast in both wavebands are the amount of thermal emission from the objects in the scene and the abundance of MidIR and LWIR sources in the optical background. In particular, it has been observed that the MidIR polarimetric contrast was positively correlated to the presence of MidIR sources in the optical background, while the LWIR polarimetric contrast was negatively correlated to the presence of LWIR sources in the optical background.

  3. Airborne Radar Interferometric Repeat-Pass Processing

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Michel, Thierry R.; Jones, Cathleen E.; Muellerschoen, Ronald J.; Chapman, Bruce D.; Fore, Alexander; Simard, Marc; Zebker, Howard A.

    2011-01-01

    Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements.

  4. Ultrawideband synthetic vision sensor for airborne wire detection

    NASA Astrophysics Data System (ADS)

    Fontana, Robert J.; Larrick, J. F.; Cade, Jeffrey E.; Rivers, Eugene P., Jr.

    1998-07-01

    A low cost, miniature ultra wideband (UWB) radar has demonstrated the ability to detect suspended wires and other small obstacles at distances exceeding several hundred feet using an average output power of less than 10 microwatts. Originally developed as a high precision UWB radar altimeter for the Navy's Program Executive Office for Unmanned Aerial Vehicles and Cruise Missiles, an improved sensitivity version was recently developed for the Naval Surface Warfare Center (NSWC Dahlgren Division) as part of the Marine Corps Warfighting Laboratory's Hummingbird program for rotary wing platforms. Utilizing a short pulse waveform of approximately 2.5 nanoseconds in duration, the receiver processor exploits the leading edge of the radar return pulse to achieve range resolutions of less than one foot. The resultant 400 MHz bandwidth spectrum produces both a broad frequency excitation for enhanced detection, as well as a low probability of intercept and detection (LPI/D) signature for covert applications. This paper describes the design and development of the ultra wideband sensor, as well as performance results achieved during field testing at NSWC's Dahlgren, VA facility. These results are compared with those achieved with a high resolution EHF radar and a laser-based detection system.

  5. Mean backscattering properties of random radar targets - A polarimetric covariance matrix concept

    NASA Astrophysics Data System (ADS)

    Ziegler, V.; Lueneburg, E.; Schroth, A.

    A polarimetric covariance matrix concept which describes the polarimetric backscattering features of reciprocal random radar targets is presented. The polarization dependence of second-order radar observables can be obtained by unitary similarity transformations of the covariance matrix. Invariant target parameters, such as the minimum and maximum eigenvalues or the eigenvalue difference of the covariance matrix, are introduced, providing information on the randomness of a target and the polarimetric features of the radar observables. An analytical formulation of the problem of optimal polarizations for the mean copolar and crosspolar power return is derived. As a result, the operational computation of optimal polarizations within large data sets becomes feasible.

  6. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Knerr, T. J.; Schaffner, P. R.; Mielke, R. R.; Gilreath, M. C.

    1980-01-01

    A procedure for numerically calculating radiation patterns of fuselage-mounted airborne antennas using the Volumetric Pattern Analysis Program is presented. Special attention is given to aircraft modeling. An actual case study involving a large commercial aircraft is included to illustrate the analysis procedure.

  7. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  8. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  9. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  10. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  11. Synthetic Aperture Radar Image Formation in Reconfigurable Logic

    SciTech Connect

    DUDLEY,PETER A.

    2001-06-01

    This paper studies the implementation of polar format, synthetic aperture radar image formation in modern Field Programmable Gate Arrays (FPGA's). The polar format algorithm is described in rough terms and each of the processing steps is mapped to FPGA logic. This FPGA logic is analyzed with respect to throughput and circuit size for compatibility with airborne image formation.

  12. Hydrometeor classification from polarimetric radar measurements: a clustering approach

    NASA Astrophysics Data System (ADS)

    Grazioli, Jacopo; Tuia, Devis; Berne, Alexis

    2015-04-01

    Hydrometeor classification is the process that aims at identifying the dominant type of hydrometeor (e.g. rain, hail, snow aggregates, hail, graupel, ice crystals) in a domain covered by a polarimetric weather radar during precipitation. The techniques documented in the literature are mostly based on numerical simulations and fuzzy logic. This involves the arbitrary selection of a set of hydrometeor classes and the numerical simulation of theoretical radar observations associated to each class. The information derived from the simulation is then applied to actual radar measurements by means of fuzzy logic input-output association. This approach has some limitations: the number and type of the hydrometeor categories undergoing identification is selected arbitrarily and the scattering simulations are based on constraining assumptions, especially in case of solid hydrometeors. Furthermore, in presence of noise and uncertainties, it is not guaranteed that the selected hydrometeor classes can be effectively identified in actual observations. In the present work we propose a different starting point for the classification task, which is based on observations instead of numerical simulations. We provide criteria for the selection of the number of hydrometeor classes that can be identified, by looking at how polarimetric observations collected over different precipitation events form clusters in the multi-dimensional space of the polarimetric variables. Two datasets, collected by an X-band weather radar, are employed in the study. The first dataset covers mountainous weather conditions (Swiss Alps), while the second includes Mediterranean orographic precipitation events collected during the special observation period (SOP) 2012 of the HyMeX campaign. We employ an unsupervised hierarchical clustering method to group the observations into clusters and we introduce a spatial smoothness constraint for the groups, assuming that the hydrometeor type changes smoothly in space

  13. Multiwaveband polarimetric observations of NRAO 530 on parsec-scale

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; Shen, Z.-Q.; Feng, S.-W.

    2010-10-01

    We report on Very Long Baseline Array polarimetric observations of NRAO 530 at 5, 8, 15, 22 and 43 GHz made during one week in 1997 February. We present the total intensity, the fractional polarization and the electric vector position angle (EVPA) distributions at all these frequencies. A model fitting has been performed to the full polarization visibility data. From this, the fitted southernmost component A is confirmed as the core of the radio structure with relatively high brightness temperature and hard spectrum between 15 and 43 GHz in comparison with the central component B of dominant flux. The relatively high degree of polarization for the component A may arise from its complex radio structure, which can be resolved at 86 GHz. In contrast, the component B shows a well-fitted power-law spectrum with a spectral index of about -0.5 (f ~ να), and a linear correlation between EVPAs and wavelength square with an observed rotation measure of about -1062 rad m-2, indicating its structural singleness. Assuming that the component B has a comparable degree of polarization without depolarization at these frequencies, the decrease in fractional polarization with wavelength mainly results from opacity and Faraday rotation, in which the opacity plays quite a large role. A spine-sheath-like structure in fractional polarization (m) is detected, covering almost the whole emission region at 5 and 8 GHz, with a degree of polarization relatively low along the jet spine, becoming higher towards two sides of the jet. The linear polarization at 5 GHz shows three separate polarized emission regions with alternately aligned and orthogonal polarization vectors down the jet. The polarization goes to zero between the top two regions, with the highest polarization level occurring at the top and bottom. The 5- and 8-GHz images show EVPA changes across the width of the jet as well as along the jet. These complex polarimetric properties can be explained in terms of either the presence of

  14. Enhanced material classification using turbulence-degraded polarimetric imagery.

    PubMed

    Hyde, Milo W; Schmidt, Jason D; Havrilla, Michael J; Cain, Stephen C

    2010-11-01

    An enhanced material-classification algorithm using turbulence-degraded polarimetric imagery is presented. The proposed technique improves upon an existing dielectric/metal material-classification algorithm by providing a more detailed object classification. This is accomplished by redesigning the degree-of-linear-polarization priors in the blind-deconvolution algorithm to include two subclasses of metals--an aluminum group classification (includes aluminum, copper, gold, and silver) and an iron group classification (includes iron, titanium, nickel, and chromium). This new classification provides functional information about the object that is not provided by existing dielectric/metal material classifiers. A discussion of the design of these new degree-of-linear-polarization priors is provided. Experimental results of two painted metal samples are also provided to verify the algorithm's accuracy. PMID:21042363

  15. Soil Moisture Estimation under Vegetation Applying Polarimetric Decomposition Techniques

    NASA Astrophysics Data System (ADS)

    Jagdhuber, T.; Schön, H.; Hajnsek, I.; Papathanassiou, K. P.

    2009-04-01

    Polarimetric decomposition techniques and inversion algorithms are developed and applied on the OPAQUE data set acquired in spring 2007 to investigate their potential and limitations for soil moisture estimation. A three component model-based decomposition is used together with an eigenvalue decomposition in a combined approach to invert for soil moisture over bare and vegetated soils at L-band. The applied approach indicates a feasible capability to invert soil moisture after decomposing volume and ground scattering components over agricultural land surfaces. But there are still deficiencies in modeling the volume disturbance. The results show a root mean square error below 8.5vol.-% for the winter crop fields (winter wheat, winter triticale and winter barley) and below 11.5Vol-% for the summer crop field (summer barley) whereas all fields have a distinct volume layer of 55-85cm height.

  16. SEEDS Polarimetric Imagery of the AB Aur Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Wisniewski, John P.; Fukagawa, M.; Grady, C.; Hashimoto, J.; Hodapp, K.; Kudo, T.; Munetake, M.; Okamoto, Y.; Tamura, M.; SEEDS Team

    2011-01-01

    The Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) is a large survey which will be observing roughly 200 protoplanetary and debris disk systems over the next five years using the HiCIAO coronagraph + AO188 system on the Subaru telescope. We present new J-band polarimetric differential imagery of the proto-type Herbig Ae star, AB Aurigae, which diagnoses scattered light from the system between 20 - 540 AU at a resolution of roughly 8 AU. We discuss the morphology we observe in the outer disk region in the context of previous observations of the system, and compare/contrast the morphology in the inner disk region with recent H-band imagery of the system made with HiCIAO (Hashimoto et al 2010). This work was supported in part by NSF grants AST 0802230 and AST 1009314 and the AAS' Chretien International Research Grant.

  17. Polarimetric studies of comet C/2012 L2 (LINEAR)

    NASA Astrophysics Data System (ADS)

    Roy, P. Deb; Sekhar Das, H.; Medhi, B.

    2014-07-01

    In the present work, we report the results obtained from polarimetric observations of comet C/2012 L2 (LINEAR) in the photometric R filter. The observations have been performed with the 1.04-m Sampurnanand telescope of ARIES near Nainital in India on March 11 & 12, 2013 at 31° phase angle. The intensity and polarization profiles of the comet have shown a noticeable variation with the cometocentric distance in all possible directions which suggest physical dust evolution. The degree of polarization obtained from our study is almost uniform with the aperture changes on both nights of observation. A jet is detected in both the intensity and polarization maps of comet C/2012 L2 (LINEAR) in the tailward direction.

  18. Classification of scattering objects from polarimetric radar images

    NASA Astrophysics Data System (ADS)

    Caillault, Sabine; Saillard, Joseph

    An automatic classification of geometrical targets is sought in order to simplify the interpretation which is necessary to read an image. The algorithms which have been developed are applied to real geometrical scattering objects measured during an X-pol radar campaign. Specific measurements and a precise analysis of this set of images provide the interpretation and the decomposition of many scattering effects. Several classification techniques are applied to the different parameters. One of the methods involved is a multidata analysis called PCA (principal components analysis). An algorithm of neural networks provides good results for the classification problem. Classification of geometrical scattering objects shows the interest of polarimetric parameters as well as the main advantages of neural networks for this particular application.

  19. Photometric and polarimetric properties of the Bruderheim chondritic meteorite.

    NASA Technical Reports Server (NTRS)

    Egan, W. G.; Hilgeman, T.; Veverka, J.; Noland, M.

    1973-01-01

    Study of the spectral, photometric, and polarimetric properties of the Bruderheim olivine-hypersthene chondritic meteorite. This meteorite is representative of the most common meteoritic material recovered on earth, and, hence, could also be the most common in interplanetary space. Yet, comparison with astronomical data indicates that none of the asteroids in the main belt for which adequate observations exist can be matched with Bruderheim properties. Only the surface of the Apollo asteroid Icarus does, in light of polarization and photometry data, appear to be consistent with an ordinary chondrite composition. This suggests the possibility that this material, although common in earth-crossing orbits, is rare as a surface constituent in the main asteroid belt.

  20. Multiscale Segmentation of Polarimetric SAR Image Based on Srm Superpixels

    NASA Astrophysics Data System (ADS)

    Lang, F.; Yang, J.; Wu, L.; Li, D.

    2016-06-01

    Multi-scale segmentation of remote sensing image is more systematic and more convenient for the object-oriented image analysis compared to single-scale segmentation. However, the existing pixel-based polarimetric SAR (PolSAR) image multi-scale segmentation algorithms are usually inefficient and impractical. In this paper, we proposed a superpixel-based binary partition tree (BPT) segmentation algorithm by combining the generalized statistical region merging (GSRM) algorithm and the BPT algorithm. First, superpixels are obtained by setting a maximum region number threshold to GSRM. Then, the region merging process of the BPT algorithm is implemented based on superpixels but not pixels. The proposed algorithm inherits the advantages of both GSRM and BPT. The operation efficiency is obviously improved compared to the pixel-based BPT segmentation. Experiments using the Lband ESAR image over the Oberpfaffenhofen test site proved the effectiveness of the proposed method.

  1. Preliminary measurements of contrast in polarimetric signatures of humans

    NASA Astrophysics Data System (ADS)

    Hodgkin, Van A.; Deaver, Dawne M.; LeMaster, Daniel A.

    2014-05-01

    The reflective bands in modern imaging, i.e., the visible through the short wave infrared (SWIR), have become very attractive for use in both daytime and low light target acquisition and surveillance. In addition, the nature of the target in modern conflict again includes the human body as a principle target. The spectral natures of the reflectivities of humans, their clothing, what they may be carrying, and the environments in which they are immersed, along with the spectral nature and strength of the light sources that illuminate them, have been the essential components of the contrasts in the signatures that are used in models that predict probabilities of target acquisition and discrimination. What has been missing is the impact that polarization in these signatures can have on image contrast. This paper documents a preliminary investigation into the contrast in active and passive polarimetric signatures of humans holding two-handed objects in the SWIR.

  2. Activity-based intelligence tipping and cueing using polarimetric sensors

    NASA Astrophysics Data System (ADS)

    Lewis, Christian M.; Messinger, David; Gartley, Michael G.

    2014-05-01

    Activity Based Intelligence (ABI) is the derivation of information from the composite of a series of individual actions being recorded over a period of time. Due to its temporal nature, ABI is usually developed from Motion Imagery (MI) or Full Motion Video (FMV) taken of a given scene. One of today's common issues is sifting through such large volumes of temporal data. Here we propose using a technique known as tipping an cueing to alleviate the need to manually sift through said data. Being able to tip the analysts or automated algorithm towards a particular person or object in the data is useful in reducing search time. We propose using a polarimetric sensor to identify objects of interest, in a scene where their signature would be unusual. Once identified, this data will be used to cue a FMV RGB sensor to track the object and determine the activities being executed by the person bringing the object into the scene.

  3. K-distribution and polarimetric terrain radar clutter

    NASA Technical Reports Server (NTRS)

    Yueh, S. H.; Kong, J. A.; Jao, J. K.; Shin, R. T.; Novak, L. M.

    1989-01-01

    A multivariate K-distribution is proposed to model the statistics of fully polarimetric radar data from earth terrain with polarizations HH, HV, VH, and VV. In this approach, correlated polarizations of radar signals, as characterized by a covariance matrix, are treated as the sum of N n-dimensional random vectors; N obeys the negative binomial distribution with a parameter alpha and mean N-bar. Subsequently, an n-dimensional K-distribution, with either zero or nonzero mean, is developed in the limit of infinite N-bar or illuminated area. The probability density function (PDF) of the K-distributed vector normalized by its Euclidean norm is independent of the parameter alpha and is the same as that derived from a zero-mean Gaussian-distributed random vector.

  4. Structure of polarimetric purity of a Mueller matrix and sources of depolarization

    NASA Astrophysics Data System (ADS)

    Gil, José J.

    2016-06-01

    The depolarization properties of a medium with associated Mueller matrix M are characterized through two complementary sets of parameters, namely 1) the three indices of polarimetric purity (IPP), which are directly linked to the relative weights of the spectral components of M and provide complete information on the structure of polarimetric randomness, but are insensitive to the specific polarimetric behaviors that introduce the lack of randomness, and 2) the set of three components of purity (CP), constituted by the polarizance, the diattenuation and the degree of spherical purity. The relations between these sets of physical invariant quantities are studied by means of their representation into a common purity figure. Furthermore, the polarimetric properties of a general Mueller matrix M are parameterized in terms of sixteen meaningful quantities, three of them being the IPP, which together with the CP provide complete information on the integral depolarization properties of the medium.

  5. Variation in MidIR and LWIR polarimetric imagery due to diurnal and meteorological impacts

    NASA Astrophysics Data System (ADS)

    Gurton, Kristan P.; Felton, Melvin

    2008-04-01

    We present radiometric and polarimetric calibrated imagery recorded in both the mid-wave IR (MidIR) and long wave IR (LWIR) as a function diurnal variation over several multiday periods. We compare differences in polarimetric and conventional thermal imagry for both IR atmospheric transmission windows, i.e., 3-5μm and 8-12 μm regions. Meteorological parameters measured during the study include temperature, relative-humidity, wind-speed/direction, precipitation, and ambient atmospheric IR loading. The two camera systems used in the study differed significantly in design. The LWIR polarimetric sensor utilizes a spinning achromatic retarder and is best suited for static scenes, while the MidIR system is based on a division-of-aperture design and is capable of recording polarimetric imagery of targets that are rapidly moving. Examples of both S0 (conventional thermal) and degree-of-linear polarization (DOLP) imagery are presented and compared.

  6. Adaptive polarimetric image representation for contrast optimization of a polarized beacon through fog

    NASA Astrophysics Data System (ADS)

    Panigrahi, Swapnesh; Fade, Julien; Alouini, Mehdi

    2015-06-01

    We present a contrast-maximizing optimal linear representation of polarimetric images obtained from a snapshot polarimetric camera for enhanced vision of a polarized light source in obscured weather conditions (fog, haze, cloud) over long distances (above 1 km). We quantitatively compare the gain in contrast obtained by different linear representations of the experimental polarimetric images taken during rapidly varying foggy conditions. It is shown that the adaptive image representation that depends on the correlation in background noise fluctuations in the two polarimetric images provides an optimal contrast enhancement over all weather conditions as opposed to a simple difference image which underperforms during low visibility conditions. Finally, we derive the analytic expression of the gain in contrast obtained with this optimal representation and show that the experimental results are in agreement with the assumed correlated Gaussian noise model.

  7. Polarimetric analysis of the Thirty Meter Telescope (TMT) for modeling instrumental polarization characteristics

    NASA Astrophysics Data System (ADS)

    Atwood, Jenny; Skidmore, Warren; Anupama, G. C.; Anche, Ramya M.; Reddy, Krishna; Sen, Asoke

    2014-08-01

    The Thirty Meter Telescope (TMT) will be called upon to support a polarimetric observing capability. Many different observing programs covering a range of different science areas are being considered for the TMT and a model of the overall polarization characteristics is being developed. The instrument development program will provide a means for polarimetric instruments to be developed, however the telescope itself and the AO system must be able to support polarimetric instruments. As a first step to defining the necessary polarimetric technical requirements we have created an international working group to carry out a study in which technical and cost implications will be balanced with scientific impact; new requirements will be generated with supporting science cases. We present here initial results of the instrumental polarization sensitivity of TMT with NFIRAOS, the first-light adaptive optics system.

  8. Infrared active polarimetric imaging system controlled by image segmentation algorithms: application to decamouflage

    NASA Astrophysics Data System (ADS)

    Vannier, Nicolas; Goudail, François; Plassart, Corentin; Boffety, Matthieu; Feneyrou, Patrick; Leviandier, Luc; Galland, Frédéric; Bertaux, Nicolas

    2016-05-01

    We describe an active polarimetric imager with laser illumination at 1.5 µm that can generate any illumination and analysis polarization state on the Poincar sphere. Thanks to its full polarization agility and to image analysis of the scene with an ultrafast active-contour based segmentation algorithm, it can perform adaptive polarimetric contrast optimization. We demonstrate the capacity of this imager to detect manufactured objects in different types of environments for such applications as decamouflage and hazardous object detection. We compare two imaging modes having different number of polarimetric degrees of freedom and underline the characteristics that a polarimetric imager aimed at this type of applications should possess.

  9. Polarimetric Exploration of Solar System Small Bodies: Search for Habitability

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, Padma A.

    2015-08-01

    The overarching goals for the remote sensing and robotic exploration of our solar system and exoplanetary systems are: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. These goals can be realized with the inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy. Since all objects have unique polarimetric signatures, like fingerprints, much can be learned about the scattering object. Although polarization, in general, is elliptical by nature, special cases such as linear and circular polarimetric signatures provide insight into the various types of scattering media and are valuable tools to be developed. Additionally, spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. The search for habitability can benefit from spectrophotopolarimetry. While linear polarization of reflected light by solar system objects (planetary atmospheres, satellites, rings systems, comets, asteroids, dust, etc.) provides insight into the scattering characteristics of aerosols and hazes in atmospheres and surficial properties of atmosphereless objects, circular polarization and related chirality) or handedness, a property of molecules that exhibit mirror-image symmetry, similar to right and left hands) can serve as diagnostic of biological activity. All known life forms on earth are chiral and pre-dominantly left-handed. However, many of these applications suffer from lack of detailed observations, instrumentation, dedicated missions and numerical/retrieval methods. I will present a review of the field, with advances made in instrumentation, measurements and applications to prospective missions.

  10. Polarimetric glucose sensing in vitro: a high frequency approach

    NASA Astrophysics Data System (ADS)

    Pirnstill, Casey W.; Grunden, Daniel; Coté, Gerard L.

    2013-02-01

    Optical polarimetry as a method to monitor glucose levels in the aqueous humor has shown promise as a way to noninvasively ascertain blood glucose concentration. A major limiting factor to polarimetric approaches for glucose monitoring in the aqueous humor is time varying birefringence due to motion artifact. Here, we present a modulation approach for real-time polarimetry that is capable of glucose monitoring in vitro at optical modulation frequencies of tens of kHz and includes the DC-compensation in a single device. Such higher frequency modulation has the potential benefit of improving the signal-to-noise ratio of the system in the presence of motion artifacts. In this report we present a near real-time closed-loop single wavelength polarimeter capable of glucose sensing in vitro at an optical modulation frequency of 32 kHz. The single wavelength polarimetric setup and in vitro glucose measurements will be presented demonstrating the sensitivity and accuracy of the system. Our PID control system can reach stability in less than 10 ms which is fast enough to overcome motion artifact due to heart beat and respiration. The the system can predict the glucose concentration with a standard error of less than 18.5 mg/dL and a MARD of less than 6.65% over the physiologic glucose range of 0-600 mg/dL. Our results indicate that this optical modulation approach coupled with dual-wavelength polarimetry has the potential to improve the of the dual-wavelength approach for in vivo glucose detection applications.

  11. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1995-01-01

    This publication is the first of three containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in this volume; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in Volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.

  12. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5. The summaries are contained in Volumes 1, 2, and 3, respectively.

  13. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1995-01-01

    This publication is the second volume of the summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop on January 25-26. The summaries for this workshop appear in volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop on January 26. The summaries for this workshop appear in this volume.

  14. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; the summaries for this workshop appear in Volume 1; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; the summaries for this workshop appear in Volume 2; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5; the summaries for this workshop appear in Volume 3.

  15. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1995-01-01

    This publication is the third containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in this volume; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.

  16. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1993-01-01

    This publication contains the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D.C. on October 25-29, 1993. The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Spectrometer (AVIRIS) workshop, on October 25-26, whose summaries appear in Volume 1; The Thermal Infrared Multispectral Scanner (TIMS) workshop, on October 27, whose summaries appear in Volume 2; and The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on October 28-29, whose summaries appear in this volume, Volume 3.

  17. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; the summaries for this workshop appear in Volume 1; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; the summaries for this workshop appear in Volume 2; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5; the summaries for this workshop appear in Volume 3.

  18. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1993-01-01

    This is volume 2 of a three volume set of publications that contain the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D.C. on October 25-29, 1993. The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on October 25-26. The summaries for this workshop appear in Volume 1. The Thermal Infrared Multispectral Scanner (TIMS) workshop, on October 27. The summaries for this workshop appear in Volume 2. The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on October 28-29. The summaries for this workshop appear in Volume 3.

  19. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1993-01-01

    This publication contains the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D. C. October 25-29, 1993 The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, October 25-26 (the summaries for this workshop appear in this volume, Volume 1); The Thermal Infrared Multispectral Scanner (TMIS) workshop, on October 27 (the summaries for this workshop appear in Volume 2); and The Airborne Synthetic Aperture Radar (AIRSAR) workshop, October 28-29 (the summaries for this workshop appear in Volume 3).

  20. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  1. Adaptive binary material classification of an unknown object using polarimetric images degraded by atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Kim, Mu J.; Hyde, Milo W.

    2012-10-01

    An improved binary material-classification algorithm using passive polarimetric imagery degraded by atmospheric turbulence is presented. The technique implements a modified version of an existing polarimetric blind-deconvolution algorithm in order to remove atmospheric distortion and correctly classify the unknown object. The classification decision, dielectric or metal in this case, is based on degree of linear polarization (DoLP) estimates provided by the blind-deconvolution algorithm augmented by two DoLP priors - one statistically modeling the polarization behavior of metals and the other statistically modeling the polarization behavior of dielectrics. The DoLP estimate which maximizes the log-likelihood function determines the image pixel's classification. The method presented here significantly improves upon a similar published polarimetric classification method by adaptively updating the DoLP priors as more information becomes available about the scene. This new adaptive method significantly extends the range of validity of the existing polarimetric classification technique to near-normal collection geometries where most polarimetric material classifiers perform poorly. In this paper, brief reviews of the polarimetric blind-deconvolution algorithm and the functional forms of the DoLP priors are provided. Also provided is the methodology for making the algorithm adaptive including three techniques for updating the DoLP priors using in-progress DoLP estimates. Lastly, the proposed technique is experimentally validated by comparing classification results of two dielectric and metallic samples obtained using the new method to those obtained using the existing technique.

  2. Remote detection of buried land-mines and IEDs using LWIR polarimetric imaging.

    PubMed

    Gurton, Kristan P; Felton, Melvin

    2012-09-24

    We report results of an ongoing study designed to assess the ability for enhanced detection of recently buried land-mines and/or improvised explosive devices (IED) devices using passive long-wave infrared (LWIR) polarimetric imaging. Polarimetric results are presented for a series of field tests conducted at various locations and soil types. Well-calibrated Stokes images, S0, S1, S2, and the degree-of-linear-polarization (DoLP) are recorded for different line-of-sight (LOS) slant paths at varying distances. Results span a three-year time period in which three different LWIR polarimetric camera systems are used. All three polarimetric imaging platforms used a spinning-achromatic-retarder (SAR) design capable of achieving high polarimetric frame rates and good radiometric throughput without the loss of spatial resolution inherent in other optical designs. Receiver-operating-characteristic (ROC) analysis and a standardized contrast parameter are used to compare detectability between conventional LWIR thermal and polarimetric imagery. Results suggest improved detectability, regardless of geographic location or soil type. PMID:23037383

  3. THREE-DIMENSIONAL POLARIMETRIC CORONAL MASS EJECTION LOCALIZATION TESTED THROUGH TRIANGULATION

    SciTech Connect

    Moran, Thomas G.; Davila, Joseph M.

    2010-03-20

    We have tested the validity of the coronal mass ejection (CME) polarimetric reconstruction technique for the first time using triangulation and demonstrated that it can provide the angle and distance of CMEs to the plane of the sky. In this study, we determined the three-dimensional orientation of the CMEs that occurred on 2007 August 21 and 2007 December 31 using polarimetric observations obtained simultaneously with the Solar Terrestrial Relations Observatory/Sun Earth Connection Coronal and Heliospheric Investigation spacecraft COR1-A and COR1-B coronagraphs. We obtained the CME orientations using both the triangulation and polarimetric techniques and found that angles to the sky plane yielded by the two methods agree to within {approx} 5 deg., validating the polarimetric reconstruction technique used to analyze CMEs observed with the Solar and Heliospheric Observatory/Large Angle Spectrometric Coronagraph. In addition, we located the CME source regions using EUV and magnetic field measurements and found that the corresponding mean angles to the sky plane of those regions agreed with those yielded by the geometric and polarimetric methods within uncertainties. Furthermore, we compared the locations provided by polarimetric COR1 analysis with those determined from other analyses using COR2 observations combined with geometric techniques and forward modeling. We found good agreement with those studies relying on geometric techniques but obtained results contradictory to those provided by forward modeling.

  4. Polarimetric phenomenology in the reflective regime: a case study using polarized hyperspectral data

    NASA Astrophysics Data System (ADS)

    Gibney, Mark

    2016-05-01

    Understanding the phenomenology of polarimetric data is necessary if we want to obtain the maximum benefit when we exploit that data. To first order, polarimetric phenomenology is driven by two things; the target material type (specular or diffuse) and the illuminating source (point (sun) or extended (body emission)). Polarimetric phenomenology can then be broken into three basic categories; ([specular material/sun source], [diffuse/sun], [specular/body]) where we have assigned body emission to the IR passband where materials are generally specular. The task of interest determines the category of interest since the task determines the dominant target material and the illuminating source (eg detecting diffuse targets under trees in VNIR = [diffuse/sun] category). In this paper, a specific case study for the important [diffuse/sun] category will be presented. For the reflective regime (0.3 - 3.0um), the largest polarimetric signal is obtained when the sun illuminates a significant portion of the material BRDF lobe. This naturally points us to problems whose primary target materials are diffuse since the BRDF lobe for specular materials is tiny (low probability of acquiring on the BRDF lobe) and glinty (high probability of saturating the sensor when on lobe). In this case study, we investigated signatures of solar illuminated diffuse paints acquired by a polarimetric hyperspectral sensor. We will discuss the acquisition, reduction and exploitation of that data, and use it to illustrate the primary characteristics of reflective polarimetric phenomenology.

  5. The ROHP-PAZ mission and the polarimetric and non-polarimetric effects of rain and other fozen hydrometeors on GNSS Radio-Occultation signals.

    NASA Astrophysics Data System (ADS)

    De La Torre Juarez, M.; Padulles, R.; Cardellach, E.; Tomás, S.; Turk, J.; Ao, C. O.; Oliveras, S.; Rius, A.

    2015-12-01

    The Radio Occultation and Heavy Precipitation experiment aboard the PAZ Low Earth Orbiter (ROHP-PAZ) will test, for the first time, the new polarimetric radio occultation (RO) concept. This is a mission of opportunity: The Spanish Ministry of Science and Innovation (MICINN) approved in 2009 a proposal to include a polarimetric Global Navigation Satellite System (GNSS) RO payload on board of the Spanish Earth Observation satellite PAZ. The launch of the satellite is scheduled for October 2015, and it will be followed by a 6-month commissioning phase period and has an expected life of 7 years, with a goal of 10 years.The concept is similar to that used in some polarimetric weather radars: to measure the differential phase shift between the two polarimetric components of the received signal, although in this case we will use the forward scattering geometry instead of the backscattering one. It will allow us to retrieve precipitation and other hydrometeors information, and simultaneous thermodynamic vertical profiles which will help to the understanding of the thermodynamic processes beyond heavy rain events. A sensitivity analysis has been performed, showing that the rain-induced effect is above PAZ detectability threshold in 90% of the events with along-ray averaged rain rate higher than 5 mm/h. Also, a ground field campaign has been conducted prior to the launch of the satellite. The measurements from the campaign have shown the first experimental evidences that precipitation and frozen hydrometeors induce a noticeable effect into the polarimetric RO observables. We will present here the actual status of the mission and the results from the field campaign. We will also discuss the results of the theoretical study of the thermodynamics and the effects of rain and frozen hydrometeors into standard and polarimetric RO, based on a large collocation exercise of COSMIC and TerrasSar-X with TRMM, GPM and CloudSat.

  6. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  7. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  8. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  9. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles. PMID:7005667

  10. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  11. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  12. A multiwavelength polarimetric study towards the open cluster NGC 1893

    NASA Astrophysics Data System (ADS)

    Eswaraiah, C.; Pandey, A. K.; Maheswar, G.; Medhi, Biman J.; Pandey, J. C.; Ojha, D. K.; Chen, W. P.

    2011-03-01

    We present multiwavelength linear polarimetric observations for 44 stars of the NGC 1893 young open cluster region along with V-band polarimetric observations of stars of four other open clusters located between l˜ 160° and 175°. We found evidence for the presence of two dust layers located at a distance of ˜170 and ˜360 pc. The dust layers produce a polarization PV˜ 2.2 per cent. It is evident from the clusters studied in this work that, in the Galactic longitude range from l˜ 160° to 175° and within the Galactic plane (|b| < 2°), the polarization angles remain almost constant, with a mean of ˜163° and a dispersion of 6°. The small dispersion in polarization angle could be due to the presence of a uniform dust layer beyond 1 kpc. Present observations reveal that in the case of NGC 1893, the foreground two dust layers, in addition to the intracluster medium, seem to be responsible for the polarization effects. It is also found that towards the direction of NGC 1893, the dust layer that exists between 2 and 3 kpc has a negligible contribution towards the total observed polarization. The weighted mean for percentage of polarization (Pmax) and the wavelength at maximum polarization (λmax) are found to be 2.59 ± 0.02 per cent and 0.55 ± 0.01 μm, respectively. The estimated mean value of λmax indicates that the average size of the dust grains within the cluster is similar to that in the general interstellar medium. The spatial variation of the polarization is found to decrease towards the outer region of the cluster. In this work, we support the notion, as has already been shown in previous studies, that polarimetry, in combination with the (U-B)-(B-V) colour-colour diagram, is a useful tool for identifying non-members in a cluster.

  13. Improvement of PWF filter using wavelet thresholding for polarimetric SAR imagery

    NASA Astrophysics Data System (ADS)

    Boutarfa, S.; Smara, Y.; Fadel, H.; Bouguessa, N.

    2011-10-01

    The images acquired by polarimetric SAR radar systems are characterized by the presence of a noise named speckle. This noise, have a multiplicative nature, corrompt at the same time the amplitude and the phase which complicates the data interpretation, degrades the performance of segmentation and reduces the targets detectability. From where need to pretreate images by adapted filtering methods, before carrying out their analysis. In this article, we study the polarimetric wightening filter PWF of Novak and Burl which treats the polarimetric covariance matrix to produce a filtered intensity image. We propose two methods to improve the PWF filter: the first integrates the technique of Lee edge detection to improve the filter performance and detect fine details of the image. This method is called LSDPWF (Lee Structure Detection PWF). After detecting the edges, we filter the detected regions in the polarimetric channels by the PWF filter. The second combines the method of filtering by wavelet thresholding with PWF filter using the stationary wavelet transform SWT. This method is called EPWF (Enhanced PWF). In the wavelet thresholding, we use the soft thresholding which sets to zero the amplitudes of coefficients that are below a certain threshold. So we propose to extend the wavelet thresholding, to apply it in polarimetric SAR images and use the polarimetric information to calculate the threshold on the wavelet coefficients. We implemented these filters and applied them to RADARSAT-2 polarimetric images taken on the areas of Algiers, Algeria. A visual and statistical evaluation and a comparative study are performed. The performance evaluation of each filter is based on smoothing homogeneous areas and preserving edges.

  14. Airborne radioactive contamination monitoring

    SciTech Connect

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  15. Airborne Raman lidar

    NASA Astrophysics Data System (ADS)

    Heaps, Wm. S.; Burris, J.

    1996-12-01

    We designed and tested an airborne lidar system using Raman scattering to make simultaneous measurements of methane, water vapor, and temperature in a series of flights on a NASA-operated C-130 aircraft. We present the results for methane detection, which show that the instrument has the requisite sensitivity to atmospheric trace gases. Ultimately these measurements can be used to examine the transport of chemically processed air from within the polar vortex to mid-latitudinal regions and the exchange of stratospheric air between tropical and mid-latitudinal regions.

  16. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  17. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  18. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  19. Weighing of moving vehicles using fiber optic polarimetric sensor

    NASA Astrophysics Data System (ADS)

    Ng-Lee, Hooi Leng; Kannathal, N.; Lau, Jun Kiat; Song, Zi Chen Desmond; Seah, Wei Siong; Asundi, Anand K.

    2013-06-01

    Vehicular weight measurement while the vehicle is in motion has a significant application in traffic monitoring and weight regulation. While a conventional weighing scale requires vehicles to be sidetracked to a weighing scale, the current on-line system can provide a means of instantaneous measurement while the vehicle is moving. This would improve the throughput of heavily laden vehicles. The basis of this system is a Fiber Optic Polarimetric Sensor (FOPS) based on the principle of change in polarization of the light transmitting through the polarization maintaining (PM) fiber when subjected to external perturbation. The system is capable of static, transient and dynamic measurements. Circularly polarized laser light is coupled into the PM fiber, which is then subjected to the weight of the moving vehicle driven over it. The output from the photodetector is then displayed and analyzed using the software developed using LabView. The relationship between the weight of the moving vehicle and the wheel signature generated as vehicle passes over the pad is represented using a mathematical model. An accuracy of 86% in weight measurement of moving vehicles is achieved through this proposed system.

  20. Degree of ice particle surface roughness inferred from polarimetric observations

    NASA Astrophysics Data System (ADS)

    Hioki, S.; Yang, P.; Baum, B. A.; Platnick, S.; Meyer, K. G.; King, M. D.; Riedi, J.

    2015-12-01

    The degree of surface roughness of ice particles within thick, cold ice clouds is inferred from multi-directional, multi-spectral satellite polarimetric observations over oceans, assuming a column-aggregate particle habit. An improved roughness inference scheme is employed in the analysis that provides a more noise-resilient roughness estimate than the conventional best-fit approach. The improvements include the introduction of a quantitative roughness parameter based on empirical orthogonal function analysis and proper treatment of polarization due to atmospheric scattering above clouds. A global one-month data sample supports the use of a severely roughened ice habit to simulate the polarized reflectivity associated with ice clouds over ocean. The density distribution of the roughness parameter inferred from the global one-month data sample and further analyses of a few case studies demonstrate the significant variability of ice cloud single-scattering properties. The present theoretical results are in close agreement with observations in the extratropics but not in the tropics. Potential improvements are discussed to enhance the depiction of the natural variability on a global scale.

  1. Automatic UXO classification for fully polarimetric GPR data

    NASA Astrophysics Data System (ADS)

    Youn, Hyoung-Sun; Chen, Chi-Chih

    2003-09-01

    This paper presents an automatic UXO classification system using neural network and fuzzy inference based on the classification rules developed by the OSU. These rules incorporate scattering pattern, polarization and resonance features extracted from an ultra-wide bandwidth, fully polarimetric radar system. These features allow one to discriminate an elongated object. The algorithm consists of two stages. The first-stage classifies objects into clutter (group-A and D), a horizontal linear object (group-B) and a vertical linear object (group-C) according to the spatial distribution of the Estimated Linear Factor (ELF) values. Then second-stage discriminates UXO-LIKE targets from clutters under groups B and C. The rule in the first-stage was implemented by neural network and rules in the second-stage were realized by fuzzy inference with quantitative variables, i.e. ELF level, flatness of Estimated Target Orientation (ETO), the consistency of the target orientation, and the magnitude of the target response. It was found that the classification performance of this automatic algorithm is comparable with or superior to that obtained from a trained expert. However, the automatic classification procedure does not require the involvement of the operator and assigns a unbiased quantitative confidence level (or quality factor) associated with each classification. Classification error and inconsistency associated with fatigue, memory fading or complex features should be greatly reduced.

  2. Dehazing method through polarimetric imaging and multi-scale analysis

    NASA Astrophysics Data System (ADS)

    Cao, Lei; Shao, Xiaopeng; Liu, Fei; Wang, Lin

    2015-05-01

    An approach for haze removal utilizing polarimetric imaging and multi-scale analysis has been developed to solve one problem that haze weather weakens the interpretation of remote sensing because of the poor visibility and short detection distance of haze images. On the one hand, the polarization effects of the airlight and the object radiance in the imaging procedure has been considered. On the other hand, one fact that objects and haze possess different frequency distribution properties has been emphasized. So multi-scale analysis through wavelet transform has been employed to make it possible for low frequency components that haze presents and high frequency coefficients that image details or edges occupy are processed separately. According to the measure of the polarization feather by Stokes parameters, three linear polarized images (0°, 45°, and 90°) have been taken on haze weather, then the best polarized image min I and the worst one max I can be synthesized. Afterwards, those two polarized images contaminated by haze have been decomposed into different spatial layers with wavelet analysis, and the low frequency images have been processed via a polarization dehazing algorithm while high frequency components manipulated with a nonlinear transform. Then the ultimate haze-free image can be reconstructed by inverse wavelet reconstruction. Experimental results verify that the dehazing method proposed in this study can strongly promote image visibility and increase detection distance through haze for imaging warning and remote sensing systems.

  3. Polarimetric glucose sensing in an artificial eye anterior chamber

    NASA Astrophysics Data System (ADS)

    Malik, Bilal H.; Pirnstill, Casey W.; Coté, Gerard L.

    2012-03-01

    The application of optical polarimetry to glucose sensing in the anterior chamber of the eye has emerged as a potential technique to noninvasively ascertain blood glucose levels. One of the major limiting factors preventing the realization of such a device is the time varying corneal birefringence due to motion artifact in the eye. The varying birefringence confounds the optical activity of glucose, and thus, needs to be taken into account in order to successfully predict the glucose concentration in the aqueous humor of the eye. Our group has developed a multi-spectral optical polarimetric approach which can minimize the effect of corneal birefringence coupled with motion artifact by treating it as common mode noise to multiple wavelengths. Here, we present the application of a real-time closed-loop dual wavelength polarimeter to ex vivo glucose sensing in excised New Zealand White rabbits' corneas mounted on an artificial anterior chamber. Our PID control system can reach stability in less than 100 ms which is fast enough to overcome motion artifact due to heart beat and respiration. The system can predict the glucose concentration with a standard error of less than 26 mg/dL in the physiologic glucose range of 0 - 500 mg/dL. Our results indicate that dualwavelength polarimetry has the potential to noninvasively probe glucose through the anterior chamber of the eye.

  4. Polarimetric scattering behavior of materials at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    DiGiovanni, David Anthony

    Terahertz spectroscopic techniques have long been used to characterize the electromagnetic behavior of materials for use in radar, astronomy, and remote sensing applications. Spectroscopic information is valuable, but additional information about materials is present in the polarization of the scattered radiation. This thesis has investigated the polarimetric scattering behavior of various rough dielectric and metallic materials from 100 GHz to 1.55 THz. Common building materials and terrain, such as sand, gravel, soil, concrete, and roofing shingles, were studied. In order to obtain a better understanding of basic rough surface scattering phenomenology in this region of the spectrum, roughened metal and plastic samples were studied as well. The scattering behavior of these materials was studied as a function of incident angle, roughness, frequency, and polarization. Theoretical scattering models were used to compare measured results to theoretical predictions. Good agreement was observed between scattering measurements and theoretical predictions based on the small perturbation theory for the roughened metal surfaces. However, a substantial disagreement was observed for the rough dielectric surfaces and is discussed.

  5. Photometric and polarimetric properties of the Bruderheim chondritic meteorite

    NASA Technical Reports Server (NTRS)

    Egan, W. G.; Veverka, J.; Noland, M.; Hilgeman, T.

    1973-01-01

    Photometric and polarimetric laboratory measurements were made as a function of phase angle in the U(0.36 microns), G(0.54 microns) and R(0.67 microns) bands for 0, 30 and 60 deg incident illumination on four particle size ranges of Bruderheim, an L6 olivine-hypersthene chondritic meteorite. The four particle size ranges were: 0.25-4.76 mm coated with less than 74 microns powder, 74-250 microns, and less than 37 microns. In addition, normal reflectance measurements were made in the spectral range from 0.31 to 1.1 microns. Comparison with astronomical data reveals that none of the asteroids in the main belt for which adequate observations exist can be matched with Bruderheim, which is representative of the most common meteoritic material encountered by the Earth. However, it appears from the polarization and photometry data that the surface of the Apollo asteroid Icarus is consistent with an ordinary chondrite composition. This suggests the possibility that this material, although common in Earth-crossing orbits, is rare as a surface constituent in the main asteroid belt.

  6. Estimating index of refraction from polarimetric hyperspectral imaging measurements.

    PubMed

    Martin, Jacob A; Gross, Kevin C

    2016-08-01

    Current material identification techniques rely on estimating reflectivity or emissivity which vary with viewing angle. As off-nadir remote sensing platforms become increasingly prevalent, techniques robust to changing viewing geometries are desired. A technique leveraging polarimetric hyperspectral imaging (P-HSI), to estimate complex index of refraction, N̂(ν̃), an inherent material property, is presented. The imaginary component of N̂(ν̃) is modeled using a small number of "knot" points and interpolation at in-between frequencies ν̃. The real component is derived via the Kramers-Kronig relationship. P-HSI measurements of blackbody radiation scattered off of a smooth quartz window show that N̂(ν̃) can be retrieved to within 0.08 RMS error between 875 cm-1 ≤ ν̃ ≤ 1250 cm-1. P-HSI emission measurements of a heated smooth Pyrex beaker also enable successful N̂(ν̃) estimates, which are also invariant to object temperature. PMID:27505760

  7. Degree of ice particle surface roughness inferred from polarimetric observations

    NASA Astrophysics Data System (ADS)

    Hioki, Souichiro; Yang, Ping; Baum, Bryan A.; Platnick, Steven; Meyer, Kerry G.; King, Michael D.; Riedi, Jerome

    2016-06-01

    The degree of surface roughness of ice particles within thick, cold ice clouds is inferred from multi-directional, multi-spectral satellite polarimetric observations over oceans, assuming a column-aggregate particle habit. An improved roughness inference scheme is employed that provides a more noise-resilient roughness estimate than the conventional best-fit approach. The improvements include the introduction of a quantitative roughness parameter based on empirical orthogonal function analysis and proper treatment of polarization due to atmospheric scattering above clouds. A global 1-month data sample supports the use of a severely roughened ice habit to simulate the polarized reflectivity associated with ice clouds over ocean. The density distribution of the roughness parameter inferred from the global 1-month data sample and further analyses of a few case studies demonstrate the significant variability of ice cloud single-scattering properties. However, the present theoretical results do not agree with observations in the tropics. In the extratropics, the roughness parameter is inferred but 74 % of the sample is out of the expected parameter range. Potential improvements are discussed to enhance the depiction of the natural variability on a global scale.

  8. Alternative to Four-Component Decomposition for Polarimetric SAR

    NASA Astrophysics Data System (ADS)

    Zhang, J. X.; Huang, G. M.; Wei, J. J.; Zhao, Z.

    2016-06-01

    There are more unknowns than equations to solve for previous four-component decomposition methods. In this case, the nonnegative power of each scattering mechanism has to be determined with some assumptions and physical power constraints. This paper presents a new decomposition scheme, which models the measured matrix after polarimetric orientation angle (POA) compensation as a linear sum of five scattering mechanisms (i.e., odd-bounce scattering, double-bounce scattering, diffuse scattering, volume scattering, and helix scattering). And the volume scattering power is calculated by a slight modified NNED method, owing to this method considering the external volume scattering model from oblique dihedral structure. After the helix and volume scattering powers have been determined sequentially, the other three scattering powers are estimated by combining the generalized similarity parameter (GSP) and the eigenvalue decomposition. Among them, due to POA compensation, the diffuse scattering induced from a dihedral with a relative orientation of 45º has negligible scattering power. Thus, the new method can be reduced as four-component decomposition automatically. And then the ALOS-2 PolSAR data covering Guiyang City, Guizhou Province, China were used to evaluate the performance of the new method in comparison with some classical decomposition methods (i.e. Y4R, S4R and G4U).

  9. Airborne transmission of lyssaviruses.

    PubMed

    Johnson, N; Phillpotts, R; Fooks, A R

    2006-06-01

    In 2002, a Scottish bat conservationist developed a rabies-like disease and subsequently died. This was caused by infection with European bat lyssavirus 2 (EBLV-2), a virus closely related to Rabies virus (RABV). The source of this infection and the means of transmission have not yet been confirmed. In this study, the hypothesis that lyssaviruses, particularly RABV and the bat variant EBLV-2, might be transmitted via the airborne route was tested. Mice were challenged via direct introduction of lyssavirus into the nasal passages. Two hours after intranasal challenge with a mouse-adapted strain of RABV (Challenge Virus Standard), viral RNA was detectable in the tongue, lungs and stomach. All of the mice challenged by direct intranasal inoculation developed disease signs by 7 days post-infection. Two out of five mice challenged by direct intranasal inoculation of EBLV-2 developed disease between 16 and 19 days post-infection. In addition, a simple apparatus was evaluated in which mice could be exposed experimentally to infectious doses of lyssavirus from an aerosol. Using this approach, mice challenged with RABV, but not those challenged with EBLV-2, were highly susceptible to infection by inhalation. These data support the hypothesis that lyssaviruses, and RABV in particular, can be spread by airborne transmission in a dose-dependent manner. This could present a particular hazard to personnel exposed to aerosols of infectious RABV following accidental release in a laboratory environment. PMID:16687600

  10. Fitting a Two-Component Scattering Model to Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Freeman, A.

    1998-01-01

    Classification, decomposition and modeling of polarimetric SAR data has received a great deal of attention in the recent literature. The objective behind these efforts is to better understand the scattering mechanisms which give rise to the polarimetric signatures seen in SAR image data. In this Paper an approach is described, which involves the fit of a combination of two simple scattering mechanisms to polarimetric SAR observations. The mechanisms am canopy scatter from a cloud of randomly oriented oblate spheroids, and a ground scatter term, which can represent double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants or Bragg scatter from a moderately rough surface, seen through a layer of vertically oriented scatterers. An advantage of this model fit approach is that the scattering contributions from the two basic scattering mechanisms can be estimated for clusters of pixels in polarimetric SAR images. The solution involves the estimation of four parameters from four separate equations. The model fit can be applied to polarimetric AIRSAR data at C-, L- and P-Band.

  11. A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands

    NASA Astrophysics Data System (ADS)

    Lavigne, Daniel A.; Breton, Mélanie; Fournier, Georges; Pichette, Mario; Rivet, Vincent

    2009-05-01

    Electro-optical imaging systems are frequently employed during surveillance operations and search and rescue missions to detect various targets of interest in both the civilian and military communities. By incorporating the polarization of light as supplementary information to such electro-optical imaging systems, it may be possible to increase the target discrimination performance considering that man-made objects are known to depolarize light in different manners than natural backgrounds. Consequently, many passive Stokes-vector imagers have been developed over the years. These sensors generally operate using one single spectral band at a time, which limits considerably the polarization information collected across a scene over a predefined specific spectral range. In order to improve the understanding of the phenomena that arise in polarimetric signatures of man-made targets, a new passive polarimetric imaging system was developed at Defence Research and Development Canada - Valcartier to collect polarization signatures over an extended spectral coverage. The Visible Infrared Passive Spectral Polarimetric Imager for Contrast Enhancement (VIP SPICE) operates four broad-band cameras concomitantly in the visible (VIS), the shortwave infrared (SWIR), the midwave infrared (MWIR), and the longwave infrared (LWIR) bands. The sensor is made of four synchronously-rotating polarizers mounted in front of each of the four cameras. Polarimetric signatures of man-made objects were acquired at various polarization angles in the four spectral bands. Preliminary results demonstrate the utility of the sensor to collect significant polarimetric signatures to discriminate man-made objects from their background.

  12. Atmospheric polarimetric effects on GNSS radio occultations: the ROHP-PAZ field campaign

    NASA Astrophysics Data System (ADS)

    Padullés, R.; Cardellach, E.; de la Torre Juárez, M.; Tomás, S.; Turk, F. J.; Oliveras, S.; Ao, C. O.; Rius, A.

    2016-01-01

    This study describes the first experimental observations showing that hydrometeors induce polarimetric signatures in global navigation satellite system (GNSS) signals. This evidence is relevant to the PAZ low Earth orbiter, which will test the concept and applications of polarimetric GNSS radio occultation (RO) (i.e. ROs obtained with a dual-polarization antenna). A ground field campaign was carried out in preparation for PAZ to verify the theoretical sensitivity studies on this concept (Cardellach et al., 2015). The main aim of the campaign is to identify and understand the factors that might affect the polarimetric GNSS observables. Studied for the first time, GNSS signals measured with two polarimetric antennas (H, horizontal, and V, vertical) are shown to discriminate between heavy rain events by comparing the measured phase difference between the H and V phase delays (ΔΦ) in different weather scenarios. The measured phase difference indicates higher dispersion under rain conditions. When individual events are examined, significant increases in ΔΦ occur when the radio signals cross rain cells. Moreover, the amplitude of such a signal is much higher than the theoretical prediction for precipitation; thus, other sources of polarimetric signatures have been explored and identified. Modelling of other hydrometeors, such as melting particles and ice crystals, have been proposed to explain the obtained measurements, with good agreement in more than 90 % of the cases.

  13. Atmospheric polarimetric effects on GNSS Radio Occultations: the ROHP-PAZ field campaign

    NASA Astrophysics Data System (ADS)

    Padullés, R.; Cardellach, E.; de la Torre Juárez, M.; Tomás, S.; Turk, F. J.; Oliveras, S.; Ao, C. O.; Rius, A.

    2015-07-01

    This study describes the first experimental observations showing that hydrometeors induce polarimetric signatures in Global Navigation Satellite System (GNSS) signals. This evidence is relevant to the PAZ Low Earth Orbiter, which will test the concept and applications of polarimetric GNSS Radio Occultation (RO) (i.e. ROs obtained with a two-polarization antenna). A ground field campaign was carried out in preparation for PAZ to verify the theoretical sensitivity studies about this concept (Cardellach et al., 2015). The main aim of the campaign is to identify and understand the factors that might affect the polarimetric GNSS observables. Studied for the first time, GNSS signals measured with two polarimetric antennas (H, horizontal and V, vertical) are shown to discriminate heavy rain events, by comparing the measured phase difference between the H and V phase delays (Δ Φ) in different weather scenarios. The measured phase difference indicates higher dispersion under rain conditions. When individual events are examined, significant increases of Δ Φ occur when the radio signals cross rain cells. Moreover, the amplitude of such signal is much higher than the theoretical prediction for precipitation; thus other sources of polarimetric signatures have been explored and identified. Modelling of other hydrometeors like melting particles and ice crystals have been proposed to explain the obtained measurements, with good agreement in more than 90 % of the cases.

  14. CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations

    PubMed Central

    Zribi, Mehrez; Pardé, Mickael; Boutin, Jacquline; Fanise, Pascal; Hauser, Daniele; Dechambre, Monique; Kerr, Yann; Leduc-Leballeur, Marion; Reverdin, Gilles; Skou, Niels; Søbjærg, Sten; Albergel, Clement; Calvet, Jean Christophe; Wigneron, Jean Pierre; Lopez-Baeza, Ernesto; Rius, Antonio; Tenerelli, Joseph

    2011-01-01

    The “Cooperative Airborne Radiometer for Ocean and Land Studies” (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed on board a dedicated French ATR42 research aircraft, in conjunction with other airborne instruments (C-Band scatterometer—STORM, the GOLD-RTR GPS system, the infrared CIMEL radiometer and a visible wavelength camera). Following initial laboratory qualifications, three airborne campaigns involving 21 flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic Ocean) in 2007, 2008 and 2009, in coordination with in situ field campaigns. In order to validate the CAROLS data, various aircraft flight patterns and maneuvers were implemented, including straight horizontal flights, circular flights, wing and nose wags over the ocean. Analysis of the first two campaigns in 2007 and 2008 leads us to improve the CAROLS radiometer regarding isolation between channels and filter bandwidth. After implementation of these improvements, results show that the instrument is conforming to specification and is a useful tool for Soil Moisture and Ocean Salinity (SMOS) satellite validation as well as for specific studies on surface soil moisture or ocean salinity. PMID:22346599

  15. Synthetic vision using polarization-sensitive thermal imaging

    NASA Astrophysics Data System (ADS)

    Chun, Cornell S. L.; Fleming, David L.; Harvey, W. A.; Torok, E. J.; Sadjadi, Firooz A.

    1996-05-01

    Landing of aircraft in inclement weather and taxiing operation in the presence of copious obstacles is a major issues in air traffic control for both military and civilian aviation. Onboard sensors are needed to penetrate smoke, fog, and haze and to provide enough resolution for the automated detection and recognition of runways and obstacles. The performance of automatic target recognition (ATR) systems using thermal infrared (FLIR) images is limited by the low contrast in intensity for terrestrial scenes. We are developing a thermal imaging technique where, in each image pixel, a combination of intensity and polarization data is captured simultaneously. Images of polarization have useful contrast for different surface orientations. This contrast should facilitate image segmentation and classification of objects. In this paper, we will describe a combination of two innovative technologies: a polarization-sensitive thermal imaging sensor and a suite of polarimetric specific automatic object detection and recognition algorithms. The sensor has been able to capture polarization data from thermal emissions of automobiles. Surface orientations can be measured in the same image frame as temperature distribution. For the evaluation of the algorithms a set of performance metrics will be defined. We will discuss our evaluation of the algorithms on synthetic images as would be captured with the polarization-sensitive sensor. We will compare the polarimetric specific ATR performance with the performance of conventional FLIR-based ATR.

  16. Use of a photomultiplier with a single-crystal and polycrystal GaAs photocathode for polarimetric astronomical observations

    NASA Astrophysics Data System (ADS)

    Bergner, Iu. K.; Iudin, R. V.; Miroshnichenko, A. S.; Iutanov, N. Iu.

    Laboratory investigations of photomultipliers with a single-crystal and polycrystal GaAs photocathode are reported. Data processing formulas for polarimetric and photometric observations which take the detector's proper polarization into account are given. It is shown that the photomultiplier FEU-138 meets the requirements for precision photometric and polarimetric astronomical research.

  17. GLORI: A GNSS-R Dual Polarization Airborne Instrument for Land Surface Monitoring.

    PubMed

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal; Egido, Alejandro; Darrozes, José; Al-Yaari, Amen; Baghdadi, Nicolas; Baup, Frédéric; Dayau, Sylvia; Fieuzal, Remy; Frison, Pierre-Louis; Guyon, Dominique; Wigneron, Jean-Pierre

    2016-01-01

    Global Navigation Satellite System-Reflectometry (GNSS-R) has emerged as a remote sensing tool, which is complementary to traditional monostatic radars, for the retrieval of geophysical parameters related to surface properties. In the present paper, we describe a new polarimetric GNSS-R system, referred to as the GLObal navigation satellite system Reflectometry Instrument (GLORI), dedicated to the study of land surfaces (soil moisture, vegetation water content, forest biomass) and inland water bodies. This system was installed as a permanent payload on a French ATR42 research aircraft, from which simultaneous measurements can be carried out using other instruments, when required. Following initial laboratory qualifications, two airborne campaigns involving nine flights were performed in 2014 and 2015 in the Southwest of France, over various types of land cover, including agricultural fields and forests. Some of these flights were made concurrently with in situ ground truth campaigns. Various preliminary applications for the characterisation of agricultural and forest areas are presented. Initial analysis of the data shows that the performance of the GLORI instrument is well within specifications, with a cross-polarization isolation better than -15 dB at all elevations above 45°, a relative polarimetric calibration accuracy better than 0.5 dB, and an apparent reflectivity sensitivity better than -30 dB, thus demonstrating its strong potential for the retrieval of land surface characteristics. PMID:27213393

  18. GLORI: A GNSS-R Dual Polarization Airborne Instrument for Land Surface Monitoring

    PubMed Central

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal; Egido, Alejandro; Darrozes, José; Al-Yaari, Amen; Baghdadi, Nicolas; Baup, Frédéric; Dayau, Sylvia; Fieuzal, Remy; Frison, Pierre-Louis; Guyon, Dominique; Wigneron, Jean-Pierre

    2016-01-01

    Global Navigation Satellite System-Reflectometry (GNSS-R) has emerged as a remote sensing tool, which is complementary to traditional monostatic radars, for the retrieval of geophysical parameters related to surface properties. In the present paper, we describe a new polarimetric GNSS-R system, referred to as the GLObal navigation satellite system Reflectometry Instrument (GLORI), dedicated to the study of land surfaces (soil moisture, vegetation water content, forest biomass) and inland water bodies. This system was installed as a permanent payload on a French ATR42 research aircraft, from which simultaneous measurements can be carried out using other instruments, when required. Following initial laboratory qualifications, two airborne campaigns involving nine flights were performed in 2014 and 2015 in the Southwest of France, over various types of land cover, including agricultural fields and forests. Some of these flights were made concurrently with in situ ground truth campaigns. Various preliminary applications for the characterisation of agricultural and forest areas are presented. Initial analysis of the data shows that the performance of the GLORI instrument is well within specifications, with a cross-polarization isolation better than −15 dB at all elevations above 45°, a relative polarimetric calibration accuracy better than 0.5 dB, and an apparent reflectivity sensitivity better than −30 dB, thus demonstrating its strong potential for the retrieval of land surface characteristics. PMID:27213393

  19. Oil source-fingerprinting in support of polarimetric radar mapping of Macondo-252 oil in Gulf Coast marshes

    USGS Publications Warehouse

    Ramsey III, Elijah W.; Meyer, Buffy M.; Rangoonwala, Amina; Overton, Edward; Jones, Cathleen E.; Bannister, Terri

    2014-01-01

    Polarimetric synthetic aperture radar (PolSAR) data exhibited dramatic, spatially extensive changes from June 2009 to June 2010 in Barataria Bay, Louisiana. To determine whether these changes were associated with the Deepwater Horizon (DWH) oil spill, twenty-nine sediment samples were collected in 2011 from shoreline and nearshore–interior coastal marsh locations where oil was not observed visually or with optical sensors during the spill. Oil source-fingerprinting and polytopic vector analysis were used to link DWH oil to PolSAR changes. Our results prove that DWH oil extended beyond shorelines and confirm the association between presence of DWH oil and PolSAR change. These results show that the DWH oil spill probably affected much more of the southeastern Louisiana marshland than originally concluded from ground and aerial surveys and verify that PolSAR is a powerful tool for tracking oil intrusion into marshes with high probability even where contamination is not visible from above the canopy.

  20. Oil source-fingerprinting in support of polarimetric radar mapping of Macondo-252 oil in Gulf Coast marshes.

    PubMed

    Ramsey, Elijah; Meyer, Buffy M; Rangoonwala, Amina; Overton, Edward; Jones, Cathleen E; Bannister, Terri

    2014-12-15

    Polarimetric synthetic aperture radar (PolSAR) data exhibited dramatic, spatially extensive changes from June 2009 to June 2010 in Barataria Bay, Louisiana. To determine whether these changes were associated with the Deepwater Horizon (DWH) oil spill, twenty-nine sediment samples were collected in 2011 from shoreline and nearshore-interior coastal marsh locations where oil was not observed visually or with optical sensors during the spill. Oil source-fingerprinting and polytopic vector analysis were used to link DWH oil to PolSAR changes. Our results prove that DWH oil extended beyond shorelines and confirm the association between presence of DWH oil and PolSAR change. These results show that the DWH oil spill probably affected much more of the southeastern Louisiana marshland than originally concluded from ground and aerial surveys and verify that PolSAR is a powerful tool for tracking oil intrusion into marshes with high probability even where contamination is not visible from above the canopy. PMID:25455375

  1. Dynamic scene generation, multimodal sensor design, and target tracking demonstration for hyperspectral/polarimetric performance-driven sensing

    NASA Astrophysics Data System (ADS)

    Presnar, Michael D.; Raisanen, Alan D.; Pogorzala, David R.; Kerekes, John P.; Rice, Andrew C.

    2010-04-01

    Simulation of moving vehicle tracking has been demonstrated using hyperspectral and polarimetric imagery (HSI/PI). Synthetic HSI/PI image cubes of an urban scene containing moving vehicle content were generated using the Rochester Institute of Technology's Digital Imaging and Remote Sensing Image Generation (DIRSIG) Megascene #1 model. Video streams of sensor-reaching radiance frames collected from a virtual orbiting aerial platform's imaging sensor were used to test adaptive sensor designs in a target tracking application. A hybrid division-of-focal-plane imaging sensor boasting an array of 2×2 superpixels containing both micromirrors and micropolarizers was designed for co-registered HSI/PI aerial remote sensing. Pixel-sized aluminum wire-grid linear polarizers were designed and simulated to measure transmittance, extinction ratio, and diattenuation responses in the presence of an electric field. Wire-grid spacings of 500 [nm] and 80 [nm] were designed for lithographic deposition and etching processes. Both micromirror-relayed panchromatic imagery and micropolarizer-collected PI were orthorectified and then processed by Numerica Corporation's feature-aided target tracker to perform multimodal adaptive performance-driven sensing of moving vehicle targets. Hyperspectral responses of selected target pixels were measured using micromirror-commanded slits to bolster track performance. Unified end-to-end track performance case studies were completed using both panchromatic and degree of linear polarization sensor modes.

  2. Assessing integration of intensity, polarimetric scattering, interferometric coherence and spatial texture metrics in PALSAR-derived land cover classification

    NASA Astrophysics Data System (ADS)

    Jin, Huiran; Mountrakis, Giorgos; Stehman, Stephen V.

    2014-12-01

    Synthetic aperture radar (SAR) is an important alternative to optical remote sensing due to its ability to acquire data regardless of weather conditions and day/night cycle. The Phased Array type L-band SAR (PALSAR) onboard the Advanced Land Observing Satellite (ALOS) provided new opportunities for vegetation and land cover mapping. Most previous studies employing PALSAR investigated the use of one or two feature types (e.g. intensity, coherence); however, little effort has been devoted to assessing the simultaneous integration of multiple types of features. In this study, we bridged this gap by evaluating the potential of using numerous metrics expressing four feature types: intensity, polarimetric scattering, interferometric coherence and spatial texture. Our case study was conducted in Central New York State, USA using multitemporal PALSAR imagery from 2010. The land cover classification implemented an ensemble learning algorithm, namely random forest. Accuracies of each classified map produced from different combinations of features were assessed on a pixel-by-pixel basis using validation data obtained from a stratified random sample. Among the different combinations of feature types evaluated, intensity was the most indispensable because intensity was included in all of the highest accuracy scenarios. However, relative to using only intensity metrics, combining all four feature types increased overall accuracy by 7%. Producer's and user's accuracies of the four vegetation classes improved considerably for the best performing combination of features when compared to classifications using only a single feature type.

  3. Feasibility of inter-comparing airborne and spaceborne observations of radar backscattering coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper investigates the feasibility of using an airborne synthetic aperture radar (SAR) to validate spaceborne SAR data. This is directed at soil moisture sensing and the recently launched Soil Moisture Active Passive (SMAP) satellite. The value of this approach is related to the fact that vicar...

  4. Comparison with CLPX II airborne data using DMRT model

    USGS Publications Warehouse

    Xu, X.; Liang, D.; Andreadis, K.M.; Tsang, L.; Josberger, E.G.

    2009-01-01

    In this paper, we considered a physical-based model which use numerical solution of Maxwell Equations in three-dimensional simulations and apply into Dense Media Radiative Theory (DMRT). The model is validated in two specific dataset from the second Cold Land Processes Experiment (CLPX II) at Alaska and Colorado. The data were all obtain by the Ku-band (13.95GHz) observations using airborne imaging polarimetric scatterometer (POLSCAT). Snow is a densely packed media. To take into account the collective scattering and incoherent scattering, analytical Quasi-Crystalline Approximation (QCA) and Numerical Maxwell Equation Method of 3-D simulation (NMM3D) are used to calculate the extinction coefficient and phase matrix. DMRT equations were solved by iterative solution up to 2nd order for the case of small optical thickness and full multiple scattering solution by decomposing the diffuse intensities into Fourier series was used when optical thickness exceed unity. It was shown that the model predictions agree with the field experiment not only co-polarization but also cross-polarization. For Alaska region, the input snow structure data was obtain by the in situ ground observations, while for Colorado region, we combined the VIC model to get the snow profile. ??2009 IEEE.

  5. Correlation of environmental data measurements with polarimetric LWIR sensor measurements of manmade objects in natural clutter

    NASA Astrophysics Data System (ADS)

    McCarthy, James; Woolley, Mark; Roth, Luz

    2010-04-01

    In recent years there has been an increased interest in using polarimetric imaging sensors for terrestrial remote sensing applications because of their ability to discriminate manmade objects in a natural clutter background. However, adverse weather limits the performance of these sensors. Long Wave Infrared (LWIR) polarimetric sensor data of a scene containing manmade objects in a natural clutter background is compared with simultaneously collected environmental data. In this paper, a metric is constructed from the Stokes parameter S1 and is correlated with some environmental channels. There are differences in the correlation outputs, with the sensor data metric positively correlated with some environmental channels, negatively correlated with some channels and uncorrelated with other channels. Results from real data measurements are presented and interpreted. An uncooled LWIR sensor using an achromatic retarder to capture the polarimetric states performed the data collection. The environmental channels include various meteorological channels, radiation loading and soil properties.

  6. Workshop on advanced polarimetric instrumentation: API'09. Preface of the workshop

    NASA Astrophysics Data System (ADS)

    Garcia-Caurel, E.

    2010-06-01

    The First NanoCharM Workshop on Advanced Polarimetric Instrumentation was focused on the instrumentation developed to work with polarised light, which is the cause of a great deal of research and study in a variety of fields, such as astronomy, telecommunications, defence, medicine, electronics, material science, metrology and many more. The workshop was therefore organised around six themes: imaging, astronomy and satellites, measurement of optical activity, Mueller matrix algebra and polarimetric data analysis, diffractometry and metrology of nanostructures, as well as new developments in polarimetric instrumentation. The workshop was founded by the European project NanoCharM the aim of which is, firstly, to coordinate research activities focusing on the characterisation of materials using polarised light (polarimetry) and, secondly, to develop communication initiatives to make scientists, decision-makers in the broadest sense of the term, industrialists and students aware of the various applications of polarised light.

  7. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  8. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  9. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  10. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  11. [From synthetic biology to synthetic humankind].

    PubMed

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed. PMID:26238764

  12. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  13. Study of Movement and Seepage Along Levees Using DINSAR and the Airborne UAVSAR Instrument

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen E.; Bawden, Gerald; Deverel, Steven; Dudas, Joel; Hensley, Scott

    2012-01-01

    We have studied the utility of high resolution SAR (synthetic aperture radar) for levee monitoring using UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) data collected along the dikes and levees in California's Sacramento-San Joaquin Delta and along the lower Mississippi River. Our study has focused on detecting and tracking changes that are indicative of potential problem spots, namely deformation of the levees, subsidence along the levee toe, and seepage through the levees, making use of polarimetric and interferometric SAR techniques. Here was present some results of those studies, which show that high resolution, low noise SAR imaging could supplement more traditional ground-based monitoring methods by providing early indicators of seepage and deformation.

  14. Mono- and multistatic polarimetric sparse aperture 3D SAR imaging

    NASA Astrophysics Data System (ADS)

    DeGraaf, Stuart; Twigg, Charles; Phillips, Louis

    2008-04-01

    SAR imaging at low center frequencies (UHF and L-band) offers advantages over imaging at more conventional (X-band) frequencies, including foliage penetration for target detection and scene segmentation based on polarimetric coherency. However, bandwidths typically available at these center frequencies are small, affording poor resolution. By exploiting extreme spatial diversity (partial hemispheric k-space coverage) and nonlinear bandwidth extrapolation/interpolation methods such as Least-Squares SuperResolution (LSSR) and Least-Squares CLEAN (LSCLEAN), one can achieve resolutions that are commensurate with the carrier frequency (λ/4) rather than the bandwidth (c/2B). Furthermore, extreme angle diversity affords complete coverage of a target's backscatter, and a correspondingly more literal image. To realize these benefits, however, one must image the scene in 3-D; otherwise layover-induced misregistration compromises the coherent summation that yields improved resolution. Practically, one is limited to very sparse elevation apertures, i.e. a small number of circular passes. Here we demonstrate that both LSSR and LSCLEAN can reduce considerably the sidelobe and alias artifacts caused by these sparse elevation apertures. Further, we illustrate how a hypothetical multi-static geometry consisting of six vertical real-aperture receive apertures, combined with a single circular transmit aperture provide effective, though sparse and unusual, 3-D k-space support. Forward scattering captured by this geometry reveals horizontal scattering surfaces that are missed in monostatic backscattering geometries. This paper illustrates results based on LucernHammer UHF and L-band mono- and multi-static simulations of a backhoe.

  15. Radio continuum polarimetric imaging of high redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Carilli, C. L.; Owen, F. N.; Harris, D. E.

    1994-01-01

    Multifrequency images of total and polarized radio continuum emission from the two high redshift radio galaxies 0902+343 (z = 3.40) and 0647+415 (4C 41.17, z = 3.80) are presented. These images represent the most sensitive polarimetric study of high redshift ratio galaxies to date. The emission from both galaxies is substantially polarized, up to 30% in some regions, and both sources sit behind deep 'Faraday screens,' producing large rotation measures, over 10(exp 3) rad/sq. m in magnitude, and large rotation measure gradients across the sources. Such large rotation measures provide further evidence that high redshift radio galaxies are situated in very dense environments. Drawing the analogy to a class of low redshift powerful radio galaxies with similarly large rotation measures, we suggest that 0902+343 and 0647+415 are situated at the centers of dense, x-ray 'colling flow' clusters, and that the cluster gas is substantially magnetized. The remarkable similarity between the optical and radio morphologies of 0647+415 on scales as small as 0.1 sec is presented. We consider, and reject, both synchrotron and inverse Compton radiation as possible sources of the optical emission. We also consider both scattering of light out of a 'cone' of radiation from an obscured nucleus, and jet-induced star formation, and find that both models encounter difficulties in explaining this remarkably close radio-optical alignment. High resolution spectral index images reveal compact, flat spectrum components in both sources. We suggest that these components are the active nuclei of the galaxies. Lastly, high resolution images of 0902+343 show that the southernmost component forms a 'ring' of 0.2 sec radius. We discuss the possibility that this ring is the result of gravitational lensing, along the lines proposed by Kochanek & Lawrence (1990).

  16. Potential use of hybrid synthetic aperture radar polarimetry in Earth surface monitoring

    NASA Astrophysics Data System (ADS)

    Trisasongko, Bambang H.

    2015-09-01

    To observe delicate Earth surface continuously, satellite-based monitoring system is required. Especially in tropical region, Synthetic Aperture Radar (SAR) is necessitated considering its ability to penetrate cloud and other atmospheric attenuations. Recent fully polarimetric SAR has been exploited. Nonetheless, this mode of imaging consumes higher amount of energy, which is one of the main issues in satellite-based platform. In this paper, a study exploiting hybrid (also known as compact) polarization is presented. Comparison to fully polarimetric mode of SAR is made using polarimetric decomposition. This research indicates that single signal transmission in hybrid polarization cannot fully replace fully-polarized mode. This suggests that hybrid polarization should be limitedly applied to geo-biophysical applications such as biomass or soil moisture estimation. However, for general land cover discrimination and monitoring, hybrid polarimetry is fairly useful. Analysis of transformed divergence on decomposition parameters entropy, alpha angle and anisotropy shows that hybrid polarization successfully discriminates major land cover types with some degrees of confidence.

  17. Polarimetric radar and aircraft observations of saggy bright bands during MC3E

    DOE PAGESBeta

    Matthew R. Kumjian; Giangrande, Scott E.; Mishra, Subashree; Toto, Tami; Ryzhkov, Alexander V.; Bansemer, Aaron

    2016-03-19

    Polarimetric radar observations increasingly are used to understand cloud microphysical processes, which is critical for improving their representation in cloud and climate models. In particular, there has been recent focus on improving representations of ice collection processes (e.g., aggregation, riming), as these influence precipitation rate, heating profiles, and ultimately cloud life cycles. However, distinguishing these processes using conventional polarimetric radar observations is difficult, as they produce similar fingerprints. This necessitates improved analysis techniques and integration of complementary data sources. Furthermore, the Midlatitude Continental Convective Clouds Experiment (MC3E) provided such an opportunity.

  18. Development of tunable polarimetric optical scattering instrument from 4.3-9.7 microns

    NASA Astrophysics Data System (ADS)

    Vap, Jason C.; Nauyoks, Stephen E.; Fitzgerald, Thomas; Marciniak, Michael A.

    2011-09-01

    To examine the polarimetric Bidirectional Scatter Distribution Function (BSDF) of samples in the mid-wave infrared (MWIR) and long-wave infrared (LWIR), a full Stokes polarimetric optical scatter instrument has been developed which is tunable from 4.3-9.7 microns through the use of six external-cavity quantum-cascade lasers. The polarimeter is realized through a dual-rotating-retarder configuration, which allows full Mueller-matrix extraction over the tunable wavelengths. Optical characterization of the polarimeter components was conducted to establish performance baselines for the system. The dynamic range of the system is nine orders of magnitude.

  19. High-resolution fibre-fed spectrograph for the 6-m telescope. Polarimetric unit

    NASA Astrophysics Data System (ADS)

    Kukushkin, D. E.; Sazonenko, D. A.; Bakholdin, A. V.; Yushkin, M. V.; Bychkov, V. D.

    2016-04-01

    We report the computation of the design of a polarimetric unit for the optical scheme of the fiberfed high-resolution spectrograph for the 6-m Russian telescope.We discuss a variant of its integration into the design of conversion optics at the input of the fiber path if the instrument and estimate the efficiency of the entire pre-fiber optical system. The luminous efficiency of the assembly is equal to 80 and 90% when operated in the polarimetry and normal spectroscopic modes, respectively.We estimate the lower limit for the distorting instrumental effects of the polarimetric unit.

  20. HPLC enantiomeric resolution of (+)-cinchonine and (-)-cinchonidine with diode-laser polarimetric detection

    SciTech Connect

    Diaz, A.N.; Sanchez, F.G.; Gallardo, A.A.; Pareja, A.G.

    1996-12-31

    The combination of UV and diode-laser polarimetric detection of chiral molecules offers significant advantages in high performance liquid chromatography. The method described here circumvents the derivatization step and the use of chiral stationary or mobile phases for the resolution of enantiomers. Data acquisition of the polarimeter was performed with AC/DC interface and software Pico ADC-100 coupled to the polarimeter detector. Quantitative methods in the range 1-150 {mu}g and 1-600 {mu}g of (+)-cinchonine and (-)-cinchonidine, respectively, were established. Enantiomeric ratio determined by using UV and diode-laser polarimetric data without chiral separation is discussed. 10 refs., 4 figs., 1 tab.

  1. Polarimetric Glucose Sensing Using Brewster Reflection off of Eye Lens: Theoretical Analysis

    NASA Technical Reports Server (NTRS)

    Boeckle, Stefan; Rovati, Luigi; Ansari, Rafat R.

    2002-01-01

    An important task of in vivo polarimetric glucose sensing is to find an appropriate way to optically access the aqueous humor of the human eye. In this paper two different approaches are analyzed theoretically and applied to the eye model of Le Grand. First approach is the tangential path of Cote, et al. (G.L. Cot6, M.D. Fox, and R.B. Northrop: Noninvasive Optical Polarimetric Glucose Sensing Using a True Phase Measurement Technique. IEEE Transactions on Biomedical Engineering, vol. 39, no. 7, pp. 752-756, 1992.) and the second is a new scheme of this paper of applying Brewster reflection off the eye lens.

  2. Improved Model-Based Polarimetric Decomposition Using the POlINSAR Similarity Parameter

    NASA Astrophysics Data System (ADS)

    Latrache, H.; Ouarzeddine, M.; Souissi, B.

    2016-06-01

    In this paper, we present a new approach to solve the problem of volume scattering ambiguity in urban area, for that we propose a volume model based on the polarimetric interferometric similarity parameter (PISP) . The new model is more adaptive and fits better with both forest and oriented built-up areas. Thereby, a new model-based polarimetric decomposition scheme is developed. To test the performance of the proposed method ESAR PolInSAR L bande data of Oberpfaffenhofen, Germany is used. Comparison experiments show that the proposed method gives good results, since all the oriented built-up areas are well discriminated as double or odd bounce structures.

  3. Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.

    2013-01-01

    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.

  4. Estimating Forest Vertical Structure from Multialtitude, Fixed-Baseline Radar Interferometric and Polarimetric Data

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.; Law, Beverly E.; Siqueira, Paul R.

    2000-01-01

    Parameters describing the vertical structure of forests, for example tree height, height-to-base-of-live-crown, underlying topography, and leaf area density, bear on land-surface, biogeochemical, and climate modeling efforts. Single, fixed-baseline interferometric synthetic aperture radar (INSAR) normalized cross-correlations constitute two observations from which to estimate forest vertical structure parameters: Cross-correlation amplitude and phase. Multialtitude INSAR observations increase the effective number of baselines potentially enabling the estimation of a larger set of vertical-structure parameters. Polarimetry and polarimetric interferometry can further extend the observation set. This paper describes the first acquisition of multialtitude INSAR for the purpose of estimating the parameters describing a vegetated land surface. These data were collected over ponderosa pine in central Oregon near longitude and latitude -121 37 25 and 44 29 56. The JPL interferometric TOPSAR system was flown at the standard 8-km altitude, and also at 4-km and 2-km altitudes, in a race track. A reference line including the above coordinates was maintained at 35 deg for both the north-east heading and the return southwest heading, at all altitudes. In addition to the three altitudes for interferometry, one line was flown with full zero-baseline polarimetry at the 8-km altitude. A preliminary analysis of part of the data collected suggests that they are consistent with one of two physical models describing the vegetation: 1) a single-layer, randomly oriented forest volume with a very strong ground return or 2) a multilayered randomly oriented volume; a homogeneous, single-layer model with no ground return cannot account for the multialtitude correlation amplitudes. Below the inconsistency of the data with a single-layer model is followed by analysis scenarios which include either the ground or a layered structure. The ground returns suggested by this preliminary analysis seem

  5. Location of the Rhine plume front by airborne remote sensing

    NASA Astrophysics Data System (ADS)

    Ruddick, K. G.; Lahousse, L.; Donnay, E.

    1994-04-01

    The aim of this study was to determine the feasibility of using airborne remote sensing to locate the Rhine plume front. Interest in fronts arises from the desire to predict the fate of pollutants and biological nutrients discharged from rivers into the open sea. Observations were made during flights over the Dutch coastal waters using a vertically-mounted video camera and a side-looking airborne radar (SLAR) designed for oil slick detection. Comparison of radar images with visual observations of the sea colour discontinuity and foam line establish that fronts can indeed be detected by SLAR because of high radar backscatter along the convergence line, where the fresh water jet impinges on saltier water. This provides a sound basis for future investigations using Synthetic Aperture Radar as mounted on ERS-1. An estimation of errors is given, identifying priorities for improvement of the technique. The accuracy achieved is considered sufficient for the validation of hydrodynamic models.

  6. Estimation of Canopy Water Content in Konza Parry Grasslands Using Synthetic Aperture Radar Measurements During FIFE

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; van Zyl, Jacob J.; Asrar, Ghassem

    1996-01-01

    This paper presents the development of an algorithm to retrieve the canopy water contents of natural grasslands and pasture from synthetic aperture radar (SAR) measurements. The development on this algorithm involves three interrelated steps: (1) calibration of SAR data for ground topographic variations, (2) development and validation of backscatter model for cross-polarized ratio. The polarimetric radar data acquired by the Jet Propulsion Laboratory AIRSAR system during the 1989 First International Satellite land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) used for this study. The SAR data have been calibrated and corrected for the topographical effects by using the digital elevation map of the study area.

  7. Comparison of three different detectors applied to synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    Ranney, Kenneth I.; Khatri, Hiralal; Nguyen, Lam H.

    2002-08-01

    The U.S. Army Research Laboratory has investigated the relative performance of three different target detection paradigms applied to foliage penetration (FOPEN) synthetic aperture radar (SAR) data. The three detectors - a quadratic polynomial discriminator (QPD), Bayesian neural network (BNN) and a support vector machine (SVM) - utilize a common collection of statistics (feature values) calculated from the fully polarimetric FOPEN data. We describe the parametric variations required as part of the algorithm optimizations, and we present the relative performance of the detectors in terms of probability of false alarm (Pfa) and probability of detection (Pd).

  8. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  9. A comparison of real and simulated airborne multisensor imagery

    NASA Astrophysics Data System (ADS)

    Bloechl, Kevin; De Angelis, Chris; Gartley, Michael; Kerekes, John; Nance, C. Eric

    2014-06-01

    This paper presents a methodology and results for the comparison of simulated imagery to real imagery acquired with multiple sensors hosted on an airborne platform. The dataset includes aerial multi- and hyperspectral imagery with spatial resolutions of one meter or less. The multispectral imagery includes data from an airborne sensor with three-band visible color and calibrated radiance imagery in the long-, mid-, and short-wave infrared. The airborne hyperspectral imagery includes 360 bands of calibrated radiance and reflectance data spanning 400 to 2450 nm in wavelength. Collected in September 2012, the imagery is of a park in Avon, NY, and includes a dirt track and areas of grass, gravel, forest, and agricultural fields. A number of artificial targets were deployed in the scene prior to collection for purposes of target detection, subpixel detection, spectral unmixing, and 3D object recognition. A synthetic reconstruction of the collection site was created in DIRSIG, an image generation and modeling tool developed by the Rochester Institute of Technology, based on ground-measured reflectance data, ground photography, and previous airborne imagery. Simulated airborne images were generated using the scene model, time of observation, estimates of the atmospheric conditions, and approximations of the sensor characteristics. The paper provides a comparison between the empirical and simulated images, including a comparison of achieved performance for classification, detection and unmixing applications. It was found that several differences exist due to the way the image is generated, including finite sampling and incomplete knowledge of the scene, atmospheric conditions and sensor characteristics. The lessons learned from this effort can be used in constructing future simulated scenes and further comparisons between real and simulated imagery.

  10. Polarimetric radars for detection and identification of marine oil pollution

    NASA Astrophysics Data System (ADS)

    Sineva, Anastasia

    2015-04-01

    The roughness of the sea surface that is responsible for the backscatter is due to the small gravitational waves generated by winds. Oil slicks suppress the waves and backscatter and manifest itself on radar images as dark spots. However, the other processes could be shown on the radar images similarly: upwelling, atmospheric convection, internal waves, calm area, etc. All of them may be falsely interpreted as oil pollution. Polarization SAR data carry additional information directly related to the vector nature of the reflected electromagnetic wave and can assist in the identification of different types of slicks. When polarized wave falls on a surface and reflects from it the reflected wave is also polarized. Sea surface is rough, i.e. consists essentially of a large number of differently oriented elementary areas. Consequently the signals reflected from different elementary areas are characterized by different polarization parameters and total signal carries information about all rough surface scanned [1]. When scanning sea surface, quad-polarization SAR generates scattering matrix for each pixel of radar data, which contains all the information regarding the polarimetric backscattering properties of the study area and that can be used for the classification of SAR images according to different scattering mechanisms. As mentioned above, various surface manifestations (calm area, biogenic film, etc.) may be falsely interpreted as oil slicks. In [2] was proposed a method to distinguish them, for which the following parameters were chosen: the polarization ratio (HH channel to VV) and the difference (VV minus HH channel). Normalized radar cross-section (NRCS) σ0pp can be represented as follows: σp0p = σp0pB + σwb, where σ0Bpp - Bragg scattering, σwb - non-polarized scattering. Thus the polarization ratio (PR) and the polarization difference (PD) can be expressed respectively as: PR = σH0H- = σH0HB-+σwb- σV0 V σV0BV+ σwb PD = σV0V - σH0H = σV0VB +

  11. Polarimetric radar observations during an orographic rain event

    NASA Astrophysics Data System (ADS)

    Frech, M.; Steinert, J.

    2015-03-01

    An intense orographic precipitation event on 5 January 2013 is analyzed using a polarimetric C-band radar situated north of the Alps. The radar is operated at the meteorological observatory Hohenpeißenberg (MHP, 1006 m a.s.l. - above sea level) of the German Meteorological Service (DWD). The event lasted about 1.5 days and in total 44 mm precipitation was measured at Hohenpeißenberg. Detailed high resolution observation on the vertical structure of this event is obtained through a birdbath scan at 90° elevation which is part of the operational scanning. This scan is acquired every 5 min and provides meteorological profiles at high spatial resolution which are often not available in other radar networks. In the course of this event, the melting layer (ML) descends until the transition from rain into snow is observed at ground level. This transition from rain into snow is well documented by local weather observers and a present-weather sensor. The orographic precipitation event reveals mesoscale variability above the melting layer which can be attributed to a warm front. This variability manifests itself through substantially increased hydrometeor fall velocities. Radiosounding data indicate a layered structure in the thermodynamic field with increased moisture availability in relation to warm air advection. Rimed snowflakes and aggregation in a relatively warm environment lead to a signature in the radar data which is attributed to wet snow. The passage of the warm front leads to a substantial increase in rain rate at the surface. We use the newly implemented hydrometeor classification scheme "Hymec" to illustrate issues when relating radar products to local observations. For this, we employ data from the radar near Memmingen (MEM, 65 km west of MHP, 600 m a.s.l.) which is part of DWD's operational radar network. The detection, in location and timing, of the ML agrees well with the Hohenpeißenberg radar data. Considering the size of the Memmingen radar sensing

  12. Assimilation of Dual-Polarimetric Radar Observations with WRF GSI

    NASA Technical Reports Server (NTRS)

    Li, Xuanli; Mecikalski, John; Fehnel, Traci; Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Dual-polarimetric (dual-pol) radar typically transmits both horizontally and vertically polarized radio wave pulses. From the two different reflected power returns, more accurate estimate of liquid and solid cloud and precipitation can be provided. The upgrade of the traditional NWS WSR-88D radar to include dual-pol capabilities will soon be completed for the entire NEXRAD network. Therefore, the use of dual-pol radar network will have a broad impact in both research and operational communities. The assimilation of dual-pol radar data is especially challenging as few guidelines have been provided by previous research. It is our goal to examine how to best use dual-pol radar data to improve forecast of severe storm and forecast initialization. In recent years, the Development Testbed Center (DTC) has released the community Gridpoint Statistical Interpolation (GSI) DA system for the Weather Research and Forecasting (WRF) model. The community GSI system runs in independently environment, yet works functionally equivalent to operational centers. With collaboration with the NASA Short-term Prediction Research and Transition (SPoRT) Center, this study explores regional assimilation of the dual-pol radar variables from the WSR-88D radars for real case storms. Our presentation will highlight our recent effort on incorporating the horizontal reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), and radial velocity (VR) data for initializing convective storms, with a significant focus being on an improved representation of hydrometeor fields. In addition, discussion will be provided on the development of enhanced assimilation procedures in the GSI system with respect to dual-pol variables. Beyond the dual-pol variable assimilation procedure developing within a GSI framework, highresolution (=1 km) WRF model simulations and storm scale data assimilation experiments will be examined, emphasizing both model initialization and short-term forecast

  13. Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers

    NASA Astrophysics Data System (ADS)

    Knobelspiesse, K.; van Diedenhoven, B.; Marshak, A.; Dunagan, S.; Holben, B.; Slutsker, I.

    2014-12-01

    The primary goal of this project has been to investigate if ground-based visible and near-infrared passive radiometers that have polarization sensitivity can determine the thermodynamic phase of overlying clouds, i.e. if they are comprised of liquid droplets or ice particles. While this knowledge is important by itself for our understanding of the global climate, it can also help improve cloud property retrieval algorithms that use total (unpolarized) radiance to determine Cloud Optical Depth (COD). This is a potentially unexploited capability of some instruments in the NASA Aerosol Robotic Network (AERONET), which, if practical, could expand the products of that global instrument network at minimal additional cost. We performed simulations that found, for zenith observations, cloud thermodynamic phase is often expressed in the sign of the Q component of the Stokes polarization vector. We chose our reference frame as the plane containing solar and observation vectors, so the sign of Q indicates the polarization direction, parallel (positive) or perpendicular (negative) to that plane. Since the quantity of polarization is inversely proportional to COD, optically thin clouds are most likely to create a signal greater than instrument noise. Besides COD and instrument accuracy, other important factors for the determination of cloud thermodynamic phase are the solar and observation geometry (scattering angles between 40 and 60° are best), and the properties of ice particles (pristine particles may have halos or other features that make them difficult to distinguish from water droplets at specific scattering angles, while extreme ice crystal aspect ratios polarize more than compact particles). We tested the conclusions of our simulations using data from polarimetrically sensitive versions of the Cimel 318 sun photometer/radiometer that comprise AERONET. Most algorithms that exploit Cimel polarized observations use the Degree of Linear Polarization (DoLP), not the

  14. Airborne GLM Simulator (FEGS)

    NASA Astrophysics Data System (ADS)

    Quick, M.; Blakeslee, R. J.; Christian, H. J., Jr.; Stewart, M. F.; Podgorny, S.; Corredor, D.

    2015-12-01

    Real time lightning observations have proven to be useful for advanced warning and now-casting of severe weather events. In anticipation of the launch of the Geostationary Lightning Mapper (GLM) onboard GOES-R that will provide continuous real time observations of total (both cloud and ground) lightning, the Fly's Eye GLM Simulator (FEGS) is in production. FEGS is an airborne instrument designed to provide cal/val measurements for GLM from high altitude aircraft. It consists of a 5 x 5 array of telescopes each with a narrow passband filter to isolate the 777.4 nm neutral oxygen emission triplet radiated by lightning. The telescopes will measure the optical radiance emitted by lightning that is transmitted through the cloud top with a temporal resolution of 10 μs. When integrated on the NASA ER-2 aircraft, the FEGS array with its 90° field-of-view will observe a cloud top area nearly equal to a single GLM pixel. This design will allow FEGS to determine the temporal and spatial variation of light that contributes to a GLM event detection. In addition to the primary telescope array, the instrument includes 5 supplementary optical channels that observe alternate spectral emission features and will enable the use of FEGS for interesting lightning physics applications. Here we present an up-to-date summary of the project and a description of its scientific applications.

  15. Airborne rescue system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1991-01-01

    The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

  16. A Model with Ellipsoidal Scatterers for Polarimetric Remote Sensing of Anisotropic Layered Media

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Kong, J. A.; Shin, R. T.

    1993-01-01

    This paper presents a model with ellipsoidal scatterers for applications to polarimetric remote sensing of anisotropic layered media at microwave frequencies. The physical configuration includes an isotropic layer covering an anisotropic layer above a homogeneous half space. The isotropic layer consists of randomly oriented spheroids. The anisotropic layer contains ellipsoidal scatterers with a preferential vertical alignment and random azimuthal orientations. Effective permittivities of the scattering media are calculated with the strong fluctuation theory extended to account for the nonspherical shapes and the scatterer orientation distributions. On the basis of the analytic wave theory, dyadic Green's functions for layered media are used to derive polarimetric backscattering coefficients under the distorted Born approximation. The ellipsoidal shape of the scatterers gives rise to nonzero cross-polarized returns from the untilted anisotropic medium in the first-order approximation. Effects of rough interfaces are estimated by an incoherent addition method. Theoretical results and experimental data are matched at 9 GHz for thick first-year sea ice with a bare surface and with a snow cover at Point Barrow, Alaska. The model is then used to study the sensitivity of polarimetric backscattering coefficients with respect to correlation lengths representing the geometry of brine inclusions. Polarimetric signatures of bare and snow-covered sea ice are also simulated based on the model to investigate effects of different scattering mechanisms.

  17. Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint.

    PubMed

    Thilak Krishna, Thilakam Vimal; Creusere, Charles D; Voelz, David G

    2011-01-01

    Polarization, a property of light that conveys information about the transverse electric field orientation, complements other attributes of electromagnetic radiation such as intensity and frequency. Using multiple passive polarimetric images, we develop an iterative, model-based approach to estimate the complex index of refraction and apply it to target classification. PMID:20542767

  18. Asteroid photometric and polarimetric phase curves: Joint linear-exponential modeling

    NASA Astrophysics Data System (ADS)

    Muinonen, K.; Penttilä, A.; Cellino, A.; Belskaya, I. N.; Delbò, M.; Levasseur-Regourd, A. C.; Tedesco, E. F.

    2009-01-01

    We present Markov-Chain Monte-Carlo methods (MCMC) for the derivation of empirical model parameters for photometric and polarimetric phase curves of asteroids. Here we model the two phase curves jointly at phase angles ˜25° using a linear-exponential model, accounting for the opposition effect in disk-integrated brightness and the negative branch in the degree of linear polarization. We apply the MCMC methods to V-band phase curves of asteroids 419 Aurelia (taxonomic class F), 24 Themis (C), 1 Ceres (G), 20 Massalia (S), 55 Pandora (M), and 64 Angelina (E). We show that the photometric and polarimetric phase curves can be described using a common nonlinear parameter for the angular widths of the opposition effect and negative-polarization branch, thus supporting the hypothesis of common physical mechanisms being responsible for the phenomena. Furthermore, incorporating polarimetric observations removes the indeterminacy of the opposition effect for 1 Ceres. We unveil a trend in the interrelation between the enhancement factor of the opposition effect and the angular width: the enhancement factor decreases with decreasing angular width. The minimum polarization and the polarimetric slope at the inversion angle show systematic trends when plotted against the angular width and the normalized photometric slope parameter. Our new approach allows improved analyses of possible similarities and differences among asteroidal surfaces.

  19. Image enhancement of surface micro-structure on mucosa for polarimetric endoscopy

    NASA Astrophysics Data System (ADS)

    Kanamori, Katsuhiro

    2015-03-01

    This paper describes a novel image processing method for endoscopy that enhances the appearance of microstructures on mucosa. The new technique employs two pairs of parallel- and crossed-nicols polarimetric images, from which an averaged subtracted polarization image (AVSPI) is calculated. Experiments were first executed using a manual experimental setup with ring-type lighting, two rotating polarizers and a color camera. A new objective evaluation method that uses texture analysis (GLCM) was developed and applied to evaluation of the enhanced microstructure images. Experiments using excised porcine stomach tissue showed better results than with conventional color intensity image processing. Next, an online rigid-type polarimetric endoscope system using a polarized ring-shaped LED and a special three-CCD color polarimetric camera was developed. The two types of equipment described above are quite different as to extinction ratio values, but show similarly enhanced image quality. Our results show that polarimetric endoscopy is not only effective but also practical for hardware implementation.

  20. Polarimetric X-band weather radar measurements in the tropics: radome and rain attenuation correction

    NASA Astrophysics Data System (ADS)

    Schneebeli, M.; Sakuragi, J.; Biscaro, T.; Angelis, C. F.; Carvalho da Costa, I.; Morales, C.; Baldini, L.; Machado, L. A. T.

    2012-09-01

    A polarimetric X-band radar has been deployed during one month (April 2011) for a field campaign in Fortaleza, Brazil, together with three additional laser disdrometers. The disdrometers are capable of measuring the raindrop size distributions (DSDs), hence making it possible to forward-model theoretical polarimetric X-band radar observables at the point where the instruments are located. This set-up allows to thoroughly test the accuracy of the X-band radar measurements as well as the algorithms that are used to correct the radar data for radome and rain attenuation. For the campaign in Fortaleza it was found that radome attenuation dominantly affects the measurements. With an algorithm that is based on the self-consistency of the polarimetric observables, the radome induced reflectivity offset was estimated. Offset corrected measurements were then further corrected for rain attenuation with two different schemes. The performance of the post-processing steps was analyzed by comparing the data with disdrometer-inferred polarimetric variables that were measured at a distance of 20 km from the radar. Radome attenuation reached values up to 14 dB which was found to be consistent with an empirical radome attenuation vs. rain intensity relation that was previously developed for the same radar type. In contrast to previous work, our results suggest that radome attenuation should be estimated individually for every view direction of the radar in order to obtain homogenous reflectivity fields.

  1. Advancement in polarimetric glucose sensing: simulation and measurement of birefringence properties of cornea

    NASA Astrophysics Data System (ADS)

    Malik, Bilal H.; Coté, Gerard L.

    2011-03-01

    Clinical guidelines dictate that frequent blood glucose monitoring in diabetic patients is critical towards proper management of the disease. Although, several different types of glucose monitors are now commercially available, most of these devices are invasive, thereby adversely affecting patient compliance. To this end, optical polarimetric glucose sensing through the eye has been proposed as a potential noninvasive means to aid in the control of diabetes. Arguably, the most critical and limiting factor towards successful application of such a technique is the time varying corneal birefringence due to eye motion artifact. We present a spatially variant uniaxial eye model to serve as a tool towards better understanding of the cornea's birefringence properties. The simulations show that index-unmatched coupling of light is spatially limited to a smaller range when compared to the index-matched situation. Polarimetric measurements on rabbits' eyes indicate relative agreement between the modeled and experimental values of corneal birefringence. In addition, the observed rotation in the plane of polarized light for multiple wavelengths demonstrates the potential for using a dual-wavelength polarimetric approach to overcome the noise due to timevarying corneal birefringence. These results will ultimately aid us in the development of an appropriate eye coupling mechanism for in vivo polarimetric glucose measurements.

  2. Azimuthal Variations in Polarimetric Microwave Measurements Observed over Dome C, Antarctica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    WindSat is the first spaceborne fully polarimetric radiometer. It observes all four components Tv (vertically polarized), Th (horizontally), U (difference between polarizations at +45° and -45°) and V (difference right hand minus left hand circular polarized) of the Stokes vector. While originally d...

  3. Total Lightning Observations within Electrified Snowfall using Polarimetric Radar LMA, and NWN Measurements

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Bruning, Eric C.; Carey, Lawrence D.; Blakeslee, Richard J.

    2013-01-01

    Tall structures play and important role in development of winter time lightning flashes.To what extent still needs to be assessed. Tower initiated flashes typically occur as banded structures pass near/overhead. Hi resolution RHI s from polarimetric radar show that the lightning has a tendency to propagate through layered structures within these snowstorms.

  4. Polarimetric Microwave Emission from Snow Surface: 4th Strokes Component Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of ice on the polarimetric 4th Stokes component observations is investigated using WindSat data over Antarctica. The difference in the magnitude of the signal observed during (July 2003) and summer (February 2004) months is investigated using a second harmonic sine function of the azimuth...

  5. Three-Dimensional Road Network by Fusion of Polarimetric and Interferometric SAR Data

    NASA Technical Reports Server (NTRS)

    Gamba, P.; Houshmand, B.

    1998-01-01

    In this paper a fuzzy classification procedure is applied to polarimetric radar measurements, and street pixels are detected. These data are successively grouped into consistent roads by means of a dynamic programming approach based on the fuzzy membership function values. Further fusion of the 2D road network extracted and 3D TOPSAR measurements provides a powerful way to analyze urban infrastructures.

  6. Active extreme learning machines for quad-polarimetric SAR imagery classification

    NASA Astrophysics Data System (ADS)

    Samat, Alim; Gamba, Paolo; Du, Peijun; Luo, Jieqiong

    2015-03-01

    Supervised classification of quad-polarimetric SAR images is often constrained by the availability of reliable training samples. Active learning (AL) provides a unique capability at selecting samples with high representation quality and low redundancy. The most important part of AL is the criterion for selecting the most informative candidates (pixels) by ranking. In this paper, class supports based on the posterior probability function are approximated by ensemble learning and majority voting. This approximation is statistically meaningful when a large enough classifier ensemble is exploited. In this work, we propose to use extreme learning machines and apply AL to quad-polarimetric SAR image classification. Extreme learning machines are ideal because of their fast operation, straightforward solution and strong generalization. As inputs to the so-called active extreme learning machines, both polarimetric and spatial features (morphological profiles) are considered. In order to validate the proposed method, results and performance are compared with random sampling and state-of-the-art AL methods, such as margin sampling, normalized entropy query-by-bagging and multiclass level uncertainty. Experimental results for four quad-polarimetric SAR images collected by RADARSAT-2, AirSAR and EMISAR indicate that the proposed method achieves promising results in different scenarios. Moreover, the proposed method is faster than existing techniques in both the learning and the classification phases.

  7. Estimation of crop parameters using multi-temporal optical and radar polarimetric satellite data

    NASA Astrophysics Data System (ADS)

    Betbeder, Julie; Fieuzal, Remy; Philippets, Yannick; Ferro-Famil, Laurent; Baup, Frederic

    2015-10-01

    This paper is concerned with the estimation of wheat and rapeseed crops parameters (height, leaf area index and dry biomass), during their whole vegetation cycle, using satellite time series both acquired in optical and microwave domains. Crop monitoring at a fine scale represents an important stake from an environmental point of view as it provides essential information to combine increase of production and sustainable management of agricultural landscapes. The aim of this paper is to compare the potential of optical and SAR parameters (backscattering coefficients and polarimetric parameters) for crop parameters estimation. Satellite (Formosat-2, Spot-4/5 and Radarsat-2) and ground data were acquired during the MCM'10 experiment conducted by the CESBIO laboratory in 2010. A vegetation index was derived from the optical images: the NDVI and backscattering coefficients and polarimetric parameters were computed from Radarsat-2 images. Results of this study show the high interest of using SAR parameters (backscattering coefficients and polarimetric parameters) for crop parameters estimation during the whole vegetation cycle instead of using optical vegetation index. Polarimetric parameters do not improve wheat parameters estimation (e.g. backscattering coefficient σ° VV corresponds to the best parameter for wheat height estimation (r2 = 0.60)) but show their high potential for rapeseed height and dry biomass monitoring (i.e. Shannon Entropy polarimetry (SEp ; r2 = 0.70) and Radar Vegetation Index (RVI ; r2 = 0.80) respectively).

  8. WindSat passive microwave polarimetric observations of soil moisture and land variables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    WindSat is a spaceborne multi-frequency polarimetric microwave radiometer and has the potential of contributing to the retrieval of land variables and complementing efforts directed at the Aqua AMSR-E. In this study, a previously established algorithm was applied to WindSat data to estimate global s...

  9. Synthetic cathinone abuse

    PubMed Central

    Capriola, Michael

    2013-01-01

    The abuse of synthetic cathinones, widely known as bath salts, has been increasing since the mid-2000s. These substances are derivatives of the naturally occurring compound cathinone, which is the primary psychoactive component of khat. The toxicity of synthetic cathinones includes significant sympathomimetic effects, as well as psychosis, agitation, aggression, and sometimes violent and bizarre behavior. Mephedrone and methylenedioxypyrovalerone are currently the predominantly abused synthetic cathinones. PMID:23869180

  10. Evolvable synthetic neural system

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  11. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested. PMID:27145593

  12. Performance comparison of fully adaptive and static passive polarimetric imagers in the presence of intensity and polarization contrast.

    PubMed

    Goudail, François; Boffety, Matthieu

    2016-09-01

    We address the comparison of contrast improvement obtained with a fully adaptive polarimetric imager and the best channel of a static polarimetric imager in the presence of both intensity and polarization differences between the target and the background. We develop an in-depth quantitative study of the performance loss incurred by a static imager compared to a fully adaptive one in this case. These results are useful to make a well-informed choice between these two polarimetric imaging architectures in a given application. PMID:27607513

  13. Characterizing synthetic gypsum

    SciTech Connect

    Henkels, P.J.; Gaynor, J.C.

    1996-10-01

    Each gypsum wallboard manufacturer has developed its own general guidelines for synthetic gypsum. The guidelines vary accordingly for each manufacturer and are often modified to suite a particular source and end use. In addition, the physical and chemical properties of synthetic gypsum are characterized by several proprietary and published test methods. Characterizing a synthetic gypsum and determining its acceptability is a time consuming process and can be confusing, particularly to those outside the gypsum wallboard industry. This paper describes some of the more important characteristics and practical aspects of synthetic gypsum usage based on USG`s extensive experience in wall board manufacture.

  14. Subsurface fracture characterisation using full polarimetric borehole radar data analysis with numerical simulation validation

    NASA Astrophysics Data System (ADS)

    Mansour, Khamis; Sato, Motoyuki

    2012-04-01

    We report on the utilisation of a full polarimetric subsurface borehole radar measuring system for efficient characterisation of subsurface fractures. This system can measure the full polarisation (HH, HV, VV and VH) of electromagnetic waves for one borehole, and thus enables us to obtain more information about subsurface fractures compared to that obtained from conventional borehole radar systems, which usually use only single polarisation. Polarimetric datasets have been acquired at several sites, particularly at Mirror Lake, USA, which is a well known site for testing subsurface fractures. Nine fracture sets were observed in one borehole, FSE-1, in the Mirror Lake site. These were divided into four category fracture sets depending on polarimetric analysis of alpha, entropy and anisotropy decomposition analysis of scattering behaviour from fractures at frequency 30MHz. We found that the characterised four fractures sets have the highest hydraulic permeable zones at depths of 24.75m, and 47.80m. The lowest hydraulic permeable zones were found to be at 28.50m, 36.15m and 44.80m. These results show a good consistency with the hydraulic fractures permeability tracer test that was done by USGS. To validate these conclusions we implemented numerical simulation for a synthesised fractures property using the Finite Difference Time Domain (FDTD) method. Here, we used a plane wave as an electromagnetic source with frequency ranging from 1MHz to 200MHz, and monitored the electromagnetic scattering for various fractures. We found that distributions of alpha, entropy and anisotropy polarimetric parameters differ with the fracture roughness property which validates the polarimetric analysis of the measured data.

  15. Polarimetric survey of main-belt asteroids⋆. III. Results for 33 X-type objects

    NASA Astrophysics Data System (ADS)

    Cañada-Assandri, M.; Gil-Hutton, R.; Benavidez, P.

    2012-06-01

    Aims: We present results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained with the Torino and CASPROF polarimeters at the 2.15 m telescope. The Torino polarimeter is an instrument that allows the simultaneous measurement of polarization in five different bands, and the CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The survey began in 2003, and up to 2009 data of a sample of more than 170 asteroids were obtained. In this paper the results for 33 X-type objects are presented, several of them are being polarimetrically observed for the first time. Using these data we found polarization curves and polarimetric parameters for different groups among this taxonomic class and that there are objects with very different albedo in the sub-classes of the X taxonomic complex. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/542/A11

  16. Bias Correction of Polarimetric Variables and Uncertainty Quantification of Dual-Polarization Radar Rainfall Estimation

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Suk, M. K.; Nam, K. Y.; Ko, J. S.; Kim, H. L.

    2015-12-01

    Radar rainfall is generally less than gauge rainfall and it deteriorates in the case of high rainfall. Introduction of dual-polarization radar, however, has shed some light on the problem to underestimate radar rainfall in single-polarization radar. Dual-polarization radar provides various variables such like the differential reflectivity, differential phase, specific differential phase, and correlation coefficient, etc. as well as the reflectivity. Due to the advantage of dual-polarization radar providing various information available on the precipitation, the quality of the radar rainfall becomes much higher. Total five dual-polarization radars (Baengnyeongdo, Yongin-Testbed, Bislsan, Sobaeksan and Mohusan Radar) were introduced in Korea until now and the project, "Development and application of Cross governmental dual-pol radar harmonization", is on the way. Weather Radar Center (WRC), Korea Meteorological Adminstration (KMA) has played a leading role in the dual-polarization radar technology in Korea. WRC has been researching the quality control (QC) for the polarimetric variables, the classification of the precipitation, the radar rainfall estimation algorithm, and the composite dual-polarimetric varaiables field, etc. WRC (2014) suggested Korean polarimetric radar variables relation (Z-ZDR relation and Z-KDP relation) and Korean radar rainfall estimation algorithm (R(Z, ZDR) WRC algorithm). This study examined on the six radar rainfall estimation algorithms including R(Z, ZDR) WRC algorithm and corrected the bias of polarimetric variables using Korean polarimetric variables relation. Plus, this study quantified the uncertainty of the radar rainfall estimated from six algorithms before and after the correction. As a result, the quality of the radar rainfall after the correction improved and Korean radar rainfall estimation algorithm had the best quality among the algorithms using the Z and ZDR,

  17. Investigation of Polarimetric and Electrical Characteristics of Natural and Triggered Lightning Strikes

    NASA Astrophysics Data System (ADS)

    Hyland, P. T.; Biggerstaff, M. I.; Uman, M. A.; Jordan, D. M.; Hill, J. D.; Pilkey, J. T.; Ngin, T.; Blakeslee, R. J.; Krehbiel, P. R.; Rison, W.; Winn, W. P.; Eack, K.; Trueblood, J.; Edens, H. E.

    2013-12-01

    For the past three summers, the University of Oklahoma has deployed three mobile, polarimetric radars to the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, Florida and Langmuir Laboratory near Socorro, New Mexico for the purpose of investigating the relationship between cloud structure and the propagation of triggered and natural lightning channels. This presentation will highlight observations from select natural and triggered events at these two facilities. During the summer of 2012, University of Oklahoma radar operators made a launch recommendation to the ICLRT during the passage of Tropical Storm Debby over northeast Florida that resulted in a successful triggered flash with 11 return strokes. The trigger was attempted as precipitation streamers within the stratiform rainbands of Tropical Storm Debby approached the launch site. According to the National Lightning Detection Network (NLDN), there were no reported natural cloud-to-ground (CG) flashes within 60 km of the ICLRT 20 hours before and eight hours after the triggered flash. The recommendation was made based on previous analyses of the storm structure of trigger attempts from the ICLRT that indicated the coincidence of several successful triggers with descending regions of enhanced radar reflectivity, or descending precipitation packets (DePPs). Polarimetric data from the frequency-agile Rapid-scanning X-band Polarimetric (RaXPol) radar as well as data from the lightning mapping array (LMA) and electric field meter (EFM) networks from the ICLRT for this event will be presented. Past analyses also revealed ice alignment signatures in differential phase and specific differential phase as strong electric fields near the top of electrified clouds cause small ice particles to become vertically aligned. These signatures are especially noticeable for circularly polarized radars. Polarimetric data from the Shared Mobile Atmospheric Research & Teaching (SMART) radar and Ra

  18. Phenomenology studies using a scanning fully polarimetric passive W-band millimeter-wave imager

    NASA Astrophysics Data System (ADS)

    Bernacki, B. E.; Kelly, J. F.; Sheen, D. M.; McMakin, D. L.; Tedeschi, J. R.; Hall, T. E.; Hatchell, B. K.; Valdez, P. L. J.

    2011-05-01

    We present experimental results obtained from a scanning passive W-band fully polarimetric imager. Passive millimeter wave imaging offers persistent day/nighttime imaging and the ability to penetrate dust, clouds and other obscurants, as well as thin layers of clothing and even dry soil. The selection of the W-band atmospheric window at 94 GHz offers a compromise as there is sufficient angular resolution for imaging applications using modestly-sized reflectors appropriate for mobile as well as fixed location applications. The imager is based upon an F/2.1 off-axis parabolic reflector that exhibits -34 dB of cross polarization suppression. The heterodyne radiometer produces a 6 GHz IF with 4 GHz of bandwidth resulting in an NEDT of < 200 mK. Polarimetric imaging reveals the presence of man-made objects due to their typically anisotropic nature and the interaction of these objects with incident millimeter wave radiation. The phenomenology studies were undertaken to determine the richest polarimetric signals to use for exploitation. In addition to a conventional approach to polarimetric image analysis in which the Stokes I, Q, U, and V images were formed and displayed, we present an alternative method for polarimetric image exploitation based upon multivariate image analysis (MIA). MIA uses principal component analysis (PCA) and 2D scatter or score plots to identify various pixel classes in the image compared with the more conventional scene-based image analysis approaches. Multivariate image decomposition provides a window into the complementary interplay between spatial and statistical correlations contained in the data.

  19. Towards automated mapping of lake ice using RADARSAT-2 and simulated RCM compact polarimetric data

    NASA Astrophysics Data System (ADS)

    Duguay, Claude

    2016-04-01

    The Canadian Ice Service (CIS) produces a weekly ice fraction product (a text file with a single lake-wide ice fraction value, in tenth, estimated for about 140 large lakes across Canada and northern United States) created from the visual interpretation of RADARSAT-2 ScanSAR dual-polarization (HH and HV) imagery, complemented by optical satellite imagery (AVHRR, MODIS and VIIRS). The weekly ice product is generated in support of the Canadian Meteorological Centre (CMC) needs for lake ice coverage in their operational numerical weather prediction model. CIS is interested in moving from its current (manual) way of generating the ice fraction product to a largely automated process. With support from the Canadian Space Agency, a project was recently initiated to assess the potential of polarimetric SAR data for lake ice cover mapping in light of the upcoming RADARSAT Constellation Mission (to be launched in 2018). The main objectives of the project are to evaluate: 1) state-of-the-art image segmentation algorithms and 2) RADARSAT-2 polarimetric and simulated RADARSAT Constellation Mission (RCM) compact polarimetric SAR data for ice/open water discrimination. The goal is to identify the best segmentation algorithm and non-polarimetric/polarimetric parameters for automated lake ice monitoring at CIS. In this talk, we will present the background and context of the study as well as initial results from the analysis of RADARSAT-2 Standard Quad-Pol data acquired during the break-up and freeze-up periods of 2015 on Great Bear Lake, Northwest Territories.

  20. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  1. Physical and polarimetric C-band microwave scattering properties of first-year Arctic sea ice during the advanced melt season

    NASA Astrophysics Data System (ADS)

    Scharien, Randall

    In this thesis, the physical, dielectric, and polarimetric microwave C-band properties of first-year sea ice (FYI) during the advanced melt season are investigated. Advanced melt is the most dynamic and least understood season in the annual cycle of Arctic sea ice due to rapid, small-scale, phase changes associated with melt processes and the occurrence of melt ponds on the ice surface. Measurements of the physical, structural, and dielectric properties of advanced melt FYI, combined with in-situ and spaced-based measurements of C-band microwave scattering, form the basis of this research. A physical model of the medium is created and physical controls on its C-band, like-polarized, backscatter response are evaluated using a multi-layer surface and volume scattering model and in-situ scattering observations. C-band microwave scattering from bare FYI is shown to be dominated by volumetric moisture content driven fluctuations in the dielectric properties, as well as structural variability, of desalinated upper ice layers. The C-band polarimetric scattering properties of surface features---wet snow, bare ice, and melt ponds---are investigated for high-Arctic and marginal ice environments, and dominant scattering mechanisms are theorized. Results demonstrate the potential for the exploitation of polarization diversity for the detection of advanced melt FYI geophysical information using spaceborne synthetic aperture radar (SAR). This knowledge is extended to the application of ENVISAT-ASAR imagery for the regional scale mapping of advanced melt FYI surface albedo using a multi-scale, object-based image analysis (OBIA) approach.

  2. First Results from an Airborne Ka-Band SAR Using SweepSAR and Digital Beamforming

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory A.; Ghaemi, Hirad; Hensley, Scott C.

    2012-01-01

    SweepSAR is a wide-swath synthetic aperture radar technique that is being studied for application on the future Earth science radar missions. This paper describes the design of an airborne radar demonstration that simulates an 11-m L-band (1.2-1.3 GHz) reflector geometry at Ka-band (35.6 GHz) using a 40-cm reflector. The Ka-band SweepSAR Demonstration system was flown on the NASA DC-8 airborne laboratory and used to study engineering performance trades and array calibration for SweepSAR configurations. We present an instrument and experiment overview, instrument calibration and first results.

  3. Designing synthetic biology.

    PubMed

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology. PMID:24156739

  4. Synthetic facial implants.

    PubMed

    Quatela, Vito C; Chow, Jen

    2008-02-01

    This article presents a range of synthetic implant materials for use in facial plastic surgery. The authors discuss alternatives to autogenous tissue transfer in terms of biocompatibility, technique, complications, controversies, and cautions. The reader is presented information about a range of synthetic implant materials such as silicone, polyester fiber, polyamide mesh, metal, polyethylene, polyacrylamide gel, hydroxyapatite, polylactic acid, collagen, and others. PMID:18063244

  5. Variable Synthetic Capacitance

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L.

    1986-01-01

    Feedback amplifier circuit synthesizes electronically variable capacitance. Variable Synthetic Capacitor is amplifier circuit with follower/feedback configuration. Effective input capacitance depends on input set current. If synthetic capacitor is connected across resonant element of oscillator, oscillator frequency controlled via input set current. Circuit especially suitable for fine frequency adjustments of piezoelectric-crystal or inductor/capacitor resonant oscillators.

  6. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  7. Airborne laser topographic mapping results

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Link, L. E.; Swift, R. N.; Butler, M. L.

    1984-01-01

    The results of terrain mapping experiments utilizing the National Aeronautics and Space Administration (NASA) Airborne Oceanographic Lidar (AOL) over forested areas are presented. The flight tests were conducted as part of a joint NASA/U.S. Army Corps of Engineers (CE) investigation aimed at evaluating the potential of an airborne laser ranging system to provide cross-sectional topographic data on flood plains that are difficult and expensive to survey using conventional techniques. The data described in this paper were obtained in the Wolf River Basin located near Memphis, TN. Results from surveys conducted under winter 'leaves off' and summer 'leaves on' conditions, aspects of day and night operation, and data obtained from decidous and coniferous tree types are compared. Data processing techniques are reviewed. Conclusions relative to accuracy and present limitations of the AOL, and airborne lidar systems in general, to terrain mapping over forested areas are discussed.

  8. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  9. Polarimetric Models of Circumstellar Discs Including Aggregate Dust Grains

    NASA Astrophysics Data System (ADS)

    Mohan, Mahesh

    The work conducted in this thesis examines the nature of circumstellar discs by investigating irradiance and polarization of scattered light. Two circumstellar discs are investigated. Firstly, H-band high contrast imaging data on the transitional disc of the Herbig Ae/Be star HD169142 are presented. The images were obtained through the polarimetric differential imaging (PDI) technique on the Very Large Telescope (VLT) using the adaptive optics system NACO. Our observations use longer exposure times, allowing us to examine the edges of the disc. Analysis of the observations shows distinct signs of polarization due to circumstellar material, but due to excessive saturation and adaptive optics errors further information on the disc could not be inferred. The HD169142 disc is then modelled using the 3D radiative transfer code Hyperion. Initial models were constructed using a two disc structure, however recent PDI has shown the existence of an annular gap. In addition to this the annular gap is found not to be devoid of dust. This then led to the construction of a four-component disc structure. Estimates of the mass of dust in the gap (2.10E-6 Msun) are made as well as for the planet (1.53E-5 Msun (0.016 Mjupiter)) suspected to be responsible for causing the gap. The predicted polarization was also estimated for the disc, peaking at ~14 percent. The use of realistic dust grains (ballistic aggregate particles) in Monte Carlo code is also examined. The fortran code DDSCAT is used to calculate the scattering properties for aggregates which are used to replace the spherical grain models used by the radiative transfer code Hyperion. Currently, Hyperion uses four independent elements to define the scattering matrix, therefore the use of rotational averaging and a 50/50 percent population of grains and their enantiomers were explored to reduce the number of contributing scattering elements from DDSCAT. A python script was created to extract the scattering data from the DDSCAT

  10. Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers

    NASA Astrophysics Data System (ADS)

    Knobelspiesse, K.; van Diedenhoven, B.; Marshak, A.; Dunagan, S.; Holben, B.; Slutsker, I.

    2015-03-01

    The primary goal of this project has been to investigate if ground-based visible and near-infrared passive radiometers that have polarization sensitivity can determine the thermodynamic phase of overlying clouds, i.e., if they are comprised of liquid droplets or ice particles. While this knowledge is important by itself for our understanding of the global climate, it can also help improve cloud property retrieval algorithms that use total (unpolarized) radiance to determine cloud optical depth (COD). This is a potentially unexploited capability of some instruments in the NASA Aerosol Robotic Network (AERONET), which, if practical, could expand the products of that global instrument network at minimal additional cost. We performed simulations that found, for zenith observations, that cloud thermodynamic phase is often expressed in the sign of the Q component of the Stokes polarization vector. We chose our reference frame as the plane containing solar and observation vectors, so the sign of Q indicates the polarization direction, parallel (positive) or perpendicular (parallel) to that plane. Since the fraction of linearly polarized to total light is inversely proportional to COD, optically thin clouds are most likely to create a signal greater than instrument noise. Besides COD and instrument accuracy, other important factors for the determination of cloud thermodynamic phase are the solar and observation geometry (scattering angles between 40 and 60° are best), and the properties of ice particles (pristine particles may have halos or other features that make them difficult to distinguish from water droplets at specific scattering angles, while extreme ice crystal aspect ratios polarize more than compact particles). We tested the conclusions of our simulations using data from polarimetrically sensitive versions of the Cimel 318 sun photometer/radiometer that compose a portion of AERONET. Most algorithms that exploit Cimel polarized observations use the degree of

  11. Construction of Polarimetric Radar-Based Reference Rain Maps for the Iowa Flood Studies Campaign

    NASA Astrophysics Data System (ADS)

    Petersen, Walt; Krajewski, Witek; Wolff, David; Gatlin, Patrick

    2015-04-01

    The Global Precipitation Measurement (GPM) Mission Iowa Flood Studies (IFloodS) campaign was conducted in central and northeastern Iowa during the months of April-June, 2013. Specific science objectives for IFloodS included quantification of uncertainties in satellite and ground-based estimates of precipitation, 4-D characterization of precipitation physical processes and associated parameters (e.g., size distributions, water contents, types, structure etc.), assessment of the impact of precipitation estimation uncertainty and physical processes on hydrologic predictive skill, and refinement of field observations and data analysis approaches as they pertain to future GPM integrated hydrologic validation and related field studies. In addition to field campaign archival of raw and processed satellite data (including precipitation products), key ground-based platforms such as the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars, University of Iowa X-band dual-polarimetric radars, a large network of paired rain gauge platforms, and a large network of 2D Video and Parsivel disdrometers were deployed. In something of a canonical approach, the radar (NPOL in particular), gauge and disdrometer observational assets were deployed to create a consistent high-quality distributed (time and space sampling) radar-based ground "reference" rainfall dataset, with known uncertainties, that could be used for assessing the satellite-based precipitation products at a range of space/time scales. Subsequently, the impact of uncertainties in the satellite products could be evaluated relative to the ground-benchmark in coupled weather, land-surface and distributed hydrologic modeling frameworks as related to flood prediction. Relative to establishing the ground-based "benchmark", numerous avenues were pursued in the making and verification of IFloodS "reference" dual-polarimetric radar-based rain maps, and this study documents the process and results as they pertain specifically

  12. Construction of Polarimetric Radar-Based Reference Rain Maps for the Iowa Flood Studies Campaign

    NASA Technical Reports Server (NTRS)

    Petersen, Walter; Wolff, David; Krajewski, Witek; Gatlin, Patrick

    2015-01-01

    The Global Precipitation Measurement (GPM) Mission Iowa Flood Studies (IFloodS) campaign was conducted in central and northeastern Iowa during the months of April-June, 2013. Specific science objectives for IFloodS included quantification of uncertainties in satellite and ground-based estimates of precipitation, 4-D characterization of precipitation physical processes and associated parameters (e.g., size distributions, water contents, types, structure etc.), assessment of the impact of precipitation estimation uncertainty and physical processes on hydrologic predictive skill, and refinement of field observations and data analysis approaches as they pertain to future GPM integrated hydrologic validation and related field studies. In addition to field campaign archival of raw and processed satellite data (including precipitation products), key ground-based platforms such as the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars, University of Iowa X-band dual-polarimetric radars, a large network of paired rain gauge platforms, and a large network of 2D Video and Parsivel disdrometers were deployed. In something of a canonical approach, the radar (NPOL in particular), gauge and disdrometer observational assets were deployed to create a consistent high-quality distributed (time and space sampling) radar-based ground "reference" rainfall dataset, with known uncertainties, that could be used for assessing the satellite-based precipitation products at a range of space/time scales. Subsequently, the impact of uncertainties in the satellite products could be evaluated relative to the ground-benchmark in coupled weather, land-surface and distributed hydrologic modeling frameworks as related to flood prediction. Relative to establishing the ground-based "benchmark", numerous avenues were pursued in the making and verification of IFloodS "reference" dual-polarimetric radar-based rain maps, and this study documents the process and results as they pertain specifically

  13. Application of a New Polarimetric Filter to RADARSAT-2 Data of Deception Island (antarctic Peninsula Region) for Surface Cover Characterization

    NASA Astrophysics Data System (ADS)

    Guillaso, S.; Schmid, T.; Lopez-Martinez, J.; D'Hondt, O.

    2015-04-01

    In this paper, we describe a new approach to analyse and quantify land surface covers on Deception Island, a volcanic island located in the Northern Antarctic Peninsula region by means of fully polarimetric RADARSAT-2 (C-Band) SAR image. Data have been filtered by a new polarimetric speckle filter (PolSAR-BLF) that is based on the bilateral filter. This filter is locally adapted to the spatial structure of the image by relying on pixel similarities in both the spatial and the radiometric domains. Thereafter different polarimetric features have been extracted and selected before being geocoded. These polarimetric parameters serve as a basis for a supervised classification using the Support Vector Machine (SVM) classifier. Finally, a map of landform is generated based on the result of the SVM results.

  14. NASA Airborne Lidar 1982-1984 Flights

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar 1982-1984 Flights Data from the 1982 NASA Langley Airborne Lidar flights following the eruption of El Chichon ... continuing to January 1984. Transcribed from the following NASA Tech Reports: McCormick, M. P., and M. T. Osborn, Airborne lidar ...

  15. Initial Images of the Synthetic Aperture Radiometer 2D-STAR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Initial results obtained using a new synthetic aperture radiometer, 2D-STAR, a dual polarized, L-band radiometer that employs aperture synthesis in two dimensions are presented and analyzed. This airborne instrument is the natural evolution of a previous design that employed employs aperture synthes...

  16. SYNTHETIC PARTICLES ENHANCE AIRWAY RESPONSES TO OVALBUMIN ANTIGEN IN BALB/C MICE

    EPA Science Inventory

    SYNTHETIC PARTICLES ENHANCE AIRWAY RESPONSES TO OVALBUMIN ANTIGEN IN BALB/CJ MICE. S H Gavett, N Haykal-Coates, and M I Gilmour. Experimental Toxicology Division, NHEERL, ORD, USEPA, Research Triangle Park, NC

    Levels of airborne particulate matter (PM) are positively c...

  17. Dark SPOT Detection Using Intensity and the Degree of Polarization in Fully Polarimetric SAR Images for Oil Polution Monitoring

    NASA Astrophysics Data System (ADS)

    Zakeri, F.; Amini, J.

    2015-12-01

    Oil spill surveillance is of great environmental and economical interest, directly contributing to improve environmental protection. Monitoring of oil spills using synthetic aperture radar (SAR) has received a considerable attention over the past few years, notably because of SAR data abilities like all-weather and day-and-night capturing. The degree of polarization (DoP) is a less computationally complex quantity characterizing a partially polarized electromagnetic field. The key to the proposed approach is making use of DoP as polarimetric information besides intensity ones to improve dark patches detection as the first step of oil spill monitoring. In the proposed approach first simple intensity threshold segmentation like Otsu method is applied to the image. Pixels with intensities below the threshold are regarded as potential dark spot pixels while the others are potential background pixels. Second, the DoP of potential dark spot pixels is estimated. Pixels with DoP below a certain threshold are the real dark-spot pixels. Choosing the threshold is a critical and challenging step. In order to solve choosing the appropriate threshold, we introduce a novel but simple method based on DoP of potential dark spot pixels. Finally, an area threshold is used to eliminate any remaining false targets. The proposed approach is tested on L band NASA/JPL UAVSAR data, covering the Deepwater Horizon oil spill in the Gulf of Mexico. Comparing the obtained results from the new method with conventional approaches like Otsu, K-means and GrowCut shows better achievement of the proposed algorithm. For instance, mean square error (MSE) 65%, Overall Accuracy 20% and correlation 40% are improved.

  18. Imager-to-Radiometer In-flight Cross Calibration: RSP Radiometric Comparison with Airborne and Satellite Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Cairns, Brian; Wasilewski, Andrzej

    2016-01-01

    This work develops a method to compare the radiometric calibration between a radiometer and imagers hosted on aircraft and satellites. The radiometer is the airborne Research Scanning Polarimeter (RSP), which takes multi-angle, photo-polarimetric measurements in several spectral channels. The RSP measurements used in this work were coincident with measurements made by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), which was on the same aircraft. These airborne measurements were also coincident with an overpass of the Landsat 8 Operational Land Imager (OLI). First we compare the RSP and OLI radiance measurements to AVIRIS since the spectral response of the multispectral instruments can be used to synthesize a spectrally equivalent signal from the imaging spectrometer data. We then explore a method that uses AVIRIS as a transfer between RSP and OLI to show that radiometric traceability of a satellite-based imager can be used to calibrate a radiometer despite differences in spectral channel sensitivities. This calibration transfer shows agreement within the uncertainty of both the various instruments for most spectral channels.

  19. A 3D airborne ultrasound scanner

    NASA Astrophysics Data System (ADS)

    Capineri, L.; Masotti, L.; Rocchi, S.

    1998-06-01

    This work investigates the feasibility of an ultrasound scanner designed to reconstruct three-dimensional profiles of objects in air. There are many industrial applications in which it is important to obtain quickly and accurately the digital reconstruction of solid objects with contactless methods. The final aim of this project was the profile reconstruction of shoe lasts in order to eliminate the mechanical tracers from the reproduction process of shoe prototypes. The feasibility of an ultrasonic scanner was investigated in laboratory conditions on wooden test objects with axial symmetry. A bistatic system based on five airborne polyvinylidenedifluoride (PVDF) transducers was mechanically moved to emulate a cylindrical array transducer that can host objects of maximum width and height 20 cm and 40 cm respectively. The object reconstruction was based on a simplified version of the synthetic aperture focusing technique (SAFT): the time of flight (TOF) of the first in time echo for each receiving transducer was taken into account, a coarse spatial sampling of the ultrasonic field reflected on the array transducer was delivered and the reconstruction algorithm was based on the ellipsoidal backprojection. Measurements on a wooden cone section provided submillimetre accuracy in a controlled environment.

  20. Building synthetic memory

    PubMed Central

    Inniss, Mara C.; Silver, Pamela A.

    2013-01-01

    Synopsis Cellular memory – conversion of a transient signal into a sustained response – is a common feature of biological systems. Synthetic biologists aim to understand and reengineer such systems in a reliable and predictable manner. Synthetic memory circuits have been designed and built in vitro and in vivo based on diverse mechanisms such as oligonucleotide hybridization, recombination, transcription, phosphorylation, and RNA editing. Thus far, building these circuits has helped us explore the basic principles required for stable memory and ask novel biological questions. Here we discuss strategies for building synthetic memory circuits, their use as research tools, and future applications of these devices in medicine and industry. PMID:24028965