Science.gov

Sample records for airborne pollen counts

  1. Relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts.

    PubMed

    Yamamoto, Naomichi; Matsuki, Yuuki; Yokoyama, Hiromichi; Matsuki, Hideaki

    2015-01-01

    Japanese cedar pollinosis (JCP) is an important illness caused by the inhalation of airborne allergenic cedar pollens, which are dispersed in the early spring throughout the Japanese islands. However, associations between pollen exposures and the prevalence or severity of allergic symptoms are largely unknown, due to a lack of understanding regarding personal pollen exposures in relation to indoor and outdoor concentrations. This study aims to examine the relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts. We conducted a 4-year monitoring campaign to quantify indoor, outdoor, and personal airborne cedar pollen counts, where the personal passive settling sampler that has been previously validated against a volumetric sampler was used to count airborne pollen grains. A total of 256 sets of indoor, outdoor, and personal samples (768 samples) were collected from 9 subjects. Medians of the seasonally-integrated indoor-to-outdoor, personal-to-outdoor, and personal-to-indoor ratios of airborne pollen counts measured for 9 subjects were 0.08, 0.10, and 1.19, respectively. A greater correlation was observed between the personal and indoor counts (r = 0.89) than between the personal and outdoor counts (r = 0.71), suggesting a potential inaccuracy in the use of outdoor counts as a basis for estimating personal exposures. The personal pollen counts differed substantially among the human subjects (49% geometric coefficient of variation), in part due to the variability in the indoor counts that have been found as major determinants of the personal pollen counts. The findings of this study highlight the need for pollen monitoring in proximity to human subjects to better understand the relationships between pollen exposures and the prevalence or severity of pollen allergy.

  2. [Long-term study of airborne allergic pollen count, C. Japonica and cupressaceae in Japan].

    PubMed

    Kishikawa, R; Koto, E; Iwanaga, T; So, N; Kamori, C; Shoji, S; Nishima, S; Ishikawa, T

    2001-04-01

    We have investigated the distribution of airborne pollen at the different eleven points in Japan from 1987 to 1998 using gravity sampler. To clarify the characteristics causative pollen for Japanese cedar pollinosis, we examined annual change of pollen counts, dispersing period and geographical difference of C. japonica and Cupressaceae pollen. C. japonica pollen occupied much more in Central Japan and Cupressaceae in the west of Japan than the other area. In Hamamatsu City, both of pollen counts were most of all and we found a tendency that the more pollen counts the longer dispersing period. As they reported that at the starting day of pollen in this method some patients had already suffered from allergic symptoms, we considered pollen grains were dispersing in spite of being continuously captured. In these twelve years we found that patients with Japanese pollinosis are exposured by causative agents during about 100 days every spring. But we could not observe the trend of increasing pollen counts and earlier starting day because of global warming. Further more we found that the pollen counts of C. japonica in autumn was increasing since 1994. As one of the factors of increasing patients with pollinosis, we thought that total exposure period of causative pollen every year were longer than that of 1980s.

  3. An algorithm and a device for counting airborne pollen automatically using laser optics

    NASA Astrophysics Data System (ADS)

    Kawashima, Shigeto; Clot, Bernard; Fujita, Toshio; Takahashi, Yuichi; Nakamura, Kimihito

    Airborne pollen is important in relation to the social issues of pollinosis and of the environmental effects of genetically modified plants. Existing methods for pollen counting involve counting and classifying the grains that adhere to a sampling surface, requiring much time and skilled labor. We therefore have developed a method of automatically monitoring pollen, using a laser-optics instrument. In this instrument, the sideways and forward scattering of laser light by each particle is recorded in real time for computer processing. A field experiment was conducted in 2005, comparing our method with that of the older Hirst method. A scatter plot was made of the forward scattering vs. the sideways scattering for each particle. An algorithm was developed to find the optimum rectangular region of the plot for each type of pollen, and a count of points inside this region was taken as the count for that type of pollen. For the three most common types of pollen found in the field test (Urticaceae, Poaceae, and Ambrosia), the daily counts from this algorithm were compared with the daily counts from the Hirst-type (Burkard) sampler. There was a very high correlation (determination coefficient approximately 0.8) between the results of the two methods.

  4. Influence of wind on daily airborne pollen counts in Catalonia (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    tareq Majeed, Husam; Periago, Cristina; Alarcón, Marta; De Linares, Concepción; Belmonte, Jordina

    2016-04-01

    The aim of this study is to analize the influence of wind (speed and direction) on the daily airborne pollen counts recorded in Catalonia (NE Iberian Peninsula) of 21 pollen taxa recorded at 6 aerobiological stations: Barcelona, Bellaterra, Girona, Lleida Manresa, and Tarragona for the period 2004-2014. The taxa studied are Alnus, Betula, Castanea, Cupressaceae, Fagus, Fraxinus, Olea, Pinus, Platanus, total Quercus, Quercus deciduous type, Quercus evergreen type, Ulmus, Corylus, Pistacia, Artemisia, Chenopodiaceae/Amaranthaceae, Plantago, Poaceae, Polygonaceae, and Urticaceae. The mean daily wind direction was divided into 8 sectors: N, NE, E, SE, S, SW, W and NW. For each sector, the correlation between the daily pollen concentrations and wind speed using Spearman's rank correlation coefficient was computed and compared with the wind rose charts. The results showed that Tarragona was the station with more significant correlations followed by Bellaterra, Lleida and Manresa. On the other hand, Artemisia was the most correlated taxon with mainly negative values, and Fagus was the least. The W wind direction showed the largest number of significant correlations, mostly positive, while the N direction was the least and negatively correlated.

  5. Seasonal variations of airborne pollen in Allahabad, India.

    PubMed

    Sahney, Manju; Chaurasia, Swati

    2008-01-01

    Using a Burkard 7-day volumetric sampler a survey of airborne pollen grains in Allahabad was carried out from December 2004--November 2005 to assess the qualitative and quantitative occurrence of pollen grains during different months of the year, and to characterize the pollen seasons of dominant pollen types in the atmosphere of Allahabad. 80 pollen types were identified out of the total pollen catch of 3,416.34 pollen grains/m(3). Bulk of the pollen originated from anemophilous trees and grasses. Thirteen pollen types recorded more than 1 % of the annual total pollen catch. Holoptelea integrifolia formed the major component of the pollen spectrum constituting 46.21 % of the total pollen catch followed by Poaceae, Azadirachta indica, Ailanthus excelsa, Putranjiva roxburghii, Parthenium hysterophorus, Ricinus communis, Brassica compestris, Amaranthaceae/Chenopodiaceae, Madhuca longifolia, Syzygium cumini, other Asteraceae and Aegle marmelos. Highest pollen counts were obtained in the month of March and lowest in July. The pollen types recorded marked the seasonal pattern of occurrence in the atmosphere. February-May was the principal pollen season with maximum number of pollen counts and pollen types. Chief sources of pollen during this period were arboreal taxa. September-October was the second pollen season with grasses being the main source of pollen. Airborne pollen spectrum reflected the vegetation of Allahabad, except for Alnus sp., which grows in the Himalayan region. A significant negative correlation was found of daily pollen counts with minimum temperature, relative humidity and rainfall.

  6. [Airborne Japanese cedar allergens studied by immunoblotting technique using anti-Cry j I monoclonal antibody--comparison with actual pollen counts and effect of wind speed and directions].

    PubMed

    Iwaya, M; Murakami, G; Matsuno, M; Onoue, Y; Takayanagi, M; Kayahara, M; Adachi, Y; Adachi, Y; Okada, T; Kenda, S

    1995-07-01

    We collected airborne particles of Japanese cedar pollen with Burkard's sampling tape in Toyama from February to April 1992. The tape was cut into two pieces in parallel to time axis. The one of piece of the tapes was stained with glycerin-jerry and stained pollens were counted with a microscope. The other piece was treated according to the immunoblotting technique. The airborne pollen allergens, reacting with anti-Cry j I monoclonal antibody, were stained as blue spots. The spots were classified by diameter into two groups, large spots (> 50 microns) and small spots (< 50 microns). There were significant correlations found between the airborne Cry j I allergen spots (in large and small) and actual pollen counts obtained with the Burkard's sampler and the Durham's sampler (r = 0.729, 0.586 in large spots and r = 0.676, 0.489 in small spots, p < 0.001). The counts of small spots stayed in high level even in April when actual pollen counts decreased. We concluded that this discrepancy was caused by allergenic crushed cedar pollen particles staying floating longer than actual pollens. Secondly we set a gauge of wind speed and direction at the same point as the samplers. The actual pollen counts and large spots counts were significantly larger in the wind (SE wind in Toyama city) from cedar trees blooming area than other areas. However small spots counts did not differ significantly according to wind directions. Wind speed did not effect on actual pollen counts, large spots counts and small spots count.

  7. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  8. A Six-Year Study on the Changes in Airborne Pollen Counts and Skin Positivity Rates in Korea: 2008–2013

    PubMed Central

    Park, Hye Jung; Lee, Jae-Hyun; Park, Kyung Hee; Kim, Kyu Rang; Han, Mae Ja; Choe, Hosoeng

    2016-01-01

    Purpose The occurrence of pollen allergy is subject to exposure to pollen, which shows regional and temporal variations. We evaluated the changes in pollen counts and skin positivity rates for 6 years, and explored the correlation between their annual rates of change. Materials and Methods We assessed the number of pollen grains collected in Seoul, and retrospectively reviewed the results of 4442 skin-prick tests conducted at the Severance Hospital Allergy-Asthma Clinic from January 1, 2008 to December 31, 2013. Results For 6 years, the mean monthly total pollen count showed two peaks, one in May and the other in September. Pollen count for grasses also showed the same trend. The pollen counts for trees, grasses, and weeds changed annually, but the changes were not significant. The annual skin positivity rates in response to pollen from grasses and weeds increased significantly over the 6 years. Among trees, the skin positivity rates in response to pollen from walnut, popular, elm, and alder significantly increased over the 6 years. Further, there was a significant correlation between the annual rate of change in pollen count and the rate of change in skin positivity rate for oak and hop Japanese. Conclusion The pollen counts and skin positivity rates should be monitored, as they have changed annually. Oak and hop Japanese, which showed a significant correlation with the annual rate of change in pollen count and the rate of change in skin positivity rate over the 6 years may be considered the major allergens in Korea. PMID:26996572

  9. Airborne pollen of allergenic herb species in Toledo (Spain).

    PubMed

    Vaquero, Consolación; Rodríguez-Torres, Alfonso; Rojo, Jesús; Pérez-Badia, Rosa

    2013-01-01

    This study analysed airborne pollen counts for allergenic herb taxa in Toledo (central Spain), a major tourist city receiving over 2 million visitors per year, located in the region of Castilla-La Mancha. The taxa selected were Chenopodiaceae-Amaranthaceae, Plantago, Poaceae and Urticaceae, all of which produce allergenic pollen giving rise to serious symptoms in pollen-allergy sufferers. Aerobiological data were recorded over a 6-year period (2005 to 2010) using the sampling and analysis procedures recommended by the Spanish Aerobiology Network. The abundance and the temporal (annual, daily and intradiurnal) distribution of these pollen types were analysed, and the influence of weather-related factors on airborne pollen counts was assessed. Pollen from herbaceous species accounted for 20.9% of total airborne pollen in Toledo, the largest contributor being Poaceae, with 8.5% of the total pollen count; this family was also the leading cause of respiratory allergies. Examination of intradiurnal variation revealed three distinct distribution patterns: (1) peak daily counts for Chenopodiaceae-Amaranthaceae and Plantago were recorded during the hottest part of the day, i.e. from 1400 to 1600 hours; (2) Urticaceae displayed two peaks (1400-1600 and 2200 hours); and (3) Poaceae counts remained fairly stable throughout the day. Two main risk periods were identified for allergies: spring, with allergies caused by Urticaceae, Plantago and Poaceae pollen, and summer, due to Chenopodiaceae-Amaranthaceae pollen. PMID:22331454

  10. A Method of Recording and Predicting the Pollen Count.

    ERIC Educational Resources Information Center

    Buck, M.

    1985-01-01

    A hair dryer, plastic funnel, and microscope slide can be used for predicting pollen counts on a day-to-day basis. Materials, methods for assembly, collection technique, meteorological influences, and daily patterns are discussed. Data collected using the apparatus suggest that airborne grass products other than pollen also affect hay fever…

  11. Effect of land uses and wind direction on the contribution of local sources to airborne pollen.

    PubMed

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Fernández-González, Federico; Pérez-Badia, Rosa

    2015-12-15

    The interpretation of airborne pollen levels in cities based on the contribution of the surrounding flora and vegetation is a useful tool to estimate airborne allergen concentrations and, consequently, to determine the allergy risk for local residents. This study examined the pollen spectrum in a city in central Spain (Guadalajara) and analysed the vegetation landscape and land uses within a radius of 20km in an attempt to identify and locate the origin of airborne pollen and to determine the effect of meteorological variables on pollen emission and dispersal. The results showed that local wind direction was largely responsible for changes in the concentrations of different airborne pollen types. The land uses contributing most to airborne pollen counts were urban green spaces, though only 0.1% of the total surface area studied, and broadleaved forest which covered 5% of the study area. These two types of land use together accounted for 70% of the airborne pollen. Crops, scrubland and pastureland, though covering 80% of the total surface area, contributed only 18.6% to the total pollen count, and this contribution mainly consisted of pollen from Olea and herbaceous plants, including Poaceae, Urticaceae and Chenopodiaceae-Amaranthaceae. Pollen from ornamental species were mainly associated with easterly (Platanus), southerly (Cupressaceae) and westerly (Cupressaceae and Platanus) winds from the areas where the city's largest parks and gardens are located. Quercus pollen was mostly transported by winds blowing in from holm-oak stands on the eastern edge of the city. The highest Populus pollen counts were associated with easterly and westerly winds blowing in from areas containing rivers and streams. The airborne pollen counts generally rose with increasing temperature, solar radiation and hours of sunlight, all of which favour pollen release. In contrast, pollen counts declined with increased relative humidity and rainfall, which hinder airborne pollen transport.

  12. Effect of land uses and wind direction on the contribution of local sources to airborne pollen.

    PubMed

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Fernández-González, Federico; Pérez-Badia, Rosa

    2015-12-15

    The interpretation of airborne pollen levels in cities based on the contribution of the surrounding flora and vegetation is a useful tool to estimate airborne allergen concentrations and, consequently, to determine the allergy risk for local residents. This study examined the pollen spectrum in a city in central Spain (Guadalajara) and analysed the vegetation landscape and land uses within a radius of 20km in an attempt to identify and locate the origin of airborne pollen and to determine the effect of meteorological variables on pollen emission and dispersal. The results showed that local wind direction was largely responsible for changes in the concentrations of different airborne pollen types. The land uses contributing most to airborne pollen counts were urban green spaces, though only 0.1% of the total surface area studied, and broadleaved forest which covered 5% of the study area. These two types of land use together accounted for 70% of the airborne pollen. Crops, scrubland and pastureland, though covering 80% of the total surface area, contributed only 18.6% to the total pollen count, and this contribution mainly consisted of pollen from Olea and herbaceous plants, including Poaceae, Urticaceae and Chenopodiaceae-Amaranthaceae. Pollen from ornamental species were mainly associated with easterly (Platanus), southerly (Cupressaceae) and westerly (Cupressaceae and Platanus) winds from the areas where the city's largest parks and gardens are located. Quercus pollen was mostly transported by winds blowing in from holm-oak stands on the eastern edge of the city. The highest Populus pollen counts were associated with easterly and westerly winds blowing in from areas containing rivers and streams. The airborne pollen counts generally rose with increasing temperature, solar radiation and hours of sunlight, all of which favour pollen release. In contrast, pollen counts declined with increased relative humidity and rainfall, which hinder airborne pollen transport

  13. Ambrosia airborne pollen concentration modelling and evaluation over Europe

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Vautard, Robert; Viovy, Nicolas; Khvorostyanov, Dmitry; Colette, Augustin

    2014-05-01

    Native from North America, Ambrosia artemisiifolia L. (Common Ragweed) is an invasive annual weed introduced in Europe in the mid-nineteenth century. It has a very high spreading potential throughout Europe and releases very allergenic pollen leading to health problems for sensitive persons. Because of its health effects, it is necessary to develop modelling tools to be able to forecast ambrosia air pollen concentration and to inform allergy populations of allergenic threshold exceedance. This study is realised within the framework of the ATOPICA project (https://www.atopica.eu/) which is designed to provide first steps in tools and estimations of the fate of allergies in Europe due to changes in climate, land use and air quality. To calculate and predict airborne concentrations of ambrosia pollen, a chain of models has been built. Models have been developed or adapted for simulating the phenology (PMP phonological modelling platform), inter-annual production (ORCHIDEE vegetation model), release and airborne processes (CHIMERE chemical transport model) of ragweed pollen. Airborne pollens follow processes similar to air quality pollutants in CHIMERE with some adaptations. The detailed methodology, formulations and input data will be presented. A set of simulations has been performed to simulate airborne concentrations of pollens over long time periods on a large European domain. Hindcast simulations (2000 - 2012) driven by ERA-Interim re-analyses are designed to best simulate past periods airborne pollens. The modelled pollen concentrations are calibrated with observations and validated against additional observations. Then, 20-year long historical simulations (1986 - 2005) are carried out using calibrated ambrosia density distribution and climate model-driven weather in order to serve as a control simulation for future scenarios. By comparison with multi-annual observed daily pollen counts we have shown that the model captures well the gross features of the pollen

  14. Airborne pollen trends in the Iberian Peninsula.

    PubMed

    Galán, C; Alcázar, P; Oteros, J; García-Mozo, H; Aira, M J; Belmonte, J; Diaz de la Guardia, C; Fernández-González, D; Gutierrez-Bustillo, M; Moreno-Grau, S; Pérez-Badía, R; Rodríguez-Rajo, J; Ruiz-Valenzuela, L; Tormo, R; Trigo, M M; Domínguez-Vilches, E

    2016-04-15

    Airborne pollen monitoring is an effective tool for studying the reproductive phenology of anemophilous plants, an important bioindicator of plant behavior. Recent decades have revealed a trend towards rising airborne pollen concentrations in Europe, attributing these trends to an increase in anthropogenic CO2 emissions and temperature. However, the lack of water availability in southern Europe may prompt a trend towards lower flowering intensity, especially in herbaceous plants. Here we show variations in flowering intensity by analyzing the Annual Pollen Index (API) of 12 anemophilous taxa across 12 locations in the Iberian Peninsula, over the last two decades, and detecting the influence of the North Atlantic Oscillation (NAO). Results revealed differences in the distribution and flowering intensity of anemophilous species. A negative correlation was observed between airborne pollen concentrations and winter averages of the NAO index. This study confirms that changes in rainfall in the Mediterranean region, attributed to climate change, have an important impact on the phenology of plants.

  15. Impact and correlation of environmental conditions on pollen counts in Karachi, Pakistan.

    PubMed

    Perveen, Anjum; Khan, Muneeba; Zeb, Shaista; Imam, Asif Ali

    2015-02-01

    A quantitative and qualitative survey of airborne pollen was performed in the city of Karachi, and the pollen counts were correlated with different climatic conditions. The aim of the study was to determine the possible effect of meteorological factors on airborne pollen distribution in the atmosphere of Karachi city. Pollen sampling was carried out by using Burkard spore Trap for the period of August 2009 to July 2010, and a total of 2,922 pollen grains/m(3) were recorded. In this survey, 22 pollen types were recognized. The highest pollen count was contributed by Poaceae pollen type (1,242 pollen grains/m(3)) followed by Amaranthaceae/Chenopodiaceae (948 pollen grains/m(3)), Cyperus rotundus (195 pollen grains/m(3)) and Prosopis juliflora (169 pollen grains/m(3)). Peak pollen season was in August showing a total of 709 pollen grains/m(3) and lowest pollen count was observed in January-2010. Pearson's chi-square test was performed for the possible correlation of pollen counts and climatic factors. The test revealed significant positive correlation of wind speed with pollen types of Amaranthaceae/Chenopodiaceae; Brassica campestris; Asteraceae; and Thuja orientalis. While the correlation of "average temperature" showed significant positive value with Asteraceae and Tamarix indica pollen types. Negative correlation was observed between humidity/ precipitation and pollen types of Brassica campestris; Daucus carota; Ephedra sp.; and Tamarix indica. In the light of above updated data one could identify various aeroallergens present in the air of Karachi city. PMID:25530143

  16. Spatial variability in airborne pollen concentrations.

    PubMed

    Raynor, G S; Ogden, E C; Hayes, J V

    1975-03-01

    Tests were conducted to determine the relationship between airborne pollen concentrations and distance. Simultaneous samples were taken in 171 tests with sets of eight rotoslide samplers spaced from one to 486 M. apart in straight lines. Use of all possible pairs gave 28 separation distances. Tests were conducted over a 2-year period in urban and rural locations distant from major pollen sources during both tree and ragweed pollen seasons. Samples were taken at a height of 1.5 M. during 5-to 20-minute periods. Tests were grouped by pollen type, location, year, and direction of the wind relative to the line. Data were analyzed to evaluate variability without regard to sampler spacing and variability as a function of separation distance. The mean, standard deviation, coefficient of variation, ratio of maximum to the mean, and ratio of minimum to the mean were calculated for each test, each group of tests, and all cases. The average coefficient of variation is 0.21, the maximum over the mean, 1.39 and the minimum over the mean, 0.69. No relationship was found with experimental conditions. Samples taken at the minimum separation distance had a mean difference of 18 per cent. Differences between pairs of samples increased with distance in 10 of 13 groups. These results suggest that airborne pollens are not always well mixed in the lower atmosphere and that a sample becomes less representative with increasing distance from the sampling location.

  17. Controlling the levels of airborne pollen: can heterogeneous photocatalysis help?

    PubMed

    Sapiña, M; Jimenez-Relinque, E; Castellote, M

    2013-10-15

    Airborne pollen is a worldwide problem because is a very important allergenic agent; it can be altered only by certain microorganisms and by some oxidizers, such as reactive oxygen species (ROS). On the other hand, heterogeneous photocatalysis (HPC) arose as a promising technology for reducing the level of contaminants in the air, based on their degradation by the production of ROS. In this paper, study of the feasibility of HPC to diminish the counts of pollen is undertaken. The research has been carried out at different levels, from solutions to mortar specimens with the evidence that HPC is able to reduce the amount of pollen grains. This is a major breakthrough that opens the door to a whole field of research, already full of gaps, whose implications could be quite controversial.

  18. Pollen counts and their relationship to meteorological factors in Ankara, Turkey during 2005-2008

    NASA Astrophysics Data System (ADS)

    Kizilpinar, Ilginc; Civelek, Ersoy; Tuncer, Ayfer; Dogan, Cahit; Karabulut, Erdem; Sahiner, Umit M.; Yavuz, S. Tolga; Sackesen, Cansin

    2011-07-01

    Pollen plays an important role in the development and exacerbation of allergic diseases. We aimed to investigate the days with highest counts of the most allergenic pollens and to identify the meteorological factors affecting pollen counts in the atmosphere of Ankara, Turkey. Airborne pollen measurements were carried out from 2005 to 2008 with a Burkard volumetric 7-day spore trap. Microscope counts were converted into atmospheric concentrations and expressed as pollen grains/m3. Meteorological parameters were obtained from the State Meteorological Service. All statistical analyses were done with pollen counts obtained from March to October for each year. The percentages of tree, grass and weed pollens were 72.1% ( n = 24,923), 12.8% ( n = 4,433) and 15.1% ( n = 5,219), respectively. The Pinaceae family from tree taxa (39% to 57%) and the Chenopodiaceae/Amaranthaceae family from weed taxa, contributed the highest percentage of pollen (25% to 43%), while from the grass taxa, only the Poaceae family was detected from 2005 to 2008. Poaceae and Chenopodiaceae/Amaranthaceae families, which are the most allergenic pollens, were found in high numbers from May to August in Ankara. In multiple logistic regression analysis, wind speed (OR = 1.18, CI95% = 1.02-1.36, P = 0.023) for tree pollen, daily mean temperature (OR = 1.10, CI95% = 1.04-1.17, P = 0.001) and sunshine hours (OR = 1.15, CI95% = 1.01-1.30, P = 0.033) for grass pollen, and sunshine hours (OR = 3.79, CI95% = 1.03-13.92, P = 0.044) for weed pollen were found as significant risk factors for high pollen count. The pollen calendar and its association with meteorological factors depend mainly on daily temperature, sunshine hours and wind speed, which may help draw the attention of physicians and allergic patients to days with high pollen counts.

  19. Quantitative DNA Analyses for Airborne Birch Pollen.

    PubMed

    Müller-Germann, Isabell; Vogel, Bernhard; Vogel, Heike; Pauling, Andreas; Fröhlich-Nowoisky, Janine; Pöschl, Ulrich; Després, Viviane R

    2015-01-01

    Birch trees produce large amounts of highly allergenic pollen grains that are distributed by wind and impact human health by causing seasonal hay fever, pollen-related asthma, and other allergic diseases. Traditionally, pollen forecasts are based on conventional microscopic counting techniques that are labor-intensive and limited in the reliable identification of species. Molecular biological techniques provide an alternative approach that is less labor-intensive and enables identification of any species by its genetic fingerprint. A particularly promising method is quantitative Real-Time polymerase chain reaction (qPCR), which can be used to determine the number of DNA copies and thus pollen grains in air filter samples. During the birch pollination season in 2010 in Mainz, Germany, we collected air filter samples of fine (<3 μm) and coarse air particulate matter. These were analyzed by qPCR using two different primer pairs: one for a single-copy gene (BP8) and the other for a multi-copy gene (ITS). The BP8 gene was better suitable for reliable qPCR results, and the qPCR results obtained for coarse particulate matter were well correlated with the birch pollen forecasting results of the regional air quality model COSMO-ART. As expected due to the size of birch pollen grains (~23 μm), the concentration of DNA in fine particulate matter was lower than in the coarse particle fraction. For the ITS region the factor was 64, while for the single-copy gene BP8 only 51. The possible presence of so-called sub-pollen particles in the fine particle fraction is, however, interesting even in low concentrations. These particles are known to be highly allergenic, reach deep into airways and cause often severe health problems. In conclusion, the results of this exploratory study open up the possibility of predicting and quantifying the pollen concentration in the atmosphere more precisely in the future.

  20. Quantitative DNA Analyses for Airborne Birch Pollen.

    PubMed

    Müller-Germann, Isabell; Vogel, Bernhard; Vogel, Heike; Pauling, Andreas; Fröhlich-Nowoisky, Janine; Pöschl, Ulrich; Després, Viviane R

    2015-01-01

    Birch trees produce large amounts of highly allergenic pollen grains that are distributed by wind and impact human health by causing seasonal hay fever, pollen-related asthma, and other allergic diseases. Traditionally, pollen forecasts are based on conventional microscopic counting techniques that are labor-intensive and limited in the reliable identification of species. Molecular biological techniques provide an alternative approach that is less labor-intensive and enables identification of any species by its genetic fingerprint. A particularly promising method is quantitative Real-Time polymerase chain reaction (qPCR), which can be used to determine the number of DNA copies and thus pollen grains in air filter samples. During the birch pollination season in 2010 in Mainz, Germany, we collected air filter samples of fine (<3 μm) and coarse air particulate matter. These were analyzed by qPCR using two different primer pairs: one for a single-copy gene (BP8) and the other for a multi-copy gene (ITS). The BP8 gene was better suitable for reliable qPCR results, and the qPCR results obtained for coarse particulate matter were well correlated with the birch pollen forecasting results of the regional air quality model COSMO-ART. As expected due to the size of birch pollen grains (~23 μm), the concentration of DNA in fine particulate matter was lower than in the coarse particle fraction. For the ITS region the factor was 64, while for the single-copy gene BP8 only 51. The possible presence of so-called sub-pollen particles in the fine particle fraction is, however, interesting even in low concentrations. These particles are known to be highly allergenic, reach deep into airways and cause often severe health problems. In conclusion, the results of this exploratory study open up the possibility of predicting and quantifying the pollen concentration in the atmosphere more precisely in the future. PMID:26492534

  1. Quantitative DNA Analyses for Airborne Birch Pollen

    PubMed Central

    Müller-Germann, Isabell; Vogel, Bernhard; Vogel, Heike; Pauling, Andreas; Fröhlich-Nowoisky, Janine; Pöschl, Ulrich; Després, Viviane R.

    2015-01-01

    Birch trees produce large amounts of highly allergenic pollen grains that are distributed by wind and impact human health by causing seasonal hay fever, pollen-related asthma, and other allergic diseases. Traditionally, pollen forecasts are based on conventional microscopic counting techniques that are labor-intensive and limited in the reliable identification of species. Molecular biological techniques provide an alternative approach that is less labor-intensive and enables identification of any species by its genetic fingerprint. A particularly promising method is quantitative Real-Time polymerase chain reaction (qPCR), which can be used to determine the number of DNA copies and thus pollen grains in air filter samples. During the birch pollination season in 2010 in Mainz, Germany, we collected air filter samples of fine (<3 μm) and coarse air particulate matter. These were analyzed by qPCR using two different primer pairs: one for a single-copy gene (BP8) and the other for a multi-copy gene (ITS). The BP8 gene was better suitable for reliable qPCR results, and the qPCR results obtained for coarse particulate matter were well correlated with the birch pollen forecasting results of the regional air quality model COSMO-ART. As expected due to the size of birch pollen grains (~23 μm), the concentration of DNA in fine particulate matter was lower than in the coarse particle fraction. For the ITS region the factor was 64, while for the single-copy gene BP8 only 51. The possible presence of so-called sub-pollen particles in the fine particle fraction is, however, interesting even in low concentrations. These particles are known to be highly allergenic, reach deep into airways and cause often severe health problems. In conclusion, the results of this exploratory study open up the possibility of predicting and quantifying the pollen concentration in the atmosphere more precisely in the future. PMID:26492534

  2. Characterisation of the airborne pollen spectrum in Guadalajara (central Spain) and estimation of the potential allergy risk.

    PubMed

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Sabariego, Silvia; Fernández-González, Federico; Pérez-Badia, Rosa

    2016-03-01

    Aerobiological research into airborne pollen diversity and seasonal variations in pollen counts has become increasingly important over recent decades due to the growing incidence of asthma, rhinitis and other pollen-related allergic conditions. Airborne pollen in Guadalajara (Castilla-La Mancha, Spain) was studied over a 6-year period (2008-2013) using a Hirst-type volumetric spore trap. The highest pollen concentrations were recorded from February to June, coinciding with the pollen season of the pollen types that most contribute to the local airborne pollen spectrum: Cupressaceae (32.2%), Quercus (15.1%), Platanus (13.2%), Olea (8.3%), Populus (7.8%) and Poaceae (7.2%). These are therefore critical months for allergy sufferers. The pollen calendar was typically Mediterranean and comprised 25 pollen types. Between January and March, Cupressaceae pollen concentrations exceeded allergy risk thresholds on 38 days. Other woody species such as Olea and Platanus have a shorter pollen season, and airborne concentrations exceeded allergy risk thresholds on around 13 days in each case. Poaceae pollen concentrations attained allergy risk levels on 26 days between May and July. Other highly allergenic pollen types included Urticaceae and Chenopodiaceae-Amaranthaceae, though these are less abundant than other pollen types in Guadalajara and did not exceed risk thresholds on more than 3 and 5 days, respectively.

  3. Airborne pollen survey for Lincoln, Nebraska. III. Weeds.

    PubMed

    Bolick, M R

    1991-06-01

    Pollen counts in 1988, 1989, and 1990 revealed 16 weed pollen types. The weed pollination season in Lincoln extends from March through October. Very low amounts of pigweed-type and nettle pollen appear in April. Dock pollination begins in May. June has the greatest diversity of weed types and moderately high total counts (highest total June counts ca. 300 grains/m3). July is low in both diversity and absolute numbers of pollen grains (highest total July counts ca. 35 grains/m3). In early August pollen counts begin to rise with the primary pigweed-type pollination season and the first ragweed pollen. Ragweed pollen peaks in the last week of August and first week of September with more than 460 ragweed grains/m3 and total counts of more than 780 gr/m3.

  4. Mismatch in aeroallergens and airborne grass pollen concentrations

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Hernández-Ceballos, M. A.; Galán, C.

    2016-11-01

    An accurate estimation of the allergen concentration in the atmosphere is essential for allergy sufferers. The major cause of pollinosis all over Europe is due to grass pollen and Phl p 5 has the highest rates of sensitization (>50%) in patients with grass pollen-induced allergy. However, recent research has shown that airborne pollen does not always offer a clear indicator of exposure to aeroallergens. This study aims to evaluate relations between airborne grass pollen and Phl p 5 concentrations in Córdoba (southern Spain) and to study how meteorological parameters influence these atmospheric records. Monitoring was carried out from 2012 to 2014. Hirst-type volumetric spore trap was used for pollen collection, following the protocol recommended by the Spanish Aerobiology Network (REA). Aeroallergen sampling was performed using a low-volume cyclone sampler, and allergenic particles were quantified by ELISA assay. Besides, the influence of main meteorological factors on local airborne pollen and allergen concentrations was surveyed. A significant correlation was observed between grass pollen and Phl p 5 allergen concentrations during the pollen season, but with some sporadic discrepancy episodes. The cumulative annual Pollen Index also varied considerably. A significant correlation has been obtained between airborne pollen and minimum temperature, relative humidity and precipitation, during the three studied years. However, there is no clear relationship between allergens and weather variables. Our findings suggest that the correlation between grass pollen and aeroallergen Phl p 5 concentrations varies from year-to-year probably related to a complex interplay of meteorological variables.

  5. On the causes of variability in amounts of airborne grass pollen in Melbourne, Australia

    NASA Astrophysics Data System (ADS)

    de Morton, Julian; Bye, John; Pezza, Alexandre; Newbigin, Edward

    2011-07-01

    In Melbourne, Australia, airborne grass pollen is the predominant cause of hay fever (seasonal rhinitis) during late spring and early summer, with levels of airborne grass pollen also influencing hospital admissions for asthma. In order to improve predictions of conditions that are potentially hazardous to susceptible individuals, we have sought to better understand the causes of diurnal, intra-seasonal and inter-seasonal variability of atmospheric grass pollen concentrations (APC) by analysing grass pollen count data for Melbourne for 16 grass pollen seasons from 1991 to 2008 (except 1994 and 1995). Some of notable features identified in this analysis were that on days when either extreme (>100 pollen grains m-3) or high (50-100 pollen grains m-3) levels of grass pollen were recorded the winds were of continental origin. In contrast, on days with a low (<20 pollen grains m-3) concentration of grass pollen, winds were of maritime origin. On extreme and high grass pollen days, a peak in APC occurred on average around 1730 hours, probably due to a reduction in surface boundary layer turbulence. The sum of daily APC for each grass pollen season was highly correlated ( r = 0.79) with spring rainfall in Melbourne for that year, with about 60% of a declining linear trend across the study period being attributable to a reduction of meat cattle and sheep (and hence grazing land) in rural areas around Melbourne. Finally, all of the ten extreme pollen events (3 days or more with APC > 100 pollen grains m-3) during the study period were characterised by an average downward vertical wind anomaly in the surface boundary layer over Melbourne. Together these findings form a basis for a fine resolution atmospheric general circulation model for grass pollen in Melbourne's air that can be used to predict daily (and hourly) APC. This information will be useful to those sectors of Melbourne's population that suffer from allergic problems.

  6. Characterisation of particulate matter on airborne pollen grains.

    PubMed

    Ribeiro, Helena; Guimarães, Fernanda; Duque, Laura; Noronha, Fernando; Abreu, Ilda

    2015-11-01

    A characterization of the physical-chemical composition of the atmospheric PM adsorbed to airborne pollen was performed. Airborne pollen was sampled using a Hirst-type volumetric spore sampler and observed using a Field Emission Electron Probe Microanalyser for PM analysis. A secondary electron image was taken of each pollen grain and EDS spectra were obtained for individually adsorbed particles. All images were analysed and the size parameters of the particles adsorbed to pollen was determined. The measured particles' equivalent diameter varied between 0.1 and 25.8 μm, mostly in the fine fraction. The dominant particulates identified were Si-rich, Organic-rich, SO-rich, Metals & Oxides and Cl-rich. Significant daily differences were observed in the physical-chemical characteristics of particles adsorbed to the airborne pollen wall. These differences were correlated with weather parameters and atmospheric PM concentration. Airborne pollen has the ability to adsorb fine particles that may enhance its allergenicity.

  7. Impact of land cover changes and climate on the main airborne pollen types in Southern Spain.

    PubMed

    García-Mozo, Herminia; Oteros, Jose Antonio; Galán, Carmen

    2016-04-01

    Airborne pollen concentrations strongly correlate with flowering intensity of wind-pollinated species growing at and around monitoring sites. The pollen spectrum, and the variations in its composition and concentrations, is influenced by climatic features and by available nutritional resources but it is also determined by land use and its changes. The first factor influence is well known on aerobiological researches but the impact of land cover changes has been scarcely studied until now. This paper reports on a study carried out in Southern Spain (Córdoba city) examining airborne pollen trends over a 15-year period and it explores the possible links both to changes in land use and to climate variations. The Seasonal-Trend Decomposition procedure based on Loess (STL) which decomposes long-term data series into smaller seasonal component patterns was applied. Trends were compared with recorded changes in land use at varying distances from the city in order to determine their possible influence on pollen-count variations. The influence of climate-related factors was determined by means of non-parametric correlation analysis. The STL method proved highly effective for extracting trend components from pollen time series, because their features vary widely and can change quickly in a short term. Results revealed mixed trends depending on the taxa and reflecting fluctuations in land cover and/or climate. A significant rising trend in Olea pollen counts was observed, attributable both to the increasing olive-growing area but also to changes in temperature and rainfall. Poaceae pollen concentrations also increased, due largely to an expansion of heterogeneous agricultural areas and to an increase in pollen season length positively influenced by rainfall and temperature. By contrast, the significant declining trend observed for pollen from ruderal taxa, such as Amaranthaceae, Rumex, Plantago and Urticaceae, may be linked to changes in urban planning strategies with a

  8. Impact of land cover changes and climate on the main airborne pollen types in Southern Spain.

    PubMed

    García-Mozo, Herminia; Oteros, Jose Antonio; Galán, Carmen

    2016-04-01

    Airborne pollen concentrations strongly correlate with flowering intensity of wind-pollinated species growing at and around monitoring sites. The pollen spectrum, and the variations in its composition and concentrations, is influenced by climatic features and by available nutritional resources but it is also determined by land use and its changes. The first factor influence is well known on aerobiological researches but the impact of land cover changes has been scarcely studied until now. This paper reports on a study carried out in Southern Spain (Córdoba city) examining airborne pollen trends over a 15-year period and it explores the possible links both to changes in land use and to climate variations. The Seasonal-Trend Decomposition procedure based on Loess (STL) which decomposes long-term data series into smaller seasonal component patterns was applied. Trends were compared with recorded changes in land use at varying distances from the city in order to determine their possible influence on pollen-count variations. The influence of climate-related factors was determined by means of non-parametric correlation analysis. The STL method proved highly effective for extracting trend components from pollen time series, because their features vary widely and can change quickly in a short term. Results revealed mixed trends depending on the taxa and reflecting fluctuations in land cover and/or climate. A significant rising trend in Olea pollen counts was observed, attributable both to the increasing olive-growing area but also to changes in temperature and rainfall. Poaceae pollen concentrations also increased, due largely to an expansion of heterogeneous agricultural areas and to an increase in pollen season length positively influenced by rainfall and temperature. By contrast, the significant declining trend observed for pollen from ruderal taxa, such as Amaranthaceae, Rumex, Plantago and Urticaceae, may be linked to changes in urban planning strategies with a

  9. Airborne dust particle counting techniques.

    PubMed

    Sharma, S G; Prasad, B D

    2006-03-01

    The paper briefly describes an electro-optical system for counting of dust particles, which is based on the scattering phenomena. Utilizing the scattering of light by various size particles present in the environment, various particle counting techniques have been developed in order to measure the scattered intensity of light. Light scatters in all directions but much more in the so-called near forward direction 17( composite function) off axis, at 163( composite function) from the light source in the visible range. On the basis of two techniques, the right angle and forward angle scattering, opto-mechanical systems have been developed which measure scattered intensity and particulate matter. The forward scattering Nephelometer is more sensitive and therefore is more suitable for pollution monitoring than the right angle scattering Nephelometer. Whereas the right angle scattering Nephelometer has the utility in extremely low concentration in ppb level owing to the excellent light trap efficiency in comparison to forward scattering Nephelometer. In this paper measurement techniques and measurement results associated with design and development of a real time particle analyser are also discussed.

  10. Does cutting of mugwort stands affect airborne pollen concentrations?

    PubMed

    Rantio-Lehtimäki, A; Helander, M L; Karhu, K

    1992-08-01

    Pollen of mugwort (Artemisia vulgaris L.) is the most important allergenic pollen in urban areas of south and central Finland in late summer. The purpose of this study was to investigate, experimentally, whether the cutting of mugwort stands affects its airborne pollen concentrations. Experimental plots were either cut (4 plots) or uncut (4 plots) in 2 previous seasons: 4 of them were small (less than 0.5 hectare) and 4 large (greater than 5 hectares). Finally, the plots were divided randomly into 2 groups according to a third variable, cutting in the study season, 1989. Samples were taken on 2 rainless mornings at the peak mugwort flowering time. Two rotorod type samplers were used at heights of 1 and 2 m from ground level, simulating the inhalation heights of children and adults, respectively. The results indicate that cutting mugwort stands significantly reduces airborne pollen concentrations, but the treated areas have to be large, since in the town area there are plenty of mugwort pollen sources. The pollen concentrations at the 2 heights tested did not differ significantly.

  11. Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, S.; Ambelas Skjøth, C.; Tormo-Molina, R.; Brandao, R.; Caeiro, E.; Silva-Palacios, I.; Gonzalo-Garijo, Á.; Smith, M.

    2012-04-01

    This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009-2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (southwestern Spain) and Évora (southeastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop.

  12. Total pollen counts do not influence active surface measurements

    NASA Astrophysics Data System (ADS)

    Moshammer, Hanns; Schinko, Herwig; Neuberger, Manfred

    We investigated the temporal association of various aerosol parameters with pollen counts in the pollen season (April 2001) in Linz, Austria. We were especially interested in the relationship between active surface (or Fuchs' surface) because we had shown previously (Atmos. Environ. 37 (2003) 1737-1744) that this parameter during the same observation period was a better predictor for acute respiratory symptoms in school children (like wheezing, shortness of breath, and cough) and reduced lung function on the same day than particle mass (PM 10). While active surface is most sensitive for fine particles with a diameter of less than 100 nm it has no strict upper cut-off regarding particle size and so could eventually be influenced also by larger particles if their numbers were high. All particle mass parameters tested (TSP, PM 10, PM 1) were weakly ( r approximately 0.2) though significantly correlated with pollen counts but neither was active surface nor total particle counts (CPC). The weak association of particle mass and pollen counts was due mainly to similar diurnal variations and a linear trend over time. Only the mass of the coarse fraction (TSP minus PM 10) remained associated with pollen counts significantly after controlling for these general temporal patterns.

  13. Airborne castanea pollen forecasting model for ecological and allergological implementation.

    PubMed

    Astray, G; Fernández-González, M; Rodríguez-Rajo, F J; López, D; Mejuto, J C

    2016-04-01

    Castanea sativa Miller belongs to the natural vegetation of many European deciduous forests prompting impacts in the forestry, ecology, allergological and chestnut food industry fields. The study of the Castanea flowering represents an important tool for evaluating the ecological conservation of North-Western Spain woodland and the possible changes in the chestnut distribution due to recent climatic change. The Castanea pollen production and dispersal capacity may cause hypersensitivity reactions in the sensitive human population due to the relationship between patients with chestnut pollen allergy and a potential cross reactivity risk with other pollens or plant foods. In addition to Castanea pollen's importance as a pollinosis agent, its study is also essential in North-Western Spain due to the economic impact of the industry around the chestnut tree cultivation and its beekeeping interest. The aim of this research is to develop an Artificial Neural Networks for predict the Castanea pollen concentration in the atmosphere of the North-West Spain area by means a 20years data set. It was detected an increasing trend of the total annual Castanea pollen concentrations in the atmosphere during the study period. The Artificial Neural Networks (ANNs) implemented in this study show a great ability to predict Castanea pollen concentration one, two and three days ahead. The model to predict the Castanea pollen concentration one day ahead shows a high linear correlation coefficient of 0.784 (individual ANN) and 0.738 (multiple ANN). The results obtained improved those obtained by the classical methodology used to predict the airborne pollen concentrations such as time series analysis or other models based on the correlation of pollen levels with meteorological variables.

  14. Airborne castanea pollen forecasting model for ecological and allergological implementation.

    PubMed

    Astray, G; Fernández-González, M; Rodríguez-Rajo, F J; López, D; Mejuto, J C

    2016-04-01

    Castanea sativa Miller belongs to the natural vegetation of many European deciduous forests prompting impacts in the forestry, ecology, allergological and chestnut food industry fields. The study of the Castanea flowering represents an important tool for evaluating the ecological conservation of North-Western Spain woodland and the possible changes in the chestnut distribution due to recent climatic change. The Castanea pollen production and dispersal capacity may cause hypersensitivity reactions in the sensitive human population due to the relationship between patients with chestnut pollen allergy and a potential cross reactivity risk with other pollens or plant foods. In addition to Castanea pollen's importance as a pollinosis agent, its study is also essential in North-Western Spain due to the economic impact of the industry around the chestnut tree cultivation and its beekeeping interest. The aim of this research is to develop an Artificial Neural Networks for predict the Castanea pollen concentration in the atmosphere of the North-West Spain area by means a 20years data set. It was detected an increasing trend of the total annual Castanea pollen concentrations in the atmosphere during the study period. The Artificial Neural Networks (ANNs) implemented in this study show a great ability to predict Castanea pollen concentration one, two and three days ahead. The model to predict the Castanea pollen concentration one day ahead shows a high linear correlation coefficient of 0.784 (individual ANN) and 0.738 (multiple ANN). The results obtained improved those obtained by the classical methodology used to predict the airborne pollen concentrations such as time series analysis or other models based on the correlation of pollen levels with meteorological variables. PMID:26802339

  15. Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, Santiago; Skjøth, Carsten Ambelas; Tormo-Molina, Rafael; Brandao, Rui; Caeiro, Elsa; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Ángela; Smith, Matt

    2014-04-01

    This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009-2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (south-western Spain) and Évora (south-eastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources during conditions with slow air mass movements. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies that examine sources and the atmospheric transport of pollen are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop.

  16. Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula.

    PubMed

    Fernández-Rodríguez, Santiago; Skjøth, Carsten Ambelas; Tormo-Molina, Rafael; Brandao, Rui; Caeiro, Elsa; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Angela; Smith, Matt

    2014-04-01

    This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009-2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (south-western Spain) and Évora (south-eastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources during conditions with slow air mass movements. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies that examine sources and the atmospheric transport of pollen are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop.

  17. Enhanced airborne radioactivity during a pine pollen release episode.

    PubMed

    Tschiersch, J; Frank, G; Roth, P; Wagenpfeil, F; Watterson, F; Watterson, J

    1999-07-01

    A single episode of pine pollen release in the highly contaminated area of Novozybkov, Russian Federation, which led to enhanced atmospheric concentrations of 137Cs is discussed. The pollen grains were sampled by a rotating arm impactor and analysed by gamma-spectrometry for 137Cs activity and by image analysis for their size. In the vicinity of a forest, a maximum concentration of 4.5+/-0.4 mBq m(-3) was measured, and a mean activity per pollen grain of 260+/-80 nBq was determined. The emission rate of the Novozybkov mixed pine forest was estimated to be approximately 400 Bq m(-2) per year. Because of the large size of pine pollen grains (about 50 microm) and the short emission period of 5-8 days per year, the estimated potential annual inhalation doses are very low. Biological emissions including pollen release may be a source of increased airborne radionuclide concentrations at larger distances from the source areas as well. PMID:10461761

  18. Modelling airborne concentration and deposition rate of maize pollen

    NASA Astrophysics Data System (ADS)

    Jarosz, Nathalie; Loubet, Benjamin; Huber, Laurent

    2004-10-01

    The introduction of genetically modified (GM) crops has reinforced the need to quantify gene flow from crop to crop. This requires predictive tools which take into account meteorological conditions, canopy structure as well as pollen aerodynamic characteristics. A Lagrangian Stochastic (LS) model, called SMOP-2D (Stochastic Mechanistic model for Pollen dispersion and deposition in 2 Dimensions), is presented. It simulates wind dispersion of pollen by calculating individual pollen trajectories from their emission to their deposition. SMOP-2D was validated using two field experiments where airborne concentration and deposition rate of pollen were measured within and downwind from different sized maize (Zea mays) plots together with micrometeorological measurements. SMOP-2D correctly simulated the shapes of the concentration profiles but generally underestimated the deposition rates in the first 10 m downwind from the source. Potential explanations of this discrepancy are discussed. Incorrect parameterisation of turbulence in the transition from the crop to the surroundings is probably the most likely reason. This demonstrates that LS models for particle transfer need to be coupled with air-flow models under complex terrain conditions.

  19. Airborne pollen and spores of León (Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-González, Delia; Suarez-Cervera, María; Díaz-González, Tomás; Valencia-Barrera, Rosa María

    1993-06-01

    A qualitative and quantitative analysis of airborne pollen and spores was carried out over 2 years (from September 1987 to August 1989) in the city of León. Slides were prepared daily using a volumetric pollen trap, which was placed on the Faculty of Veterinary Science building (University of León) 12m above ground-level. Fifty-one pollen types were observed; the most important of these were: Cupressaceae during the winter, Pinus and Quercus in spring, and Poaceae, Leguminosae and Chenopodiaceae in the summer. The results also showed the existence of a rich mould spore assemblage in the atmosphere. The group of Amerospores ( Penicillium, Aspergillus and Cladosporium) as well as Dictyospores ( Alternaria) were the most abundant; Puccinia was common in the air in August. Fluctuations in the total pollen and spores m3 of air were compared with meteorological parameters (temperature, relative humidity and rainfall). From the daily sampling of the atmosphere of León, considering the maximum and minimum temperature and duration of rainfall, the start of the pollen grain season was observed generally to coincide with a rise in temperature in the absence of rain.

  20. Transport of airborne pollen into the city of Thessaloniki: the effects of wind direction, speed and persistence

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Gioulekas, Dimitrios; Lazopoulou, Chariklia; Balafoutis, Christos; Vokou, Despina

    2005-01-01

    We examined the effect of the wind vector analyzed into its three components (direction, speed and persistence), on the circulation of pollen from differe nt plant taxa prominent in the Thessaloniki area for a 4-year period (1996- 1999). These plant taxa were Ambrosia spp., Artemisia spp., Chenopodiaceae, spp., Cupressaceae, Olea europaea, Pinaceae, Platanus spp., Poaceae, Populus spp., Quercus spp., and Urticaceae. Airborne pollen of Cupressaceae, Urticaceae, Quercus spp. and O. europaea make up approximately 70% of the total average annual pollen counts. The set of data that we worked with represented days without precipitation and time intervals during which winds blew from the same direction for at least 4 consecutive hours. We did this in order to study the effect of the different wind components independently of precipitation, and to avoid secondary effects produced by pollen resuspension phenomena. Factorial regression analysis among the summed bi-hourly pollen counts for each taxon and the values of wind speed and persistence per wind direction gave significant results in 22 cases (combinations of plant taxa and wind directions). The pollen concentrations of all taxa correlated significantly with at least one of the three wind components. In seven out of the 22 taxon-wind direction combinations, the pollen counts correlated positively with wind persistence, whereas this was the case for only two of the taxon-wind speed combinations. In seven cases, pollen counts correlated with the interaction effect of wind speed and persistence. This shows the importance of wind persistence in pollen transport, particularly when weak winds prevail for a considerable part of the year, as is the case for Thessaloniki. Medium/long-distance pollen transport was evidenced for Olea (NW, SW directions), Corylus (NW, SW), Poaceae (SW) and Populus (NW).

  1. Predicting onset and duration of airborne allergenic pollen season in the United States

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Bielory, Leonard; Cai, Ting; Mi, Zhongyuan; Georgopoulos, Panos

    2015-02-01

    Allergenic pollen is one of the main triggers of Allergic Airway Disease (AAD) affecting 5%-30% of the population in industrialized countries. A modeling framework has been developed using correlation and collinearity analyses, simulated annealing, and stepwise regression based on nationwide observations of airborne pollen counts and climatic factors to predict the onsets and durations of allergenic pollen seasons of representative trees, weeds and grass in the contiguous United States. Main factors considered are monthly, seasonal and annual mean temperatures and accumulative precipitations, latitude, elevation, Growing Degree Day (GDD), Frost Free Day (FFD), Start Date (SD) and Season Length (SL) in the previous year. The estimated mean SD and SL for birch (Betula), oak (Quercus), ragweed (Ambrosia), mugwort (Artemisia) and grass (Poaceae) pollen season in 1994-2010 are mostly within 0-6 days of the corresponding observations for the majority of the National Allergy Bureau (NAB) monitoring stations across the contiguous US. The simulated spatially resolved maps for onset and duration of allergenic pollen season in the contiguous US are consistent with the long term observations.

  2. Predicting Onset and Duration of Airborne Allergenic Pollen Season in the United States

    PubMed Central

    Zhang, Yong; Bielory, Leonard; Cai, Ting; Mi, Zhongyuan; Georgopoulos, Panos

    2014-01-01

    Allergenic pollen is one of the main triggers of Allergic Airway Disease (AAD) affecting 5% to 30% of the population in industrialized countries. A modeling framework has been developed using correlation and collinearity analyses, simulated annealing, and stepwise regression based on nationwide observations of airborne pollen counts and climatic factors to predict the onsets and durations of allergenic pollen seasons of representative trees, weeds and grass in the contiguous United States. Main factors considered are monthly, seasonal and annual mean temperatures and accumulative precipitations, latitude, elevation, Growing Degree Day (GDD), Frost Free Day (FFD), Start Date (SD) and Season Length (SL) in the previous year. The estimated mean SD and SL for birch (Betula), oak (Quercus), ragweed (Ambrosia), mugwort (Artemisia) and grass (Poaceae) pollen season in 1994–2010 are mostly within 0 to 6 days of the corresponding observations for the majority of the National Allergy Bureau (NAB) monitoring stations across the contiguous US. The simulated spatially resolved maps for onset and duration of allergenic pollen season in the contiguous US are consistent with the long term observations. PMID:25620875

  3. Can we improve pollen season definitions by using the symptom load index in addition to pollen counts?

    PubMed

    Bastl, Katharina; Kmenta, Maximilian; Geller-Bernstein, Carmi; Berger, Uwe; Jäger, Siegfried

    2015-09-01

    Airborne pollen measurements are the foundation of aerobiological research and provide essential raw data for various disciplines. Pollen itself should be considered a relevant factor in air quality. Symptom data shed light on the relationship of pollen allergy and pollination. The aim of this study is to assess the spatial variation of local, regional and national symptom datasets. Ten pollen season definitions are used to calculate the symptom load index for the birch and grass pollen seasons (2013-2014) in Austria. (1) Local, (2) regional and (3) national symptom datasets are used to examine spatial variations and a consistent pattern was found. In conclusion, national datasets are suitable for first insights where no sufficient local or regional dataset is available and season definitions based on percentages provide a practical solution, as they can be applied in regions with different pollen loads and produce more constant results.

  4. Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Vautard, Robert; Liu, Li; Solmon, Fabien; Viovy, Nicolas; Khvorostyanov, Dmitry; Essl, Franz; Chuine, Isabelle; Colette, Augustin; Semenov, Mikhail A.; Schaffhauser, Alice; Storkey, Jonathan; Thibaudon, Michel; Epstein, Michelle M.

    2015-08-01

    Common ragweed (Ambrosia artemisiifolia) is an invasive alien species in Europe producing pollen that causes severe allergic disease in susceptible individuals. Ragweed plants could further invade European land with climate and land-use changes. However, airborne pollen evolution depends not only on plant invasion, but also on pollen production, release and atmospheric dispersion changes. To predict the effect of climate and land-use changes on airborne pollen concentrations, we used two comprehensive modelling frameworks accounting for all these factors under high-end and moderate climate and land-use change scenarios. We estimate that by 2050 airborne ragweed pollen concentrations will be about 4 times higher than they are now, with a range of uncertainty from 2 to 12 largely depending on the seed dispersal rate assumptions. About a third of the airborne pollen increase is due to on-going seed dispersal, irrespective of climate change. The remaining two-thirds are related to climate and land-use changes that will extend ragweed habitat suitability in northern and eastern Europe and increase pollen production in established ragweed areas owing to increasing CO2. Therefore, climate change and ragweed seed dispersal in current and future suitable areas will increase airborne pollen concentrations, which may consequently heighten the incidence and prevalence of ragweed allergy.

  5. Seasonal prevalence of air-borne pollen and spores in Kuala Lumpur, Malaysia.

    PubMed

    Ho, T M; Tan, B H; Ismail, S; Bujang, M K

    1995-06-01

    Aerosampling using Rotorod samplers was conducted in the Institute for Medical Research, Kuala Lumpur, Malaysia, from December 1991 to November 1993. Samples were collected twice a week between 10.00 hours to 12.00 hours. Rods were stained and examined microscopically. A total of 8 and 20 types of pollens and mold spores were collected, respectively. More mold spores were collected than pollens. Grass pollen constituted more than 40 percent of total pollen counts. Gramineae pollen counts peaked in March and September. The most abundant mold spore was Cladosporium followed by Rust, Nigrospora, Curvularia and Smut. Cladosporium counts peaked in February and August. Rust counts peaked in June and December whereas counts for Nigrospora peaked in February and October. Highest counts of Smut were recorded in March and October. Curvularia counts peaked in January, June and September.

  6. Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing.

    PubMed

    Kraaijeveld, Ken; de Weger, Letty A; Ventayol García, Marina; Buermans, Henk; Frank, Jeroen; Hiemstra, Pieter S; den Dunnen, Johan T

    2015-01-01

    Pollen monitoring is an important and widely used tool in allergy research and creation of awareness in pollen-allergic patients. Current pollen monitoring methods are microscope-based, labour intensive and cannot identify pollen to the genus level in some relevant allergenic plant groups. Therefore, a more efficient, cost-effective and sensitive method is needed. Here, we present a method for identification and quantification of airborne pollen using DNA sequencing. Pollen is collected from ambient air using standard techniques. DNA is extracted from the collected pollen, and a fragment of the chloroplast gene trnL is amplified using PCR. The PCR product is subsequently sequenced on a next-generation sequencing platform (Ion Torrent). Amplicon molecules are sequenced individually, allowing identification of different sequences from a mixed sample. We show that this method provides an accurate qualitative and quantitative view of the species composition of samples of airborne pollen grains. We also show that it correctly identifies the individual grass genera present in a mixed sample of grass pollen, which cannot be achieved using microscopic pollen identification. We conclude that our method is more efficient and sensitive than current pollen monitoring techniques and therefore has the potential to increase the throughput of pollen monitoring.

  7. [Seasonal Dynamics of Airborne Pollens and Its Relationship with Meteorological Factors in Beijing Urban Area].

    PubMed

    Meng, Ling; Wang, Xiao-ke; Ouyang, Zhi-yun; Ren, Yu-fen; Wang, Qiao-huan

    2016-02-15

    The seasonal dynamics of airborne pollens and their relationship with meteorological conditions, which are considered to be important factors for appropriate construction of urban green system and reliable prevention of tropic pollinosis, were investigated in Beijing urban area. The airborne pollens were monitored from December 31st 2011 to December 31st 2012 by Burkard volumetric trap, and the data were analyzed. The results revealed that: (1) In 2012 the pollen dispersion period lasted 238 days from March 17 to November 18th, accounting for 65% of the year. There were two peaks of pollen amount in air, which occurred from March to May and from August to October, respectively. In the spring peak, tree pollens such as Oleaceae, Populus and Salix pollens were the dominant, accounting for 53% of the total annual pollens, while in the autumn period, weed pollens such as Compositae, Chenopodiaceae and Amaranthaceae pollens made up about 40% of the annual total value; (2) The highly allergenic weeds pollens dominated in autumn, which caused a high incidence of tropic pollinosis; (3) The airborne pollen amount of Beijing urban area was significantly affected by meteorological condition like the wind speed, temperature, humidity, precipitation and so on; (4) When temperature ranged from OC to 15 degrees C, the pollen amount showed positive relation with temperature; while in the temperature range of 18 degrees C to 30 degrees C, it showed negative relation; (5) The average temperature of spring and autumn season in 2012 was 17 degrees C, and 79% of airborne pollens were detected in these two seasons. This temperature condition was conducive to the pollen dispersion. (6) The pollen amount showed negative relation with relative moisture between 20% and 50% and larger than 70%, while in the moisture range of 50% to 60%, it showed positive relation; (7) The wind speed smaller than 3 m x s(-1) was good to pollen distribution, when it was larger than 4 m x s(-1) or the wind

  8. Airborne Quercus pollen in SW Spain: Identifying favourable conditions for atmospheric transport and potential source areas.

    PubMed

    Maya-Manzano, José María; Fernández-Rodríguez, Santiago; Smith, Matt; Tormo-Molina, Rafael; Reynolds, Andrew M; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Ángela; Sadyś, Magdalena

    2016-11-15

    The pollen grains of Quercus spp. (oak trees) are allergenic. This study investigates airborne Quercus pollen in SW Spain with the aim identifying favourable conditions for atmospheric transport and potential sources areas. Two types of Quercus distribution maps were produced. Airborne Quercus pollen concentrations were measured at three sites located in the Extremadura region (SW Spain) for 3 consecutive years. The seasonal occurrence of Quercus pollen in the air was investigated, as well as days with pollen concentrations ≥80Pm(-3). The distance that Quercus pollen can be transported in appreciable numbers was calculated using clusters of back trajectories representing the air mass movement above the source areas (oak woodlands), and by using a state-of-the-art dispersion model. The two main potential sources of Quercus airborne pollen captured in SW Spain are Q. ilex subsp. ballota and Q. suber. The minimum distances between aerobiological stations and Quercus woodlands have been estimated as: 40km (Plasencia), 66km (Don Benito), 62km (Zafra) from the context of this study. Daily mean Quercus pollen concentration can exceed 1,700Pm(-3), levels reached not less than 24 days in a single year. High Quercus pollen concentration were mostly associated with moderate wind speed events (6-10ms(-1)), whereas that a high wind speed (16-20ms(-1)) seems to be associated with low concentrations. PMID:27443456

  9. Airborne Quercus pollen in SW Spain: Identifying favourable conditions for atmospheric transport and potential source areas.

    PubMed

    Maya-Manzano, José María; Fernández-Rodríguez, Santiago; Smith, Matt; Tormo-Molina, Rafael; Reynolds, Andrew M; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Ángela; Sadyś, Magdalena

    2016-11-15

    The pollen grains of Quercus spp. (oak trees) are allergenic. This study investigates airborne Quercus pollen in SW Spain with the aim identifying favourable conditions for atmospheric transport and potential sources areas. Two types of Quercus distribution maps were produced. Airborne Quercus pollen concentrations were measured at three sites located in the Extremadura region (SW Spain) for 3 consecutive years. The seasonal occurrence of Quercus pollen in the air was investigated, as well as days with pollen concentrations ≥80Pm(-3). The distance that Quercus pollen can be transported in appreciable numbers was calculated using clusters of back trajectories representing the air mass movement above the source areas (oak woodlands), and by using a state-of-the-art dispersion model. The two main potential sources of Quercus airborne pollen captured in SW Spain are Q. ilex subsp. ballota and Q. suber. The minimum distances between aerobiological stations and Quercus woodlands have been estimated as: 40km (Plasencia), 66km (Don Benito), 62km (Zafra) from the context of this study. Daily mean Quercus pollen concentration can exceed 1,700Pm(-3), levels reached not less than 24 days in a single year. High Quercus pollen concentration were mostly associated with moderate wind speed events (6-10ms(-1)), whereas that a high wind speed (16-20ms(-1)) seems to be associated with low concentrations.

  10. Environmental Factors Affecting Asthma and Allergies: Predicting and Simulating Downwind Exposure to Airborne Pollen

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey; Estes, Sue; Sprigg, William A.; Nickovic, Slobodan; Huete, Alfredo; Solano, Ramon; Ratana, Piyachat; Jiang, Zhangyan; Flowers, Len; Zelicoff, Alan

    2009-01-01

    This slide presentation reviews the environmental factors that affect asthma and allergies and work to predict and simulate the downwind exposure to airborne pollen. Using a modification of Dust REgional Atmosphere Model (DREAM) that incorporates phenology (i.e. PREAM) the aim was to predict concentrations of pollen in time and space. The strategy for using the model to simulate downwind pollen dispersal, and evaluate the results. Using MODerate-resolution Imaging Spectroradiometer (MODIS), to get seasonal sampling of Juniper, the pollen chosen for the study, land cover on a near daily basis. The results of the model are reviewed.

  11. Trends and threshold exceedances analysis of airborne pollen concentrations in Metropolitan Santiago Chile

    PubMed Central

    Toro A., Richard; Córdova J., Alicia; Canales, Mauricio; Morales S., Raul G. E.; Mardones P., Pedro; Leiva G., Manuel A.

    2015-01-01

    Pollen is one of the primary causes of allergic rhinoconjunctivitis in urban centers. In the present study, the concentrations of 39 different pollens in the Santiago de Chile metropolitan area over the period 2009–2013 are characterized. The pollen was monitored daily using Burkard volumetric equipment. The contribution of each type of pollen and the corresponding time trends are evaluated. The concentrations of the pollens are compared with the established threshold levels for the protection of human health. The results show that the total amount of pollen grains originating from trees, grasses, weeds and indeterminate sources throughout the period of the study was 258,496 grains m-3, with an annual average of 51,699 ± 3,906 grains m-3 year-1. The primary source of pollen is Platanus orientalis, which produces 61.8% of the analyzed pollen. Grass pollen is the third primary component of the analyzed pollen, with a contribution of 5.82%. Among the weeds, the presence of Urticacea (3.74%) is remarkable. The pollination pattern of the trees is monophasic, and the grasses have a biphasic pattern. The trends indicate that the total pollen and tree pollen do not present a time trend that is statistically significant throughout the period of the study, whereas the grass pollen and weed pollen concentrations in the environment present a statistically significant decreasing trend. The cause of this decrease is unclear. The pollen load has doubled over the past decade. When the observed concentrations of the pollens were compared with the corresponding threshold levels, the results indicated that over the period of the study, the pollen concentrations were at moderate, high and very high levels for an average of 293 days per year. Systematic counts of the pollen grains are an essential method for diagnosing and treating patients with pollinosis and for developing forestation and urban planning strategies. PMID:25946339

  12. Trends and threshold exceedances analysis of airborne pollen concentrations in Metropolitan Santiago Chile.

    PubMed

    Toro A, Richard; Córdova J, Alicia; Canales, Mauricio; Morales S, Raul G E; Mardones P, Pedro; Leiva G, Manuel A

    2015-01-01

    Pollen is one of the primary causes of allergic rhinoconjunctivitis in urban centers. In the present study, the concentrations of 39 different pollens in the Santiago de Chile metropolitan area over the period 2009-2013 are characterized. The pollen was monitored daily using Burkard volumetric equipment. The contribution of each type of pollen and the corresponding time trends are evaluated. The concentrations of the pollens are compared with the established threshold levels for the protection of human health. The results show that the total amount of pollen grains originating from trees, grasses, weeds and indeterminate sources throughout the period of the study was 258,496 grains m-3, with an annual average of 51,699 ± 3,906 grains m-3 year-1. The primary source of pollen is Platanus orientalis, which produces 61.8% of the analyzed pollen. Grass pollen is the third primary component of the analyzed pollen, with a contribution of 5.82%. Among the weeds, the presence of Urticacea (3.74%) is remarkable. The pollination pattern of the trees is monophasic, and the grasses have a biphasic pattern. The trends indicate that the total pollen and tree pollen do not present a time trend that is statistically significant throughout the period of the study, whereas the grass pollen and weed pollen concentrations in the environment present a statistically significant decreasing trend. The cause of this decrease is unclear. The pollen load has doubled over the past decade. When the observed concentrations of the pollens were compared with the corresponding threshold levels, the results indicated that over the period of the study, the pollen concentrations were at moderate, high and very high levels for an average of 293 days per year. Systematic counts of the pollen grains are an essential method for diagnosing and treating patients with pollinosis and for developing forestation and urban planning strategies.

  13. The airborne pollen calendar for Lublin, central-eastern Poland.

    PubMed

    Piotrowska-Weryszko, Krystyna; Weryszko-Chmielewska, Elżbieta

    2014-01-01

    An aerobiological study was conducted to investigate the quantity and quality of pollen in the atmosphere of Lublin in central-eastern Poland. Pollen monitoring was carried out in the period 2001-2012 using a Hirst-type volumetric spore trap. The atmospheric pollen season in Lublin lasted, on average, from the end of January to the beginning of October. The mean air temperature during the study period was found to be higher by 1.1 °C than the mean temperature in the period 1951-2000. 56 types of pollen of plants belonging to 41 families were identified. 28 types represented woody plants and 28 represented herbaceous plants. The study distinguished 5 plant taxa the pollen of which was present most abundantly in the air of Lublin, which altogether accounted for 73.4%: Betula, Urtica, Pinus, Poaceae, and Alnus. The mean annual pollen index was 68 706; the largest amount of pollen was recorded in April and accounted for 33.3% of the annual pollen index. The pollen calendar included 28 allergenic plant taxa. The pollen of woody plants had the highest percentage in the pollen spectrum, on average 58.4%. The parameters of the pollen calendar for Lublin were compared with the calendar for central-eastern Europe with regard to the start of the pollen season of particular taxa. The pollen calendar for Lublin was demonstrated to show greater similarity to the calendar for Münster (Germany) than to the calendar for Bratislava (Slovakia). PMID:25292125

  14. Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Silva-Palacios, Inmaculada; Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela

    2016-02-01

    Cupressaceae includes species cultivated as ornamentals in the urban environment. This study aims to investigate airborne pollen data for Cupressaceae on the southwestern Iberian Peninsula over a 21-year period and to analyse the trends in these data and their relationship with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1993 to 2013 in Badajoz (SW Spain). The main pollen season for Cupressaceae lasted, on average, 58 days, ranging from 55 to 112 days, from 24 January to 22 March. Furthermore, a short-term forecasting model has been developed for daily pollen concentrations. The model proposed to forecast the airborne pollen concentration is described by one equation. This expression is composed of two terms: the first term represents the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term is obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological parameters multiplied by a fitting coefficient. Temperature was the main meteorological factor by its influence over daily pollen forecast, being the rain the second most important factor. This model represents a good approach to a continuous balance model of Cupressaceae pollen concentration and is supported by a close agreement between the observed and predicted mean concentrations. The novelty of the proposed model is the analysis of meteorological parameters that are not frequently used in Aerobiology.

  15. Allergenic airborne pollen and spores in Anchorage, Alaska

    SciTech Connect

    Anderson, J.H.

    1985-05-01

    Major aeroallergens in Anchorage are birch, alder, poplar, spruce, grass pollen, Cladosporium, and unspecified fungus spores. Lesser pollens are sorrel, willow, pine, juniper, sedge, lamb's-quarters, wormwood, plantain, and others. The aero-flora is discussed in terms of the frequency of allergenically significant events and within-season and year-to-year dynamics.

  16. Allergenic airborne pollen and spores in Anchorage, Alaska.

    PubMed

    Anderson, J H

    1985-05-01

    Major aeroallergens in Anchorage are birch, alder, poplar, spruce, grass pollen, Cladosporium, and unspecified fungus spores. Lesser pollens are sorrel, willow, pine, juniper, sedge, lamb's-quarters, wormwood, plantain, and others. The aero-flora is discussed in terms of the frequency of allergenically significant events and within-season and year-to-year dynamics.

  17. The Macroecology of Airborne Pollen in Australian and New Zealand Urban Areas

    PubMed Central

    Haberle, Simon G.; Bowman, David M. J. S.; Newnham, Rewi M.; Johnston, Fay H.; Beggs, Paul J.; Buters, Jeroen; Campbell, Bradley; Erbas, Bircan; Godwin, Ian; Green, Brett J.; Huete, Alfredo; Jaggard, Alison K.; Medek, Danielle; Murray, Frank; Newbigin, Ed; Thibaudon, Michel; Vicendese, Don; Williamson, Grant J.; Davies, Janet M.

    2014-01-01

    The composition and relative abundance of airborne pollen in urban areas of Australia and New Zealand are strongly influenced by geographical location, climate and land use. There is mounting evidence that the diversity and quality of airborne pollen is substantially modified by climate change and land-use yet there are insufficient data to project the future nature of these changes. Our study highlights the need for long-term aerobiological monitoring in Australian and New Zealand urban areas in a systematic, standardised, and sustained way, and provides a framework for targeting the most clinically significant taxa in terms of abundance, allergenic effects and public health burden. PMID:24874807

  18. A statistical approach to bioclimatic trend detection in the airborne pollen records of Catalonia (NE Spain).

    PubMed

    Fernández-Llamazares, Alvaro; Belmonte, Jordina; Delgado, Rosario; De Linares, Concepción

    2014-04-01

    Airborne pollen records are a suitable indicator for the study of climate change. The present work focuses on the role of annual pollen indices for the detection of bioclimatic trends through the analysis of the aerobiological spectra of 11 taxa of great biogeographical relevance in Catalonia over an 18-year period (1994-2011), by means of different parametric and non-parametric statistical methods. Among others, two non-parametric rank-based statistical tests were performed for detecting monotonic trends in time series data of the selected airborne pollen types and we have observed that they have similar power in detecting trends. Except for those cases in which the pollen data can be well-modeled by a normal distribution, it is better to apply non-parametric statistical methods to aerobiological studies. Our results provide a reliable representation of the pollen trends in the region and suggest that greater pollen quantities are being liberated to the atmosphere in the last years, specially by Mediterranean taxa such as Pinus, Total Quercus and Evergreen Quercus, although the trends may differ geographically. Longer aerobiological monitoring periods are required to corroborate these results and survey the increasing levels of certain pollen types that could exert an impact in terms of public health.

  19. Suicide risk in relation to air pollen counts: a study based on data from Danish registers

    PubMed Central

    Qin, Ping; Waltoft, Berit L; Mortensen, Preben B; Postolache, Teodor T

    2013-01-01

    Objectives Since the well-observed spring peak of suicide incidents coincides with the peak of seasonal aeroallergens as tree-pollen, we want to document an association between suicide and pollen exposure with empirical data from Denmark. Design Ecological time series study. Setting Data on suicide incidents, air pollen counts and meteorological status were retrieved from Danish registries. Participants 13 700 suicide incidents over 1304 consecutive weeks were obtained from two large areas covering 2.86 million residents. Primary and secondary outcome measures Risk of suicide associated with pollen concentration was assessed using a time series Poisson-generalised additive model. Results We noted a significant association between suicide risk and air pollen counts. A change of pollen counts levels from 0 to ‘10–<30’ grains/m3 air was associated with a relative risk of 1.064, that is, a 6.4% increase in weekly number of suicides in the population, and from 0 to ‘30–100’ grains, a relative risk of 1.132. The observed association remained significant after controlling for effects of region, calendar time, temperature, cloud cover and humidity. Meanwhile, we observed a significant sex difference that suicide risk in men started to rise when there was a small increase of air pollen, while the risk in women started to rise until pollen grains reached a certain level. High levels of pollen had slightly stronger effect on risk of suicide in individuals with mood disorder than those without the disorder. Conclusions The observed association between suicide risk and air pollen counts supports the hypothesis that aeroallergens, acting as immune triggers, may precipitate suicide. PMID:23793651

  20. Does insect netting affect the containment of airborne pollen from (GM-) plants in greenhouses?

    PubMed

    van Hengstum, Thomas; Hooftman, Danny A P; den Nijs, Hans C M; van Tienderen, Peter H

    2012-09-01

    Greenhouses are a well-accepted containment strategy to grow and study genetically modified plants (GM) before release into the environment. Various containment levels are requested by national regulations to minimize GM pollen escape. We tested the amount of pollen escaping from a standard greenhouse, which can be used for EU containment classes 1 and 2. More specifically, we investigated the hypothesis whether pollen escape could be minimized by insect-proof netting in front of the roof windows, since the turbulent airflow around the mesh wiring could avoid pollen from escaping. We studied the pollen flow out of greenhouses with and without insect netting of two non-transgenic crops, Ryegrass (Loliummultiflorum) and Corn (Zea Mays). Pollen flow was assessed with Rotorod(®) pollen samplers positioned inside and outside the greenhouse' roof windows. A significant proportion of airborne pollen inside the greenhouse leaves through roof windows. Moreover, the lighter pollen of Lolium escaped more readily than the heavier pollen of Maize. In contrast to our expectations, we did not identify any reduction in pollen flow with insect netting in front of open windows, even under induced airflow conditions. We conclude that insect netting, often present by default in greenhouses, is not effective in preventing pollen escape from greenhouses of wind-pollinated plants for containment classes 1 or 2. Further research would be needed to investigate whether other alternative strategies, including biotic ones, are more effective. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10453-011-9237-8) contains supplementary material, which is available to authorized users. PMID:22798704

  1. Does insect netting affect the containment of airborne pollen from (GM-) plants in greenhouses?

    PubMed

    van Hengstum, Thomas; Hooftman, Danny A P; den Nijs, Hans C M; van Tienderen, Peter H

    2012-09-01

    Greenhouses are a well-accepted containment strategy to grow and study genetically modified plants (GM) before release into the environment. Various containment levels are requested by national regulations to minimize GM pollen escape. We tested the amount of pollen escaping from a standard greenhouse, which can be used for EU containment classes 1 and 2. More specifically, we investigated the hypothesis whether pollen escape could be minimized by insect-proof netting in front of the roof windows, since the turbulent airflow around the mesh wiring could avoid pollen from escaping. We studied the pollen flow out of greenhouses with and without insect netting of two non-transgenic crops, Ryegrass (Loliummultiflorum) and Corn (Zea Mays). Pollen flow was assessed with Rotorod(®) pollen samplers positioned inside and outside the greenhouse' roof windows. A significant proportion of airborne pollen inside the greenhouse leaves through roof windows. Moreover, the lighter pollen of Lolium escaped more readily than the heavier pollen of Maize. In contrast to our expectations, we did not identify any reduction in pollen flow with insect netting in front of open windows, even under induced airflow conditions. We conclude that insect netting, often present by default in greenhouses, is not effective in preventing pollen escape from greenhouses of wind-pollinated plants for containment classes 1 or 2. Further research would be needed to investigate whether other alternative strategies, including biotic ones, are more effective. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10453-011-9237-8) contains supplementary material, which is available to authorized users.

  2. Seasonal and intradiurnal variation of airborne pollen concentrations in Bodrum, SW Turkey.

    PubMed

    Tosunoglu, Aycan; Bicakci, Adem

    2015-04-01

    An aeropalynological study was performed in Bodrum, the famous tourism center in southwestern Turkey with a Hirst-type volumetric 7-day pollen and spore trap for 2 years (2007-2008). In Bodrum, 25,099 pollen grains as a mean value belonging to 41 taxa were recorded annually during the study period, and pollen grains from woody plant taxa had the largest atmospheric contribution of 86.99% and 24 taxa. However, 17 herbaceous plant taxa constituted 12.82% of the annual total pollen count, and 0.19% were unidentified. An average annual pollen index of 22.66% was recorded in March, despite differences from year to year. The highest pollen variability of 34 taxa was recorded in April and May. Predominant pollen types belonged to Cupressaceae/Taxaceae (42.73%), Quercus (15.95%), Pinus (9.78%), Olea europaea (9.04%), Poaceae (5.50%), Betula (1.82%), Pistacia (1.74%), Morus (1.72%), Urticaceae (1.46%), and Plantago (1.28%) and generated 91.03 of the annual total. In total, 32.59% of the mean annual total pollen index was recorded in the morning, and less pollen was recorded in the evening (18.71%). Maximum pollen concentration was recorded between 11:00 and 12:00 a.m.

  3. Controlling Hay Fever Symptoms with Accurate Pollen Counts

    MedlinePlus

    ... Dictionary Just for Kids Library School Tools Videos Virtual Allergist Education & Training Careers in A/I Continuing ... period. The instrument is then taken to a lab where the collected material is analyzed for pollen ...

  4. Detection of airborne genetically modified maize pollen by real-time PCR.

    PubMed

    Folloni, Silvia; Kagkli, Dafni-Maria; Rajcevic, Bojan; Guimarães, Nilson C C; Van Droogenbroeck, Bart; Valicente, Fernando H; Van den Eede, Guy; Van den Bulcke, Marc

    2012-09-01

    The cultivation of genetically modified (GM) crops has raised numerous concerns in the European Union and other parts of the world about their environmental and economic impact. Especially outcrossing of genetically modified organisms (GMO) was from the beginning a critical issue as airborne pollen has been considered an important way of GMO dispersal. Here, we investigate the use of airborne pollen sampling combined with microscopic analysis and molecular PCR analysis as an approach to monitor GM maize cultivations in a specific area. Field trial experiments in the European Union and South America demonstrated the applicability of the approach under different climate conditions, in rural and semi-urban environment, even at very low levels of airborne pollen. The study documents in detail the sampling of GM pollen, sample DNA extraction and real-time PCR analysis. Our results suggest that this 'GM pollen monitoring by bioaerosol sampling and PCR screening' approach might represent an useful aid in the surveillance of GM-free areas, centres of origin and natural reserves. PMID:22805239

  5. Detection of airborne genetically modified maize pollen by real-time PCR.

    PubMed

    Folloni, Silvia; Kagkli, Dafni-Maria; Rajcevic, Bojan; Guimarães, Nilson C C; Van Droogenbroeck, Bart; Valicente, Fernando H; Van den Eede, Guy; Van den Bulcke, Marc

    2012-09-01

    The cultivation of genetically modified (GM) crops has raised numerous concerns in the European Union and other parts of the world about their environmental and economic impact. Especially outcrossing of genetically modified organisms (GMO) was from the beginning a critical issue as airborne pollen has been considered an important way of GMO dispersal. Here, we investigate the use of airborne pollen sampling combined with microscopic analysis and molecular PCR analysis as an approach to monitor GM maize cultivations in a specific area. Field trial experiments in the European Union and South America demonstrated the applicability of the approach under different climate conditions, in rural and semi-urban environment, even at very low levels of airborne pollen. The study documents in detail the sampling of GM pollen, sample DNA extraction and real-time PCR analysis. Our results suggest that this 'GM pollen monitoring by bioaerosol sampling and PCR screening' approach might represent an useful aid in the surveillance of GM-free areas, centres of origin and natural reserves.

  6. Short term effects of airborne pollen concentrations on asthma epidemic

    PubMed Central

    Tobias, A; Galan, I; Banegas, J; Aranguez, E

    2003-01-01

    Methods: This study, based on time series analysis adjusting for meteorological factors and air pollution variables, assessed the short term effects of different types of allergenic pollen on asthma hospital emergencies in the metropolitan area of Madrid (Spain) for the period 1995–8. Results: Statistically significant associations were found for Poaceae pollen (lag of 3 days) and Plantago pollen (lag of 2 days), representing an increase in the range between the 99th and 95th percentiles of 17.1% (95% confidence interval (CI) 3.2 to 32.8) and 15.9% (95% CI 6.5 to 26.2) for Poaceae and Plantago, respectively. A positive association was also observed for Urticaceae (lag of 1 day) with an 8.4% increase (95% CI 2.8 to 14.4). Conclusions: There is an association between pollen levels and asthma related emergencies, independent of the effect of air pollutants. The marked relationship observed for Poaceae and Plantago pollens suggests their implication in the epidemic distribution of asthma during the period coinciding with their abrupt release into the environment. PMID:12885991

  7. [Pollen counts (from Ambrosia and Artemisia) in Lyon-Bron from 1982 to 1985].

    PubMed

    Dechamp, C; Hoch, D; Chouraqui, M; Bensoussan, M; Dechamp, J

    1987-06-01

    The purpose of this work is to distinguish the broad outlines of the pollen calendar in the Lyons area for the 5th year, using the same method (P. COUR) and the same location--Lyon-Bron weather station. Weekly data is given for 1982, 1983, 1984, 1985 (1986 data was not complete at the time of the conference, October 1986). This work is the fruit of numerical counts integrated into a data processing program which enables pollens tested and not tested in allergology to be identified. In Lyon, we observe 3 pollen seasons: early Spring (TREES), Spring (TREES and GRAMINEAE) and Summer-Autumn (TREES, GRAMINEAE, and COMPOSITAE). During the late the following are present: Artemisia vulgaris (last 10 days of July), RAGWEED (mid-August-1st fortnight of October), Artemisia annua (end September-early October). The particularity of our region is that not only ragweed pollen is collected but also two categories of Mugwort pollen, at different periods.

  8. Trends in prevalence of allergic rhinitis and correlation with pollen counts in Switzerland

    NASA Astrophysics Data System (ADS)

    Frei, Thomas; Gassner, Ewald

    2008-11-01

    In recent decades, a large number of epidemiological studies investigating the change of prevalence of hay fever showed an increase in the occurrence of this disease. However, other studies carried out in the 1990s yielded contradictory results. Many environmental factors have been hypothesized to contribute to the increasing hay fever rate, including both indoor and ambient air pollution, reduced exposure to microbial stimulation and changes in diets. However, the observed increase has not convincingly been explained by any of these factors and there is limited evidence of changes in exposure to these risk factors over time. Additionally, recent studies show that no further increase in asthma, hay fever and atopic sensitisation in adolescents and adults has been observed during the 1990s and the beginning of the new century. As the pattern of pollen counts has changed over the years, partly due to the global warming but also as a consequence of a change in the use of land, the changing prevalence of hay fever might partly be driven by this different pollen exposure. Epidemiological data for hay fever in Switzerland are available from 1926 until 2000 (with large gaps between 1926 and 1958 and 1958 to 1986) whereas pollen data are available from 1969 until the present. This allows an investigation as to whether these data are correlated provided the same time spans are compared. It would also be feasible to correlate the pollen data with meteorological data which, however, is not the subject of our investigation. Our study focuses on analyzing time series of pollen counts and of pollen season lengths in order to identify their trends, and to ascertain whether there is a relationship between these trends and the changes in the hay fever prevalence. It is shown in this paper that the pollen exposure has been decreasing in Basel since the beginning of the 1990s whereas the rate of the hay fever prevalence in Switzerland remained approximately unchanged in this period

  9. Trends in prevalence of allergic rhinitis and correlation with pollen counts in Switzerland.

    PubMed

    Frei, Thomas; Gassner, Ewald

    2008-11-01

    In recent decades, a large number of epidemiological studies investigating the change of prevalence of hay fever showed an increase in the occurrence of this disease. However, other studies carried out in the 1990s yielded contradictory results. Many environmental factors have been hypothesized to contribute to the increasing hay fever rate, including both indoor and ambient air pollution, reduced exposure to microbial stimulation and changes in diets. However, the observed increase has not convincingly been explained by any of these factors and there is limited evidence of changes in exposure to these risk factors over time. Additionally, recent studies show that no further increase in asthma, hay fever and atopic sensitisation in adolescents and adults has been observed during the 1990s and the beginning of the new century. As the pattern of pollen counts has changed over the years, partly due to the global warming but also as a consequence of a change in the use of land, the changing prevalence of hay fever might partly be driven by this different pollen exposure. Epidemiological data for hay fever in Switzerland are available from 1926 until 2000 (with large gaps between 1926 and 1958 and 1958 to 1986) whereas pollen data are available from 1969 until the present. This allows an investigation as to whether these data are correlated provided the same time spans are compared. It would also be feasible to correlate the pollen data with meteorological data which, however, is not the subject of our investigation. Our study focuses on analyzing time series of pollen counts and of pollen season lengths in order to identify their trends, and to ascertain whether there is a relationship between these trends and the changes in the hay fever prevalence. It is shown in this paper that the pollen exposure has been decreasing in Basel since the beginning of the 1990s whereas the rate of the hay fever prevalence in Switzerland remained approximately unchanged in this period

  10. Models to predict the start of the airborne pollen season.

    PubMed

    Siniscalco, Consolata; Caramiello, Rosanna; Migliavacca, Mirco; Busetto, Lorenzo; Mercalli, Luca; Colombo, Roberto; Richardson, Andrew D

    2015-07-01

    Aerobiological data can be used as indirect but reliable measures of flowering phenology to analyze the response of plant species to ongoing climate changes. The aims of this study are to evaluate the performance of several phenological models for predicting the pollen start of season (PSS) in seven spring-flowering trees (Alnus glutinosa, Acer negundo, Carpinus betulus, Platanus occidentalis, Juglans nigra, Alnus viridis, and Castanea sativa) and in two summer-flowering herbaceous species (Artemisia vulgaris and Ambrosia artemisiifolia) by using a 26-year aerobiological data set collected in Turin (Northern Italy). Data showed a reduced interannual variability of the PSS in the summer-flowering species compared to the spring-flowering ones. Spring warming models with photoperiod limitation performed best for the greater majority of the studied species, while chilling class models were selected only for the early spring flowering species. For Ambrosia and Artemisia, spring warming models were also selected as the best models, indicating that temperature sums are positively related to flowering. However, the poor variance explained by the models suggests that further analyses have to be carried out in order to develop better models for predicting the PSS in these two species. Modeling the pollen season start on a very wide data set provided a new opportunity to highlight the limits of models in elucidating the environmental factors driving the pollen season start when some factors are always fulfilled, as chilling or photoperiod or when the variance is very poor and is not explained by the models. PMID:25234751

  11. Models to predict the start of the airborne pollen season

    NASA Astrophysics Data System (ADS)

    Siniscalco, Consolata; Caramiello, Rosanna; Migliavacca, Mirco; Busetto, Lorenzo; Mercalli, Luca; Colombo, Roberto; Richardson, Andrew D.

    2015-07-01

    Aerobiological data can be used as indirect but reliable measures of flowering phenology to analyze the response of plant species to ongoing climate changes. The aims of this study are to evaluate the performance of several phenological models for predicting the pollen start of season (PSS) in seven spring-flowering trees ( Alnus glutinosa, Acer negundo, Carpinus betulus, Platanus occidentalis, Juglans nigra, Alnus viridis, and Castanea sativa) and in two summer-flowering herbaceous species ( Artemisia vulgaris and Ambrosia artemisiifolia) by using a 26-year aerobiological data set collected in Turin (Northern Italy). Data showed a reduced interannual variability of the PSS in the summer-flowering species compared to the spring-flowering ones. Spring warming models with photoperiod limitation performed best for the greater majority of the studied species, while chilling class models were selected only for the early spring flowering species. For Ambrosia and Artemisia, spring warming models were also selected as the best models, indicating that temperature sums are positively related to flowering. However, the poor variance explained by the models suggests that further analyses have to be carried out in order to develop better models for predicting the PSS in these two species. Modeling the pollen season start on a very wide data set provided a new opportunity to highlight the limits of models in elucidating the environmental factors driving the pollen season start when some factors are always fulfilled, as chilling or photoperiod or when the variance is very poor and is not explained by the models.

  12. Particulate matter modifies the association between airborne pollen and daily medical consultations for pollinosis in Tokyo.

    PubMed

    Konishi, Shoko; Ng, Chris Fook Sheng; Stickley, Andrew; Nishihata, Shinichi; Shinsugi, Chisa; Ueda, Kayo; Takami, Akinori; Watanabe, Chiho

    2014-11-15

    Pollen from Japanese cedar (sugi) and cypress (hinoki) trees is responsible for the growing prevalence of allergic rhinitis, especially pollinosis in Japan. Previous studies have suggested that air pollutants enhance the allergic response to pollen in susceptible individuals. We conducted a time-stratified case-crossover study to examine the potential modifying effects of PM2.5 and suspended particulate matter (SPM) on the association between pollen concentration and daily consultations for pollinosis. A total of 11,713 daily pollinosis cases (International Classification of Diseases, ICD-10, J30.1) from January to May, 2001-2011, were obtained from a clinic in Chiyoda, Tokyo. Daily pollen counts and the daily mean values of air pollutants (PM2.5, SPM, SO2, NO2, CO, and O3) were collected from monitoring stations across Tokyo. The effects of pollen were stratified by the level of PM2.5 and SPM to examine the interaction effect of pollen and particulate pollutants. We found a statistically significant interaction between pollen concentration and PM2.5/SPM. On days with a high level of PM2.5 (>95th percentile), an interquartile increase in the mean cumulative pollen count (an average of 28 pollen grains per cm(2) during lag-days 0 to 5) corresponded to a 10.30% (95%CI: 8.48%-12.16%) increase in daily new pollinosis cases, compared to 8.04% (95%CI: 7.28%-8.81%) on days with a moderate level of PM2.5 (5th-95th percentile). This interaction persisted when different percentile cut-offs were used and was robust to the inclusion of other air pollutants. A similar interaction pattern was observed between SPM and pollen when a less extreme cut-off for SPM was used to stratify the effect of pollen. Our study showed the acute effect of pollen was greater when the concentration of air particulate pollutant, specifically PM2.5 and SPM, was higher. These findings are consistent with the notion that particulate air pollution may act as an adjuvant that promotes allergic disease (i

  13. Pollen and pollen antigen as triggers of asthma—what to measure?

    NASA Astrophysics Data System (ADS)

    Beggs, Paul J.

    Although it has been recognised for many years that biological particulate matter in the atmospheric environment can trigger symptoms of allergic respiratory diseases such as asthma, the results of studies examining the relationships between pollen counts and the occurrence of such diseases have been inconsistent. In addition to the size of pollen grains as an explanation for such disagreement between studies, their is now a body of literature which has demonstrated that airborne pollen allergen can exist in sub-pollen sizes and out of the "pollen season", and that little correlation can occur between allergen levels and pollen counts. These findings not only explain disagreement between epidemiological studies using pollen counts but may raise doubts over the plausibility of any results from such studies. The paper reviews the results of a selection of epidemiological studies of pollen counts and asthma as well as studies which have documented the existence of pollen-free airborne allergen. It is concluded that future epidemiological studies should measure allergen rather than pollen grain counts, using methods that have been developed specifically for this purpose. Further research is required to determine if the presence of airborne pollen-free allergen is a universal phenomenon in pollens and perhaps in moulds as well.

  14. Correlation between airborne Olea europaea pollen concentrations and levels of the major allergen Ole e 1 in Córdoba, Spain, 2012-2014

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Galán, C.

    2016-04-01

    Olea europaea L. pollen is the second-largest cause of pollinosis in the southern Iberian Peninsula. Airborne-pollen monitoring networks provide essential data on pollen dynamics over a given study area. Recent research, however, has shown that airborne pollen levels alone do not always provide a clear indicator of actual exposure to aeroallergens. This study sought to evaluate correlations between airborne concentrations of olive pollen and Ole e 1 allergen levels in Córdoba (southern Spain), in order to determine whether atmospheric pollen concentrations alone are sufficient to chart changes in hay fever symptoms. The influence of major weather-related variables on local airborne pollen and allergen levels was also examined. Monitoring was carried out from 2012 to 2014. Pollen sampling was performed using a Hirst-type sampler, following the protocol recommended by the Spanish Aerobiology Network. A multi-vial cyclone sampler was used to collect aeroallergens, and allergenic particles were quantified by ELISA assay. Significant positive correlations were found between daily airborne allergen levels and atmospheric pollen concentrations, although there were occasions when allergen was detected before and after the pollen season and in the absence of airborne pollen. The correlation between the two was irregular, and pollen potency displayed year-on-year variations and did not necessarily match pollen-season-intensity.

  15. Threat of allergenic airborne grass pollen in Szczecin, NW Poland: the dynamics of pollen seasons, effect of meteorological variables and air pollution.

    PubMed

    Puc, Małgorzata

    2011-09-01

    The dynamics of Poaceae pollen season, in particularly that of the Secale genus, in Szczecin (western Poland) 2004-2008 was analysed to establish a relationship between the meteorological variables, air pollution and the pollen count of the taxa studied. Consecutive phases during the pollen season were defined for each taxon (1, 2.5, 5, 25, 50, 75, 95, 97.5, 99% of annual total), and duration of the season was determined using the 98% method. On the basis of this analysis, the temporary differences in the dynamics of the seasons were most evident for Secale in 2005 and 2006 with the longest main pollen season (90% total pollen). The pollen season of Poaceae started the earliest in 2007, when thermal conditions were the most favourable. Correlation analysis with meteorological factors demonstrated that the relative humidity, mean and maximum air temperature, and rainfall were the factors influencing the average daily pollen concentrations in the atmosphere; also, the presence of air pollutants such as ozone, PM(10) and SO(2) was statistically related to the pollen count in the air. However, multiple regression models explained little part of the total variance. Atmospheric pollution induces aggravation of symptoms of grass pollen allergy.

  16. Pollen count, symptom and medicine score in birch pollinosis. A mathematical approach.

    PubMed

    Taudorf, E; Moseholm, L

    1988-01-01

    This study investigates the correlation between the daily birch pollen counts, hay fever symptoms and medicine scores. Fifteen birch pollinosis patients were studied during two consecutive birch pollen seasons. All had a positive history for birch hay fever and a positive skin prick test, nasal provocation test and/or conjunctival provocation test to birch pollen. The patients recorded daily symptom and medicine scores during February through May for two seasons. According to nasal/conjunctival sensitivity and medicine consumption the group was divided into three groups: very sensitive, sensitive, and fairly sensitive. The mathematical calculations were based only on the results from the two most sensitive groups. The relationship between symptom scores and medicine scores as a function of the pollen load was nonlinear. A mathematical model was calculated. It was found that simply adding symptom scores and medicine scores to a total symptom/medication score was not meaningful as a basis for a quantitative analysis. It was further shown that the response caused by a given pollen load decays exponentially with time and that this decay had a characteristic half-life period of about 1-2 days indicating a long-lasting effect, i.e. contribution of the late allergic reaction to symptoms. Both groups showed the development of increased medicine intake during the season for a constant pollen load. This indicates the development of a higher sensitivity to birch pollen during the season. The overall response was divided into characteristic levels based on dose-response relationships, and pollen concentration intervals for forecasting purposes are suggested.

  17. Seasonal variations of nasal resistance in allergic rhinitis and environmental pollen counts. II: Efficacy of preseasonal therapy.

    PubMed

    Naito, K; Ishihara, M; Senoh, Y; Takeda, N; Yokoyama, N; Iwata, S

    1993-01-01

    We gave Mao-bushi-saishin-to, a Chinese blended medicine, and azelastine to an adult patient with hay fever due to Japanese cedar pollen and measured nasal resistance and ambient floating pollen counts throughout the time of Japanese cedar pollination in separated years. In the patient Mao-bushi-saishin-to was effective against preseasonal increases in nasal airway resistance but could not control severe episodes of allergic rhinitis caused by high dose exposure to Japanese cedar pollen and also perhaps caused by a priming effect. Azelastine inhibited both pre- and post-seasonal increases in nasal airway resistance but not only on high pollen counts days.

  18. Masting in oaks: Disentangling the effect of flowering phenology, airborne pollen load and drought

    NASA Astrophysics Data System (ADS)

    Fernández-Martínez, Marcos; Belmonte, Jordina; Maria Espelta, Josep

    2012-08-01

    Quercus species exhibit an extreme inter-annual variability in seed production often synchronized over large geographical areas (masting). Since this reproductive behavior is mostly observed in anemophilous plants, pollination efficiency is suggested as one hypothesis to explain it, although resource-based hypotheses are also suggested as alternatives. We analyzed the effect of flowering phenology, airborne pollen presence and meteorological conditions in the pattern of acorn production in mixed evergreen-deciduous oak forests (Quercus ilex and Quercus pubescens) in NE Spain for twelve years (1998-2009). In both oaks, higher temperatures advanced the onset of flowering and increased the amount of airborne pollen. Nevertheless, inter-annual differences in pollen production did not influence acorn crop size. Acorn production was enhanced by a delay in flowering onset in Q. ilex but not in Q. pubescens. This suggests that in perennial oaks a larger number of photosynthates produced before flowering could benefit reproduction while the lack of effects on deciduous oaks could be because these species flush new leaves and flowers at the same time. Notwithstanding this effect, spring water deficit was the most relevant factor in explaining inter-annual variability in acorn production in both species. Considering that future climate scenarios predict progressive warmer and dryer spring seasons in the Mediterranean Basin, this might result in earlier onsets of flowering and higher water deficits that would constrain acorn production.

  19. Transport of airborne Picea schrenkiana pollen on the northern slope of Tianshan Mountains (Xinjiang, China) and its implication for paleoenvironmental reconstruction.

    PubMed

    Pan, Yanfang; Yan, Shun; Behling, Hermann; Mu, Guijin

    2013-06-01

    The understanding of airborne pollen transportation is crucial for the reconstruction of the paleoenvironment. Under favorable conditions, a considerable amount of long-distance-transported pollen can be deposited far from its place of origin. In extreme arid regions, in most cases, such situations occur and increase the difficulty to interpret fossil pollen records. In this study, three sets of Cour airborne pollen trap were installed on the northern slope of Tianshan Mountains to collect airborne Picea schrenkiana (spruce) pollen grains from July 2001 to July 2006. The results indicate that Picea pollen disperses extensively and transports widely in the lower atmosphere far away from spruce forest. The airborne Picea pollen dispersal period is mainly concentrated between mid-May and July. In desert area, weekly Picea pollen began to increase and peaked suddenly in concentration. Also, annual pollen indices do not decline even when the distance increased was probably related to the strong wind may pick up the deposited pollen grains from the topsoil into the air stream, leading to an increase of pollen concentration in the air that is irrelevant to the normal and natural course of pollen transport and deposition. This, in turn, may lead to erroneous interpretations of the pollen data in the arid region. This study provided insight into the shift in the Picea pollen season regarding climate change in arid areas. It is recorded that the pollen pollination period starts earlier and the duration became longer. The results also showed that the temperature of May and June was positively correlated with the Picea pollen production. Furthermore, the transport of airborne Picea pollen data is useful for interpreting fossil pollen records from extreme arid regions. PMID:23576840

  20. Disentangling the effects of feedback structure and climate on Poaceae annual airborne pollen fluctuations and the possible consequences of climate change.

    PubMed

    García de León, David; García-Mozo, Herminia; Galán, Carmen; Alcázar, Purificación; Lima, Mauricio; González-Andújar, José L

    2015-10-15

    Pollen allergies are the most common form of respiratory allergic disease in Europe. Most studies have emphasized the role of environmental processes, as the drivers of airborne pollen fluctuations, implicitly considering pollen production as a random walk. This work shows that internal self-regulating processes of the plants (negative feedback) should be included in pollen dynamic systems in order to give a better explanation of the observed pollen temporal patterns. This article proposes a novel methodological approach based on dynamic systems to investigate the interaction between feedback structure of plant populations and climate in shaping long-term airborne Poaceae pollen fluctuations and to quantify the effects of climate change on future airborne pollen concentrations. Long-term historical airborne Poaceae pollen data (30 years) from Cordoba city (Southern Spain) were analyzed. A set of models, combining feedback structure, temperature and actual evapotranspiration effects on airborne Poaceae pollen were built and compared, using a model selection approach. Our results highlight the importance of first-order negative feedback and mean annual maximum temperature in driving airborne Poaceae pollen dynamics. The best model was used to predict the effects of climate change under two standardized scenarios representing contrasting temporal patterns of economic development and CO2 emissions. Our results predict an increase in pollen levels in southern Spain by 2070 ranging from 28.5% to 44.3%. The findings from this study provide a greater understanding of airborne pollen dynamics and how climate change might impact the future evolution of airborne Poaceae pollen concentrations and thus the future evolution of related pollen allergies.

  1. Disentangling the effects of feedback structure and climate on Poaceae annual airborne pollen fluctuations and the possible consequences of climate change.

    PubMed

    García de León, David; García-Mozo, Herminia; Galán, Carmen; Alcázar, Purificación; Lima, Mauricio; González-Andújar, José L

    2015-10-15

    Pollen allergies are the most common form of respiratory allergic disease in Europe. Most studies have emphasized the role of environmental processes, as the drivers of airborne pollen fluctuations, implicitly considering pollen production as a random walk. This work shows that internal self-regulating processes of the plants (negative feedback) should be included in pollen dynamic systems in order to give a better explanation of the observed pollen temporal patterns. This article proposes a novel methodological approach based on dynamic systems to investigate the interaction between feedback structure of plant populations and climate in shaping long-term airborne Poaceae pollen fluctuations and to quantify the effects of climate change on future airborne pollen concentrations. Long-term historical airborne Poaceae pollen data (30 years) from Cordoba city (Southern Spain) were analyzed. A set of models, combining feedback structure, temperature and actual evapotranspiration effects on airborne Poaceae pollen were built and compared, using a model selection approach. Our results highlight the importance of first-order negative feedback and mean annual maximum temperature in driving airborne Poaceae pollen dynamics. The best model was used to predict the effects of climate change under two standardized scenarios representing contrasting temporal patterns of economic development and CO2 emissions. Our results predict an increase in pollen levels in southern Spain by 2070 ranging from 28.5% to 44.3%. The findings from this study provide a greater understanding of airborne pollen dynamics and how climate change might impact the future evolution of airborne Poaceae pollen concentrations and thus the future evolution of related pollen allergies. PMID:26026414

  2. [Pollen counts (from Ambrosia and Artemisia) in Lyon-Bron from 1982 to 1985].

    PubMed

    Dechamp, C; Hoch, D; Chouraqui, M; Bensoussan, M; Dechamp, J

    1987-06-01

    The purpose of this work is to distinguish the broad outlines of the pollen calendar in the Lyons area for the 5th year, using the same method (P. COUR) and the same location--Lyon-Bron weather station. Weekly data is given for 1982, 1983, 1984, 1985 (1986 data was not complete at the time of the conference, October 1986). This work is the fruit of numerical counts integrated into a data processing program which enables pollens tested and not tested in allergology to be identified. In Lyon, we observe 3 pollen seasons: early Spring (TREES), Spring (TREES and GRAMINEAE) and Summer-Autumn (TREES, GRAMINEAE, and COMPOSITAE). During the late the following are present: Artemisia vulgaris (last 10 days of July), RAGWEED (mid-August-1st fortnight of October), Artemisia annua (end September-early October). The particularity of our region is that not only ragweed pollen is collected but also two categories of Mugwort pollen, at different periods. PMID:3454179

  3. Clinical trial of hyposensitisation in hay fever: two methods of relating symptom scores to daily pollen counts.

    PubMed

    Wilkinson, P; Taudorf, E

    1984-08-01

    Two methods of relating daily pollen counts to patients' symptom scores in clinical trials of hyposensitisation in hay fever are described. The problems involved in comparing results from different centres and years of a trial are discussed with particular reference to symptoms which are not pollen related. The Normalised Regression method is a powerful technique, but often the Pollen Interval method is preferable on the grounds of simplicity of communication and calculation.

  4. Long-term monitoring of airborne pollen in Alaska and the Yukon: Possible implications for global change

    SciTech Connect

    Anderson, J.H.

    1992-03-01

    Airborne pollen and spores have been sampled since 1978 in Fairbanks and 1982 Anchorage and other Alaska-Yukon locations for medical and ecological purposes. Comparative analyses of pre- and post-1986 data subsets reveal that after 1986 (1) pollen is in the air earlier, (2) the multiyear average of degree-days promoting pollen onset is little changed while (3) annual variation in degree-days at onset is greater, (4) pollen and spore annual productions are considerably higher, and (5) there is more year-to-year variation in pollen production. These changes probably reflect directional changes in certain weather variables, and there is some indication that they are of global change significance, i.e., related to increasing atmospheric greenhouse gases. Correlations with pollen data suggest that weather variables of high influence are temperatures during specific periods following pollen dispersal in the preceding year and the average temperature in April of the current year. Annual variations in pollen dispersal might be roughly linked to the 11 year sunspot cycle through air temperature mediators. Weather in 1990, apparent pollen production cycles under endogenous control, and the impending sunspot maximum portend a very severe pollen season in 199 existing but unfunded sampling projects.

  5. Poaceae pollen in Galicia (N.W. Spain): characterisation and recent trends in atmospheric pollen season

    NASA Astrophysics Data System (ADS)

    Jato, V.; Rodríguez-Rajo, F. J.; Seijo, M. C.; Aira, M. J.

    2009-07-01

    Airborne Poaceae pollen counts are greatly influenced by weather-related parameters, but may also be governed by other factors. Poaceae pollen is responsible for most allergic reactions in the pollen-sensitive population of Galicia (Spain), and it is therefore essential to determine the risk posed by airborne pollen counts. The global climate change recorded over recent years may prompt changes in the atmospheric pollen season (APS). This survey used airborne Poaceae pollen data recorded for four Galician cities since 1993, in order to characterise the APS and note any trends in its onset, length and severity. Pollen sampling was performed using Hirst-type volumetric traps; data were subjected to Spearman’s correlation test and regression models, in order to detect possible correlations between different parameters and trends. The APS was calculated using ten different methods, in order to assess the influence of each on survey results. Finally, trends detected for the major weather-related parameters influencing pollen counts over the study period were compared with those recorded over the last 30 years. All four cities displayed a trend towards lower annual total Poaceae pollen counts, lower peak values and a smaller number of days on which counts exceeded 30, 50 and 100 pollen grains/m3. Moreover, the survey noted a trend towards delayed onset and shorter duration of the APS, although differences were observed depending on the criteria used to define the first and the last day of the APS.

  6. A model for the determination of pollen count using google search queries for patients suffering from allergic rhinitis.

    PubMed

    König, Volker; Mösges, Ralph

    2014-01-01

    Background. The transregional increase in pollen-associated allergies and their diversity have been scientifically proven. However, patchy pollen count measurement in many regions is a worldwide problem with few exceptions. Methods. This paper used data gathered from pollen count stations in Germany, Google queries using relevant allergological/biological keywords, and patient data from three German study centres collected in a prospective, double-blind, randomised, placebo-controlled, multicentre immunotherapy study to analyse a possible correlation between these data pools. Results. Overall, correlations between the patient-based, combined symptom medication score and Google data were stronger than those with the regionally measured pollen count data. The correlation of the Google data was especially strong in the groups of severe allergy sufferers. The results of the three-centre analyses show moderate to strong correlations with the Google keywords (up to >0.8 cross-correlation coefficient, P < 0.001) in 10 out of 11 groups (three averaged patient cohorts and eight subgroups of severe allergy sufferers: high IgE class, high combined symptom medication score, and asthma). Conclusion. For countries with a good Internet infrastructure but no dense network of pollen traps, this could represent an alternative for determining pollen levels and, forecasting the pollen count for the next day.

  7. Airborne Pollen Concentrations and Emergency Room Visits for Myocardial Infarction: A Multicity Case-Crossover Study in Ontario, Canada.

    PubMed

    Weichenthal, Scott; Lavigne, Eric; Villeneuve, Paul J; Reeves, François

    2016-04-01

    Few studies have examined the acute cardiovascular effects of airborne allergens. We conducted a case-crossover study to evaluate the relationship between airborne allergen concentrations and emergency room visits for myocardial infarction (MI) in Ontario, Canada. In total, 17,960 cases of MI were identified between the months of April and October during the years 2004-2011. Daily mean aeroallergen concentrations (pollen and mold spores) were assigned to case and control periods using central-site monitors in each city along with daily measurements of meteorological data and air pollution (nitrogen dioxide and ozone). Odds ratios and their 95% confidence intervals were estimated using conditional logistic regression models adjusting for time-varying covariates. Risk of MI was 5.5% higher (95% confidence interval (CI): 3.4, 7.6) on days in the highest tertile of total pollen concentrations compared with days in the lowest tertile, and a significant concentration-response trend was observed (P < 0.001). Higher MI risk was limited to same-day pollen concentrations, with the largest risks being observed during May (odds ratio = 1.16, 95% CI: 1.00, 1.35) and June (odds ratio = 1.10, 95% CI: 1.00, 1.22), when tree and grass pollen are most common. Mold spore concentrations were not associated with MI. Our findings suggest that airborne pollen might represent a previously unidentified environmental risk factor for myocardial infarction.

  8. The long distance transport of airborne Ambrosia pollen to the UK and the Netherlands from Central and south Europe

    NASA Astrophysics Data System (ADS)

    de Weger, Letty A.; Pashley, Catherine H.; Šikoparija, Branko; Skjøth, Carsten A.; Kasprzyk, Idalia; Grewling, Łukasz; Thibaudon, Michel; Magyar, Donat; Smith, Matt

    2016-04-01

    The invasive alien species Ambrosia artemisiifolia (common or short ragweed) is increasing its range in Europe. In the UK and the Netherlands, airborne concentrations of Ambrosia pollen are usually low. However, more than 30 Ambrosia pollen grains per cubic metre of air (above the level capable to trigger allergic symptoms) were recorded in Leicester (UK) and Leiden (NL) on 4 and 5 September 2014. The aims of this study were to determine whether the highly allergenic Ambrosia pollen recorded during the episode could be the result of long distance transport, to identify the potential sources of these pollen grains and to describe the conditions that facilitated this possible long distance transport. Airborne Ambrosia pollen data were collected at 10 sites in Europe. Back trajectory and atmospheric dispersion calculations were performed using HYSPLIT_4. Back trajectories calculated at Leicester and Leiden show that higher altitude air masses (1500 m) originated from source areas on the Pannonian Plain and Ukraine. During the episode, air masses veered to the west and passed over the Rhône Valley. Dispersion calculations showed that the atmospheric conditions were suitable for Ambrosia pollen released from the Pannonian Plain and the Rhône Valley to reach the higher levels and enter the airstream moving to northwest Europe where they were deposited at ground level and recorded by monitoring sites. The study indicates that the Ambrosia pollen grains recorded during the episode in Leicester and Leiden were probably not produced by local sources but transported long distances from potential source regions in east Europe, i.e. the Pannonian Plain and Ukraine, as well as the Rhône Valley in France.

  9. Influence of atmospheric ozone, PM 10 and meteorological factors on the concentration of airborne pollen and fungal spores

    NASA Astrophysics Data System (ADS)

    Sousa, S. I. V.; Martins, F. G.; Pereira, M. C.; Alvim-Ferraz, M. C. M.; Ribeiro, H.; Oliveira, M.; Abreu, I.

    The increase of allergenic symptoms has been associated with air contaminants such as ozone, particulate matter, pollen and fungal spores. Considering the potential relevance of crossed effects of non-biological pollutants and airborne pollens and fungal spores on allergy worsening, the aim of this work was to evaluate the influence of non-biological pollutants and meteorological parameters on the concentrations of pollen and fungal spores using linear correlations and multiple linear regressions. For that, the seasonal variation of ozone, particulate matter with an equivalent aerodynamic diameter smaller than 10 μm, pollen and fungal spores were assessed and statistical correlations were analysed between those parameters. The data were collected through 2003-2005 in Porto, Portugal. The linear correlations showed that ozone and particulate matter had no significant influence on the concentration of pollen and fungal spores. On the contrary, when using multiple linear regressions those parameters showed to have some influence on the biological pollutants, although results were different depending on the year analysed. Among the meteorological parameters analysed, temperature was the one that most influenced the pollen and fungal spores airborne concentrations, both when using linear and multiple linear correlations. Relative humidity also showed to have some influence on the fungal spore dispersion when multiple linear regressions were used. Nevertheless, the conclusions for each pollen and fungal spore were different depending on the analysed period, which means that the correlations identified as statistically significant may not be, even so, consistent enough. Furthermore, the comparison of the results here presented with those obtained by other authors for only one period should be made carefully.

  10. Pollen Allergy

    MedlinePlus

    ... pollen count, which is often reported by local weather broadcasts or allergy websites, is a measure of how much pollen is in the air. Pollen counts tend to be highest early in the morning on warm, dry, breezy days and lowest during chilly, wet periods. ...

  11. Viability and seasonal distribution patterns of Scots pine pollen in Finland.

    PubMed

    Pulkkinen, P.; Rantio-Lehtimäki, A.

    1995-01-01

    Germination ability and airborne counts of Scots pine (Pinus sylvestris L.) pollen were studied during the spring of 1993 at Turku in southern Finland (60 degrees 32' N, 22 degrees 28' E) and at Utsjoki in northern Finland (69 degrees 45' N, 27 degrees 01' E). Pollen waas trapped from the beginning of May to the end of June in a high-volume air sampler. Germination tests were performed to determine the in vitro pollen viability of the trapped pollen. Airborne pine pollen counts were obtained from a continuously operating Burkard trap located near each high-volume sampler. When male flowering began, phenological observations were carried out on pollen grains collected in rotored samplers located in pine and spruce stands and open fields near Turku and Utsjoki. In southern Finland, the peak period of pine pollen production was short, lasting for only 3 days, but it accounted for about 80% of the total germinating pine pollen yield for the year. The peak count was on May 20, with over 2000 germinating pollen grains per cubic meter of air. Pollen germination rates of up to 70% were obtained during the week preceding the local pollen peak, and rates reached almost 90% on the peak day. Pollen viability remained at 45 to 65% for 1 week after the peak. There was no significant difference between the pollen counts for day and night, indicating that during the main pollen season, the pollen source was close to Turku. Before the local pollen peak, the counts of living pine pollen were low, indicating that pine pollen transported over long distances was of little ecological importance in 1993 in the Turku area. In northern Finland, the first pollen grains were caught on July 4, and the peak day was July 13. However, no viable pollen was observed during this period, indicating that there was little gene drift from southern to northern Finland in 1993.

  12. Total airborne mold particle sampling: evaluation of sample collection, preparation and counting procedures, and collection devices.

    PubMed

    Godish, Diana; Godish, Thad

    2008-02-01

    This study was conducted to evaluate (i) procedures used to collect, prepare, and count total airborne mold spore/particle concentrations, and (ii) the relative field performance of three commercially available total airborne mold spore/particle sampling devices. Differences between factory and laboratory airflow calibration values of axial fan-driven sampling instruments (used in the study) indicated a need for laboratory calibration using a mass flow meter to ensure that sample results were accurately calculated. An aniline blue-amended Calberla's solution adjusted to a pH of 4.2-4.4 provided good sample mounting/counting results using Dow Corning high vacuum grease, Dow Corning 280A adhesive, and Dow Corning 316 silicone release spray for samples collected using mini-Burkard and Allergenco samplers. Count variability among analysts was most pronounced in 5% counts of relatively low mold particle deposition density samples and trended downward with increased count percentage and particle deposition density. No significant differences were observed among means of 5, 10, and 20% counts and among analysts; a significant interaction effect was observed between analysts' counts and particle deposition densities. Significantly higher mini-Burkard and Air-O-Cell total mold spore/particle counts for 600x vs. 400x (1.9 and 2.3 x higher, respectively), 1000x vs. 600x (1.9 and 2.2 x higher, respectively) and 1000x vs. 400x (3.6 and 4.6 x higher, respectively) comparisons indicated that 1000x magnification counts best quantified total airborne mold spore/particles using light microscopy, and that lower magnification counts may result in unacceptable underreporting of airborne mold spore/particle concentrations. Modest but significantly higher (1.2x) total mold spore concentrations were observed with Allergenco vs. mini-Burkard samples collected in co-located, concurrently operated sampler studies; moderate but significantly higher mini-Burkard count values (1.4x) were

  13. Aerobiology of Artemisia airborne pollen in Murcia (SE Spain) and its relationship with weather variables: annual and intradiurnal variations for three different species. Wind vectors as a tool in determining pollen origin

    NASA Astrophysics Data System (ADS)

    Giner, M. Munuera; Carrión García, José S.; García Sellés, Javier

    Detailed results from a 2-year survey of airborne pollen concentrations of Artemisia in Murcia are presented. Three consecutive pollen seasons of Artemisia occurring each year, related to three different species (A.campestris, A.herba-alba and A.barrelieri), were observed. A winter blooming of Artemisia could explain the incidence of subsequent pollinosis in the Murcia area. With regard to meteorological parameters, mathematical analyses showed relationships between daily pollen concentrations of Artemisia in summer-autumn and precipitations that occurred 6-8 weeks before. The cumulative percentage of insolation from 1 March seemed to be related to blooming onsets. Once pollination has begun, meteorological factors do not seem to influence pollen concentrations significantly. Intradiurnal patterns of pollen concentrations were similar for late summer and winter species (A. campestris and A.barrelieri). During autumn blooming (A.herba-alba), the intradiurnal pattern was particularly erratic. Theoretical values of wind run were obtained for each pollen season by the graphical sum of hourly wind vectors. When theoretical wind run was mapped onto the vegetation pattern, supposed pollen source locations were obtained for each hour. By comparing supposed hourly pollen origins with the intradiurnal patterns of pollen concentrations, it can be seen that this simple model explains variations in mean pollen concentrations throughout the day.

  14. The effect of meteorological factors on airborne Betula pollen concentrations in Lublin (Poland).

    PubMed

    Piotrowska, Krystyna; Kubik-Komar, Agnieszka

    2012-12-01

    The present study investigated the pattern of the birch atmospheric pollen seasons in Lublin in the period 2001-2010. Pollen monitoring was conducted using a Lanzoni VPPS 2000 sampler. The atmospheric pollen seasons were determined with the 98% method. Regression analysis was used to determine correlations between meteorological conditions and the pattern of the birch pollen season. On average, the birch pollen season started on 12 April, ended on 13 May, and lasted 32 days. The peak value and the Seasonal Pollen Index showed the greatest variation in particular years. All the seasons were right-skewed. During the study years, a trend was found towards earlier occurrence of the seasonal peak. Regression equations were developed for the following parameters of the atmospheric pollen season: start, duration, peak value and average pollen concentration during the season. The obtained model fit was at a level of 64-81%. Statistical analysis shows that minimum temperature of February and March and total rainfall in June in the year preceding pollen release have the greatest effect on the birch atmospheric pollen season in Lublin. Low temperatures in February promote the occurrence of high pollen concentrations.

  15. Airborne pollen assemblages and weather regime in the central-eastern Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Li, Yuecong; Ge, Yawen; Xu, Qinghai; Bunting, Jane M.; Lv, Suqing; Wang, Junting; Li, Zetao

    2015-04-01

    This paper presents the results of pollen trapping studies designed to quantify the pollen assemblages carried in the winds of the Loess Plateau in Luochuan and Hunyuan. The one-year-collection samples analysis results show that pollen assemblages can be more sensitive to the change of climate than the vegetation composition, because of the change of pollen production. The analysis results of pollen traps in different weather regimes indicate that the pollen influx coming from dust weather contribute more to the total pollen influx than that coming from non-dust weather. The wind speed is the most important influenced factor to pollen assemblages, then the mean temperature and the mean relative humidity, the wind direction also contributes some. Strong wind coming from dust direction can make the percent and influx of Artemisia and Chenopodiaceae increase obviously with averagely higher than over 2.7 times in dust weather than in non-dust samples. The influences of wind speed and wind direction are not serious to some arboreal pollen such as Rosaceae, Quercus, Betula, Pinus and Ostryopsis, which are mainly influenced by temperature or the relative humidity such as Salix, Hippophae, Carpinus, Brassicaceae, Cupressaceae, Fabaceae.

  16. An efficient analytical method for particle counting in evaluating airborne infectious isolation containment using fluorescent microspheres.

    PubMed

    Johnson, David L; Lynch, Robert A

    2008-04-01

    The containment performance of patient isolation enclosures, particularly expedient surge capacity enclosures, must be verified to protect health care providers and staff, other patients, and hospital visitors. Tracer gas methods are often used, but requirements for special equipment and training limit the technique's utility. A technologically simple yet accurate and precise particle-based technique is needed to measure the low count concentrations of escaping airborne particles that might be present outside an isolation enclosure. Reported here is the performance of such a technique employing micrometer-sized fluorescent polystyrene latex microspheres as a surrogate for pathogenic bioaerosols. Particles are released into the isolation enclosure, air is sampled inside and outside the room to capture airborne particles on 25 mm diameter filters, and the number of particles deposited on a filter is quantified using an optimized random field counting approach. The technique accurately estimates the number of surrogate bioaerosol particles on the filter, allowing calculation of the airborne particle concentrations inside and outside the enclosure, and the containment efficiency. This technique can be employed using generally available equipment and inexpensive supplies and also can minimize the number of particle counts that must be performed. The method is shown to be specific, sensitive, and accurate.

  17. An efficient analytical method for particle counting in evaluating airborne infectious isolation containment using fluorescent microspheres.

    PubMed

    Johnson, David L; Lynch, Robert A

    2008-04-01

    The containment performance of patient isolation enclosures, particularly expedient surge capacity enclosures, must be verified to protect health care providers and staff, other patients, and hospital visitors. Tracer gas methods are often used, but requirements for special equipment and training limit the technique's utility. A technologically simple yet accurate and precise particle-based technique is needed to measure the low count concentrations of escaping airborne particles that might be present outside an isolation enclosure. Reported here is the performance of such a technique employing micrometer-sized fluorescent polystyrene latex microspheres as a surrogate for pathogenic bioaerosols. Particles are released into the isolation enclosure, air is sampled inside and outside the room to capture airborne particles on 25 mm diameter filters, and the number of particles deposited on a filter is quantified using an optimized random field counting approach. The technique accurately estimates the number of surrogate bioaerosol particles on the filter, allowing calculation of the airborne particle concentrations inside and outside the enclosure, and the containment efficiency. This technique can be employed using generally available equipment and inexpensive supplies and also can minimize the number of particle counts that must be performed. The method is shown to be specific, sensitive, and accurate. PMID:18286424

  18. Skin prick test reactivity in allergic rhinitis patients to airborne pollens.

    PubMed

    Erkara, Ismuhan Potoglu; Cingi, Cemal; Ayranci, Unal; Gurbuz, Kezban Melek; Pehlivan, Sevil; Tokur, Suleyman

    2009-04-01

    The aim was to investigate the impact of atmospheric pollen in determining allergic rhinitis. It was conducted with 130 patients with allergic rhinitis in three different sites in Eskisehir, Turkey, in 2000-2001, using a gravimetric method with a Durham sampler. Skin prick test results, the symptoms of patients and their findings all confirmed the presence of allergic reactions to pollen allergens in the patients observed. During the period, a total of 47,082 pollen grains/cm(2) belonging to 45 taxa were recorded. Of the total pollen grains, 81.0% were arboreal and 18% non-arboreal. The majority of the investigated pollen grains were from Pinaceae, Salix spp., Chenopodiaceae/Amaranthaceae, Cupressaceae and Poaceae. Pollen concentrations reached the highest level in May (54.36%). The pollen allergens provoking severe sensitization were grasscereal mixtures (58.5%), followed by arboreals (33.8%). All patients (100.0%) were sensitive to grass. This study emphasizes the significance of determining the types and concentrations of pollen with a view to comparing changes in highly concentrated allergens. PMID:18461463

  19. Automated counting of airborne asbestos fibers by a high-throughput microscopy (HTM) method.

    PubMed

    Cho, Myoung-Ock; Yoon, Seonghee; Han, Hwataik; Kim, Jung Kyung

    2011-01-01

    Inhalation of airborne asbestos causes serious health problems such as lung cancer and malignant mesothelioma. The phase-contrast microscopy (PCM) method has been widely used for estimating airborne asbestos concentrations because it does not require complicated processes or high-priced equipment. However, the PCM method is time-consuming and laborious as it is manually performed off-site by an expert. We have developed a high-throughput microscopy (HTM) method that can detect fibers distinguishable from other spherical particles in a sample slide by image processing both automatically and quantitatively. A set of parameters for processing and analysis of asbestos fiber images was adjusted for standard asbestos samples with known concentrations. We analyzed sample slides containing airborne asbestos fibers collected at 11 different workplaces following PCM and HTM methods, and found a reasonably good agreement in the asbestos concentration. Image acquisition synchronized with the movement of the robotic sample stages followed by an automated batch processing of a stack of sample images enabled us to count asbestos fibers with greatly reduced time and labors. HTM should be a potential alternative to conventional PCM, moving a step closer to realization of on-site monitoring of asbestos fibers in air.

  20. Environmental contamination and airborne microbial counts: a role for hydroxyl radical disinfection units?

    PubMed

    Wong, V; Staniforth, K; Boswell, T C

    2011-07-01

    Environmental contamination is thought to play a role in the spread of infection in hospitals and there has been increased interest in novel air disinfection systems in preventing infection. In this study the efficacy of a hydroxyl radical air disinfection system (Inov8 unit) in reducing the number of airborne bacteria was assessed in a clinical setting. Environmental contamination was assessed using settle plates and air samples in three settings: (1) non-clinical room; (2) non-clinical room with defined activity; and (3) single intensive care unit cubicle. A comparison of air counts and environmental contamination rates was made with the Inov8 units on and off. The Inov8 unit produced an overall reduction in both air sample and settle plate counts in each setting (P<0.001, Wilcoxon signed-rank test). There was a mean reduction in air sample counts of 26%, 39% and 55% for settings 1, 2 and 3 respectively. The corresponding reductions in settle plate counts were 35%, 62% and 54%. These results suggest that this type of novel air disinfection may have a role in improving air quality and reducing environmental contamination within clinical isolation rooms. Further work is required to assess the effect on specific pathogens, and to establish whether this will reduce the risks of patients and/or healthcare workers acquiring such pathogens from the environment.

  1. Can Twitter Be a Source of Information on Allergy? Correlation of Pollen Counts with Tweets Reporting Symptoms of Allergic Rhinoconjunctivitis and Names of Antihistamine Drugs.

    PubMed

    Gesualdo, Francesco; Stilo, Giovanni; D'Ambrosio, Angelo; Carloni, Emanuela; Pandolfi, Elisabetta; Velardi, Paola; Fiocchi, Alessandro; Tozzi, Alberto E

    2015-01-01

    Pollen forecasts are in use everywhere to inform therapeutic decisions for patients with allergic rhinoconjunctivitis (ARC). We exploited data derived from Twitter in order to identify tweets reporting a combination of symptoms consistent with a case definition of ARC and those reporting the name of an antihistamine drug. In order to increase the sensitivity of the system, we applied an algorithm aimed at automatically identifying jargon expressions related to medical terms. We compared weekly Twitter trends with National Allergy Bureau weekly pollen counts derived from US stations, and found a high correlation of the sum of the total pollen counts from each stations with tweets reporting ARC symptoms (Pearson's correlation coefficient: 0.95) and with tweets reporting antihistamine drug names (Pearson's correlation coefficient: 0.93). Longitude and latitude of the pollen stations affected the strength of the correlation. Twitter and other social networks may play a role in allergic disease surveillance and in signaling drug consumptions trends.

  2. Can Twitter Be a Source of Information on Allergy? Correlation of Pollen Counts with Tweets Reporting Symptoms of Allergic Rhinoconjunctivitis and Names of Antihistamine Drugs.

    PubMed

    Gesualdo, Francesco; Stilo, Giovanni; D'Ambrosio, Angelo; Carloni, Emanuela; Pandolfi, Elisabetta; Velardi, Paola; Fiocchi, Alessandro; Tozzi, Alberto E

    2015-01-01

    Pollen forecasts are in use everywhere to inform therapeutic decisions for patients with allergic rhinoconjunctivitis (ARC). We exploited data derived from Twitter in order to identify tweets reporting a combination of symptoms consistent with a case definition of ARC and those reporting the name of an antihistamine drug. In order to increase the sensitivity of the system, we applied an algorithm aimed at automatically identifying jargon expressions related to medical terms. We compared weekly Twitter trends with National Allergy Bureau weekly pollen counts derived from US stations, and found a high correlation of the sum of the total pollen counts from each stations with tweets reporting ARC symptoms (Pearson's correlation coefficient: 0.95) and with tweets reporting antihistamine drug names (Pearson's correlation coefficient: 0.93). Longitude and latitude of the pollen stations affected the strength of the correlation. Twitter and other social networks may play a role in allergic disease surveillance and in signaling drug consumptions trends. PMID:26197474

  3. The seasonal symptoms of hyposensitized and untreated hay fever patients in relation to birch pollen counts: correlations with nasal sensitivity, prick tests and RAST.

    PubMed

    Viander, M; Koivikko, A

    1978-07-01

    A 2 year prospective study of thirty-eight birch pollen-sensitive hay fever patients under specific immunotherapy and of nineteen untreated control patients showed a significant correlation between the total seasonal symptom scores of the patients and their clinical sensitivities assessed by the RAST and a graded nasal test. The agreement between a positive nasal test and a positive RAST was 74%. In the early season with low pollen counts the onset of symptoms was significantly associated with high sensitivity of the patients, while many patients showed symptoms in the late season irrespective of their nasal and RAST sensitivity. About 90% of both the treated and the untreated patients reported mild symptoms when the pollen count exceeded 80/m(3) in the early season. 80% of them still had symptoms when the count was below 30/m(3) in the late pollen season. Although hyposensitization therapy had no effect on the occurrence of the mild symptoms, the treated patinets had severe symptoms significantly less often than the untreated ones on days with high pollen counts.

  4. Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements

    NASA Astrophysics Data System (ADS)

    Degnan, John J.

    2002-11-01

    We consider the optimum design of photon-counting microlaser altimeters operating from airborne and spaceborne platforms under both day and night conditions. Extremely compact, passively Q-switched microlaser transmitters produce trains of low energy pulses at multi-kHz rates and can easily generate subnanosecond pulsewidths for precise ranging. To guide the design, we have modeled the solar noise background and developed simple algorithms, based on post-detection Poisson filtering (PDPF), to optimally extract the weak altimeter signal from a high noise background during daytime operations. The advantages of photon-counting detector arrays followed by multichannel timing receivers for high resolution topographic mapping are discussed. Practical technology issues, such as detector and/or receiver dead times and their impact on signal detection and ranging accuracy and resolution, have also been considered in the analysis. The theoretical results are reinforced by data from an airborne microlaser altimeter, developed under NASA's Instrument Incubator Program. The latter instrument has operated at several kHz rates from aircraft cruise altitudes up to 6.7 km with laser pulse energies on the order of a few microjoules. The instrument has successfully recorded decimeter accuracy or better single photon returns from man-made structures, tree canopies and underlying terrain and has demonstrated shallow water bathymetry at depths to a few meters. We conclude the discussion by analyzing a photon counting instrument designed to produce, over a mission life of 3 years, a globally contiguous map of the Martian surface, with 5 m horizontal resolution and decimeter vertical accuracy, from an altitude of 300 km. The transmitter power-receive aperture product required is comparable to the Geoscience Laser Altimeter System (GLAS) but the number of individual range measurements to the surface is increased by three to four orders of magnitude. For more modest scientific goals, on a

  5. Airborne pollen sampling in Manoa Valley, Hawaii: effect of rain, humidity and wind.

    PubMed

    Massey, D G; Fournier-Massey, G

    1984-05-01

    Kramer-Collins pollen sampling was conducted over 24 hours for 25 consecutive months at two valley sites in Honolulu. Of 1,059 expected samples, 699 (66.0%) were collected. Only 25 were considered excellent, i.e., eight three-hour collection bands. Twenty eight were considered good, ie., two to six bands. The difficulties in the study were associated with the weather directly (17.5%), the power source (3.9%), inadequancy of the samplers (63.1%) and the inexperience of technicians (15.3%). Sampler problems were also indirectly attributable to the high humidity, rain and wind, which differed at the two sites.

  6. Airborne pollen sampling in Manoa Valley, Hawaii: effect of rain, humidity and wind.

    PubMed

    Massey, D G; Fournier-Massey, G

    1984-05-01

    Kramer-Collins pollen sampling was conducted over 24 hours for 25 consecutive months at two valley sites in Honolulu. Of 1,059 expected samples, 699 (66.0%) were collected. Only 25 were considered excellent, i.e., eight three-hour collection bands. Twenty eight were considered good, ie., two to six bands. The difficulties in the study were associated with the weather directly (17.5%), the power source (3.9%), inadequancy of the samplers (63.1%) and the inexperience of technicians (15.3%). Sampler problems were also indirectly attributable to the high humidity, rain and wind, which differed at the two sites. PMID:6721258

  7. Photon-Counting Multikilohertz Microlaser Altimeters for Airborne and Spaceborne Topographic Measurements

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2000-01-01

    We consider the optimum design of photon-counting microlaser altimeters operating from airborne and spaceborne platforms under both day and night conditions. Extremely compact Q-switched microlaser transmitters produce trains of low energy pulses at multi-kHz rates and can easily generate subnanosecond pulse-widths for precise ranging. To guide the design, we have modeled the solar noise background and developed simple algorithms, based on Post-Detection Poisson Filtering (PDPF), to optimally extract the weak altimeter signal from a high noise background during daytime operations. Practical technology issues, such as detector and/or receiver dead times, have also been considered in the analysis. We describe an airborne prototype, being developed under NASA's instrument Incubator Program, which is designed to operate at a 10 kHz rate from aircraft cruise altitudes up to 12 km with laser pulse energies on the order of a few microjoules. We also analyze a compact and power efficient system designed to operate from Mars orbit at an altitude of 300 km and sample the Martian surface at rates up to 4.3 kHz using a 1 watt laser transmitter and an 18 cm telescope. This yields a Power-Aperture Product of 0.24 W-square meter, corresponding to a value almost 4 times smaller than the Mars Orbiting Laser Altimeter (0. 88W-square meter), yet the sampling rate is roughly 400 times greater (4 kHz vs 10 Hz) Relative to conventional high power laser altimeters, advantages of photon-counting laser altimeters include: (1) a more efficient use of available laser photons providing up to two orders of magnitude greater surface sampling rates for a given laser power-telescope aperture product; (2) a simultaneous two order of magnitude reduction in the volume, cost and weight of the telescope system; (3) the unique ability to spatially resolve the source of the surface return in a photon counting mode through the use of pixellated or imaging detectors; and (4) improved vertical and

  8. Variations and trends of Fagaceae pollen in Northern Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Canu, Annalisa; Pellizzaro, Grazia; Arca, Bachisio; Vargiu, Arnoldo

    2016-04-01

    The aim of this study is to analyze variations in the start and the end dates of pollen season, date of maximum concentration peak, pollen season duration, pollen concentration value and Seasonal Pollen Index of airborne Fagaceae pollen series recorded in Sassari, Northern Italy, and to evaluate their relation to meteorological data. Daily pollen concentration data were measured from 1986 to 2008 in a urban area of northern Sardinia (Italy) using a Burkard seven-day recording volumetric spore trap. The date of the peak occurrence was defined as the day when the cumulated daily pollen values reached the 50 % of the total annual pollen concentration. Meteorological data were recorded during the same period by an automatic weather station. Cumulative Degree days were calculated, for each year, from different starting dates using the daily averaging method. The correlation between meteorological variables and the different characteristics of pollen seasons was analyzed using Spearman's correlation tests. In the city of Sassari the Fagaceae airborne pollen content was mainly due to Quercus. The main pollen season took place from April to June. The longest pollen season appeared in the year 2002. The cumulative counts varied over the years, with a mean value of 5,336 pollen grains, a lowest total of 550 in 1986 and a highest total of 8,678 in 2001. Daily pollen concentrations presented positive correlation with temperature, and negative with relative humidity (p<0,0001) and with rainfall. In addition, Cumulative Degree days were significantly correlated with the dates of maximum concentration peak (p<0,0001).

  9. Characterization of Pollen Dispersion in the Neighborhood of Tokyo, Japan in the Spring of 2005 and 2006

    PubMed Central

    Ishibashi, Yoshinaga; Ohno, Hideki; Oh-ishi, Shuji; Matsuoka, Takeshi; Kizaki, Takako; Yoshizumi, Kunio

    2008-01-01

    The behavior of Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) pollens in an urban area was examined through the measurements of the dispersion characteristics at the various sampling locations in both outdoor and indoor environments. Airborne pollens were counted continuously for three months during the Japanese cedar pollen and Japanese cypress seasons in 2005 and 2006 by the use of Durham’s pollen trap method in and around Tokyo, Japan. The dispersion of pollens at the rooftop of Kyoritsu Women’s University was observed to be at extremely high levels in 2005 compared with previously reported results during the past two decades. As for Japanese cedar pollen, the maximum level was observed as 440 counts cm−2 day−1 on 18 March 2005. Japanese cypress pollen dispersed in that area in the latter period was compared with the Japanese cedar pollen dispersions. The maximum dispersion level was observed to be 351 counts cm−2 day−1 on 7 April 2005. Total accumulated dispersions of Japanese cedar and Japanese cypress pollens were 5,552 and 1,552 counts cm−2 for the three months (Feb., Mar. and Apr.) in 2005, respectively. However, the dispersion of both pollens in 2006 was very low. The total accumulated dispersions of Japanese cedar and Japanese cypress pollens were 421 and 98 counts cm−2 for three months (Feb., Mar. and Apr.) in 2006, respectively. Moreover, the pollen deposition on a walking person in an urban area showed that the pollen counts on feet were observed to be extremely high compared with the ones on the shoulder, back and legs. These findings suggested that pollen fell on the surface of the paved road at first, rebounded to the ambient air and was deposited on the residents again. Furthermore, the regional distribution of the total pollen dispersion in the South Kanto area was characterized on 15–16 March 2005 and on 14–15 March 2006. Although the pollen levels in 2005 were much higher than in 2006, it

  10. Allergenic pollen season variations in the past two decades under changing climate in the United States.

    PubMed

    Zhang, Yong; Bielory, Leonard; Mi, Zhongyuan; Cai, Ting; Robock, Alan; Georgopoulos, Panos

    2015-04-01

    Many diseases are linked with climate trends and variations. In particular, climate change is expected to alter the spatiotemporal dynamics of allergenic airborne pollen and potentially increase occurrence of allergic airway disease. Understanding the spatiotemporal patterns of changes in pollen season timing and levels is thus important in assessing climate impacts on aerobiology and allergy caused by allergenic airborne pollen. Here, we describe the spatiotemporal patterns of changes in the seasonal timing and levels of allergenic airborne pollen for multiple taxa in different climate regions at a continental scale. The allergenic pollen seasons of representative trees, weeds and grass during the past decade (2001-2010) across the contiguous United States have been observed to start 3.0 [95% Confidence Interval (CI), 1.1-4.9] days earlier on average than in the 1990s (1994-2000). The average peak value and annual total of daily counted airborne pollen have increased by 42.4% (95% CI, 21.9-62.9%) and 46.0% (95% CI, 21.5-70.5%), respectively. Changes of pollen season timing and airborne levels depend on latitude, and are associated with changes of growing degree days, frost free days, and precipitation. These changes are likely due to recent climate change and particularly the enhanced warming and precipitation at higher latitudes in the contiguous United States.

  11. Seasonal variations of sugars in atmospheric particulate matter from Gosan, Jeju Island: Significant contributions of airborne pollen and Asian dust in spring

    NASA Astrophysics Data System (ADS)

    Fu, Pingqing; Kawamura, Kimitaka; Kobayashi, Minoru; Simoneit, Bernd R. T.

    2012-08-01

    Sugars are important water-soluble organic constituents of atmospheric particulate matter (PM). In order to better understand the sources and seasonal variations of sugars in aerosols, primary saccharides (fructose, glucose, sucrose, and trehalose) and sugar alcohols (arabitol and mannitol), together with levoglucosan, have been studied in ambient aerosols at Gosan, Jeju Island in the western North Pacific, the downwind region of the Asian outflow, using gas chromatography-mass spectrometry. The results showed that the sugar composition varied seasonally with a total concentration range of 6.8-1760 ng m-3 (mean 246 ng m-3). The total identified sugars had the highest concentration in April, the spring bloom season at Jeju Island, when sucrose contributed up to 80% of the total sugars. The dominance of sucrose was also detected in pollen samples, suggesting that pollen can contribute significantly to sucrose in aerosols during the spring bloom. The seasonal variation of trehalose is consistent with those of non-sea-salt Ca2+ and δ13C of total carbon with elevated levels during the Asian dust storm events. This study indicates that sugar compounds in atmospheric PM over East Asia can be derived from biomass burning, Asian dust, and primary biological aerosols such as fungal spores and pollen. Furthermore, this study supports the idea that sucrose could be used as a tracer for airborne pollen grains, and trehalose as a tracer for Asian dust outflow.

  12. Impact of meteorological variation on hospital visits of patients with tree pollen allergy

    PubMed Central

    2011-01-01

    Background Climate change could affect allergic diseases, especially due to pollen. However, there has been no epidemiologic study to demonstrate the relationship between meteorological factors, pollen, and allergic patients. We aimed to investigate the association between meteorological variations and hospital visits of patients with tree pollen allergy. Methods The study subjects were adult patients who received skin prick tests between April and July from 1999 to 2008. We reviewed the medical records for the test results of 4,715 patients. Patients with tree pollen allergy were defined as those sensitized to more than 1 of 12 tree pollen allergens. We used monthly means of airborne tree pollen counts and meteorological factors: maximum/average/minimum temperature, relative humidity, and precipitation. We analyzed the correlations between meteorological variations, tree pollen counts, and the patient numbers. Multivariable logistic regression analyses were used to investigate the associations between meteorological factors and hospital visits of patients. Results The minimum temperature in March was significantly and positively correlated with tree pollen counts in March/April and patient numbers from April through July. Pollen counts in March/April were also correlated with patient numbers from April through July. After adjusting for confounders, including air pollutants, there was a positive association between the minimum temperature in March and hospital visits of patients with tree pollen allergy from April to July(odds ratio, 1.14; 95% CI 1.03 to 1.25). Conclusions Higher temperatures could increase tree pollen counts, affecting the symptoms of patients with tree pollen allergy, thereby increasing the number of patients visiting hospitals. PMID:22115497

  13. Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Izquierdo, Rebeca; Belmonte, Jordina; Avila, Anna; Alarcón, Marta; Cuevas, Emilio; Alonso-Pérez, Silvia

    2011-01-01

    The Canary Islands, due to their geographical position, constitute an adequate site for the study of long-range pollen transport from the surrounding land masses. In this study, we analyzed airborne pollen counts at two sites: Santa Cruz de Tenerife (SCO), at sea level corresponding to the marine boundary layer (MBL), and Izaña at 2,367 m.a.s.l. corresponding to the free troposphere (FT), for the years 2006 and 2007. We used three approaches to describe pollen transport: (1) a classification of provenances with an ANOVA test to describe pollen count differences between sectors; (2) a study of special events of high pollen concentrations, taking into consideration the corresponding meteorological synoptic pattern responsible for transport and back trajectories; and (3) a source-receptor model applied to a selection of the pollen taxa to show pollen source areas. Our results indicate several extra-regional pollen transport episodes to Tenerife. The main provenances were: (1) the Mediterranean region, especially the southern Iberian Peninsula and Morocco, through the trade winds in the MBL. These episodes were characterized by the presence of pollen from trees ( Casuarina, Olea, Quercus perennial and deciduous types) mixed with pollen from herbs ( Artemisia, Chenopodiaceae/Amaranthaceae and Poaceae wild type). (2) The Saharan sector, through transport at the MBL level carrying pollen principally from herbs (Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type) and, in one case, Casuarina pollen, uplifted to the free troposphere. And (3) the Sahel, characterized by low pollen concentrations of Arecaceae, Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type in sporadic episodes. This research shows that sporadic events of long-range pollen transport need to be taken into consideration in Tenerife as possible responsible agents in respiratory allergy episodes. In particular, it is estimated that 89-97% of annual counts of the highly allergenous Olea

  14. Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands).

    PubMed

    Izquierdo, Rebeca; Belmonte, Jordina; Avila, Anna; Alarcón, Marta; Cuevas, Emilio; Alonso-Pérez, Silvia

    2011-01-01

    The Canary Islands, due to their geographical position, constitute an adequate site for the study of long-range pollen transport from the surrounding land masses. In this study, we analyzed airborne pollen counts at two sites: Santa Cruz de Tenerife (SCO), at sea level corresponding to the marine boundary layer (MBL), and Izaña at 2,367 m.a.s.l. corresponding to the free troposphere (FT), for the years 2006 and 2007. We used three approaches to describe pollen transport: (1) a classification of provenances with an ANOVA test to describe pollen count differences between sectors; (2) a study of special events of high pollen concentrations, taking into consideration the corresponding meteorological synoptic pattern responsible for transport and back trajectories; and (3) a source-receptor model applied to a selection of the pollen taxa to show pollen source areas. Our results indicate several extra-regional pollen transport episodes to Tenerife. The main provenances were: (1) the Mediterranean region, especially the southern Iberian Peninsula and Morocco, through the trade winds in the MBL. These episodes were characterized by the presence of pollen from trees (Casuarina, Olea, Quercus perennial and deciduous types) mixed with pollen from herbs (Artemisia, Chenopodiaceae/Amaranthaceae and Poaceae wild type). (2) The Saharan sector, through transport at the MBL level carrying pollen principally from herbs (Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type) and, in one case, Casuarina pollen, uplifted to the free troposphere. And (3) the Sahel, characterized by low pollen concentrations of Arecaceae, Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type in sporadic episodes. This research shows that sporadic events of long-range pollen transport need to be taken into consideration in Tenerife as possible responsible agents in respiratory allergy episodes. In particular, it is estimated that 89-97% of annual counts of the highly allergenous Olea

  15. Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study

    NASA Astrophysics Data System (ADS)

    The HIALINE working Group; Buters, Jeroen T. M.; Thibaudon, Michel; Smith, Matt; Kennedy, Roy; Rantio-Lehtimäki, Auli; Albertini, Roberto; Reese, Gerald; Weber, Bernhard; Galan, Carmen; Brandao, Rui; Antunes, Celia M.; Jäger, Siegfried; Berger, Uwe; Celenk, Sevcan; Grewling, Łukasz; Jackowiak, Bogdan; Sauliene, Ingrida; Weichenmeier, Ingrid; Pusch, Gudrun; Sarioglu, Hakan; Ueffing, Marius; Behrendt, Heidrun; Prank, Marje; Sofiev, Mikhail; Cecchi, Lorenzo

    2012-08-01

    Exposure to allergens is pivotal in determining sensitization and allergic symptoms in individuals. Pollen grain counts in ambient air have traditionally been assessed to estimate airborne allergen exposure. However, the exact allergen content of ambient air is unknown. We therefore monitored atmospheric concentrations of birch pollen grains and the matched major birch pollen allergen Bet v 1 simultaneously across Europe within the EU-funded project HIALINE (Health Impacts of Airborne Allergen Information Network).Pollen count was assessed with Hirst type pollen traps at 10 l min-1 at sites in France, United Kingdom, Germany, Italy and Finland. Allergen concentrations in ambient air were sampled at 800 l min-1 with a Chemvol® high-volume cascade impactor equipped with stages PM > 10 μm, 10 μm > PM > 2.5 μm, and in Germany also 2.5 μm > PM > 0.12 μm. The major birch pollen allergen Bet v 1 was determined with an allergen specific ELISA. Bet v 1 isoform patterns were analyzed by 2D-SDS-PAGE blots and mass spectrometric identification. Basophil activation was tested in an FcɛR1-humanized rat basophil cell line passively sensitized with serum of a birch pollen symptomatic patient.Compared to 10 previous years, 2009 was a representative birch pollen season for all stations. About 90% of the allergen was found in the PM > 10 μm fraction at all stations. Bet v 1 isoforms pattern did not vary substantially neither during ripening of pollen nor between different geographical locations. The average European allergen release from birch pollen was 3.2 pg Bet v 1/pollen and did not vary much between the European countries. However, in all countries a >10-fold difference in daily allergen release per pollen was measured which could be explained by long-range transport of pollen with a deviating allergen release. Basophil activation by ambient air extracts correlated better with airborne allergen than with pollen concentration.Although Bet v 1 is a mixture of different

  16. Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study

    NASA Astrophysics Data System (ADS)

    Buters, Jeroen T. M.; Thibaudon, Michel; Smith, Matt; Kennedy, Roy; Rantio-Lehtimäki, Auli; Albertini, Roberto; Reese, Gerald; Weber, Bernhard; Galan, Carmen; Brandao, Rui; Antunes, Celia M.; Jäger, Siegfried; Berger, Uwe; Celenk, Sevcan; Grewling, Łukasz; Jackowiak, Bogdan; Sauliene, Ingrida; Weichenmeier, Ingrid; Pusch, Gudrun; Sarioglu, Hakan; Ueffing, Marius; Behrendt, Heidrun; Prank, Marje; Sofiev, Mikhail; Cecchi, Lorenzo; Hialine Working Group

    2012-08-01

    Exposure to allergens is pivotal in determining sensitization and allergic symptoms in individuals. Pollen grain counts in ambient air have traditionally been assessed to estimate airborne allergen exposure. However, the exact allergen content of ambient air is unknown. We therefore monitored atmospheric concentrations of birch pollen grains and the matched major birch pollen allergen Bet v 1 simultaneously across Europe within the EU-funded project HIALINE (Health Impacts of Airborne Allergen Information Network). Pollen count was assessed with Hirst type pollen traps at 10 l min-1 at sites in France, United Kingdom, Germany, Italy and Finland. Allergen concentrations in ambient air were sampled at 800 l min-1 with a Chemvol® high-volume cascade impactor equipped with stages PM > 10 μm, 10 μm > PM > 2.5 μm, and in Germany also 2.5 μm > PM > 0.12 μm. The major birch pollen allergen Bet v 1 was determined with an allergen specific ELISA. Bet v 1 isoform patterns were analyzed by 2D-SDS-PAGE blots and mass spectrometric identification. Basophil activation was tested in an FcɛR1-humanized rat basophil cell line passively sensitized with serum of a birch pollen symptomatic patient. Compared to 10 previous years, 2009 was a representative birch pollen season for all stations. About 90% of the allergen was found in the PM > 10 μm fraction at all stations. Bet v 1 isoforms pattern did not vary substantially neither during ripening of pollen nor between different geographical locations. The average European allergen release from birch pollen was 3.2 pg Bet v 1/pollen and did not vary much between the European countries. However, in all countries a >10-fold difference in daily allergen release per pollen was measured which could be explained by long-range transport of pollen with a deviating allergen release. Basophil activation by ambient air extracts correlated better with airborne allergen than with pollen concentration. Although Bet v 1 is a mixture of different

  17. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications

    NASA Astrophysics Data System (ADS)

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  18. Diurnal variations of airborne pollen concentration and the effect of ambient temperature in three sites of Mexico City.

    PubMed

    Ríos, B; Torres-Jardón, R; Ramírez-Arriaga, E; Martínez-Bernal, A; Rosas, I

    2016-05-01

    Pollen is an important cause of allergic respiratory ailments in the Mexico City Metropolitan Area (MCMA). However, very little is known if ambient air temperature correlates with the early blooming of plants observed in other urban areas around the world. A research study was conducted during the dry season of 2012-2013 at three representative sites of the MCMA with different urban characteristics with the aim to understand the relationships between the profusion and diversity of pollen against temperature and other meteorological variables and degree of urbanization. Pollen samples were collected using a Hirst-type trap sampler in the sites: Merced (highly urbanized), Iztapalapa (medium-high urbanized) and Coyoacan (moderately urbanized). Urbanization levels were determined using a composite index based on population density, proportion of surface covered by construction and asphalt, and urban heat island intensity. A set of representative pollen sampling tapes were assayed under a light microscope at magnification of ×1,000 and converted to grains per cubic meter. The most representative pollen types found in the three sites were, regardless of urbanization levels were: Fraxinus, Cupressaceae/Taxodiaceae, Casuarina, Alnus, Myrtaceae, and Pinus. Total pollen concentration was greatest in the moderately urbanized area, although earlier blooming took place at the highly urbanized zone. Total pollen concentration in the medium-high urbanized site has the lowest because the green areas in this zone of MCMA are few. In a diurnal basis, the most abundant pollen types peaked near midday or in the afternoon evening at the three sites. A Spearman test showed a positive correlation among bihourly pollen concentrations, temperature and relative humidity in all sites, but wind speed just correlated in Iztapalapa and Coyoacan. The results obtained suggest that Urban Heat Island Intensity can disturb flowering periods and pollen concentrations, largely in the highly urbanized

  19. Diurnal variations of airborne pollen concentration and the effect of ambient temperature in three sites of Mexico City

    NASA Astrophysics Data System (ADS)

    Ríos, B.; Torres-Jardón, R.; Ramírez-Arriaga, E.; Martínez-Bernal, A.; Rosas, I.

    2016-05-01

    Pollen is an important cause of allergic respiratory ailments in the Mexico City Metropolitan Area (MCMA). However, very little is known if ambient air temperature correlates with the early blooming of plants observed in other urban areas around the world. A research study was conducted during the dry season of 2012-2013 at three representative sites of the MCMA with different urban characteristics with the aim to understand the relationships between the profusion and diversity of pollen against temperature and other meteorological variables and degree of urbanization. Pollen samples were collected using a Hirst-type trap sampler in the sites: Merced (highly urbanized), Iztapalapa (medium-high urbanized) and Coyoacan (moderately urbanized). Urbanization levels were determined using a composite index based on population density, proportion of surface covered by construction and asphalt, and urban heat island intensity. A set of representative pollen sampling tapes were assayed under a light microscope at magnification of ×1,000 and converted to grains per cubic meter. The most representative pollen types found in the three sites were, regardless of urbanization levels were: Fraxinus, Cupressaceae/Taxodiaceae, Casuarina, Alnus, Myrtaceae, and Pinus. Total pollen concentration was greatest in the moderately urbanized area, although earlier blooming took place at the highly urbanized zone. Total pollen concentration in the medium-high urbanized site has the lowest because the green areas in this zone of MCMA are few. In a diurnal basis, the most abundant pollen types peaked near midday or in the afternoon evening at the three sites. A Spearman test showed a positive correlation among bihourly pollen concentrations, temperature and relative humidity in all sites, but wind speed just correlated in Iztapalapa and Coyoacan. The results obtained suggest that Urban Heat Island Intensity can disturb flowering periods and pollen concentrations, largely in the highly urbanized

  20. Aerobiological study in east-central Iberian Peninsula: pollen diversity and dynamics for major taxa.

    PubMed

    Pérez-Badia, Rosa; Rapp, Ana; Vaquero, Consolación; Fernández-González, Federico

    2011-01-01

    A study was made of airborne pollen counts in Cuenca (east-central Iberian Peninsula, Spain), using data obtained over a 3-year period (2008-2010). This is the first such study carried out in the World Heritage city of Cuenca, situated in the large region of Castilla-La Mancha. Air monitoring was performed using the sampling and analysis procedures recommended by the Spanish Aerobiology Network. Sampling commenced in mid- 2007, and provided the first recorded pollen-spectrum for the area. The greatest pollen-type diversity was recorded in spring, whilst the highest pollen counts (over 80 percent of the annual total) were observed between February and June. The lowest counts were found in September, November and December. The 10 leading taxa, in order of abundance, were: Cupressaceae, Quercus, Urticaceae, Pinus, Olea, Poaceae, Populus, Platanus, Chenopodiaceae-Amaranthaceae and Plantago. The pollen calendar was thus typically Mediterrean, and comprised the 27 pollen types reaching 10-day mean counts of over 1 grain/m(3) of air. Maximum concentration values during the day were recorded between 12:00-20:00, coinciding with the highest temperatures and lowest humidity levels. The pollen types responsible for most allergies in the city of Cuenca, ordered by the number of days on which risk levels were reached, were: Poaceae, Urticaceae, Cupressaceae, Olea, Platanus and Chenopodiaceae-Amaranthaceae. PMID:21736275

  1. Atmospheric Poaceae pollen frequencies and associations with meteorological parameters in Brisbane, Australia: a 5-year record, 1994-1999

    NASA Astrophysics Data System (ADS)

    Green, Brett James; Dettmann, Mary; Yli-Panula, Eija; Rutherford, Shannon; Simpson, Rod

    Grass pollen is an important risk factor for allergic rhinitis and asthma in Australia and is the most prevalent pollen component of the aerospora of Brisbane, accounting for 71.6% of the annual airborne pollen load. A 5-year (June 1994-May 1999) monitoring program shows the grass pollen season to occur during the summer and autumn months (December-April), however the timing of onset and intensity of the season vary from year to year. During the pollen season, Poaceae counts exceeding 30 grains m-3 were recorded on 244 days and coincided with maximum temperatures of 28.1 +/- 2.0 °C. In this study, statistical associations between atmospheric grass pollen loads and several weather parameters, including maximum temperature, minimum temperature and precipitation, were investigated. Spearman's correlation analysis demonstrated that daily grass pollen counts were positively associated (P < 0.0001) with maximum and minimum temperature during each sampling year. Precipitation, although considered a less important daily factor (P < 0.05), was observed to remove pollen grains from the atmosphere during significant periods of rainfall. This study provides the first insight into the influence of meteorological variables, in particular temperature, on atmospheric Poaceae pollen counts in Brisbane. An awareness of these associations is critical for the prevention and management of allergy and asthma for atopic individuals within this region.

  2. Allergenic pollen and pollen allergy in Europe.

    PubMed

    D'Amato, G; Cecchi, L; Bonini, S; Nunes, C; Annesi-Maesano, I; Behrendt, H; Liccardi, G; Popov, T; van Cauwenberge, P

    2007-09-01

    The allergenic content of the atmosphere varies according to climate, geography and vegetation. Data on the presence and prevalence of allergenic airborne pollens, obtained from both aerobiological studies and allergological investigations, make it possible to design pollen calendars with the approximate flowering period of the plants in the sampling area. In this way, even though pollen production and dispersal from year to year depend on the patterns of preseason weather and on the conditions prevailing at the time of anthesis, it is usually possible to forecast the chances of encountering high atmospheric allergenic pollen concentrations in different areas. Aerobiological and allergological studies show that the pollen map of Europe is changing also as a result of cultural factors (for example, importation of plants such as birch and cypress for urban parklands), greater international travel (e.g. colonization by ragweed in France, northern Italy, Austria, Hungary etc.) and climate change. In this regard, the higher frequency of weather extremes, like thunderstorms, and increasing episodes of long range transport of allergenic pollen represent new challenges for researchers. Furthermore, in the last few years, experimental data on pollen and subpollen-particles structure, the pathogenetic role of pollen and the interaction between pollen and air pollutants, gave new insights into the mechanisms of respiratory allergic diseases. PMID:17521313

  3. The weak effects of climatic change on Plantago pollen concentration: 17 years of monitoring in Northwestern Spain

    NASA Astrophysics Data System (ADS)

    González-Parrado, Zulima; Valencia-Barrera, Rosa Ma.; Vega-Maray, Ana Ma.; Fuertes-Rodríguez, Carmen Reyes; Fernández-González, Delia

    2014-09-01

    Plantago L. species are very common in nitrified areas such as roadsides and their pollen is a major cause of pollinosis in temperate regions. In this study, we sampled airborne pollen grains in the city of León (NW, Spain) from January 1995 to December 2011, by using a Burkard® 7-day-recording trap. The percentage of Plantago pollen compared to the total pollen count ranged from 11 % (1997) to 3 % (2006) in the period under study. Peak pollen concentrations were recorded in May and June. Our 17-year analysis failed to disclose significant changes in the seasonal trend of plantain pollen concentration. In addition, there were no important changes in the start dates of pollen release and the meteorological parameters analyzed did not show significant variations in their usual trends. We analyzed the influence of several meteorological parameters on Plantago pollen concentration to explain the differences in pollen concentration trends during the study. Our results show that temperature, sun hours, evaporation, and relative humidity are the meteorological parameters best correlated to the behavior of Plantago pollen grains. In general, the years with low pollen concentrations correspond to the years with less precipitation or higher temperatures. We calculated the approximate Plantago flowering dates using the cumulative sum of daily maximum temperatures and compared them with the real bloom dates. The differences obtained were 4 days in 2009, 3 days in 2010, and 1 day in 2011 considering the complete period of pollination.

  4. The weak effects of climatic change on Plantago pollen concentration: 17 years of monitoring in Northwestern Spain.

    PubMed

    González-Parrado, Zulima; Valencia-Barrera, Rosa Ma; Vega-Maray, Ana Ma; Fuertes-Rodríguez, Carmen Reyes; Fernández-González, Delia

    2014-09-01

    Plantago L. species are very common in nitrified areas such as roadsides and their pollen is a major cause of pollinosis in temperate regions. In this study, we sampled airborne pollen grains in the city of León (NW, Spain) from January 1995 to December 2011, by using a Burkard® 7-day-recording trap. The percentage of Plantago pollen compared to the total pollen count ranged from 11% (1997) to 3% (2006) in the period under study. Peak pollen concentrations were recorded in May and June. Our 17-year analysis failed to disclose significant changes in the seasonal trend of plantain pollen concentration. In addition, there were no important changes in the start dates of pollen release and the meteorological parameters analyzed did not show significant variations in their usual trends. We analyzed the influence of several meteorological parameters on Plantago pollen concentration to explain the differences in pollen concentration trends during the study. Our results show that temperature, sun hours, evaporation, and relative humidity are the meteorological parameters best correlated to the behavior of Plantago pollen grains. In general, the years with low pollen concentrations correspond to the years with less precipitation or higher temperatures. We calculated the approximate Plantago flowering dates using the cumulative sum of daily maximum temperatures and compared them with the real bloom dates. The differences obtained were 4 days in 2009, 3 days in 2010, and 1 day in 2011 considering the complete period of pollination. PMID:24337493

  5. The weak effects of climatic change on Plantago pollen concentration: 17 years of monitoring in Northwestern Spain.

    PubMed

    González-Parrado, Zulima; Valencia-Barrera, Rosa Ma; Vega-Maray, Ana Ma; Fuertes-Rodríguez, Carmen Reyes; Fernández-González, Delia

    2014-09-01

    Plantago L. species are very common in nitrified areas such as roadsides and their pollen is a major cause of pollinosis in temperate regions. In this study, we sampled airborne pollen grains in the city of León (NW, Spain) from January 1995 to December 2011, by using a Burkard® 7-day-recording trap. The percentage of Plantago pollen compared to the total pollen count ranged from 11% (1997) to 3% (2006) in the period under study. Peak pollen concentrations were recorded in May and June. Our 17-year analysis failed to disclose significant changes in the seasonal trend of plantain pollen concentration. In addition, there were no important changes in the start dates of pollen release and the meteorological parameters analyzed did not show significant variations in their usual trends. We analyzed the influence of several meteorological parameters on Plantago pollen concentration to explain the differences in pollen concentration trends during the study. Our results show that temperature, sun hours, evaporation, and relative humidity are the meteorological parameters best correlated to the behavior of Plantago pollen grains. In general, the years with low pollen concentrations correspond to the years with less precipitation or higher temperatures. We calculated the approximate Plantago flowering dates using the cumulative sum of daily maximum temperatures and compared them with the real bloom dates. The differences obtained were 4 days in 2009, 3 days in 2010, and 1 day in 2011 considering the complete period of pollination.

  6. Cluster analysis of intradiurnal holm oak pollen cycles at peri-urban and rural sampling sites in southwestern Spain

    NASA Astrophysics Data System (ADS)

    Hernández-Ceballos, M. A.; García-Mozo, H.; Galán, C.

    2015-08-01

    The impact of regional and local weather and of local topography on intradiurnal variations in airborne pollen levels was assessed by analysing bi-hourly holm oak ( Quercus ilex subsp. ballota (Desf.) Samp.) pollen counts at two sampling stations located 40 km apart, in southwestern Spain (Cordoba city and El Cabril nature reserve) over the period 2010-2011. Pollen grains were captured using Hirst-type volumetric spore traps. Analysis of regional weather conditions was based on the computation of backward trajectories using the HYSPLIT model. Sampling days were selected on the basis of phenological data; rainy days were eliminated, as were days lying outside a given range of percentiles (P95-P5). Analysis of cycles for the study period, as a whole, revealed differences between sampling sites, with peak bi-hourly pollen counts at night in Cordoba and at midday in El Cabril. Differences were also noted in the influence of surface weather conditions (temperature, relative humidity and wind). Cluster analysis of diurnal holm oak pollen cycles revealed the existence of five clusters at each sampling site. Analysis of backward trajectories highlighted specific regional air-flow patterns associated with each site. Findings indicated the contribution of both nearby and distant pollen sources to diurnal cycles. The combined use of cluster analysis and meteorological analysis proved highly suitable for charting the impact of local weather conditions on airborne pollen-count patterns. This method, and the specific tools used here, could be used not only to study diurnal variations in counts for other pollen types and in other biogeographical settings, but also in a number of other research fields involving airborne particle transport modelling, e.g. radionuclide transport in emergency preparedness exercises.

  7. Cluster analysis of intradiurnal holm oak pollen cycles at peri-urban and rural sampling sites in southwestern Spain.

    PubMed

    Hernández-Ceballos, M A; García-Mozo, H; Galán, C

    2015-08-01

    The impact of regional and local weather and of local topography on intradiurnal variations in airborne pollen levels was assessed by analysing bi-hourly holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) pollen counts at two sampling stations located 40 km apart, in southwestern Spain (Cordoba city and El Cabril nature reserve) over the period 2010-2011. Pollen grains were captured using Hirst-type volumetric spore traps. Analysis of regional weather conditions was based on the computation of backward trajectories using the HYSPLIT model. Sampling days were selected on the basis of phenological data; rainy days were eliminated, as were days lying outside a given range of percentiles (P95-P5). Analysis of cycles for the study period, as a whole, revealed differences between sampling sites, with peak bi-hourly pollen counts at night in Cordoba and at midday in El Cabril. Differences were also noted in the influence of surface weather conditions (temperature, relative humidity and wind). Cluster analysis of diurnal holm oak pollen cycles revealed the existence of five clusters at each sampling site. Analysis of backward trajectories highlighted specific regional air-flow patterns associated with each site. Findings indicated the contribution of both nearby and distant pollen sources to diurnal cycles. The combined use of cluster analysis and meteorological analysis proved highly suitable for charting the impact of local weather conditions on airborne pollen-count patterns. This method, and the specific tools used here, could be used not only to study diurnal variations in counts for other pollen types and in other biogeographical settings, but also in a number of other research fields involving airborne particle transport modelling, e.g. radionuclide transport in emergency preparedness exercises.

  8. [Flora, distribution of vegetation and pollen content of the air: significance for allergics].

    PubMed

    Tsukanova, G; Laaidi, M

    2004-09-01

    The wealth of the flora of a given region cannot be seen in its airborne pollen list. Actually, for some plants there is a low probability that their pollens are recorded in the pollen counts (entomogamous plants, in particular). Moreover, the light microscopy reduces the possibilities of determination. In France, The Aerobiological Network of Surveillance (RNSA) retains 92 taxa at different levels (gender, family, group of families), and among them allergenic as well as non allergenic taxa. From the 130 families of the France flora, 63 are taken into account in the pollen studies, 57 taxa being determined at the gender level. The comparison between the surface occupied by the tree species in the French departments of Côte-d'Or and Saône-et-Loire, and the average airborne pollen concentrations showed that usually there is no correspondence between the abundance of a plant and the number of its pollen in the records. So the flora of a region does not give enough information allowing to know the taxonomic composition and the pollen quantities in the air, which is of particular importance for allergic people.

  9. Integration of Airborne Aerosol Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic,Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; VandeWater, Peter K.; Levetin, Estelle; Crimmins, Theresa; Weltzin, Jake

    2011-01-01

    This slide presentation reviews the study that used a model to forecast pollen to assist in warning for asthma populations. Using MODIS daily reflectances to input to a model, PREAM, adapted from the Dust REgional Atmospheric Modeling (DREAM) system, a product of predicted pollen is produced. Using the pollen from Juniper the PREAM model was shown to be an assist in alerting the public of pollen bursts, and reduce the health impact on asthma populations.

  10. A mechanistic modeling system for estimating large scale emissions and transport of pollen and co-allergens.

    PubMed

    Efstathiou, Christos; Isukapalli, Sastry; Georgopoulos, Panos

    2011-04-01

    Allergic airway diseases represent a complex health problem which can be exacerbated by the synergistic action of pollen particles and air pollutants such as ozone. Understanding human exposures to aeroallergens requires accurate estimates of the spatial distribution of airborne pollen levels as well as of various air pollutants at different times. However, currently there are no established methods for estimating allergenic pollen emissions and concentrations over large geographic areas such as the United States. A mechanistic modeling system for describing pollen emissions and transport over extensive domains has been developed by adapting components of existing regional scale air quality models and vegetation databases. First, components of the Biogenic Emissions Inventory System (BEIS) were adapted to predict pollen emission patterns. Subsequently, the transport module of the Community Multiscale Air Quality (CMAQ) modeling system was modified to incorporate description of pollen transport. The combined model, CMAQ-pollen, allows for simultaneous prediction of multiple air pollutants and pollen levels in a single model simulation, and uses consistent assumptions related to the transport of multiple chemicals and pollen species. Application case studies for evaluating the combined modeling system included the simulation of birch and ragweed pollen levels for the year 2002, during their corresponding peak pollination periods (April for birch and September for ragweed). The model simulations were driven by previously evaluated meteorological model outputs and emissions inventories for the eastern United States for the simulation period. A semi-quantitative evaluation of CMAQ-pollen was performed using tree and ragweed pollen counts in Newark, NJ for the same time periods. The peak birch pollen concentrations were predicted to occur within two days of the peak measurements, while the temporal patterns closely followed the measured profiles of overall tree pollen

  11. Transport and radiative impacts of atmospheric pollen using online, observation-based emissions

    NASA Astrophysics Data System (ADS)

    Wozniak, M. C.; Steiner, A. L.; Solmon, F.; Li, Y.

    2015-12-01

    Atmospheric pollen emitted from trees and grasses exhibits both a high temporal variability and a highly localized spatial distribution that has been difficult to quantify in the atmosphere. Pollen's radiative impact is also not quantified because it is neglected in climate modeling studies. Here we couple an online, meteorological active pollen emissions model guided by observations of airborne pollen to understand the role of pollen in the atmosphere. We use existing pollen counts from 2003-2008 across the continental U.S. in conjunction with a tree database and historical meteorological data to create an observation-based phenological model that produces accurately scaled and timed emissions. These emissions are emitted and transported within the regional climate model (RegCM4) and the direct radiative effect is calculated. Additionally, we simulate the rupture of coarse pollen grains into finer particles by adding a second size mode for pollen emissions, which contributes to the shortwave radiative forcing and also has an indirect effect on climate.

  12. Integration of Airborne Aerosol Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; VandeWater, Peter K.; Levetin, Estelle; Losleben, Mark; Weltzin, Jake

    2009-01-01

    The residual signal indicates that the pollen event may influence the seasonal signal to an extent that would allow detection, given accurate QA filtering and BRDF corrections. MODIS daily reflectances increased during the pollen season. The DREAM model (PREAM) was successfully modified for use with pollen and may provide 24-36 hour running pollen forecasts. Publicly available pollen forecasts are linked to general weather patterns and roughly-known species phenologies. These are too coarse for timely health interventions. PREAM addresses this key data gap so that targeting intervention measures can be determined temporally and geospatially. The New Mexico Department of Health (NMDOH) as part of its Environmental Public Health Tracking Network (EPHTN) would use PREAM a tool for alerting the public in advance of pollen bursts to intervene and reduce the health impact on asthma populations at risk.

  13. Integration for Airborne Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Nickovic, S.; Huete, A.; Budge, A.; Flowers, L.

    2008-01-01

    The objective of the program is to assess the feasibility of combining a dust transport model with MODIS derived phenology to study pollen transport for integration with a public health decision support system. The use of pollen information has specifically be identified as a critical need by the New Mexico State Health department for inclusion in the Environmental Public Health Tracking (EPHT) program. Material and methods: Pollen can be transported great distances. Local observations of plan phenology may be consistent with the timing and source of pollen collected by pollen sampling instruments. The Dust REgional Atmospheric Model (DREAM) is an integrated modeling system designed to accurately describe the dust cycle in the atmosphere. The dust modules of the entire system incorporate the state of the art parameterization of all the major phases of the atmospheric dust life such as production, diffusion, advection, and removal. These modules also include effects of the particles size distribution on aerosol dispersion. The model was modified to use pollen sources instead of dust. Pollen release was estimated based on satellite-derived phenology of key plan species and vegetation communities. The MODIS surface reflectance product (MOD09) provided information on the start of the plant growing season, growth stage, and pollen release. The resulting deterministic model is useful for predicting and simulating pollen emission and downwind concentration to study details of phenology and meteorology and their dependencies. The proposed linkage in this project provided critical information on the location timing and modeled transport of pollen directly to the EPHT> This information is useful to support the centers for disease control and prevention (CDC)'s National EPHT and the state of New Mexico environmental public health decision support for asthma and allergies alerts.

  14. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Duhl, T.; Salam, M. T.; House, J. M.; Flagan, R. C.; Avol, E. L.; Gilliland, F. D.; Guenther, A.; Chung, S. H.; Lamb, B. K.; VanReken, T. M.

    2014-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the coupled Weather Research and Forecasting Community Multiscale Air Quality (WRF/CMAQ) modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California (USA) for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to

  15. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Duhl, T.; Salam, M. T.; House, J. M.; Flagan, R. C.; Avol, E. L.; Gilliland, F. D.; Guenther, A.; Chung, S. H.; Lamb, B. K.; VanReken, T. M.

    2013-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends to

  16. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease.

    PubMed

    Zhang, Rui; Duhl, Tiffany; Salam, Muhammad T; House, James M; Flagan, Richard C; Avol, Edward L; Gilliland, Frank D; Guenther, Alex; Chung, Serena H; Lamb, Brian K; VanReken, Timothy M

    2013-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends

  17. Variations in Quercus sp. pollen seasons (1996-2011) in Poznań, Poland, in relation to meteorological parameters.

    PubMed

    Grewling, Lukasz; Jackowiak, Bogdan; Smith, Matt

    2014-01-01

    The aim of this study is to supply detailed information about oak (Quercus sp.) pollen seasons in Poznań, Poland, based on a 16-year aerobiological data series (1996-2011). The pollen data were collected using a volumetric spore trap of the Hirst design located in Poznań city center. The limits of the pollen seasons were calculated using the 95 % method. The influence of meteorological parameters on temporal variations in airborne pollen was examined using correlation analysis. Start and end dates of oak pollen seasons in Poznań varied markedly from year-to-year (14 and 17 days, respectively). Most of the pollen grains (around 75 % of the seasonal pollen index) were recorded within the first 2 weeks of the pollen season. The tenfold variation was observed between the least and the most intensive pollen seasons. These fluctuations were significantly related to the variation in the sum of rain during the period second fortnight of March to first fortnight of April the year before pollination (r = 0.799; p < 0.001). During the analyzing period, a significant advance in oak pollen season start dates was observed (-0.55 day/year; p = 0.021), which was linked with an increase in the mean temperature during the second half of March and first half of April (+0.2 °C; p = 0.014). Daily average oak pollen counts correlated positively with mean and maximum daily temperatures, and negatively with daily rainfall and daily mean relative humidity.

  18. Ambrosia artemisiifolia L. pollen simulations over the Euro-CORDEX domain: model description and emission calibration

    NASA Astrophysics Data System (ADS)

    liu, li; Solmon, Fabien; Giorgi, Filippo; Vautard, Robert

    2014-05-01

    Ragweed Ambrosia artemisiifolia L. is a highly allergenic invasive plant. Its pollen can be transported over large distances and has been recognized as a significant cause of hayfever and asthma (D'Amato et al., 2007). In the context of the ATOPICA EU program we are studying the links between climate, land use and ecological changes on the ragweed pollen emissions and concentrations. For this purpose, we implemented a pollen emission/transport module in the RegCM4 regional climate model in collaboration with ATOPICA partners. The Abdus Salam International Centre for Theoretical Physics (ICTP) regional climate model, i.e. RegCM4 was adapted to incorporate the pollen emissions from (ORCHIDEE French) Global Land Surface Model and a pollen tracer model for describing pollen convective transport, turbulent mixing, dry and wet deposition over extensive domains, using consistent assumption regarding the transport of multiple species (Fabien et al., 2008). We performed two families of recent-past simulations on the Euro-Cordex domain (simulation for future condition is been considering). Hindcast simulations (2000~2011) were driven by the ERA-Interim re-analyses and designed to best simulate past periods airborne pollens, which were calibrated with parts of observations and verified by comparison with the additional observations. Historical simulations (1985~2004) were driven by HadGEM CMPI5 and designed to serve as a baseline for comparison with future airborne concentrations as obtained from climate and land-use scenarios. To reduce the uncertainties on the ragweed pollen emission, an assimilation-like method (Rouǐl et al., 2009) was used to calibrate release based on airborne pollen observations. The observations were divided into two groups and used for calibration and validation separately. A wide range of possible calibration coefficients were tested for each calibration station, making the bias between observations and simulations within an admissible value then

  19. Projected carbon dioxide to increase grass pollen and allergen exposure despite higher ozone levels.

    PubMed

    Albertine, Jennifer M; Manning, William J; DaCosta, Michelle; Stinson, Kristina A; Muilenberg, Michael L; Rogers, Christine A

    2014-01-01

    One expected effect of climate change on human health is increasing allergic and asthmatic symptoms through changes in pollen biology. Allergic diseases have a large impact on human health globally, with 10-30% of the population affected by allergic rhinitis and more than 300 million affected by asthma. Pollen from grass species, which are highly allergenic and occur worldwide, elicits allergic responses in 20% of the general population and 40% of atopic individuals. Here we examine the effects of elevated levels of two greenhouse gases, carbon dioxide (CO2), a growth and reproductive stimulator of plants, and ozone (O3), a repressor, on pollen and allergen production in Timothy grass (Phleum pratense L.). We conducted a fully factorial experiment in which plants were grown at ambient and/or elevated levels of O3 and CO2, to simulate present and projected levels of both gases and their potential interactive effects. We captured and counted pollen from flowers in each treatment and assayed for concentrations of the allergen protein, Phl p 5. We found that elevated levels of CO2 increased the amount of grass pollen produced by ∼50% per flower, regardless of O3 levels. Elevated O3 significantly reduced the Phl p 5 content of the pollen but the net effect of rising pollen numbers with elevated CO2 indicate increased allergen exposure under elevated levels of both greenhouse gases. Using quantitative estimates of increased pollen production and number of flowering plants per treatment, we estimated that airborne grass pollen concentrations will increase in the future up to ∼200%. Due to the widespread existence of grasses and the particular importance of P. pratense in eliciting allergic responses, our findings provide evidence for significant impacts on human health worldwide as a result of future climate change.

  20. Projected carbon dioxide to increase grass pollen and allergen exposure despite higher ozone levels.

    PubMed

    Albertine, Jennifer M; Manning, William J; DaCosta, Michelle; Stinson, Kristina A; Muilenberg, Michael L; Rogers, Christine A

    2014-01-01

    One expected effect of climate change on human health is increasing allergic and asthmatic symptoms through changes in pollen biology. Allergic diseases have a large impact on human health globally, with 10-30% of the population affected by allergic rhinitis and more than 300 million affected by asthma. Pollen from grass species, which are highly allergenic and occur worldwide, elicits allergic responses in 20% of the general population and 40% of atopic individuals. Here we examine the effects of elevated levels of two greenhouse gases, carbon dioxide (CO2), a growth and reproductive stimulator of plants, and ozone (O3), a repressor, on pollen and allergen production in Timothy grass (Phleum pratense L.). We conducted a fully factorial experiment in which plants were grown at ambient and/or elevated levels of O3 and CO2, to simulate present and projected levels of both gases and their potential interactive effects. We captured and counted pollen from flowers in each treatment and assayed for concentrations of the allergen protein, Phl p 5. We found that elevated levels of CO2 increased the amount of grass pollen produced by ∼50% per flower, regardless of O3 levels. Elevated O3 significantly reduced the Phl p 5 content of the pollen but the net effect of rising pollen numbers with elevated CO2 indicate increased allergen exposure under elevated levels of both greenhouse gases. Using quantitative estimates of increased pollen production and number of flowering plants per treatment, we estimated that airborne grass pollen concentrations will increase in the future up to ∼200%. Due to the widespread existence of grasses and the particular importance of P. pratense in eliciting allergic responses, our findings provide evidence for significant impacts on human health worldwide as a result of future climate change. PMID:25372614

  1. Effects of certain atmospheric pollutants (SO2, NO2 and CO) on the soluble amino acids, molecular weight and antigenicity of some airborne pollen grains.

    PubMed

    Ruffin, J; Liu, M Y; Sessoms, R; Banerjee, S; Banerjee, U C

    1986-01-01

    The pure pollen grains of Red Oak (Quercus rubra), Meadow Fescue (Festuca elatior) and Chinese Elm (Ulmas pumila) were exposed to carbon monoxide (CO), sulphur dioxide (SO2) and nitrogen dioxide (NO2). After exposure, the soluble free amino acids were determined from the extracts using two-dimensional thin layer chromatography, and the molecular weight of the extracts were determined by SDS-gel electrophoresis (PAGE). The results indicated that after contamination, both the amino acids and molecular weight profiles were changed. In addition, the double immunodiffusion method was used against rabbit-antisera to determine the antigenicity of contaminated and non-contaminated pollen grain extracts. The results also showed that there were antigenic changes after contamination.

  2. Statistical approach to the analysis of olive long-term pollen season trends in southern Spain.

    PubMed

    García-Mozo, H; Yaezel, L; Oteros, J; Galán, C

    2014-03-01

    Analysis of long-term airborne pollen counts makes it possible not only to chart pollen-season trends but also to track changing patterns in flowering phenology. Changes in higher plant response over a long interval are considered among the most valuable bioindicators of climate change impact. Phenological-trend models can also provide information regarding crop production and pollen-allergen emission. The interest of this information makes essential the election of the statistical analysis for time series study. We analysed trends and variations in the olive flowering season over a 30-year period (1982-2011) in southern Europe (Córdoba, Spain), focussing on: annual Pollen Index (PI); Pollen Season Start (PSS), Peak Date (PD), Pollen Season End (PSE) and Pollen Season Duration (PSD). Apart from the traditional Linear Regression analysis, a Seasonal-Trend Decomposition procedure based on Loess (STL) and an ARIMA model were performed. Linear regression results indicated a trend toward delayed PSE and earlier PSS and PD, probably influenced by the rise in temperature. These changes are provoking longer flowering periods in the study area. The use of the STL technique provided a clearer picture of phenological behaviour. Data decomposition on pollination dynamics enabled the trend toward an alternate bearing cycle to be distinguished from the influence of other stochastic fluctuations. Results pointed to show a rising trend in pollen production. With a view toward forecasting future phenological trends, ARIMA models were constructed to predict PSD, PSS and PI until 2016. Projections displayed a better goodness of fit than those derived from linear regression. Findings suggest that olive reproductive cycle is changing considerably over the last 30years due to climate change. Further conclusions are that STL improves the effectiveness of traditional linear regression in trend analysis, and ARIMA models can provide reliable trend projections for future years taking into

  3. Statistical approach to the analysis of olive long-term pollen season trends in southern Spain.

    PubMed

    García-Mozo, H; Yaezel, L; Oteros, J; Galán, C

    2014-03-01

    Analysis of long-term airborne pollen counts makes it possible not only to chart pollen-season trends but also to track changing patterns in flowering phenology. Changes in higher plant response over a long interval are considered among the most valuable bioindicators of climate change impact. Phenological-trend models can also provide information regarding crop production and pollen-allergen emission. The interest of this information makes essential the election of the statistical analysis for time series study. We analysed trends and variations in the olive flowering season over a 30-year period (1982-2011) in southern Europe (Córdoba, Spain), focussing on: annual Pollen Index (PI); Pollen Season Start (PSS), Peak Date (PD), Pollen Season End (PSE) and Pollen Season Duration (PSD). Apart from the traditional Linear Regression analysis, a Seasonal-Trend Decomposition procedure based on Loess (STL) and an ARIMA model were performed. Linear regression results indicated a trend toward delayed PSE and earlier PSS and PD, probably influenced by the rise in temperature. These changes are provoking longer flowering periods in the study area. The use of the STL technique provided a clearer picture of phenological behaviour. Data decomposition on pollination dynamics enabled the trend toward an alternate bearing cycle to be distinguished from the influence of other stochastic fluctuations. Results pointed to show a rising trend in pollen production. With a view toward forecasting future phenological trends, ARIMA models were constructed to predict PSD, PSS and PI until 2016. Projections displayed a better goodness of fit than those derived from linear regression. Findings suggest that olive reproductive cycle is changing considerably over the last 30years due to climate change. Further conclusions are that STL improves the effectiveness of traditional linear regression in trend analysis, and ARIMA models can provide reliable trend projections for future years taking into

  4. Towards a "crime pollen calendar" - pollen analysis on corpses throughout one year.

    PubMed

    Montali, Elisa; Mercuri, Anna Maria; Trevisan Grandi, Giuliana; Accorsi, Carla Alberta

    2006-11-22

    A palynological study was carried out on 28 corpses brought in one year (June 2003-May 2004) to the morgue of the Institute of Legal Medicine of Parma (Northern Italy). This preliminary research focuses on the date of death, which was known for all corpses examined. Pollen sampling and analyses were made with the first aim of comparing the pollen grains found on corpses with those diffused in the atmosphere in the region in the same season as the known date of death. Eyebrows, hair-line near the forehead, facial skin and nasal cavities were sampled. Most of the corpses had trapped pollen grains, with the exception of two December corpses. All pollen grains were found with cytoplasm and in a good state of preservation. In this way, a series of reference data was collected for the area where the deaths occurred, and we examined whether pollen grains on corpses could be an index of the season of death. To verify this hypothesis, the pollen analyses were compared with data reported in the airborne pollen calendars of Parma and the region around. Pollen calendars record pollen types and their concentrations in the air, month by month. The quantity of pollen recorded on corpses did not prove to be directly related to the quantity of pollen in the air. But qualitatively, many pollen types which are seasonal markers were found on corpses. Main corpse/air discrepancies were also observed due to the great influence that the local environmental conditions of the death scene have in determining the pollen trapped by a corpse. Qualitative plus quantitative pollen data from corpses appeared helpful in indicating the season of death. A preliminary sketch of a "crime pollen calendar" in a synthetic graphic form was made by grouping the corpse pollen records into three main seasons: A, winter/spring; B, spring/summer; C, summer/autumn. Trends match the general seasonal trend of pollen types in the air.

  5. Bee Pollen

    MedlinePlus

    ... bee venom, honey, or royal jelly. People take bee pollen for nutrition; as an appetite stimulant; to improve stamina and athletic performance; and for premature aging, premenstrual syndrome (PMS), hay fever (allergic ... Bee pollen is also used for gastrointestinal (GI) problems ...

  6. A new approach used to explore associations of current Ambrosia pollen levels with current and past meteorological elements

    NASA Astrophysics Data System (ADS)

    Matyasovszky, István; Makra, László; Csépe, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Fülöp, Andrea; Tusnády, Gábor

    2015-09-01

    The paper examines the sensitivity of daily airborne Ambrosia (ragweed) pollen levels of a current pollen season not only on daily values of meteorological variables during this season but also on the past meteorological conditions. The results obtained from a 19-year data set including daily ragweed pollen counts and ten daily meteorological variables are evaluated with special focus on the interactions between the phyto-physiological processes and the meteorological elements. Instead of a Pearson correlation measuring the strength of the linear relationship between two random variables, a generalised correlation that measures every kind of relationship between random vectors was used. These latter correlations between arrays of daily values of the ten meteorological elements and the array of daily ragweed pollen concentrations during the current pollen season were calculated. For the current pollen season, the six most important variables are two temperature variables (mean and minimum temperatures), two humidity variables (dew point depression and rainfall) and two variables characterising the mixing of the air (wind speed and the height of the planetary boundary layer). The six most important meteorological variables before the current pollen season contain four temperature variables (mean, maximum, minimum temperatures and soil temperature) and two variables that characterise large-scale weather patterns (sea level pressure and the height of the planetary boundary layer). Key periods of the past meteorological variables before the current pollen season have been identified. The importance of this kind of analysis is that a knowledge of the past meteorological conditions may contribute to a better prediction of the upcoming pollen season.

  7. Allergies, asthma, and pollen

    MedlinePlus

    Reactive airway - pollen; Bronchial asthma - pollen; Triggers - pollen; Allergic rhinitis - pollen ... Things that make allergies or asthma worse are called triggers. It is important to know your triggers because avoiding them is your first step toward feeling better. ...

  8. In vitro pollen viability and pollen germination in cherry laurel (Prunus laurocerasus L.).

    PubMed

    Sulusoglu, Melekber; Cavusoglu, Aysun

    2014-01-01

    Pollen quality is important for growers and breeders. This study was carried out to determine in vitro pollen viability and pollen germination in seven genotypes of cherry laurel (Prunus laurocerasus L.). Two pollen viability tests, TTC (2,3,5-triphenyl tetrazolium chloride) and IKI (iodine potassium iodide), were used. Pollen traits of genotypes were studied using an in vitro medium containing 0%, 5%, 10%, 15%, and 20% sucrose to determine the best sucrose concentrations for germination. In the second step, the germinated pollen was counted 1, 4, 6, 10, 12, 24, and 48 hours later until there was no further germination. The viability rates were different according to genotypes and tests used. The IKI and TTC staining tests and pollen germination had low correlation (r(2) = 0.0614 and r(2) = 0.0015, resp.). Painted pollen rate was higher and pollen was well-stained with IKI test and pollen viability estimated with TTC staining test was better than that estimated with the IKI staining test. 15% sucrose gave the best germination rates in most of the genotypes. Pollen germination rates were recorded periodically from one hour to 48 hours in 15% sucrose and the results showed that pollen germination rates increased after 6 hours of being placed in culture media.

  9. In Vitro Pollen Viability and Pollen Germination in Cherry Laurel (Prunus laurocerasus L.)

    PubMed Central

    Sulusoglu, Melekber; Cavusoglu, Aysun

    2014-01-01

    Pollen quality is important for growers and breeders. This study was carried out to determine in vitro pollen viability and pollen germination in seven genotypes of cherry laurel (Prunus laurocerasus L.). Two pollen viability tests, TTC (2,3,5-triphenyl tetrazolium chloride) and IKI (iodine potassium iodide), were used. Pollen traits of genotypes were studied using an in vitro medium containing 0%, 5%, 10%, 15%, and 20% sucrose to determine the best sucrose concentrations for germination. In the second step, the germinated pollen was counted 1, 4, 6, 10, 12, 24, and 48 hours later until there was no further germination. The viability rates were different according to genotypes and tests used. The IKI and TTC staining tests and pollen germination had low correlation (r2 = 0.0614 and r2 = 0.0015, resp.). Painted pollen rate was higher and pollen was well-stained with IKI test and pollen viability estimated with TTC staining test was better than that estimated with the IKI staining test. 15% sucrose gave the best germination rates in most of the genotypes. Pollen germination rates were recorded periodically from one hour to 48 hours in 15% sucrose and the results showed that pollen germination rates increased after 6 hours of being placed in culture media. PMID:25405230

  10. Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco).

    PubMed

    Aboulaich, Nadia; Achmakh, Lamiaa; Bouziane, Hassan; Trigo, M Mar; Recio, Marta; Kadiri, Mohamed; Cabezudo, Baltasar; Riadi, Hassane; Kazzaz, Mohamed

    2013-03-01

    Poaceae pollen is one of the most prevalent aeroallergens causing allergenic reactions. The aim of this study was to characterise the grass pollen season in Tetouan during the years 2008-2010, to analyse the effect of some meteorological parameters on the incidence of the airborne Poaceae pollen, and to establish forecasting variables for daily pollen concentrations. Aerobiological sampling was undertaken over three seasons using the volumetric method. The pollen season started in April and showed the highest pollen index in May and June, when the maximum temperature ranged from 23 to 27 °C, respectively. The annual pollen score recorded varied from year to year between 2,588 and 5,404. The main pollen season lasted 114-173 days, with peak days occurring mainly in May; the highest concentration reached 308 pollen grains/m(3). Air temperature was the most important meteorological parameter and correlated positively to daily pollen concentration increase. An increase in relative humidity and precipitation was usually related to a decrease in airborne pollen content. External validation of the models performed using data from 2011 showed that Poaceae pollen concentration can be highly predicted (64.2-78.6 %) from the maximum temperature, its mean concentration for the same day in other years, and its concentration recorded on the previous day. Sensitive patients suffering allergy to Poaceae pollen are at moderate to highest risk of manifesting allergic symptoms to grass pollen over 33-42 days. The results obtained provide new information on the quantitative contribution of the Poaceae pollen to the airborne pollen of Tetouan and on its temporal distribution. Airborne pollen can be surveyed and forecast in order to warn the atopic population.

  11. Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco)

    NASA Astrophysics Data System (ADS)

    Aboulaich, Nadia; Achmakh, Lamiaa; Bouziane, Hassan; Trigo, M. Mar; Recio, Marta; Kadiri, Mohamed; Cabezudo, Baltasar; Riadi, Hassane; Kazzaz, Mohamed

    2013-03-01

    Poaceae pollen is one of the most prevalent aeroallergens causing allergenic reactions. The aim of this study was to characterise the grass pollen season in Tetouan during the years 2008-2010, to analyse the effect of some meteorological parameters on the incidence of the airborne Poaceae pollen, and to establish forecasting variables for daily pollen concentrations. Aerobiological sampling was undertaken over three seasons using the volumetric method. The pollen season started in April and showed the highest pollen index in May and June, when the maximum temperature ranged from 23 to 27 °C, respectively. The annual pollen score recorded varied from year to year between 2,588 and 5,404. The main pollen season lasted 114-173 days, with peak days occurring mainly in May; the highest concentration reached 308 pollen grains/m3. Air temperature was the most important meteorological parameter and correlated positively to daily pollen concentration increase. An increase in relative humidity and precipitation was usually related to a decrease in airborne pollen content. External validation of the models performed using data from 2011 showed that Poaceae pollen concentration can be highly predicted (64.2-78.6 %) from the maximum temperature, its mean concentration for the same day in other years, and its concentration recorded on the previous day. Sensitive patients suffering allergy to Poaceae pollen are at moderate to highest risk of manifesting allergic symptoms to grass pollen over 33-42 days. The results obtained provide new information on the quantitative contribution of the Poaceae pollen to the airborne pollen of Tetouan and on its temporal distribution. Airborne pollen can be surveyed and forecast in order to warn the atopic population.

  12. Immunochemical quantitation of airborne short ragweed, Alternaria, antigen E, and Alt-I allergens: a two-year prospective study

    SciTech Connect

    Agarwal, M.K.; Swanson, M.C.; Reed, C.E.; Yunginger, J.W.

    1983-07-01

    We conducted a 2 yr prospective study to measure atmospheric short ragweed and Alternaria allergens by RAST inhibition analysis of eluates from filter sheets exposed in air samplers. In both years ragweed pollen and Alternaria spore counts, obtained with a rotoslide sampler, correlated significantly with immunochemically measured airborne ragweed and Alternaria allergenic activity. Airborne levels of the purified allergens AgE and Alt-I were successfully quantitated; these levels correlated closely with total airborne ragweed and Alternaria allergenic activities, respectively, and also with ragweed pollen and Alternaria spore counts. Eluates from filter sheets exposed during late summer and fall produced positive wheal-and-flare skin tests in patients with fall hay fever. In both years immunochemical measurements of allergenic activity due to airborne short ragweed correlated closely with mean symptom score indices in groups of short ragweed-sensitive individuals. Measurable levels of atmospheric ragweed allergenic activity were noted before and after the ragweed pollination season, and at these times we noted small increases in mean symptom score indices in the short ragweed-sensitive groups. Thus immunochemical analyses provide important information concerning levels of environmental allergens.

  13. Aerobiology of Juniperus Pollen in Oklahoma, Texas, and New Mexico

    NASA Technical Reports Server (NTRS)

    Levetin, Estelle; Bunderson, Landon; VandeWater, Pete; Luvall, Jeff

    2014-01-01

    Pollen from members of the Cupressaceae are major aeroallergens in many parts of the world. In the south central and southwest United States, Juniperus pollen is the most important member of this family with J. ashei (JA) responsible for severe winter allergy symptoms in Texas and Oklahoma. In New Mexico, pollen from J. monosperma (JM) and other Juniperus species are important contributors to spring allergies, while J. pinchotii (JP) pollinates in the fall affecting sensitive individuals in west Texas, southwest Oklahoma and eastern New Mexico. Throughout this region, JA, JM, and JP occur in dense woodland populations. Generally monitoring for airborne allergens is conducted in urban areas, although the source for tree pollen may be forested areas distant from the sampling sites. Improved pollen forecasts require a better understanding of pollen production at the source. The current study was undertaken to examine the aerobiology of several Juniperus species at their source areas for the development of new pollen forecasting initiatives.

  14. Pollen-related allergy in Europe.

    PubMed

    D'Amato, G; Spieksma, F T; Liccardi, G; Jäger, S; Russo, M; Kontou-Fili, K; Nikkels, H; Wüthrich, B; Bonini, S

    1998-06-01

    The increasing mobility of Europeans for business and leisure has led to a need for reliable information about exposure to seasonal airborne allergens during travel abroad. Over the last 10 years or so, aeropalynologic and allergologic studies have progressed to meet this need, and extensive international networks now provide regular pollen and hay-fever forecasts. Europe is a geographically complex continent with a widely diverse climate and a wide spectrum of vegetation. Consequently, pollen calendars differ from one area to another; however, on the whole, pollination starts in spring and ends in autumn. Grass pollen is by far the most frequent cause of pollinosis in Europe. In northern Europe, pollen from species of the family Betulaceae is a major cause of the disorder. In contrast, the mild winters and dry summers of Mediterranean areas favor the production of pollen types that are rarely found in central and northern areas of the continent (e.g., the genera Parietaria, Olea, and Cupressus). Clinical and aerobiologic studies show that the pollen map of Europe is changing also as a result of cultural factors (e.g., importation of plants for urban parklands) and greater international travel (e.g., the expansion of the ragweed genus Ambrosia in France, northern Italy, Austria, and Hungary). Studies on allergen-carrying paucimicronic or submicronic airborne particles, which penetrate deep into the lung, are having a relevant impact on our understanding of pollinosis and its distribution throughout Europe. PMID:9689338

  15. Polarization Analysis of Light Scattered by Pollen Grains of Cryptomeria japonica

    NASA Astrophysics Data System (ADS)

    Iwai, Toshiaki

    2013-06-01

    Pollinosis to airborne pollen grains is a severe problem that concerns the whole world. Almost spring allergies in Japan are caused by pollen grains of Japan cedar (Cryptomeria japonica) during the period of pollination from February to May. One of the key technologies in a pollen monitoring and forecast system is a pollen sensor. The pollen grain of Japan cedar is identified by introducing the degree of polarization to the optical sensor based on the scattered intensity. The detectability and discriminability in identifying the pollen grains of Japan cedar from the polystyrene spherical particles and the Kanto loam grains are achieved up to 95 and 86%, respectively.

  16. Role of macrophage migration inhibitory factor (MIF) in pollen-induced allergic conjunctivitis and pollen dermatitis in mice.

    PubMed

    Nagata, Yuka; Yoshihisa, Yoko; Matsunaga, Kenji; Rehman, Mati Ur; Kitaichi, Nobuyoshi; Kitaichi, Nobuyuki; Shimizu, Tadamichi

    2015-01-01

    Pollen is a clinically important airborne allergen and one of the major causes of allergic conjunctivitis. A subpopulation of patients with atopic dermatitis (AD) are also known to have exacerbated skin eruptions on the face, especially around the eyelids, after contact with pollen. This pollen-induced skin reaction is now known as pollen dermatitis. Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that plays an essential role in allergic inflammation. Recent findings suggest that MIF is involved in several allergic disorders, including AD. In this study, MIF knockout (KO), MIF transgenic (Tg) and WT littermate mice were immunized with ragweed (RW) pollen or Japanese cedar (JC) pollen and challenged via eye drops. We observed that the numbers of conjunctiva- and eyelid-infiltrating eosinophils were significantly increased in RW and JC pollen-sensitized MIF Tg compared with WT mice or MIF KO mice. The mRNA expression levels of eotaxin, interleukin (IL)-5 and IL-13 were increased in pollen-sensitized eyelid skin sites of MIF Tg mice. An in vitro analysis revealed that high eotaxin expression was induced in dermal fibroblasts by MIF combined with stimulation of IL-4 or IL-13. This eotaxin expression was inhibited by the treatment with CD74 siRNA in fibroblasts. These findings indicate that MIF can induce eosinophil accumulation in the conjunctiva and eyelid dermis exposed to pollen. Therefore, targeted inhibition of MIF might result as a new option to control pollen-induced allergic conjunctivitis and pollen dermatitis.

  17. Atmospheric pollen season in Zagreb (Croatia) and its relationship with temperature and precipitation

    NASA Astrophysics Data System (ADS)

    Peternel, Renata; Srnec, Lidija; Čulig, Josip; Zaninović, Ksenija; Mitić, Božena; Vukušić, Ivan

    . The number of individuals allergic to plant pollen has recently been on a constant increase, especially in large cities and industrial areas. Therefore, monitoring of airborne pollen types and concentrations during the pollen season is of the utmost medical importance. The research reported in this paper aims to determine the beginning, course and end of the pollen season for the plants in the City of Zagreb, to identify allergenic plants, and to assess the variation in airborne pollen concentration as a function of temperature and precipitation changes for the year 2002. A volumetric Hirst sampler was used for airborne pollen sampling. Qualitative and quantitative pollen analysis was performed under a light microscope (magnification ×400). In the Zagreb area, 12 groups of highly allergenic plants (alder, hazel, cypress, birch, ash, hornbeam, grasses, elder, nettles, sweet chestnut, artemisia and ambrosia) were identified. Birch pollen predominated in spring, the highest concentrations being recorded in February and March. Grass pollen prevailed in May and June, and pollen of herbaceous plants of the genus Urtica (nettle) and of ambrosia in July, August and September. Air temperature was mostly higher or considerably higher than the annual average in those months, which resulted in a many days with high and very high airborne pollen concentrations. The exception was April, when these concentrations were lower because of high levels of precipitation. This also held for the first half of August and the second half of September. Pollen-sensitive individuals were at high risk from February till October because of the high airborne pollen concentrations, which only showed a transient decrease when the temperature fell or there was precipitation.

  18. Spatial and temporal modeling of daily pollen concentrations

    NASA Astrophysics Data System (ADS)

    Dellavalle, Curt T.; Triche, Elizabeth W.; Bell, Michelle L.

    2012-01-01

    Accurate assessments of pollen counts are valuable to allergy sufferers, the medical industry, and health researchers; however, monitoring stations do not exist in most areas. In addition, the degree of spatial reliability provided by the limited number of monitoring stations is poorly understood. We developed and compared spatial models to estimate pollen concentrations in locations without monitoring stations. Daily Acer, Quercus, and overall tree, grass, and weed pollen counts, in grains/m3, were obtained from 14 aeroallergen monitoring stations located in the northeastern and mid-Atlantic region of the United States from 2003 to 2006. Pollen counts were spatially interpolated using ordinary kriging. Mixed effects and generalized estimating equations incorporating daily and seasonal weather characteristics, pollen season characteristics and land-cover information were also developed to estimate daily pollen concentrations. We then compared observed values from a monitoring station to model estimates for that location. Observed counts and kriging estimates for tree pollen differed ( p = 0.04), but not when peak periods were removed ( p = 0.29). No differences between observed and kriging estimates of Acer ( p = 0.46), Quercus ( p = 0.24), grass ( p = 0.31) or weed pollen ( p = 0.29) were found. Estimates from longitudinal models also demonstrated good agreement with observed counts, except for the extremes of pollen distributions. Our results demonstrate that spatial interpolation techniques as well as regression methods incorporating both weather and land-cover characteristics can provide reliable estimates of daily pollen concentrations in areas where monitors do not exist for all but periods of extremely high pollen.

  19. Pollen dispersal in sugar beet production fields.

    PubMed

    Darmency, Henri; Klein, Etienne K; De Garanbé, Thierry Gestat; Gouyon, Pierre-Henri; Richard-Molard, Marc; Muchembled, Claude

    2009-04-01

    Pollen-mediated gene flow has important implications for biodiversity conservation and for breeders and farmers' activities. In sugar beet production fields, a few sugar beet bolters can produce pollen as well as be fertilized by wild and weed beet. Since the crop, the wild beets, and the weed beets are the same species and intercross freely, the question of pollen flow is an important issue to determine the potential dispersal of transgenes from field to field and to wild habitats. We report here an experiment to describe pollen dispersal from a small herbicide-resistant sugar beet source towards male sterile target plants located along radiating lines up to 1,200 m away. Individual dispersal functions were inferred from statistical analyses and compared. Pollen limitation, as expected in root-production fields, was confirmed at all the distances from the pollen source. The number of resistant seeds produced by bait plants best fitted a fat-tailed probability distribution curve of pollen grains (power-law) dependent on the distance from the pollen source. A literature survey confirmed that power-law function could fit in most cases. The b coefficient was lower than 2. The number of fertilized flowers by background (herbicide-susceptible) pollen grains was uniform across the whole field. Airborne pollen had a fertilization impact equivalent to that of one adjacent bolter. The individual dispersal function from different pollen sources can be integrated to provide the pollen cloud composition for a given target plant, thus allowing modeling of gene flow in a field, inter-fields in a small region, and also in seed-production area. Long-distance pollen flow is not negligible and could play an important role in rapid transgene dispersal from crop to wild and weed beets in the landscape. The removing of any bolting, herbicide-resistant sugar beet should be compulsory to prevent the occurrence of herbicide-resistant weed beet, thus preventing gene flow to wild

  20. Bioclimatic indices as a tool in pollen forecasting.

    PubMed

    Valencia-Barrera, Rosa María; Comtois, Paul; Fernández-González, Delia

    2002-09-01

    The use of bioclimatic indices could be a major step forward in the methodology of pollen forecasting. The basis for this proposal is that simple meteorological parameters do not reflect the global status of the atmosphere, but merely some static measurements. However, pollen dispersal is, above all, a dynamic phenomenon, and this fact should be reflected in the variables we used to explain it. Here, we test the two methodologies for routine pollen forecasting by comparing correlation coefficients using the same daily Poaceae airborne pollen data base from León (6 years, from 1994 to 1999) as the dependent variable and either simple daily meteorological variables or compound daily bioclimatic indices as independent variables. Both simple and compound indices reproduced the same profile of evolution of plant eco-physiological requirements, as the length of the study period during the pollen season increased. However, for time frames larger than the main pollen period, bioclimatic indices gave superior coefficients, which seems to indicate that these could be more valuable for pre-season pollen forecasting. The continentality index produced the highest mean coefficient, higher than those generated by any meteorological variable. Furthermore, at least for a Mediterranean climate, site location and evapotranspiration in relation to precipitation seem to be the most promising factors for increasing success when forecasting Poaceae airborne pollen concentration.

  1. Hive-stored pollen of honey bees: many lines of evidence are consistent with pollen preservation, not nutrient conversion

    PubMed Central

    Anderson, Kirk E; Carroll, Mark J; Sheehan, Tim; Mott, Brendon M; Maes, Patrick; Corby-Harris, Vanessa

    2014-01-01

    Honey bee hives are filled with stored pollen, honey, plant resins and wax, all antimicrobial to differing degrees. Stored pollen is the nutritionally rich currency used for colony growth and consists of 40–50% simple sugars. Many studies speculate that prior to consumption by bees, stored pollen undergoes long-term nutrient conversion, becoming more nutritious ‘bee bread’ as microbes predigest the pollen. We quantified both structural and functional aspects associated with this hypothesis using behavioural assays, bacterial plate counts, microscopy and 454 amplicon sequencing of the 16S rRNA gene from both newly collected and hive-stored pollen. We found that bees preferentially consume fresh pollen stored for <3 days. Newly collected pollen contained few bacteria, values which decreased significantly as pollen were stored >96 h. The estimated microbe to pollen grain surface area ratio was 1:1 000 000 indicating a negligible effect of microbial metabolism on hive-stored pollen. Consistent with these findings, hive-stored pollen grains did not appear compromised according to microscopy. Based on year round 454 amplicon sequencing, bacterial communities of newly collected and hive-stored pollen did not differ, indicating the lack of an emergent microbial community co-evolved to digest stored pollen. In accord with previous culturing and 16S cloning, acid resistant and osmotolerant bacteria like Lactobacillus kunkeei were found in greatest abundance in stored pollen, consistent with the harsh character of this microenvironment. We conclude that stored pollen is not evolved for microbially mediated nutrient conversion, but is a preservative environment due primarily to added honey, nectar, bee secretions and properties of pollen itself. PMID:25319366

  2. Hive-stored pollen of honey bees: many lines of evidence are consistent with pollen preservation, not nutrient conversion.

    PubMed

    Anderson, Kirk E; Carroll, Mark J; Sheehan, Tim; Lanan, Michele C; Mott, Brendon M; Maes, Patrick; Corby-Harris, Vanessa

    2014-12-01

    Honey bee hives are filled with stored pollen, honey, plant resins and wax, all antimicrobial to differing degrees. Stored pollen is the nutritionally rich currency used for colony growth and consists of 40-50% simple sugars. Many studies speculate that prior to consumption by bees, stored pollen undergoes long-term nutrient conversion, becoming more nutritious 'bee bread' as microbes predigest the pollen. We quantified both structural and functional aspects associated with this hypothesis using behavioural assays, bacterial plate counts, microscopy and 454 amplicon sequencing of the 16S rRNA gene from both newly collected and hive-stored pollen. We found that bees preferentially consume fresh pollen stored for <3 days. Newly collected pollen contained few bacteria, values which decreased significantly as pollen were stored >96 h. The estimated microbe to pollen grain surface area ratio was 1:1 000 000 indicating a negligible effect of microbial metabolism on hive-stored pollen. Consistent with these findings, hive-stored pollen grains did not appear compromised according to microscopy. Based on year round 454 amplicon sequencing, bacterial communities of newly collected and hive-stored pollen did not differ, indicating the lack of an emergent microbial community co-evolved to digest stored pollen. In accord with previous culturing and 16S cloning, acid resistant and osmotolerant bacteria like Lactobacillus kunkeei were found in greatest abundance in stored pollen, consistent with the harsh character of this microenvironment. We conclude that stored pollen is not evolved for microbially mediated nutrient conversion, but is a preservative environment due primarily to added honey, nectar, bee secretions and properties of pollen itself. PMID:25319366

  3. Hive-stored pollen of honey bees: many lines of evidence are consistent with pollen preservation, not nutrient conversion.

    PubMed

    Anderson, Kirk E; Carroll, Mark J; Sheehan, Tim; Lanan, Michele C; Mott, Brendon M; Maes, Patrick; Corby-Harris, Vanessa

    2014-12-01

    Honey bee hives are filled with stored pollen, honey, plant resins and wax, all antimicrobial to differing degrees. Stored pollen is the nutritionally rich currency used for colony growth and consists of 40-50% simple sugars. Many studies speculate that prior to consumption by bees, stored pollen undergoes long-term nutrient conversion, becoming more nutritious 'bee bread' as microbes predigest the pollen. We quantified both structural and functional aspects associated with this hypothesis using behavioural assays, bacterial plate counts, microscopy and 454 amplicon sequencing of the 16S rRNA gene from both newly collected and hive-stored pollen. We found that bees preferentially consume fresh pollen stored for <3 days. Newly collected pollen contained few bacteria, values which decreased significantly as pollen were stored >96 h. The estimated microbe to pollen grain surface area ratio was 1:1 000 000 indicating a negligible effect of microbial metabolism on hive-stored pollen. Consistent with these findings, hive-stored pollen grains did not appear compromised according to microscopy. Based on year round 454 amplicon sequencing, bacterial communities of newly collected and hive-stored pollen did not differ, indicating the lack of an emergent microbial community co-evolved to digest stored pollen. In accord with previous culturing and 16S cloning, acid resistant and osmotolerant bacteria like Lactobacillus kunkeei were found in greatest abundance in stored pollen, consistent with the harsh character of this microenvironment. We conclude that stored pollen is not evolved for microbially mediated nutrient conversion, but is a preservative environment due primarily to added honey, nectar, bee secretions and properties of pollen itself.

  4. Quantification of Juniperus Ashei Pollen Production for the Development of Forecasting Models

    NASA Technical Reports Server (NTRS)

    Bunderson, L. D.; Levetin, E.

    2010-01-01

    Juniperus ashei pollen is considered one of the most allergenic species of Cupressaceae in North America. Juniperus ashei is distributed throughout central Texas, Northern Mexico, the Arbuckle Mountains of south central Oklahoma, and the Ozark Mountains of northern Arkansas and southwestern Missouri. The large amount of airborne pollen that J. ashei produces affects inhabitants of cities and towns adjacent to juniper woodland areas and because juniper pollen can be transported over long distances, it affects populations that are far away. In order to create a dynamic forecast system for allergy and asthma sufferers, pollen production must be estimated. Estimation of pollen production requires the estimation of male cone production. Two locations in the Arbuckle Mountains of Oklahoma and 4 locations in the Edwards Plateau region of Texas were chosen as sampling sites. Trees were measured to determine approximate size. Male to female ratio was determined and pollen cone production was estimated using a qualitative scale from 0 to 2. Cones were counted from harvested 1/8 sections of representative trees. The representative trees were measured and approximate surface area of the tree was calculated. Using the representative tree data, the number of cones per square meter was calculated for medium production (1) and high production (2) trees. These numbers were extrapolated to calculate cone production in other trees sampled. Calibration was achieved within each location's sub-plot by counting cones on 5 branches collected from 5 sides of both high production and medium production trees. The total area sampled in each location was 0.06 hectare and total cone production varied greatly from location to location. The highest production area produced 5.8 million cones while the lowest production area produced 72,000 cones. A single representative high production tree in the Arbuckle Mountains produced 1.38 million cones. The number of trees per location was relatively

  5. Dynamic size spectrometry of airborne microorganisms: Laboratory evaluation and calibration

    NASA Astrophysics Data System (ADS)

    Qian, Yinge; Willeke, Klaus; Ulevicius, Vidmantas; Grinshpun, Sergey A.; Donnelly, Jean

    Bioaerosol samplers need to be calibrated for the microorganisms of interest. The Aerosizer, a relatively new aerodynamic size spectrometer, is shown to be a suitable dynamic instrument for the evaluation and calibration of such samplers in the laboratory, prior to their use in the field. It provides the necessary reference count against which the microbiological response of the sampler can be compared. It measures the health-significant aerodynamic diameters of microorganisms down to 0.5 μm, thus including most of the bacteria, fungi and pollen found in outdoor and indoor air environments. Comparison tests with a laser size spectrometer indicate that the suspension of microorganisms needs to be washed several times before aerosolization to avoid coating of the airborne microorganisms with nutrients and microbial slime from the suspension, and to reduce the residue particles to sizes below the lowest size of the aerosolized microorganisms.

  6. Towards a street-level pollen concentration and exposure forecast

    NASA Astrophysics Data System (ADS)

    van der Molen, Michiel; Krol, Maarten; van Vliet, Arnold; Heuvelink, Gerard

    2015-04-01

    Atmospheric pollen are an increasing source of nuisance for people in industrialised countries and are associated with significant cost of medication and sick leave. Citizen pollen warnings are often based on emission mapping based on local temperature sum approaches or on long-range atmospheric model approaches. In practise, locally observed pollen may originate from both local sources (plants in streets and gardens) and from long-range transport. We argue that making this distinction is relevant because the diurnal and spatial variation in pollen concentrations is much larger for pollen from local sources than for pollen from long-range transport due to boundary layer processes. This may have an important impact on exposure of citizens to pollen and on mitigation strategies. However, little is known about the partitioning of pollen into local and long-range origin categories. Our objective is to study how the concentrations of pollen from different sources vary temporally and spatially, and how the source region influences exposure and mitigation strategies. We built a Hay Fever Forecast system (HFF) based on WRF-chem, Allergieradar.nl, and geo-statistical downscaling techniques. HFF distinguishes between local (individual trees) and regional sources (based on tree distribution maps). We show first results on how the diurnal variation of pollen concentrations depends on source proximity. Ultimately, we will compare the model with local pollen counts, patient nuisance scores and medicine use.

  7. A combinatorial morphospace for angiosperm pollen

    NASA Astrophysics Data System (ADS)

    Mander, Luke

    2016-04-01

    The morphology of angiosperm (flowering plant) pollen is extraordinarily diverse. This diversity results from variations in the morphology of discrete anatomical components. These components include the overall shape of a pollen grain, the stratification of the exine, the number and form of any apertures, the type of dispersal unit, and the nature of any surface ornamentation. Different angiosperm pollen morphotypes reflect different combinations of these discrete components. In this talk, I ask the following question: given the anatomical components of angiosperm pollen that are known to exist in the plant kingdom, how many unique biologically plausible combinations of these components are there? I explore this question from the perspective of enumerative combinatorics using an algorithm I have written in the Python programming language. This algorithm (1) calculates the number of combinations of these components; (2) enumerates those combinations; and (3) graphically displays those combinations. The result is a combinatorial morphospace that reflects an underlying notion that the process of morphogenesis in angiosperm pollen can be thought of as an n choose k counting problem. I compare the morphology of extant and fossil angiosperm pollen grains to this morphospace, and suggest that from a combinatorial point of view angiosperm pollen is not as diverse as it could be, which may be a result of developmental constraints.

  8. Estimates of common ragweed pollen emission and dispersion over Europe using RegCM-pollen model

    NASA Astrophysics Data System (ADS)

    Liu, L.; Solmon, F.; Vautard, R.; Hamaoui-Laguel, L.; Torma, Cs. Zs.; Giorgi, F.

    2015-11-01

    Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic and invasive plant in Europe. Its pollen can be transported over large distances and has been recognized as a significant cause of hayfever and asthma (D'Amato et al., 2007; Burbach et al., 2009). To simulate production and dispersion of common ragweed pollen, we implement a pollen emission and transport module in the Regional Climate Model (RegCM) version 4 using the framework of the Community Land Model (CLM) version 4.5. In the online model environment where climate is integrated with dispersion and vegetation production, pollen emissions are calculated based on the modelling of plant distribution, pollen production, species-specific phenology, flowering probability, and flux response to meteorological conditions. A pollen tracer model is used to describe pollen advective transport, turbulent mixing, dry and wet deposition. The model is then applied and evaluated on a European domain for the period 2000-2010. To reduce the large uncertainties notably due to ragweed density distribution on pollen emission, a calibration based on airborne pollen observations is used. Resulting simulations show that the model captures the gross features of the pollen concentrations found in Europe, and reproduce reasonably both the spatial and temporal patterns of flowering season and associated pollen concentrations measured over Europe. The model can explain 68.6, 39.2, and 34.3 % of the observed variance in starting, central, and ending dates of the pollen season with associated root mean square error (RMSE) equal to 4.7, 3.9, and 7.0 days, respectively. The correlation between simulated and observed daily concentrations time series reaches 0.69. Statistical scores show that the model performs better over the central Europe source region where pollen loads are larger. From these simulations health risks associated common ragweed pollen spread are then evaluated through calculation of exposure time above health

  9. Folding of Pollen Grains

    NASA Astrophysics Data System (ADS)

    Katifori, Eleni; Alben, Silas; Cerda, Enrique; Nelson, David; Dumais, Jacques

    2008-03-01

    At dehiscence, which occurs when the anther reaches maturity and opens, pollen grains dehydrate and their volume is reduced. The pollen wall deforms to accommodate the volume loss, and the deformation pathway depends on the initial turgid pollen grain geometry and the mechanical properties of the pollen wall. We demonstrate, using both experimental and theoretical approaches, that the design of the apertures (areas on the pollen wall where the stretching and the bending modulus are reduced) is critical for controlling the folding pattern, and ensures the pollen grain viability. An excellent fit to the experiments is obtained using a discretized version of the theory of thin elastic shells.

  10. Exposure to grass pollen--but not birch pollen--affects lung function in Swedish children.

    PubMed

    Gruzieva, O; Pershagen, G; Wickman, M; Melén, E; Hallberg, J; Bellander, T; Lõhmus, M

    2015-09-01

    Allergic response to pollen is increasing worldwide, leading to high medical and social costs. However, the effect of pollen exposure on lung function has rarely been investigated. Over 1800 children in the Swedish birth cohort BAMSE were lung-function- and IgE-tested at the age of 8 and 16 years old. Daily concentrations for 9 pollen types together with measurements for ozone, NO2 , PM10 , PM2.5 were estimated for the index day as well as up to 6 days before the testing. Exposure to grass pollen during the preceding day was associated with a reduced forced expiratory volume in 8-yr-olds; -32.4 ml; 95% CI: -50.6 to -14.2, for an increase in three pollen counts/m³. Associations appeared stronger in children sensitized to pollen allergens. As the grass species flower late in the pollen season, the allergy care routines might be weakened during this period. Therefore, allergy information may need to be updated to increase awareness among grass pollen-sensitized individuals.

  11. Aerobiology, allergenicity and biochemistry of Madhuca indica Gmel. pollen.

    PubMed

    Boral, D; Roy, I; Bhattacharya, K

    1999-01-01

    An ASTIR volumetric sampler was used for one year (May 1995-April 1996) for aerobiological survey at Beharampore town, a centrally located representative part of West Bengal, to record the occurrence and frequency of airborne Madhuca pollen. The highest frequency of Madhuca pollen was recorded in April when the weather was dry with low relative humidity (RH) and moderately high temperature. Clinical test (skin prick test) showed Madhuca pollen to be one of the major causes of respiratory allergy. 30-60% (NH(4))(2)SO(4) cut fraction showed maximum positivity in skin prick test. Biochemical analysis showed that Madhuca pollen was rich in lipid and protein. SDS-PAGE was performed with the total soluble pollen protein which showed a total of 6 major protein bands, while in isolated fraction (Fr. II) a total of 7 protein bands were obtained.

  12. Intradiurnal variations of allergenic tree pollen in the atmosphere of Toledo (central Spain).

    PubMed

    Pérez-Badia, Rosa; Vaquero, Consolación; Sardinero, Santiago; Galán, Carmen; García-Mozo, Herminia

    2010-01-01

    To study the impact of inhaling airborne pollen on health, it is important to know not only their average daily concentrations but also the intradiurnal behaviour of these biological particles. This study reports the bi-hourly distribution of the arboreal airborne pollen types more abundant in the atmosphere of Toledo (central Spain), many of them triggering important allergic processes in Toledo citizens and tourist visitors. Knowledge of bi-hourly pattern atmospheric variation pollen may help pollinosis patients to adopt preventive measures and plan their outdoor activities accordingly. Intradiurnal variation has been studied for the arboreal pollen types: Cupressaceae, Fraxinus, Olea, Platanus, Populus, Quercus and Ulmus, during the period 2005-2008. The main hourly pollen concentrations were observed during sunlight hours and the maximum pollen values obtained at midday and in the afternoon, except for pollen types Quercus and Platanus, whose maximum pollen concentrations were obtained during the night. The statistical analyses performed to compare pollen concentration and main hourly meteorological variables proved to be significant for most of the taxa. The results show a significant and positive effect of temperature, solar radiation and wind speed on the daily variability undergone by atmospheric pollen. Relative humidity influenced in a negative way on the intradiurnal variation of pollen in the atmosphere of Toledo. PMID:21186770

  13. Modeling olive pollen intensity in the Mediterranean region through analysis of emission sources.

    PubMed

    Rojo, J; Orlandi, F; Pérez-Badia, R; Aguilera, F; Ben Dhiab, A; Bouziane, H; Díaz de la Guardia, C; Galán, C; Gutiérrez-Bustillo, A M; Moreno-Grau, S; Msallem, M; Trigo, M M; Fornaciari, M

    2016-05-01

    Aerobiological monitoring of Olea europaea L. is of great interest in the Mediterranean basin because olive pollen is one of the most represented pollen types of the airborne spectrum for the Mediterranean region, and olive pollen is considered one of the major cause of pollinosis in this region. The main aim of this study was to develop an airborne-pollen map based on the Pollen Index across a 4-year period (2008-2011), to provide a continuous geographic map for pollen intensity that will have practical applications from the agronomical and allergological points of view. For this purpose, the main predictor variable was an index based on the distribution and abundance of potential sources of pollen emission, including intrinsic information about the general atmospheric patterns of pollen dispersal. In addition, meteorological variables were included in the modeling, together with spatial interpolation, to allow the definition of a spatial model of the Pollen Index from the main olive cultivation areas in the Mediterranean region. The results show marked differences with respect to the dispersal patterns associated to the altitudinal gradient. The findings indicate that areas located at an altitude above 300ma.s.l. receive greater amounts of olive pollen from shorter-distance pollen sources (maximum influence, 27km) with respect to areas lower than 300ma.s.l. (maximum influence, 59km).

  14. Modeling olive pollen intensity in the Mediterranean region through analysis of emission sources.

    PubMed

    Rojo, J; Orlandi, F; Pérez-Badia, R; Aguilera, F; Ben Dhiab, A; Bouziane, H; Díaz de la Guardia, C; Galán, C; Gutiérrez-Bustillo, A M; Moreno-Grau, S; Msallem, M; Trigo, M M; Fornaciari, M

    2016-05-01

    Aerobiological monitoring of Olea europaea L. is of great interest in the Mediterranean basin because olive pollen is one of the most represented pollen types of the airborne spectrum for the Mediterranean region, and olive pollen is considered one of the major cause of pollinosis in this region. The main aim of this study was to develop an airborne-pollen map based on the Pollen Index across a 4-year period (2008-2011), to provide a continuous geographic map for pollen intensity that will have practical applications from the agronomical and allergological points of view. For this purpose, the main predictor variable was an index based on the distribution and abundance of potential sources of pollen emission, including intrinsic information about the general atmospheric patterns of pollen dispersal. In addition, meteorological variables were included in the modeling, together with spatial interpolation, to allow the definition of a spatial model of the Pollen Index from the main olive cultivation areas in the Mediterranean region. The results show marked differences with respect to the dispersal patterns associated to the altitudinal gradient. The findings indicate that areas located at an altitude above 300ma.s.l. receive greater amounts of olive pollen from shorter-distance pollen sources (maximum influence, 27km) with respect to areas lower than 300ma.s.l. (maximum influence, 59km). PMID:26874763

  15. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing

    NASA Astrophysics Data System (ADS)

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2016-08-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture—for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments—as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series—daily Poaceae pollen concentrations over the period 2006-2014—was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  16. Regional forecast model for the Olea pollen season in Extremadura (SW Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Silva-Palacios, Inmaculada; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela

    2016-10-01

    The olive tree ( Olea europaea) is a predominantly Mediterranean anemophilous species. The pollen allergens from this tree are an important cause of allergic problems. Olea pollen may be relevant in relation to climate change, due to the fact that its flowering phenology is related to meteorological parameters. This study aims to investigate airborne Olea pollen data from a city on the SW Iberian Peninsula, to analyse the trends in these data and their relationships with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1994 to 2013 in Badajoz (SW Spain) using a 7-day Hirst-type volumetric sampler. The main Olea pollen season lasted an average of 34 days, from May 4th to June 7th. The model proposed to forecast airborne pollen concentrations, described by one equation. This expression is composed of two terms: the first term represents the resilience of the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term was obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological variables multiplied by a fitting coefficient. Due to the allergenic characteristics of this pollen type, it should be necessary to forecast its short-term prevalence using a long record of data in a city with a Mediterranean climate. The model obtained provides a suitable level of confidence to forecast Olea airborne pollen concentration.

  17. Regional forecast model for the Olea pollen season in Extremadura (SW Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Silva-Palacios, Inmaculada; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela

    2016-02-01

    The olive tree (Olea europaea) is a predominantly Mediterranean anemophilous species. The pollen allergens from this tree are an important cause of allergic problems. Olea pollen may be relevant in relation to climate change, due to the fact that its flowering phenology is related to meteorological parameters. This study aims to investigate airborne Olea pollen data from a city on the SW Iberian Peninsula, to analyse the trends in these data and their relationships with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1994 to 2013 in Badajoz (SW Spain) using a 7-day Hirst-type volumetric sampler. The main Olea pollen season lasted an average of 34 days, from May 4th to June 7th. The model proposed to forecast airborne pollen concentrations, described by one equation. This expression is composed of two terms: the first term represents the resilience of the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term was obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological variables multiplied by a fitting coefficient. Due to the allergenic characteristics of this pollen type, it should be necessary to forecast its short-term prevalence using a long record of data in a city with a Mediterranean climate. The model obtained provides a suitable level of confidence to forecast Olea airborne pollen concentration.

  18. Are the birch trees in Southern England a source of Betula pollen for North London?

    NASA Astrophysics Data System (ADS)

    Skjøth, C. A.; Smith, M.; Brandt, J.; Emberlin, J.

    2009-01-01

    Birch pollen is highly allergenic. Knowledge of daily variations, atmospheric transport and source areas of birch pollen is important for exposure studies and for warnings to the public, especially for large cities such as London. Our results show that broad-leaved forests with high birch tree densities are located to the south and west of London. Bi-hourly Betula pollen concentrations for all the days included in the study, and for all available days with high birch pollen counts (daily average birch pollen counts >80 grains/m3), show that, on average, there is a peak between 1400 hours and 1600 hours. Back-trajectory analysis showed that, on days with high birch pollen counts ( n = 60), 80% of air masses arriving at the time of peak diurnal birch pollen count approached North London from the south in a 180 degree arc from due east to due west. Detailed investigations of three Betula pollen episodes, with distinctly different diurnal patterns compared to the mean daily cycle, were used to illustrate how night-time maxima (2200-0400 hours) in Betula pollen counts could be the result of transport from distant sources or long transport times caused by slow moving air masses. We conclude that the Betula pollen recorded in North London could originate from sources found to the west and south of the city and not just trees within London itself. Possible sources outside the city include Continental Europe and the Betula trees within the broad-leaved forests of Southern England.

  19. Plant pollen content in the air of Lublin (central-eastern Poland) and risk of pollen allergy.

    PubMed

    Piotrowska-Weryszko, Krystyna; Weryszko-Chmielewska, Elżbieta

    2014-01-01

    Pollen monitoring was carried out in Lublin in 2001-2012 by the volumetric method using a Hirst-type spore trap (Lanzoni VPPS 2000). Daily pollen concentrations considerably differed in the particular years. The pollen counts with the biggest variability were observed in the first half of a year when woody plants flowering. The highest annual pollen index were noted for the following taxa: Betula, Urtica, Pinaceae, Poaceae and Alnus. Betula annual total showed the greatest diversity in the study years. The number of days on which the pollen concentration exceeded the threshold values, thereby inducing allergies, was determined for the taxa producing the most allergenic pollen. The above-mentioned taxa primarily included the following: Poaceae, in the case of which the highest number of days with the risk of occurrence of pollen allergy was found (35), Betula (18), and Artemisia (10). The following taxa: Alnus (14 days), Populus (11 days), Fraxinus (10 days), and Quercus (8 days), were also characterized by a large number of days on which their pollen concentrations exceeded the threshold values. The occurrence of periods of high concentration of particular pollen types were also noted. Risk of pollen allergy appeared the earliest at the beginning of February during Alnus and Corylus blooming. High concentrations of other woody plants were recorded from the last ten days of March to about 20 May, and of herbaceous plants from the first/last half of May-beginning of October. PMID:25528903

  20. A biology-driven receptor model for daily pollen allergy risk in Korea based on Weibull probability density function

    NASA Astrophysics Data System (ADS)

    Kim, Kyu Rang; Kim, Mijin; Choe, Ho-Seong; Han, Mae Ja; Lee, Hye-Rim; Oh, Jae-Won; Kim, Baek-Jo

    2016-07-01

    Pollen is an important cause of respiratory allergic reactions. As individual sanitation has improved, allergy risk has increased, and this trend is expected to continue due to climate change. Atmospheric pollen concentration is highly influenced by weather conditions. Regression analysis and modeling of the relationships between airborne pollen concentrations and weather conditions were performed to analyze and forecast pollen conditions. Traditionally, daily pollen concentration has been estimated using regression models that describe the relationships between observed pollen concentrations and weather conditions. These models were able to forecast daily concentrations at the sites of observation, but lacked broader spatial applicability beyond those sites. To overcome this limitation, an integrated modeling scheme was developed that is designed to represent the underlying processes of pollen production and distribution. A maximum potential for airborne pollen is first determined using the Weibull probability density function. Then, daily pollen concentration is estimated using multiple regression models. Daily risk grade levels are determined based on the risk criteria used in Korea. The mean percentages of agreement between the observed and estimated levels were 81.4-88.2 % and 92.5-98.5 % for oak and Japanese hop pollens, respectively. The new models estimated daily pollen risk more accurately than the original statistical models because of the newly integrated biological response curves. Although they overestimated seasonal mean concentration, they did not simulate all of the peak concentrations. This issue would be resolved by adding more variables that affect the prevalence and internal maturity of pollens.

  1. Antisense-mediated silencing of a gene encoding a major ryegrass pollen allergen.

    PubMed

    Bhalla, P L; Swoboda, I; Singh, M B

    1999-09-28

    Type 1 allergic reactions, such as hay fever and allergic asthma, triggered by grass pollen allergens are a global health problem that affects approximately 20% of the population in cool, temperate climates. Ryegrass is the dominant source of allergens because of its prodigious production of airborne pollen. Lol p 5 is the major allergenic protein of ryegrass pollen, judging from the fact that almost all of the individuals allergic to grass pollen show presence of serum IgE antibodies against this protein. Moreover, nearly two-thirds of the IgE reactivity of ryegrass pollen has been attributed to this protein. Therefore, it can be expected that down-regulation of Lol p 5 production can significantly reduce the allergic potential of ryegrass pollen. Here, we report down-regulation of Lol p 5 with an antisense construct targeted to the Lol p 5 gene in ryegrass. The expression of antisense RNA was regulated by a pollen-specific promoter. Immunoblot analysis of proteins with allergen-specific antibodies did not detect Lol p 5 in the transgenic pollen. The transgenic pollen showed remarkably reduced allergenicity as reflected by low IgE-binding capacity of pollen extract as compared with that of control pollen. The transgenic ryegrass plants in which Lol p 5 gene expression is perturbed showed normal fertile pollen development, indicating that genetic engineering of hypoallergenic grass plants is possible.

  2. Influence of meteorological parameters on Olea pollen concentrations in Córdoba (south-western Spain).

    PubMed

    Vázquez, L M; Galán, C; Domínguez-Vilches, E

    2003-12-01

    The influence of meteorological parameters on the dispersion of airborne pollen has been studied by several authors. Olive pollen is the major cause of allergy in southern Spain, where a large part of the arable surface area is given over to olive cultivation. Daily pollen forecasts provide important information both for pollen-allergy sufferers and for agronomists trying to achieve a better biological understanding of variations in airborne olive pollen levels. The main purpose of this paper is to study, by means of short-term statistical analysis, the effect of meteorological parameters on airborne olive pollen concentrations in the city of Cordoba (south-western Spain). Twenty-one-year (1982-2002) aerobiological and meteorological databases were used. Correlation and multiple regression analyses were used to study the relationships between olive pollen levels and several meteorological parameters. Statistical analysis was applied both to the whole pollen season and to the pre-peak period. Daily meteorological parameters, such as accumulated mean temperature, accumulated sunlight hours, and accumulated rainfall were used as independent variables in both statistical analyses. Accumulated meteorological variables were of the greatest value in most regression analysis equations, heat-related variables being the most important.

  3. Christmas tree allergy: mould and pollen studies.

    PubMed

    Wyse, D M; Malloch, D

    1970-12-01

    A history of respiratory or other allergic symptoms during the Christmas season is occasionally obtained from allergic patients and can be related to exposure to conifers at home or in school. Incidence and mechanism of production of these symptoms were studied. Of 1657 allergic patients, respiratory and skin allergies to conifers occurred in 7%. This seasonal syndrome includes sneezing, wheezing and transitory skin rashes. The majority of patients develop their disease within 24 hours, but 15% experience symptoms after several days' delay. Mould and pollen studies were carried out in 10 test sites before, during and after tree placement in the home. Scrapings from pine and spruce bark yielded large numbers of Penicillium, Epicoccum and Alternaria, but these failed to become airborne. No significant alteration was discovered in the airborne fungi in houses when trees were present. Pollen studies showed release into air of weed, grass and tree pollens while Christmas trees were in the house. Oleoresins of the tree balsam are thought to be the most likely cause of the symptoms designated as Christmas tree allergy.

  4. [Birch pollen allergy].

    PubMed

    Lavaud, F; Fore, M; Fontaine, J-F; Pérotin, J M; de Blay, F

    2014-02-01

    In the North-East of France, birch is the main tree responsible of spring pollen allergy. However, the epidemiology of sensitization to birch pollen remains unclear. Monosensitization to birch pollen seems rare because of the frequency of cross-reactions with other pollens of the same botanical family via the major allergen Bet v 1. Around one third of patients with allergic rhinoconjunctivitis due to birch pollen are also asthmatics and a half suffer from a food allergy, essentially an oral syndrome due to rosaceae fruits eaten raw. The molecular allergens of birch pollen are well-known and have been cloned. They are available for use in in vitro diagnostic tests and also in clinical trials of specific immunotherapy.

  5. Variability within the 10-year pollen rain of a seasonal neotropical forest and its implications for paleoenvironmental and phenological research.

    PubMed

    Haselhorst, Derek S; Moreno, J Enrique; Punyasena, Surangi W

    2013-01-01

    Tropical paleoecologists use a combination of mud-water interface and modern pollen rain samples (local samples of airborne pollen) to interpret compositional changes within fossil pollen records. Taxonomic similarities between the composition of modern assemblages and fossil samples are the basis of reconstructing paleoclimates and paleoenvironments. Surface sediment samples reflect a time-averaged accumulation of pollen spanning several years or more. Due to experimental constraints, modern pollen rain samples are generally collected over shorter timeframes (1-3 years) and are therefore less likely to capture the full range of natural variability in pollen rain composition and abundance. This potentially biases paleoenvironmental interpretations based on modern pollen rain transfer functions. To determine the degree to which short-term environmental change affects the composition of the aerial pollen flux of Neotropical forests, we sampled ten years of the seasonal pollen rain from Barro Colorado Island, Panama and compared it to climatic and environmental data over the same ten-year span. We establish that the pollen rain effectively captured the strong seasonality and stratification of pollen flow within the forest canopy and that individual taxa had variable sensitivity to seasonal and annual changes in environmental conditions, manifested as changes in pollen productivity. We conclude that modern pollen rain samples capture the reproductive response of moist tropical plants to short-term environmental change, but that consequently, pollen rain-based calibrations need to include longer sampling periods (≥7 years) to reflect the full range of natural variability in the pollen output of a forest and simulate the time-averaging present in sediment samples. Our results also demonstrate that over the long-term, pollen traps placed in the forest understory are representative samples of the pollen output of both canopy and understory vegetation. Aerial pollen traps

  6. Pollen and mold spores. An atmospheric and field survey in Los Angeles.

    PubMed

    Shapiro, R S; Eisenberg, B C; Binder, W

    1965-11-01

    A two-year survey of pollen and mold spores by the gravity slide method revealed that there are no clear-cut tree, grass or weed pollen seasons in California. Pollen counts should be correlated with field studies to distinguish the various plants whose pollen have a similar appearance. Spores of Alternaria and Hormodendrum, whose importance in allergic disease of the respiratory tract has been well established for many years, were found all during the year. More hormodendrum spores were collected than the total of all other pollens combined.

  7. Orally administered grass pollen.

    PubMed

    Taudorf, E; Weeke, B

    1983-11-01

    In 1900 it was claimed that oral administration of ragweed could be used for the hyposensitization of hay fever patients. Several uncontrolled trials have been published, all showing an effect of oral hyposensitization. Only one study was controlled and showed no effect of oral hyposensitization. It was decided to undertake controlled clinical trials to determine the safety and effectiveness of orally administered enteric-coated grass pollen tablets in patients with hay fever. The actual grass pollen dose in the first trial was 30 times the dose that is normally recommended for preseasonal oral pollen hyposensitization using pollen aqueous solution or pollen powder. The safety study will be described here. Twelve young adults with a history of grass pollen hay fever positive skin prick test and positive nasal provocation test with extracts of timothy grass pollen were randomly allocated to one of the treatment groups with four patients in each group taking enteric-coated Conjuvac Timothy tablets or enteric-coated Whole Timothy pollen tablets or enteric-coated placebo tablets. The study was double blind. Preseasonally, the patients received 342,500 PNU and in total they received 4,500,000 PNU during 6 months. The patients receiving active treatment did not have any side effects. No significant changes were shown in the skin and nasal reactivity to grass pollen during the study. Neither were there any changes in timothy-specific IgE, IgG, total IgE nor histamine liberation from basophils.

  8. Dating Fossil Pollen: A Simulation.

    ERIC Educational Resources Information Center

    Sheridan, Philip

    1992-01-01

    Describes a hands-on simulation in which students determine the age of "fossil" pollen samples based on the pollen types present when examined microscopically. Provides instructions for the preparation of pollen slides. (MDH)

  9. Heterogeneity in ragweed pollen exposure is determined by plant composition at small spatial scales.

    PubMed

    Katz, Daniel S W; Carey, Tiffany S

    2014-07-01

    Pollen allergies are one of the most common health problems in the United States and over 20% of Americans are sensitized to the pollen produced by common ragweed (Ambrosia artemisiifolia L.). Despite the importance of allergenic pollen to public health, no research has linked land use and plant populations to spatial heterogeneity in airborne pollen concentrations. In order to quantify these relationships and elucidate the processes which lead to pollen exposure, we surveyed ragweed stem density in Detroit (Michigan, USA) as a function of land use. We then deployed 34 pollen collectors throughout the city and recorded ragweed cover in the immediate vicinity of each pollen collector. We found that ragweed populations were highest in vacant lots, a common land cover type in Detroit. Because ragweed population density was so strongly correlated to vacant lots, for which spatially explicit data were available, we were able to investigate whether observed ragweed pollen concentrations were a function of land use at the spatial scales of 10 m and 1 km. Both relationships were significant, and the combination of these two variables predicts a large portion of airborne ragweed pollen concentrations (R(2)=0.48). These results emphasize the important role of pollen production within the urban environment and show that management of allergenic pollen producing plants must be considered at multiple spatial scales. Our findings also demonstrate that there is too much spatial heterogeneity for a pollen collector at any given site to portray the allergenic pollen load experienced by different individuals within the same city. Finally, we discuss how spatial correlations between socio-economic status, vacant lots, and ragweed could help to explain the disproportionate amount of allergies and ragweed sensitization experienced by low income and minority populations in Detroit.

  10. Effects of CO₂ on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates.

    PubMed

    Silva, M; Ribeiro, H; Abreu, I; Cruz, A; Esteves da Silva, J C G

    2015-05-01

    Atmospheric gaseous pollutants can induce qualitative and quantitative changes in airborne pollen characteristics. In this work, it was investigated the effects of carbon dioxide (CO2) on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates. Pollen was collected directly from the anthers and in vitro exposed to three CO2 levels (500, 1000, and 3000 ppm) for 6 and 24 h in an environmental chamber. Pollen fertility was determined using viability and germination assays, total soluble protein was determined with Coomassie Protein Assay Reagent, and the antigenic and allergenic properties were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunological techniques using patients' sera. Also, pollen fructose, sucrose, and glucose values were determined. Carbon dioxide exposure affected negatively pollen fertility, total soluble protein content, and fructose content. The patient sera revealed increased IgE reactivity to proteins of A. negundo pollen exposed to increasing levels of the pollutant. No changes were detected in the SDS-PAGE protein profiles and in sucrose and glucose levels. Our results indicate that increase in atmospheric CO2 concentrations can have a negative influence of some features of A. negundo airborne pollen that can influence the reproductive processes as well as respiratory pollen allergies in the future.

  11. Pollen calendar of the city of Salamanca (Spain). Aeropalynological analysis for 1981-1982 and 1991-1992.

    PubMed

    Hernández Prieto, M; Lorente Toledano, F; Romo Cortina, A; Dávila González, I; Laffond Yges, E; Calvo Bullón, A

    1998-01-01

    (Pyrus sp., Prunus sp., etc.), Tilia sp. (Linden), Morus sp. (mulberry), Taxus baccata (yew), Papaveraceae (Papaver rhoeas etc.), Labiata (Lavandula sp.), Cannabaceae (Humulus sp. etc.), Liliaceae (Lilium sp.), Echium sp. (viper's bugloss). The most abundant taxa, detected in the highest quantities (grains/m3 air), by order of counting were as follows: holm-oak, olive, grasses, Plantago and Parietaria. With the data obtained we have established a pollen calendar for Salamanca and report the period in which each type of pollen is found along the years and the periods with the highest airborne concentrations of such pollens. The diversity and the spectrum of the pollen in the city of Salamanca correspond to the typical plant communities found on the dehesas (large ranges of grasslands) of Castile, where Salamanca is located, although the wind directions and the peculiar climatic characteristics of the area govern the peaks of maximum presence of the different taxa. As examples, in the case of olive, which is cultivated at some distance from the city, its maximum presence coincides with south-westerly winds; in the case of grasses, the peaks of maximum counts coincide with a sharp rise in mean temperature, close to or higher than 20 degrees C and between five and six weeks after rainfall equal to or greater than 5 L/m2.

  12. Specific immunotherapy for common grass pollen allergies: pertinence of a five grass pollen vaccine.

    PubMed

    Moingeon, Philippe; Hrabina, Maud; Bergmann, Karl-Christian; Jaeger, Siegfried; Frati, Franco; Bordas, Véronique; Peltre, Gabriel

    2008-01-01

    Patients throughout Europe are concomitantly exposed to multiple pollens from distinct Pooideae species. Given the overlap in pollination calendars and similar grain morphology, it is not possible to identify which grass species are present in the environment from pollen counts. Furthermore, neither serum IgE reactivity nor skin prick testing allow the identification of which grass species are involved in patient sensitisation. Due to their high level of amino acid sequence homology (e.g., >90% for group 1, 55-80% for group 5), significant cross-immunogenicity is observed between allergens from Pooideae pollens. Nevertheless, pollen allergens also contain species-specific T or B cell epitopes, and substantial quantitative differences exist in allergen (e.g., groups 1 and 5) composition between pollens from distinct grass species. In this context, a mixture of pollens from common and well-characterised Pooideae such as Anthoxanthum odoratum, Dactylis glomerata, Lolium perenne, Phleum pratense and Poa pratensis is suitable for immunotherapy purposes because (1) it has been validated, both in terms of safety and efficacy, by established clinical practice; (2) it reflects natural exposure and sensitisation conditions; (3) it ensures a consistent and well-balanced composition of critical allergens, thus extending the repertoire of T and B cell epitopes present in the vaccine.

  13. Seasonal variation of birch and grass pollen loads and allergen release at two sites in the German Alps

    NASA Astrophysics Data System (ADS)

    Jochner, Susanne; Lüpke, Marvin; Laube, Julia; Weichenmeier, Ingrid; Pusch, Gudrun; Traidl-Hoffmann, Claudia; Schmidt-Weber, Carsten; Buters, Jeroen T. M.; Menzel, Annette

    2015-12-01

    Less vegetated mountainous areas may provide better conditions for allergy sufferers. However, atmospheric transport can result in medically relevant pollen loads in such regions. The majority of investigations has focused on the pollen load, expressed as daily averages of pollen per cubic meter of air (pollen grains/m³); however, the severity of allergic symptoms is also determined by the actual allergen content of this pollen, its pollen potency, which may differ between high and low altitudes. We analysed airborne birch and grass pollen concentrations along with allergen content (birch: Bet v 1, grass: Phl p 5) at two different altitudes (734 and 2650 m a.s.l.) in the Zugspitze region (2009-2010). Back-trajectories were calculated for the high altitude site and for specific days with abrupt increases in pollen potency. We observed several days with medically relevant pollen concentrations at the highest site. In addition, a few days with pollen were not associated with allergens and vice versa. The calculated seasonal mean allergen release per pollen grain was 1.8-3.3 pg Bet v 1 and 5.7 pg Phl p 5 in the valley and 1.1-3.7 pg Bet v 1 and 0.7-1.5 pg Phl p 5 at the high altitude site. Back-trajectories revealed that high pollen potency at the higher site was generally associated with south-westerly to south-easterly (birch), or northerly (grass) wind directions. By investigating days with sudden increases in pollen potency, however, it was difficult to draw definitive conclusions on long- or short-range transport. Our findings suggest that people allergic to pollen might suffer less at higher altitudes and further indicate that a risk assessment relying on the actual concentration of airborne pollen does not necessarily reflect the actual allergy exposure of individuals.

  14. Pollen loads and specificity of native pollinators of lowbush blueberry.

    PubMed

    Moisan-Deserres, J; Girard, M; Chagnon, M; Fournier, V

    2014-06-01

    The reproduction of lowbush blueberry (Vaccinium angustifolium Aiton) is closely tied to insect pollination, owing to self-incompatibility. Many species are known to have greater pollination efficiency than the introduced Apis mellifera L., commonly used for commercial purposes. In this study, we measured the pollen loads of several antophilous insect species, mostly Apoidea and Syrphidae, present in four lowbush blueberry fields in Lac-St-Jean, Québec. To measure pollen loads and species specificity toward V. angustifolium, we net-collected 627 specimens of pollinators, retrieved their pollen loads, identified pollen taxa, and counted pollen grains. We found that the sizes of pollen loads were highly variable among species, ranging from a few hundred to more than 118,000 pollen grains per individual. Bombus and Andrena species in particular carried large amounts of Vaccinium pollen and thus may have greater pollination efficiency. Also, two species (Andrena bradleyi Viereck and Andrena carolina Viereck) showed nearly monolectic behavior toward lowbush blueberry. Finally, we identified alternative forage plants visited by native pollinators, notably species of Acer, Rubus, Ilex mucronata, Ledum groenlandicum, and Taraxacum. Protecting these flowering plants should be part of management practices to maintain healthy pollinator communities in a lowbush blueberry agroecosystem. PMID:25026677

  15. Pollen loads and specificity of native pollinators of lowbush blueberry.

    PubMed

    Moisan-Deserres, J; Girard, M; Chagnon, M; Fournier, V

    2014-06-01

    The reproduction of lowbush blueberry (Vaccinium angustifolium Aiton) is closely tied to insect pollination, owing to self-incompatibility. Many species are known to have greater pollination efficiency than the introduced Apis mellifera L., commonly used for commercial purposes. In this study, we measured the pollen loads of several antophilous insect species, mostly Apoidea and Syrphidae, present in four lowbush blueberry fields in Lac-St-Jean, Québec. To measure pollen loads and species specificity toward V. angustifolium, we net-collected 627 specimens of pollinators, retrieved their pollen loads, identified pollen taxa, and counted pollen grains. We found that the sizes of pollen loads were highly variable among species, ranging from a few hundred to more than 118,000 pollen grains per individual. Bombus and Andrena species in particular carried large amounts of Vaccinium pollen and thus may have greater pollination efficiency. Also, two species (Andrena bradleyi Viereck and Andrena carolina Viereck) showed nearly monolectic behavior toward lowbush blueberry. Finally, we identified alternative forage plants visited by native pollinators, notably species of Acer, Rubus, Ilex mucronata, Ledum groenlandicum, and Taraxacum. Protecting these flowering plants should be part of management practices to maintain healthy pollinator communities in a lowbush blueberry agroecosystem.

  16. World Allergy Organization Study on Aerobiology for Creating First Pollen and Mold Calendar With Clinical Significance in Islamabad, Pakistan; A Project of World Allergy Organization and Pakistan Allergy, Asthma & Clinical Immunology Centre of Islamabad

    PubMed Central

    2012-01-01

    Pollen and mold allergies are highly problematic in Islamabad. This study was conducted to investigate the type and concentration of airborne pollens/molds causing allergic diseases in susceptible individuals. A volumetric spore trap (Burkard) was placed at the height of 11 m and ran continuously for 3 years. Once a week, the collecting drum was prepared by affixing Melinex tape with a double sided adhesive that was coated with a thin layer of silicone grease. Every Sunday at 9:00 AM the drum was replaced by another drum and the pollen/mold spores were removed and permanently mounted on slides. Using a microscope, the trapped particles were identified and recorded as counts per cubic meter of air per hour. From these data, the pollen and mold calendars were constructed and expressed as counts per cubic meter of air per day. Skin prick tests were performed on more than 1000 patients attending the Pakistan Allergy, Asthma & Clinical Immunology Centre of Islamabad. The results indicated that there were 2 main pollen plants that contributed to seasonal allergies. These were Broussonetia papyrifera and Cannabis sativa during the March/April season and the July/September season, respectively. Although mold spores were continuously detected throughout the year, the most prominent mold was undetected mold and unconfirmed mold species similar to Stachybotrys species, which was high from July to September/October. Two additional molds contributing to allergic reactions were Pithomyces species and Cladosporium species, which were active during January and April, with the latter also being detected between October and November. These results may prove beneficial to both patients and physicians in planning a therapeutic protocol for avoidance and amelioration. PMID:23283209

  17. Transport of pollen to and from a Central European forest

    NASA Astrophysics Data System (ADS)

    Piringer, M.; Polreich, E.; Schüler, S.; Robitschek, K.

    2009-09-01

    The scientific project "ROSALIA”, carried out in co-operation between ZAMG and the Austrian Federal Research and Training Centre for Forests, Natural Hazards, and Landscape, investigated the meteorological impacts on pollen emission and spread in a typical Central European forest of mixed deciduous and coniferous trees. The study area is the "Lehrforst Rosalia” of BOKU University approx. 60 km south of the city of Vienna in undulating terrain (300 - 750 m altitude). Pollen counts are conducted on three levels of a meteorological tower situated in a narrow tree-covered valley at 370 m height for the flowering period of spring flowering tree species in 2009. The tower is located directly within the crowns of a mixed stand of European beech, Sessile oak, Norway spruce, Silver fir and Common ash. The first upper sampling unit measures the pollen concentration above the canopy, the second sampling unit is installed in the crown sphere of the stand, and the third sampling unit measures the pollen concentration at the forest ground. In order to sample pollen from all directions and to account for the potential turbulence within the canopy, a cylindrical pollen separator as suction device and the conventional Burkhard pollen impactor with a 24 hour drive as impactor and detection device are applied. In order to estimate the meso- and large scale influx of pollen into the study area as well as pollen dispersion from the forest, simulations of the regional-scale wind field and Lagrangian modeling will be undertaken. The calculation of backwards trajectories will give the origin of the air masses involved. Forward trajectories are used to estimate the future position of the locally emitted pollen. The time scale is after or before 12 to 24 hours depending on ambient wind speed. The Lagrangian dispersion model LASAT will be used to simulate pollen dispersion on selected pollen emission days using the available meteorological information in the investigation area

  18. Numerical ragweed pollen forecasts using different source maps: a comparison for France

    NASA Astrophysics Data System (ADS)

    Zink, Katrin; Kaufmann, Pirmin; Petitpierre, Blaise; Broennimann, Olivier; Guisan, Antoine; Gentilini, Eros; Rotach, Mathias W.

    2016-06-01

    One of the key input parameters for numerical pollen forecasts is the distribution of pollen sources. Generally, three different methodologies exist to assemble such distribution maps: (1) plant inventories, (2) land use data in combination with annual pollen counts, and (3) ecological modeling. We have used six exemplary maps for all of these methodologies to study their applicability and usefulness in numerical pollen forecasts. The ragweed pollen season of 2012 in France has been simulated with the numerical weather prediction model COSMO-ART using each of the distribution maps in turn. The simulated pollen concentrations were statistically compared to measured values to derive a ranking of the maps with respect to their performance. Overall, approach (2) resulted in the best correspondence between observed and simulated pollen concentrations for the year 2012. It is shown that maps resulting from ecological modeling that does not include a sophisticated estimation of the plant density have a very low predictive skill. For inventory maps and the maps based on land use data and pollen counts, the results depend very much on the observational site. The use of pollen counts to calibrate the map enhances the performance of the model considerably.

  19. All-optical automatic pollen identification: Towards an operational system

    NASA Astrophysics Data System (ADS)

    Crouzy, Benoît; Stella, Michelle; Konzelmann, Thomas; Calpini, Bertrand; Clot, Bernard

    2016-09-01

    We present results from the development and validation campaign of an optical pollen monitoring method based on time-resolved scattering and fluorescence. Focus is first set on supervised learning algorithms for pollen-taxa identification and on the determination of aerosol properties (particle size and shape). The identification capability provides a basis for a pre-operational automatic pollen season monitoring performed in parallel to manual reference measurements (Hirst-type volumetric samplers). Airborne concentrations obtained from the automatic system are compatible with those from the manual method regarding total pollen and the automatic device provides real-time data reliably (one week interruption over five months). In addition, although the calibration dataset still needs to be completed, we are able to follow the grass pollen season. The high sampling from the automatic device allows to go beyond the commonly-presented daily values and we obtain statistically significant hourly concentrations. Finally, we discuss remaining challenges for obtaining an operational automatic monitoring system and how the generic validation environment developed for the present campaign could be used for further tests of automatic pollen monitoring devices.

  20. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  1. Counting carbohydrates

    MedlinePlus

    Carb counting; Carbohydrate-controlled diet; Diabetic diet; Diabetes-counting carbohydrates ... Many foods contain carbohydrates (carbs), including: Fruit and fruit juice Cereal, bread, pasta, and rice Milk and milk products, soy milk Beans, legumes, ...

  2. Cell counting.

    PubMed

    Phelan, M C; Lawler, G

    2001-05-01

    This unit presents protocols for counting cells using either a hemacytometer or electronically using a Coulter counter. Cell counting with a hemacytometer permits effective discrimination of live from dead cells using trypan blue exclusion. In addition, the procedure is less subject to errors arising from cell clumping or size heterogeneity. Counting cells is more quickly and easily performed using an electronic counter, but live-dead discrimination is unreliable. Cell populations containing large numbers of dead cells and/or cell clumps are difficult to count accurately. In addition, electronic counting requires resetting of the instrument for cell populations of different sizes; heterogeneous populations can give rise to inaccurate counts, and resting and activated cells may require counting at separate settings. In general, electronic cell counting is best performed on fresh peripheral blood cells. PMID:18770655

  3. Comparison of modern pollen distribution between the northern and southern parts of the South China Sea

    NASA Astrophysics Data System (ADS)

    Luo, Chuanxiu; Chen, Muhong; Xiang, Rong; Liu, Jianguo; Zhang, Lanlan; Lu, Jun

    2015-04-01

    The authors conducted a palynological analysis based on different number of air pollen samples for the northern and southern parts of the South China Sea, respectively, in order to give a reference to reconstruct the paleoclimate of the area. (1) Fifteen air pollen samples were collected from the northern part of the South China Sea from August to September 2011, and 13 air pollen samples were collected from the southern part of the South China Sea in December 2011. The pollen types were more abundant in the north than in the south. The total pollen number and concentration in the north was 10 times more than that in the south, which may be because of the sampling season. Airborne pollen types and concentrations have a close relationship with wind direction and distance from the sampling point to the continent. (2) Seventy-four samples were collected from surface sediments in the northern part of the South China Sea in the autumn. Thirty-three samples were collected from surface sediments in the southern part of the South China Sea in the winter. Pollen concentrations in the north were nearly 10 times higher than that in the south. This is because trilete spores are transported by rivers from Hainan Island to the sea and also by the summer monsoon-forced marine current. (3) Ten air pollen samples and 10 surface sediments samples were selected for comparison. The pollen and spores in the air were mainly herbaceous and woody pollen, excluding fern spores, having seasonal pollen characteristics. Pollen in the surface sediments were mainly trilete, Pinus, and herbaceous, and may also show a combination of annual pollen characteristics.

  4. Comparison of modern pollen distribution between the northern and southern parts of the South China Sea.

    PubMed

    Luo, Chuanxiu; Chen, Muhong; Xiang, Rong; Liu, Jianguo; Zhang, Lanlan; Lu, Jun

    2015-04-01

    The authors conducted a palynological analysis based on different number of air pollen samples for the northern and southern parts of the South China Sea, respectively, in order to give a reference to reconstruct the paleoclimate of the area. (1) Fifteen air pollen samples were collected from the northern part of the South China Sea from August to September 2011, and 13 air pollen samples were collected from the southern part of the South China Sea in December 2011. The pollen types were more abundant in the north than in the south. The total pollen number and concentration in the north was 10 times more than that in the south, which may be because of the sampling season. Airborne pollen types and concentrations have a close relationship with wind direction and distance from the sampling point to the continent. (2) Seventy-four samples were collected from surface sediments in the northern part of the South China Sea in the autumn. Thirty-three samples were collected from surface sediments in the southern part of the South China Sea in the winter. Pollen concentrations in the north were nearly 10 times higher than that in the south. This is because trilete spores are transported by rivers from Hainan Island to the sea and also by the summer monsoon-forced marine current. (3) Ten air pollen samples and 10 surface sediments samples were selected for comparison. The pollen and spores in the air were mainly herbaceous and woody pollen, excluding fern spores, having seasonal pollen characteristics. Pollen in the surface sediments were mainly trilete, Pinus, and herbaceous, and may also show a combination of annual pollen characteristics.

  5. Pollen Viability and Pollen Tube Attrition in Cranberry (Vaccinium macrocarpon)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The content of mature seed in a cranberry fruit increases with stigmatic pollen load. On average, however, only two seeds result for every tetrad of pollen deposited. What then is the fate of the two remaining pollen grains fused in each tetrad? Germination in vitro revealed that most of the grains ...

  6. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  7. Satellite Phenology Observations Inform Peak Season of Allergenic Grass Pollen Aerobiology across Two Continents

    NASA Astrophysics Data System (ADS)

    Huete, A. R.; Devadas, R.; Davies, J.

    2015-12-01

    Pollen exposure and prevalence of allergenic diseases have increased in many parts of the world during the last 30 years, with exposure to aeroallergen grass pollen expected to intensify with climate change, raising increased concerns for allergic diseases. The primary contributing factors to higher allergenic plant species presence are thought to be climate change, land conversion, and biotic mixing of species. Conventional methods for monitoring airborne pollen are hampered by a lack of sampling sites and heavily rely on meteorology with less attention to land cover updates and monitoring of key allergenic species phenology stages. Satellite remote sensing offers an alternative method to overcome the restrictive coverage afforded by in situ pollen networks by virtue of its synoptic coverage and repeatability of measurements that enable timely updates of land cover and land use information and monitoring landscape dynamics and interactions with human activity and climate. In this study, we assessed the potential of satellite observations of urban/peri-urban environments to directly inform landscape conditions conducive to pollen emissions. We found satellite measurements of grass cover phenological evolution to be highly correlated with in situ aerobiological grass pollen concentrations in five urban centres located across two hemispheres (Australia and France). Satellite greenness data from the Moderate Resolution Imaging Spectroradiometer (MODIS) were found to be strongly synchronous with grass pollen aerobiology in both temperate grass dominated sites (France and Melbourne), as well as in Sydney, where multiple pollen peaks coincided with the presence of subtropical grasses. Employing general additive models (GAM), the satellite phenology data provided strong predictive capabilities to inform airborne pollen levels and forecast periods of grass pollen emissions at all five sites. Satellite phenology offer promising opportunities of improving public health risk

  8. Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969-2006

    NASA Astrophysics Data System (ADS)

    Frei, Thomas; Gassner, Ewald

    2008-09-01

    As published by the Intergovernmental Panel on Climate Change (IPCC) global warming is a reality and its impact is huge like the increase of extreme weather events, glacier recession, sea level rise and also effects on human health. Among them allergies to airborne pollen might increase or change in pattern due to the invasion of new allergic plants or due to different behavior of plants like earlier flowering. In this study we used the longest Swiss airborne pollen data set to examine the influence of the temperature increase on the time of flowering. In the case of Basel, where pollen data for 38 years are available, it was shown that due to a temperature increase the start of flowering in the case of birch occurred about 15 days earlier. Apart from a shift of the start of the flowering there is also a trend towards higher annual birch pollen quantities and an increase of the highest daily mean pollen concentrations. Due to global warming and because symptoms may appear earlier in the year people suffering from a pollen allergy might face a new unaccustomed situation.

  9. Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969-2006.

    PubMed

    Frei, Thomas; Gassner, Ewald

    2008-09-01

    As published by the Intergovernmental Panel on Climate Change (IPCC) global warming is a reality and its impact is huge like the increase of extreme weather events, glacier recession, sea level rise and also effects on human health. Among them allergies to airborne pollen might increase or change in pattern due to the invasion of new allergic plants or due to different behavior of plants like earlier flowering. In this study we used the longest Swiss airborne pollen data set to examine the influence of the temperature increase on the time of flowering. In the case of Basel, where pollen data for 38 years are available, it was shown that due to a temperature increase the start of flowering in the case of birch occurred about 15 days earlier. Apart from a shift of the start of the flowering there is also a trend towards higher annual birch pollen quantities and an increase of the highest daily mean pollen concentrations. Due to global warming and because symptoms may appear earlier in the year people suffering from a pollen allergy might face a new unaccustomed situation.

  10. Investigations with the 'individual pollen collector' and the 'Burkard trap' with reference to hay fever patients.

    PubMed

    Leuschner, R M; Boehm, G

    1979-03-01

    Pollen collecting devices such as the 'Hirst' trap and the 'Burkard' apparatus provide information on average pollen content in the air during a certain time in a certain volume of air (e.g. 24 hr in 1 m3 air). They give no idea, however, of the allergenic particles to which individual hay fever patients are exposed to the course of a day. An 'Individual Pollen Collector', attached to the patient's clothing, showed that the counts varied considerably in different persons in the same place. They differed--quantitatively and qualitatively--from the values with the 'Burkard' pollen and spore traps at two places in Switzerland. The slides from the 'Individual Pollen Collector' frequently show 'clouds' of certain kinds of pollen grains, which could be responsible for hay fever attacks in moderately sensitized subjects.

  11. Lipid biomarker analysis for the quantitative analysis of airborne microorganisms

    SciTech Connect

    Macnaughton, S.J.; Jenkins, T.L.; Cormier, M.R.

    1997-08-01

    There is an ever increasing concern regarding the presence of airborne microbial contaminants within indoor air environments. Exposure to such biocontaminants can give rise to large numbers of different health effects including infectious diseases, allergenic responses and respiratory problems, Biocontaminants typically round in indoor air environments include bacteria, fungi, algae, protozoa and dust mites. Mycotoxins, endotoxins, pollens and residues of organisms are also known to cause adverse health effects. A quantitative detection/identification technique independent of culturability that assays both culturable and non culturable biomass including endotoxin is critical in defining risks from indoor air biocontamination. Traditionally, methods employed for the monitoring of microorganism numbers in indoor air environments involve classical culture based techniques and/or direct microscopic counting. It has been repeatedly documented that viable microorganism counts only account for between 0.1-10% of the total community detectable by direct counting. The classic viable microbiologic approach doe`s not provide accurate estimates of microbial fragments or other indoor air components that can act as antigens and induce or potentiate allergic responses. Although bioaerosol samplers are designed to damage the microbes as little as possible, microbial stress has been shown to result from air sampling, aerosolization and microbial collection. Higher collection efficiency results in greater cell damage while less cell damage often results in lower collection efficiency. Filtration can collect particulates at almost 100% efficiency, but captured microorganisms may become dehydrated and damaged resulting in non-culturability, however, the lipid biomarker assays described herein do not rely on cell culture. Lipids are components that are universally distributed throughout cells providing a means to assess independent of culturability.

  12. Evaluation of the Nutritional and Storage Quality of Meatballs Formulated with Bee Pollen

    PubMed Central

    2014-01-01

    In this study, the nutritional and storage quality of meatballs formulated with different levels (0, 1.5, 3.0, 4.5 and 6.0%) of bee pollen were investigated during storage at 41℃ for 9 d. Protein content of meatballs increased, while moisture content decreased with increased pollen. The addition of pollen improved cooking loss but decreased the redness (Hunter a value) and sensory scores. Textural parameters (hardness, springsness, gumminess, and chewiness) were affected by pollen addition and the hardness and gumminess values of meatballs decreased as the pollen content increased. While C18:0 content of meatballs slightly decreased with pollen addition, C18:2n-6c, C18:3n-3, C20:5n-3, and PUFA contents increased. The PUFA/saturated fatty acids (P/S) ratio increased from 0.05 in the control to 0.09 in meatballs with 6.0% pollen. The n-6/n-3 ratio decreased from 11.84 in the control to 3.65 in the meatballs with 6.0% pollen. The addition of pollen retarded the lipid oxidation and inhibited the bacterial growth in meatballs. The pH, redness, TBA value and total aerobic mesophilic bacteria, coliform bacteria and S. aureus counts values changed significantly during storage. The results suggest that bee pollen could be added to enhance the nutritional and storage quality of meatballs with minimal changes in composition and/or sensory properties. PMID:26761280

  13. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  14. Modelling past land use using archaeological and pollen data

    NASA Astrophysics Data System (ADS)

    Pirzamanbein, Behnaz; Lindström, johan; Poska, Anneli; Gaillard-Lemdahl, Marie-José

    2016-04-01

    Accurate maps of past land use are necessary for studying the impact of anthropogenic land-cover changes on climate and biodiversity. We develop a Bayesian hierarchical model to reconstruct the land use using Gaussian Markov random fields. The model uses two observations sets: 1) archaeological data, representing human settlements, urbanization and agricultural findings; and 2) pollen-based land estimates of the three land-cover types Coniferous forest, Broadleaved forest and Unforested/Open land. The pollen based estimates are obtained from the REVEALS model, based on pollen counts from lakes and bogs. Our developed model uses the sparse pollen-based estimations to reconstruct the spatial continuous cover of three land cover types. Using the open-land component and the archaeological data, the extent of land-use is reconstructed. The model is applied on three time periods - centred around 1900 CE, 1000 and, 4000 BCE over Sweden for which both pollen-based estimates and archaeological data are available. To estimate the model parameters and land use, a block updated Markov chain Monte Carlo (MCMC) algorithm is applied. Using the MCMC posterior samples uncertainties in land-use predictions are computed. Due to lack of good historic land use data, model results are evaluated by cross-validation. Keywords. Spatial reconstruction, Gaussian Markov random field, Fossil pollen records, Archaeological data, Human land-use, Prediction uncertainty

  15. Multiplicity Counting

    SciTech Connect

    Geist, William H.

    2015-12-01

    This set of slides begins by giving background and a review of neutron counting; three attributes of a verification item are discussed: 240Pueff mass; α, the ratio of (α,n) neutrons to spontaneous fission neutrons; and leakage multiplication. It then takes up neutron detector systems – theory & concepts (coincidence counting, moderation, die-away time); detector systems – some important details (deadtime, corrections); introduction to multiplicity counting; multiplicity electronics and example distributions; singles, doubles, and triples from measured multiplicity distributions; and the point model: multiplicity mathematics.

  16. Fraxinus pollen and allergen concentrations in Ourense (South-western Europe).

    PubMed

    Vara, A; Fernández-González, M; Aira, M J; Rodríguez-Rajo, F J

    2016-05-01

    In temperate zones of North-Central Europe the sensitization to ash pollen is a recognized problem, also extended to the Northern areas of the Mediterranean basin. Some observations in Switzerland suggest that ash pollen season could be as important as birch pollen period. The allergenic significance of this pollen has been poorly studied in Southern Europe as the amounts of ash pollen are low. Due to the high degree of family relationship with the olive pollen major allergen (backed by a sequence identity of 88%), the Fraxinus pollen could be a significant cause of early respiratory allergy in sensitized people to olive pollen as consequence of cross-reactivity processes. Ash tree flowers in the Northwestern Spain during the winter months. The atmospheric presence of Ole e 1-like proteins (which could be related with the Fra a 1 presence) can be accurately detected using Ole e 1 antibodies. The correlation analysis showed high Spearman correlation coefficients between pollen content and rainfall (R(2)=-0.333, p<0.01) or allergen concentration and maximum temperature (R(2)=-0.271, p<0.01). In addiction CCA analysis showed not significant differences (p<0.05) between the component 1 and 2 variables. PCFA analysis plots showed that the allergen concentrations are related to the presence of the Fraxinus pollen in the air, facilitating the wind speed its submicronic allergen proteins dispersion. In order to forecast the Fraxinus allergy risk periods, two regression equations were developed with Adjusted R(2) values around 0.48-0.49. The t-test for dependent samples shows no significant differences between the observed data and the estimated by the equations. The combination of the airborne pollen content and the allergen quantification must be assessed in the epidemiologic study of allergic respiratory diseases.

  17. Fraxinus pollen and allergen concentrations in Ourense (South-western Europe).

    PubMed

    Vara, A; Fernández-González, M; Aira, M J; Rodríguez-Rajo, F J

    2016-05-01

    In temperate zones of North-Central Europe the sensitization to ash pollen is a recognized problem, also extended to the Northern areas of the Mediterranean basin. Some observations in Switzerland suggest that ash pollen season could be as important as birch pollen period. The allergenic significance of this pollen has been poorly studied in Southern Europe as the amounts of ash pollen are low. Due to the high degree of family relationship with the olive pollen major allergen (backed by a sequence identity of 88%), the Fraxinus pollen could be a significant cause of early respiratory allergy in sensitized people to olive pollen as consequence of cross-reactivity processes. Ash tree flowers in the Northwestern Spain during the winter months. The atmospheric presence of Ole e 1-like proteins (which could be related with the Fra a 1 presence) can be accurately detected using Ole e 1 antibodies. The correlation analysis showed high Spearman correlation coefficients between pollen content and rainfall (R(2)=-0.333, p<0.01) or allergen concentration and maximum temperature (R(2)=-0.271, p<0.01). In addiction CCA analysis showed not significant differences (p<0.05) between the component 1 and 2 variables. PCFA analysis plots showed that the allergen concentrations are related to the presence of the Fraxinus pollen in the air, facilitating the wind speed its submicronic allergen proteins dispersion. In order to forecast the Fraxinus allergy risk periods, two regression equations were developed with Adjusted R(2) values around 0.48-0.49. The t-test for dependent samples shows no significant differences between the observed data and the estimated by the equations. The combination of the airborne pollen content and the allergen quantification must be assessed in the epidemiologic study of allergic respiratory diseases. PMID:26901381

  18. Reticulocyte count

    MedlinePlus

    ... radiation therapy, or infection) Cirrhosis of the liver Anemia caused by low iron levels, or low levels of vitamin B12 or folate Chronic kidney disease Reticulocyte count may be higher during pregnancy.

  19. Tower counts

    USGS Publications Warehouse

    Woody, Carol Ann; Johnson, D.H.; Shrier, Brianna M.; O'Neal, Jennifer S.; Knutzen, John A.; Augerot, Xanthippe; O'Neal, Thomas A.; Pearsons, Todd N.

    2007-01-01

    Counting towers provide an accurate, low-cost, low-maintenance, low-technology, and easily mobilized escapement estimation program compared to other methods (e.g., weirs, hydroacoustics, mark-recapture, and aerial surveys) (Thompson 1962; Siebel 1967; Cousens et al. 1982; Symons and Waldichuk 1984; Anderson 2000; Alaska Department of Fish and Game 2003). Counting tower data has been found to be consistent with that of digital video counts (Edwards 2005). Counting towers do not interfere with natural fish migration patterns, nor are fish handled or stressed; however, their use is generally limited to clear rivers that meet specific site selection criteria. The data provided by counting tower sampling allow fishery managers to determine reproductive population size, estimate total return (escapement + catch) and its uncertainty, evaluate population productivity and trends, set harvest rates, determine spawning escapement goals, and forecast future returns (Alaska Department of Fish and Game 1974-2000 and 1975-2004). The number of spawning fish is determined by subtracting subsistence, sport-caught fish, and prespawn mortality from the total estimated escapement. The methods outlined in this protocol for tower counts can be used to provide reasonable estimates ( plus or minus 6%-10%) of reproductive salmon population size and run timing in clear rivers. 

  20. Trans-disciplinary research in synthesis of grass pollen aerobiology and its importance for respiratory health in Australasia.

    PubMed

    Davies, Janet M; Beggs, Paul J; Medek, Danielle E; Newnham, Rewi M; Erbas, Bircan; Thibaudon, Michel; Katelaris, Connstance H; Haberle, Simon G; Newbigin, Edward J; Huete, Alfredo R

    2015-11-15

    Grass pollen is a major trigger for allergic rhinitis and asthma, yet little is known about the timing and levels of human exposure to airborne grass pollen across Australasian urban environments. The relationships between environmental aeroallergen exposure and allergic respiratory disease bridge the fields of ecology, aerobiology, geospatial science and public health. The Australian Aerobiology Working Group comprised of experts in botany, palynology, biogeography, climate change science, plant genetics, biostatistics, ecology, pollen allergy, public and environmental health, and medicine, was established to systematically source, collate and analyse atmospheric pollen concentration data from 11 Australian and six New Zealand sites. Following two week-long workshops, post-workshop evaluations were conducted to reflect upon the utility of this analysis and synthesis approach to address complex multidisciplinary questions. This Working Group described i) a biogeographically dependent variation in airborne pollen diversity, ii) a latitudinal gradient in the timing, duration and number of peaks of the grass pollen season, and iii) the emergence of new methodologies based on trans-disciplinary synthesis of aerobiology and remote sensing data. Challenges included resolving methodological variations between pollen monitoring sites and temporal variations in pollen datasets. Other challenges included "marrying" ecosystem and health sciences and reconciling divergent expert opinion. The Australian Aerobiology Working Group facilitated knowledge transfer between diverse scientific disciplines, mentored students and early career scientists, and provided an uninterrupted collaborative opportunity to focus on a unifying problem globally. The Working Group provided a platform to optimise the value of large existing ecological datasets that have importance for human respiratory health and ecosystems research. Compilation of current knowledge of Australasian pollen aerobiology

  1. Assessment of the Olea pollen and its major allergen Ole e 1 concentrations in the bioearosol of two biogeographical areas

    NASA Astrophysics Data System (ADS)

    Moreno-Grau, S.; Aira, M. J.; Elvira-Rendueles, B.; Fernández-González, M.; Fernández-González, D.; García-Sánchez, A.; Martínez-García, M. J.; Moreno, J. M.; Negral, L.; Vara, A.; Rodríguez-Rajo, F. J.

    2016-11-01

    The Olea pollen is currently an important allergy source. In some regions of Southern Spain, olive pollen is the main cause of allergic sensitization exceeding 40% of the sensitized individuals. Due to the scarce presence of olive trees in Northern Spain, limited to some cultivated fields in the South of the Galicia region where they also grow wild, only 8% of the sensitized individuals showed positive results for Olea pollen. The aim of the paper was to assess the behaviour pattern of the Olea pollen and its aeroallergens in the atmosphere, as this information could help us to improve the understanding and prevention of clinical symptoms. Airborne Olea pollen and Ole e 1 allergens were quantified in Cartagena (South-eastern Spain) and Ourense (North-western Spain). A volumetric pollen trap and a Burkard Cyclone sampler were used for pollen and allergen quantification. The Olea flowering took place in April or May in both biometeorological sampling areas. The higher concentrations were registered in the Southern area of Spain, for both pollen and Ole e 1, with values 8 times higher for pollen concentrations and 40 times higher for allergens. An alternate bearing pattern could be observed, characterized by years with high pollen values and low allergen concentrations and vice versa. Moreover, during some flowering seasons the allergen concentrations did not correspond to the atmospheric pollen values. Variations in weather conditions or Long Distance Transport (LDT) processes could explain the discordance. The back trajectory analysis shows that the most important contributions of pollen and allergens in the atmosphere are coincident with air masses passing through potential source areas. The exposure to olive pollen may not be synonym of antigen exposure.

  2. Effect of Palm Pollen on Sperm Parameters of Infertile Man.

    PubMed

    Rasekh, Athar; Jashni, Hojjatollah Karimi; Rahmanian, Karamatollah; Jahromi, Abdolreza Sotoodeh

    2015-04-01

    There is a rapidly growing trend in the consumption of herbal remedies in the developing countries. The aim of this study was to determine the effects of orally administered Date Palm Pollen (DPP) on the results of semen analysis in adult infertile men. Forty infertile men participated in our study. They were treated by Pollen powder 120 mg kg(-1) in gelatinous capsules every other day, for two months. Before and at the end of therapy, the semen was collected after masturbation and sperm numbers, motility and morphology were determined. Our findings revealed that consumption of DPP improved the sperm count. The treatment was significantly increased sperm motility, morphology and forward progressive motility. Date palm pollen seems to cure male infertility by improving the quality of sperm parameters.

  3. Fungal spores and pollen in particulate matter collected during agricultural activities in the Po Valley (Italy).

    PubMed

    Telloli, Chiara; Chicca, Milvia; Leis, Marilena; Vaccaro, Carmela

    2016-08-01

    Airborne particulate matter (PM) containing fungal spores and pollen grains was sampled within a monitoring campaign of wheat threshing, plowing and sowing agricultural operations. Fungal spores and pollen grains were detected and identified on morphological basis. No studies were previously available about fungal spore and pollen content in agricultural PM in the Po Valley. Sampling was conducted in a Po Valley farmland in Mezzano (Ferrara, Italy). The organic particles collected were examined by scanning electron microscopy with energy dispersive X-ray spectrometer. Fungal spores and pollen grains were identified when possible at the level of species. The most frequent components of the organic particles sampled were spores of Aspergillus sp., which could represent a risk of developing allergies and aspergillosis for crop farmers. PMID:27521955

  4. [Allergy, pollen and the environment].

    PubMed

    Terán, Luis Manuel; Haselbarth-López, Michelle Marie Margarete; Quiroz-García, David Leonor

    2009-01-01

    Allergic respiratory diseases such asthma and allergic rhinitis are a health problem throughout the world. In Mexico City, pollens are an important cause of allergic respiratory disease. Both, the geographic location- and the vegetation surrounding this City favor the distribution of pollens leading to respiratory disease in susceptible patients. Aerobiological studies have shown that during the mild dry winter there is a large amount of pollens in the environment with tree pollens being the most abundant of all. The most frequent tree pollens found in Mexico City include Fraxinus, Cupressaseae, Alnus, Liquidambar, Callistemon, Pinus, and Casuarina. In contrast, grass- and weed pollens predominate during the summer (rainy season) including Compositae, Cheno-Am, Ambrosia and Gramineae. An additional health problem in Mexico City is the air pollution that exerts a direct effect on individuals. This in turn increases pollen allergenicity by disrupting them leading to the release of their particles which then penetrate the human airways causing disease. Thus, the polluted environment along with global warming which is also known to increase pollen quantities by inducing longer pollen seasons may represent a health risk to Mexico City inhabitants.

  5. Comparative analysis of two sampling techniques for pollen gathered by Nannotrigona testaceicornis Lepeletier (Apidae, Meliponini).

    PubMed

    Malagodi-Braga, K S; Kleinert, A M P

    2009-01-01

    Pollen counts from samples taken from storage pots throughout one year (from October to September) were adjusted by Tasei's volumetric correction coefficient for the determination of pollen sources exploited by two colonies of Nannotrigona testaceicornis in São Paulo, Brazil. The results obtained by this sampling technique for seven months (December to June) were compared with those from corbicula load samples taken within the same period. This species visited a large variety of plant species, but few of them were frequently used. As a rule, pollen sources that appeared at frequencies greater than 1% were found with both sampling methods and significant positive correlations (Spearman correlation coefficient) were found between their values. The pollen load sample data showed that N. testaceicornis gathered pollen throughout the external activity period. PMID:19551648

  6. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States.

    PubMed

    Zhang, Yong; Bielory, Leonard; Georgopoulos, Panos G

    2014-07-01

    Climatic change is expected to affect the spatiotemporal patterns of airborne allergenic pollen, which has been found to act synergistically with common air pollutants, such as ozone, to cause allergic airway disease (AAD). Observed airborne pollen data from six stations from 1994 to 2011 at Fargo (North Dakota), College Station (Texas), Omaha (Nebraska), Pleasanton (California), Cherry Hill and Newark (New Jersey) in the US were studied to examine climate change effects on trends of annual mean and peak value of daily concentrations, annual production, season start, and season length of Betula (birch) and Quercus (oak) pollen. The growing degree hour (GDH) model was used to establish a relationship between start/end dates and differential temperature sums using observed hourly temperatures from surrounding meteorology stations. Optimum GDH models were then combined with meteorological information from the Weather Research and Forecasting (WRF) model, and land use land coverage data from the Biogenic Emissions Land use Database, version 3.1 (BELD3.1), to simulate start dates and season lengths of birch and oak pollen for both past and future years across the contiguous US (CONUS). For most of the studied stations, comparison of mean pollen indices between the periods of 1994-2000 and 2001-2011 showed that birch and oak trees were observed to flower 1-2 weeks earlier; annual mean and peak value of daily pollen concentrations tended to increase by 13.6%-248%. The observed pollen season lengths varied for birch and for oak across the different monitoring stations. Optimum initial date, base temperature, and threshold GDH for start date was found to be 1 March, 8 °C, and 1,879 h, respectively, for birch; 1 March, 5 °C, and 4,760 h, respectively, for oak. Simulation results indicated that responses of birch and oak pollen seasons to climate change are expected to vary for different regions.

  7. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Bielory, Leonard; Georgopoulos, Panos G.

    2014-07-01

    Climatic change is expected to affect the spatiotemporal patterns of airborne allergenic pollen, which has been found to act synergistically with common air pollutants, such as ozone, to cause allergic airway disease (AAD). Observed airborne pollen data from six stations from 1994 to 2011 at Fargo (North Dakota), College Station (Texas), Omaha (Nebraska), Pleasanton (California), Cherry Hill and Newark (New Jersey) in the US were studied to examine climate change effects on trends of annual mean and peak value of daily concentrations, annual production, season start, and season length of Betula (birch) and Quercus (oak) pollen. The growing degree hour (GDH) model was used to establish a relationship between start/end dates and differential temperature sums using observed hourly temperatures from surrounding meteorology stations. Optimum GDH models were then combined with meteorological information from the Weather Research and Forecasting (WRF) model, and land use land coverage data from the Biogenic Emissions Land use Database, version 3.1 (BELD3.1), to simulate start dates and season lengths of birch and oak pollen for both past and future years across the contiguous US (CONUS). For most of the studied stations, comparison of mean pollen indices between the periods of 1994-2000 and 2001-2011 showed that birch and oak trees were observed to flower 1-2 weeks earlier; annual mean and peak value of daily pollen concentrations tended to increase by 13.6 %-248 %. The observed pollen season lengths varied for birch and for oak across the different monitoring stations. Optimum initial date, base temperature, and threshold GDH for start date was found to be 1 March, 8 °C, and 1,879 h, respectively, for birch; 1 March, 5 °C, and 4,760 h, respectively, for oak. Simulation results indicated that responses of birch and oak pollen seasons to climate change are expected to vary for different regions.

  8. Influence of wind velocity on pollen concentration in urban canopy layer

    NASA Astrophysics Data System (ADS)

    Pospisil, J.; Jícha, M.

    2009-09-01

    POLLEN RELEASE Temperature is the basic parameter for prediction of the beginning of the pollen season and identification days with good potential for pollen release. Different approaches are used for determination of the start of the pollen season: i) the sum of daily pollen counts = x criterion (Arnold 2002), ii) the mean temperature method during pre-defined period (Sparks, 2000), iii) the temperature sum method (Jones 1992). Another parameters influencing pollen release are: day light length, morning temperature gradient, relative humidity. The mentioned parameters enable to create the "statistical” model for determination of timing of pollen potential release. But, the correct determination of pollen release timing is only the first step to correct prediction of pollen concentration in air. The above mentioned collection of parameters isn't complete for correct pollen production prediction without inclusion of the actual wind velocity. The wind velocity directly influences the pollen release rate from mother plant and subsequently transport of pollen grains. From this reason, influence of wind conditions has to be considered as exactly as possible in complex prediction models. WIND VELOCITY AND POLLEN CONCENTRATION Results of in-situ measurements were used for carried out analysis of the relation between wind velocity and pollen concentration in an urban canopy layer. The mean daily wind velocities and the mean daily pollen concentrations were used as the input data describing the pollen season 2005 in an inner part of the city of Brno (pop. 400 000). The mean daily pollen concentrations were matched to corresponding mean daily wind velocity and depicted in graphs. This procedure was done for all locally monitored aeroallergens, namely Alnus, Ambrosia, Betula, Artemis, Corylus, Fraxinus, Poaceae and Quercus. Only days with significant pollen concentration (above 10% of maximal pollen season concentration) were considered for detail analysis. Clear

  9. Women Count

    NASA Astrophysics Data System (ADS)

    Hurley, Dana M.

    2014-11-01

    I am a counter by nature. I count things as an effective way to occupy my mind. How many people are in this room? How many are women? How many are wearing glasses? How many people are using a Mac versus a PC?

  10. Counting Populations

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    Scientists use sampling to get an estimate of things they cannot easily count. A population is made up of all the organisms of one species living together in one place at the same time. All of the people living together in one town are considered a population. All of the grasshoppers living in a field are a population. Scientists keep track of the…

  11. Counting Penguins.

    ERIC Educational Resources Information Center

    Perry, Mike; Kader, Gary

    1998-01-01

    Presents an activity on the simplification of penguin counting by employing the basic ideas and principles of sampling to teach students to understand and recognize its role in statistical claims. Emphasizes estimation, data analysis and interpretation, and central limit theorem. Includes a list of items for classroom discussion. (ASK)

  12. Classifying black and white spruce pollen using layered machine learning.

    PubMed

    Punyasena, Surangi W; Tcheng, David K; Wesseln, Cassandra; Mueller, Pietra G

    2012-11-01

    Pollen is among the most ubiquitous of terrestrial fossils, preserving an extended record of vegetation change. However, this temporal continuity comes with a taxonomic tradeoff. Analytical methods that improve the taxonomic precision of pollen identifications would expand the research questions that could be addressed by pollen, in fields such as paleoecology, paleoclimatology, biostratigraphy, melissopalynology, and forensics. We developed a supervised, layered, instance-based machine-learning classification system that uses leave-one-out bias optimization and discriminates among small variations in pollen shape, size, and texture. We tested our system on black and white spruce, two paleoclimatically significant taxa in the North American Quaternary. We achieved > 93% grain-to-grain classification accuracies in a series of experiments with both fossil and reference material. More significantly, when applied to Quaternary samples, the learning system was able to replicate the count proportions of a human expert (R(2) = 0.78, P = 0.007), with one key difference - the machine achieved these ratios by including larger numbers of grains with low-confidence identifications. Our results demonstrate the capability of machine-learning systems to solve the most challenging palynological classification problem, the discrimination of congeneric species, extending the capabilities of the pollen analyst and improving the taxonomic resolution of the palynological record.

  13. Air pollution and allergy: experimental studies on modulation of allergen release from pollen by air pollutants.

    PubMed

    Behrendt, H; Becker, W M; Fritzsche, C; Sliwa-Tomczok, W; Tomczok, J; Friedrichs, K H; Ring, J

    1997-01-01

    The fact that allergic diseases increase in prevalence is a generally accepted and worldwide phenomenon. The causes for this increase are not known: only hypothetical concepts exist. Epidemiological studies comparing Eastern and Western European populations have shown a striking difference in the prevalence of respiratory atopic diseases, which is lower in the East. At the same time, different patterns of air pollution have been described, namely 'classical' type I, characterized by SO2 and dust prevailing in the East, and 'modern' type II, characterized by organic compounds, fine particles and ozone, which is more prominent in the West. Type II was associated in multivariate regression analysis with increased prevalence of IgE-mediated allergy. Pollen grains collected from industrial regions with high polyaromatic hydrocarbon load in West Germany, but not in East Germany, were shown to be agglomerated with airborne particles. In vitro exposure of pollen to particles indicated morphological changes and increased allergen release from the pollen. In vitro exposure of pollen to gaseous pollutants (SO2 and NO2) under different conditions of humidity resulted in SO2-induced, but not NO2-induced reduction of allergen release from pollen. It is concluded that the bioavailability of grass pollen allergens may be modulated by air pollutants, supporting the concept of an interaction between pollen and pollutants in the atmosphere outside the organism which in turn may affect allergy-relevant phenomena.

  14. Aerobiological and allergenic analysis of cupressaceae pollen in Granada (Southern Spain).

    PubMed

    Diaz de la Guardia, C; Alba, F; de Linares, C; Nieto-Lugilde, D; López Caballero, J

    2006-01-01

    Cupressaceae pollen has been cited in recent years as one of the major airborne allergens of the Mediterranean region, prompting us to conduct an exhaustive analysis on the aerobiological behaviour of this pollen in the Iberian Peninsula and the repercussion that it has had on the atopic population. The aerobiological study, performed from 1996 to 2003 in the city of Granada (S. Spain), used a volumetric Hirst collector. The results indicate that this pollen is present in the air most of the year, registering a high incidence during the winter months. This type of pollen behaved irregularly in the air, fluctuating yearly, seasonally, and within the same day. Temperature and humidity were the parameters that most directly influence the variability of this allergen, while rainfall prior to flowering increased pollen production. The predictive models used estimated a high percentage of the levels reached over the short term by this pollen in the atmosphere of Granada. The clinical study performed with atopic patients showed that some 30% of the population with pollinosis are sensitive to Cupressaceae pollen, affecting people of both genders equally. On the other hand, the most sensitive age group was 21-40 years of age, while children and the elderly registered almost negligible values. Most of the sensitive subjects resided within the city or in the metropolitan area, where environmental pollution reached high levels, while the pathology was found to be less frequent in rural zones. The most frequent symptoms were upper-respiratory ailments and an asthmatic profile.

  15. [Cypress pollen allergy].

    PubMed

    Charpin, D; Calleja, M; Pichot, C; Penel, V; Hugues, B; Poncet, P

    2013-12-01

    Cypress belongs to the Cupressaceae family, which includes 140 species with non-deciduous foliage. The most important genera in allergic diseases are Cupressus sempervirens or Green cypress, Cupressus arizonica or Blue cypress, Juniperus oxycedrus, Juniperus communis and Thuya. Because J. oxycedrus pollinates in October, C. sempervirens in January and February, C. arizonica in February and March, J. communis in April, the symptomatic period is long-lasting. Because of global warming, the pollination period is tending to last longer and Cupressaceae species are becoming established further the north. In Mediterranean countries, cypress is by far the most important pollinating species, accounting for half of the total pollination. The major allergens belong to group 1. The other allergens from cypress and Juniper share 75 to 97 % structural homology with group 1 major allergens. The prevalence of cypress allergy in the general population ranges from 5 % to 13 %, according to exposure to the pollen. Among outpatients consulting an allergist, between 9 and 35 %, according to different studies, are sensitized to cypress pollen. Repeated cross-sectional studies performed at different time intervals have demonstrated a threefold increase in the percentage of cypress allergy. Risk factors include a genetic predisposition and/or a strong exposure to pollen, but air pollutants could play a synergistic role. The study of the natural history of cypress allergy allows the identification of a subgroup of patients who have no personal or family history of atopy, whose disease began later in life, with low total IgE and often monosensitization to cypress pollen. In these patients, the disease is allergic than rather atopic. In the clinical picture, rhinitis is the most prevalent symptom but conjunctivitis the most disabling. A cross-reactivity between cypress and peach allergy has been demonstrated. The pharmacological treatment of cypress allergy is not different from

  16. AIRBORNE-CONTACT DERMATITIS OF NON-PLANT ORIGIN: AN OVERVIEW

    PubMed Central

    Ghosh, Sanjay

    2011-01-01

    Airborne-contact dermatitis (ABCD) represents a unique type of contact dermatitis originating from dust, sprays, pollens or volatile chemicals by airborne fumes or particles without directly touching the allergen. ABCD in Indian patients has been attributed exclusively by pollens of the plants like Parthenium hysterophorus, etc., but in recent years the above scenario has been changing rapidly in urban and semiurban perspective especially in developing countries. ABCD has been reported worldwide due to various type of nonplant allergens and their clinical feature are sometimes distinctive. Preventive aspect has been attempted by introduction of different chemicals of less allergic potential. PMID:22345776

  17. Biology of weed pollen allergens.

    PubMed

    Gadermaier, Gabriele; Dedic, Azra; Obermeyer, Gerhard; Frank, Susanne; Himly, Martin; Ferreira, Fatima

    2004-09-01

    Weeds represent a heterogeneous group of plants, usually defined by no commercial or aesthetic value. Important allergenic weeds belong to the plant families Asteraceae, Amaranthaceae, Urticaceae, Euphorbiaceae, and Plantaginaceae. Major allergens from ragweed, mugwort, feverfew, pellitory, goosefoot, Russian thistle, plantain, and Mercurialis pollen have been characterized to varying degrees. Four major families of proteins seem to be the major cause of allergic reactions to weed pollen: the ragweed Amb a 1 family of pectate lyases; the defensin-like Art v 1 family from mugwort, feverfew, and probably also from sunflower; the Ole e 1-like allergens Pla l 1 from plantain and Che a 1 from goosefoot; and the nonspecific lipid transfer proteins Par j 1 and Par j 2 from pellitory. As described for other pollens, weed pollen also contains the panallergens profilin and calcium-binding proteins, which are responsible for extensive cross-reactivity among pollen-sensitized patients.

  18. Pollen competition as a unilateral reproductive barrier between sympatric diploid and tetraploid Chamerion angustifolium.

    PubMed

    Husband, Brian C; Schemske, Douglas W; Burton, Tracy L; Goodwillie, Carol

    2002-12-22

    Speciation requires the evolution of barriers to gene exchange between descendant and progenitor populations. Cryptic reproductive barriers in plants arise after pollination but before fertilization as a result of pollen competition and interactions between male gametophytes and female reproductive tissues. We tested for such gametic isolation between the polyploid Chamerion angustifolium and its diploid progenitor by conducting single (diploid or tetraploid) and mixed ploidy (1 : 1 diploid and tetraploid) pollinations on both cytotypes and inferring siring success from paternity analysis and pollen-tube counts. In mixed pollinations, polyploids sired most (79%) of their own seeds as well as those of diploids (61%) (correcting for triploid block, siring success was 70% and 83%, respectively). In single donor pollinations, pollen tubes from tetraploids were more numerous than those from diploids at four different positions in each style and for both diploid and tetraploid pollen recipients. The lack of a pollen donor x recipient interaction indicates that the tetraploid siring advantage is a result of pollen competition rather than pollen-pistil interactions. Such unilateral pollen precedence results in an asymmetrical pattern of isolation, with tetraploids experiencing less gene flow than diploids. It also enhances tetraploid establishment in sympatric populations, by maximizing tetraploid success and simultaneously diminishing that of diploids through the production of inviable triploid offspring. PMID:12573071

  19. Reticulocyte Count Test

    MedlinePlus

    ... Reticulocyte Count Related tests: Red Blood Cell Count ; Hemoglobin ; Hematocrit ; Complete Blood Count ; Blood Smear ; Erythropoietin ; Vitamin ... on a complete blood count (CBC) , RBC count , hemoglobin or hematocrit , to help determine the cause To ...

  20. White Blood Cell Count

    MedlinePlus

    ... Home Visit Global Sites Search Help? White Blood Cell Count Share this page: Was this page helpful? Also ... Leukocyte Count; White Count Formal name: White Blood Cell Count Related tests: Complete Blood Count , Blood Smear , White ...

  1. CHARACTERIZATION OF THE MAIZE POLLEN TRANSCRIPTOME

    EPA Science Inventory

    Pollen is a primary vehicle for transgene flow from engineered plants to their non-transgenic, native or weedy relatives. Hence, gene flow will be affected by pollen fitness (e.g., how well a particular pollen grain can outcompete other pollen present on the stigma and complete ...

  2. City scale pollen concentration variability

    NASA Astrophysics Data System (ADS)

    van der Molen, Michiel; van Vliet, Arnold; Krol, Maarten

    2016-04-01

    Pollen are emitted in the atmosphere both in the country-side and in cities. Yet the majority of the population is exposed to pollen in cities. Allergic reactions may be induced by short-term exposure to pollen. This raises the question how variable pollen concentration in cities are in temporally and spatially, and how much of the pollen in cities are actually produced in the urban region itself. We built a high resolution (1 × 1 km) pollen dispersion model based on WRF-Chem to study a city's pollen budget and the spatial and temporal variability in concentration. It shows that the concentrations are highly variable, as a result of source distribution, wind direction and boundary layer mixing, as well as the release rate as a function of temperature, turbulence intensity and humidity. Hay Fever Forecasts based on such high resolution emission and physical dispersion modelling surpass traditional hay fever warning methods based on temperature sum methods. The model gives new insights in concentration variability, personal and community level exposure and prevention. The model will be developped into a new forecast tool to serve allergic people to minimize their exposure and reduce nuisance, coast of medication and sick leave. This is an innovative approach in hay fever warning systems.

  3. Development and validation of a 5-day-ahead hay fever forecast for patients with grass-pollen-induced allergic rhinitis

    NASA Astrophysics Data System (ADS)

    de Weger, Letty A.; Beerthuizen, Thijs; Hiemstra, Pieter S.; Sont, Jacob K.

    2014-08-01

    One-third of the Dutch population suffers from allergic rhinitis, including hay fever. In this study, a 5-day-ahead hay fever forecast was developed and validated for grass pollen allergic patients in the Netherlands. Using multiple regression analysis, a two-step pollen and hay fever symptom prediction model was developed using actual and forecasted weather parameters, grass pollen data and patient symptom diaries. Therefore, 80 patients with a grass pollen allergy rated the severity of their hay fever symptoms during the grass pollen season in 2007 and 2008. First, a grass pollen forecast model was developed using the following predictors: (1) daily means of grass pollen counts of the previous 10 years; (2) grass pollen counts of the previous 2-week period of the current year; and (3) maximum, minimum and mean temperature ( R 2 = 0.76). The second modeling step concerned the forecasting of hay fever symptom severity and included the following predictors: (1) forecasted grass pollen counts; (2) day number of the year; (3) moving average of the grass pollen counts of the previous 2 week-periods; and (4) maximum and mean temperatures ( R 2 = 0.81). Since the daily hay fever forecast is reported in three categories (low-, medium- and high symptom risk), we assessed the agreement between the observed and the 1- to 5-day-ahead predicted risk categories by kappa, which ranged from 65 % to 77 %. These results indicate that a model based on forecasted temperature and grass pollen counts performs well in predicting symptoms of hay fever up to 5 days ahead.

  4. Development and validation of a 5-day-ahead hay fever forecast for patients with grass-pollen-induced allergic rhinitis.

    PubMed

    de Weger, Letty A; Beerthuizen, Thijs; Hiemstra, Pieter S; Sont, Jacob K

    2014-08-01

    One-third of the Dutch population suffers from allergic rhinitis, including hay fever. In this study, a 5-day-ahead hay fever forecast was developed and validated for grass pollen allergic patients in the Netherlands. Using multiple regression analysis, a two-step pollen and hay fever symptom prediction model was developed using actual and forecasted weather parameters, grass pollen data and patient symptom diaries. Therefore, 80 patients with a grass pollen allergy rated the severity of their hay fever symptoms during the grass pollen season in 2007 and 2008. First, a grass pollen forecast model was developed using the following predictors: (1) daily means of grass pollen counts of the previous 10 years; (2) grass pollen counts of the previous 2-week period of the current year; and (3) maximum, minimum and mean temperature (R (2)=0.76). The second modeling step concerned the forecasting of hay fever symptom severity and included the following predictors: (1) forecasted grass pollen counts; (2) day number of the year; (3) moving average of the grass pollen counts of the previous 2 week-periods; and (4) maximum and mean temperatures (R (2)=0.81). Since the daily hay fever forecast is reported in three categories (low-, medium- and high symptom risk), we assessed the agreement between the observed and the 1- to 5-day-ahead predicted risk categories by kappa, which ranged from 65 % to 77 %. These results indicate that a model based on forecasted temperature and grass pollen counts performs well in predicting symptoms of hay fever up to 5 days ahead.

  5. Ragweed pollen production and dispersion modelling within a regional climate system, calibration and application over Europe

    NASA Astrophysics Data System (ADS)

    Liu, Li; Solmon, Fabien; Vautard, Robert; Hamaoui-Laguel, Lynda; Zsolt Torma, Csaba; Giorgi, Filippo

    2016-05-01

    Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic and invasive plant in Europe. Its pollen can be transported over large distances and has been recognized as a significant cause of hay fever and asthma (D'Amato et al., 2007; Burbach et al., 2009). To simulate production and dispersion of common ragweed pollen, we implement a pollen emission and transport module in the Regional Climate Model (RegCM) version 4 using the framework of the Community Land Model (CLM) version 4.5. In this online approach pollen emissions are calculated based on the modelling of plant distribution, pollen production, species-specific phenology, flowering probability, and flux response to meteorological conditions. A pollen tracer model is used to describe pollen advective transport, turbulent mixing, dry and wet deposition. The model is then applied and evaluated on a European domain for the period 2000-2010. To reduce the large uncertainties notably due to the lack of information on ragweed density distribution, a calibration based on airborne pollen observations is used. Accordingly a cross validation is conducted and shows reasonable error and sensitivity of the calibration. Resulting simulations show that the model captures the gross features of the pollen concentrations found in Europe, and reproduce reasonably both the spatial and temporal patterns of flowering season and associated pollen concentrations measured over Europe. The model can explain 68.6, 39.2, and 34.3 % of the observed variance in starting, central, and ending dates of the pollen season with associated root mean square error (RMSE) equal to 4.7, 3.9, and 7.0 days, respectively. The correlation between simulated and observed daily concentrations time series reaches 0.69. Statistical scores show that the model performs better over the central Europe source region where pollen loads are larger and the model is better constrained. From these simulations health risks associated to common ragweed pollen

  6. Cleanroom Design Practices and Their Influence on Particle Counts

    NASA Technical Reports Server (NTRS)

    Hogue, Patrick

    2008-01-01

    This paper will discuss the adverse effects of deficient cleanroom design practices on airborne particle counts and the rather curious correlation of particle count variations with external environmental pressure fluctuations. Data is also presented that demonstrates that APL building 23 cleanrooms ran well below ISO class 7 (FED class 10,000) during New Horizons and STEREO integration.

  7. A novel method to suppress the dispersal of Japanese cedar pollen by inducing morphologic changes with weak alkaline solutions.

    PubMed

    Ishii, K; Hamamoto, H; Sekimizu, K

    2007-10-01

    Inhalation of airborne pollen causes irritative symptoms in humans, known as pollinosis. The changing global climate and increased pollution contribute to enhance the release of pollen, thereby increasing the number of people suffering from allergies. We examined the effect of spraying weak alkaline solutions onto cedar trees, the main allergenic culprit in Japan, on pollen release. Weak alkaline solutions were sprayed onto Japanese cedar blossoms to disrupt the external walls of the pollen, and to induce swelling of the cytosolic components containing the nucleus. This morphologic change of the pollen grains depended on the pH of the suspending solution, with a threshold pH of near 7.5. As the breakdown of the external walls and swelling of the cytosolic components are inhibited by high osmolarity, the influx of water triggered the morphologic changes. Weak alkaline solutions sprayed onto cedar blossoms decreased the amount of pollen released from the anthers in a pH dependent manner. The addition of detergent to the sodium bicarbonate solution facilitated this effect on cedar pollen release. We suggest that spraying cedar and cypress forests with a weak alkaline solution might prevent the scattering of pollen that causes allergies in humans.

  8. Does bee pollen cause to eosinophilic gastroenteropathy?

    PubMed

    Güç, Belgin Usta; Asilsoy, Suna; Canan, Oğuz; Kayaselçuk, Fazilet

    2015-09-01

    Bee pollen is given to children by mothers in order to strengthen their immune systems. There are no studies related with the side effects of bee polen in the literature. In this article, the literature was reviewed by presenting a case of allergic eosinophilic gastropathy related with bee polen. A 5-year old child was admitted due to abdominal pain. Edema was detected on the eyelids and pretibial region. In laboratory investigations, pathology was not detected in terms of hepatic and renal causes that would explain the protein loss of the patient diagnosed with hypoproteinemia and hypoalbuminemia. Urticaria was detected during the follow-up visit. When the history of the patient was deepened, it was learned that bee pollen was given to the patient every day. The total eosinophil count was found to be 1 800/mm(3). Allergic gastroenteropathy was considered because of hypereosinophilia and severe abdominal pain and endoscopy was performed. Biopsy revealed abundant eosinophils in the whole gastric mucosa. A diagnosis of allergic eosinophilic gastropathy was made. Bee polen was discontinued. Abdominal pain and edema disappeared in five days. Four weeks later, the levels of serum albumin and total eosinophil returned to normal. PMID:26568697

  9. Grass Pollen Allergens

    PubMed Central

    Augustin, Rosa; Hayward, Barbara J.

    1962-01-01

    Cocksfoot and Timothy pollen extracts are each found to contain at least fifteen components antigenic in rabbits. Most of these can also be allergens for man, but only a few are regularly so. These `principal' allergens have now been isolated in highly purified form. Procedures are given for a simple method of preparing extracts for clinical purposes and for the partial separation, concentration and purification of the allergens by means of differential extractions of the pollens and by means of ultrafiltration, isoelectric precipitation and salt fractionations (at acid and neutral pH) of the extracts. Isoelectric precipitations gave highly pigmented acid complexes, two of which moved as single sharp peaks at pH 7.4 in free electrophoresis, but proved to be hardly active by skin tests. Acid NaCl fractionation of the remainder resulted for Cocksfoot and Timothy in the isolation of a nearly white powder (T21.111121112 = T21B) which was weight for weight 1000–10,000 times as active as the pollen from which it had been derived. The powders have retained their activity for 7 years. By gel diffusion tests, they were found to contain two antigens (one in each preparation) which were immunologically partially related, but the Timothy preparation contained in addition the `innermost' `twin' antigens specific for Timothy that we had discovered previously in the crude extracts by gel diffusion methods. Skin reactions could be elicited in hay-fever subjects by prick tests with concentrations of 10-9–10-8 g./ml., which is equivalent to intradermal injections of 10-11–10-10 mg. and represents a 300-fold purification with respect to the concentrates of crude pollen extracts prepared by ultrafiltration and dialysis. Fractionation on DEAE-cellulose of one of the highly purified Timothy preparations (T21.11112112 = T21A) and other, crude Timothy and Cocksfoot extracts resulted in considerable and reproducible separation of the various antigens, with no indication of the

  10. Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznań (Western Poland)

    NASA Astrophysics Data System (ADS)

    Bogawski, Paweł; Grewling, Łukasz; Nowak, Małgorzata; Smith, Matt; Jackowiak, Bogdan

    2014-10-01

    A significant increase in summer temperatures has been observed for the period 1996-2011 in Poznań, Poland. The phenological response of four weed taxa, widely represented by anemophilous species ( Artemisia spp., Rumex spp. and Poaceae and Urticaceae species) to this recent climate warming has been analysed in Poznań by examining the variations in the course of airborne pollen seasons. Pollen data were collected by 7-day Hirst-type volumetric trap. Trends in pollen seasons were determined using Mann-Kendall test and Sen's slope estimator, whereas the relationships between meteorological and aerobiological data were established by Spearman's rank correlation coefficient. Significant trends in pollen data were detected. The duration of pollen seasons of all analysed taxa increased (from +2.0 days/year for Urticaceae to +3.8 days/year for Rumex), which can be attributed to a delay in pollen season end dates rather than earlier start dates. In addition, the intensity of Artemisia pollen seasons significantly decreased and correlates with mean July-September daily minimum temperatures ( r = -0.644, p < 0.01). In contrast, no significant correlations were found between temperature and characteristics of Rumex pollen seasons. The results of this study show that observed shifts in weed pollen seasons in Poznań, i.e. longer duration and later end dates, might be caused by the recorded increase in summer temperature. This influence was the strongest in relation to Artemisia, which is the taxon that flowers latest in the year. The general lack of significant correlations between Rumex and Urticaceae pollen seasons and spring and/or summer temperature suggests that other factors, e.g. land use practices, could also be partially responsible for the observed shifts in pollen seasons.

  11. Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznań (Western Poland).

    PubMed

    Bogawski, Paweł; Grewling, Lukasz; Nowak, Małgorzata; Smith, Matt; Jackowiak, Bogdan

    2014-10-01

    A significant increase in summer temperatures has been observed for the period 1996-2011 in Poznań, Poland. The phenological response of four weed taxa, widely represented by anemophilous species (Artemisia spp., Rumex spp. and Poaceae and Urticaceae species) to this recent climate warming has been analysed in Poznań by examining the variations in the course of airborne pollen seasons. Pollen data were collected by 7-day Hirst-type volumetric trap. Trends in pollen seasons were determined using Mann-Kendall test and Sen's slope estimator, whereas the relationships between meteorological and aerobiological data were established by Spearman's rank correlation coefficient. Significant trends in pollen data were detected. The duration of pollen seasons of all analysed taxa increased (from +2.0 days/year for Urticaceae to +3.8 days/year for Rumex), which can be attributed to a delay in pollen season end dates rather than earlier start dates. In addition, the intensity of Artemisia pollen seasons significantly decreased and correlates with mean July-September daily minimum temperatures (r = -0.644, p < 0.01). In contrast, no significant correlations were found between temperature and characteristics of Rumex pollen seasons. The results of this study show that observed shifts in weed pollen seasons in Poznań, i.e. longer duration and later end dates, might be caused by the recorded increase in summer temperature. This influence was the strongest in relation to Artemisia, which is the taxon that flowers latest in the year. The general lack of significant correlations between Rumex and Urticaceae pollen seasons and spring and/or summer temperature suggests that other factors, e.g. land use practices, could also be partially responsible for the observed shifts in pollen seasons.

  12. Pollen Forecast and Dispersion Modelling

    NASA Astrophysics Data System (ADS)

    Costantini, Monica; Di Giuseppe, Fabio; Medaglia, Carlo Maria; Travaglini, Alessandro; Tocci, Raffaella; Brighetti, M. Antonia; Petitta, Marcello

    2014-05-01

    The aim of this study is monitoring, mapping and forecast of pollen distribution for the city of Rome using in-situ measurements of 10 species of common allergenic pollens and measurements of PM10. The production of daily concentration maps, associated to a mobile phone app, are innovative compared to existing dedicated services to people who suffer from respiratory allergies. The dispersal pollen is one of the most well-known causes of allergic disease that is manifested by disorders of the respiratory functions. Allergies are the third leading cause of chronic disease and it is estimated that tens millions of people in Italy suffer from it. Recent works reveal that during the last few years there was a progressive increase of affected subjects, especially in urban areas. This situation may depend: on the ability to transport of pollutants, on the ability to react between pollutants and pollen and from a combination of other irritants, existing in densely populated and polluted urban areas. The methodology used to produce maps is based on in-situ measurements time series relative to 2012, obtained from networks of air quality and pollen stations in the metropolitan area of Rome. The monitoring station aerobiological of University of Rome "Tor Vergata" is located at the Department of Biology. The instrument used to pollen monitoring is a volumetric sampler type Hirst (Hirst 1952), Model 2000 VPPS Lanzoni; the data acquisition is carried out as reported in Standard UNI 11008:2004 - "Qualità dell'aria - Metodo di campionamento e conteggio dei granuli pollinici e delle spore fungine aerodisperse" - the protocol that describes the procedure for measuring of the concentration of pollen grains and fungal spores dispersed into the atmosphere, and reported in the "Manuale di gestione e qualità della R.I.M.A" (Travaglini et. al. 2009). All 10 allergenic pollen are monitored since 1996. At Tor Vergata university is also operating a meteorological station (SP2000, CAE

  13. Pollen taphonomy in a canyon stream

    NASA Astrophysics Data System (ADS)

    Fall, Patricia L.

    1987-11-01

    Surface soil samples from the forested Chuska Mountains to the arid steppe of the Chinle Valley, Northeastern Arizona, show close correlation between modern pollen rain and vegetation. In contrast, modern alluvium is dominated by Pinus pollen throughout the canyon; it reflects neither the surrounding floodplain nor plateau vegetation. Pollen in surface soils is deposited by wind; pollen grains in alluvium are deposited by a stream as sedimentary particles. Clay-size particles correlate significantly with Pinus, Quercus, and Populus pollen. These pollen types settle, as clay does, in slack water. Chenopodiaceae- Amaranthus, Artemisia, other Tubuliflorae, and indeterminate pollen types correlate with sand-size particles, and are deposited by more turbulent water. Fluctuating pollen frequencies in alluvial deposits are related to sedimentology and do not reflect the local or regional vegetation where the sediments were deposited. Alluvial pollen is unreliable for reconstruction of paleoenvironments.

  14. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula

    NASA Astrophysics Data System (ADS)

    Nowosad, Jakub

    2016-06-01

    Corylus, Alnus, and Betula trees are among the most important sources of allergic pollen in the temperate zone of the Northern Hemisphere and have a large impact on the quality of life and productivity of allergy sufferers. Therefore, it is important to predict high pollen concentrations, both in time and space. The aim of this study was to create and evaluate spatiotemporal models for predicting high Corylus, Alnus, and Betula pollen concentration levels, based on gridded meteorological data. Aerobiological monitoring was carried out in 11 cities in Poland and gathered, depending on the site, between 2 and 16 years of measurements. According to the first allergy symptoms during exposure, a high pollen count level was established for each taxon. An optimizing probability threshold technique was used for mitigation of the problem of imbalance in the pollen concentration levels. For each taxon, the model was built using a random forest method. The study revealed the possibility of moderately reliable prediction of Corylus and highly reliable prediction of Alnus and Betula high pollen concentration levels, using preprocessed gridded meteorological data. Cumulative growing degree days and potential evaporation proved to be two of the most important predictor variables in the models. The final models predicted not only for single locations but also for continuous areas. Furthermore, the proposed modeling framework could be used to predict high pollen concentrations of Corylus, Alnus, Betula, and other taxa, and in other countries.

  15. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula.

    PubMed

    Nowosad, Jakub

    2016-06-01

    Corylus, Alnus, and Betula trees are among the most important sources of allergic pollen in the temperate zone of the Northern Hemisphere and have a large impact on the quality of life and productivity of allergy sufferers. Therefore, it is important to predict high pollen concentrations, both in time and space. The aim of this study was to create and evaluate spatiotemporal models for predicting high Corylus, Alnus, and Betula pollen concentration levels, based on gridded meteorological data. Aerobiological monitoring was carried out in 11 cities in Poland and gathered, depending on the site, between 2 and 16 years of measurements. According to the first allergy symptoms during exposure, a high pollen count level was established for each taxon. An optimizing probability threshold technique was used for mitigation of the problem of imbalance in the pollen concentration levels. For each taxon, the model was built using a random forest method. The study revealed the possibility of moderately reliable prediction of Corylus and highly reliable prediction of Alnus and Betula high pollen concentration levels, using preprocessed gridded meteorological data. Cumulative growing degree days and potential evaporation proved to be two of the most important predictor variables in the models. The final models predicted not only for single locations but also for continuous areas. Furthermore, the proposed modeling framework could be used to predict high pollen concentrations of Corylus, Alnus, Betula, and other taxa, and in other countries.

  16. The long distance transport (LDT) of Ambrosia pollen from the Pannonian Plain to Scandinavia

    NASA Astrophysics Data System (ADS)

    Šikoparija, B..; Skjøth, C. A.; Alm Kübler, K.; Dahl, A.; Radišić, P.; Sommer, J.; Grewling, Ł.; Smith, M.

    2012-04-01

    Ragweed (Ambrosia spp.) pollen grains are important aeroallergens that cause seasonal allergic rhinitis and asthma to sensitive individuals. This study describes the conditions required for the LDT of ragweed pollen from the Pannonian Plain (PP) to Sweden on the 27- 28 August 2011, using a combination of daily and bi-hourly pollen count data, the overall synoptic weather situation, 3D analysis of the regional scale orography using Digital Elevation Models, surface meteorological data, satellite observations, and air mas trajectories calculated using the HYSPLIT model. During the episode, high pressure (1024-1028 hPa) situated over European Russia and the Black Sea to the east and deep low pressure (~990 hPa) over the British Isles in the northwest resulted in a general southeast-northwest movement of air, and the occurrence of the jet-effect Kosava wind in the PP. This dry and gusty wind caused ragweed pollen release on the PP and pollen to be transported to the northwest. A foehn wind that governs air movement down leeward slopes into the PP was also active. The 24 and 25 August 2011 were very hot and caused large amounts of ragweed pollen to be released and taken high up in the atmosphere through convection. Such conditions also resulted in high Planetary Boundary Layers over the entire area, conditions that facilitated the transport of pollen over areas of low elevation on the Western Carpathians (i.e. the Moravian Gate or Low Baskid passes) northward into Poland and beyond.

  17. Pollen analysis of natural honeys from the central region of Shanxi, North China.

    PubMed

    Song, Xiao-Yan; Yao, Yi-Feng; Yang, Wu-De

    2012-01-01

    Based on qualitative and quantitative melissopalynological analyses, 19 Chinese honeys were classified by botanical origin to determine their floral sources. The honey samples were collected during 2010-2011 from the central region of Shanxi Province, North China. A diverse spectrum of 61 pollen types from 37 families was identified. Fourteen samples were classified as unifloral, whereas the remaining samples were multifloral. Bee-favoured families (occurring in more than 50% of the samples) included Caprifoliaceae (found in 10 samples), Laminaceae (10), Brassicaceae (12), Rosaceae (12), Moraceae (13), Rhamnaceae (15), Asteraceae (17), and Fabaceae (19). In the unifloral honeys, the predominant pollen types were Ziziphus jujuba (in 5 samples), Robinia pseudoacacia (3), Vitex negundo var. heterophylla (2), Sophora japonica (1), Ailanthus altissima (1), Asteraceae type (1), and Fabaceae type (1). The absolute pollen count (i.e., the number of pollen grains per 10 g honey sample) suggested that 13 samples belonged to Group I (<20,000 pollen grains), 4 to Group II (20,000-100,000), and 2 to Group III (100,000-500,000). The dominance of unifloral honeys without toxic pollen grains and the low value of the HDE/P ratio (i.e., honey dew elements/pollen grains from nectariferous plants) indicated that the honey samples are of good quality and suitable for human consumption. PMID:23185358

  18. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula.

    PubMed

    Nowosad, Jakub

    2016-06-01

    Corylus, Alnus, and Betula trees are among the most important sources of allergic pollen in the temperate zone of the Northern Hemisphere and have a large impact on the quality of life and productivity of allergy sufferers. Therefore, it is important to predict high pollen concentrations, both in time and space. The aim of this study was to create and evaluate spatiotemporal models for predicting high Corylus, Alnus, and Betula pollen concentration levels, based on gridded meteorological data. Aerobiological monitoring was carried out in 11 cities in Poland and gathered, depending on the site, between 2 and 16 years of measurements. According to the first allergy symptoms during exposure, a high pollen count level was established for each taxon. An optimizing probability threshold technique was used for mitigation of the problem of imbalance in the pollen concentration levels. For each taxon, the model was built using a random forest method. The study revealed the possibility of moderately reliable prediction of Corylus and highly reliable prediction of Alnus and Betula high pollen concentration levels, using preprocessed gridded meteorological data. Cumulative growing degree days and potential evaporation proved to be two of the most important predictor variables in the models. The final models predicted not only for single locations but also for continuous areas. Furthermore, the proposed modeling framework could be used to predict high pollen concentrations of Corylus, Alnus, Betula, and other taxa, and in other countries. PMID:26487352

  19. The long range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark

    NASA Astrophysics Data System (ADS)

    Ambelas Skjoth, C.; Sommer, J.; Stach, A.; Smith, M.; Brandt, J.; Christensen, J. H.; Frohn, L. M.; Geels, C.; Hansen, K. M.; Hedegaard, G. B.

    2009-04-01

    In Denmark, where birch pollen is considered to be among the most important allergenic pollen, about one million people suffer from seasonal allergic rhinitis. In Denmark, the official reported pollen forecast is based on the daily weather forecast, the pollen calendar and local 24-h measurements. Birch pollen has the potential for long-range transport but the present Danish pollen forecast does not account for birch pollen being transported into the country from distant sources.. Long-range transport episodes are intermittent and often out of the main pollen season, where individuals in general will be medically unprotected. Here we use an integrated approach to investigate whether or not Denmark receives significant quantities of birch pollen from Poland and Germany before local trees start to flower. In 2006 we used a combination of phenological observations and pollen measurements in Poland (Poznań) and Denmark (Copenhagen). Seasonal and diurnal variations in birch pollen measurement from Copenhagen (2000-2006) were examined with the aim of identifying pre-seasonal episodes originating from long-range transport. The 2.5% accumulation method was used for identifying start of season. If daily pollen counts exceeded 30 grains/m3 either before the local flowering season began or on the actual start day, the episode was chosen for investigation with back trajectory analysis. A birch forest inventory for Northern Europe was produced and implemented in DEHM-Pollen along with a simple unified pollen release model SUPREME to investigate the 2006 campaign in detail. In 2006, full flowering took place in Poznan between 20th and 28th of April and daily concentrations varied between 739 and 2169 grains/m3. In Copenhagen phenological observations showed that local flowering was initiated the 2nd of May. In Copenhagen several episodes with pollen concentrations at 108, 244 and 41 grains/m3 were recorded the 23rd, 26th and 27th of April, respectively. Back-trajectory analysis

  20. Numerical simulation of birch pollen dispersion with an operational weather forecast system.

    PubMed

    Vogel, Heike; Pauling, Andreas; Vogel, Bernhard

    2008-11-01

    We included a parameterisation of the emissions of pollen grains into the comprehensive model system COSMO-ART. In addition, a detailed density distribution of birch trees within Switzerland was derived. Based on these new developments, we carried out numerical simulations of the dispersion of pollen grains for an episode that occurred in April 2006 over Switzerland and the adjacent regions. Since COSMO-ART is based on the operational forecast model of the German Weather Service, we are presenting a feasibility study of daily pollen forecast based on methods which have been developed during the last two decades for the treatment of anthropogenic aerosol. A comparison of the model results and very detailed pollen counts documents the current possibilities and the shortcomings of the method and gives hints for necessary improvements.

  1. Induced parthenogenesis by gamma-irradiated pollen in loquat for haploid production

    PubMed Central

    Blasco, Manuel; Badenes, María Luisa; del Mar Naval, María

    2016-01-01

    Successful haploid induction in loquat (Eriobotrya japonica (Thunb.) Lindl.) through in situ-induced parthenogenesis with gamma-ray irradiated pollen has been achieved. Female flowers of cultivar ‘Algerie’ were pollinated using pollen of cultivars ‘Changhong-3’, ‘Cox’ and ‘Saval Brasil’ irradiated with two doses of gamma rays, 150 and 300 Gy. The fruits were harvested 90, 105 and 120 days after pollination (dap). Four haploid plants were obtained from ‘Algerie’ pollinated with 300-Gy-treated pollen of ‘Saval Brasil’ from fruits harvested 105 dap. Haploidy was confirmed by flow cytometry and chromosome count. The haploids showed a very weak development compared to the diploid plants. This result suggests that irradiated pollen can be used to obtain parthenogenetic haploids. PMID:27795686

  2. The influence from synoptic weather on the variation of air pollution and pollen exposure

    NASA Astrophysics Data System (ADS)

    Grundström, Maria; Dahl, Åslög; Chen, Deliang; Pleijel, Håkan

    2014-05-01

    Exposure to elevated air pollution levels can make people more susceptible to allergies or result in more severe allergic reactions for people with an already pronounced sensitivity to pollen. The aim of this study was to investigate the relationships between urban air pollution (nitrogen oxides, ozone and particles) and airborne Betula pollen in Gothenburg, Sweden, during the pollen seasons for the years 2001-2012. Further, the influence from atmospheric weather pattern on pollen/pollution related risk, using Lamb Weather Types (LWT), was also considered. Daily LWTs were obtained by comparing the variation in atmospheric pressure from a 16 point grid over a given region on earth (scale ~1000km) and essentially describe the air mass movement for the region. They include two non-directional types, cyclonic (C) and anticyclonic (A) and eight directional types depending on the wind direction (N, NE, E... etc.). LWTs with dry and calm meteorological character e.g. limited precipitation and low to moderate wind speeds (A, NE, E, SE) were associated with strongly elevated air pollution and pollen levels where Betula was exceptionally high in LWTs NE and E. The co-variation between Betula pollen and ozone was strong and significant during situations with LWTs A, NE, E and SE. The most important conclusion from this study was that LWTs A, NE, E and SE were associated with high pollen and air pollution levels and can therefore be classified as high risk weather situations for combined air pollution and pollen exposure. Our study shows that LWTs have the potential to be developed into an objective tool for integrated air quality forecasting and a warning system for risk of high exposure situations.

  3. Near-surface and columnar measurements with a micro pulse lidar of atmospheric pollen in Barcelona, Spain

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël; Izquierdo, Rebeca; Alarcón, Marta; Belmonte, Jordina; Comerón, Adolfo; Baldasano, José Maria

    2016-06-01

    We present for the first time continuous hourly measurements of pollen near-surface concentration and lidar-derived profiles of particle backscatter coefficients and of volume and particle depolarization ratios during a 5-day pollination event observed in Barcelona, Spain, between 27 and 31 March 2015. Daily average concentrations ranged from 1082 to 2830 pollen m-3. Platanus and Pinus pollen types represented together more than 80 % of the total pollen. Maximum hourly pollen concentrations of 4700 and 1200 m-3 were found for Platanus and Pinus, respectively. Every day a clear diurnal cycle caused by the vertical transport of the airborne pollen was visible on the lidar-derived profiles with maxima usually reached between 12:00 and 15:00 UT. A method based on the lidar polarization capabilities was used to retrieve the contribution of the pollen to the total aerosol optical depth (AOD). On average the diurnal (09:00-17:00 UT) pollen AOD was 0.05, which represented 29 % of the total AOD. Maximum values of the pollen AOD and its contribution to the total AOD reached 0.12 and 78 %, respectively. The diurnal means of the volume and particle depolarization ratios in the pollen plume were 0.08 and 0.14, with hourly maxima of 0.18 and 0.33, respectively. The diurnal mean of the height of the pollen plume was found at 1.24 km with maxima varying in the range of 1.47-1.78 km. A correlation study is performed (1) between the depolarization ratios and the pollen near-surface concentration to evaluate the ability of the former parameter to monitor pollen release and (2) between the depolarization ratios as well as pollen AOD and surface downward solar fluxes, which cause the atmospheric turbulences responsible for the particle vertical motion, to examine the dependency of the depolarization ratios and the pollen AOD upon solar fluxes. For the volume depolarization ratio the first correlation study yields to correlation coefficients ranging 0.00-0.81 and the second to

  4. Knockin' on pollen's door: live cell imaging of early polarization events in germinating Arabidopsis pollen

    PubMed Central

    Vogler, Frank; Konrad, Sebastian S. A.; Sprunck, Stefanie

    2015-01-01

    Pollen tubes are an excellent system for studying the cellular dynamics and complex signaling pathways that coordinate polarized tip growth. Although several signaling mechanisms acting in the tip-growing pollen tube have been described, our knowledge on the subcellular and molecular events during pollen germination and growth site selection at the pollen plasma membrane is rather scarce. To simultaneously track germinating pollen from up to 12 genetically different plants we developed an inexpensive and easy mounting technique, suitable for every standard microscope setup. We performed high magnification live-cell imaging during Arabidopsis pollen activation, germination, and the establishment of pollen tube tip growth by using fluorescent marker lines labeling either the pollen cytoplasm, vesicles, the actin cytoskeleton or the sperm cell nuclei and membranes. Our studies revealed distinctive vesicle and F-actin polarization during pollen activation and characteristic growth kinetics during pollen germination and pollen tube formation. Initially, the germinating Arabidopsis pollen tube grows slowly and forms a uniform roundish bulge, followed by a transition phase with vesicles heavily accumulating at the growth site before switching to rapid tip growth. Furthermore, we found the two sperm cells to be transported into the pollen tube after the phase of rapid tip growth has been initiated. The method presented here is suitable to quantitatively study subcellular events during Arabidopsis pollen germination and growth, and for the detailed analysis of pollen mutants with respect to pollen polarization, bulging, or growth site selection at the pollen plasma membrane. PMID:25954283

  5. Insect visitation and pollen deposition in an invaded prairie plant community

    USGS Publications Warehouse

    Larson, D.L.; Royer, R.A.; Royer, M.R.

    2006-01-01

    Invasive plants with large flowering displays have been shown to compete with native plants for pollinator services, often to the detriment of native plant fitness. In this study, we compare the pollinator communities and pollen deposited on stigmas of native plant species within and away from stands of the invasive alien plant, leafy spurge (Euphorbia esula) at a large natural area in North Dakota, USA. Specifically, we ask if infestation influences (1) visitation rates and taxonomic composition of visitors to native flowers, and (2) the amount of conspecific pollen, number of pollen species, and proportion of heterospecific pollen on stigmas of native plants. We observed visits to selected native species during May and June 2000 and 2001. Stigmas were collected from a subsample of the flowers within these plots, squashed, and the pollen identified and counted under a light microscope. Visitation varied between years and among species of native plants: infestation had mixed effects in 2000 but visitation, especially by halictids was always lower within infestations in 2001. Despite differences in visitation between years, we found significantly less conspecific pollen on stigmas from infested plots in six of eight cases; we never found significantly more conspecific pollen on stigmas from within infestations. Our results emphasize the temporal variability in plant-pollinator relations and the added complexity imposed by an invasive species that will always make prediction of effects difficult. Nonetheless, the consistently lower conspecific pollen counts on native stigmas within infestations, regardless of visitation, suggest the likelihood of negative effects. ?? 2005 Elsevier Ltd. All rights reserved.

  6. You sneeze, you lose:: The impact of pollen exposure on cognitive performance during high-stakes high school exams.

    PubMed

    Bensnes, Simon Søbstad

    2016-09-01

    Pollen is known to cause allergic reactions and affect cognitive performance in around 20% of the population. Although pollen season peaks when students take high-stakes exams, the effect of pollen allergies on school performance has received nearly no attention from economists. Using a student fixed effects model and administrative Norwegian data, this paper finds that increasing the ambient pollen levels by one standard deviation at the mean leads to a 2.5% standard deviation decrease in test scores, with potentially larger effects for allergic students. There also appear to be longer-run effects. The findings imply that random increases in pollen counts reduce test scores for allergic students relative to their peers, who consequently will be at a disadvantage when competing for jobs or higher education. This paper contributes to the literature by illuminating the interplay between individual health and human capital accumulation, which in turn can impact long-run economic growth. PMID:27315202

  7. Identification and persistence of Pinus pollen DNA on cotton fabrics: A forensic application.

    PubMed

    Schield, Cassandra; Campelli, Cassandra; Sycalik, Jennifer; Randle, Christopher; Hughes-Stamm, Sheree; Gangitano, David

    2016-01-01

    Advances in plant genomics have had an impact on the field of forensic botany. However, the use of pollen DNA profiling in forensic investigations has yet to be applied. Five volunteers wore a jacket with Pinus echinata pollen-containing cotton swatches for a 14-day period. Pollen decay was evaluated at days 0, 3, 6, 9 and 14 by microscopy. Pollen grains were then transferred to slides using a portable forensic vacuum handle. Ten single grains per swatch were isolated for DNA analysis. DNA was extracted using a high throughput extraction method. A nine-locus short tandem repeat (STR) multiplex system, including previously published primers from Pinus taeda, was developed. DNA was amplified by PCR using fluorescent dyes and analyzed by capillary electrophoresis. Pollen counts from cotton swatches in a 14-day period exhibited an exponential decay from 100% to 17%. The success rate of PCR amplification was 81.2%. Complete and partial STR profiles were generated from 250 pollen grains analyzed (44% and 37%, respectively). Due to the limited amount of DNA, drop-in events were observed (1.87%). However, the rate of contamination with pollen from other pine individuals originating from environmental sources was 4.4%. In conclusion, this study has shown that pollen can be a stable source of forensic DNA evidence, as a proof-of-principle, and that may persist on cotton clothing for at least 14 days of wear. This method can be applied in forensic cases where pollen grains larger than 10 μm (e.g., from herbs or trees) may be transferred to clothing (worn by suspect or victim) by primary contact. PMID:26746823

  8. Identification and persistence of Pinus pollen DNA on cotton fabrics: A forensic application.

    PubMed

    Schield, Cassandra; Campelli, Cassandra; Sycalik, Jennifer; Randle, Christopher; Hughes-Stamm, Sheree; Gangitano, David

    2016-01-01

    Advances in plant genomics have had an impact on the field of forensic botany. However, the use of pollen DNA profiling in forensic investigations has yet to be applied. Five volunteers wore a jacket with Pinus echinata pollen-containing cotton swatches for a 14-day period. Pollen decay was evaluated at days 0, 3, 6, 9 and 14 by microscopy. Pollen grains were then transferred to slides using a portable forensic vacuum handle. Ten single grains per swatch were isolated for DNA analysis. DNA was extracted using a high throughput extraction method. A nine-locus short tandem repeat (STR) multiplex system, including previously published primers from Pinus taeda, was developed. DNA was amplified by PCR using fluorescent dyes and analyzed by capillary electrophoresis. Pollen counts from cotton swatches in a 14-day period exhibited an exponential decay from 100% to 17%. The success rate of PCR amplification was 81.2%. Complete and partial STR profiles were generated from 250 pollen grains analyzed (44% and 37%, respectively). Due to the limited amount of DNA, drop-in events were observed (1.87%). However, the rate of contamination with pollen from other pine individuals originating from environmental sources was 4.4%. In conclusion, this study has shown that pollen can be a stable source of forensic DNA evidence, as a proof-of-principle, and that may persist on cotton clothing for at least 14 days of wear. This method can be applied in forensic cases where pollen grains larger than 10 μm (e.g., from herbs or trees) may be transferred to clothing (worn by suspect or victim) by primary contact.

  9. Bioassaying for ozone with pollen systems

    SciTech Connect

    Feder, W.A.

    1981-01-01

    Sensitivity to ozone of pollen germinating in vitro is closely correlated with ozone sensitivity of the pollen parent. Ozone-sensitive and tolerant pollen populations have been identified in tobacco, petunia, and tomato cultivars. The rate of tube elongation can be reversibly slowed or stopped by exposure to low concentrations of ozone. The performance of selected pollen populations can then be used to bioassay ozone in ambient air by introducing the air sample into a growth chamber where ozone-sensitive pollen in growing. Year-round pollen producion can be achieved in the greenhouse. Harvested pollen can be tested, packaged, and transported to user facilities without loss of vigor. Pollen populations are inexpensive to produce, respond reliably, and are simple to use as a bioassay for air quality.

  10. Airborne Cladosporium and other fungi in damp versus reference residences

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.; Niininen, M.; Kalliokoski, P.; Nevalainen, A.; Jantunen, M. J.

    Our previous study (Nevalainen et al., 1991, Envir. Int.17, 299-302) showed that airborne counts of total viable fungal spores in damp residences did not remarkably differ from those in reference residences. The results of the present study confirmed this finding. Indoor air spore counts varied considerably from residence to residence and even within the same residence. Thus, the counts were only occasionally high in the damp residences. Counts of airborne Cladosporium spp. spores and yeast cells were significantly higher in the damp residences than in the reference ones. The difference of yeast cell counts between the residence groups was explained by the difference in outdoor air, whereas Cladosporium spp. spores were mainly derived from indoors. Prevalence of Aspergillus spp. spores was also slightly higher in the damp residences than in the reference ones.

  11. Visual Recognition Software for Binary Classification and its Application to Pollen Identification

    NASA Astrophysics Data System (ADS)

    Punyasena, S. W.; Tcheng, D. K.; Nayak, A.

    2014-12-01

    An underappreciated source of uncertainty in paleoecology is the uncertainty of palynological identifications. The confidence of any given identification is not regularly reported in published results, so cannot be incorporated into subsequent meta-analyses. Automated identifications systems potentially provide a means of objectively measuring the confidence of a given count or single identification, as well as a mechanism for increasing sample sizes and throughput. We developed the software ARLO (Automated Recognition with Layered Optimization) to tackle difficult visual classification problems such as pollen identification. ARLO applies pattern recognition and machine learning to the analysis of pollen images. The features that the system discovers are not the traditional features of pollen morphology. Instead, general purpose image features, such as pixel lines and grids of different dimensions, size, spacing, and resolution, are used. ARLO adapts to a given problem by searching for the most effective combination of feature representation and learning strategy. We present a two phase approach which uses our machine learning process to first segment pollen grains from the background and then classify pollen pixels and report species ratios. We conducted two separate experiments that utilized two distinct sets of algorithms and optimization procedures. The first analysis focused on reconstructing black and white spruce pollen ratios, training and testing our classification model at the slide level. This allowed us to directly compare our automated counts and expert counts to slides of known spruce ratios. Our second analysis focused on maximizing classification accuracy at the individual pollen grain level. Instead of predicting ratios of given slides, we predicted the species represented in a given image window. The resulting analysis was more scalable, as we were able to adapt the most efficient parts of the methodology from our first analysis. ARLO was able to

  12. Pollen loads of eucalypt and other pollen types in birds in NW Spain.

    PubMed

    Calviño-Cancela, María; Neumann, Max

    2015-12-01

    Here we present the amount of pollen of eucalypt and pollen of other types for birds captured in two bird ringing stations for 14 months (March 2014 to April 2015) in NW Spain. Common and latin names of all birds species captured, together with the number of captured individuals (N), prevalence of eucalypt pollen (percentage of individuals with eucalypt pollen) and of pollen of other types and average pollen loads per individual for eucalypt and other pollen types is presented. See [1] for further information and discussion.

  13. Pollen Allergens for Molecular Diagnosis.

    PubMed

    Pablos, Isabel; Wildner, Sabrina; Asam, Claudia; Wallner, Michael; Gadermaier, Gabriele

    2016-04-01

    Pollen allergens are one of the main causes of type I allergies affecting up to 30% of the population in industrialized countries. Climatic changes affect the duration and intensity of pollen seasons and may together with pollution contribute to increased incidences of respiratory allergy and asthma. Allergenic grasses, trees, and weeds often present similar habitats and flowering periods compromising clinical anamnesis. Molecule-based approaches enable distinction between genuine sensitization and clinically mostly irrelevant IgE cross-reactivity due to, e. g., panallergens or carbohydrate determinants. In addition, sensitivity as well as specificity can be improved and lead to identification of the primary sensitizing source which is particularly beneficial regarding polysensitized patients. This review gives an overview on relevant pollen allergens and their usefulness in daily practice. Appropriate allergy diagnosis is directly influencing decisions for therapeutic interventions, and thus, reliable biomarkers are pivotal when considering allergen immunotherapy in the context of precision medicine.

  14. [The epidemiology of pollen allergy].

    PubMed

    Charpin, D; Caillaud, D

    2014-04-01

    The prevalence of seasonal allergic rhinitis can be established through surveys performed in a sample of the general population. These surveys are based on a questionnaire, which could lead to an overestimate of prevalence rates, and on measurements of specific IgE, which need to be interpreted in the light of the responses to the questionnaire. Such surveys are few in France and need to be updated. Risk factors for seasonal allergic rhinitis are genetic, epigenetic and environmental. Relationships between exposure to pollen and health can be documented through ecological and panel surveys. Panel surveys may give information on threshold levels and dose-response relationships. In addition to pollen exposure, global warming and air pollutants act as cofactors. Monitoring of both pollen exposure and its health effects should be encouraged and strengthened.

  15. [Pollen content of the Paris air: comparison of the results obtained by two samplers for the year 2003].

    PubMed

    Distigny, C; Polenne, J P; Bordenave, L; Bex, V; Squinazi, F

    2004-09-01

    During the 2003 season, a second pollen collector has been established in Paris city (Audubon site) to study the representativeness of the initial collector situated on the roof of the Pasteur Institute. The Hygiene Laboratory of Paris followed the pollen counts from the two collectors, during the period going from May to September. Both the samplers are Lanzoni model with a flow rate of 10 l x min(-1). The quantitative results show that no statistical difference exists between the pollen counts obtained from the 2 sites (Mann-Withney test, p > .05). The dominant species are Urticaceae, Poacae and Castenea species for the 2 collectors. Their counts are similar except for Poacae whose results are higher at the Audubon site. The collection period do not take into account the pollen production period of many trees species because of the late installation of the collector on the Audubon site. The results show that the two sites chosen for the study of pollen distribution are comparable. Nevertheless, the comparative study should be maintained on the next year to get more details about the observed differences and to collect the early trees pollen.

  16. [Pollen content of the Paris air: comparison of the results obtained by two samplers for the year 2003].

    PubMed

    Distigny, C; Polenne, J P; Bordenave, L; Bex, V; Squinazi, F

    2004-09-01

    During the 2003 season, a second pollen collector has been established in Paris city (Audubon site) to study the representativeness of the initial collector situated on the roof of the Pasteur Institute. The Hygiene Laboratory of Paris followed the pollen counts from the two collectors, during the period going from May to September. Both the samplers are Lanzoni model with a flow rate of 10 l x min(-1). The quantitative results show that no statistical difference exists between the pollen counts obtained from the 2 sites (Mann-Withney test, p > .05). The dominant species are Urticaceae, Poacae and Castenea species for the 2 collectors. Their counts are similar except for Poacae whose results are higher at the Audubon site. The collection period do not take into account the pollen production period of many trees species because of the late installation of the collector on the Audubon site. The results show that the two sites chosen for the study of pollen distribution are comparable. Nevertheless, the comparative study should be maintained on the next year to get more details about the observed differences and to collect the early trees pollen. PMID:15529829

  17. Use of Remote Sensing and Dust Modelling to Evaluate Ecosystem Phenology and Pollen Dispersal

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Watts, Carol; Shaw, Patrick

    2007-01-01

    The impact of pollen release and downwind concentrations can be evaluated utilizing remote sensing. Previous NASA studies have addressed airborne dust prediction systems PHAiRS (Public Health Applications in Remote Sensing) which have determined that pollen forecasts and simulations are possible. By adapting the deterministic dust model (as an in-line system with the National Weather Service operational forecast model) used in PHAiRS to simulate downwind dispersal of pollen, initializing the model with pollen source regions from MODIS, assessing the results a rapid prototype concept can be produced. We will present the results of our effort to develop a deterministic model for predicting and simulating pollen emission and downwind concentration to study details or phenology and meteorology and their dependencies, and the promise of a credible real time forecast system to support public health and agricultural science and service. Previous studies have been done with PHAiRS research, the use of NASA data, the dust model and the PHAiRS potential to improve public health and environmental services long into the future.

  18. Plants remember past weather: a study for atmospheric pollen concentrations of Ambrosia, Poaceae and Populus

    NASA Astrophysics Data System (ADS)

    Matyasovszky, István; Makra, László; Csépe, Zoltán; Sümeghy, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Tusnády, Gábor

    2015-10-01

    After extreme dry (wet) summers or years, pollen production of different taxa may decrease (increase) substantially. Accordingly, studying effects of current and past meteorological conditions on current pollen concentrations for different taxa have of major importance. The purpose of this study is separating the weight of current and past weather conditions influencing current pollen productions of three taxa. Two procedures, namely multiple correlations and factor analysis with special transformation are used. The 11-year (1997-2007) data sets include daily pollen counts of Ambrosia (ragweed), Poaceae (grasses) and Populus (poplar), as well as daily values of four climate variables (temperature, relative humidity, global solar flux and precipitation). Multiple correlations of daily pollen counts with simultaneous values of daily meteorological variables do not show annual course for Ambrosia, but do show definite trends for Populus and Poaceae. Results received using the two methods revealed characteristic similarities. For all the three taxa, the continental rainfall peak and additional local showers in the growing season can strengthen the weight of the current meteorological elements. However, due to the precipitation, big amount of water can be stored in the soil contributing to the effect of the past climate elements during dry periods. Higher climate sensitivity (especially water sensitivity) of the herbaceous taxa ( Ambrosia and Poaceae) can be definitely established compared to the arboreal Populus. Separation of the weight of the current and past weather conditions for different taxa involves practical importance both for health care and agricultural production.

  19. Allergy to Parietaria officinalis pollen.

    PubMed

    Cvitanović, S

    1999-03-01

    Parietaria pollen allergens (officinalis, judaica, lusitanica, creatica) are one of the most common causes of pollinosis in the Mediterranean (Spain, France, Italy, and Croatia). Parietaria has very long period of pollination, often reaching peaks of more than 500 grains/m3 of air at the beginning of June, and very strong allergenic properties. There is a significantly positive correlation for the newcomers between the intensity of the skin test reaction and concentration of specific serum IgE with the length of residence in the area, whereas autochthonous patients show a negative correlation between the age and intensity of hypersensitivity. This suggests that the environment encountered at birth may have a decisive role in the development of allergic respiratory diseases. Due to structurally similar pollen antigens in different Parietaria species, they are all equally useful in diagnosis and treatment of allergy, regardless of the pollen species to which the patient is sensitive or the prevalent species in the area. In our hands, specific immunotherapy with subcutaneous injections of partially purified, characterized, and standardized pollen extract of Parietaria allergen proved effective. It was possible to define an optimal maintenance dose of antigen per injection. During (years of) therapy, we observed an initial increase in total serum IgE concentration and increase in allergen-specific serum IgG blocking antibodies, decrease in allergen-specific serum IgE concentration and amount of histamine released from peripheral blood leukocytes challenged in vitro with the allergen, as well as in symptom and additional medication scores.

  20. Airborne mesophilic fungal spores in various residential environments

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.

    In the present work viable fungal spore counts and flora of indoor air were compared in various residences. Total viable spore counts were lowest in the urban/suburban residences and highest in the rural residences. Moisture problems in the urban environment did not increase total viable spore count, but affected composition of fungal flora. In the rural environment, spore counts were much higher in the old houses than in the new ones. Penicillium was the most prevalent fungus in the air of all the residences studied. Airborne Aspergillus, Cladosporium spores and yeast cells were more common in the damp residences and the old rural houses than in the other residences.

  1. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  2. T-cell count

    MedlinePlus

    Thymus derived lymphocyte count; T-lymphocyte count; T cell count ... T cells are a type of lymphocyte. Lymphocytes are white blood cells. They make up part of the immune system. T cells help the body fight diseases or harmful ...

  3. Bioassaying for ozone with pollen systems.

    PubMed Central

    Feder, W A

    1981-01-01

    Sensitivity to ozone of pollen germinating in vitro is closely correlated with ozone sensitivity of the pollen parent. Ozone-sensitive and tolerant pollen populations have been identified in tobacco, petunia, and tomato cultivars. The rate of tube elongation can be reversibly slowed or stopped by exposure to low concentrations of ozone. Tube growth rates in the presence of a range of ozone dosages, of pollen populations exhibiting differing ozone sensitivity can be measured and different growth rates can be correlated with ozone dosages. The performance of selected pollen populations can then be used to bioassay ozone in ambient air by introducing the air sample into a growth chamber where ozone-sensitive pollen in growing. Petunia and tobacco pollen are especially useful because they store well at ordinary freezer temperatures and do not require special preparation prior to storage. Modified Brewbacker's growth medium is suitable for growth of both these pollen types. Four useful cultivars are Bel W-3, ozone-sensitive and Bel B, ozone-tolerant tobacco, and White Bountiful, ozone-sensitive and Blue Lagoon, ozone-tolerant petunia. Observations can be made directly by using a TV scanner, or by time lapse or interval photography. Year-round pollen production can be achieved in the greenhouse. Harvested pollen can be tested, packaged, and transported to user facilities without loss of vigor. Pollen populations are inexpensive to produce, respond reliably, and are simple to use as a bioassay for air quality. Images FIGURE 2. FIGURE 3. FIGURE 4. PMID:7460876

  4. Brassinosteroids promote Arabidopsis pollen germination and growth.

    PubMed

    Vogler, Frank; Schmalzl, Christina; Englhart, Maria; Bircheneder, Martin; Sprunck, Stefanie

    2014-09-01

    Pollen tubes are among the fastest tip-growing plant cells and represent an excellent experimental system for studying the dynamics and spatiotemporal control of polarized cell growth. However, investigating pollen tube tip growth in the model plant Arabidopsis remains difficult because in vitro pollen germination and pollen tube growth rates are highly variable and largely different from those observed in pistils, most likely due to growth-promoting properties of the female reproductive tract. We found that in vitro grown Arabidopsis pollen respond to brassinosteroid (BR) in a dose-dependent manner. Pollen germination and pollen tube growth increased nine- and fivefold, respectively, when media were supplemented with 10 µM epibrassinolide (epiBL), resulting in growth kinetics more similar to growth in vivo. Expression analyses show that the promoter of one of the key enzymes in BR biosynthesis, CYP90A1/CPD, is highly active in the cells of the reproductive tract that form the pathway for pollen tubes from the stigma to the ovules. Pollen tubes grew significantly shorter through the reproductive tract of a cyp90a1 mutant compared to the wild type, or to a BR perception mutant. Our results show that epiBL promotes pollen germination and tube growth in vitro and suggest that the cells of the reproductive tract provide BR compounds to stimulate pollen tube growth.

  5. Forecasting daily pollen concentrations using data-driven modeling methods in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Voukantsis, Dimitris; Niska, Harri; Karatzas, Kostas; Riga, Marina; Damialis, Athanasios; Vokou, Despoina

    2010-12-01

    Airborne pollen have been associated with allergic symptoms in sensitized individuals, having a direct impact on the overall quality of life of a considerable fraction of the population. Therefore, forecasting elevated airborne pollen concentrations and communicating this piece of information to the public are key issues in prophylaxis and safeguarding the quality of life of the overall population. In this study, we adopt a data-oriented approach in order to develop operational forecasting models (1-7 days ahead) of daily average airborne pollen concentrations of the highly allergenic taxa: Poaceae, Oleaceae and Urticaceae. The models are developed using a representative dataset consisting of pollen and meteorological time-series recorded during the years 1987-2002, in the city of Thessaloniki, Greece. The input variables (features) of the models have been optimized by making use of genetic algorithms, whereas we evaluate the performance of three algorithms: i) multi-Layer Perceptron, ii) support vector regression and iii) regression trees originating from distinct domains of Computational Intelligence (CI), and compare the resulting models with traditional multiple linear regression models. Results show the superiority of CI methods, especially when forecasting several days ahead, compared to traditional multiple linear regression models. Furthermore, the CI models complement each other, resulting to a combined model that performs better than each one separately. The overall performance ranges, in terms of the index of agreement, from 0.85 to 0.93 clearly suggesting the potential operational use of the models. The latter ones can be utilized in provision of personalized and on-time information services, which can improve quality of life of sensitized citizens.

  6. Pollen resistance to water in 80 angiosperm species: flower structures protect rain-susceptible pollen.

    PubMed

    Mao, Yun-Yun; Huang, Shuang-Quan

    2009-08-01

    Flowers exhibit adaptive responses to biotic and abiotic factors. It remains unclear whether pollen susceptibility to rain damage plays a role in the evolution of floral form. We investigated flower performance in rain and compared pollen longevity in dry conditions, pure water and solutions with different sucrose concentrations in 80 flowering species from 46 families with diverse floral shapes and pollination modes. A pollen viability test showed that pollen longevity in all studied species was greatly reduced by wetting. We found that pollen of species with complete protection by flower structures was susceptible to water damage and a high proportion of resistant pollen occurred in unprotected species. Flowers whose structures expose pollen to rain may also reduce rain damage through temporal patterns of pollen presentation. This prediction was supported by our direct measurement of pollen presentation duration on rainy days. Our observations showed that variation in pollen performance in water was associated with differences in floral forms. Water-resistant pollen and extended pollen presentation duration were favored by selection via rain contact in species in which pollen was not protected from rain. These findings support the functional hypothesis that flower structures protect susceptible pollen from rain, demonstrating that rain acts as a force shaping floral form.

  7. Pollen selection under acid rain stress

    SciTech Connect

    Zhang, Y.

    1994-01-01

    To investigate whether acid rain stress induces pollen selection in nature, three different approaches were used, based on the assumption that the response of pollen grains to acid rain is controlled by an acid sensitive gene product. Germination of pollen from homozygous and heterozygous individuals under acid rain stress was examined to detect any differences in rate of germination between populations of homogeneous and heterogeneous pollen grains. In vitro and in vivo bulked segregant analysis using RAPDs was used to search for differences in DNA constitution between the survivors of acid rain stressed and non-acid rain stressed pollen populations in vitro and between the progenies of acid rain stressed and non-acid rain stressed populations during pollination, respectively. No evidence for the pollen selection under acid rain stress was obtained in any of the test systems. Inhibition of protein synthesis using cycloheximide led to significant reduction of tube elongation at 4 hr and had no effect on pollen germination at any time interval tested. Total proteins extracted from control and acid rain stressed pollen grain populations exhibited no differences. The reduction of corn pollen germination in vitro under acid rain stress was mainly due to pollen rupture. The present data indicates the reduction of pollen germination and tube growth under acid rain stress may be a physiological response rather than a genetic response. A simple, nontoxic, and effective method to separate germinated from ungerminated pollen grains has been developed using pollen from corn (Zea mays, L. cv. Pioneer 3747). The separated germinated pollen grains retained viability and continued tube growth when placed in culture medium.

  8. Early Pollen Sensitization in Children Is Dependent upon Regional Aeroallergen Exposure

    PubMed Central

    Wong, Vanessa; Wilson, Nevin W.; Peele, Kathy; Hogan, Mary Beth

    2012-01-01

    Introduction. Aeroallergen sensitization occurs at an earlier age than previously noted. The purpose of this paper was to identify which pollens cause early sensitization in young children presenting with rhinitis symptoms. Methods. This paper was a retrospective analysis of skin test results from 2- to 8-year-old patients presenting with a history consistent with allergic rhinitis. Patients were tested to aeroallergens common to the Great Basin along with a histamine and saline control. Pollen counts were obtained from a Reno, NV-certified counting station. Results. 123 children less than 8 years of age were identified. Over 50% of these children were sensitized to at least one aeroallergen. Chemopodaciae, timothy, alfalfa, black walnut, olive, mountain cedar and willow were predominating sensitizing aeroallergens of the Great Basin Region. Pollen counts were notable for a early spring peak for the tree season, grass season in May and weed season in August. Pollen levels continued to November at low levels. Discussion. Aeroallergens causing early sensitization differed from those which had predominately been reported in other regions of the United States. Pediatric allergists should consider performing a local review of sensitizing aeroallergens in their region to assist with identification and management of allergic rhinitis in their youngest patients. Please make style changes as appropriate. PMID:22619685

  9. A comparison of 1978 and 2006 peak pollen seasons and sampling methods in Missoula, Montana

    PubMed Central

    CRISPEN, KELLY L.; GILLESPIE, DONALD N.; WEILER, EMILY C.; NOONAN, CURTIS W.; HAMILTON, RAYMOND F.; WARD, TONY J.

    2010-01-01

    A study was conducted in Missoula, Montana to compare local pollen counts from 1978 with those measured nearly 30 years later in 2006 using two different measurement techniques (Durham gravimetric sampler and a Burkard volumetric sampler). Trends in peak pollen times measured during the spring, summer and autumn, respectively, were compared between the two years by Pearson’s correlation and frequency of occurrence of plant genus. Meteorological conditions were also examined during each of the two study periods. In comparing the two years, there was a statistically significant linear association between the different counts for the months of April through August, with similar levels of pollen types for any given month. The five predominant pollen types (based on counts) identified in each study were Pinus, Poaceae, Populus, Alnus, and Betula for 2006 and Pinus, Poaceae, Populus, Acer and Artemisia for 1978. In summary most of the genera displayed similar peak pollination timing between the two years, suggesting that results from the Durham (gravimetric) and Burkard (volumetric) sampling methods are comparable when reporting relative frequency of occurrence. PMID:21151741

  10. Evaluation of three portable samplers for monitoring airborne fungi

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Mishra, S. K.; Pierson, D. L.

    1996-01-01

    Airborne fungi were monitored at five sample sites with the Burkard portable, the RCS Plus, and the SAS Super 90 air samplers; the Andersen 2-stage impactor was used for comparison. All samplers were calibrated before being used simultaneously to collect 100-liter samples at each site. The Andersen and Burkard samplers retrieved equivalent volumes of airborne fungi; the SAS Super 90 and RCS Plus measurements did not differ from each other but were significantly lower than those obtained with the Andersen or Burkard samplers. Total fungal counts correlated linearly with Cladosporium and Penicillium counts. Alternaria species, although present at all sites, did not correlate with total count or with amounts of any other fungal genera. Sampler and location significantly influenced fungal counts, but no interactions between samplers and locations were found.

  11. Pollen-Associated Microbiome Correlates with Pollution Parameters and the Allergenicity of Pollen.

    PubMed

    Obersteiner, Andrea; Gilles, Stefanie; Frank, Ulrike; Beck, Isabelle; Häring, Franziska; Ernst, Dietrich; Rothballer, Michael; Hartmann, Anton; Traidl-Hoffmann, Claudia; Schmid, Michael

    2016-01-01

    Pollen allergies have been rapidly increasing over the last decades. Many allergenic proteins and non-allergenic adjuvant compounds of pollen are involved in the plant defense against environmental or microbial stress. The first aim of this study was to analyze and compare the colonizing microbes on allergenic pollen. The second aim was to investigate detectable correlations between pollen microbiota and parameters of air pollution or pollen allergenicity. To reach these aims, bacterial and fungal DNA was isolated from pollen samples of timothy grass (Phleum pratense, n = 20) and birch trees (Betula pendula, n = 55). With this isolated DNA, a terminal restriction fragment length polymorphism analysis was performed. One result was that the microbial diversity on birch tree and timothy grass pollen samples (Shannon/Simpson diversity indices) was partly significantly correlated to allergenicity parameters (Bet v 1/Phl p 5, pollen-associated lipid mediators). Furthermore, the microbial diversity on birch pollen samples was correlated to on-site air pollution (nitrogen dioxide (NO2), ammonia (NH3), and ozone (O3)). What is more, a significant negative correlation was observed between the microbial diversity on birch pollen and the measured NO2 concentrations on the corresponding trees. Our results showed that the microbial composition of pollen was correlated to environmental exposure parameters alongside with a differential expression of allergen and pollen-associated lipid mediators. This might translate into altered allergenicity of pollen due to environmental and microbial stress.

  12. Pollen-Associated Microbiome Correlates with Pollution Parameters and the Allergenicity of Pollen

    PubMed Central

    Obersteiner, Andrea; Gilles, Stefanie; Frank, Ulrike; Beck, Isabelle; Häring, Franziska; Ernst, Dietrich; Rothballer, Michael; Hartmann, Anton; Traidl-Hoffmann, Claudia; Schmid, Michael

    2016-01-01

    Pollen allergies have been rapidly increasing over the last decades. Many allergenic proteins and non-allergenic adjuvant compounds of pollen are involved in the plant defense against environmental or microbial stress. The first aim of this study was to analyze and compare the colonizing microbes on allergenic pollen. The second aim was to investigate detectable correlations between pollen microbiota and parameters of air pollution or pollen allergenicity. To reach these aims, bacterial and fungal DNA was isolated from pollen samples of timothy grass (Phleum pratense, n = 20) and birch trees (Betula pendula, n = 55). With this isolated DNA, a terminal restriction fragment length polymorphism analysis was performed. One result was that the microbial diversity on birch tree and timothy grass pollen samples (Shannon/Simpson diversity indices) was partly significantly correlated to allergenicity parameters (Bet v 1/Phl p 5, pollen-associated lipid mediators). Furthermore, the microbial diversity on birch pollen samples was correlated to on-site air pollution (nitrogen dioxide (NO2), ammonia (NH3), and ozone (O3)). What is more, a significant negative correlation was observed between the microbial diversity on birch pollen and the measured NO2 concentrations on the corresponding trees. Our results showed that the microbial composition of pollen was correlated to environmental exposure parameters alongside with a differential expression of allergen and pollen-associated lipid mediators. This might translate into altered allergenicity of pollen due to environmental and microbial stress. PMID:26910418

  13. Pollen-Associated Microbiome Correlates with Pollution Parameters and the Allergenicity of Pollen.

    PubMed

    Obersteiner, Andrea; Gilles, Stefanie; Frank, Ulrike; Beck, Isabelle; Häring, Franziska; Ernst, Dietrich; Rothballer, Michael; Hartmann, Anton; Traidl-Hoffmann, Claudia; Schmid, Michael

    2016-01-01

    Pollen allergies have been rapidly increasing over the last decades. Many allergenic proteins and non-allergenic adjuvant compounds of pollen are involved in the plant defense against environmental or microbial stress. The first aim of this study was to analyze and compare the colonizing microbes on allergenic pollen. The second aim was to investigate detectable correlations between pollen microbiota and parameters of air pollution or pollen allergenicity. To reach these aims, bacterial and fungal DNA was isolated from pollen samples of timothy grass (Phleum pratense, n = 20) and birch trees (Betula pendula, n = 55). With this isolated DNA, a terminal restriction fragment length polymorphism analysis was performed. One result was that the microbial diversity on birch tree and timothy grass pollen samples (Shannon/Simpson diversity indices) was partly significantly correlated to allergenicity parameters (Bet v 1/Phl p 5, pollen-associated lipid mediators). Furthermore, the microbial diversity on birch pollen samples was correlated to on-site air pollution (nitrogen dioxide (NO2), ammonia (NH3), and ozone (O3)). What is more, a significant negative correlation was observed between the microbial diversity on birch pollen and the measured NO2 concentrations on the corresponding trees. Our results showed that the microbial composition of pollen was correlated to environmental exposure parameters alongside with a differential expression of allergen and pollen-associated lipid mediators. This might translate into altered allergenicity of pollen due to environmental and microbial stress. PMID:26910418

  14. [Identification of cattail pollen (puhuang), pine pollen (songhuafen) and its adulterants by ITS2 sequence].

    PubMed

    Ma, Xiao-Xi; Sun, Wei; Ren, Wei-Chao; Xiang, Li; Zhao, Bo; Zhang, Ya-Qin; Song, Ming; Mu, Ze-Jing; Chen, Shi-Lin

    2014-06-01

    DNA barcoding method was conducted for the authentication of pollen materials due to difficulty of discriminating pollen materials bearing morphological similarity. In this study, a specific focus was to identify cattail pollen (Puhuang) and pine pollen (Songhuafen) samples from their adulterants which are frequently mixed-together. Regions of the internal transcribed spacer (ITS2) from 60 samples were sequenced, and new primers for cattail pollen were designed according to the sequence information. The results from the NJ trees showed that the species of pine pollen, Puhuang and their adulterants can be classified as obvious monophyly. Therefore, we propose to adapt DNA barcoding methodology to accurately distinguish cattail pollen, pine pollen and their adulterant materials. It is a great help for drug regulatory agency to supervise the quality of medicinal materials.

  15. Detection of chaos: New approach to atmospheric pollen time-series analysis

    NASA Astrophysics Data System (ADS)

    Bianchi, M. M.; Arizmendi, C. M.; Sanchez, J. R.

    1992-09-01

    Pollen and spores are biological particles that are ubiquitous to the atmosphere and are pathologically significant, causing plant diseases and inhalant allergies. One of the main objectives of aerobiological surveys is forecasting. Prediction models are required in order to apply aerobiological knowledge to medical or agricultural practice; a necessary condition of these models is not to be chaotic. The existence of chaos is detected through the analysis of a time series. The time series comprises hourly counts of atmospheric pollen grains obtained using a Burkard spore trap from 1987 to 1989 at Mar del Plata. Abraham's method to obtain the correlation dimension was applied. A low and fractal dimension shows chaotic dynamics. The predictability of models for atomspheric pollen forecasting is discussed.

  16. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  17. Specific immunotherapy in atopic dermatitis--Four-year treatment in different age and airborne allergy type subgroups.

    PubMed

    Czarnecka-Operacz, Magdalena; Silny, Wojciech

    2006-01-01

    Atopic dermatitis (AD) is a common inflammatory disease involving the skin and frequently other organs and systems such as respiratory system. The recently recognized atopic nature of the skin inflammation in AD has raised a growing interest in the treatment with allergen-specific immunotherapy (SIT). In this study, the efficacy of SIT was evaluated in a group of 37 AD patients aged 5-44 years: 14 allergic to house dust mites (HDM), 17 to grass pollen allergens, and 6 allergic to grass and mugwort pollen allergens. IgE-mediated airborne allergy was well documented in all cases. SIT was performed with Novo Helisen Depot allergy vaccines of appropriate composition. Control group included 29 patients with AD and confirmed IgE-mediated airborne allergy to analogous allergens: HDM, 14 patients; grass pollen allergens, 11 patients; and grass and mugwort pollen allergens, 4 patients. Conventional methods of AD treatment were used in the control group. Clinical evaluation of patients was performed with W-AZS index after 12, 24, 36 and 48 months of therapy. SIT was found to be an efficacious and safe method of treatment for selected patients with AD and IgE-mediated airborne allergy. The efficacy of this therapeutic method was significantly higher than that recorded by conventional methods used in the control group in all 3 age subgroups and all 3 types of airborne allergy (HDM, grass pollen, and grass and mugwort pollen). It is concluded that SIT may be highly promising method of controlling skin inflammation in AD with the potential to prevent the development of AD into respiratory allergy.

  18. An evidential example of airborne bacteria in a crowded, underground public concourse in Tokyo

    NASA Astrophysics Data System (ADS)

    Seino, Kaoruko; Takano, Takehito; Nakamura, Keiko; Watanabe, Masafumi

    2005-01-01

    We examined airborne bacteria in an underground concourse in Tokyo and investigated conditions that influenced bacterial counts. Airborne bacteria were collected by using an impactor sampler. Colonies on plate count agar (PCA) and Columbia colistin-nalidixic acid agar with 5% sheep blood (CNA agar) were enumerated. The range, geometric mean, and 95% CI of the bacterial counts (CFU m-3) on PCA and CNA agar were 150-1380, 456, 382-550 and 50-990, 237, 182-309, respectively. Bacterial counts on PCA significantly correlated with number of the pedestrians (r=0.89), relative humidity (r=0.70) and airborne dust (PM5.0) (r=0.73). Results of a multiple regression indicated independent positive association between the number of pedestrians and bacterial counts on PCA (p<0.01) after excluding the influence of relative humidity and airborne dust. Similar results were obtained with the statistical analysis for the counts of bacteria on CNA agar. Gram-positive cocci were dominant on PCA and CNA agar. Staphylococcus epidermidis and Micrococcus spp. were dominant among the 11 genera and 19 species identified in the present study. Considering the pattern of identified species and the significant independent association between number of pedestrians and bacterial counts, airborne bacteria in a crowded underground concourse were mostly originated from the pedestrians who were walking in the underground concourse. This study gave an evidential example of bacterial conditions in the air of an underground crowded public space in Tokyo.

  19. Seed set, pollen morphology and pollen surface composition response to heat stress in field pea.

    PubMed

    Jiang, Yunfei; Lahlali, Rachid; Karunakaran, Chithra; Kumar, Saroj; Davis, Arthur R; Bueckert, Rosalind A

    2015-11-01

    Pea (Pisum sativum L.) is a major legume crop grown in a semi-arid climate in Western Canada, where heat stress affects pollination, seed set and yield. Seed set and pod growth characteristics, along with in vitro percentage pollen germination, pollen tube growth and pollen surface composition, were measured in two pea cultivars (CDC Golden and CDC Sage) subjected to five maximum temperature regimes ranging from 24 to 36 °C. Heat stress reduced percentage pollen germination, pollen tube length, pod length, seed number per pod, and the seed-ovule ratio. Percentage pollen germination of CDC Sage was greater than CDC Golden at 36 °C. No visible morphological differences in pollen grains or the pollen surface were observed between the heat and control-treated pea. However, pollen wall (intine) thickness increased due to heat stress. Mid-infrared attenuated total reflectance (MIR-ATR) spectra revealed that the chemical composition (lipid, proteins and carbohydrates) of each cultivar's pollen grains responded differently to heat stress. The lipid region of the pollen coat and exine of CDC Sage was more stable compared with CDC Golden at 36 °C. Secondary derivatives of ATR spectra indicated the presence of two lipid types, with different amounts present in pollen grains from each cultivar.

  20. Polyamines in Pollen: From Microsporogenesis to Fertilization.

    PubMed

    Aloisi, Iris; Cai, Giampiero; Serafini-Fracassini, Donatella; Del Duca, Stefano

    2016-01-01

    The entire pollen life span is driven by polyamine (PA) homeostasis, achieved through fine regulation of their biosynthesis, oxidation, conjugation, compartmentalization, uptake, and release. The critical role of PAs, from microsporogenesis to pollen-pistil interaction during fertilization, is suggested by high and dynamic transcript levels of PA biosynthetic genes, as well as by the activities of the corresponding enzymes. Moreover, exogenous supply of PAs strongly affects pollen maturation and pollen tube elongation. A reduction of endogenous free PAs impacts pollen viability both in the early stages of pollen development and during fertilization. A number of studies have demonstrated that PAs largely function by modulating transcription, by structuring pollen cell wall, by modulating protein (mainly cytoskeletal) assembly as well as by modulating the level of reactive oxygen species. Both free low-molecular weight aliphatic PAs, and PAs conjugated to proteins and hydroxyl-cinnamic acids take part in these complex processes. Here, we review both historical and recent evidence regarding molecular events underlying the role of PAs during pollen development. In the concluding remarks, the outstanding issues and directions for future research that will further clarify our understanding of PA involvement during pollen life are outlined.

  1. Polymerization of Actin from Maize Pollen.

    PubMed Central

    Yen, L. F.; Liu, X.; Cai, S.

    1995-01-01

    Here we describe the in vitro polymerization of actin from maize (Zea mays) pollen. The purified actin from maize pollen reported in our previous paper (X. Liu, L.F. Yen [1992] Plant Physiol 99: 1151-1155) is biologically active. In the presence of ATP, KCl, and MgCl2 the purified pollen actin polymerized into filaments. During polymerization the spectra of absorbance at 232 nm increased gradually. Polymerization of pollen actin was evidently accompanied by an increase in viscosity of the pollen actin solution. Also, the specific viscosity of pollen F-actin increased in a concentration-dependent manner. The ultraviolet difference spectrum of pollen actin is very similar to that of rabbit muscle actin. The activity of myosin ATPase from rabbit muscle was activated 7-fold by the polymerized pollen actin (F-actin). The actin filaments were visualized under the electron microscope as doubly wound strands of 7 nm diameter. If cytochalasin B was added before staining, no actin filaments were observed. When actin filaments were treated with rabbit heavy meromyosin, the actin filaments were decorated with an arrowhead structure. These results imply that there is much similarity between pollen and muscle actin. PMID:12228343

  2. Environmental pollen trapped by tobacco leaf as indicators of the provenance of counterfeit cigarette products: a preliminary investigation and test of concept.

    PubMed

    Donaldson, Margaret P; Stephens, William E

    2010-05-01

    The global trade in counterfeit tobacco products is increasingly taking market share from legal brands in many parts of the developed world, with attendant adverse economic, health, criminal, and other societal impacts. Knowing the geographical source is central to developing new strategies for curbing this illicit trade, and here, the potential of environmental pollen extracted from manufactured cigarettes is examined. Two samples representing U.S. and Chinese brands were investigated for their pollen content. Results indicate that tobacco leaf very efficiently captures environmental pollen (about 1800 and 12,600 grains per cigarette, respectively) with no detectable self-contamination by the tobacco plant. In both cases, the flora is typical of open space environments, but pollen type counts indicate very different distributions of species. This preliminary investigation indicates that palynology has the potential to constrain geographical source(s) of tobacco, particularly if regionally localized species can be recognized among the pollen.

  3. Assembling spatially explicit landscape models of pollen and spore dispersal by wind for risk assessment.

    PubMed

    Shaw, M W; Harwood, T D; Wilkinson, M J; Elliott, L

    2006-07-01

    Models of windblown pollen or spore movement are required to predict gene flow from genetically modified (GM) crops and the spread of fungal diseases. We suggest a simple form for a function describing the distance moved by a pollen grain or fungal spore, for use in generic models of dispersal. The function has power-law behaviour over sub-continental distances. We show that air-borne dispersal of rapeseed pollen in two experiments was inconsistent with an exponential model, but was fitted by power-law models, implying a large contribution from distant fields to the catches observed. After allowance for this 'background' by applying Fourier transforms to deconvolve the mixture of distant and local sources, the data were best fit by power-laws with exponents between 1.5 and 2. We also demonstrate that for a simple model of area sources, the median dispersal distance is a function of field radius and that measurement from the source edge can be misleading. Using an inverse-square dispersal distribution deduced from the experimental data and the distribution of rapeseed fields deduced by remote sensing, we successfully predict observed rapeseed pollen density in the city centres of Derby and Leicester (UK).

  4. Assembling spatially explicit landscape models of pollen and spore dispersal by wind for risk assessment.

    PubMed

    Shaw, M W; Harwood, T D; Wilkinson, M J; Elliott, L

    2006-07-01

    Models of windblown pollen or spore movement are required to predict gene flow from genetically modified (GM) crops and the spread of fungal diseases. We suggest a simple form for a function describing the distance moved by a pollen grain or fungal spore, for use in generic models of dispersal. The function has power-law behaviour over sub-continental distances. We show that air-borne dispersal of rapeseed pollen in two experiments was inconsistent with an exponential model, but was fitted by power-law models, implying a large contribution from distant fields to the catches observed. After allowance for this 'background' by applying Fourier transforms to deconvolve the mixture of distant and local sources, the data were best fit by power-laws with exponents between 1.5 and 2. We also demonstrate that for a simple model of area sources, the median dispersal distance is a function of field radius and that measurement from the source edge can be misleading. Using an inverse-square dispersal distribution deduced from the experimental data and the distribution of rapeseed fields deduced by remote sensing, we successfully predict observed rapeseed pollen density in the city centres of Derby and Leicester (UK). PMID:16769644

  5. Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples.

    PubMed

    Keller, A; Danner, N; Grimmer, G; Ankenbrand, M; von der Ohe, K; von der Ohe, W; Rost, S; Härtel, S; Steffan-Dewenter, I

    2015-03-01

    The identification of pollen plays an important role in ecology, palaeo-climatology, honey quality control and other areas. Currently, expert knowledge and reference collections are essential to identify pollen origin through light microscopy. Pollen identification through molecular sequencing and DNA barcoding has been proposed as an alternative approach, but the assessment of mixed pollen samples originating from multiple plant species is still a tedious and error-prone task. Next-generation sequencing has been proposed to avoid this hindrance. In this study we assessed mixed pollen probes through next-generation sequencing of amplicons from the highly variable, species-specific internal transcribed spacer 2 region of nuclear ribosomal DNA. Further, we developed a bioinformatic workflow to analyse these high-throughput data with a newly created reference database. To evaluate the feasibility, we compared results from classical identification based on light microscopy from the same samples with our sequencing results. We assessed in total 16 mixed pollen samples, 14 originated from honeybee colonies and two from solitary bee nests. The sequencing technique resulted in higher taxon richness (deeper assignments and more identified taxa) compared to light microscopy. Abundance estimations from sequencing data were significantly correlated with counted abundances through light microscopy. Simulation analyses of taxon specificity and sensitivity indicate that 96% of taxa present in the database are correctly identifiable at the genus level and 70% at the species level. Next-generation sequencing thus presents a useful and efficient workflow to identify pollen at the genus and species level without requiring specialised palynological expert knowledge.

  6. Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples.

    PubMed

    Keller, A; Danner, N; Grimmer, G; Ankenbrand, M; von der Ohe, K; von der Ohe, W; Rost, S; Härtel, S; Steffan-Dewenter, I

    2015-03-01

    The identification of pollen plays an important role in ecology, palaeo-climatology, honey quality control and other areas. Currently, expert knowledge and reference collections are essential to identify pollen origin through light microscopy. Pollen identification through molecular sequencing and DNA barcoding has been proposed as an alternative approach, but the assessment of mixed pollen samples originating from multiple plant species is still a tedious and error-prone task. Next-generation sequencing has been proposed to avoid this hindrance. In this study we assessed mixed pollen probes through next-generation sequencing of amplicons from the highly variable, species-specific internal transcribed spacer 2 region of nuclear ribosomal DNA. Further, we developed a bioinformatic workflow to analyse these high-throughput data with a newly created reference database. To evaluate the feasibility, we compared results from classical identification based on light microscopy from the same samples with our sequencing results. We assessed in total 16 mixed pollen samples, 14 originated from honeybee colonies and two from solitary bee nests. The sequencing technique resulted in higher taxon richness (deeper assignments and more identified taxa) compared to light microscopy. Abundance estimations from sequencing data were significantly correlated with counted abundances through light microscopy. Simulation analyses of taxon specificity and sensitivity indicate that 96% of taxa present in the database are correctly identifiable at the genus level and 70% at the species level. Next-generation sequencing thus presents a useful and efficient workflow to identify pollen at the genus and species level without requiring specialised palynological expert knowledge. PMID:25270225

  7. Ragweed pollen observed in Turkey: detection of sources using back trajectory models.

    PubMed

    Zemmer, Franziska; Karaca, Ferhat; Ozkaragoz, Fatih

    2012-07-15

    This paper discusses the pollen season and the source apportionment of ragweed (Ambrosia) grains detected in the atmosphere of Istanbul, Turkey. The dynamic migration of this invasive taxon is a serious environmental issue. Ragweed pollen is highly allergenic and causes sensitization in patients at low concentrations. At present, there is no floristic evidence of this taxon in the region. Aerobiological records presented here, though, indicate a local source. Moreover, we argue that ragweed pollen comes from distant sources through air mass movements. The analysis concerns the ragweed season 2007. Pollens were sampled with a Burkard trap and identified at a magnification of 400 ×. Grains were counted on 12 transverse traverses to estimate bi-hourly changes in concentrations. The peak day was on August 28 with 20 grainsm(-3). Ragweed was observed on 22 days during August and September 2007. On all days, except one, the daily average concentration was below 10 grainsm(-3). Diurnal bi-hourly ragweed concentrations reached a maximum at 11:00 EET. Relatively high concentrations were observed between 21:00 and 01:00 EET. This allowed for the assumption of a local and a remote ragweed pollen source. We used HYSPLIT backward trajectory ensembles to identify possible sources on peak day. A frequency analysis of back trajectories covering the entire ragweed season followed. Firstly, possible local sources were the Istanbul Province and Turkish Thrace; secondly, a likely over-regional source was Bulgaria; and lastly, remote sources of ragweed pollen were the Ukraine, the Russian coastal region of the Black Sea and Moldova. This study provides evidence that pollens detected on our receptor site stem from combined local and remote origins.

  8. Mars Airborne Prospecting Spectrometer

    NASA Astrophysics Data System (ADS)

    Steinkraus, J. M.; Wright, M. W.; Rheingans, B. E.; Steinkraus, D. E.; George, W. P.; Aljabri, A.; Hall, J. L.; Scott, D. C.

    2012-06-01

    One novel approach towards addressing the need for innovative instrumentation and investigation approaches is the integration of a suite of four spectrometer systems to form the Mars Airborne Prospecting Spectrometers (MAPS) for prospecting on Mars.

  9. Pollen-limited reproduction in blue oak: Implications for wind pollination in fragmented populations

    USGS Publications Warehouse

    Knapp, E.E.; Goedde, M.A.; Rice, K.J.

    2001-01-01

    counted in radii ranging from 30 m to 80 m. The association between number of pollen-producing neighbors and acorn production was strongest when neighborhood sizes of 60 m or larger were considered. Our results suggest that fragmentation and thinning of blue oak woodlands may reduce pollen availability and limit reproduction in this wind-pollinated species.

  10. The Big Pumpkin Count.

    ERIC Educational Resources Information Center

    Coplestone-Loomis, Lenny

    1981-01-01

    Pumpkin seeds are counted after students convert pumpkins to jack-o-lanterns. Among the activities involved, pupils learn to count by 10s, make estimates, and to construct a visual representation of 1,000. (MP)

  11. Pollen foraging behaviour of solitary Hawaiian bees revealed through molecular pollen analysis.

    PubMed

    Wilson, Erin E; Sidhu, C Sheena; LeVan, Katherine E; Holway, David A

    2010-11-01

    Obtaining quantitative information concerning pollinator behaviour has become a primary objective of pollination studies, but methodological limitations hinder progress towards this goal. Here, we use molecular genetic methods in an ecological context to demonstrate that endemic Hawaiian Hylaeus bees (Hymenoptera: Colletidae) selectively collect pollen from native plant species in Haleakala and Hawaii Volcanoes National Parks. We identified pollen DNA from the crops (internal storage organs) of 21 Hylaeus specimens stored in ethanol for up to 3 years. Genetic analyses reveal high fidelity in pollen foraging despite the availability of pollen from multiple plant species present at each study site. At high elevations in Haleakala, pollen was available from more than 12 species of flowering plants, but Hawaiian silversword (Argyroxiphium sandwicense subsp. macrocephalum) comprised 86% of all pollen samples removed from bee crops. At lower elevations in both parks, we only detected pukiawe (Leptecophylla (Styphelia) tameiameiae) pollen in Hylaeus crops despite the presence of other plant species in flower during our study. Furthermore, 100% of Hylaeus crops from which we successfully identified pollen contained native plant pollen. The molecular approaches developed in this study provide species-level information about floral visitation of Hawaiian Hylaeus that does not require specialized palynological expertise needed for high-throughput visual pollen identification. Building upon this approach, future studies can thus develop appropriate and customized criteria for assessing mixed pollen loads from a broader range of sources and from other global regions.

  12. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity.

    PubMed

    Sénéchal, Hélène; Visez, Nicolas; Charpin, Denis; Shahali, Youcef; Peltre, Gabriel; Biolley, Jean-Philippe; Lhuissier, Franck; Couderc, Rémy; Yamada, Ohri; Malrat-Domenge, Audrey; Pham-Thi, Nhân; Poncet, Pascal; Sutra, Jean-Pierre

    2015-01-01

    This review summarizes the available data related to the effects of air pollution on pollen grains from different plant species. Several studies carried out either on in situ harvested pollen or on pollen exposed in different places more or less polluted are presented and discussed. The different experimental procedures used to monitor the impact of pollution on pollen grains and on various produced external or internal subparticles are listed. Physicochemical and biological effects of artificial pollution (gaseous and particulate) on pollen from different plants, in different laboratory conditions, are considered. The effects of polluted pollen grains, subparticles, and derived aeroallergens in animal models, in in vitro cell culture, on healthy human and allergic patients are described. Combined effects of atmospheric pollutants and pollen grains-derived biological material on allergic population are specifically discussed. Within the notion of "polluen," some methodological biases are underlined and research tracks in this field are proposed. PMID:26819967

  13. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity

    PubMed Central

    Sénéchal, Hélène; Visez, Nicolas; Charpin, Denis; Shahali, Youcef; Peltre, Gabriel; Biolley, Jean-Philippe; Lhuissier, Franck; Couderc, Rémy; Yamada, Ohri; Malrat-Domenge, Audrey; Pham-Thi, Nhân; Poncet, Pascal; Sutra, Jean-Pierre

    2015-01-01

    This review summarizes the available data related to the effects of air pollution on pollen grains from different plant species. Several studies carried out either on in situ harvested pollen or on pollen exposed in different places more or less polluted are presented and discussed. The different experimental procedures used to monitor the impact of pollution on pollen grains and on various produced external or internal subparticles are listed. Physicochemical and biological effects of artificial pollution (gaseous and particulate) on pollen from different plants, in different laboratory conditions, are considered. The effects of polluted pollen grains, subparticles, and derived aeroallergens in animal models, in in vitro cell culture, on healthy human and allergic patients are described. Combined effects of atmospheric pollutants and pollen grains-derived biological material on allergic population are specifically discussed. Within the notion of “polluen,” some methodological biases are underlined and research tracks in this field are proposed. PMID:26819967

  14. The pollen tube paradigm revisited.

    PubMed

    Kroeger, Jens; Geitmann, Anja

    2012-12-01

    The polar growth process characterizing pollen tube elongation has attracted numerous modeling attempts over the past years. While initial models focused on recreating the correct cellular geometry, recent models are increasingly based on experimentally assessed cellular parameters such as the dynamics of signaling processes and the mechanical properties of the cell wall. Recent modeling attempts have therefore substantially gained in biological relevance and predictive power. Different modeling methods are explained and the power and limitations of individual models are compared. Focus is on several recent models that use closed feedback loops in order to generate limit cycles representing the oscillatory behavior observed in growing tubes. PMID:23000432

  15. Storage and Viability of Hedychium Pollen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hedychium species generally flower in the summer and fall, but some bloom in winter and spring times. The different flowering times of the species implies that there is a need to find a way for storing and conserving viable pollen. The maintenance of pollen viability depends on several factors, incl...

  16. Polyamines in Pollen: From Microsporogenesis to Fertilization

    PubMed Central

    Aloisi, Iris; Cai, Giampiero; Serafini-Fracassini, Donatella; Del Duca, Stefano

    2016-01-01

    The entire pollen life span is driven by polyamine (PA) homeostasis, achieved through fine regulation of their biosynthesis, oxidation, conjugation, compartmentalization, uptake, and release. The critical role of PAs, from microsporogenesis to pollen–pistil interaction during fertilization, is suggested by high and dynamic transcript levels of PA biosynthetic genes, as well as by the activities of the corresponding enzymes. Moreover, exogenous supply of PAs strongly affects pollen maturation and pollen tube elongation. A reduction of endogenous free PAs impacts pollen viability both in the early stages of pollen development and during fertilization. A number of studies have demonstrated that PAs largely function by modulating transcription, by structuring pollen cell wall, by modulating protein (mainly cytoskeletal) assembly as well as by modulating the level of reactive oxygen species. Both free low-molecular weight aliphatic PAs, and PAs conjugated to proteins and hydroxyl-cinnamic acids take part in these complex processes. Here, we review both historical and recent evidence regarding molecular events underlying the role of PAs during pollen development. In the concluding remarks, the outstanding issues and directions for future research that will further clarify our understanding of PA involvement during pollen life are outlined. PMID:26925074

  17. Preservation of cycad and Ginkgo pollen

    USGS Publications Warehouse

    Frederiksen, N.O.

    1978-01-01

    Pollen grains of Ginkgo, Cycas, and Encephalartos were chemically treated together with pollen of Quercus, Alnus, and Pinus, the latter three genera being used as standards. The experiments showed that: (1) boiling the pollen for 8-10 hours in 10% KOH had little if any effect on any of the grains; (2) lengthy acetolysis treatment produced some degradation or corrosion, particularly in Ginkgo and Cycas, but the grains of even these genera remained easily recognizable; (3) oxidation with KMnO4 followed by H2O2 showed that pollen of Ginkgo, Cycas, and Encephalartos remains better preserved than that of Quercus and Alnus, and although Ginkgo and Encephalartos probably are slightly less resistant to oxidation than Pinus, no great differences exists between these monosulcate types and Pinus. Thus the experiments show that, at least for sediments low in bacteria, cycad and Ginkgo pollen should be well represented in the fossil record as far as their preservational capabilities are concerned. ?? 1978.

  18. Discrimination of airborne radioactivity from radon progeny

    SciTech Connect

    Ching-Jiang Chen; Pao-Shan Weng; Tieh-Chi Chu

    1994-05-01

    Naturally occurring radon and thoron progeny are the most interfering nuclides in the aerosol monitoring system. The high background and fluctuation of natural radioactivity on the filter can cause an error message to the aerosol monitor. A theoretical model was applied in the simulation of radon and thoron progeny behavior in the environment and on the filter. Results show that even a small amount of airborne nuclides on the filter could be discriminated by using the beta:alpha activity ratio instead of gross beta or alpha counting. This method can increase the sensitivity and reliability of real-time aerosol monitoring. 8 refs., 11 figs., 3 tabs.

  19. Immersion freezing of birch pollen washing water

    NASA Astrophysics Data System (ADS)

    Augustin, S.; Wex, H.; Niedermeier, D.; Pummer, B.; Grothe, H.; Hartmann, S.; Tomsche, L.; Clauss, T.; Voigtländer, J.; Ignatius, K.; Stratmann, F.

    2013-11-01

    Birch pollen grains are known to be ice nucleating active biological particles. The ice nucleating activity has previously been tracked down to biological macromolecules that can be easily extracted from the pollen grains in water. In the present study, we investigated the immersion freezing behavior of these ice nucleating active (INA) macromolecules. Therefore we measured the frozen fractions of particles generated from birch pollen washing water as a function of temperature at the Leipzig Aerosol Cloud Interaction Simulator (LACIS). Two different birch pollen samples were considered, with one originating from Sweden and one from the Czech Republic. For the Czech and Swedish birch pollen samples, freezing was observed to start at -19 and -17 °C, respectively. The fraction of frozen droplets increased for both samples down to -24 °C. Further cooling did not increase the frozen fractions any more. Instead, a plateau formed at frozen fractions below 1. This fact could be used to determine the amount of INA macromolecules in the droplets examined here, which in turn allowed for the determination of nucleation rates for single INA macromolecules. The main differences between the Swedish birch pollen and the Czech birch pollen were obvious in the temperature range between -17 and -24 °C. In this range, a second plateau region could be seen for Swedish birch pollen. As we assume INA macromolecules to be the reason for the ice nucleation, we concluded that birch pollen is able to produce at least two different types of INA macromolecules. We were able to derive parameterizations for the heterogeneous nucleation rates for both INA macromolecule types, using two different methods: a simple exponential fit and the Soccer ball model. With these parameterization methods we were able to describe the ice nucleation behavior of single INA macromolecules from both the Czech and the Swedish birch pollen.

  20. Pollen grains for oral vaccination.

    PubMed

    Atwe, Shashwati U; Ma, Yunzhe; Gill, Harvinder Singh

    2014-11-28

    Oral vaccination can offer a painless and convenient method of vaccination. Furthermore, in addition to systemic immunity it has potential to stimulate mucosal immunity through antigen-processing by the gut-associated lymphoid tissues. In this study we propose the concept that pollen grains can be engineered for use as a simple modular system for oral vaccination. We demonstrate feasibility of this concept by using spores of Lycopodium clavatum (clubmoss) (LSs). We show that LSs can be chemically cleaned to remove native proteins to create intact clean hollow LS shells. Empty pollen shells were successfully filled with molecules of different sizes demonstrating their potential to be broadly applicable as a vaccination system. Using ovalbumin (OVA) as a model antigen, LSs formulated with OVA were orally fed to mice. LSs stimulated significantly higher anti-OVA serum IgG and fecal IgA antibodies compared to those induced by use of cholera toxin as a positive-control adjuvant. The antibody response was not affected by pre-neutralization of the stomach acid, and persisted for up to 7 months. Confocal microscopy revealed that LSs can translocate into mouse intestinal wall. Overall, this study lays the foundation of using LSs as a novel approach for oral vaccination.

  1. Pollen competition between two sympatric Orchis species (Orchidaceae): the overtaking of conspecific of heterospecific pollen as a reproductive barrier.

    PubMed

    Luca, A; Palermo, A M; Bellusci, F; Pellegrino, G

    2015-01-01

    The frequency of hybrid formation in angiosperms depends on how and when heterospecific pollen is transferred to the stigma, and on the success of that heterospecific pollen at fertilising ovules. We applied pollen mixtures to stigmas to determine how pollen interactions affect siring success and the frequency of hybrid formation between two species of Mediterranean deceptive orchid. Plants of Orchis italica and O. anthropophora were pollinated with conspecific and heterospecific pollen (first conspecific pollen then heterospecific pollen and vice versa) and molecular analysis was used to check the paternity of the seeds produced. In this pair of Mediterranean orchids, competition between conspecific and heterospecific pollen functions as a post-pollination pre-zygotic barrier limiting the frequency of the formation of hybrids in nature. Flowers pollinated with heterospecific pollen can remain receptive for the arrival of conspecific pollen for a long time. There is always an advantage of conspecific pollen for fruit formation, whether it comes before or after heterospecific pollen, because it overtakes the heterospecific pollen. The conspecific pollen advantage exhibited in O. italica and O. anthropophora is likely to result from the reduced germination of heterospecific pollen or retarded growth of heterospecific pollen tubes in the stigma and ovary. Overall, the results indicate that our hybrid zone represents a phenomenon of little evolutionary consequence, and the conspecific pollen advantage maintains the genetic integrity of the parental species.

  2. Pollen

    MedlinePlus

    ... most common grasses that can cause allergies are: Bermuda grass Johnson grass Kentucky bluegrass Orchard grass Sweet ... Health Sciences 111 T.W. Alexander Drive Research Triangle Park, N.C. 27709 Last Reviewed: July 14, ...

  3. Airborne data acquisition techniques

    SciTech Connect

    Arro, A.A.

    1980-01-01

    The introduction of standards on acceptable procedures for assessing building heat loss has created a dilemma for the contractor performing airborne thermographic surveys. These standards impose specifications on instrumentation, data acquisition, recording, interpretation, and presentation. Under the standard, the contractor has both the obligation of compliance and the requirement of offering his services at a reasonable price. This paper discusses the various aspects of data acquisition for airborne thermographic surveys and various techniques to reduce the costs of this operation. These techniques include the calculation of flight parameters for economical data acquisition, the selection and use of maps for mission planning, and the use of meteorological forecasts for flight scheduling and the actual execution of the mission. The proper consideration of these factors will result in a cost effective data acquisition and will place the contractor in a very competitive position in offering airborne thermographic survey services.

  4. Thunderstorm-asthma and pollen allergy.

    PubMed

    D'Amato, G; Liccardi, G; Frenguelli, G

    2007-01-01

    Thunderstorms have been linked to asthma epidemics, especially during the pollen seasons, and there are descriptions of asthma outbreaks associated with thunderstorms, which occurred in several cities, prevalently in Europe (Birmingham and London in the UK and Napoli in Italy) and Australia (Melbourne and Wagga Wagga). Pollen grains can be carried by thunderstorm at ground level, where pollen rupture would be increased with release of allergenic biological aerosols of paucimicronic size, derived from the cytoplasm and which can penetrate deep into lower airways. In other words, there is evidence that under wet conditions or during thunderstorms, pollen grains may, after rupture by osmotic shock, release into the atmosphere part of their content, including respirable, allergen-carrying cytoplasmic starch granules (0.5-2.5 microm) or other paucimicronic components that can reach lower airways inducing asthma reactions in pollinosis patients. The thunderstorm-asthma outbreaks are characterized, at the beginning of thunderstorms by a rapid increase of visits for asthma in general practitioner or hospital emergency departments. Subjects without asthma symptoms, but affected by seasonal rhinitis can experience an asthma attack. No unusual levels of air pollution were noted at the time of the epidemics, but there was a strong association with high atmospheric concentrations of pollen grains such as grasses or other allergenic plant species. However, subjects affected by pollen allergy should be informed about a possible risk of asthma attack at the beginning of a thunderstorm during pollen season. PMID:17156336

  5. Thunderstorm-asthma and pollen allergy.

    PubMed

    D'Amato, G; Liccardi, G; Frenguelli, G

    2007-01-01

    Thunderstorms have been linked to asthma epidemics, especially during the pollen seasons, and there are descriptions of asthma outbreaks associated with thunderstorms, which occurred in several cities, prevalently in Europe (Birmingham and London in the UK and Napoli in Italy) and Australia (Melbourne and Wagga Wagga). Pollen grains can be carried by thunderstorm at ground level, where pollen rupture would be increased with release of allergenic biological aerosols of paucimicronic size, derived from the cytoplasm and which can penetrate deep into lower airways. In other words, there is evidence that under wet conditions or during thunderstorms, pollen grains may, after rupture by osmotic shock, release into the atmosphere part of their content, including respirable, allergen-carrying cytoplasmic starch granules (0.5-2.5 microm) or other paucimicronic components that can reach lower airways inducing asthma reactions in pollinosis patients. The thunderstorm-asthma outbreaks are characterized, at the beginning of thunderstorms by a rapid increase of visits for asthma in general practitioner or hospital emergency departments. Subjects without asthma symptoms, but affected by seasonal rhinitis can experience an asthma attack. No unusual levels of air pollution were noted at the time of the epidemics, but there was a strong association with high atmospheric concentrations of pollen grains such as grasses or other allergenic plant species. However, subjects affected by pollen allergy should be informed about a possible risk of asthma attack at the beginning of a thunderstorm during pollen season.

  6. Anaphylactic reaction after ingestion of local bee pollen.

    PubMed

    Mansfield, L E; Goldstein, G B

    1981-09-01

    A patient is presented who experienced an anaphylactic reaction after ingesting locally produced bee pollen to treat his spring hay fever. Evaluation revealed the patient to be extremely sensitive to mesquite pollen, a major component of the bee pollen he ingested. Passive transfer skin testing and neutralization techniques suggested that the mesquite pollen was the allergen which caused his anaphylactic reaction. Four other allergic patients were known to have systemic reactions after taking bee pollen. The patients received no warning that the bee pollen was potentially dangerous to an allergic person. It is recommended that vendors of bee pollen be required to alert allergic patients about possible risks.

  7. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  8. Airborne rain mapping radar

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Parks, G. S.; Li, F. K.; Im, K. E.; Howard, R. J.

    1988-01-01

    An airborne scanning radar system for remote rain mapping is described. The airborne rain mapping radar is composed of two radar frequency channels at 13.8 and 24.1 GHz. The radar is proposed to scan its antenna beam over + or - 20 deg from the antenna boresight; have a swath width of 7 km; a horizontal spatial resolution at nadir of about 500 m; and a range resolution of 120 m. The radar is designed to be applicable for retrieving rainfall rates from 0.1-60 mm/hr at the earth's surface, and for measuring linear polarization signatures and raindrop's fall velocity.

  9. Pollen wall development in flowering plants.

    PubMed

    Blackmore, Stephen; Wortley, Alexandra H; Skvarla, John J; Rowley, John R

    2007-01-01

    The outer pollen wall, or exine, is more structurally complex than any other plant cell wall, comprising several distinct layers, each with its own organizational pattern. Since elucidation of the basic events of pollen wall ontogeny using electron microscopy in the 1970s, knowledge of their developmental genetics has increased enormously. However, self-assembly processes that are not under direct genetic control also play an important role in pollen wall patterning. This review integrates ultrastructural and developmental findings with recent models for self-assembly in an attempt to understand the origins of the morphological complexity and diversity that underpin the science of palynology.

  10. Bee Pollen: Chemical Composition and Therapeutic Application

    PubMed Central

    Komosinska-Vassev, Katarzyna; Olczyk, Pawel; Kaźmierczak, Justyna; Olczyk, Krystyna

    2015-01-01

    Bee pollen is a valuable apitherapeutic product greatly appreciated by the natural medicine because of its potential medical and nutritional applications. It demonstrates a series of actions such as antifungal, antimicrobial, antiviral, anti-inflammatory, hepatoprotective, anticancer immunostimulating, and local analgesic. Its radical scavenging potential has also been reported. Beneficial properties of bee pollen and the validity for their therapeutic use in various pathological condition have been discussed in this study and with the currently known mechanisms, by which bee pollen modulates burn wound healing process. PMID:25861358

  11. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  12. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  13. A Pollen-Specific RALF from Tomato That Regulates Pollen Tube Elongation12[W][OA

    PubMed Central

    Covey, Paul A.; Subbaiah, Chalivendra C.; Parsons, Ronald L.; Pearce, Gregory; Lay, Fung T.; Anderson, Marilyn A.; Ryan, Clarence A.; Bedinger, Patricia A.

    2010-01-01

    Rapid Alkalinization Factors (RALFs) are plant peptides that rapidly increase the pH of plant suspension cell culture medium and inhibit root growth. A pollen-specific tomato (Solanum lycopersicum) RALF (SlPRALF) has been identified. The SlPRALF gene encodes a preproprotein that appears to be processed and released from the pollen tube as an active peptide. A synthetic SlPRALF peptide based on the putative active peptide did not affect pollen hydration or viability but inhibited the elongation of normal pollen tubes in an in vitro growth system. Inhibitory effects of SlPRALF were detectable at concentrations as low as 10 nm, and complete inhibition was observed at 1 μm peptide. At least 10-fold higher levels of alkSlPRALF, which lacks disulfide bonds, were required to see similar effects. A greater effect of peptide was observed in low-pH-buffered medium. Inhibition of pollen tube elongation was reversible if peptide was removed within 15 min of exposure. Addition of 100 nm SlPRALF to actively growing pollen tubes inhibited further elongation until tubes were 40 to 60 μm in length, after which pollen tubes became resistant to the peptide. The onset of resistance correlated with the timing of the exit of the male germ unit from the pollen grain into the tube. Thus, exogenous SlPRALF acts as a negative regulator of pollen tube elongation within a specific developmental window. PMID:20388667

  14. Fur versus feathers: pollen delivery by bats and hummingbirds and consequences for pollen production.

    PubMed

    Muchhala, Nathan; Thomson, James D

    2010-06-01

    One floral characteristic associated with bat pollination (chiropterophily) is copious pollen production, a pattern we confirmed in a local comparison of hummingbird- and bat-adapted flowers from a cloud forest site in Ecuador. Previous authors have suggested that wasteful pollen transfer by bats accounted for the pattern. Here we propose and test a new hypothesis: bats select for increased pollen production because they can efficiently transfer larger amounts of pollen, which leads to a more linear male fitness gain curve for bat-pollinated plants. Flight cage experiments with artificial flowers and flowers of Aphelandra acanthus provide support for this hypothesis; in both instances, the amount of pollen delivered to stigmas by birds is not related to the amount of pollen removed from anthers on the previous visit, while the same function for bats increases linearly. Thus, increased pollen production will be linearly related to increased male reproductive success for bat flowers, while for bird flowers, increased pollen production leads to rapidly diminishing fitness returns. We speculate that fur takes up and holds more pollen than feathers, which seem to readily shed excess grains. Our gain-curve hypothesis may also explain why evolutionary shifts from bird to bat pollination seem more common than shifts in the opposite direction.

  15. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  16. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  17. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  18. Medicinal smoke reduces airborne bacteria.

    PubMed

    Nautiyal, Chandra Shekhar; Chauhan, Puneet Singh; Nene, Yeshwant Laxman

    2007-12-01

    This study represents a comprehensive analysis and scientific validation of our ancient knowledge about the effect of ethnopharmacological aspects of natural products' smoke for therapy and health care on airborne bacterial composition and dynamics, using the Biolog microplate panels and Microlog database. We have observed that 1h treatment of medicinal smoke emanated by burning wood and a mixture of odoriferous and medicinal herbs (havan sámagri=material used in oblation to fire all over India), on aerial bacterial population caused over 94% reduction of bacterial counts by 60 min and the ability of the smoke to purify or disinfect the air and to make the environment cleaner was maintained up to 24h in the closed room. Absence of pathogenic bacteria Corynebacterium urealyticum, Curtobacterium flaccumfaciens, Enterobacter aerogenes (Klebsiella mobilis), Kocuria rosea, Pseudomonas syringae pv. persicae, Staphylococcus lentus, and Xanthomonas campestris pv. tardicrescens in the open room even after 30 days is indicative of the bactericidal potential of the medicinal smoke treatment. We have demonstrated that using medicinal smoke it is possible to completely eliminate diverse plant and human pathogenic bacteria of the air within confined space. PMID:17913417

  19. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  20. Quarternary Pollen Analysis in Secondary School Ecology

    ERIC Educational Resources Information Center

    Slater, F. M.

    1972-01-01

    Describes techniques for studying historic changes in climate by analysis of pollen preserved in peat bogs. Illustrates the methodology and data analysis techniques by reference to results from English research. (AL)

  1. Molecular biomarkers for grass pollen immunotherapy

    PubMed Central

    Popescu, Florin-Dan

    2014-01-01

    Grass pollen allergy represents a significant cause of allergic morbidity worldwide. Component-resolved diagnosis biomarkers are increasingly used in allergy practice in order to evaluate the sensitization to grass pollen allergens, allowing the clinician to confirm genuine sensitization to the corresponding allergen plant sources and supporting an accurate prescription of allergy immunotherapy (AIT), an important approach in many regions of the world with great plant biodiversity and/or where pollen seasons may overlap. The search for candidate predictive biomarkers for grass pollen immunotherapy (tolerogenic dendritic cells and regulatory T cells biomarkers, serum blocking antibodies biomarkers, especially functional ones, immune activation and immune tolerance soluble biomarkers and apoptosis biomarkers) opens new opportunities for the early detection of clinical responders for AIT, for the follow-up of these patients and for the development of new allergy vaccines. PMID:25237628

  2. Molecular biomarkers for grass pollen immunotherapy.

    PubMed

    Popescu, Florin-Dan

    2014-03-26

    Grass pollen allergy represents a significant cause of allergic morbidity worldwide. Component-resolved diagnosis biomarkers are increasingly used in allergy practice in order to evaluate the sensitization to grass pollen allergens, allowing the clinician to confirm genuine sensitization to the corresponding allergen plant sources and supporting an accurate prescription of allergy immunotherapy (AIT), an important approach in many regions of the world with great plant biodiversity and/or where pollen seasons may overlap. The search for candidate predictive biomarkers for grass pollen immunotherapy (tolerogenic dendritic cells and regulatory T cells biomarkers, serum blocking antibodies biomarkers, especially functional ones, immune activation and immune tolerance soluble biomarkers and apoptosis biomarkers) opens new opportunities for the early detection of clinical responders for AIT, for the follow-up of these patients and for the development of new allergy vaccines.

  3. CSF cell count

    MedlinePlus

    The normal white blood cell count is between 0 and 5. The normal red blood cell count is 0. Note: Normal value ranges may vary slightly among different laboratories. Talk to your doctor about ... use different measurements or may test different specimens.

  4. Counting Sheep in Basque

    ERIC Educational Resources Information Center

    Araujo, Frank P.

    1975-01-01

    Demonstrates the interplay of a cognitive system, the Basque numerative system, and a behavioral one, counting sheep. The significant features of the Basque numerative system are analyzed; then it is shown how use of these features facilitates the counting of sheep on open ranges by Basque sheep farmers in California. (Author/RM)

  5. Juniper Pollen Hotspots in the Southwest

    NASA Technical Reports Server (NTRS)

    Bunderson, L. D.; VandeWater, P.; Luvall, J.; Levetin, E.

    2013-01-01

    Rationale: Juniperus pollen is a major allergen in Texas, Oklahoma, and New Mexico. While the bulk of pollen may be released in rural areas, large amounts of pollen can be transported to urban areas. Major juniper species in the region include: Juniperus ashei, J. virginiana, J. pinchotii, and J. monosperma. Pollen release is virtually continuous beginning in late September with J. pinchotii and ending in May with J. monosperma. Urban areas in the region were evaluated for the potential of overlapping seasons in order to inform sensitive individuals. Methods: Burkard volumetric pollen traps were established for two consecutive spring seasons at 6 sites in northern New Mexico and 6 sites for two consecutive winter and fall seasons in Texas and Oklahoma Standard methods were used in the preparation and analysis of slides. Results: The Dallas-Fort Worth Metroplex is home to over 6 million people. It is adjacent to populations of J. pinchotii, J. virginiana, and J. ashei. Peak concentration near Dallas for J. ashei in 2011 was 5891 pollen grains/m3 in January 7th. The peak date for J. pinchotii at an upwind sampling location in San Marcos, TX was November 1, 2010 and peak for J. virginiana at a nearby station in Tulsa, OK was November 1, 2010 and peak for J. virginiana at a nearby station in Tulsa, OK was February 20, 2011. Amarillo, TX is adjacent to J. pinchotii, J. ashei, and J. monosperma populations and may be subject to juniper pollen from September through May. Conclusions: Considering the overlapping distributions of juniper trees and the overlapping temporal release of pollen, sensitive patients may benefit from avoiding hotspots.

  6. Effect of artificial feeders on pollen loads of the hummingbirds of Cerro de la Muerte, Costa Rica.

    PubMed

    Avalos, Gerardo; Soto, Alejandra; Alfaro, Willy

    2012-03-01

    Although sugar-water feeders are commonly used by enthusiasts to attract hummingbirds, little is known about how they affect hummingbird behavior and flower use. We studied the highland hummingbird assemblage of Cerro de La Muerte, Costa Rica, both at a site with permanent feeders (La Georgina Restaurant) and further from it. We examined how feeder use and monopolization affected seasonal changes in pollen loads during four sampling periods, including dry and wet seasons, from 2003-2005. We expected that species monopolizing the feeders would carry little or no pollen whatsoever, and would have pollen loads characterized by low floral diversity, in contrast with species less dependent on feeders. We obtained pollen samples from 183 individuals of four hummingbird species captured around the feeders using mist nets, which were compared with a pollen reference collection of plants with a pollination syndrome by hummingbirds. The same methods were implemented at a site 3km away from the feeders. Feeder usage was quantified by counting the number of times hummingbirds drank from the feeders in periods of 4min separated by 1min. The effects of hummingbird species and season on pollen load categories were assessed using a nominal logistic regression. The alpha species at the site, the Fiery-throated Hummingbird (Panterpe insignis), dominated the feeders during the dry season. Meanwhile, in the wet season, feeder usage was more evenly distributed across species, with the exception of the Volcano Hummingbird, Selasphorus flammula, which occupies the last place in the dominance hierarchy. Pollen loads of hummingbirds captured near feeders were low in abundance (more than 50% of captured individuals had zero or low pollen loads), and low in species richness (96% of the hummingbirds with pollen from only one plant genus, Centropogon). Overall pollen loads increased during the dry season coinciding with peaks in flower availability, although the majority of captured

  7. A controlled study of the effectiveness of the Rinkel method of immunotherapy for ragweed pollen hay fever.

    PubMed

    Van Metre, T E; Adkinson, N F; Lichtenstein, L M; Mardiney, M R; Norman, P S; Rosenberg, G L; Sobotka, A K; Valentine, M D

    1980-04-01

    In a double-blind study, we compared the effects of the Rinkel method of immunotherapy with ragweed pollen extract and placebo on symptoms of ragweed hay fever and immunologic parameters in 24 ragweed-sensitive patients. Each had a skin-test end point by Rinkel serial dilution titration to ragweed pollen extract at 1:312,500 w/v or greater dilution, a 2 + skin test to ragweed AgE at 0.1 microgram /ml or greater dilution, and in vitro leukocyte histamine release by ragweed pollen extract. None had had immunotherapy for at least 7 yr. Patients matched on the basis of leukocyte histamine release by ragweed were assigned to two treatment groups (12 patients in each group). One group received ragweed pollen extract, and the other, placebo, both administered by the Rinkel method between June and October, 1978. Treatment doses were derived from skin-test end points. The median maintenance ("optimal dose") for patients receiving ragweed pollen extract was 0.53 ml of 1:312,500 w/v and the mean cumulative dose of ragweed pollen extract given during the study contained 0.094 micrograms of ragweed AgE. Symptom-medication scores of all patients rose and fell with ragweed pollen counts. No significant differences were observed in mean daily symptom-medication scores, antiragweed IgG or IgE levels, leukocyte histamine release by ragweed, total IgE levels, or skin-test end-point dilutions with ragweed pollen extract between the group receiving ragweed pollen extract and the group receiving placebo. Despite the absence of specific effect on symptom-medication scores and measured immunologic variates, 10 3f the 12 ragweed-treated patients and 10 of the 12 placebo-treated patients were of the opinion that their hay fever symptoms during the ragweed pollen season were less severe in 1978 than in 1977 and that they had been helped by Rinkel method immunotherapy. Under the conditions of the study, Rinkel method immunotherapy with ragweed pollen extract was no more effective than placebo

  8. Effect of artificial feeders on pollen loads of the hummingbirds of Cerro de la Muerte, Costa Rica.

    PubMed

    Avalos, Gerardo; Soto, Alejandra; Alfaro, Willy

    2012-03-01

    Although sugar-water feeders are commonly used by enthusiasts to attract hummingbirds, little is known about how they affect hummingbird behavior and flower use. We studied the highland hummingbird assemblage of Cerro de La Muerte, Costa Rica, both at a site with permanent feeders (La Georgina Restaurant) and further from it. We examined how feeder use and monopolization affected seasonal changes in pollen loads during four sampling periods, including dry and wet seasons, from 2003-2005. We expected that species monopolizing the feeders would carry little or no pollen whatsoever, and would have pollen loads characterized by low floral diversity, in contrast with species less dependent on feeders. We obtained pollen samples from 183 individuals of four hummingbird species captured around the feeders using mist nets, which were compared with a pollen reference collection of plants with a pollination syndrome by hummingbirds. The same methods were implemented at a site 3km away from the feeders. Feeder usage was quantified by counting the number of times hummingbirds drank from the feeders in periods of 4min separated by 1min. The effects of hummingbird species and season on pollen load categories were assessed using a nominal logistic regression. The alpha species at the site, the Fiery-throated Hummingbird (Panterpe insignis), dominated the feeders during the dry season. Meanwhile, in the wet season, feeder usage was more evenly distributed across species, with the exception of the Volcano Hummingbird, Selasphorus flammula, which occupies the last place in the dominance hierarchy. Pollen loads of hummingbirds captured near feeders were low in abundance (more than 50% of captured individuals had zero or low pollen loads), and low in species richness (96% of the hummingbirds with pollen from only one plant genus, Centropogon). Overall pollen loads increased during the dry season coinciding with peaks in flower availability, although the majority of captured

  9. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  10. Design of a downscaling method to estimate continuous data from discrete pollen monitoring in Tunisia.

    PubMed

    Orlandi, Fabio; Oteros, Jose; Aguilera, Fátima; Ben Dhiab, Ali; Msallem, Monji; Fornaciari, Marco

    2014-07-01

    The study of microorganisms and biological particulate matter that transport passively through air is very important for an understanding of the real quality of air. Such monitoring is essential in several specific areas, such as public health, allergy studies, agronomy, indoor and outdoor conservation, and climate-change impact studies. Choosing the suitable monitoring method is an important step in aerobiological studies, so as to obtain reliable airborne data. In this study, we compare olive pollen data from two of the main air traps used in aerobiology, the Hirst and Cour air samplers, at three Tunisian sampling points, for 2009 to 2011. Moreover, a downscaling method to perform daily Cour air sampler data estimates is designed. While Hirst air samplers can offer daily, and even bi-hourly data, Cour air samplers provide data for longer discrete sampling periods, which limits their usefulness for daily monitoring. Higher quantities of olive pollen capture were generally detected for the Hirst air sampler, and a downscaling method that is developed in this study is used to model these differences. The effectiveness of this downscaling method is demonstrated, which allows the potential use of Cour air sampler data series. These results improve the information that new Cour data and, importantly, historical Cour databases can provide for the understanding of phenological dates, airborne pollination curves, and allergenicity levels of air.

  11. Plant Sterol Diversity in Pollen from Angiosperms.

    PubMed

    Villette, Claire; Berna, Anne; Compagnon, Vincent; Schaller, Hubert

    2015-08-01

    Here we have examined the composition of free sterols and steryl esters of pollen from selected angiosperm species, as a first step towards a comprehensive analysis of sterol biogenesis in the male gametophyte. We detected four major sterol structural groups: cycloartenol derivatives bearing a 9β,19-cyclopropyl group, sterols with a double bond at C-7(8), sterols with a double bond at C-5(6), and stanols. All these groups were unequally distributed among species. However, the distribution of sterols as free sterols or as steryl esters in pollen grains indicated that free sterols were mostly Δ(5)-sterols and that steryl esters were predominantly 9β,19-cyclopropyl sterols. In order to link the sterol composition of a pollen grain at anthesis with the requirement for membrane lipid constituents of the pollen tube, we germinated pollen grains from Nicotiana tabacum, a model plant in reproductive biology. In the presence of radiolabelled mevalonic acid and in a time course series of measurements, we showed that cycloeucalenol was identified as the major neosynthesized sterol. Furthermore, the inhibition of cycloeucalenol neosynthesis by squalestatin was in full agreement with a de novo biogenesis and an apparent truncated pathway in the pollen tube.

  12. Thunderstorm asthma due to grass pollen.

    PubMed

    Suphioglu, C

    1998-08-01

    It is widely known and accepted that grass pollen is a major outdoor cause of hay fever. Moreover, grass pollen is also responsible for triggering allergic asthma, gaining impetus as a result of the 1987/1989 Melbourne and 1994 London thunderstorm-associated asthma epidemics. However, grass pollen is too large to gain access into the lower airways to trigger the asthmatic response and micronic particles <5 micro m are required to trigger the response. We have successfully shown that ryegrass pollen ruptures upon contact with water, releasing about 700 starch granules which not only contain the major allergen Lol p 5, but have been shown to trigger both in vitro and in vivo IgE-mediated responses. Furthermore, starch granules have been isolated from the Melbourne atmosphere with 50-fold increase following rainfall. Free grass pollen allergen molecules have been recently shown to interact with other particles including diesel exhaust carbon particles, providing a further transport mechanism for allergens to gain access into lower airways. In this review, implication and evidence for grass pollen as a trigger of thunderstorm-associated asthma is presented. Such information is critical and mandatory for patient education and training in their allergen avoidance programs. More importantly, patients with serum IgE to group 5 allergens are at high risk of allergic asthma, especially those not protected by medication. Therefore, a system to determine the total atmospheric allergen load and devising of an effective asthma risk forecast is urgently needed and is subject to current investigation.

  13. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter?

    PubMed

    Di Pasquale, Garance; Salignon, Marion; Le Conte, Yves; Belzunces, Luc P; Decourtye, Axel; Kretzschmar, André; Suchail, Séverine; Brunet, Jean-Luc; Alaux, Cédric

    2013-01-01

    Honey bee colonies are highly dependent upon the availability of floral resources from which they get the nutrients (notably pollen) necessary to their development and survival. However, foraging areas are currently affected by the intensification of agriculture and landscape alteration. Bees are therefore confronted to disparities in time and space of floral resource abundance, type and diversity, which might provide inadequate nutrition and endanger colonies. The beneficial influence of pollen availability on bee health is well-established but whether quality and diversity of pollen diets can modify bee health remains largely unknown. We therefore tested the influence of pollen diet quality (different monofloral pollens) and diversity (polyfloral pollen diet) on the physiology of young nurse bees, which have a distinct nutritional physiology (e.g. hypopharyngeal gland development and vitellogenin level), and on the tolerance to the microsporidian parasite Nosemaceranae by measuring bee survival and the activity of different enzymes potentially involved in bee health and defense response (glutathione-S-transferase (detoxification), phenoloxidase (immunity) and alkaline phosphatase (metabolism)). We found that both nurse bee physiology and the tolerance to the parasite were affected by pollen quality. Pollen diet diversity had no effect on the nurse bee physiology and the survival of healthy bees. However, when parasitized, bees fed with the polyfloral blend lived longer than bees fed with monofloral pollens, excepted for the protein-richest monofloral pollen. Furthermore, the survival was positively correlated to alkaline phosphatase activity in healthy bees and to phenoloxydase activities in infected bees. Our results support the idea that both the quality and diversity (in a specific context) of pollen can shape bee physiology and might help to better understand the influence of agriculture and land-use intensification on bee nutrition and health. PMID:23940803

  14. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter?

    PubMed

    Di Pasquale, Garance; Salignon, Marion; Le Conte, Yves; Belzunces, Luc P; Decourtye, Axel; Kretzschmar, André; Suchail, Séverine; Brunet, Jean-Luc; Alaux, Cédric

    2013-01-01

    Honey bee colonies are highly dependent upon the availability of floral resources from which they get the nutrients (notably pollen) necessary to their development and survival. However, foraging areas are currently affected by the intensification of agriculture and landscape alteration. Bees are therefore confronted to disparities in time and space of floral resource abundance, type and diversity, which might provide inadequate nutrition and endanger colonies. The beneficial influence of pollen availability on bee health is well-established but whether quality and diversity of pollen diets can modify bee health remains largely unknown. We therefore tested the influence of pollen diet quality (different monofloral pollens) and diversity (polyfloral pollen diet) on the physiology of young nurse bees, which have a distinct nutritional physiology (e.g. hypopharyngeal gland development and vitellogenin level), and on the tolerance to the microsporidian parasite Nosemaceranae by measuring bee survival and the activity of different enzymes potentially involved in bee health and defense response (glutathione-S-transferase (detoxification), phenoloxidase (immunity) and alkaline phosphatase (metabolism)). We found that both nurse bee physiology and the tolerance to the parasite were affected by pollen quality. Pollen diet diversity had no effect on the nurse bee physiology and the survival of healthy bees. However, when parasitized, bees fed with the polyfloral blend lived longer than bees fed with monofloral pollens, excepted for the protein-richest monofloral pollen. Furthermore, the survival was positively correlated to alkaline phosphatase activity in healthy bees and to phenoloxydase activities in infected bees. Our results support the idea that both the quality and diversity (in a specific context) of pollen can shape bee physiology and might help to better understand the influence of agriculture and land-use intensification on bee nutrition and health.

  15. Influence of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter?

    PubMed Central

    Di Pasquale, Garance; Salignon, Marion; Le Conte, Yves; Belzunces, Luc P.; Decourtye, Axel; Kretzschmar, André; Suchail, Séverine; Brunet, Jean-Luc; Alaux, Cédric

    2013-01-01

    Honey bee colonies are highly dependent upon the availability of floral resources from which they get the nutrients (notably pollen) necessary to their development and survival. However, foraging areas are currently affected by the intensification of agriculture and landscape alteration. Bees are therefore confronted to disparities in time and space of floral resource abundance, type and diversity, which might provide inadequate nutrition and endanger colonies. The beneficial influence of pollen availability on bee health is well-established but whether quality and diversity of pollen diets can modify bee health remains largely unknown. We therefore tested the influence of pollen diet quality (different monofloral pollens) and diversity (polyfloral pollen diet) on the physiology of young nurse bees, which have a distinct nutritional physiology (e.g. hypopharyngeal gland development and vitellogenin level), and on the tolerance to the microsporidian parasite Nosemaceranae by measuring bee survival and the activity of different enzymes potentially involved in bee health and defense response (glutathione-S-transferase (detoxification), phenoloxidase (immunity) and alkaline phosphatase (metabolism)). We found that both nurse bee physiology and the tolerance to the parasite were affected by pollen quality. Pollen diet diversity had no effect on the nurse bee physiology and the survival of healthy bees. However, when parasitized, bees fed with the polyfloral blend lived longer than bees fed with monofloral pollens, excepted for the protein-richest monofloral pollen. Furthermore, the survival was positively correlated to alkaline phosphatase activity in healthy bees and to phenoloxydase activities in infected bees. Our results support the idea that both the quality and diversity (in a specific context) of pollen can shape bee physiology and might help to better understand the influence of agriculture and land-use intensification on bee nutrition and health. PMID:23940803

  16. Mycotoxicological and palynological profiles of commercial brands of dried bee pollen.

    PubMed

    Deveza, Michele Valadares; Keller, Kelly Moura; Lorenzon, Maria Cristina Affonso; Nunes, Lucila Maria Teixeira; Sales, Érika Oliveira; Barth, Ortrud Monika

    2015-01-01

    Pollen is used in the human diet as a food supplement because of its high nutritional value; however, this product is prone to fungal contamination that could potentially generate toxins that are harmful to human health. This study aimed to verify the floral diversity of commercial brands of bee pollen and their mycotoxicological safety for human consumption. A total of 27 bee pollen samples were analyzed; these samples represented commercial brands, either showing an inspection seal or not, marketed in the State of Rio de Janeiro. The analyzed parameters included floral diversity through palynological analysis, water activity, fungal counts, identification and toxigenic profiles. The palynological analysis identified nine plant families, of which the Asteraceae was predominant. Analysis of hygienic quality based on fungal load showed that 92% of samples were reproved according to the commercial, sanitary, and food safety quality indicators. Aspergillus, Cladosporium and Penicillium were the most common genera. Toxigenic evaluation showed that 25% of the A. flavus strains produced aflatoxins. The high rate of contamination of products bearing an inspection seal emphasizes the need to monitor the entire procedure of bee pollen production, as well as to revise the current legislation to ensure safe commercialization of this product.

  17. Mycotoxicological and palynological profiles of commercial brands of dried bee pollen

    PubMed Central

    Deveza, Michele Valadares; Keller, Kelly Moura; Lorenzon, Maria Cristina Affonso; Nunes, Lucila Maria Teixeira; Sales, Érika Oliveira; Barth, Ortrud Monika

    2015-01-01

    Abstract Pollen is used in the human diet as a food supplement because of its high nutritional value; however, this product is prone to fungal contamination that could potentially generate toxins that are harmful to human health. This study aimed to verify the floral diversity of commercial brands of bee pollen and their mycotoxicological safety for human consumption. A total of 27 bee pollen samples were analyzed; these samples represented commercial brands, either showing an inspection seal or not, marketed in the State of Rio de Janeiro. The analyzed parameters included floral diversity through palynological analysis, water activity, fungal counts, identification and toxigenic profiles. The palynological analysis identified nine plant families, of which the Asteraceae was predominant. Analysis of hygienic quality based on fungal load showed that 92% of samples were reproved according to the commercial, sanitary, and food safety quality indicators. Aspergillus, Cladosporium and Penicillium were the most common genera. Toxigenic evaluation showed that 25% of the A. flavus strains produced aflatoxins. The high rate of contamination of products bearing an inspection seal emphasizes the need to monitor the entire procedure of bee pollen production, as well as to revise the current legislation to ensure safe commercialization of this product. PMID:26691478

  18. Dating of seasonal snow/firn accumulation layers using pollen analysis

    NASA Astrophysics Data System (ADS)

    Nakazawa, Fumio; Fujita, Koji; Takeuchi, Nozomu; Fujiki, Toshiyuki; Uetake, Jun; Aizen, Vladimir; Nakawo, Masayoshi

    Reliable chronologies in ice cores and snow pits from many alpine glaciers in latitudes between 60° N and 60° S are often difficult to establish owing to problems with annual-layer counting. Problems arise from melting, wind erosion and the negligible amount of precipitation in some seasons, all of which tend to obscure the seasonal variations in δ18O and chemical concentrations that are typically used to date ice cores. However, alpine glaciers contain many species of pollen grains that peak at particular times of the year. We used the peaks in Betulaceae, Pinus, Artemisia and a combination of Abies and Picea pollen species to determine the four seasonal layers of a snow pit on Belukha glacier in Russia's Altai Mountains. Comparing the pollen-dated profiles with wind and precipitation records allows us to determine where a seasonal layer is missing. Thus, the pollen-dating method described here may be a useful tool to measure the annual snow deposition on alpine glaciers, even when some seasonal layers are eroded by wind or missing due to negligible precipitation.

  19. [Factors affecting the estimation of pollen limitation in Sagittaria trifolia].

    PubMed

    Qin, Dao-feng; Li, Ting; Dai, Can

    2015-12-01

    This study explored whether the degree of pollen limitation was affected by the experimental level (a single flower or inflorescence) and pollen quality (self-pollen or outcross-pollen) of supplemental pollination in Sagittaria trifolia. The results showed that the experimental level caused varying degree of pollen limitation. Compared with the inflorescence level, pollination at the single flower level led to a redistribution of resources among flowers, therefore affecting seed numbers. Pollen quality also played a vital role in the estimation of pollen limitation. Compared with self-pollen, supplemental pollination with outcross-pollen resulted in significantly more seeds and a higher germination rate. This proved that in the research system the reproduction was limited by pollen quality rather than quantity. Our study revealed that both experimental level and pollen quality had effects on the estimation of pollen limitation. It was suggested that in future studies we should evaluate pollen limitation at the inflorescence or whole plant level, and also consider comparing self- and outcross-pollen when applicable.

  20. [Factors affecting the estimation of pollen limitation in Sagittaria trifolia].

    PubMed

    Qin, Dao-feng; Li, Ting; Dai, Can

    2015-12-01

    This study explored whether the degree of pollen limitation was affected by the experimental level (a single flower or inflorescence) and pollen quality (self-pollen or outcross-pollen) of supplemental pollination in Sagittaria trifolia. The results showed that the experimental level caused varying degree of pollen limitation. Compared with the inflorescence level, pollination at the single flower level led to a redistribution of resources among flowers, therefore affecting seed numbers. Pollen quality also played a vital role in the estimation of pollen limitation. Compared with self-pollen, supplemental pollination with outcross-pollen resulted in significantly more seeds and a higher germination rate. This proved that in the research system the reproduction was limited by pollen quality rather than quantity. Our study revealed that both experimental level and pollen quality had effects on the estimation of pollen limitation. It was suggested that in future studies we should evaluate pollen limitation at the inflorescence or whole plant level, and also consider comparing self- and outcross-pollen when applicable. PMID:27112030

  1. Food for Pollinators: Quantifying the Nectar and Pollen Resources of Urban Flower Meadows.

    PubMed

    Hicks, Damien M; Ouvrard, Pierre; Baldock, Katherine C R; Baude, Mathilde; Goddard, Mark A; Kunin, William E; Mitschunas, Nadine; Memmott, Jane; Morse, Helen; Nikolitsi, Maria; Osgathorpe, Lynne M; Potts, Simon G; Robertson, Kirsty M; Scott, Anna V; Sinclair, Frazer; Westbury, Duncan B; Stone, Graham N

    2016-01-01

    Planted meadows are increasingly used to improve the biodiversity and aesthetic amenity value of urban areas. Although many 'pollinator-friendly' seed mixes are available, the floral resources these provide to flower-visiting insects, and how these change through time, are largely unknown. Such data are necessary to compare the resources provided by alternative meadow seed mixes to each other and to other flowering habitats. We used quantitative surveys of over 2 million flowers to estimate the nectar and pollen resources offered by two exemplar commercial seed mixes (one annual, one perennial) and associated weeds grown as 300m2 meadows across four UK cities, sampled at six time points between May and September 2013. Nectar sugar and pollen rewards per flower varied widely across 65 species surveyed, with native British weed species (including dandelion, Taraxacum agg.) contributing the top five nectar producers and two of the top ten pollen producers. Seed mix species yielding the highest rewards per flower included Leontodon hispidus, Centaurea cyanus and C. nigra for nectar, and Papaver rhoeas, Eschscholzia californica and Malva moschata for pollen. Perennial meadows produced up to 20x more nectar and up to 6x more pollen than annual meadows, which in turn produced far more than amenity grassland controls. Perennial meadows produced resources earlier in the year than annual meadows, but both seed mixes delivered very low resource levels early in the year and these were provided almost entirely by native weeds. Pollen volume per flower is well predicted statistically by floral morphology, and nectar sugar mass and pollen volume per unit area are correlated with flower counts, raising the possibility that resource levels can be estimated for species or habitats where they cannot be measured directly. Our approach does not incorporate resource quality information (for example, pollen protein or essential amino acid content), but can easily do so when suitable data

  2. Food for Pollinators: Quantifying the Nectar and Pollen Resources of Urban Flower Meadows

    PubMed Central

    Hicks, Damien M.; Ouvrard, Pierre; Baldock, Katherine C. R.; Baude, Mathilde; Goddard, Mark A.; Kunin, William E.; Mitschunas, Nadine; Memmott, Jane; Morse, Helen; Nikolitsi, Maria; Osgathorpe, Lynne M.; Potts, Simon G.; Robertson, Kirsty M.; Scott, Anna V.; Sinclair, Frazer; Westbury, Duncan B.; Stone, Graham N.

    2016-01-01

    Planted meadows are increasingly used to improve the biodiversity and aesthetic amenity value of urban areas. Although many ‘pollinator-friendly’ seed mixes are available, the floral resources these provide to flower-visiting insects, and how these change through time, are largely unknown. Such data are necessary to compare the resources provided by alternative meadow seed mixes to each other and to other flowering habitats. We used quantitative surveys of over 2 million flowers to estimate the nectar and pollen resources offered by two exemplar commercial seed mixes (one annual, one perennial) and associated weeds grown as 300m2 meadows across four UK cities, sampled at six time points between May and September 2013. Nectar sugar and pollen rewards per flower varied widely across 65 species surveyed, with native British weed species (including dandelion, Taraxacum agg.) contributing the top five nectar producers and two of the top ten pollen producers. Seed mix species yielding the highest rewards per flower included Leontodon hispidus, Centaurea cyanus and C. nigra for nectar, and Papaver rhoeas, Eschscholzia californica and Malva moschata for pollen. Perennial meadows produced up to 20x more nectar and up to 6x more pollen than annual meadows, which in turn produced far more than amenity grassland controls. Perennial meadows produced resources earlier in the year than annual meadows, but both seed mixes delivered very low resource levels early in the year and these were provided almost entirely by native weeds. Pollen volume per flower is well predicted statistically by floral morphology, and nectar sugar mass and pollen volume per unit area are correlated with flower counts, raising the possibility that resource levels can be estimated for species or habitats where they cannot be measured directly. Our approach does not incorporate resource quality information (for example, pollen protein or essential amino acid content), but can easily do so when suitable

  3. A 12,000-Yr Pollen Record off Cape Hatteras: Pollen Sources and Mechanisms of Pollen Dispersion

    NASA Technical Reports Server (NTRS)

    Naughton, F.; Keigwin, L.; Peteet, D.; Costas, S.; Desprat, S.; Oliveira, D.; de Vernal, A.; Voelker, A.; Abrantes, F.

    2015-01-01

    Integrating both marine and terrestrial signals from the same sediment core is one of the primary challenges for understanding the role of ocean-atmosphere coupling throughout past climate changes. It is therefore vital to understand how the pollen signal of a given marine record reflects the vegetation changes of the neighboring continent. The comparison between the pollen record of marine core JPC32 (KNR178JPC32) and available terrestrial pollen sequences from eastern North America over the last 12,170 years indicates that the pollen signature off Cape Hatteras gives an integrated image of the regional vegetation encompassing the Pee Dee river, Chesapeake and Delaware hydrographic basins and is reliable in reconstructing the past climate of the adjacent continent. Extremely high quantities of pollen grains included in the marine sediments off Cape Hatteras were transferred from the continent to the sea, at intervals 10,100-8800 cal yr BP, 8300-7500 cal yr BP, 5800- 4300 cal yr BP and 2100-730 cal yr BP, during storm events favored by episodes of rapid sea-level rise in the eastern coast of US. In contrast, pollen grains export was reduced during 12,170-10,150 cal yr BP and 4200- 2200 cal yr BP, during episodes of intense continental dryness and slow sea level rise episodes or lowstands in the eastern coast of US. The near absence of reworked pollen grains in core JPC32 contrasts with the high quantity of reworked material in nearby but deeper located marine sites, suggesting that the JPC32 recordwas not affected by the DeepWestern Boundary Current (DWBC) since the end of the Younger Dryas and should be considered a key site for studying past climate changes in the western North Atlantic.

  4. Immersion freezing of birch pollen washing water

    NASA Astrophysics Data System (ADS)

    Augustin, Stefanie; Hartmann, Susan; Pummer, Bernhard; Grothe, Hinrich; Niedermeier, Dennis; Clauss, Tina; Voigtländer, Jens; Tomsche, Laura; Wex, Heike; Stratmann, Frank

    2013-04-01

    Up to now, the importance of pollen for atmospheric ice nucleation was considered to be minor, as they are too large to stay in the atmosphere for a long time. But as recent investigations have shown, not the pollen grains themselves are responsible for freezing, but easily suspendable macromolecules on their surfaces (Pummer et al., 2012). Due to the bursting of pollen grains these ice nucleating active (INA) macromolecules could be numerous in the atmosphere. In the present study, the immersion freezing behavior of birch pollen, i.e. its ice nucleating active (INA) macromolecules, was investigated at the Leipzig Aerosol Cloud Interaction Simulator (LACIS, Hartmann et al., 2011). For this, washing water of two different birch pollen samples with different origin (Northern birch and Southern birch) were used. Immersion freezing of droplets generated from the pollen washing water was observed at temperatures higher than -20 °C for both samples. The main difference between the Northern and the Southern birch pollen was the temperature dependence of the immersion freezing process. Our results suggest that the ice nucleating potential of the Southern birch is controlled by a single type of INA macromolecule, while the Northern birch pollen seem to feature two distinctively different types of INA macromolecules. We determined the heterogeneous nucleation rates for both INA macromolecule types and thereby consistently describe the ice nucleation behavior of both, the Southern and the Northern birch pollen washing water. Furthermore we will suggest a theoretical framework for describing e.g. single INA macromolecule related ice nucleation in atmospheric models. References: Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S. and Grothe, H.: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen. Atmos. Chem. Phys., 12, 2541-2550, doi:10.5194/acp-12-2541-2012, 2012. Hartmann, S., Niedermeier, D., Voigtländer, J., Clauss, T

  5. The ultraviolet radiation environment of pollen and its effect on pollen germination

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The damage to pollen caused by natural ultraviolet radiation was investigated. Experimental and literature research into the UV radiation environment is reported. Viability and germination of wind and insect pollinated species were determined. Physiological, developmental, and protective factors influencing UV sensitivity of binucleate, advanced binucleate, and trinucleate pollen grains are compared.

  6. Ultraviolet radiation environment of pollen and its effect on pollen germination. Final report

    SciTech Connect

    Not Available

    1981-12-01

    The damage to pollen caused by natural ultraviolet radiation was investigated. Experimental and literature research into the UV radiation environment is reported. Viability and germination of wind and insect pollinated species were determined. Physiological, developmental, and protective factors influencing UV sensitivity of binucleate, advanced binucleate, and trinucleate pollen grains are compared.

  7. AUTOMATIC COUNTING APPARATUS

    DOEpatents

    Howell, W.D.

    1957-08-20

    An apparatus for automatically recording the results of counting operations on trains of electrical pulses is described. The disadvantages of prior devices utilizing the two common methods of obtaining the count rate are overcome by this apparatus; in the case of time controlled operation, the disclosed system automatically records amy information stored by the scaler but not transferred to the printer at the end of the predetermined time controlled operations and, in the case of count controlled operation, provision is made to prevent a weak sample from occupying the apparatus for an excessively long period of time.

  8. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  9. Transport logistics in pollen tubes.

    PubMed

    Chebli, Youssef; Kroeger, Jens; Geitmann, Anja

    2013-07-01

    Cellular organelles move within the cellular volume and the effect of the resulting drag forces on the liquid causes bulk movement in the cytosol. The movement of both organelles and cytosol leads to an overall motion pattern called cytoplasmic streaming or cyclosis. This streaming enables the active and passive transport of molecules and organelles between cellular compartments. Furthermore, the fusion and budding of vesicles with and from the plasma membrane (exo/endocytosis) allow for transport of material between the inside and the outside of the cell. In the pollen tube, cytoplasmic streaming and exo/endocytosis are very active and fulfill several different functions. In this review, we focus on the logistics of intracellular motion and transport processes as well as their biophysical underpinnings. We discuss various modeling attempts that have been performed to understand both long-distance shuttling and short-distance targeting of organelles. We show how the combination of mechanical and mathematical modeling with cell biological approaches has contributed to our understanding of intracellular transport logistics.

  10. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  11. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  12. Analysis of Allergenic Pollen by FTIR Microspectroscopy.

    PubMed

    Zimmerman, B; Tafintseva, V; Bağcıoğlu, M; Høegh Berdahl, M; Kohler, A

    2016-01-01

    Fourier transform infrared (FTIR) spectroscopy is a powerful tool for the identification and characterization of pollen and spores. However, interpretation and multivariate analysis of infrared microscopy spectra of single pollen grains are hampered by Mie-type scattering. In this paper, we introduce a novel sampling setup for infrared microspectroscopy of pollens preventing strong Mie-type scattering. Pollen samples were embedded in a soft paraffin layer between two sheets of polyethylene foils without any further sample pretreatment. Single-grain infrared spectra of 13 different pollen samples, belonging to 11 species, were obtained and analyzed by the new approach and classified by sparse partial least-squares regression (PLSR). For the classification, chemical and physical information were separated by extended multiplicative signal correction and used together to build a classification model. A training set of 260 spectra and an independent test set of 130 spectra were used. Robust sparse classification models allowing the biochemical interpretation of the classification were obtained by the sparse PLSR, because only a subset of variables was retained for the analysis. With accuracy values of 95% and 98%, for the independent test set and full cross-validation respectively, the method is outperforming the previously published studies on development of an automated pollen analysis. Since the method is compatible with standard air-samplers, it can be employed with minimal modification in regular aerobiology studies. When compared with optical microscopy, which is the benchmark method in pollen analysis, the infrared microspectroscopy method offers better taxonomic resolution, as well as faster, more economical, and bias-free measurement.

  13. Pollen performance before and during the autotrophic-heterotrophic transition of pollen tube growth.

    PubMed Central

    Stephenson, Andrew G; Travers, Steven E; Mena-Ali, Jorge I; Winsor, James A

    2003-01-01

    For species with bicellular pollen, the attrition of pollen tubes is often greatest where the style narrows at the transition between stigmatic tissue and the transmitting tissue of the style. In this region, the tubes switch from predominantly autotrophic to predominantly heterotrophic growth, the generative cell divides, the first callose plugs are produced, and, in species with RNase-type self-incompatibility (SI), incompatible tubes are arrested. We review the literature and present new findings concerning the genetic, environmental and stylar influences on the performance of pollen before and during the autotrophic-heterotrophic transition of pollen tube growth. We found that the ability of the paternal sporophyte to provision its pollen during development significantly influences pollen performance during the autotrophic growth phase. Consequently, under conditions of pollen competition, pollen selection during the autotrophic phase is acting on the phenotype of the paternal sporophyte. In a field experiment, using Cucurbita pepo, we found broad-sense heritable variation for herbivore-pathogen resistance, and that the most resistant families produced larger and better performing pollen when the paternal sporophytes were not protected by insecticides, indicating that selection during the autotrophic phase can act on traits that are not expressed by the microgametophyte. In a study of a weedy SI species, Solanum carolinense, we found that the ability of the styles to arrest self-pollen tubes at the autotrophic-heterotrophic transition changes with floral age and the presence of developing fruits. These findings have important implications for selection at the level of the microgametophyte and the evolution of mating systems of plants. PMID:12831466

  14. Blood Count Tests

    MedlinePlus

    ... white blood cells (WBC), and platelets. Blood count tests measure the number and types of cells in ... helps doctors check on your overall health. The tests can also help to diagnose diseases and conditions ...

  15. Counting Knights and Knaves

    ERIC Educational Resources Information Center

    Levin,Oscar; Roberts, Gerri M.

    2013-01-01

    To understand better some of the classic knights and knaves puzzles, we count them. Doing so reveals a surprising connection between puzzles and solutions, and highlights some beautiful combinatorial identities.

  16. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles.

  17. Mammalian airborne allergens.

    PubMed

    Aalberse, Rob C

    2014-01-01

    Historically, horse dandruff was a favorite allergen source material. Today, however, allergic symptoms due to airborne mammalian allergens are mostly a result of indoor exposure, be it at home, at work or even at school. The relevance of mammalian allergens in relation to the allergenic activity of house dust extract is briefly discussed in the historical context of two other proposed sources of house dust allergenic activity: mites and Maillard-type lysine-sugar conjugates. Mammalian proteins involved in allergic reactions to airborne dust are largely found in only 2 protein families: lipocalins and secretoglobins (Fel d 1-like proteins), with a relatively minor contribution of serum albumins, cystatins and latherins. Both the lipocalin and the secretoglobin family are very complex. In some instances this results in a blurred separation between important and less important allergenic family members. The past 50 years have provided us with much detailed information on the genomic organization and protein structure of many of these allergens. However, the complex family relations, combined with the wide range of post-translational enzymatic and non-enzymatic modifications, make a proper qualitative and quantitative description of the important mammalian indoor airborne allergens still a significant proteomic challenge. PMID:24925404

  18. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  19. Measurement of airborne {sup 218}Po - A Bayesian approach

    SciTech Connect

    Groer, P.G.; Lo, Y.

    1996-12-01

    The standard mathematical treatment of the buildup and decay of airborne radionuclides on a filter paper uses the solutions of the so-called bateman equations adapted to the sampling process. The equations can be interpreted as differential equations for the expectation of an underlying stochastic process, which describes the random fluctuations in the accumulation and decay of the sampled radioactive atoms. The process for the buildup and decay of airborne {sup 218}Po can be characterized as an {open_quotes}immigration-death process{close_quotes} in the widely adopted, biologically based jargon. The probability distribution for the number of {sup 218}Po atoms, accumulated after sampling time t, is Poisson. We show that the distribution of the number of counts, registered by a detector with efficiency {epsilon} during a counting period T after the end of sampling, it also Poisson, with mean dependent on {epsilon},t,T, the flowrate and N{sub o}, the number of airborne {sup 218}Po atoms per unit volume. This Poisson distribution was used to construct the likelihood given the observed number of counts. After inversion with Bayes` Theorem we obtained the posterior density for N{sub o}. This density characterizes the remaining uncertainty about the measured under of {sup 218}Po atoms per unit volume of air. 6 refs., 3 figs., 1 tab.

  20. Bees associate colour cues with differences in pollen rewards.

    PubMed

    Nicholls, Elizabeth; de Ibarra, Natalie Hempel

    2014-08-01

    In contrast to the wealth of knowledge concerning sucrose-rewarded learning, the question of whether bees learn when they collect pollen from flowers has been little addressed. The nutritional value of pollen varies considerably between species, and it may be that bees learn the features of flowers that produce pollen best suited to the dietary requirements of their larvae. It is still unknown, however, whether a non-ingestive reward pathway for pollen learning exists, and how foraging bees sense differences between pollen types. Here we adopt a novel experimental approach testing the learning ability of bees with pollen rewards. Bumblebees were reared under controlled laboratory conditions. To establish which pollen rewards are distinguishable, individual bees were given the choice of collecting two types of pollen, diluted to varying degrees with indigestible α-cellulose. Bees preferentially collected a particular pollen type, but this was not always the most concentrated sample. Preferences were influenced by the degree of similarity between samples and also by the period of exposure, with bees more readily collecting samples of lower pollen concentration after five trials. When trained differentially, bees were able to associate an initially less-preferred contextual colour with the more concentrated sample, whilst their pollen preferences did not change. Successful learning of contextual cues seems to maintain pollen foraging preferences over repeated exposures, suggesting that fast learning of floral cues may preclude continuous sampling and evaluation of alternative reward sources, leading to constancy in pollen foraging. PMID:24855678

  1. Bees associate colour cues with differences in pollen rewards.

    PubMed

    Nicholls, Elizabeth; de Ibarra, Natalie Hempel

    2014-08-01

    In contrast to the wealth of knowledge concerning sucrose-rewarded learning, the question of whether bees learn when they collect pollen from flowers has been little addressed. The nutritional value of pollen varies considerably between species, and it may be that bees learn the features of flowers that produce pollen best suited to the dietary requirements of their larvae. It is still unknown, however, whether a non-ingestive reward pathway for pollen learning exists, and how foraging bees sense differences between pollen types. Here we adopt a novel experimental approach testing the learning ability of bees with pollen rewards. Bumblebees were reared under controlled laboratory conditions. To establish which pollen rewards are distinguishable, individual bees were given the choice of collecting two types of pollen, diluted to varying degrees with indigestible α-cellulose. Bees preferentially collected a particular pollen type, but this was not always the most concentrated sample. Preferences were influenced by the degree of similarity between samples and also by the period of exposure, with bees more readily collecting samples of lower pollen concentration after five trials. When trained differentially, bees were able to associate an initially less-preferred contextual colour with the more concentrated sample, whilst their pollen preferences did not change. Successful learning of contextual cues seems to maintain pollen foraging preferences over repeated exposures, suggesting that fast learning of floral cues may preclude continuous sampling and evaluation of alternative reward sources, leading to constancy in pollen foraging.

  2. Wind-pollination and the roles of pollen allergenic proteins.

    PubMed

    Songnuan, Wisuwat

    2013-12-01

    Over the past few decades, there has been an explosion of understanding of the molecular nature of major allergens contained within pollens from the most important allergenic plant species. Most major allergens belong to only a few protein families. Protein characteristics, cross-reactivity, structures, and IgE binding epitopes have been determined for several allergens. These efforts have led to significant improvements in specific immunotherapy, yet there has been little discussion about the physiological functions of these proteins. Even with large amounts of available information about allergenic proteins from pollens, the incidence of pollen allergy continuously increases worldwide. The reason for this increase is unclear and is most likely due to a combination of factors. One important culprit might be a change in the pollen itself. Knowledge about pollen biology and how pollen is changing as a result of more extreme environmental conditions might improve our understanding of the disease. This review focuses on the characteristics of plants producing allergenic pollens that are relevant to pollen allergy, including the phylogenetic relationships, pollen dispersal distances, amounts of pollen produced, amounts of protein in each type of pollen, and how allergenic proteins are released from pollens. In addition, the physiological roles of major allergenic protein families will be discussed to help us understand why some of these proteins become allergens and why GMO plants with hypoallergenic pollens may not be successful.

  3. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  4. Regulation of Pollen Tube Growth by Transglutaminase

    PubMed Central

    Cai, Giampiero; Serafini-Fracassini, Donatella; Del Duca, Stefano

    2013-01-01

    In pollen tubes, cytoskeleton proteins are involved in many aspects of pollen germination and growth, from the transport of sperm cells to the asymmetrical distribution of organelles to the deposition of cell wall material. These activities are based on the dynamics of the cytoskeleton. Changes to both actin filaments and microtubules are triggered by specific proteins, resulting in different organization levels suitable for the different functions of the cytoskeleton. Transglutaminases are enzymes ubiquitous in all plant organs and cell compartments. They catalyze the post-translational conjugation of polyamines to different protein targets, such as the cytoskeleton. Transglutaminases are suggested to have a general role in the interaction between pollen tubes and the extracellular matrix during fertilization and a specific role during the self-incompatibility response. In such processes, the activity of transglutaminases is enhanced, leading to the formation of cross-linked products (including aggregates of tubulin and actin). Consequently, transglutaminases are suggested to act as regulators of cytoskeleton dynamics. The distribution of transglutaminases in pollen tubes is affected by both membrane dynamics and the cytoskeleton. Transglutaminases are also secreted in the extracellular matrix, where they may take part in the assembly and/or strengthening of the pollen tube cell wall. PMID:27137368

  5. Acid rain and pollen germination in corn.

    PubMed

    Wertheim, F S; Craker, L E

    1987-01-01

    The properties of an acid rain episode that could influence the germination of pollen in corn, Zea mays L., were evaluated by treating silks with a simulated acid rain and measuring the subsequent germination of pollen on the silks. The data indicated that acid rain creates an inhospitable environment for pollen germination on the silk surface. Reduced germination appeared directly related to the acidity of the rain, but not the sulphate concentration. Rinsing silks with a pH 5.6 rain after treatment with a pH 2.6 rain did not increase pollen germination above that on silks treated only with a pH 2.6 rain, suggesting the reduced germination was due to physical and/or chemical modifications of the silk surface and not to residual acid on the tissue. Pollen germination on silks was inhibited even when silk tissue was exposed to a simulated rain of pH 2.6 for <1.5min.

  6. A new 'bio-comfort' perspective for Melbourne based on heat stress, air pollution and pollen.

    PubMed

    Jacobs, Stephanie J; Pezza, Alexandre B; Barras, Vaughan; Bye, John

    2014-03-01

    Humans are at risk from exposure to extremes in their environment, yet there is no consistent way to fully quantify and understand the risk when considering more than just meteorological variables. An outdoor 'bio-comfort' threshold is defined for Melbourne, Australia using a combination of heat stress, air particulate concentration and grass pollen count, where comfortable conditions imply an ideal range of temperature, humidity and wind speed, acceptable levels of air particulates and a low pollen count. This is a new approach to defining the comfort of human populations. While other works have looked into the separate impacts of different variables, this is the first time that a unified bio-comfort threshold is suggested. Composite maps of surface pressure are used to illustrate the genesis and evolution of the atmospheric structures conducive to an uncomfortable day. When there is an uncomfortable day due to heat stress conditions in Melbourne, there is a high pressure anomaly to the east bringing warm air from the northern interior of Australia. This anomaly is part of a slow moving blocking high originating over the Indian Ocean. Uncomfortable days due to high particulate levels have an approaching cold front. However, for air particulate cases during the cold season there are stable atmospheric conditions enhanced by a blocking high emanating from Australia and linking with the Antarctic continent. Finally, when grass pollen levels are high, there are northerly winds carrying the pollen from rural grass lands to Melbourne, due to a stationary trough of low pressure inland. Analysis into days with multiple types of stress revealed that the atmospheric signals associated with each type of discomfort are present regardless of whether the day is uncomfortable due to one or multiple variables. Therefore, these bio-comfort results are significant because they offer a degree of predictability for future uncomfortable days in Melbourne.

  7. Occupational Allergy to Peach (Prunus persica) Tree Pollen and Potential Cross-Reactivity between Rosaceae Family Pollens.

    PubMed

    Jiang, Nannan; Yin, Jia; Mak, Philip; Wen, Liping

    2015-10-01

    Orchard workers in north China are highly exposed to orchard pollens, especially peach and other Rosaceae family pollens during pollination season. The aim of this study was to investigate whether occupational allergy to peach tree pollen as a member of Rosaceae family is IgE-mediated and to evaluate the cross-reactivity among Rosaceae family pollens. Allergen skin test and conjunctival challenge test were performed; enzyme linked immune-sorbent assay (ELISA), inhibiting ELISA, western immunoblotting and inhibiting western immunoblotting were done with Rosaceae family orchard pollens, including peach, apricot, cherry, apple and pear tree pollens. Mass spectrometry was also performed to probe the main allergen component and cross-reactive protein. Sensitizations to peach pollen were found in both skin test and conjunctival challenge in the patients. Serum specific IgE to three pollens (peach, apricot and cherry) were detected through ELISA. When peach pollen used as solid phase, ELISA inhibition revealed other four kinds of pollens capable of inducing partial to strong inhibitions (45% to 87%), with the strongest inhibition belonging to apricot pollen (87%). Western blotting showed predominant IgE binding to a 20 KD protein among these pollens, which appeared to be a cross-reactive allergen component through western blotting inhibition. It was recognized as a protein homologous to glutathione s-transferase 16 from Arabidopsis thaliana. Peach and other Rosaceae family tree pollen may serve as a potential cause of IgE mediated occupational respiratory disease in orchard workers in north China.

  8. The mechanism and key molecules involved in pollen tube guidance.

    PubMed

    Higashiyama, Tetsuya; Takeuchi, Hidenori

    2015-01-01

    During sexual reproduction of flowering plants, pollen tube guidance by pistil tissue is critical for the delivery of nonmotile sperm cells to female gametes. Multistep controls of pollen tube guidance can be divided into two phases: preovular guidance and ovular guidance. During preovular guidance, various female molecules, including stimulants for pollen germination and pollen tube growth, are provided to support tube growth toward the ovary, where the ovules are located. After entering the ovary, pollen tubes receive directional cues from their respective target ovules, including attractant peptides for precise, species-preferential attraction. Successful pollen tube guidance in the pistil requires not only nutritional and directional controls but also competency controls to make pollen tubes responsive to guidance cues, regulation to terminate growth once a pollen tube arrives at the target, and strategies to stop ovular attraction depending on the fertilization of female gametes.

  9. Quantification of airway deposition of intact and fragmented pollens.

    PubMed

    Horváth, Alpár; Balásházy, Imre; Farkas, Arpád; Sárkány, Zoltán; Hofmann, Werner; Czitrovszky, Aladár; Dobos, Erik

    2011-12-01

    Although pollen is one of the most widespread agents that can cause allergy, its airway transport and deposition is far from being fully explored. The objective of this study was to characterize the airway deposition of pollens and to contribute to the debate related to the increasing number of asthma attacks registered after thunderstorms. For the quantification of the deposition of inhaled pollens in the airways computer simulations were performed. Our results demonstrated that smaller and fragmented pollens may penetrate into the thoracic airways and deposit there, supporting the theory that fragmented pollen particles are responsible for the increasing incidence of asthma attacks following thunderstorms. Pollen deposition results also suggest that children are the most exposed to the allergic effects of pollens. Finally, pollens between 0.5 and 20 μm deposit more efficiently in the lung of asthmatics than in the healthy lung, especially in the bronchial region. PMID:21563012

  10. Pollen-stigma interactions in Brassica. IV. Structural reorganization in the pollen grains during hydration.

    PubMed

    Elleman, C J; Dickinson, H G

    1986-02-01

    With the aid of osmium tetroxide vapour, dry pollen and pollen at various stages of hydration has been fixed anhydrously for examination with the transmission electron microscope (TEM). In addition to establishing features characteristic of grains at different states of hydration, this technique has enabled the detection of a superficial layer investing both the exine and the pollen coating. This layer, some 10 nm in depth, binds both lanthanum and Alcian Blue and is shown to be the first component of the pollen grain to make contact with the stigmatic pellicle. The use of vapour fixation has also rendered it possible to chart the passage of water into the pollen grains with great accuracy, for each level of hydration displays a strikingly different cytoplasmic organization. For example, dry pollen is characterized by the presence of unusual structures at the protoplast surface and large numbers of spherical fibrillar bodies, whilst the protoplast of hydrating pollen is conspicuously stratified and contains a peripheral layer of membranous cisternae, subjacent to which is a fibrillar matrix derived from the spherical bodies found in the dry grains. Vapour-fixed, fully hydrated pollen resembles conventionally fixed grains. The pollen coating appears electron-translucent after anhydrous fixation and contains discrete, slightly rounded bodies some 50 nm in diameter. The uptake of water by grains on the stigma is accompanied by conspicuous structural changes in this layer for, after a short period in contact with the papillar surface, the spherical bodies rapidly disappear and the coat becomes electron-opaque. Close examination of this 'converted' coating reveals the presence of membranous vesicles and other structural components.

  11. Allergens from birch pollen and pollen of the European chestnut share common epitopes.

    PubMed

    Hirschwehr, R; Jäger, S; Horak, F; Ferreira, F; Valenta, R; Ebner, C; Kraft, D; Scheiner, O

    1993-09-01

    Type I allergy to pollen of the European chestnut (Castanea sativa) represents a major cause of pollinosis in (sub) Mediterranean areas. Using sera from 14 patients with established allergy to pollen of the European chestnut, 13/14 sera (92%) showed IgE-binding to a 22 kD protein, 2/14 (14%) displayed additional binding to a 14 kD protein and 1/14 (7%) bound only to the 14 kD protein of European chestnut pollen extract. Two monoclonal mouse antibodies, BIP 1 and BIP 4, directed against different epitopes of Bet v I (the major birch pollen allergen), and a rabbit antibody to recombinant birch profilin (rBet v II) were used to characterize the proteins of the European chestnut pollen. The recombinant birch pollen allergens, rBet v I and rBet v II (profilin) were employed to show common allergenic structures on proteins from both birch and European chestnut pollen by IgE-inhibition experiments. Despite the fact that the 22 kD protein displayed a higher molecular weight in comparison to the 17 kD major birch pollen allergen, Bet v I, we could demonstrate reactivity of both monoclonal antibodies, BIP 1 and BIP 4, with this protein. A complete inhibiton of IgE-binding to this 22 kD protein was shown by pre-incubating sera with purified recombinant Bet v I. In addition, the 14 kD protein could be identified by IgE-inhibition studies with recombinant Bet v II and by using a rabbit anti-profilin antibody as the profilin from pollen of the European chestnut.

  12. Modern pollen deposition in Long Island Sound

    USGS Publications Warehouse

    Beuning, Kristina R.M.; Fransen, Lindsey; Nakityo, Berna; Mecray, Ellen L.; Bucholtz ten Brink, Marilyn R.

    2000-01-01

    Palynological analyses of 20 surface sediment samples collected from Long Island Sound show a pollen assemblage dominated by Carya, Betula, Pinus, Quercus, Tsuga, and Ambrosia, as is consistent with the regional vegetation. No trends in relative abundance of these pollen types occur either from west to east or associated with modern riverine inputs throughout the basin. Despite the large-scale, long-term removal of fine-grained sediment from winnowed portions of the eastern Sound, the composition of the pollen and spore component of the sedimentary matrix conforms to a basin-wide homogeneous signal. These results strongly support the use of select regional palynological boundaries as chronostratigraphic tools to provide a framework for interpretation of the late glacial and Holocene history of the Long Island Sound basin sediments.

  13. Fast counting electronics for neutron coincidence counting

    DOEpatents

    Swansen, James E.

    1987-01-01

    An amplifier-discriminator is tailored to output a very short pulse upon an above-threshold input from a detector which may be a .sup.3 He detector. The short pulse output is stretched and energizes a light emitting diode (LED) to provide a visual output of operation and pulse detection. The short pulse is further fed to a digital section for processing and possible ORing with other like generated pulses. Finally, the output (or ORed output ) is fed to a derandomizing buffer which converts the rapidly and randomly occurring pulses into synchronized and periodically spaced-apart pulses for the accurate counting thereof. Provision is also made for the internal and external disabling of each individual channel of amplifier-discriminators in an ORed plurality of same.

  14. Fast counting electronics for neutron coincidence counting

    DOEpatents

    Swansen, J.E.

    1985-03-05

    An amplifier-discriminator is tailored to output a very short pulse upon an above-threshold input from a detector which may be a /sup 3/He detector. The short pulse output is stretched and energizes a light emitting diode (LED) to provide a visual output of operation and pulse detection. The short pulse is further fed to a digital section for processing and possible ORing with other like generated pulses. Finally, the output (or ORed output) is fed to a derandomizing buffer which converts the rapidly and randomly occurring pulses into synchronized and periodically spaced-apart pulses for the accurate counting thereof. Provision is also made for the internal and external disabling of each individual channel of amplifier-discriminators in an ORed plurality of same.

  15. Thunderstorm asthma due to grass pollen.

    PubMed

    Suphioglu, C

    1998-08-01

    It is widely known and accepted that grass pollen is a major outdoor cause of hay fever. Moreover, grass pollen is also responsible for triggering allergic asthma, gaining impetus as a result of the 1987/1989 Melbourne and 1994 London thunderstorm-associated asthma epidemics. However, grass pollen is too large to gain access into the lower airways to trigger the asthmatic response and micronic particles <5 micro m are required to trigger the response. We have successfully shown that ryegrass pollen ruptures upon contact with water, releasing about 700 starch granules which not only contain the major allergen Lol p 5, but have been shown to trigger both in vitro and in vivo IgE-mediated responses. Furthermore, starch granules have been isolated from the Melbourne atmosphere with 50-fold increase following rainfall. Free grass pollen allergen molecules have been recently shown to interact with other particles including diesel exhaust carbon particles, providing a further transport mechanism for allergens to gain access into lower airways. In this review, implication and evidence for grass pollen as a trigger of thunderstorm-associated asthma is presented. Such information is critical and mandatory for patient education and training in their allergen avoidance programs. More importantly, patients with serum IgE to group 5 allergens are at high risk of allergic asthma, especially those not protected by medication. Therefore, a system to determine the total atmospheric allergen load and devising of an effective asthma risk forecast is urgently needed and is subject to current investigation. PMID:9693274

  16. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  17. Composition of polyphenol and polyamide compounds in common ragweed (Ambrosia artemisiifolia L.) pollen and sub-pollen particles.

    PubMed

    Mihajlovic, Luka; Radosavljevic, Jelena; Burazer, Lidija; Smiljanic, Katarina; Cirkovic Velickovic, Tanja

    2015-01-01

    Phenolic composition of Ambrosia artemisiifolia L. pollen and sub-pollen particles (SPP) aqueous extracts was determined, using a novel extraction procedure. Total phenolic and flavonoid content was determined, as well as the antioxidative properties of the extract. Main components of water-soluble pollen phenolics are monoglycosides and malonyl-mono- and diglycosides of isorhamnetin, quercetin and kaempferol, while spermidine derivatives were identified as the dominant polyamides. SPP are similar in composition to pollen phenolics (predominant isorhamnetin and quercetin monoglycosides), but lacking small phenolic molecules (<450Da). Ethanol-based extraction protocol revealed one-third lower amount of total phenolics in SPP than in pollen. For the first time in any pollen species, SPP and pollen phenolic compositions were compared in detail, with an UHPLC/ESI-LTQ-Orbitrap-MS-MS approach, revealing the presence of spermidine derivatives in both SPP and pollen, not previously reported in Ambrosia species.

  18. 7 CFR 201.78 - Pollen control for hybrids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Pollen control for hybrids. 201.78 Section 201.78... REGULATIONS Additional Requirements for the Certification of Plant Materials of Certain Crops § 201.78 Pollen... branches, or any combination thereof, shedding pollen. (c) Sorghum. Shedders in the seed parent, at any...

  19. 7 CFR 201.78 - Pollen control for hybrids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Pollen control for hybrids. 201.78 Section 201.78... REGULATIONS Additional Requirements for the Certification of Plant Materials of Certain Crops § 201.78 Pollen... branches, or any combination thereof, shedding pollen. (c) Sorghum. Shedders in the seed parent, at any...

  20. Pollen Germination--A Challenging and Educational Experiment.

    ERIC Educational Resources Information Center

    Tse, H. L. H.; Chan, G. Y. S.

    2001-01-01

    Summarizes the recent research on pollen germination and introduces some basic studies on pollen tube growth that can be conducted in a secondary school laboratory. Discusses the use of a light microscope and refrigerator to study pollen. (Contains 13 references.) (Author/YDS)

  1. 7 CFR 201.78 - Pollen control for hybrids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Pollen control for hybrids. 201.78 Section 201.78... REGULATIONS Additional Requirements for the Certification of Plant Materials of Certain Crops § 201.78 Pollen... branches, or any combination thereof, shedding pollen. (c) Sorghum. Shedders in the seed parent, at any...

  2. 7 CFR 201.78 - Pollen control for hybrids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Pollen control for hybrids. 201.78 Section 201.78... REGULATIONS Additional Requirements for the Certification of Plant Materials of Certain Crops § 201.78 Pollen... branches, or any combination thereof, shedding pollen. (c) Sorghum. Shedders in the seed parent, at any...

  3. 7 CFR 201.78 - Pollen control for hybrids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Pollen control for hybrids. 201.78 Section 201.78... REGULATIONS Additional Requirements for the Certification of Plant Materials of Certain Crops § 201.78 Pollen... branches, or any combination thereof, shedding pollen. (c) Sorghum. Shedders in the seed parent, at any...

  4. Hygroscopic weight gain of pollen grains from Juniperus species.

    PubMed

    Bunderson, Landon D; Levetin, Estelle

    2015-05-01

    Juniperus pollen is highly allergenic and is produced in large quantities across Texas, Oklahoma, and New Mexico. The pollen negatively affects human populations adjacent to the trees, and since it can be transported hundreds of kilometers by the wind, it also affects people who are far from the source. Predicting and tracking long-distance transport of pollen is difficult and complex. One parameter that has been understudied is the hygroscopic weight gain of pollen. It is believed that juniper pollen gains weight as humidity increases which could affect settling rate of pollen and thus affect pollen transport. This study was undertaken to examine how changes in relative humidity affect pollen weight, diameter, and settling rate. Juniperus ashei, Juniperus monosperma, and Juniperus pinchotii pollen were applied to greased microscope slides and placed in incubation chambers under a range of temperature and humidity levels. Pollen on slides were weighed using an analytical balance at 2- and 6-h intervals. The size of the pollen was also measured in order to calculate settling rate using Stokes' Law. All pollen types gained weight as humidity increased. The greatest settling rate increase was exhibited by J. pinchotii which increased by 24 %.

  5. Diversity and conservation in maize pollen: Phenotypes and transcripts

    EPA Science Inventory

    In addition to its crucial role in seed production, pollen serves as a vector for gene flow between plant populations. Recently, pollen was identified as a mechanism for introduction of transgenes into non-transgenic populations. To investigate the genetic basis for pollen fitn...

  6. Aerodynamics of saccate pollen and its implications for wind pollination.

    PubMed

    Schwendemann, Andrew B; Wang, George; Mertz, Meredith L; McWilliams, Ryan T; Thatcher, Scott L; Osborn, Jeffrey M

    2007-08-01

    Pollen grains of many wind-pollinated plants contain 1-3 air-filled bladders, or sacci. Sacci are thought to help orient the pollen grain in the pollination droplet. Sacci also increase surface area of the pollen grain, yet add minimal mass, thereby increasing dispersal distance; however, this aerodynamic hypothesis has not been tested in a published study. Using scanning electron and transmission electron microscopy, mathematical modeling, and the saccate pollen of three extant conifers with structurally different pollen grains (Pinus, Falcatifolium, Dacrydium), we developed a computational model to investigate pollen flight. The model calculates terminal settling velocity based on structural characters of the pollen grain, including lengths, widths, and depths of the main body and sacci; angle of saccus rotation; and thicknesses of the saccus wall, endoreticulations, intine, and exine. The settling speeds predicted by the model were empirically validated by stroboscopic photography. This study is the first to quantitatively demonstrate the adaptive significance of sacci for the aerodynamics of wind pollination. Modeling pollen both with and without sacci indicated that sacci can reduce pollen settling speeds, thereby increasing dispersal distance, with the exception of pollen grains having robust endoreticulations and those with thick saccus walls. Furthermore, because the mathematical model is based on structural characters and error propagation methods show that the model yields valid results when sample sizes are small, the flight dynamics of fossil pollen can be investigated. Several fossils were studied, including bisaccate (Pinus, Pteruchus, Caytonanthus), monosaccate (Gothania), and nonsaccate (Monoletes) pollen types.

  7. Effects of NO2 and Ozone on Pollen Allergenicity

    PubMed Central

    Frank, Ulrike; Ernst, Dieter

    2016-01-01

    This mini-review summarizes the available data of the air pollutants NO2 and ozone on allergenic pollen from different plant species, focusing on potentially allergenic components of the pollen, such as allergen content, protein release, IgE-binding, or protein modification. Various in vivo and in vitro studies on allergenic pollen are shown and discussed. PMID:26870080

  8. Photon counting digital holography

    NASA Astrophysics Data System (ADS)

    Demoli, Nazif; Skenderović, Hrvoje; Stipčević, Mario; Pavičić, Mladen

    2016-05-01

    Digital holography uses electronic sensors for hologram recording and numerical method for hologram reconstruction enabling thus the development of advanced holography applications. However, in some cases, the useful information is concealed in a very wide dynamic range of illumination intensities and successful recording requires an appropriate dynamic range of the sensor. An effective solution to this problem is the use of a photon-counting detector. Such detectors possess counting rates of the order of tens to hundreds of millions counts per second, but conditions of recording holograms have to be investigated in greater detail. Here, we summarize our main findings on this problem. First, conditions for optimum recording of digital holograms for detecting a signal significantly below detector's noise are analyzed in terms of the most important holographic measures. Second, for time-averaged digital holograms, optimum recordings were investigated for exposures shorter than the vibration cycle. In both cases, these conditions are studied by simulations and experiments.

  9. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  10. Pollen rain and subfossil pollen spectra of the Mongun-Taiga mountain massif (South-Eastern Altai)

    NASA Astrophysics Data System (ADS)

    Kolunchukova, M.; Savelieva, L. A.

    2011-12-01

    Palynological analysis is commonly used for the vegetation and climatic reconstructions. It is known that there are many factors influenced on pollen spectra formation and it is necessary to study in detail the modern spectra from the investigated area which form interpretation base of fossil samples. In July 2010, during the expedition to the Mongun-Taiga mountain massif (South-Western Tuva, the Altai Mountains) the collections of modern surface samples from diverse plant communities were made to depict the present-day pollen rain. For this purpose a longitudinal profile at the altitudes of 2300-3100 m was laid. The detailed geobotanical descriptions on each sampling site were made. Soil samples were taken from 1.5 cm depth and catching of pollen rain was carrying out on glass plates in an area of 108 cm2. A total of 9 samples were treated for pollen analysis, pollen residues mounted in glycerin were analyzed under the microscope. The interpretation of the pollen and spores was performed using pollen atlases and pollen diagrams were made. All samples are distorted by strange pollen of arboreal. The Pinus pollen content varies between 20% and 80%. Single grains of Piceae, Alnus, Alnuster are found. Some non-arboreal pollen like Artemisia and Chenopodiaceae is presented in all spectra, their abundance varies between 1-20 %. Although this species grow within researching area, they are found not in all described vegetative associations. Connection between projective cover of local species and strange pollen's participation in spectra formation is found: low projective cover causes less pollen production and amount of strange pollen (generally arboreal) increases. Domination of some local species is not reflected by their pollen assemblages. For example abundance of Larix pollen (the main arboreal species within researching area) reaches only 2%, and grains of Dryas are not found at all. It can be explained by bad safety and volatility of their grains. So even single

  11. Pollen Lipidomics: Lipid Profiling Exposes a Notable Diversity in 22 Allergenic Pollen and Potential Biomarkers of the Allergic Immune Response

    PubMed Central

    Bashir, Mohamed Elfatih H.; Lui, Jan Hsi; Palnivelu, Ravishankar; Naclerio, Robert M.; Preuss, Daphne

    2013-01-01

    Background/Aim Pollen grains are the male gametophytes that deliver sperm cells to female gametophytes during sexual reproduction of higher plants. Pollen is a major source of aeroallergens and environmental antigens. The pollen coat harbors a plethora of lipids that are required for pollen hydration, germination, and penetration of the stigma by pollen tubes. In addition to proteins, pollen displays a wide array of lipids that interact with the human immune system. Prior searches for pollen allergens have focused on the identification of intracellular allergenic proteins, but have largely overlooked much of the extracellular pollen matrix, a region where the majority of lipid molecules reside. Lipid antigens have attracted attention for their potent immunoregulatory effects. By being in close proximity to allergenic proteins on the pollen surface when they interact with host cells, lipids could modify the antigenic properties of proteins. Methodology/Principal Findings We performed a comparative pollen lipid profiling of 22 commonly allergenic plant species by the use of gas chromatography-mass spectroscopy, followed by detailed data mining and statistical analysis. Three experiments compared pollen lipid profiles. We built a database library of the pollen lipids by matching acquired pollen-lipid mass spectra and retention times with the NIST/EPA/NIH mass-spectral library. We detected, identified, and relatively quantified more than 106 lipid molecular species including fatty acids, n-alkanes, fatty alcohols, and sterols. Pollen-derived lipids stimulation up-regulate cytokines expression of dendritic and natural killer T cells co-culture. Conclusions/Significance Here we report on a lipidomic analysis of pollen lipids that can serve as a database for identifying potential lipid antigens and/or novel candidate molecules involved in allergy. The database provides a resource that facilitates studies on the role of lipids in the immunopathogenesis of allergy. Pollen

  12. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  13. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  14. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  15. Airborne Methane Measurements using Optical Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Riris, H.; Numata, K.; Li, S.; Wu, S.; Ramanathan, A.; Dawsey, M.; Abshire, J. B.; Kawa, S. R.; Mao, J.

    2012-12-01

    We report on airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from clathrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment and more measurements are needed. In this paper we report on an airborne demonstration of atmospheric methane column optical depth measurements at 1.65 μm using widely tunable, seeded optical parametric amplifier (OPA) and a photon counting detector. Our results show good agreement between the experimentally derived optical depth measurements and theoretical calculations and follow the expected changes for aircraft altitudes from 3 to 11 km. The technique has also been used to measure carbon dioxide and monoxide, water vapor, and other trace gases in the near and mid-infrared spectral regions on the ground.

  16. What Counts as Evidence?

    ERIC Educational Resources Information Center

    Dougherty Stahl, Katherine A.

    2014-01-01

    Each disciplinary community has its own criteria for determining what counts as evidence of knowledge in their academic field. The criteria influence the ways that a community's knowledge is created, communicated, and evaluated. Situating reading, writing, and language instruction within the content areas enables teachers to explicitly…

  17. WY Kids Count.

    ERIC Educational Resources Information Center

    Wyoming Kids Count, Cheyenne.

    This WY Kids Count brochure uses the metaphor of children's building blocks to present information on the current well-being of Wyoming children and to advocate enhancing the lives of young children. Each block (i.e., each develop the brochure) presents concerns in a separate area: (1) poverty, highlighting the number of children living in…

  18. Counting Tech Prep Students.

    ERIC Educational Resources Information Center

    Barnett, Elizabeth

    2002-01-01

    Discusses the problems surrounding the counting of tech prep students. Suggests that one problem is the lack of a single definition for the term "tech prep." Suggests that if it is to be evaluated as a program, it needs more resources. (JOW)

  19. Accounting for What Counts

    ERIC Educational Resources Information Center

    Milner, Joseph O.; Ferran, Joan E.; Martin, Katharine Y.

    2003-01-01

    No Child Left Behind legislation makes it clear that outside evaluators determine what gets taught in the classroom. It is important to ensure they measure what truly counts in school. This fact is poignantly and sadly true for the under funded, poorly resourced, "low performing" schools that may be hammered by administration accountants in the…

  20. LOW ENERGY COUNTING CHAMBERS

    DOEpatents

    Hayes, P.M.

    1960-02-16

    A beta particle counter adapted to use an end window made of polyethylene terephthalate was designed. The extreme thinness of the film results in a correspondingly high transmission of incident low-energy beta particles by the window. As a consequence, the counting efficiency of the present counter is over 40% greater than counters using conventional mica end windows.

  1. The bias and signal attenuation present in conventional pollen-based climate reconstructions as assessed by early climate data from Minnesota, USA.

    PubMed

    St Jacques, Jeannine-Marie; Cumming, Brian F; Sauchyn, David J; Smol, John P

    2015-01-01

    The inference of past temperatures from a sedimentary pollen record depends upon the stationarity of the pollen-climate relationship. However, humans have altered vegetation independent of changes to climate, and consequently modern pollen deposition is a product of landscape disturbance and climate, which is different from the dominance of climate-derived processes in the past. This problem could cause serious signal distortion in pollen-based reconstructions. In the north-central United States, direct human impacts have strongly altered the modern vegetation and hence the pollen rain since Euro-American settlement in the mid-19th century. Using instrumental temperature data from the early 1800 s from Fort Snelling (Minnesota), we assessed the signal distortion and bias introduced by using the conventional method of inferring temperature from pollen assemblages in comparison to a calibration set from pre-settlement pollen assemblages and the earliest instrumental climate data. The early post-settlement calibration set provides more accurate reconstructions of the 19th century instrumental record, with less bias, than the modern set does. When both modern and pre-industrial calibration sets are used to reconstruct past temperatures since AD 1116 from pollen counts from a varve-dated record from Lake Mina, Minnesota, the conventional inference method produces significant low-frequency (centennial-scale) signal attenuation and positive bias of 0.8-1.7 °C, resulting in an overestimation of Little Ice Age temperature and likely an underestimation of the extent and rate of anthropogenic warming in this region. However, high-frequency (annual-scale) signal attenuation exists with both methods. Hence, we conclude that any past pollen spectra from before Euro-American settlement in this region should be interpreted using a pre-Euro-American settlement pollen set, paired to the earliest instrumental climate records. It remains to be explored how widespread this problem is

  2. Pollen tetrads in the detection of environmental mutagenesis

    SciTech Connect

    Mulcahy, D.L.

    1981-01-01

    Although pollen is a very sensitive indicator of environmental mutagenesis, it is also sensitive to nonmutagenic environmental stress. By analyzing pollen tetrads, rather than individual pollen grains, it is possible to distinguish between mutagenic and nonmutagenic influences. Another advantage of using pollen tetrads in mutagenicity studies is that it is possible to discriminate between pre- and post-pachytene mutations. This eliminates the mutant sector problem of a single mutational event giving rise to a large number of mutant cells. Methods of analyzing pollen tetrads are described.

  3. The Beauty and Biology of Pollen.

    ERIC Educational Resources Information Center

    Clay-Poole, Scott T.; Slesnick, Irwin L.

    1983-01-01

    Describes: basic features of pollen grains (shapes, apertures, layering of wall, exine sculpturing); strategies for pollination (anemophily--wind transported, zoophily--animal transported); and the structures specialized for each process. Gives instructions for using scanning electron microscope photographs and for collecting, identifying, and…

  4. Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe

    NASA Astrophysics Data System (ADS)

    Emberlin, J.; Detandt, M.; Gehrig, R.; Jaeger, S.; Nolard, N.; Rantio-Lehtimäki, A.

    2002-07-01

    A shift in the timing of birch pollen seasons is important because it is well known to be a significant aeroallergen, especially in NW Europe where it is a notable cause of hay fever and pollen-related asthma. The research reported in this paper aims to investigate temporal patterns in the start dates of Betula (birch) pollen seasons at selected sites across Europe. In particular it investigates relationships between the changes in start dates and changes in spring temperatures over approximately the last 20 years. Daily birch pollen counts were used from Kevo, Turku, London, Brussels, Zurich and Vienna, for the core period from 1982 to 1999 and, in some cases, from 1970 to 2000. The sites represent a range of biogeographical situations from just within the Arctic Circle through to North West Maritime and Continental Europe. Pollen samples were taken with Hirst-type volumetric spore traps. Weather data were obtained from the sites nearest to the pollen traps. The timing of birch pollen seasons is known to depend mostly on a non-linear balance between the winter chilling required to break dormancy, and spring temperatures. Pollen start dates and monthly mean temperatures for January through to May were compiled to 5-year running means to examine trends. The start dates for the next 10 years were calculated from regression equations for each site, on the speculative basis that the current trends would continue. The analyses show regional contrasts. Kevo shows a marked trend towards cooler springs and later starts. If this continues the mean start date will become about 6 days later over the next 10 years. Turku exhibits cyclic patterns in start dates. A current trend towards earlier starts is expected to continue until 2007, followed by another fluctuation. London, Brussels, Zurich and Vienna show very similar patterns in the trends towards earlier start dates. If the trend continues the mean start dates at these sites will advance by about 6 days over the next 10

  5. Improvement in the accuracy of back trajectories using WRF to identify pollen sources in southern Iberian Peninsula.

    PubMed

    Hernández-Ceballos, M A; Skjøth, C A; García-Mozo, H; Bolívar, J P; Galán, C

    2014-12-01

    Airborne pollen transport at micro-, meso-gamma and meso-beta scales must be studied by atmospheric models, having special relevance in complex terrain. In these cases, the accuracy of these models is mainly determined by the spatial resolution of the underlying meteorological dataset. This work examines how meteorological datasets determine the results obtained from atmospheric transport models used to describe pollen transport in the atmosphere. We investigate the effect of the spatial resolution when computing backward trajectories with the HYSPLIT model. We have used meteorological datasets from the WRF model with 27, 9 and 3 km resolutions and from the GDAS files with 1° resolution. This work allows characterizing atmospheric transport of Olea pollen in a region with complex flows. The results show that the complex terrain affects the trajectories and this effect varies with the different meteorological datasets. Overall, the change from GDAS to WRF-ARW inputs improves the analyses with the HYSPLIT model, thereby increasing the understanding the pollen episode. The results indicate that a spatial resolution of at least 9 km is needed to simulate atmospheric flows that are considerable affected by the relief of the landscape. The results suggest that the appropriate meteorological files should be considered when atmospheric models are used to characterize the atmospheric transport of pollen on micro-, meso-gamma and meso-beta scales. Furthermore, at these scales, the results are believed to be generally applicable for related areas such as the description of atmospheric transport of radionuclides or in the definition of nuclear-radioactivity emergency preparedness.

  6. Chromosome numbers and pollen stainability of three species of Pacific Island breadfruit (Artocarpus, Moraceae).

    PubMed

    Ragone, D

    2001-04-01

    Chromosome numbers were determined for 48 accessions of breadfruit (Artocarpus altilis, A. mariannensis, and A. camansi [Moraceae]) from 16 Pacific Island groups, Indonesia, and the Philippines. Artocarpus camansi and A. mariannensis exhibit counts of 2n = 56; 2n = 56 (diploidy) and 2n = 84 (triploidy) were observed for A. altilis. Most diploid cultivars of A. altilis were seeded, but two cultivars with reduced seed number were observed. Micronesian accessions included putative interspecific hybrids between A. altilis and A. mariannensis. The majority of these accessions were seedless diploids, but triploid putative hybrids were also observed. Pollen stainablility was shown to correlate with the degree of seediness.

  7. Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development.

    PubMed

    Cankar, Katarina; Kortstee, Anne; Toonen, Marcel A J; Wolters-Arts, Mieke; Houbein, Rudolf; Mariani, Celestina; Ulvskov, Peter; Jorgensen, Bodil; Schols, Henk A; Visser, Richard G F; Trindade, Luisa M

    2014-05-01

    Pectin is a complex polysaccharide and an integral part of the primary plant cell wall and middle lamella, contributing to cell wall mechanical strength and cell adhesion. To understand the structure-function relationships of pectin in the cell wall, a set of transgenic potato lines with altered pectin composition was analysed. The expression of genes encoding enzymes involved in pectin acetylation, degradation of the rhamnogalacturonan backbone and type and length of neutral side chains, arabinan and galactan in particular, has been altered. Upon crossing of different transgenic lines, some transgenes were not transmitted to the next generation when these lines were used as a pollen donor, suggesting male sterility. Viability of mature pollen was severely decreased in potato lines with reduced pectic arabinan, but not in lines with altered galactan side chains. Anthers and pollen of different developmental stages were microscopically examined to study the phenotype in more detail. Scanning electron microscopy of flowers showed collapsed pollen grains in mature anthers and in earlier stages cytoplasmic protrusions at the site of the of kin pore, eventually leading to bursting of the pollen grain and leaking of the cytoplasm. This phenomenon is only observed after the microspores are released and the tapetum starts to degenerate. Timing of the phenotype indicates a role for pectic arabinan side chains during remodelling of the cell wall when the pollen grain is maturing and dehydrating.

  8. Molecular Ice Nucleation Activity of Birch Pollen

    NASA Astrophysics Data System (ADS)

    Felgitsch, Laura; Bichler, Magdalena; Häusler, Thomas; Weiss, Victor U.; Marchetti-Deschmann, Martina; Allmaier, Günter; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation plays a major part in ecosystem and climate. Due to the triggering of ice cloud formation it influences the radiation balance of the earth, but also on the ground it can be found to be important in many processes of nature. So far the process of heterogeneous ice nucleation is not fully understood and many questions remain to be answered. Biological ice nucleation is hereby from great interest, because it shows the highest freezing temperatures. Several bacteria and fungi act as ice nuclei. A famous example is Pseudomonas syringae, a bacterium in commercial use (Snomax®), which increases the freezing from homogeneous freezing temperatures of approx. -40° C (for small volumes as in cloud droplets) to temperatures up to -2° C. In 2001 it was found that birch pollen can trigger ice nucleation (Diehl et al. 2001; Diehl et al. 2002). For a long time it was believed that this is due to macroscopic features of the pollen surface. Recent findings of Bernhard Pummer (2012) show a different picture. The ice nuclei are not attached on the pollen surface directly, but on surface material which can be easily washed off. This shows that not only the surface morphology, but also specific molecules or molecular structures are responsible for the ice nucleation activity of birch pollen. With various analytic methods we work on elucidating the structure of these molecules as well as the mechanism with which they trigger ice nucleation. To solve this we use various instrumental analytic techniques like Nuclear Magnetic Resonance spectroscopy (NMR), Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS), and Gas-phase Electrophoretic Mobility Molecular Analysis (GEMMA). Also standard techniques like various chromatographic separation techniques and solvent extraction are in use. We state here that this feature might be due to the aggregation of small molecules, with agglomerates showing a specific surface structure. Our results

  9. Considerations About Pollen Used for the Production of Allergen Extracts.

    PubMed

    Codina, Rosa; Crenshaw, Rodger C; Lockey, Richard F

    2015-01-01

    Pollen is a biological product obtained to manufacture tree, weed, and grass allergen extracts, used to diagnose and treat allergies. Genetic and environmental factors affect the composition of pollen, e.g., the plant varieties from which pollen are obtained, weather, and levels of air pollution during plant growth. Therefore, appropriate guidelines and training of personnel to perform the activities associated with pollen are essential to produce appropriate allergen extracts. Various regulatory institutions, which vary in different countries, including the Food and Drug Administration (FDA) in the USA, control how such products should be produced. For example, the FDA regulates the manufacturing of pollen extracts but not the quality of the pollen used to prepare them, relying on each manufacturer to set its own standards to do so. To the contrary, European regulatory agencies, including the European Medicines Agency, control both the quality of the pollen and the manufacturing process to produce pollen extracts. Regulatory agencies, allergen manufacturers, scientific institutions, and pollen collection entities should collaborate to develop and implement guidelines appropriate for worldwide use for both the collection and processing of pollen raw materials. This article provides an overview of the subject of pollen for use in allergen extracts.

  10. Using the pollen viability and morphology for fluoride pollution biomonitoring.

    PubMed

    Malayeri, Behrooz Eshghi; Noori, Mitra; Jafari, Mehrana

    2012-06-01

    The methods using plants for biomonitoring of air and soil quality are simple, cheap, and fast and can supplement the classical physicochemical methods. In this study, biological pollen characterization of some collected legume species from an aluminum smelter area in Iran (IRALCO) was carried out to determine the actual value of pollen as a bioindicator of the effects of soil and atmospheric pollution. Young buds and flowers of six legumes (Cercis siliquastrum L., Medicago sativa L., Robinia pseudoacacia L., Melilotus officinalis (L.) lam, Trifolium repens L., and Sophora alopecuroides L.) in polluted and control plants were removed and compared. Studies of light and electron microscopic preparation showed some abnormalities during pollen development in affect of fluoride pollution. The viability of pollen grains estimated by staining with acetocarmine shows sharp differences in smearing advanced pollen grains from abnormal ones. Except M. officinalis, the pollen grains of C. siliquastrum, M. sativa, R. pseudoacacia, T. repens, and S. alopecuroides in polluted areas showed light, partial, or no staining with acetocarmine, whereas almost all of the control ones clearly stained. Observation of the pollen grains by light microscopy and scanning electron microscopy showed the significant effect of fluoride on shapes and sizes of pollen grains. The stimulation and inhibition of these pollen characteristics depend on the pollen species as well as on the pollutant and its concentration. Therefore, pollen grains provide essential information on biological impact of pollutants and they are good candidates for biomonitoring the atmospheric and edaphic pollutions.

  11. Pollen viability and transgene expression following storage in honey.

    PubMed

    Eady, C; Twell, D; Lindsey, K

    1995-07-01

    Transgenic plants of tobacco and Arabidopsis that produce genetically marked pollen, expressing the reporter gene uidA (gusA), were generated to determine whether pollen proteins can be expressed and stable in honey, a potential route by which foreign proteins might enter the wider environment. Hydrated tobacco pollen was found to lose viability rapidly in honey, while pollen in the natural dehydrated form remained viable for at least several days and in some cases several weeks, as determined by FDA staining activity and germinability. Dehydrated pollen was found to be capable of transient foreign gene expression, following microprojectile bombardment, after incubation in honey for at least 120 h. PCR amplification of transgene sequences in pollen of transgenic plants revealed that pollen DNA can remain relatively intact after 7 weeks in honey. GUS enzyme activity analysis and SDS-PAGE of pollen proteins revealed that foreign and native pollen proteins are stable in pollen incubated in honey for at least 6 weeks. We conclude that pollen may represent an ecologically important vector for transgenic protein products. PMID:7655512

  12. Pollen viability and transgene expression following storage in honey.

    PubMed

    Eady, C; Twell, D; Lindsey, K

    1995-07-01

    Transgenic plants of tobacco and Arabidopsis that produce genetically marked pollen, expressing the reporter gene uidA (gusA), were generated to determine whether pollen proteins can be expressed and stable in honey, a potential route by which foreign proteins might enter the wider environment. Hydrated tobacco pollen was found to lose viability rapidly in honey, while pollen in the natural dehydrated form remained viable for at least several days and in some cases several weeks, as determined by FDA staining activity and germinability. Dehydrated pollen was found to be capable of transient foreign gene expression, following microprojectile bombardment, after incubation in honey for at least 120 h. PCR amplification of transgene sequences in pollen of transgenic plants revealed that pollen DNA can remain relatively intact after 7 weeks in honey. GUS enzyme activity analysis and SDS-PAGE of pollen proteins revealed that foreign and native pollen proteins are stable in pollen incubated in honey for at least 6 weeks. We conclude that pollen may represent an ecologically important vector for transgenic protein products.

  13. Using the pollen viability and morphology for fluoride pollution biomonitoring.

    PubMed

    Malayeri, Behrooz Eshghi; Noori, Mitra; Jafari, Mehrana

    2012-06-01

    The methods using plants for biomonitoring of air and soil quality are simple, cheap, and fast and can supplement the classical physicochemical methods. In this study, biological pollen characterization of some collected legume species from an aluminum smelter area in Iran (IRALCO) was carried out to determine the actual value of pollen as a bioindicator of the effects of soil and atmospheric pollution. Young buds and flowers of six legumes (Cercis siliquastrum L., Medicago sativa L., Robinia pseudoacacia L., Melilotus officinalis (L.) lam, Trifolium repens L., and Sophora alopecuroides L.) in polluted and control plants were removed and compared. Studies of light and electron microscopic preparation showed some abnormalities during pollen development in affect of fluoride pollution. The viability of pollen grains estimated by staining with acetocarmine shows sharp differences in smearing advanced pollen grains from abnormal ones. Except M. officinalis, the pollen grains of C. siliquastrum, M. sativa, R. pseudoacacia, T. repens, and S. alopecuroides in polluted areas showed light, partial, or no staining with acetocarmine, whereas almost all of the control ones clearly stained. Observation of the pollen grains by light microscopy and scanning electron microscopy showed the significant effect of fluoride on shapes and sizes of pollen grains. The stimulation and inhibition of these pollen characteristics depend on the pollen species as well as on the pollutant and its concentration. Therefore, pollen grains provide essential information on biological impact of pollutants and they are good candidates for biomonitoring the atmospheric and edaphic pollutions. PMID:22161315

  14. Pollen processing behavior of Heliconius butterflies: a derived grooming behavior.

    PubMed

    Hikl, Anna-Laetitia; Krenn, Harald W

    2011-01-01

    Pollen feeding behaviors Heliconius and Laparus (Lepidoptera: Nymphalidae) represent a key innovation that has shaped other life history traits of these neotropical butterflies. Although all flower visiting Lepidoptera regularly come in contact with pollen, only Heliconius and Laparus butterflies actively collect pollen with the proboscis and subsequently take up nutrients from the pollen grains. This study focused on the behavior of pollen processing and compared the movement patterns with proboscis grooming behavior in various nymphalid butterflies using video analysis. The proboscis movements of pollen processing behavior consisted of a lengthy series of repeated coiling and uncoiling movements in a loosely coiled proboscis position combined with up and down movements and the release of saliva. The proboscis-grooming behavior was triggered by contamination of the proboscis in both pollen feeding and non-pollen feeding nymphalid butterflies. Proboscis grooming movements included interrupted series of coiling and uncoiling movements, characteristic sideways movements, proboscis lifting, and occasionally full extension of the proboscis. Discharge of saliva was more pronounced in pollen feeding species than in non-pollen feeding butterfly species. We conclude that the pollen processing behavior of Heliconius and Laparus is a modified proboscis grooming behavior that originally served to clean the proboscis after contamination with particles.

  15. Considerations About Pollen Used for the Production of Allergen Extracts.

    PubMed

    Codina, Rosa; Crenshaw, Rodger C; Lockey, Richard F

    2015-01-01

    Pollen is a biological product obtained to manufacture tree, weed, and grass allergen extracts, used to diagnose and treat allergies. Genetic and environmental factors affect the composition of pollen, e.g., the plant varieties from which pollen are obtained, weather, and levels of air pollution during plant growth. Therefore, appropriate guidelines and training of personnel to perform the activities associated with pollen are essential to produce appropriate allergen extracts. Various regulatory institutions, which vary in different countries, including the Food and Drug Administration (FDA) in the USA, control how such products should be produced. For example, the FDA regulates the manufacturing of pollen extracts but not the quality of the pollen used to prepare them, relying on each manufacturer to set its own standards to do so. To the contrary, European regulatory agencies, including the European Medicines Agency, control both the quality of the pollen and the manufacturing process to produce pollen extracts. Regulatory agencies, allergen manufacturers, scientific institutions, and pollen collection entities should collaborate to develop and implement guidelines appropriate for worldwide use for both the collection and processing of pollen raw materials. This article provides an overview of the subject of pollen for use in allergen extracts. PMID:26004305

  16. Inhalation challenge with ragweed pollen in ragweed-sensitive asthmatics.

    PubMed

    Rosenberg, G L; Rosenthal, R R; Norman, P S

    1983-03-01

    We reexamined the ability of inhaled ragweed pollen to induce bronchoconstriction in ragweed-sensitive asthmatic patients using a turbo-inhaler to administer pollen quantitatively. Adult subjects were selected for study on the basis of fall season asthmatic attacks, positive skin test, histamine release, RAST, and bronchial challenge responses to ragweed extract. Not one of 12 such subjects had any bronchial response to oral inhalation of whole pollen grains even when the dose was increased to 7640 pollen grains (more than the estimated maximum daily exposure in season), whereas nasal challenge by the same method produced brisk hay fever responses without bronchospasm. On the other hand, when the pollen was ground to fragments with a size range of 1 to 8 micrometers, oral inhalation produced a 35% fall in airways conductance in six of seven subjects in doses ranging from 59 to 20,000 pollen grain equivalents. Atropine pretreatment did not modify the response to pollen fragments, making an irritant response unlikely. These data, coupled with earlier observations that no more than a few pollen grains penetrate further than the larynx, raise further questions about the role of whole ragweed pollen in fall asthma in allergic patients. In addition, ragweed-allergic asthmatics appear not to have their symptoms at the time of maximum pollen load in the air. We believe that small-particle allergens other than ragweed pollen should be considered in most cases of fall seasonal asthma.

  17. Purification and Characterization of Actin from Maize Pollen 1

    PubMed Central

    Liu, Xiong; Yen, Lung-Fei

    1992-01-01

    Pollen is an excellent source of actin for biochemical and physiological studies of the actomyosin system in higher plants. We have developed an efficient method to prepare relatively high levels of actin from the pollen of maize (Zea mays L.). The procedures of purification include acetone powder preparation, saturated ammonium sulfate fractionation, diethylaminoethyl-cellulose chromatography, a cycle of polymerization-depolymerization, and Sephacryl S-200 gel filtration. The average yield of actin is 19 milligrams per 100 grams of pollen grains extracted. This is comparable with those of Acanthamoeba castellanii and human platelets. The purified pollen actin is electrophoretically homogeneous and its molecular mass is 42 kilodaltons. The amino acid composition and circular dichroism spectrum of pollen actin are identical to those of muscle actin. The actin purified from pollen is able to polymerize to F-actin. The pollen F-actin activated the activity of the muscle myosin ATPase sevenfold. ImagesFigure 1Figure 2 PMID:16668982

  18. Modeling for Airborne Contamination

    SciTech Connect

    F.R. Faillace; Y. Yuan

    2000-08-31

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift

  19. Drought, pollen and nectar availability, and pollination success.

    PubMed

    Waser, Nickolas M; Price, Mary V

    2016-06-01

    Pollination success of animal-pollinated flowers depends on rate of pollinator visits and on pollen deposition per visit, both of which should vary with the pollen and nectar "neighborhoods" of a plant, i.e., with pollen and nectar availability in nearby plants. One determinant of these neighborhoods is per-flower production of pollen and nectar, which is likely to respond to environmental influences. In this study, we explored environmental effects on pollen and nectar production and on pollination success in order to follow up a surprising result from a previous study: flowers of Ipomopsis aggregata received less pollen in years of high visitation by their hummingbird pollinators. A new analysis of the earlier data indicated that high bird visitation corresponded to drought years. We hypothesized that drought might contribute to the enigmatic prior result if it decreases both nectar and pollen production: in dry years, low nectar availability could cause hummingbirds to visit flowers at a higher rate, and low pollen availability could cause them to deposit less pollen per visit. A greenhouse experiment demonstrated that drought does reduce both pollen and nectar production by I. aggregata flowers. This result was corroborated across 6 yr of variable precipitation and soil moisture in four unmanipulated field populations. In addition, experimental removal of pollen from flowers reduced the pollen received by nearby flowers. We conclude that there is much to learn about how abiotic and biotic environmental drivers jointly affect pollen and nectar production and availability, and how this contributes to pollen and nectar neighborhoods and thus influences pollination success.

  20. Drought, pollen and nectar availability, and pollination success.

    PubMed

    Waser, Nickolas M; Price, Mary V

    2016-06-01

    Pollination success of animal-pollinated flowers depends on rate of pollinator visits and on pollen deposition per visit, both of which should vary with the pollen and nectar "neighborhoods" of a plant, i.e., with pollen and nectar availability in nearby plants. One determinant of these neighborhoods is per-flower production of pollen and nectar, which is likely to respond to environmental influences. In this study, we explored environmental effects on pollen and nectar production and on pollination success in order to follow up a surprising result from a previous study: flowers of Ipomopsis aggregata received less pollen in years of high visitation by their hummingbird pollinators. A new analysis of the earlier data indicated that high bird visitation corresponded to drought years. We hypothesized that drought might contribute to the enigmatic prior result if it decreases both nectar and pollen production: in dry years, low nectar availability could cause hummingbirds to visit flowers at a higher rate, and low pollen availability could cause them to deposit less pollen per visit. A greenhouse experiment demonstrated that drought does reduce both pollen and nectar production by I. aggregata flowers. This result was corroborated across 6 yr of variable precipitation and soil moisture in four unmanipulated field populations. In addition, experimental removal of pollen from flowers reduced the pollen received by nearby flowers. We conclude that there is much to learn about how abiotic and biotic environmental drivers jointly affect pollen and nectar production and availability, and how this contributes to pollen and nectar neighborhoods and thus influences pollination success. PMID:27459771

  1. Assessment of pollen reward and pollen availability in Solanum stramoniifolium and Solanum paniculatum for buzz-pollinating carpenter bees.

    PubMed

    Burkart, A; Schlindwein, C; Lunau, K

    2014-03-01

    The two widespread tropical Solanum species S. paniculatum and S. stramoniifolium are highly dependent on the visits of large bees that pollinate the flowers while buzzing them. Both Solanum species do not offer nectar reward; the rewarding of bees is thus solely dependent on the availability of pollen. Flower visitors are unable to visually assess the amount of pollen, because the pollen is hidden in poricidal anthers. In this study we ask whether and how the amount of pollen determines the attractiveness of flowers for bees. The number of pollen grains in anthers of S. stramoniifolium was seven times higher than in S. paniculatum. By contrast, the handling time per five flowers for carpenter bees visiting S. paniculatum was 3.5 times shorter than of those visiting S. stramoniifolium. As a result foraging carpenter bees collected a similar number of pollen grains per unit time on flowers of both species. Experimental manipulation of pollen availability by gluing the anther pores showed that the carpenter bees were unable to detect the availability of pollen by means of chemical cues before landing and without buzzing. Our study shows that the efficiency of pollen collecting on S. paniculatum is based on large inflorescences with short between-flower search times and short handling time of individual flowers, whereas that of S. stramoniifolium relies on a large amount of pollen per flower. Interestingly, large carpenter bees are able to adjust their foraging behaviour to drastically different strategies of pollen reward in otherwise very similar plant species.

  2. Effects of simulated acid rain on the pollen germination and pollen tube growth of apple (Malus sylvestris Miller cv. Golden).

    PubMed

    Munzuroglu, O; Obek, E; Geckil, H

    2003-01-01

    The pollens of apple flowers have been treated with simulated acid rain solutions in range of pHs 2.9 to 5.0 in order to determine the threshold proportion values that lead the observed symptoms of detriments of acid rain. Compared to controls (pH 6.5), pollen germination decreased by 41.75% at pH 3.3 and pollen tube elongation decreased by 24.3% at pH 3.4. Acid rain threshold proportion value was around pH 3.3 and 3.4 for apple pollen germination and pollen tube elongation, respectively. Furthermore, pollen tube elongation was determined to be more sensitive to acid rain than pollen germination. The pH values below 3.1 resulted in complete destruction of pollen tubes. Pollen germination entirely stopped at around pH 3.0. Finally, it has been shown that the acid rain has a blocking effect on pollen germination and pollen tube elongation in apple. The conclusion is that not only pH value but also the quantity of acid rain is important factor in germination. The results were found statistically significant through the LSD test at levels of p < 0.05 and p < 0.01.

  3. Development of personal pollen information-the next generation of pollen information and a step forward for hay fever sufferers.

    PubMed

    Kmenta, Maximilian; Bastl, Katharina; Jäger, Siegfried; Berger, Uwe

    2014-10-01

    Pollen allergies affect a large part of the European population and are considered likely to increase. User feedback indicates that there are difficulties in providing proper information and valid forecasts using traditional methods of aerobiology due to a variety of factors. Allergen content, pollen loads, and pollen allergy symptoms vary per region and year. The first steps in challenging such issues have already been undertaken. A personalized pollen-related symptom forecast is thought to be a possible answer. However, attempts made thus far have not led to an improvement in daily forecasting procedures. This study describes a model that was launched in 2013 in Austria to provide the first available personal pollen information. This system includes innovative forecast models using bi-hourly pollen data, traditional pollen forecasts based on historical data, meteorological data, and recent symptom data from the patient's hayfever diary. Furthermore, it calculates the personal symptom load in real time, in particular, the entries of the previous 5 days, to classify users. The personal pollen information was made available in Austria on the Austrian pollen information website and via a mobile pollen application, described herein for the first time. It is supposed that the inclusion of personal symptoms will lead to major improvements in pollen information concerning hay fever sufferers.

  4. Development of personal pollen information—the next generation of pollen information and a step forward for hay fever sufferers

    NASA Astrophysics Data System (ADS)

    Kmenta, Maximilian; Bastl, Katharina; Jäger, Siegfried; Berger, Uwe

    2014-10-01

    Pollen allergies affect a large part of the European population and are considered likely to increase. User feedback indicates that there are difficulties in providing proper information and valid forecasts using traditional methods of aerobiology due to a variety of factors. Allergen content, pollen loads, and pollen allergy symptoms vary per region and year. The first steps in challenging such issues have already been undertaken. A personalized pollen-related symptom forecast is thought to be a possible answer. However, attempts made thus far have not led to an improvement in daily forecasting procedures. This study describes a model that was launched in 2013 in Austria to provide the first available personal pollen information. This system includes innovative forecast models using bi-hourly pollen data, traditional pollen forecasts based on historical data, meteorological data, and recent symptom data from the patient's hayfever diary. Furthermore, it calculates the personal symptom load in real time, in particular, the entries of the previous 5 days, to classify users. The personal pollen information was made available in Austria on the Austrian pollen information website and via a mobile pollen application, described herein for the first time. It is supposed that the inclusion of personal symptoms will lead to major improvements in pollen information concerning hay fever sufferers.

  5. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  6. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  7. Effects of particle size and velocity on burial depth of airborne particles in glass fiber filters

    SciTech Connect

    Higby, D.P.

    1984-11-01

    Air sampling for particulate radioactive material involves collecting airborne particles on a filter and then determining the amount of radioactivity collected per unit volume of air drawn through the filter. The amount of radioactivity collected is frequently determined by directly measuring the radiation emitted from the particles collected on the filter. Counting losses caused by the particle becoming buried in the filter matrix may cause concentrations of airborne particulate radioactive materials to be underestimated by as much as 50%. Furthermore, the dose calculation for inhaled radionuclides will also be affected. The present study was designed to evaluate the extent to which particle size and sampling velocity influence burial depth in glass-fiber filters. Aerosols of high-fired /sup 239/PuO/sub 2/ were collected at various sampling velocities on glass-fiber filters. The fraction of alpha counts lost due to burial was determined as the ratio of activity detected by direct alpha count to the quantity determined by photon spectrometry. The results show that burial of airborne particles collected on glass-fiber filters appears to be a weak function of sampling velocity and particle size. Counting losses ranged from 0 to 25%. A correction that assumes losses of 10 to 15% would ensure that the concentration of airborne alpha-emitting radionuclides would not be underestimated when glass-fiber filters are used. 32 references, 21 figures, 11 tables.

  8. [Course of hay fever during the pollen season with respect to the effect of specific immunotherapy. II. Cytologic changes and chemotactic activity in nasal lavage].

    PubMed

    Rozniecka, M; Kowałski, M L; Grzegorczyk, J; Wojciechowska, B; Sliwińska-Kowalska, M; Rozniecki, J

    1995-01-01

    The cytological changes and chemotactic activity in nasal lavage fluid were observed in 27 patients with pollen allergy. In one group of patients Pollinex was administered, but in the second--only placebo. Total cell count in nasal secretions was increased after pollen season. The significant increase of eosinophils and metachromatic cells was observed during the season in comparison with the time before and after it. No seasonal dynamic was documented in chemotactic activity of neutrophils in the nasal lavage fluid. Applied immunotherapy gave a some protection on evaluated parameters and observed symptoms.

  9. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  10. Distribution and identification of culturable airborne microorganisms in a Swiss milk processing facility.

    PubMed

    Brandl, Helmut; Fricker-Feer, Claudia; Ziegler, Dominik; Mandal, Jyotshna; Stephan, Roger; Lehner, Angelika

    2014-01-01

    Airborne communities (mainly bacteria) were sampled and characterized (concentration levels and diversity) at 1 outdoor and 6 indoor sites within a Swiss dairy production facility. Air samples were collected on 2 sampling dates in different seasons, one in February and one in July 2012 using impaction bioaerosol samplers. After cultivation, isolates were identified by mass spectrometry (matrix-assisted laser desorption/ionization-time-of-flight) and molecular (sequencing of 16S rRNA and rpoB genes) methods. In general, total airborne particle loads and total bacterial counts were higher in winter than in summer, but remained constant within each indoor sampling site at both sampling times (February and July). Bacterial numbers were generally very low (<100 cfu/m(3) of air) during the different steps of milk powder production. Elevated bacterial concentrations (with mean values of 391 ± 142 and 179 ± 33 cfu/m(3) of air during winter and summer sampling, respectively; n=15) occurred mainly in the "logistics area," where products in closed tins are packed in secondary packaging material and prepared for shipping. However, total bacterial counts at the outdoor site varied, with a 5- to 6-fold higher concentration observed in winter compared with summer. Twenty-five gram-positive and gram-negative genera were identified as part of the airborne microflora, with Bacillus and Staphylococcus being the most frequent genera identified. Overall, the culturable microflora community showed a composition typical and representative for the specific location. Bacterial counts were highly correlated with total airborne particles in the size range 1 to 5 µm, indicating that a simple surveillance system based upon counting of airborne particles could be implemented. The data generated in this study could be used to evaluate the effectiveness of the dairy plant's sanitation program and to identify potential sources of airborne contamination, resulting in increased food safety.

  11. Terrigenous fluxes of pollen, insect scale and land plant palynodebris observed by sediment traps deployed in the subarctic Pacific

    NASA Astrophysics Data System (ADS)

    Tsutsui, H.; Takahashi, K.; Fowell, S. J.; Matsuoka, K.; Jordan, R. W.; Yamamoto, S.

    2014-12-01

    From 1990 to 2009, sediment traps in the subarctic Pacific (SA; 49°N, 174°W) were deployed and recovered during each summer, allowing the long-term observation of particle fluxes. As the Pacific Decadal Oscillation index changed in 1999 as air-temp cooled, this study focused on pollen, land plant debris and insect scale fluxes at SA during 1998 to 2006. The max pollen and fern spores flux was a mean of 74 grains m2 d-1, and the following details: 65% of the total pollen counts represented by wind-pollinated trees (e.g., alder, birch and pine), 24% by the herbaceous plants (as herbs), and 11% by fern spores. Spore, herbaceous and wind-pollinated tree pollen (as wind-pollen) fluxes peaked in May and Sep-Oct, but flux peaks of the latter also occurred in April and Jun. The annual flux peaks of insect scales (of unknown origin) and land-plant debris were in May and Sep, but over the entire study period the max insect scale flux of 161 was in Aug 2002, with a mean of 16 scales m2d-1, while the max (in Aug 2004) and mean land-plant debris fluxes were 107 and 10 plant fragments m2d-1, respectively. The sediment traps are situated both side of the Aleutian Is., where snow and ice occurs from Oct to May. The ice-snow season accounts for 25% of the total annual particle flux in SA trap, with 75% throughout the rest of the year. The correlation coefficient among pollen, insect scales and land plant debris are: 1) 0.58 (p<1%) between wind-pollen and insect scales, 2) 0.75 (p<5%) between herb-pollen and land plant debris, 3) but only 0.14 between insect scales and herbaceous pollen. Thus, the production location, residence time, route and mode of transport of the particles are important factors. Normally, the wind-pollinated tree flowering season in the northern part of Alaska and Japan where are an upper stream to the stations is from Apr to Jun, with the pollen usually transported across the ocean by winds. Assuming that the pollen takes several months to arrive SA, the

  12. Role of Lipid Metabolism in Plant Pollen Exine Development.

    PubMed

    Zhang, Dabing; Shi, Jianxin; Yang, Xijia

    2016-01-01

    Pollen plays important roles in the life cycle of angiosperms plants. It acts as not only a biological protector of male sperms but also a communicator between the male and the female reproductive organs, facilitating pollination and fertilization. Pollen is produced within the anther, and covered by the specialized outer envelope, pollen wall. Although the morphology of pollen varies among different plant species, the pollen wall is mainly comprised of three layers: the pollen coat, the outer exine layer, and the inner intine layer. Except the intine layer, the other two layers are basically of lipidic nature. Particularly, the outer pollen wall layer, the exine, is a highly resistant biopolymer of phenylpropanoid and lipidic monomers covalently coupled by ether and ester linkages. The precise molecular mechanisms underlying pollen coat formation and exine patterning remain largely elusive. Herein, we summarize the current genetic, phenotypic and biochemical studies regarding to the pollen exine development and underlying molecular regulatory mechanisms mainly obtained from monocot rice (Oryza sativa) and dicot Arabidopsis thaliana, aiming to extend our understandings of plant male reproductive biology. Genes, enzymes/proteins and regulatory factors that appear to play conserved and diversified roles in lipid biosynthesis, transportation and modification during pollen exine formation, were highlighted.

  13. The Quaternary fossil-pollen record and global change

    SciTech Connect

    Grimm, E.C. . Research and Collections Center)

    1993-03-01

    Fossil pollen provide one of the most valuable records of vegetation and climate change during the recent geological past. Advantages of the fossil-pollen record are that deposits containing fossil pollen are widespread, especially in areas having natural lakes, that fossil pollen occurs in continuous stratigraphic sequences spanning millennia, and that fossil pollen occurs in quantitative assemblages permitting a multivariate approach for reconstructing past vegetation and climates. Because of stratigraphic continuity, fossil pollen records climate cycles on a wide range of scales, from annual to the 100 ka Milankovitch cycles. Receiving particular emphasis recently are decadal to century scale changes, possible from the sediments of varved lakes, and late Pleistocene events on a 5--10 ka scale possibly correlating with the Heinrich events in the North Atlantic marine record or the Dansgaard-Oeschger events in the Greenland ice-core record. Researchers have long reconstructed vegetation and climate by qualitative interpretation of the fossil-pollen record. Recently quantitative interpretation has developed with the aid of large fossil-pollen databases and sophisticated numerical models. In addition, fossil pollen are important climate proxy data for validating General Circulation Models, which are used for predicting the possible magnitude future climate change. Fossil-pollen data also contribute to an understanding of ecological issues associated with global climate change, including questions of how and how rapidly ecosystems might respond to abrupt climate change.

  14. Anther evolution: pollen presentation strategies when pollinators differ.

    PubMed

    Castellanos, Maria Clara; Wilson, Paul; Keller, Sarah J; Wolfe, Andrea D; Thomson, James D

    2006-02-01

    Male-male competition in plants is thought to exert selection on flower morphology and on the temporal presentation of pollen. Theory suggests that a plant's pollen dosing strategy should evolve to match the abundance and pollen transfer efficiency of its pollinators. Simultaneous pollen presentation should be favored when pollinators are infrequent or efficient at delivering the pollen they remove, whereas gradual dosing should optimize delivery by frequent and wasteful pollinators. Among Penstemon and Keckiella species, anthers vary in ways that affect pollen release, and the morphology of dried anthers reliably indicates how they dispense pollen. In these genera, hummingbird pollination has evolved repeatedly from hymenopteran pollination. Pollen production does not change with evolutionary shifts between pollinators. We show that after we control for phylogeny, hymenopteran-adapted species present their pollen more gradually than hummingbird-adapted relatives. In a species pair that seemed to defy the pattern, the rhythm of anther maturation produced an equivalent dosing effect. These results accord with previous findings that hummingbirds can be more efficient than bees at delivering pollen.

  15. Differences in grass pollen allergen exposure across Australia

    PubMed Central

    Beggs, Paul J.; Katelaris, Constance H.; Medek, Danielle; Johnston, Fay H.; Burton, Pamela K.; Campbell, Bradley; Jaggard, Alison K.; Vicendese, Don; Bowman, David M.J.S.; Godwin, Ian; Huete, Alfredo R.; Erbas, Bircan; Green, Brett J.; Newnham, Rewi M.; Newbigin, Ed; Haberle, Simon G.; Davies, Janet M.

    2015-01-01

    Objective Allergic rhinitis and allergic asthma are important chronic diseases posing serious public health issues in Australia with associated medical, economic, and societal burdens. Pollen are significant sources of clinically relevant outdoor aeroallergens, recognised as both a major trigger for, and cause of, allergic respiratory diseases. This study aimed to provide a national, and indeed international, perspective on the state of Australian pollen data using a large representative sample. Methods Atmospheric grass pollen concentration is examined over a number of years within the period 1995 to 2013 for Brisbane, Canberra, Darwin, Hobart, Melbourne, and Sydney, including determination of the ‘clinical’ grass pollen season and grass pollen peak. Results The results of this study describe, for the first time, a striking spatial and temporal variability in grass pollen seasons in Australia, with important implications for clinicians and public health professionals, and the Australian grass pollen-allergic community. Conclusions These results demonstrate that static pollen calendars are of limited utility and in some cases misleading. This study also highlights significant deficiencies and limitations in the existing Australian pollen monitoring and data. Implications Establishment of an Australian national pollen monitoring network would help facilitate advances in the clinical and public health management of the millions of Australians with asthma and allergic rhinitis. PMID:25648730

  16. Role of Lipid Metabolism in Plant Pollen Exine Development.

    PubMed

    Zhang, Dabing; Shi, Jianxin; Yang, Xijia

    2016-01-01

    Pollen plays important roles in the life cycle of angiosperms plants. It acts as not only a biological protector of male sperms but also a communicator between the male and the female reproductive organs, facilitating pollination and fertilization. Pollen is produced within the anther, and covered by the specialized outer envelope, pollen wall. Although the morphology of pollen varies among different plant species, the pollen wall is mainly comprised of three layers: the pollen coat, the outer exine layer, and the inner intine layer. Except the intine layer, the other two layers are basically of lipidic nature. Particularly, the outer pollen wall layer, the exine, is a highly resistant biopolymer of phenylpropanoid and lipidic monomers covalently coupled by ether and ester linkages. The precise molecular mechanisms underlying pollen coat formation and exine patterning remain largely elusive. Herein, we summarize the current genetic, phenotypic and biochemical studies regarding to the pollen exine development and underlying molecular regulatory mechanisms mainly obtained from monocot rice (Oryza sativa) and dicot Arabidopsis thaliana, aiming to extend our understandings of plant male reproductive biology. Genes, enzymes/proteins and regulatory factors that appear to play conserved and diversified roles in lipid biosynthesis, transportation and modification during pollen exine formation, were highlighted. PMID:27023241

  17. Genome duplication and the evolution of conspecific pollen precedence

    PubMed Central

    Baldwin, Sarah J.; Husband, Brian C.

    2011-01-01

    Conspecific pollen precedence can be a strong reproductive barrier between polyploid and diploid species, but the role of genome multiplication in the evolution of this barrier has not been investigated. Here, we examine the direct effect of genome duplication on the evolution of pollen siring success in tetraploid Chamerion angustifolium. To separate the effects of genome duplication from selection after duplication, we compared pollen siring success of synthesized tetraploids (neotetraploids) with that of naturally occurring tetraploids by applying 2x, 4x (neo or established) or 2x + 4x pollen to diploid and tetraploid flowers. Seed set increased in diploids and decreased in both types of tetraploids as the proportion of pollen from diploid plants increased. Based on offspring ploidy from mixed-ploidy pollinations, pollen of the maternal ploidy always sired the majority of offspring but was strongest in established tetraploids and weakest in neotetraploids. Pollen from established tetraploids had significantly higher siring rates than neotetraploids when deposited on diploid (4xest = 47.2%, 4xneo = 27.1%) and on tetraploid recipients (4xest = 91.9%, 4xneo = 56.0%). Siring success of established tetraploids exceeded that of neotetraploids despite having similar pollen production per anther and pollen diameter. Our results suggest that, while pollen precedence can arise in association with the duplication event, the strength of polyploid siring success evolves after the duplication event. PMID:21123263

  18. Genome duplication and the evolution of conspecific pollen precedence.

    PubMed

    Baldwin, Sarah J; Husband, Brian C

    2011-07-01

    Conspecific pollen precedence can be a strong reproductive barrier between polyploid and diploid species, but the role of genome multiplication in the evolution of this barrier has not been investigated. Here, we examine the direct effect of genome duplication on the evolution of pollen siring success in tetraploid Chamerion angustifolium. To separate the effects of genome duplication from selection after duplication, we compared pollen siring success of synthesized tetraploids (neotetraploids) with that of naturally occurring tetraploids by applying 2x, 4x (neo or established) or 2x + 4x pollen to diploid and tetraploid flowers. Seed set increased in diploids and decreased in both types of tetraploids as the proportion of pollen from diploid plants increased. Based on offspring ploidy from mixed-ploidy pollinations, pollen of the maternal ploidy always sired the majority of offspring but was strongest in established tetraploids and weakest in neotetraploids. Pollen from established tetraploids had significantly higher siring rates than neotetraploids when deposited on diploid (4x(est) = 47.2%, 4x(neo) = 27.1%) and on tetraploid recipients (4x(est) = 91.9%, 4x(neo) = 56.0%). Siring success of established tetraploids exceeded that of neotetraploids despite having similar pollen production per anther and pollen diameter. Our results suggest that, while pollen precedence can arise in association with the duplication event, the strength of polyploid siring success evolves after the duplication event. PMID:21123263

  19. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth

    PubMed Central

    Mollet, Jean-Claude; Leroux, Christelle; Dardelle, Flavien; Lehner, Arnaud

    2013-01-01

    The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed. PMID:27137369

  20. PECTIN METHYLESTERASE48 is involved in Arabidopsis pollen grain germination.

    PubMed

    Leroux, Christelle; Bouton, Sophie; Kiefer-Meyer, Marie-Christine; Fabrice, Tohnyui Ndinyanka; Mareck, Alain; Guénin, Stéphanie; Fournet, Françoise; Ringli, Christoph; Pelloux, Jérôme; Driouich, Azeddine; Lerouge, Patrice; Lehner, Arnaud; Mollet, Jean-Claude

    2015-02-01

    Germination of pollen grains is a crucial step in plant reproduction. However, the molecular mechanisms involved remain unclear. We investigated the role of PECTIN METHYLESTERASE48 (PME48), an enzyme implicated in the remodeling of pectins in Arabidopsis (Arabidopsis thaliana) pollen. A combination of functional genomics, gene expression, in vivo and in vitro pollen germination, immunolabeling, and biochemical analyses was used on wild-type and Atpme48 mutant plants. We showed that AtPME48 is specifically expressed in the male gametophyte and is the second most expressed PME in dry and imbibed pollen grains. Pollen grains from homozygous mutant lines displayed a significant delay in imbibition and germination in vitro and in vivo. Moreover, numerous pollen grains showed two tips emerging instead of one in the wild type. Immunolabeling and Fourier transform infrared analyses showed that the degree of methylesterification of the homogalacturonan was higher in pme48-/- pollen grains. In contrast, the PME activity was lower in pme48-/-, partly due to a reduction of PME48 activity revealed by zymogram. Interestingly, the wild-type phenotype was restored in pme48-/- with the optimum germination medium supplemented with 2.5 mm calcium chloride, suggesting that in the wild-type pollen, the weakly methylesterified homogalacturonan is a source of Ca(2+) necessary for pollen germination. Although pollen-specific PMEs are traditionally associated with pollen tube elongation, this study provides strong evidence that PME48 impacts the mechanical properties of the intine wall during maturation of the pollen grain, which, in turn, influences pollen grain germination.

  1. Origin and Functional Prediction of Pollen Allergens in Plants.

    PubMed

    Chen, Miaolin; Xu, Jie; Devis, Deborah; Shi, Jianxin; Ren, Kang; Searle, Iain; Zhang, Dabing

    2016-09-01

    Pollen allergies have long been a major pandemic health problem for human. However, the evolutionary events and biological function of pollen allergens in plants remain largely unknown. Here, we report the genome-wide prediction of pollen allergens and their biological function in the dicotyledonous model plant Arabidopsis (Arabidopsis thaliana) and the monocotyledonous model plant rice (Oryza sativa). In total, 145 and 107 pollen allergens were predicted from rice and Arabidopsis, respectively. These pollen allergens are putatively involved in stress responses and metabolic processes such as cell wall metabolism during pollen development. Interestingly, these putative pollen allergen genes were derived from large gene families and became diversified during evolution. Sequence analysis across 25 plant species from green alga to angiosperms suggest that about 40% of putative pollen allergenic proteins existed in both lower and higher plants, while other allergens emerged during evolution. Although a high proportion of gene duplication has been observed among allergen-coding genes, our data show that these genes might have undergone purifying selection during evolution. We also observed that epitopes of an allergen might have a biological function, as revealed by comprehensive analysis of two known allergens, expansin and profilin. This implies a crucial role of conserved amino acid residues in both in planta biological function and allergenicity. Finally, a model explaining how pollen allergens were generated and maintained in plants is proposed. Prediction and systematic analysis of pollen allergens in model plants suggest that pollen allergens were evolved by gene duplication and then functional specification. This study provides insight into the phylogenetic and evolutionary scenario of pollen allergens that will be helpful to future characterization and epitope screening of pollen allergens. PMID:27436829

  2. PECTIN METHYLESTERASE48 is involved in Arabidopsis pollen grain germination.

    PubMed

    Leroux, Christelle; Bouton, Sophie; Kiefer-Meyer, Marie-Christine; Fabrice, Tohnyui Ndinyanka; Mareck, Alain; Guénin, Stéphanie; Fournet, Françoise; Ringli, Christoph; Pelloux, Jérôme; Driouich, Azeddine; Lerouge, Patrice; Lehner, Arnaud; Mollet, Jean-Claude

    2015-02-01

    Germination of pollen grains is a crucial step in plant reproduction. However, the molecular mechanisms involved remain unclear. We investigated the role of PECTIN METHYLESTERASE48 (PME48), an enzyme implicated in the remodeling of pectins in Arabidopsis (Arabidopsis thaliana) pollen. A combination of functional genomics, gene expression, in vivo and in vitro pollen germination, immunolabeling, and biochemical analyses was used on wild-type and Atpme48 mutant plants. We showed that AtPME48 is specifically expressed in the male gametophyte and is the second most expressed PME in dry and imbibed pollen grains. Pollen grains from homozygous mutant lines displayed a significant delay in imbibition and germination in vitro and in vivo. Moreover, numerous pollen grains showed two tips emerging instead of one in the wild type. Immunolabeling and Fourier transform infrared analyses showed that the degree of methylesterification of the homogalacturonan was higher in pme48-/- pollen grains. In contrast, the PME activity was lower in pme48-/-, partly due to a reduction of PME48 activity revealed by zymogram. Interestingly, the wild-type phenotype was restored in pme48-/- with the optimum germination medium supplemented with 2.5 mm calcium chloride, suggesting that in the wild-type pollen, the weakly methylesterified homogalacturonan is a source of Ca(2+) necessary for pollen germination. Although pollen-specific PMEs are traditionally associated with pollen tube elongation, this study provides strong evidence that PME48 impacts the mechanical properties of the intine wall during maturation of the pollen grain, which, in turn, influences pollen grain germination. PMID:25524442

  3. Honey loading for pollen collection: regulation of crop content in honeybee pollen foragers on leaving hive

    NASA Astrophysics Data System (ADS)

    Harano, Ken-ichi; Mitsuhata-Asai, Akiko; Sasaki, Masami

    2014-07-01

    Before foraging honeybees leave the hive, each bee loads its crop with some amount of honey "fuel" depending on the distance to the food source and foraging experience. For pollen collection, there is evidence that foragers carry additional honey as "glue" to build pollen loads. This study examines whether pollen foragers of the European honeybee Apis mellifera regulate the size of the crop load according to food-source distances upon leaving the hive and how foraging experience affects load regulation. The crop contents of bees foraging on crape myrtle Lagerstroemia indica, which has no nectary, were larger than those foraging on nectar from other sources, confirming a previous finding that pollen foragers carry glue in addition to fuel honey from the hive. Crop contents of both waggle dancers and dance followers showed a significant positive correlation with waggle-run durations. These results suggest that bees carry a distance-dependent amount of fuel honey in addition to a fixed amount of glue honey. Crop contents on leaving the hive were statistically larger in dancers than followers. Based on these results, we suggest that pollen foragers use information obtained through foraging experience to adjust crop contents on leaving the hive.

  4. Flow cytometric analysis of pollen grains collected from individual bees provides information about pollen load composition and foraging behaviour

    PubMed Central

    Kron, Paul; Kwok, Allison; Husband, Brian C.

    2014-01-01

    Background and Aims Understanding the species composition of pollen on pollinators has applications in agriculture, conservation and evolutionary biology. Current identification methods, including morphological analysis, cannot always discriminate taxa at the species level. Recent advances in flow cytometry techniques for pollen grains allow rapid testing of large numbers of pollen grains for DNA content, potentially providing improved species resolution. Methods A test was made as to whether pollen loads from single bees (honey-bees and bumble-bees) could be classified into types based on DNA content, and whether good estimates of proportions of different types could be made. An examination was also made of how readily DNA content can be used to identify specific pollen species. Key Results The method allowed DNA contents to be quickly found for between 250 and 9391 pollen grains (750–28 173 nuclei) from individual honey-bees and between 81 and 11 512 pollen grains (243–34 537 nuclei) for bumble-bees. It was possible to identify a minimum number of pollen species on each bee and to assign proportions of each pollen type (based on DNA content) present. Conclusions The information provided by this technique is promising but is affected by the complexity of the pollination environment (i.e. number of flowering species present and extent of overlap in DNA content). Nevertheless, it provides a new tool for examining pollinator behaviour and between-species or cytotype pollen transfer, particularly when used in combination with other morphological, chemical or genetic techniques. PMID:24232381

  5. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detec