Science.gov

Sample records for airborne pollen types

  1. Impact of land cover changes and climate on the main airborne pollen types in Southern Spain.

    PubMed

    García-Mozo, Herminia; Oteros, Jose Antonio; Galán, Carmen

    2016-04-01

    Airborne pollen concentrations strongly correlate with flowering intensity of wind-pollinated species growing at and around monitoring sites. The pollen spectrum, and the variations in its composition and concentrations, is influenced by climatic features and by available nutritional resources but it is also determined by land use and its changes. The first factor influence is well known on aerobiological researches but the impact of land cover changes has been scarcely studied until now. This paper reports on a study carried out in Southern Spain (Córdoba city) examining airborne pollen trends over a 15-year period and it explores the possible links both to changes in land use and to climate variations. The Seasonal-Trend Decomposition procedure based on Loess (STL) which decomposes long-term data series into smaller seasonal component patterns was applied. Trends were compared with recorded changes in land use at varying distances from the city in order to determine their possible influence on pollen-count variations. The influence of climate-related factors was determined by means of non-parametric correlation analysis. The STL method proved highly effective for extracting trend components from pollen time series, because their features vary widely and can change quickly in a short term. Results revealed mixed trends depending on the taxa and reflecting fluctuations in land cover and/or climate. A significant rising trend in Olea pollen counts was observed, attributable both to the increasing olive-growing area but also to changes in temperature and rainfall. Poaceae pollen concentrations also increased, due largely to an expansion of heterogeneous agricultural areas and to an increase in pollen season length positively influenced by rainfall and temperature. By contrast, the significant declining trend observed for pollen from ruderal taxa, such as Amaranthaceae, Rumex, Plantago and Urticaceae, may be linked to changes in urban planning strategies with a

  2. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  3. Pollen Raman spectra database: application to the identification of airborne pollen.

    PubMed

    Guedes, A; Ribeiro, H; Fernández-González, M; Aira, M J; Abreu, I

    2014-02-01

    Raman microspectroscopy allows a non-destructive identification of airborne particles. However, the identification of particles such as pollen is hindered by the absence of a spectral library. Although reference spectra of pollen have been published before, they have always been limited to a certain number of species. In this work, Raman spectra of 34 pollen types are presented and were used to build a pollen spectra primary library. Afterward, the applicability of this database for detecting and identifying pollen in airborne samples was tested. Airborne pollen samples collected during April, May and August were compared with blank pollen spectra by means of Hit Quality Index. Although a much larger library would be required, our results showed that all first hits correspond to the same blank pollen species of the questioned sample from the air. This possibility is an innovative idea and a promising line of investigation for future RAMAN technology development in the area of aerobiology.

  4. Spatial variability in airborne pollen concentrations.

    PubMed

    Raynor, G S; Ogden, E C; Hayes, J V

    1975-03-01

    Tests were conducted to determine the relationship between airborne pollen concentrations and distance. Simultaneous samples were taken in 171 tests with sets of eight rotoslide samplers spaced from one to 486 M. apart in straight lines. Use of all possible pairs gave 28 separation distances. Tests were conducted over a 2-year period in urban and rural locations distant from major pollen sources during both tree and ragweed pollen seasons. Samples were taken at a height of 1.5 M. during 5-to 20-minute periods. Tests were grouped by pollen type, location, year, and direction of the wind relative to the line. Data were analyzed to evaluate variability without regard to sampler spacing and variability as a function of separation distance. The mean, standard deviation, coefficient of variation, ratio of maximum to the mean, and ratio of minimum to the mean were calculated for each test, each group of tests, and all cases. The average coefficient of variation is 0.21, the maximum over the mean, 1.39 and the minimum over the mean, 0.69. No relationship was found with experimental conditions. Samples taken at the minimum separation distance had a mean difference of 18 per cent. Differences between pairs of samples increased with distance in 10 of 13 groups. These results suggest that airborne pollens are not always well mixed in the lower atmosphere and that a sample becomes less representative with increasing distance from the sampling location.

  5. Mismatch in aeroallergens and airborne grass pollen concentrations

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Hernández-Ceballos, M. A.; Galán, C.

    2016-11-01

    An accurate estimation of the allergen concentration in the atmosphere is essential for allergy sufferers. The major cause of pollinosis all over Europe is due to grass pollen and Phl p 5 has the highest rates of sensitization (>50%) in patients with grass pollen-induced allergy. However, recent research has shown that airborne pollen does not always offer a clear indicator of exposure to aeroallergens. This study aims to evaluate relations between airborne grass pollen and Phl p 5 concentrations in Córdoba (southern Spain) and to study how meteorological parameters influence these atmospheric records. Monitoring was carried out from 2012 to 2014. Hirst-type volumetric spore trap was used for pollen collection, following the protocol recommended by the Spanish Aerobiology Network (REA). Aeroallergen sampling was performed using a low-volume cyclone sampler, and allergenic particles were quantified by ELISA assay. Besides, the influence of main meteorological factors on local airborne pollen and allergen concentrations was surveyed. A significant correlation was observed between grass pollen and Phl p 5 allergen concentrations during the pollen season, but with some sporadic discrepancy episodes. The cumulative annual Pollen Index also varied considerably. A significant correlation has been obtained between airborne pollen and minimum temperature, relative humidity and precipitation, during the three studied years. However, there is no clear relationship between allergens and weather variables. Our findings suggest that the correlation between grass pollen and aeroallergen Phl p 5 concentrations varies from year-to-year probably related to a complex interplay of meteorological variables.

  6. Characterisation of particulate matter on airborne pollen grains.

    PubMed

    Ribeiro, Helena; Guimarães, Fernanda; Duque, Laura; Noronha, Fernando; Abreu, Ilda

    2015-11-01

    A characterization of the physical-chemical composition of the atmospheric PM adsorbed to airborne pollen was performed. Airborne pollen was sampled using a Hirst-type volumetric spore sampler and observed using a Field Emission Electron Probe Microanalyser for PM analysis. A secondary electron image was taken of each pollen grain and EDS spectra were obtained for individually adsorbed particles. All images were analysed and the size parameters of the particles adsorbed to pollen was determined. The measured particles' equivalent diameter varied between 0.1 and 25.8 μm, mostly in the fine fraction. The dominant particulates identified were Si-rich, Organic-rich, SO-rich, Metals & Oxides and Cl-rich. Significant daily differences were observed in the physical-chemical characteristics of particles adsorbed to the airborne pollen wall. These differences were correlated with weather parameters and atmospheric PM concentration. Airborne pollen has the ability to adsorb fine particles that may enhance its allergenicity.

  7. Effect of land uses and wind direction on the contribution of local sources to airborne pollen.

    PubMed

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Fernández-González, Federico; Pérez-Badia, Rosa

    2015-12-15

    The interpretation of airborne pollen levels in cities based on the contribution of the surrounding flora and vegetation is a useful tool to estimate airborne allergen concentrations and, consequently, to determine the allergy risk for local residents. This study examined the pollen spectrum in a city in central Spain (Guadalajara) and analysed the vegetation landscape and land uses within a radius of 20km in an attempt to identify and locate the origin of airborne pollen and to determine the effect of meteorological variables on pollen emission and dispersal. The results showed that local wind direction was largely responsible for changes in the concentrations of different airborne pollen types. The land uses contributing most to airborne pollen counts were urban green spaces, though only 0.1% of the total surface area studied, and broadleaved forest which covered 5% of the study area. These two types of land use together accounted for 70% of the airborne pollen. Crops, scrubland and pastureland, though covering 80% of the total surface area, contributed only 18.6% to the total pollen count, and this contribution mainly consisted of pollen from Olea and herbaceous plants, including Poaceae, Urticaceae and Chenopodiaceae-Amaranthaceae. Pollen from ornamental species were mainly associated with easterly (Platanus), southerly (Cupressaceae) and westerly (Cupressaceae and Platanus) winds from the areas where the city's largest parks and gardens are located. Quercus pollen was mostly transported by winds blowing in from holm-oak stands on the eastern edge of the city. The highest Populus pollen counts were associated with easterly and westerly winds blowing in from areas containing rivers and streams. The airborne pollen counts generally rose with increasing temperature, solar radiation and hours of sunlight, all of which favour pollen release. In contrast, pollen counts declined with increased relative humidity and rainfall, which hinder airborne pollen transport.

  8. Temporal variability in airborne pollen concentrations.

    PubMed

    Raynor, G S; Hayes, J V; Ogden, E C

    1976-06-01

    Tests were conducted to determine the relationship between concentrations of airborne pollens and sampling time, using sequential rotoslide samplers at urban and rural locations. Short-period data showed an increase in variability with time between samples. Two-hour data showed a stronger trend for the first 12 hours but better agreement as the time between samples approached one day.

  9. Airborne pollen of Olea in five regions of Portugal.

    PubMed

    Ribeiro, Helena; Cunha, Mário; Abreu, Ilda

    2005-01-01

    The aim of this work was to study spatial and temporal distribution of Olea europeae airborne pollen in different Portuguese regions: Reguengos de Monsaraz (south); Bairrada (west); Braga (northwest); Valença do Douro and Foz Côa (north-east). Airborne pollen sampling was conducted from 1998-2003 using "Cour" type samplers located in each region. The main pollen season (MPS) of Olea lasted on average 36 days and occurred from late April until middle-to-end of June. During the studied period, inter-annual variations among and within regions, concerning the total annual pollen counts and the beginning, peak and ending dates of the MPS, were reported. Reguengos de Monsaraz and Bairrada registered the earliest MPS starting date, followed by Valença do Douro and Foz-Côa, and the latest date was verified in Braga that also had the shortest MPS. Reguengos de Monsaraz presented the longest MPS with the highest differences in the beginning and ending dates, but minimum differences in the dates of the maximum pollen peak. Our results showed an increase in the Olea annual pollen index, from north to south, and from the west to the east regions of the country.

  10. Does cutting of mugwort stands affect airborne pollen concentrations?

    PubMed

    Rantio-Lehtimäki, A; Helander, M L; Karhu, K

    1992-08-01

    Pollen of mugwort (Artemisia vulgaris L.) is the most important allergenic pollen in urban areas of south and central Finland in late summer. The purpose of this study was to investigate, experimentally, whether the cutting of mugwort stands affects its airborne pollen concentrations. Experimental plots were either cut (4 plots) or uncut (4 plots) in 2 previous seasons: 4 of them were small (less than 0.5 hectare) and 4 large (greater than 5 hectares). Finally, the plots were divided randomly into 2 groups according to a third variable, cutting in the study season, 1989. Samples were taken on 2 rainless mornings at the peak mugwort flowering time. Two rotorod type samplers were used at heights of 1 and 2 m from ground level, simulating the inhalation heights of children and adults, respectively. The results indicate that cutting mugwort stands significantly reduces airborne pollen concentrations, but the treated areas have to be large, since in the town area there are plenty of mugwort pollen sources. The pollen concentrations at the 2 heights tested did not differ significantly.

  11. Characterisation of the airborne pollen spectrum in Guadalajara (central Spain) and estimation of the potential allergy risk.

    PubMed

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Sabariego, Silvia; Fernández-González, Federico; Pérez-Badia, Rosa

    2016-03-01

    Aerobiological research into airborne pollen diversity and seasonal variations in pollen counts has become increasingly important over recent decades due to the growing incidence of asthma, rhinitis and other pollen-related allergic conditions. Airborne pollen in Guadalajara (Castilla-La Mancha, Spain) was studied over a 6-year period (2008-2013) using a Hirst-type volumetric spore trap. The highest pollen concentrations were recorded from February to June, coinciding with the pollen season of the pollen types that most contribute to the local airborne pollen spectrum: Cupressaceae (32.2%), Quercus (15.1%), Platanus (13.2%), Olea (8.3%), Populus (7.8%) and Poaceae (7.2%). These are therefore critical months for allergy sufferers. The pollen calendar was typically Mediterranean and comprised 25 pollen types. Between January and March, Cupressaceae pollen concentrations exceeded allergy risk thresholds on 38 days. Other woody species such as Olea and Platanus have a shorter pollen season, and airborne concentrations exceeded allergy risk thresholds on around 13 days in each case. Poaceae pollen concentrations attained allergy risk levels on 26 days between May and July. Other highly allergenic pollen types included Urticaceae and Chenopodiaceae-Amaranthaceae, though these are less abundant than other pollen types in Guadalajara and did not exceed risk thresholds on more than 3 and 5 days, respectively.

  12. Fifteen years' record of airborne allergenic pollen and meteorological parameters in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Gioulekas, Dimitrios; Balafoutis, Christos; Damialis, Athanasios; Papakosta, Despoina; Gioulekas, George; Patakas, Dimitrios

    . A pollen calendar has been constructed for the area of Thessaloniki and relationships between pollen transport and meteorological parameters have been assessed. Daily airborne pollen records were collected over a 15-year period (1987-2001), using a Burkard continuous volumetric pollen trap, located in the centre of the city. Sixteen allergenic pollen types were identified. Simultaneously, daily records of five main meteorological parameters (mean air temperature, relative humidity, rainfall, sunshine, wind speed) were made, and then correlated with fluctuations of the airborne pollen concentrations. For the first time in Greece, a pollen calendar has been constructed for 16 pollen types, from which it appears that 24.9% of the total pollen recorded belong to Cupressaceae, 20.8% to Quercus spp., 13.6% to Urticaceae, 9.1% to Oleaceae, 8.9% to Pinaceae, 6.3% to Poaceae, 5.4% to Platanaceae, 3.0% to Corylus spp., 2.5% to Chenopodiaceae and 1.4% to Populus spp. The percentages of Betula spp., Asteraceae (Artemisia spp. and Ambrosia spp.), Salix spp., Ulmaceae and Alnus spp. were each lower than 1%. A positive correlation between pollen transport and both mean temperature and sunshine was observed, whereas usually no correlation was found between pollen and relative humidity or rainfall. Finally, wind speed was generally found to have a significant positive correlation with the concentrations of 8 pollen types. For the first time in the area of Thessaloniki, and more generally in Greece, 15-year allergenic pollen records have been collected and meteorological parameters have been recorded. The airborne pollen concentration is strongly influenced by mean air temperature and sunshine duration. The highest concentrations of pollen grains are observed during spring (May).

  13. Airborne pollen and spores of León (Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-González, Delia; Suarez-Cervera, María; Díaz-González, Tomás; Valencia-Barrera, Rosa María

    1993-06-01

    A qualitative and quantitative analysis of airborne pollen and spores was carried out over 2 years (from September 1987 to August 1989) in the city of León. Slides were prepared daily using a volumetric pollen trap, which was placed on the Faculty of Veterinary Science building (University of León) 12m above ground-level. Fifty-one pollen types were observed; the most important of these were: Cupressaceae during the winter, Pinus and Quercus in spring, and Poaceae, Leguminosae and Chenopodiaceae in the summer. The results also showed the existence of a rich mould spore assemblage in the atmosphere. The group of Amerospores ( Penicillium, Aspergillus and Cladosporium) as well as Dictyospores ( Alternaria) were the most abundant; Puccinia was common in the air in August. Fluctuations in the total pollen and spores m3 of air were compared with meteorological parameters (temperature, relative humidity and rainfall). From the daily sampling of the atmosphere of León, considering the maximum and minimum temperature and duration of rainfall, the start of the pollen grain season was observed generally to coincide with a rise in temperature in the absence of rain.

  14. Airborne pollen and suicide mortality in Tokyo, 2001-2011.

    PubMed

    Stickley, Andrew; Sheng Ng, Chris Fook; Konishi, Shoko; Koyanagi, Ai; Watanabe, Chiho

    2017-05-01

    Prior research has indicated that pollen might be linked to suicide mortality although the few studies that have been undertaken to date have produced conflicting findings and been limited to Western settings. This study examined the association between the level of airborne pollen and suicide mortality in Tokyo, Japan in the period from 2001 to 2011. The daily number of suicide deaths was obtained from the Japanese Ministry of Health, Labour and Welfare, with pollen data being obtained from the Tokyo Metropolitan Institute of Public Health. A time-stratified case-crossover study was performed to examine the association between different levels of pollen concentration and suicide mortality. During the study period there were 5185 male and 2332 female suicides in the pollen season (February to April). For men there was no association between airborne pollen and suicide mortality. For women, compared to when there was no airborne pollen, the same-day (lag 0) pollen level of 30 to <100 grains per cm(2) was associated with an approximately 50% increase in the odds for suicide (e.g. 30 to <50 grains per cm(2): odds ratio 1.574, 95% confidence interval 1.076-2.303, p=0.020). The estimates remained fairly stable after adjusting for air pollutants and after varying the cut-points that defined the pollen levels. Our results indicate that pollen is associated with female suicide mortality in Tokyo.

  15. Airborne Quercus pollen in SW Spain: Identifying favourable conditions for atmospheric transport and potential source areas.

    PubMed

    Maya-Manzano, José María; Fernández-Rodríguez, Santiago; Smith, Matt; Tormo-Molina, Rafael; Reynolds, Andrew M; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Ángela; Sadyś, Magdalena

    2016-11-15

    The pollen grains of Quercus spp. (oak trees) are allergenic. This study investigates airborne Quercus pollen in SW Spain with the aim identifying favourable conditions for atmospheric transport and potential sources areas. Two types of Quercus distribution maps were produced. Airborne Quercus pollen concentrations were measured at three sites located in the Extremadura region (SW Spain) for 3 consecutive years. The seasonal occurrence of Quercus pollen in the air was investigated, as well as days with pollen concentrations ≥80Pm(-3). The distance that Quercus pollen can be transported in appreciable numbers was calculated using clusters of back trajectories representing the air mass movement above the source areas (oak woodlands), and by using a state-of-the-art dispersion model. The two main potential sources of Quercus airborne pollen captured in SW Spain are Q. ilex subsp. ballota and Q. suber. The minimum distances between aerobiological stations and Quercus woodlands have been estimated as: 40km (Plasencia), 66km (Don Benito), 62km (Zafra) from the context of this study. Daily mean Quercus pollen concentration can exceed 1,700Pm(-3), levels reached not less than 24 days in a single year. High Quercus pollen concentration were mostly associated with moderate wind speed events (6-10ms(-1)), whereas that a high wind speed (16-20ms(-1)) seems to be associated with low concentrations.

  16. Airborne pollen of ornamental tree species in the NW of Spain.

    PubMed

    Aira, María Jesús; Rodríguez-Rajo, Francisco Javier; Fernández-González, María; Jato, Victoria

    2011-02-01

    This study analyzed airborne pollen counts for the tree taxa most widely used for ornamental purposes in the northwestern Iberian Peninsula (Platanus, Cupressaceae, Olea, Myrtaceae, Cedrus, and Casuarina) at four sites (Vigo, Ourense, Santiago, and Lugo), using aerobiological data recorded over a long period (1993-2007). The abundance and the temporal and spatial distribution of these pollen types were analyzed, and the influence of weather-related factors on airborne pollen counts was assessed. Platanus (in Ourense) and Olea (in Vigo) were the taxa contributing most to pollen counts. In general terms, the results may be taken as indicators of potential risk for pollen-allergy sufferers and therefore used in planning future green areas.

  17. Relationships between airborne pollen grains, wind direction and land cover using GIS and circular statistics.

    PubMed

    Maya-Manzano, J M; Sadyś, M; Tormo-Molina, R; Fernández-Rodríguez, S; Oteros, J; Silva-Palacios, I; Gonzalo-Garijo, A

    2017-04-15

    Airborne bio-aerosol content (mainly pollen and spores) depends on the surrounding vegetation and weather conditions, particularly wind direction. In order to understand this issue, maps of the main land cover in influence areas of 10km in radius surrounding pollen traps were created. Atmospheric content of the most abundant 14 pollen types was analysed in relation to the predominant wind directions measured in three localities of SW of Iberian Peninsula, from March 2011 to March 2014. Three Hirst type traps were used for aerobiological monitoring. The surface area for each land cover category was calculated and wind direction analysis was approached by using circular statistics. This method could be helpful for estimating the potential risk of exposure to various pollen types. Thus, the main land cover was different for each monitoring location, being irrigated crops, pastures and hardwood forests the main categories among 11 types described. Comparison of the pollen content with the predominant winds and land cover shows that the atmospheric pollen concentration is related to some source areas identified in the inventory. The study found that some pollen types (e.g. Plantago, Fraxinus-Phillyrea, Alnus) come from local sources but other pollen types (e.g. Quercus) are mostly coming from longer distances. As main conclusions, airborne particle concentrations can be effectively split by addressing wind with circular statistics. By combining circular statistics and GIS method with aerobiological data, we have created a useful tool for understanding pollen origin. Some pollen loads can be explained by immediate surrounding landscape and observed wind patterns for most of the time. However, other factors like medium or long-distance transport or even pollen trap location within a city, may occasionally affect the pollen load recorded using an air sampler.

  18. Ambrosia airborne pollen concentration modelling and evaluation over Europe

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Vautard, Robert; Viovy, Nicolas; Khvorostyanov, Dmitry; Colette, Augustin

    2014-05-01

    Native from North America, Ambrosia artemisiifolia L. (Common Ragweed) is an invasive annual weed introduced in Europe in the mid-nineteenth century. It has a very high spreading potential throughout Europe and releases very allergenic pollen leading to health problems for sensitive persons. Because of its health effects, it is necessary to develop modelling tools to be able to forecast ambrosia air pollen concentration and to inform allergy populations of allergenic threshold exceedance. This study is realised within the framework of the ATOPICA project (https://www.atopica.eu/) which is designed to provide first steps in tools and estimations of the fate of allergies in Europe due to changes in climate, land use and air quality. To calculate and predict airborne concentrations of ambrosia pollen, a chain of models has been built. Models have been developed or adapted for simulating the phenology (PMP phonological modelling platform), inter-annual production (ORCHIDEE vegetation model), release and airborne processes (CHIMERE chemical transport model) of ragweed pollen. Airborne pollens follow processes similar to air quality pollutants in CHIMERE with some adaptations. The detailed methodology, formulations and input data will be presented. A set of simulations has been performed to simulate airborne concentrations of pollens over long time periods on a large European domain. Hindcast simulations (2000 - 2012) driven by ERA-Interim re-analyses are designed to best simulate past periods airborne pollens. The modelled pollen concentrations are calibrated with observations and validated against additional observations. Then, 20-year long historical simulations (1986 - 2005) are carried out using calibrated ambrosia density distribution and climate model-driven weather in order to serve as a control simulation for future scenarios. By comparison with multi-annual observed daily pollen counts we have shown that the model captures well the gross features of the pollen

  19. The airborne pollen calendar for Lublin, central-eastern Poland.

    PubMed

    Piotrowska-Weryszko, Krystyna; Weryszko-Chmielewska, Elżbieta

    2014-01-01

    An aerobiological study was conducted to investigate the quantity and quality of pollen in the atmosphere of Lublin in central-eastern Poland. Pollen monitoring was carried out in the period 2001-2012 using a Hirst-type volumetric spore trap. The atmospheric pollen season in Lublin lasted, on average, from the end of January to the beginning of October. The mean air temperature during the study period was found to be higher by 1.1 °C than the mean temperature in the period 1951-2000. 56 types of pollen of plants belonging to 41 families were identified. 28 types represented woody plants and 28 represented herbaceous plants. The study distinguished 5 plant taxa the pollen of which was present most abundantly in the air of Lublin, which altogether accounted for 73.4%: Betula, Urtica, Pinus, Poaceae, and Alnus. The mean annual pollen index was 68 706; the largest amount of pollen was recorded in April and accounted for 33.3% of the annual pollen index. The pollen calendar included 28 allergenic plant taxa. The pollen of woody plants had the highest percentage in the pollen spectrum, on average 58.4%. The parameters of the pollen calendar for Lublin were compared with the calendar for central-eastern Europe with regard to the start of the pollen season of particular taxa. The pollen calendar for Lublin was demonstrated to show greater similarity to the calendar for Münster (Germany) than to the calendar for Bratislava (Slovakia).

  20. Detection of airborne allergen (Pla a 1) in relation to Platanus pollen in Córdoba, South Spain.

    PubMed

    Alcázar, Purificación; Galán, Carmen; Torres, Carmen; Domínguez-Vilches, Eugenio

    2015-01-01

    Córdoba is one of the Spanish cities with the highest records of plane tree pollen grains in the air. Clinical studies have identified Platanus as a major cause of pollinosis. This fact provokes an important public health problem during early spring when these trees bloom. The objective of the study is to evaluate the correlation between airborne pollen counts and Pla a 1 aeroallergen concentrations in Córdoba, to elucidate if airborne pollen can be an accurate measure that helps to explain the prevalence of allergenic symptoms. Pollen sampling was performed during 2011-2012 using a Hirst-type sampler. Daily average concentration of pollen grains (pollen grains/m 3 ) was obtained following the methodology proposed by the Spanish Aerobiology Network. A multi-vial cyclone was used for the aeroallergen quantification. Allergenic particles were measured by ELISA using specific antibodies Pla a 1. The trend of Platanus pollen was characterized by a marked seasonality, reaching high concentrations in a short period of time. Airborne pollen and aeroallergen follow similar trends. The overlapping profile between both variables during both years shows that pollen and Pla a 1 are significantly correlated. The highest significant correlation coefficients were obtained during 2011 and for the post peak. Although some studies have found notable divergence between pollen and allergen concentrations in the air, in the case of Platanus in Córdoba, similar aerobiological dynamics between pollen and Pla a 1 have been found. Allergenic activity was found only during the plane tree pollen season, showing a close relationship with daily pollen concentrations. The obtained pollen potency was similar for both years of study. The results suggest that the allergenic response in sensitive patients to plane tree pollen coincide with the presence and magnitude of airborne pollen.

  1. Correlation between airborne Olea europaea pollen concentrations and levels of the major allergen Ole e 1 in Córdoba, Spain, 2012-2014

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Galán, C.

    2016-12-01

    Olea europaea L. pollen is the second-largest cause of pollinosis in the southern Iberian Peninsula. Airborne-pollen monitoring networks provide essential data on pollen dynamics over a given study area. Recent research, however, has shown that airborne pollen levels alone do not always provide a clear indicator of actual exposure to aeroallergens. This study sought to evaluate correlations between airborne concentrations of olive pollen and Ole e 1 allergen levels in Córdoba (southern Spain), in order to determine whether atmospheric pollen concentrations alone are sufficient to chart changes in hay fever symptoms. The influence of major weather-related variables on local airborne pollen and allergen levels was also examined. Monitoring was carried out from 2012 to 2014. Pollen sampling was performed using a Hirst-type sampler, following the protocol recommended by the Spanish Aerobiology Network. A multi-vial cyclone sampler was used to collect aeroallergens, and allergenic particles were quantified by ELISA assay. Significant positive correlations were found between daily airborne allergen levels and atmospheric pollen concentrations, although there were occasions when allergen was detected before and after the pollen season and in the absence of airborne pollen. The correlation between the two was irregular, and pollen potency displayed year-on-year variations and did not necessarily match pollen-season-intensity.

  2. Flowering phenology and potential pollen emission of three Artemisia species in relation to airborne pollen data in Poznań (Western Poland).

    PubMed

    Bogawski, Paweł; Grewling, Łukasz; Frątczak, Agata

    Artemisia pollen is an important allergen in Europe. In Poznań (Western Poland), three Artemisia species, A. vulgaris, A. campestris and A. absinthium, are widely distributed. However, the contributions of these species to the total airborne pollen are unknown. The aim of the study was to determine the flowering phenology and pollen production of the three abovementioned species and to construct a model of potential Artemisia pollen emission in the study area. Phenological observations were conducted in 2012 at six sites in Poznań using a BBCH phenological scale. Pollen production was estimated by counting the pollen grains per flower and recalculating the totals per inflorescence, plant and population in the study area. Airborne pollen concentrations were obtained using a Hirst-type volumetric trap located in the study area. Artemisia vulgaris began to flower the earliest, followed by A. absinthium and then A. campestris. The flowering of A. vulgaris corresponded to the first peak in the airborne pollen level, and the flowering of A. campestris coincided with the second pollen peak. The highest amounts of pollen per single plant were produced by A. vulgaris and A. absinthium. A. campestris produced considerably less pollen, however, due to its common occurrence, it contributed markedly (30 %) to the summation of total of recorded pollen. A. vulgaris is the most important pollen source in Poznań, but the roles of two other Artemisia species cannot be ignored. In particular, A. campestris should be considered as an important pollen contributor and likely might be one of the main causes of allergic reactions during late summer.

  3. Quantitative DNA Analyses for Airborne Birch Pollen.

    PubMed

    Müller-Germann, Isabell; Vogel, Bernhard; Vogel, Heike; Pauling, Andreas; Fröhlich-Nowoisky, Janine; Pöschl, Ulrich; Després, Viviane R

    2015-01-01

    Birch trees produce large amounts of highly allergenic pollen grains that are distributed by wind and impact human health by causing seasonal hay fever, pollen-related asthma, and other allergic diseases. Traditionally, pollen forecasts are based on conventional microscopic counting techniques that are labor-intensive and limited in the reliable identification of species. Molecular biological techniques provide an alternative approach that is less labor-intensive and enables identification of any species by its genetic fingerprint. A particularly promising method is quantitative Real-Time polymerase chain reaction (qPCR), which can be used to determine the number of DNA copies and thus pollen grains in air filter samples. During the birch pollination season in 2010 in Mainz, Germany, we collected air filter samples of fine (<3 μm) and coarse air particulate matter. These were analyzed by qPCR using two different primer pairs: one for a single-copy gene (BP8) and the other for a multi-copy gene (ITS). The BP8 gene was better suitable for reliable qPCR results, and the qPCR results obtained for coarse particulate matter were well correlated with the birch pollen forecasting results of the regional air quality model COSMO-ART. As expected due to the size of birch pollen grains (~23 μm), the concentration of DNA in fine particulate matter was lower than in the coarse particle fraction. For the ITS region the factor was 64, while for the single-copy gene BP8 only 51. The possible presence of so-called sub-pollen particles in the fine particle fraction is, however, interesting even in low concentrations. These particles are known to be highly allergenic, reach deep into airways and cause often severe health problems. In conclusion, the results of this exploratory study open up the possibility of predicting and quantifying the pollen concentration in the atmosphere more precisely in the future.

  4. Quantitative DNA Analyses for Airborne Birch Pollen

    PubMed Central

    Müller-Germann, Isabell; Vogel, Bernhard; Vogel, Heike; Pauling, Andreas; Fröhlich-Nowoisky, Janine; Pöschl, Ulrich; Després, Viviane R.

    2015-01-01

    Birch trees produce large amounts of highly allergenic pollen grains that are distributed by wind and impact human health by causing seasonal hay fever, pollen-related asthma, and other allergic diseases. Traditionally, pollen forecasts are based on conventional microscopic counting techniques that are labor-intensive and limited in the reliable identification of species. Molecular biological techniques provide an alternative approach that is less labor-intensive and enables identification of any species by its genetic fingerprint. A particularly promising method is quantitative Real-Time polymerase chain reaction (qPCR), which can be used to determine the number of DNA copies and thus pollen grains in air filter samples. During the birch pollination season in 2010 in Mainz, Germany, we collected air filter samples of fine (<3 μm) and coarse air particulate matter. These were analyzed by qPCR using two different primer pairs: one for a single-copy gene (BP8) and the other for a multi-copy gene (ITS). The BP8 gene was better suitable for reliable qPCR results, and the qPCR results obtained for coarse particulate matter were well correlated with the birch pollen forecasting results of the regional air quality model COSMO-ART. As expected due to the size of birch pollen grains (~23 μm), the concentration of DNA in fine particulate matter was lower than in the coarse particle fraction. For the ITS region the factor was 64, while for the single-copy gene BP8 only 51. The possible presence of so-called sub-pollen particles in the fine particle fraction is, however, interesting even in low concentrations. These particles are known to be highly allergenic, reach deep into airways and cause often severe health problems. In conclusion, the results of this exploratory study open up the possibility of predicting and quantifying the pollen concentration in the atmosphere more precisely in the future. PMID:26492534

  5. Airborne castanea pollen forecasting model for ecological and allergological implementation.

    PubMed

    Astray, G; Fernández-González, M; Rodríguez-Rajo, F J; López, D; Mejuto, J C

    2016-04-01

    Castanea sativa Miller belongs to the natural vegetation of many European deciduous forests prompting impacts in the forestry, ecology, allergological and chestnut food industry fields. The study of the Castanea flowering represents an important tool for evaluating the ecological conservation of North-Western Spain woodland and the possible changes in the chestnut distribution due to recent climatic change. The Castanea pollen production and dispersal capacity may cause hypersensitivity reactions in the sensitive human population due to the relationship between patients with chestnut pollen allergy and a potential cross reactivity risk with other pollens or plant foods. In addition to Castanea pollen's importance as a pollinosis agent, its study is also essential in North-Western Spain due to the economic impact of the industry around the chestnut tree cultivation and its beekeeping interest. The aim of this research is to develop an Artificial Neural Networks for predict the Castanea pollen concentration in the atmosphere of the North-West Spain area by means a 20years data set. It was detected an increasing trend of the total annual Castanea pollen concentrations in the atmosphere during the study period. The Artificial Neural Networks (ANNs) implemented in this study show a great ability to predict Castanea pollen concentration one, two and three days ahead. The model to predict the Castanea pollen concentration one day ahead shows a high linear correlation coefficient of 0.784 (individual ANN) and 0.738 (multiple ANN). The results obtained improved those obtained by the classical methodology used to predict the airborne pollen concentrations such as time series analysis or other models based on the correlation of pollen levels with meteorological variables.

  6. Alternative statistical methods for interpreting airborne Alder ( Alnus glutimosa (L.) Gaertner) pollen concentrations

    NASA Astrophysics Data System (ADS)

    González Parrado, Zulima; Valencia Barrera, Rosa M.; Fuertes Rodríguez, Carmen R.; Vega Maray, Ana M.; Pérez Romero, Rafael; Fraile, Roberto; Fernández González, Delia

    2009-01-01

    This paper reports on the behaviour of Alnus glutinosa (alder) pollen grains in the atmosphere of Ponferrada (León, NW Spain) from 1995 to 2006. The study, which sought to determine the effects of various weather-related parameters on Alnus pollen counts, was performed using a volumetric method. The main pollination period for this taxon is January-February. Alder pollen is one of the eight major airborne pollen allergens found in the study area. An analysis was made of the correlation between pollen counts and major weather-related parameters over each period. In general, the strongest positive correlation was with temperature, particularly maximum temperature. During each period, peak pollen counts occurred when the maximum temperature fell within the range 9°C-14°C. Finally, multivariate analysis showed that the parameter exerting the greatest influence was temperature, a finding confirmed by Spearman correlation tests. Principal components analysis suggested that periods with high pollen counts were characterised by high maximum temperature, low rainfall and an absolute humidity of around 6 g m-3. Use of this type of analysis in conjunction with other methods is essential for obtaining an accurate record of pollen-count variations over a given period.

  7. Airborne pollen in European and Asian parts of Istanbul.

    PubMed

    Celenk, Sevcan; Bicakci, Adem; Tamay, Zeynep; Guler, Nermin; Altunoglu, M Kemal; Canitez, Yakup; Malyer, Hulusi; Sapan, Nihat; Ones, Ulker

    2010-05-01

    Pollen concentrations in the atmosphere of Istanbul, a city located between two continents, has been monitored for 1 year as part of a larger research program. The sampling sites were located in two different continents: the Asian part (AS) and the European part (EP). The sampling was performed in AS and EP of the city by using Hirst type volumetric method, and pollen grains of 58 and 62 taxa were identified in the two parts, respectively. The pollen spectrum reflected the floristic diversity of the region. The main pollen producers at the sites were characterized by some allergenic pollen and were identified as Cupressaceae/Taxaceae, Urticaceae, Pistacia sp., Quercus sp., Platanus sp., Fraxinus sp., and Xanthium sp. These pollen types contributed to the total pollen sum with a percentage of more than 80% at both monitoring sites. The highest amount of pollen grains was recorded in April. The greatest number of species was recorded in May, when 42 types (AS) and 44 types (EP) were present.

  8. Diurnal variation of airborne pollen at two different heights.

    PubMed

    Alcázar, P; Galán, C; Cariñanos, P; Domínguez-Vilches, E

    1999-01-01

    The diurnal variation in airborne pollen concentrations in the air of Córdoba at two different heights (1.5 m and 15 m) was studied during 2 consecutive years with the help of two Hirst volumetric samplers. According to pollen percentages obtained every hour, we determined whether every taxon studied presented a morning or an afternoon pattern, and whether this model was homogeneous (with a slight difference between the time of maximum and minimum reading) or heterogeneous (with a large difference between the two readings). We observed that the taxa that had many species in the area, such as Plantago, Poaceae, and Chenopodiaceae-Amaranthaceae showed a homogeneous model, while those taxa with few species present, such as Cupressaceae and Urticaceae showed a more heterogeneous model. Furthermore, the pattern of the plants with a large presence in the study area was more heterogeneous at 1.5 m because the pollen collected at this height is released from anthers. In the sampler placed at 15 m we detected airborne pollen, found that the curves were smoother and also observed a slight time delay for the taxa that were highly present in the area of study.

  9. Gamma, Gaussian and logistic distribution models for airborne pollen grains and fungal spore season dynamics.

    PubMed

    Kasprzyk, I; Walanus, A

    2014-01-01

    The characteristics of a pollen season, such as timing and magnitude, depend on a number of factors such as the biology of the plant and environmental conditions. The main aim of this study was to develop mathematical models that explain dynamics in atmospheric concentrations of pollen and fungal spores recorded in Rzeszów (SE Poland) in 2000-2002. Plant taxa with different characteristics in the timing, duration and curve of their pollen seasons, as well as several fungal taxa were selected for this analysis. Gaussian, gamma and logistic distribution models were examined, and their effectiveness in describing the occurrence of airborne pollen and fungal spores was compared. The Gaussian and differential logistic models were very good at describing pollen seasons with just one peak. These are typically for pollen types with just one dominant species in the flora and when the weather, in particular temperature, is stable during the pollination period. Based on s parameter of the Gaussian function, the dates of the main pollen season can be defined. In spite of the fact that seasonal curves are often characterised by positive skewness, the model based on the gamma distribution proved not to be very effective.

  10. Modelling airborne concentration and deposition rate of maize pollen

    NASA Astrophysics Data System (ADS)

    Jarosz, Nathalie; Loubet, Benjamin; Huber, Laurent

    2004-10-01

    The introduction of genetically modified (GM) crops has reinforced the need to quantify gene flow from crop to crop. This requires predictive tools which take into account meteorological conditions, canopy structure as well as pollen aerodynamic characteristics. A Lagrangian Stochastic (LS) model, called SMOP-2D (Stochastic Mechanistic model for Pollen dispersion and deposition in 2 Dimensions), is presented. It simulates wind dispersion of pollen by calculating individual pollen trajectories from their emission to their deposition. SMOP-2D was validated using two field experiments where airborne concentration and deposition rate of pollen were measured within and downwind from different sized maize (Zea mays) plots together with micrometeorological measurements. SMOP-2D correctly simulated the shapes of the concentration profiles but generally underestimated the deposition rates in the first 10 m downwind from the source. Potential explanations of this discrepancy are discussed. Incorrect parameterisation of turbulence in the transition from the crop to the surroundings is probably the most likely reason. This demonstrates that LS models for particle transfer need to be coupled with air-flow models under complex terrain conditions.

  11. Enhanced airborne radioactivity during a pine pollen release episode.

    PubMed

    Tschiersch, J; Frank, G; Roth, P; Wagenpfeil, F; Watterson, F; Watterson, J

    1999-07-01

    A single episode of pine pollen release in the highly contaminated area of Novozybkov, Russian Federation, which led to enhanced atmospheric concentrations of 137Cs is discussed. The pollen grains were sampled by a rotating arm impactor and analysed by gamma-spectrometry for 137Cs activity and by image analysis for their size. In the vicinity of a forest, a maximum concentration of 4.5+/-0.4 mBq m(-3) was measured, and a mean activity per pollen grain of 260+/-80 nBq was determined. The emission rate of the Novozybkov mixed pine forest was estimated to be approximately 400 Bq m(-2) per year. Because of the large size of pine pollen grains (about 50 microm) and the short emission period of 5-8 days per year, the estimated potential annual inhalation doses are very low. Biological emissions including pollen release may be a source of increased airborne radionuclide concentrations at larger distances from the source areas as well.

  12. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Kaimakamis, Evangelos; Konoglou, Maria; Akritidis, Ioannis; Traidl-Hoffmann, Claudia; Gioulekas, Dimitrios

    2017-03-01

    Airborne pollen and fungal spores are monitored mainly in highly populated, urban environments, for allergy prevention purposes. However, their sources can frequently be located outside cities’ fringes with more vegetation. So as to shed light to this paradox, we investigated the diversity and abundance of airborne pollen and fungal spores at various environmental regimes. We monitored pollen and spores using an aircraft and a car, at elevations from sea level to 2,000 m above ground, in the region of Thesssaloniki, Greece. We found a total of 24 pollen types and more than 15 spore types. Pollen and spores were detected throughout the elevational transect. Lower elevations exhibited higher pollen concentrations in only half of plant taxa and higher fungal spore concentrations in only Ustilago. Pinaceae and Quercus pollen were the most abundant recorded by airplane (>54% of the total). Poaceae pollen were the most abundant via car measurements (>77% of the total). Cladosporium and Alternaria spores were the most abundant in all cases (aircraft: >69% and >17%, car: >45% and >27%, respectively). We conclude that pollen and fungal spores can be diverse and abundant even outside the main source area, evidently because of long-distance transport incidents.

  13. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?

    PubMed Central

    Damialis, Athanasios; Kaimakamis, Evangelos; Konoglou, Maria; Akritidis, Ioannis; Traidl-Hoffmann, Claudia; Gioulekas, Dimitrios

    2017-01-01

    Airborne pollen and fungal spores are monitored mainly in highly populated, urban environments, for allergy prevention purposes. However, their sources can frequently be located outside cities’ fringes with more vegetation. So as to shed light to this paradox, we investigated the diversity and abundance of airborne pollen and fungal spores at various environmental regimes. We monitored pollen and spores using an aircraft and a car, at elevations from sea level to 2,000 m above ground, in the region of Thesssaloniki, Greece. We found a total of 24 pollen types and more than 15 spore types. Pollen and spores were detected throughout the elevational transect. Lower elevations exhibited higher pollen concentrations in only half of plant taxa and higher fungal spore concentrations in only Ustilago. Pinaceae and Quercus pollen were the most abundant recorded by airplane (>54% of the total). Poaceae pollen were the most abundant via car measurements (>77% of the total). Cladosporium and Alternaria spores were the most abundant in all cases (aircraft: >69% and >17%, car: >45% and >27%, respectively). We conclude that pollen and fungal spores can be diverse and abundant even outside the main source area, evidently because of long-distance transport incidents. PMID:28300143

  14. Climate warming and the decline of Taxus airborne pollen in urban pollen rain (Emilia Romagna, northern Italy).

    PubMed

    Mercuri, A M; Torri, P; Casini, E; Olmi, L

    2013-01-01

    Woody plant performance in a changing global environment has always been at the centre of palaeoenvironmental and long-term climate reconstructions carried out by means of pollen analysis. In Mediterranean regions, Taxus constitutes the highest percentage in past pollen diagrams from cold or cool periods, and therefore it is generally considered a good index to infer climate features from past records. However, a comparison of these inferences with the true current trends in pollen production has not been attemped until now. This study reports the decline of airborne pollen of Taxus observed in Emilia Romagna, a region of northern Italy, during the period 1990-2007. Phenological observations on four male specimens and microscopic examination of fresh pollen were made in order to check Taxus flowering time and pollen morphology. Airborne pollen was monitored through continuous sampling with a Hirst volumetric sampler. In the 18-year long period of investigation, Taxus pollen production has decreased, while total woody pollen abundance in air has increased. The trend of the Taxus pollen season shows a delay at the beginning, a shortening of the pollen period, and an advance of the end of the pollen season. This was interpreted as a response to climate warming. In particular, Taxus follows the behaviour of winter-flowering plants, and therefore earlier pollination is favoured at low autumn temperatures, while late pollination occurs more often, most likely after warm autumn temperatures.

  15. Association between airborne pollen and epidemic asthma in Madrid, Spain: a case-control study.

    PubMed

    Galán, Iñaki; Prieto, Alicia; Rubio, María; Herrero, Teresa; Cervigón, Patricia; Cantero, Jose Luis; Gurbindo, Maria Dolores; Martínez, María Isabel; Tobías, Aurelio

    2010-05-01

    BACKGROUND Despite the fact that airborne pollen is an important factor in precipitating asthma attacks, its implication in increases of epidemic asthma in usual meteorological conditions has not been reported. A study was undertaken to estimate the relationship between various types of aeroallergens and seasonal epidemic asthma in the region of Madrid, Spain. METHODS A case-control study was carried out in individuals aged 4-79 years who received emergency healthcare for asthma during 2001 in a base hospital covering a population of 750 000 inhabitants of Madrid. A skin prick test was performed with grass pollen, plantain pollen, olive pollen, cypress pollen, plane tree pollen, dust mites and Alternaria and the prevalence of skin reactivity was compared between subjects with asthma requiring emergency care for asthma within (cases) and outside (controls) the seasonal epidemic period. Data were analysed using logistic regression adjusting for age and sex. RESULTS The response rate was 61.7% for cases (n=95) and 51.6% for controls (n=146). The OR of sensitisation to grass pollen for cases compared with controls was 9.9 (95% CI 4.5 to 21.5); plantain pollen: 4.5 (95% CI 2.5 to 8.2); olive pollen: 7.3 (95% CI 3.5 to 15.2); plane tree pollen: 3.6 (95% CI 2.0 to 6.4); cypress pollen: 3.5 (95% CI 2.0 to 6.2); dust mites: 1.1 (95% CI 0.6 to 1.9); Alternaria: 0.9 (95% CI 0.5 to 1.9). The association with grasses was maintained after adjusting simultaneously for the remaining aeroallergens (OR 5.0 (95% CI 1.5 to 16.4)); this was the only one that retained statistical significance (p=0.007). CONCLUSIONS These results suggest that allergy to pollen, particularly grass pollen, is associated with the epidemic increase in asthma episodes during the months of May and June in the Madrid area of Spain.

  16. Airborne grass and ragweed pollen in the southern Panonnian Valley--consideration of rural and urban environment.

    PubMed

    Sikoparija, Branko; Radisic, Predrag; Pejak, Tatjana; Simic, Smiljka

    2006-01-01

    The aims of this study were to describe and compare the characteristics of grass and ragweed airborne pollen in rural and urban areas in the southern Panonnian Valley. Airborne pollen data were collected by using Hirst type volumetric samplers simultaneously in rural and urban localities. If rural and urban environment are considered, both grass and ragweed daily pollen concentrations showed a significant degree of association. Observed parameters (pollen index, maximum daily concentration, number of days during which the pollen is recorded in the air and start day of main pollen season), showed year-to-year variations for both grass and ragweed aeropollen. Average values of these parameters were higher in the rural environment, but the difference was statistically significant only for grass pollen index. Such a low difference indicates the possibility for conducting dose response clinical trials based on data obtained from one sampling station. The least year-to-year variations as well as the least difference between rural and urban environment, have been observed in the case of start date of the MPS. Such a situation suggests the possibility for using data obtained in one type of environment for the development of long-term forecast models for an entire region.

  17. Short term effects of airborne pollen concentrations on asthma epidemic

    PubMed Central

    Tobias, A; Galan, I; Banegas, J; Aranguez, E

    2003-01-01

    Methods: This study, based on time series analysis adjusting for meteorological factors and air pollution variables, assessed the short term effects of different types of allergenic pollen on asthma hospital emergencies in the metropolitan area of Madrid (Spain) for the period 1995–8. Results: Statistically significant associations were found for Poaceae pollen (lag of 3 days) and Plantago pollen (lag of 2 days), representing an increase in the range between the 99th and 95th percentiles of 17.1% (95% confidence interval (CI) 3.2 to 32.8) and 15.9% (95% CI 6.5 to 26.2) for Poaceae and Plantago, respectively. A positive association was also observed for Urticaceae (lag of 1 day) with an 8.4% increase (95% CI 2.8 to 14.4). Conclusions: There is an association between pollen levels and asthma related emergencies, independent of the effect of air pollutants. The marked relationship observed for Poaceae and Plantago pollens suggests their implication in the epidemic distribution of asthma during the period coinciding with their abrupt release into the environment. PMID:12885991

  18. An Electrostatic-Barrier-Forming Window that Captures Airborne Pollen Grains to Prevent Pollinosis.

    PubMed

    Takikawa, Yoshihiro; Matsuda, Yoshinori; Nonomura, Teruo; Kakutani, Koji; Kusakari, Shin-Ichi; Toyoda, Hideyoshi

    2017-01-15

    An electrostatic-barrier-forming window (EBW) was devised to capture airborne pollen, which can cause allergic pollinosis. The EBW consisted of three layers of insulated conductor wires (ICWs) and two voltage generators that supplied negative charges to the two outer ICW layers and a positive charge to the middle ICW layer. The ICWs generated an attractive force that captured pollen of the Japanese cedar, Cryptomeria japonica, from air blown through the EBW. The attractive force was directly proportional to the applied voltage. At ≥3.5 kV, the EBW exerted sufficient force to capture all pollen carried at an air flow of 3 m/s, and pollen-free air passed through the EBW. The findings demonstrated that the electrostatic barrier that formed inside the EBW was very effective at capturing airborne pollen; thus, it could allow a home to remain pollen-free and healthy despite continuous pollen exposure.

  19. An Electrostatic-Barrier-Forming Window that Captures Airborne Pollen Grains to Prevent Pollinosis

    PubMed Central

    Takikawa, Yoshihiro; Matsuda, Yoshinori; Nonomura, Teruo; Kakutani, Koji; Kusakari, Shin-Ichi; Toyoda, Hideyoshi

    2017-01-01

    An electrostatic-barrier-forming window (EBW) was devised to capture airborne pollen, which can cause allergic pollinosis. The EBW consisted of three layers of insulated conductor wires (ICWs) and two voltage generators that supplied negative charges to the two outer ICW layers and a positive charge to the middle ICW layer. The ICWs generated an attractive force that captured pollen of the Japanese cedar, Cryptomeria japonica, from air blown through the EBW. The attractive force was directly proportional to the applied voltage. At ≥3.5 kV, the EBW exerted sufficient force to capture all pollen carried at an air flow of 3 m/s, and pollen-free air passed through the EBW. The findings demonstrated that the electrostatic barrier that formed inside the EBW was very effective at capturing airborne pollen; thus, it could allow a home to remain pollen-free and healthy despite continuous pollen exposure. PMID:28098835

  20. Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Vautard, Robert; Liu, Li; Solmon, Fabien; Viovy, Nicolas; Khvorostyanov, Dmitry; Essl, Franz; Chuine, Isabelle; Colette, Augustin; Semenov, Mikhail A.; Schaffhauser, Alice; Storkey, Jonathan; Thibaudon, Michel; Epstein, Michelle M.

    2015-08-01

    Common ragweed (Ambrosia artemisiifolia) is an invasive alien species in Europe producing pollen that causes severe allergic disease in susceptible individuals. Ragweed plants could further invade European land with climate and land-use changes. However, airborne pollen evolution depends not only on plant invasion, but also on pollen production, release and atmospheric dispersion changes. To predict the effect of climate and land-use changes on airborne pollen concentrations, we used two comprehensive modelling frameworks accounting for all these factors under high-end and moderate climate and land-use change scenarios. We estimate that by 2050 airborne ragweed pollen concentrations will be about 4 times higher than they are now, with a range of uncertainty from 2 to 12 largely depending on the seed dispersal rate assumptions. About a third of the airborne pollen increase is due to on-going seed dispersal, irrespective of climate change. The remaining two-thirds are related to climate and land-use changes that will extend ragweed habitat suitability in northern and eastern Europe and increase pollen production in established ragweed areas owing to increasing CO2. Therefore, climate change and ragweed seed dispersal in current and future suitable areas will increase airborne pollen concentrations, which may consequently heighten the incidence and prevalence of ragweed allergy.

  1. Relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts.

    PubMed

    Yamamoto, Naomichi; Matsuki, Yuuki; Yokoyama, Hiromichi; Matsuki, Hideaki

    2015-01-01

    Japanese cedar pollinosis (JCP) is an important illness caused by the inhalation of airborne allergenic cedar pollens, which are dispersed in the early spring throughout the Japanese islands. However, associations between pollen exposures and the prevalence or severity of allergic symptoms are largely unknown, due to a lack of understanding regarding personal pollen exposures in relation to indoor and outdoor concentrations. This study aims to examine the relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts. We conducted a 4-year monitoring campaign to quantify indoor, outdoor, and personal airborne cedar pollen counts, where the personal passive settling sampler that has been previously validated against a volumetric sampler was used to count airborne pollen grains. A total of 256 sets of indoor, outdoor, and personal samples (768 samples) were collected from 9 subjects. Medians of the seasonally-integrated indoor-to-outdoor, personal-to-outdoor, and personal-to-indoor ratios of airborne pollen counts measured for 9 subjects were 0.08, 0.10, and 1.19, respectively. A greater correlation was observed between the personal and indoor counts (r = 0.89) than between the personal and outdoor counts (r = 0.71), suggesting a potential inaccuracy in the use of outdoor counts as a basis for estimating personal exposures. The personal pollen counts differed substantially among the human subjects (49% geometric coefficient of variation), in part due to the variability in the indoor counts that have been found as major determinants of the personal pollen counts. The findings of this study highlight the need for pollen monitoring in proximity to human subjects to better understand the relationships between pollen exposures and the prevalence or severity of pollen allergy.

  2. Relationships among Indoor, Outdoor, and Personal Airborne Japanese Cedar Pollen Counts

    PubMed Central

    Yamamoto, Naomichi; Matsuki, Yuuki; Yokoyama, Hiromichi; Matsuki, Hideaki

    2015-01-01

    Japanese cedar pollinosis (JCP) is an important illness caused by the inhalation of airborne allergenic cedar pollens, which are dispersed in the early spring throughout the Japanese islands. However, associations between pollen exposures and the prevalence or severity of allergic symptoms are largely unknown, due to a lack of understanding regarding personal pollen exposures in relation to indoor and outdoor concentrations. This study aims to examine the relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts. We conducted a 4-year monitoring campaign to quantify indoor, outdoor, and personal airborne cedar pollen counts, where the personal passive settling sampler that has been previously validated against a volumetric sampler was used to count airborne pollen grains. A total of 256 sets of indoor, outdoor, and personal samples (768 samples) were collected from 9 subjects. Medians of the seasonally-integrated indoor-to-outdoor, personal-to-outdoor, and personal-to-indoor ratios of airborne pollen counts measured for 9 subjects were 0.08, 0.10, and 1.19, respectively. A greater correlation was observed between the personal and indoor counts (r = 0.89) than between the personal and outdoor counts (r = 0.71), suggesting a potential inaccuracy in the use of outdoor counts as a basis for estimating personal exposures. The personal pollen counts differed substantially among the human subjects (49% geometric coefficient of variation), in part due to the variability in the indoor counts that have been found as major determinants of the personal pollen counts. The findings of this study highlight the need for pollen monitoring in proximity to human subjects to better understand the relationships between pollen exposures and the prevalence or severity of pollen allergy. PMID:26110813

  3. Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing.

    PubMed

    Kraaijeveld, Ken; de Weger, Letty A; Ventayol García, Marina; Buermans, Henk; Frank, Jeroen; Hiemstra, Pieter S; den Dunnen, Johan T

    2015-01-01

    Pollen monitoring is an important and widely used tool in allergy research and creation of awareness in pollen-allergic patients. Current pollen monitoring methods are microscope-based, labour intensive and cannot identify pollen to the genus level in some relevant allergenic plant groups. Therefore, a more efficient, cost-effective and sensitive method is needed. Here, we present a method for identification and quantification of airborne pollen using DNA sequencing. Pollen is collected from ambient air using standard techniques. DNA is extracted from the collected pollen, and a fragment of the chloroplast gene trnL is amplified using PCR. The PCR product is subsequently sequenced on a next-generation sequencing platform (Ion Torrent). Amplicon molecules are sequenced individually, allowing identification of different sequences from a mixed sample. We show that this method provides an accurate qualitative and quantitative view of the species composition of samples of airborne pollen grains. We also show that it correctly identifies the individual grass genera present in a mixed sample of grass pollen, which cannot be achieved using microscopic pollen identification. We conclude that our method is more efficient and sensitive than current pollen monitoring techniques and therefore has the potential to increase the throughput of pollen monitoring.

  4. On the causes of variability in amounts of airborne grass pollen in Melbourne, Australia

    NASA Astrophysics Data System (ADS)

    de Morton, Julian; Bye, John; Pezza, Alexandre; Newbigin, Edward

    2011-07-01

    In Melbourne, Australia, airborne grass pollen is the predominant cause of hay fever (seasonal rhinitis) during late spring and early summer, with levels of airborne grass pollen also influencing hospital admissions for asthma. In order to improve predictions of conditions that are potentially hazardous to susceptible individuals, we have sought to better understand the causes of diurnal, intra-seasonal and inter-seasonal variability of atmospheric grass pollen concentrations (APC) by analysing grass pollen count data for Melbourne for 16 grass pollen seasons from 1991 to 2008 (except 1994 and 1995). Some of notable features identified in this analysis were that on days when either extreme (>100 pollen grains m-3) or high (50-100 pollen grains m-3) levels of grass pollen were recorded the winds were of continental origin. In contrast, on days with a low (<20 pollen grains m-3) concentration of grass pollen, winds were of maritime origin. On extreme and high grass pollen days, a peak in APC occurred on average around 1730 hours, probably due to a reduction in surface boundary layer turbulence. The sum of daily APC for each grass pollen season was highly correlated ( r = 0.79) with spring rainfall in Melbourne for that year, with about 60% of a declining linear trend across the study period being attributable to a reduction of meat cattle and sheep (and hence grazing land) in rural areas around Melbourne. Finally, all of the ten extreme pollen events (3 days or more with APC > 100 pollen grains m-3) during the study period were characterised by an average downward vertical wind anomaly in the surface boundary layer over Melbourne. Together these findings form a basis for a fine resolution atmospheric general circulation model for grass pollen in Melbourne's air that can be used to predict daily (and hourly) APC. This information will be useful to those sectors of Melbourne's population that suffer from allergic problems.

  5. What are the most important variables for Poaceae airborne pollen forecasting?

    PubMed

    Navares, Ricardo; Aznarte, José Luis

    2017-02-01

    In this paper, the problem of predicting future concentrations of airborne pollen is solved through a computational intelligence data-driven approach. The proposed method is able to identify the most important variables among those considered by other authors (mainly recent pollen concentrations and weather parameters), without any prior assumptions about the phenological relevance of the variables. Furthermore, an inferential procedure based on non-parametric hypothesis testing is presented to provide statistical evidence of the results, which are coherent to the literature and outperform previous proposals in terms of accuracy. The study is built upon Poaceae airborne pollen concentrations recorded in seven different locations across the Spanish province of Madrid.

  6. Influence of wind on daily airborne pollen counts in Catalonia (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    tareq Majeed, Husam; Periago, Cristina; Alarcón, Marta; De Linares, Concepción; Belmonte, Jordina

    2016-04-01

    The aim of this study is to analize the influence of wind (speed and direction) on the daily airborne pollen counts recorded in Catalonia (NE Iberian Peninsula) of 21 pollen taxa recorded at 6 aerobiological stations: Barcelona, Bellaterra, Girona, Lleida Manresa, and Tarragona for the period 2004-2014. The taxa studied are Alnus, Betula, Castanea, Cupressaceae, Fagus, Fraxinus, Olea, Pinus, Platanus, total Quercus, Quercus deciduous type, Quercus evergreen type, Ulmus, Corylus, Pistacia, Artemisia, Chenopodiaceae/Amaranthaceae, Plantago, Poaceae, Polygonaceae, and Urticaceae. The mean daily wind direction was divided into 8 sectors: N, NE, E, SE, S, SW, W and NW. For each sector, the correlation between the daily pollen concentrations and wind speed using Spearman's rank correlation coefficient was computed and compared with the wind rose charts. The results showed that Tarragona was the station with more significant correlations followed by Bellaterra, Lleida and Manresa. On the other hand, Artemisia was the most correlated taxon with mainly negative values, and Fagus was the least. The W wind direction showed the largest number of significant correlations, mostly positive, while the N direction was the least and negatively correlated.

  7. Environmental Factors Affecting Asthma and Allergies: Predicting and Simulating Downwind Exposure to Airborne Pollen

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey; Estes, Sue; Sprigg, William A.; Nickovic, Slobodan; Huete, Alfredo; Solano, Ramon; Ratana, Piyachat; Jiang, Zhangyan; Flowers, Len; Zelicoff, Alan

    2009-01-01

    This slide presentation reviews the environmental factors that affect asthma and allergies and work to predict and simulate the downwind exposure to airborne pollen. Using a modification of Dust REgional Atmosphere Model (DREAM) that incorporates phenology (i.e. PREAM) the aim was to predict concentrations of pollen in time and space. The strategy for using the model to simulate downwind pollen dispersal, and evaluate the results. Using MODerate-resolution Imaging Spectroradiometer (MODIS), to get seasonal sampling of Juniper, the pollen chosen for the study, land cover on a near daily basis. The results of the model are reviewed.

  8. Airborne birch pollen antigens in different particle sizes.

    PubMed

    Rantio-Lehtimäki, A; Viander, M; Koivikko, A

    1994-01-01

    Two particle samplers for ambient air, situated together: a static size-selective bio-aerosol sampler (SSBAS) and a Burkard pollen and spore trap were compared in sampling intact birch pollen grains through one flowering period of Betula (a total of 44 days). The SSBAS trapped pollen grains three times more efficiently than the Burkard trap, but the variations in pollen counts were significantly correlated. In contrast, birch pollen antigenic activity and the pollen count in the Burkard samples were not closely correlated. The antigenic concentration was occasionally high both before and after the pollination period. There was a high birch pollen antigenic activity in particle size classes where intact pollen grains were absent, even on days when the pollen count was very low. Correspondingly, on days with high birch pollen counts in the air, pollen antigenic activity was on several occasions low, indicating that pollen grains were empty of antigenic material. The small particle size classes are especially important to allergic patients because they are able to penetrate immediately into the alveoli and provoke asthmatic reactions. Therefore, aerobiological information systems based on pollen and spore counts should be supplemented with information concerning antigenic activities in the air.

  9. Time series predictions with neural nets: Application to airborne pollen forecasting

    NASA Astrophysics Data System (ADS)

    Arizmendi, C. M.; Sanchez, J. R.; Ramos, N. E.; Ramos, G. I.

    1993-09-01

    Pollen allergy is a common disease causing rhinoconjunctivitis (hay fever) in 5 10% of the population. Medical studies have indicated that pollen related diseases could be highly reduced if future pollen contents in the air could be predicted. In this work we have developed a new forecasting method that applies the ability of neural nets to predict the future behaviour of chaotic systems in order to make accurate predictions of the airborne pollen concentration. The method requires that the neural net be fed with non-zero values, which restricts the method predictions to the period following the start of pollen flight. The operational method outlined here constitutes a different point of view with respect to the more generally used forecasts of time series analysis, which require input of many meteorological parameters. Excellent forecasts were obtained training a neural net by using only the time series pollen concentration values.

  10. Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula.

    PubMed

    Silva-Palacios, Inmaculada; Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela

    2016-02-01

    Cupressaceae includes species cultivated as ornamentals in the urban environment. This study aims to investigate airborne pollen data for Cupressaceae on the southwestern Iberian Peninsula over a 21-year period and to analyse the trends in these data and their relationship with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1993 to 2013 in Badajoz (SW Spain). The main pollen season for Cupressaceae lasted, on average, 58 days, ranging from 55 to 112 days, from 24 January to 22 March. Furthermore, a short-term forecasting model has been developed for daily pollen concentrations. The model proposed to forecast the airborne pollen concentration is described by one equation. This expression is composed of two terms: the first term represents the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term is obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological parameters multiplied by a fitting coefficient. Temperature was the main meteorological factor by its influence over daily pollen forecast, being the rain the second most important factor. This model represents a good approach to a continuous balance model of Cupressaceae pollen concentration and is supported by a close agreement between the observed and predicted mean concentrations. The novelty of the proposed model is the analysis of meteorological parameters that are not frequently used in Aerobiology.

  11. Regional and seasonal variation in airborne grass pollen levels between cities of Australia and New Zealand.

    PubMed

    Medek, Danielle E; Beggs, Paul J; Erbas, Bircan; Jaggard, Alison K; Campbell, Bradley C; Vicendese, Don; Johnston, Fay H; Godwin, Ian; Huete, Alfredo R; Green, Brett J; Burton, Pamela K; Bowman, David M J S; Newnham, Rewi M; Katelaris, Constance H; Haberle, Simon G; Newbigin, Ed; Davies, Janet M

    Although grass pollen is widely regarded as the major outdoor aeroallergen source in Australia and New Zealand (NZ), no assemblage of airborne pollen data for the region has been previously compiled. Grass pollen count data collected at 14 urban sites in Australia and NZ over periods ranging from 1 to 17 years were acquired, assembled and compared, revealing considerable spatiotemporal variability. Although direct comparison between these data is problematic due to methodological differences between monitoring sites, the following patterns are apparent. Grass pollen seasons tended to have more than one peak from tropics to latitudes of 37°S and single peaks at sites south of this latitude. A longer grass pollen season was therefore found at sites below 37°S, driven by later seasonal end dates for grass growth and flowering. Daily pollen counts increased with latitude; subtropical regions had seasons of both high intensity and long duration. At higher latitude sites, the single springtime grass pollen peak is potentially due to a cooler growing season and a predominance of pollen from C3 grasses. The multiple peaks at lower latitude sites may be due to a warmer season and the predominance of pollen from C4 grasses. Prevalence and duration of seasonal allergies may reflect the differing pollen seasons across Australia and NZ. It must be emphasized that these findings are tentative due to limitations in the available data, reinforcing the need to implement standardized pollen-monitoring methods across Australasia. Furthermore, spatiotemporal differences in grass pollen counts indicate that local, current, standardized pollen monitoring would assist with the management of pollen allergen exposure for patients at risk of allergic rhinitis and asthma.

  12. Regional and seasonal variation in airborne grass pollen levels between cities of Australia and New Zealand

    PubMed Central

    Beggs, Paul J.; Erbas, Bircan; Jaggard, Alison K.; Campbell, Bradley C.; Vicendese, Don; Johnston, Fay H.; Godwin, Ian; Huete, Alfredo R.; Green, Brett J.; Burton, Pamela K.; Bowman, David M. J. S.; Newnham, Rewi M.; Katelaris, Constance H.; Haberle, Simon G.; Newbigin, Ed; Davies, Janet M.

    2016-01-01

    Although grass pollen is widely regarded as the major outdoor aeroallergen source in Australia and New Zealand (NZ), no assemblage of airborne pollen data for the region has been previously compiled. Grass pollen count data collected at 14 urban sites in Australia and NZ over periods ranging from 1 to 17 years were acquired, assembled and compared, revealing considerable spatiotemporal variability. Although direct comparison between these data is problematic due to methodological differences between monitoring sites, the following patterns are apparent. Grass pollen seasons tended to have more than one peak from tropics to latitudes of 37°S and single peaks at sites south of this latitude. A longer grass pollen season was therefore found at sites below 37°S, driven by later seasonal end dates for grass growth and flowering. Daily pollen counts increased with latitude; subtropical regions had seasons of both high intensity and long duration. At higher latitude sites, the single springtime grass pollen peak is potentially due to a cooler growing season and a predominance of pollen from C3 grasses. The multiple peaks at lower latitude sites may be due to a warmer season and the predominance of pollen from C4 grasses. Prevalence and duration of seasonal allergies may reflect the differing pollen seasons across Australia and NZ. It must be emphasized that these findings are tentative due to limitations in the available data, reinforcing the need to implement standardized pollen-monitoring methods across Australasia. Furthermore, spatiotemporal differences in grass pollen counts indicate that local, current, standardized pollen monitoring would assist with the management of pollen allergen exposure for patients at risk of allergic rhinitis and asthma. PMID:27069303

  13. Analysis of airborne pollen grains in Bilecik, Turkey.

    PubMed

    Türe, Cengiz; Böcük, Harun

    2009-04-01

    In this study, pollen grains in the atmosphere of Bilecik were studied for a continuous period of 2 years (2005 and 2006) by using Durham sampler. During this period, pollen grains belonging to 46 taxa were recorded, 26 of which belonged to arboreal plants and 20 to non-arboreal. Of total 14,269 pollen grains determined in Bilecik atmosphere, 6,675 were recorded in 2005 and 7,594 were in 2006. From these, 75.74% were arboreal, 21.80% were non-arboreal and 2.47% unidentifiable. Pinus sp., Poaceae, Cupressaceae, Platanus sp., Quercus sp., Salix sp., Ailanthus sp., Fagus sp., Urticaceae, Chenopodiaceae/Amaranthaceae were the main pollen producers in the atmosphere of Bilecik, respectively. Pollen concentrations reached their highest levels in May. Atmospheric pollen concentrations in February, March, September, October and November were less than those in other months.

  14. Atmospheric dispersion of airborne pollen evidenced by near-surface and columnar measurements in Barcelona, Spain

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël.; Izquierdo, Rebeca; Jorba, Oriol; Alarcón, Marta; Belmonte, Jordina; Comerón, Adolfo; De Linares, Concepción; Baldasano, José Maria

    2016-10-01

    Hourly measurements of pollen near-surface concentration and lidar-derived profiles of volume and particle depolarization ratios during a 5-day pollination event observed in Barcelona, Spain, between 27 - 31 March, 2015, are presented. Maximum hourly pollen concentrations of 4700 and 1200 m-3 h-1 were found for Platanus and Pinus, respectively, which represented together more than 80 % of the total pollen. . The pollen concentration was found positively correlated with temperature (correlation coefficient, r, of 0.95) and wind speed (r = 0.82) and negatively correlated with relative humidity (r = -0.18). The ground concentration shows a clear diurnal cycle although pollen activity is also detected during nighttime in three occasions and is clearly associated with periods of strong wind speeds. Everyday a clear diurnal cycle caused by the vertical transport of the airborne pollen was visible on the lidar-derived profiles of the volume depolarization ratio with maxima usually reached between 12 and 15 UT. On average the volume depolarization ratios in the pollen plume ranged between 0.08 and 0.22. Except in the cases of nocturnal pollen activity, the correlation coefficients between volume depolarization ratio and near-surface concentration are high (>0.68). The dispersion of the Platanus and Pinus in the atmosphere was simulated with the Nonhydrostatic Multiscale Meteorological Model on the B grid at the Barcelona Supercomputing Center with a newly developed Chemical Transport Model (NMMB/BSC-CTM). Model near-surface daily pollen concentrations were compared to our observations at two sites: in Barcelona and Bellaterra (12 km NE of Barcelona). Model hourly pollen concentrations were compared to our observations in Barcelona. Better results are obtained for Pinus than for Platanus. Guidelines are proposed to improve the dispersion of airborne pollen by atmospheric models.

  15. Trends and threshold exceedances analysis of airborne pollen concentrations in Metropolitan Santiago Chile

    PubMed Central

    Toro A., Richard; Córdova J., Alicia; Canales, Mauricio; Morales S., Raul G. E.; Mardones P., Pedro; Leiva G., Manuel A.

    2015-01-01

    Pollen is one of the primary causes of allergic rhinoconjunctivitis in urban centers. In the present study, the concentrations of 39 different pollens in the Santiago de Chile metropolitan area over the period 2009–2013 are characterized. The pollen was monitored daily using Burkard volumetric equipment. The contribution of each type of pollen and the corresponding time trends are evaluated. The concentrations of the pollens are compared with the established threshold levels for the protection of human health. The results show that the total amount of pollen grains originating from trees, grasses, weeds and indeterminate sources throughout the period of the study was 258,496 grains m-3, with an annual average of 51,699 ± 3,906 grains m-3 year-1. The primary source of pollen is Platanus orientalis, which produces 61.8% of the analyzed pollen. Grass pollen is the third primary component of the analyzed pollen, with a contribution of 5.82%. Among the weeds, the presence of Urticacea (3.74%) is remarkable. The pollination pattern of the trees is monophasic, and the grasses have a biphasic pattern. The trends indicate that the total pollen and tree pollen do not present a time trend that is statistically significant throughout the period of the study, whereas the grass pollen and weed pollen concentrations in the environment present a statistically significant decreasing trend. The cause of this decrease is unclear. The pollen load has doubled over the past decade. When the observed concentrations of the pollens were compared with the corresponding threshold levels, the results indicated that over the period of the study, the pollen concentrations were at moderate, high and very high levels for an average of 293 days per year. Systematic counts of the pollen grains are an essential method for diagnosing and treating patients with pollinosis and for developing forestation and urban planning strategies. PMID:25946339

  16. Trends and threshold exceedances analysis of airborne pollen concentrations in Metropolitan Santiago Chile.

    PubMed

    Toro A, Richard; Córdova J, Alicia; Canales, Mauricio; Morales S, Raul G E; Mardones P, Pedro; Leiva G, Manuel A

    2015-01-01

    Pollen is one of the primary causes of allergic rhinoconjunctivitis in urban centers. In the present study, the concentrations of 39 different pollens in the Santiago de Chile metropolitan area over the period 2009-2013 are characterized. The pollen was monitored daily using Burkard volumetric equipment. The contribution of each type of pollen and the corresponding time trends are evaluated. The concentrations of the pollens are compared with the established threshold levels for the protection of human health. The results show that the total amount of pollen grains originating from trees, grasses, weeds and indeterminate sources throughout the period of the study was 258,496 grains m-3, with an annual average of 51,699 ± 3,906 grains m-3 year-1. The primary source of pollen is Platanus orientalis, which produces 61.8% of the analyzed pollen. Grass pollen is the third primary component of the analyzed pollen, with a contribution of 5.82%. Among the weeds, the presence of Urticacea (3.74%) is remarkable. The pollination pattern of the trees is monophasic, and the grasses have a biphasic pattern. The trends indicate that the total pollen and tree pollen do not present a time trend that is statistically significant throughout the period of the study, whereas the grass pollen and weed pollen concentrations in the environment present a statistically significant decreasing trend. The cause of this decrease is unclear. The pollen load has doubled over the past decade. When the observed concentrations of the pollens were compared with the corresponding threshold levels, the results indicated that over the period of the study, the pollen concentrations were at moderate, high and very high levels for an average of 293 days per year. Systematic counts of the pollen grains are an essential method for diagnosing and treating patients with pollinosis and for developing forestation and urban planning strategies.

  17. The macroecology of airborne pollen in Australian and New Zealand urban areas.

    PubMed

    Haberle, Simon G; Bowman, David M J S; Newnham, Rewi M; Johnston, Fay H; Beggs, Paul J; Buters, Jeroen; Campbell, Bradley; Erbas, Bircan; Godwin, Ian; Green, Brett J; Huete, Alfredo; Jaggard, Alison K; Medek, Danielle; Murray, Frank; Newbigin, Ed; Thibaudon, Michel; Vicendese, Don; Williamson, Grant J; Davies, Janet M

    2014-01-01

    The composition and relative abundance of airborne pollen in urban areas of Australia and New Zealand are strongly influenced by geographical location, climate and land use. There is mounting evidence that the diversity and quality of airborne pollen is substantially modified by climate change and land-use yet there are insufficient data to project the future nature of these changes. Our study highlights the need for long-term aerobiological monitoring in Australian and New Zealand urban areas in a systematic, standardised, and sustained way, and provides a framework for targeting the most clinically significant taxa in terms of abundance, allergenic effects and public health burden.

  18. Concentrations of airborne pollen grains in Sivrihisar (Eskisehir), Turkey.

    PubMed

    Erkara, Ismuhan Potoglu

    2008-03-01

    Pollen grains in the atmosphere of Sivrihisar were studied for a continuous period of 2 years (1 January 2005-31 December 2006) using a Durham sampler. During this period, pollen grains belonging to 41 taxa were recorded, 24 of which belonged to arboreal plants and 17 to non-arboreal. From these, 23,219 were identified in 2005 and 34,154 in 2006. Of the total pollen grains, 90.46% were arboreal, 9.43% non-arboreal, and 0.1% unidentifiable. The majority of the investigated allergic pollen grains were from Pinaceae, Cupressaceae, Fraxinus spp., Cedrus spp., Artemisia spp., Poaceae, Chenopodiaceae/Amaranthaceae, Populus spp., Quercus spp., Urticaceae and Asteraceae, respectively. Pollen concentrations reached their highest levels in May. This information was then established into a calendar form according to the pollens determined in 2005-2006, in terms of annual, monthly and weekly numbers of taxa fall per cm2. A comparison between the results and the meteorological factors revealed a close relationship between pollen concentrations in the air and meteorological conditions. An increase in pollination was also linked to increasing temperatures and the wind. It was therefore concluded that high temperatures and relative humidity were also effective in increasing the number of pollens in the air.

  19. Airborne pollen grains in Bursa, Turkey, 1999-2000,.

    PubMed

    Bicakci, Adem; Tatlidil, Sevcan; Sapan, Nihat; Malyer, Hulusi; Canitez, Yakup

    2003-01-01

    In this study, pollen grains were sampled by using a Lanzoni trap (Lanzoni VPPS 2000) in atmosphere of Bursa in 1999 and 2000. During two years. a total of 13,991 pollen grains/m3 which belonged to 59 taxa and unidentified pollen grains were recorded. A total of 7.768 pollen grains were identified in 1999 and a total of 6.223 in 2000. From these taxa, 36 belong to arboreal and 23 taxa to non-arboreal plants. Total pollen grains consist of 78.61% arboreal. 20.37% non-arboreal plants and 1.03% unidentified pollen grains. In the region investigated, Pinus sp., Olea sp., Platanus sp., Gramineae, Cupressaceae/Taxaceae, Quercus sp., Acer sp.. Morus sp. Xanthium sp., Castanea sp., Chenopodiaceae/Amaranthaceae, Corvlus sp., Artemisia sp., Urtica sp.and Fraxinus sp. were responsible for the greatest amounts of pollen. During the study period the pollen concentration reached its highest level in April.

  20. Allergenic airborne pollen and spores in Anchorage, Alaska

    SciTech Connect

    Anderson, J.H.

    1985-05-01

    Major aeroallergens in Anchorage are birch, alder, poplar, spruce, grass pollen, Cladosporium, and unspecified fungus spores. Lesser pollens are sorrel, willow, pine, juniper, sedge, lamb's-quarters, wormwood, plantain, and others. The aero-flora is discussed in terms of the frequency of allergenically significant events and within-season and year-to-year dynamics.

  1. Head-high, airborne pollen grains from different areas of metropolitan Delhi.

    PubMed

    Malik, P; Singh, A B; Babu, C R; Gangal, S V

    1990-05-01

    A survey of airborne pollen grains from four zones of metropolitan Delhi was conducted for 1 year (February 1988-January 1989) at human height level (5'-6'). Sampling was carried out in different inhabited areas in the four zones using Burkard Volumetric Personal Samplers. Sampling was carried out at weekly intervals, three times a day (7, 14, & 20 h) for 15 min. Poaceae, Ricinus, Cheno-Amaranth, Morus, Artemisia, Myrtaceae, Parthenium, Prosopis and Cannabis are important pollen contributors to the atmosphere, especially at lower heights. In general, pollen concentration was low at human height. Quantitative zonal variations have been recorded within an urban city.

  2. Does insect netting affect the containment of airborne pollen from (GM-) plants in greenhouses?

    PubMed

    van Hengstum, Thomas; Hooftman, Danny A P; den Nijs, Hans C M; van Tienderen, Peter H

    2012-09-01

    Greenhouses are a well-accepted containment strategy to grow and study genetically modified plants (GM) before release into the environment. Various containment levels are requested by national regulations to minimize GM pollen escape. We tested the amount of pollen escaping from a standard greenhouse, which can be used for EU containment classes 1 and 2. More specifically, we investigated the hypothesis whether pollen escape could be minimized by insect-proof netting in front of the roof windows, since the turbulent airflow around the mesh wiring could avoid pollen from escaping. We studied the pollen flow out of greenhouses with and without insect netting of two non-transgenic crops, Ryegrass (Loliummultiflorum) and Corn (Zea Mays). Pollen flow was assessed with Rotorod(®) pollen samplers positioned inside and outside the greenhouse' roof windows. A significant proportion of airborne pollen inside the greenhouse leaves through roof windows. Moreover, the lighter pollen of Lolium escaped more readily than the heavier pollen of Maize. In contrast to our expectations, we did not identify any reduction in pollen flow with insect netting in front of open windows, even under induced airflow conditions. We conclude that insect netting, often present by default in greenhouses, is not effective in preventing pollen escape from greenhouses of wind-pollinated plants for containment classes 1 or 2. Further research would be needed to investigate whether other alternative strategies, including biotic ones, are more effective. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10453-011-9237-8) contains supplementary material, which is available to authorized users.

  3. Pla a_1 aeroallergen immunodetection related to the airborne Platanus pollen content.

    PubMed

    Fernández-González, M; Guedes, A; Abreu, I; Rodríguez-Rajo, F J

    2013-10-01

    Platanus hispanica pollen is considered an important source of aeroallergens in many Southern European cities. This tree is frequently used in urban green spaces as ornamental specie. The flowering period is greatly influenced by the meteorological conditions, which directly affect its allergenic load in the atmosphere. The purpose of this study is to develop equations to predict the Platanus allergy risk periods as a function of the airborne pollen, the allergen concentration and the main meteorological parameters. The study was conducted by means two volumetric pollen samplers; a Lanzoni VPPS 2000 for the Platanus pollen sampling and a Burkard multivial Cyclone Sampler to collect the aeroallergen particles (Pla a_1). In addiction the Dot-Blot and the Raman spectroscopy methods were used to corroborate the results. The Pla a_1 protein is recorded in the atmosphere after the presence of the Platanus pollen, which extend the Platanus pollen allergy risk periods. The Platanus pollen and the Pla a 1 allergens concentration are associated with statistical significant variations of some meteorological variables: in a positive way with the mean and maximum temperature whereas the sign of the correlation coefficient is negative with the relative humidity. The lineal regression equation elaborated in order to forecast the Platanus pollen content in the air explain the 64.5% of variance of the pollen presence in the environment, whereas the lineal regression equation elaborated in order to forecast the aeroallergen a 54.1% of the Pla a_1 presence variance. The combination of pollen count and the allergen quantification must be assessed in the epidemiologic study of allergic respiratory diseases to prevent the allergy risk periods.

  4. Airborne pollen and fungal spores in Garki, Abuja (North-Central Nigeria).

    PubMed

    Ezike, Dimphna Nneka; Nnamani, Catherine V; Ogundipe, Oluwatoyin T; Adekanmbi, Olushola H

    2016-01-01

    The ambient atmosphere is dominated with pollen and spores, which trigger allergic reactions and diseases and impact negatively on human health. A survey of pollen and fungal spores constituents of the atmosphere of Garki, Abuja (North-Central Nigeria) was carried out for 1 year (June 1, 2011-May 31, 2012). The aim of the study was to determine the prevalence and abundance of pollen and fungal spores in the atmosphere and their relationship with meteorological parameters. Airborne samples were trapped using modified Tauber-like pollen trap, and the recipient solutions were subjected to acetolysis. Results revealed the abundance of fungal spores, pollen, fern spores, algal cysts and diatoms in decreasing order of dominance. The atmosphere was qualitatively and quantitatively dominated by pollen during the period of late rainy/harmattan season than the rainy season. Numerous fungal spores were trapped throughout the sampling periods among which Alternaria spp., Fusarium spp., Cladosporium spp. and Curvularia spp. dominated. These fungi have been implicated in allergic diseases and are dermatophytic, causing diverse skin diseases. Other pathogenic fungi found in the studied aeroflora were Dreschlera spp., Helminthosporium spp., Torula spp., Pithomyces spp., Tetraploa spp., Nigrospora ssp., Spadicoides spp., Puccinia spp. and Erysiphe graminis. Total pollen and fungal spores counts do not show significant correlation with meteorological parameters.

  5. Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, S.; Ambelas Skjøth, C.; Tormo-Molina, R.; Brandao, R.; Caeiro, E.; Silva-Palacios, I.; Gonzalo-Garijo, Á.; Smith, M.

    2012-04-01

    This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009-2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (southwestern Spain) and Évora (southeastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop.

  6. Models to predict the start of the airborne pollen season.

    PubMed

    Siniscalco, Consolata; Caramiello, Rosanna; Migliavacca, Mirco; Busetto, Lorenzo; Mercalli, Luca; Colombo, Roberto; Richardson, Andrew D

    2015-07-01

    Aerobiological data can be used as indirect but reliable measures of flowering phenology to analyze the response of plant species to ongoing climate changes. The aims of this study are to evaluate the performance of several phenological models for predicting the pollen start of season (PSS) in seven spring-flowering trees (Alnus glutinosa, Acer negundo, Carpinus betulus, Platanus occidentalis, Juglans nigra, Alnus viridis, and Castanea sativa) and in two summer-flowering herbaceous species (Artemisia vulgaris and Ambrosia artemisiifolia) by using a 26-year aerobiological data set collected in Turin (Northern Italy). Data showed a reduced interannual variability of the PSS in the summer-flowering species compared to the spring-flowering ones. Spring warming models with photoperiod limitation performed best for the greater majority of the studied species, while chilling class models were selected only for the early spring flowering species. For Ambrosia and Artemisia, spring warming models were also selected as the best models, indicating that temperature sums are positively related to flowering. However, the poor variance explained by the models suggests that further analyses have to be carried out in order to develop better models for predicting the PSS in these two species. Modeling the pollen season start on a very wide data set provided a new opportunity to highlight the limits of models in elucidating the environmental factors driving the pollen season start when some factors are always fulfilled, as chilling or photoperiod or when the variance is very poor and is not explained by the models.

  7. Models to predict the start of the airborne pollen season

    NASA Astrophysics Data System (ADS)

    Siniscalco, Consolata; Caramiello, Rosanna; Migliavacca, Mirco; Busetto, Lorenzo; Mercalli, Luca; Colombo, Roberto; Richardson, Andrew D.

    2015-07-01

    Aerobiological data can be used as indirect but reliable measures of flowering phenology to analyze the response of plant species to ongoing climate changes. The aims of this study are to evaluate the performance of several phenological models for predicting the pollen start of season (PSS) in seven spring-flowering trees ( Alnus glutinosa, Acer negundo, Carpinus betulus, Platanus occidentalis, Juglans nigra, Alnus viridis, and Castanea sativa) and in two summer-flowering herbaceous species ( Artemisia vulgaris and Ambrosia artemisiifolia) by using a 26-year aerobiological data set collected in Turin (Northern Italy). Data showed a reduced interannual variability of the PSS in the summer-flowering species compared to the spring-flowering ones. Spring warming models with photoperiod limitation performed best for the greater majority of the studied species, while chilling class models were selected only for the early spring flowering species. For Ambrosia and Artemisia, spring warming models were also selected as the best models, indicating that temperature sums are positively related to flowering. However, the poor variance explained by the models suggests that further analyses have to be carried out in order to develop better models for predicting the PSS in these two species. Modeling the pollen season start on a very wide data set provided a new opportunity to highlight the limits of models in elucidating the environmental factors driving the pollen season start when some factors are always fulfilled, as chilling or photoperiod or when the variance is very poor and is not explained by the models.

  8. Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, Santiago; Skjøth, Carsten Ambelas; Tormo-Molina, Rafael; Brandao, Rui; Caeiro, Elsa; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Ángela; Smith, Matt

    2014-04-01

    This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009-2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (south-western Spain) and Évora (south-eastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources during conditions with slow air mass movements. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies that examine sources and the atmospheric transport of pollen are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop.

  9. [A new counting method for airborne Japanese red cedar and grass pollen allergens by the immunoblotting technique].

    PubMed

    Takahashi, Y; Katagiri, S; Inouye, S; Sakaguchi, M

    1990-12-01

    We devised a new counting method of pollen allergen particles which improved the fluorescence immunoblotting technique by Schumacher et al (1988). And by which airborne pollen allergens became visible under 10X magnifier or naked eyes. Airborne pollen allergens collected on the Burkard's sampling tape were transferred onto nitrocellulose membrane and were reacted with anti Cry j I rabbit serum or anti Lol p I rabbit serum, and then treated with alkaline phosphatase conjugated F(ab')2 anti rabbit IgG. Finally, bluish purple spots were obtained by staining with BCIP/NBT phosphatase substrate system. This technique does not require any skillful morphological observation, and is more suitable to measure the amounts of airborne pollen allergen for given pollinosis patients because total pollen allergen particles with common antigenicity are measured. In Japanese red cedar pollen counts, we could not count the spots more than 400 grains per 0.16 cm2 of the sample trapping area due to many overlapping spots. In this case, we tried to calculate the value from the ratio of bluish purple coloured area to one pollen area. However, a more suitable method for estimating the content of pollinosis caused airborne allergens may be colorimetric quantitation using densitometry and displaying the value as allergen content.

  10. Predicting onset and duration of airborne allergenic pollen season in the United States

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Bielory, Leonard; Cai, Ting; Mi, Zhongyuan; Georgopoulos, Panos

    2015-02-01

    Allergenic pollen is one of the main triggers of Allergic Airway Disease (AAD) affecting 5%-30% of the population in industrialized countries. A modeling framework has been developed using correlation and collinearity analyses, simulated annealing, and stepwise regression based on nationwide observations of airborne pollen counts and climatic factors to predict the onsets and durations of allergenic pollen seasons of representative trees, weeds and grass in the contiguous United States. Main factors considered are monthly, seasonal and annual mean temperatures and accumulative precipitations, latitude, elevation, Growing Degree Day (GDD), Frost Free Day (FFD), Start Date (SD) and Season Length (SL) in the previous year. The estimated mean SD and SL for birch (Betula), oak (Quercus), ragweed (Ambrosia), mugwort (Artemisia) and grass (Poaceae) pollen season in 1994-2010 are mostly within 0-6 days of the corresponding observations for the majority of the National Allergy Bureau (NAB) monitoring stations across the contiguous US. The simulated spatially resolved maps for onset and duration of allergenic pollen season in the contiguous US are consistent with the long term observations.

  11. Seasonal prevalence of air-borne pollen and spores in Kuala Lumpur, Malaysia.

    PubMed

    Ho, T M; Tan, B H; Ismail, S; Bujang, M K

    1995-06-01

    Aerosampling using Rotorod samplers was conducted in the Institute for Medical Research, Kuala Lumpur, Malaysia, from December 1991 to November 1993. Samples were collected twice a week between 10.00 hours to 12.00 hours. Rods were stained and examined microscopically. A total of 8 and 20 types of pollens and mold spores were collected, respectively. More mold spores were collected than pollens. Grass pollen constituted more than 40 percent of total pollen counts. Gramineae pollen counts peaked in March and September. The most abundant mold spore was Cladosporium followed by Rust, Nigrospora, Curvularia and Smut. Cladosporium counts peaked in February and August. Rust counts peaked in June and December whereas counts for Nigrospora peaked in February and October. Highest counts of Smut were recorded in March and October. Curvularia counts peaked in January, June and September.

  12. Masting in oaks: Disentangling the effect of flowering phenology, airborne pollen load and drought

    NASA Astrophysics Data System (ADS)

    Fernández-Martínez, Marcos; Belmonte, Jordina; Maria Espelta, Josep

    2012-08-01

    Quercus species exhibit an extreme inter-annual variability in seed production often synchronized over large geographical areas (masting). Since this reproductive behavior is mostly observed in anemophilous plants, pollination efficiency is suggested as one hypothesis to explain it, although resource-based hypotheses are also suggested as alternatives. We analyzed the effect of flowering phenology, airborne pollen presence and meteorological conditions in the pattern of acorn production in mixed evergreen-deciduous oak forests (Quercus ilex and Quercus pubescens) in NE Spain for twelve years (1998-2009). In both oaks, higher temperatures advanced the onset of flowering and increased the amount of airborne pollen. Nevertheless, inter-annual differences in pollen production did not influence acorn crop size. Acorn production was enhanced by a delay in flowering onset in Q. ilex but not in Q. pubescens. This suggests that in perennial oaks a larger number of photosynthates produced before flowering could benefit reproduction while the lack of effects on deciduous oaks could be because these species flush new leaves and flowers at the same time. Notwithstanding this effect, spring water deficit was the most relevant factor in explaining inter-annual variability in acorn production in both species. Considering that future climate scenarios predict progressive warmer and dryer spring seasons in the Mediterranean Basin, this might result in earlier onsets of flowering and higher water deficits that would constrain acorn production.

  13. Transport of airborne Picea schrenkiana pollen on the northern slope of Tianshan Mountains (Xinjiang, China) and its implication for paleoenvironmental reconstruction.

    PubMed

    Pan, Yanfang; Yan, Shun; Behling, Hermann; Mu, Guijin

    2013-06-01

    The understanding of airborne pollen transportation is crucial for the reconstruction of the paleoenvironment. Under favorable conditions, a considerable amount of long-distance-transported pollen can be deposited far from its place of origin. In extreme arid regions, in most cases, such situations occur and increase the difficulty to interpret fossil pollen records. In this study, three sets of Cour airborne pollen trap were installed on the northern slope of Tianshan Mountains to collect airborne Picea schrenkiana (spruce) pollen grains from July 2001 to July 2006. The results indicate that Picea pollen disperses extensively and transports widely in the lower atmosphere far away from spruce forest. The airborne Picea pollen dispersal period is mainly concentrated between mid-May and July. In desert area, weekly Picea pollen began to increase and peaked suddenly in concentration. Also, annual pollen indices do not decline even when the distance increased was probably related to the strong wind may pick up the deposited pollen grains from the topsoil into the air stream, leading to an increase of pollen concentration in the air that is irrelevant to the normal and natural course of pollen transport and deposition. This, in turn, may lead to erroneous interpretations of the pollen data in the arid region. This study provided insight into the shift in the Picea pollen season regarding climate change in arid areas. It is recorded that the pollen pollination period starts earlier and the duration became longer. The results also showed that the temperature of May and June was positively correlated with the Picea pollen production. Furthermore, the transport of airborne Picea pollen data is useful for interpreting fossil pollen records from extreme arid regions.

  14. Disentangling the effects of feedback structure and climate on Poaceae annual airborne pollen fluctuations and the possible consequences of climate change.

    PubMed

    García de León, David; García-Mozo, Herminia; Galán, Carmen; Alcázar, Purificación; Lima, Mauricio; González-Andújar, José L

    2015-10-15

    Pollen allergies are the most common form of respiratory allergic disease in Europe. Most studies have emphasized the role of environmental processes, as the drivers of airborne pollen fluctuations, implicitly considering pollen production as a random walk. This work shows that internal self-regulating processes of the plants (negative feedback) should be included in pollen dynamic systems in order to give a better explanation of the observed pollen temporal patterns. This article proposes a novel methodological approach based on dynamic systems to investigate the interaction between feedback structure of plant populations and climate in shaping long-term airborne Poaceae pollen fluctuations and to quantify the effects of climate change on future airborne pollen concentrations. Long-term historical airborne Poaceae pollen data (30 years) from Cordoba city (Southern Spain) were analyzed. A set of models, combining feedback structure, temperature and actual evapotranspiration effects on airborne Poaceae pollen were built and compared, using a model selection approach. Our results highlight the importance of first-order negative feedback and mean annual maximum temperature in driving airborne Poaceae pollen dynamics. The best model was used to predict the effects of climate change under two standardized scenarios representing contrasting temporal patterns of economic development and CO2 emissions. Our results predict an increase in pollen levels in southern Spain by 2070 ranging from 28.5% to 44.3%. The findings from this study provide a greater understanding of airborne pollen dynamics and how climate change might impact the future evolution of airborne Poaceae pollen concentrations and thus the future evolution of related pollen allergies.

  15. Long-term monitoring of airborne pollen in Alaska and the Yukon: Possible implications for global change

    SciTech Connect

    Anderson, J.H.

    1992-03-01

    Airborne pollen and spores have been sampled since 1978 in Fairbanks and 1982 Anchorage and other Alaska-Yukon locations for medical and ecological purposes. Comparative analyses of pre- and post-1986 data subsets reveal that after 1986 (1) pollen is in the air earlier, (2) the multiyear average of degree-days promoting pollen onset is little changed while (3) annual variation in degree-days at onset is greater, (4) pollen and spore annual productions are considerably higher, and (5) there is more year-to-year variation in pollen production. These changes probably reflect directional changes in certain weather variables, and there is some indication that they are of global change significance, i.e., related to increasing atmospheric greenhouse gases. Correlations with pollen data suggest that weather variables of high influence are temperatures during specific periods following pollen dispersal in the preceding year and the average temperature in April of the current year. Annual variations in pollen dispersal might be roughly linked to the 11 year sunspot cycle through air temperature mediators. Weather in 1990, apparent pollen production cycles under endogenous control, and the impending sunspot maximum portend a very severe pollen season in 199 existing but unfunded sampling projects.

  16. Airborne Pollen Concentrations and Emergency Room Visits for Myocardial Infarction: A Multicity Case-Crossover Study in Ontario, Canada.

    PubMed

    Weichenthal, Scott; Lavigne, Eric; Villeneuve, Paul J; Reeves, François

    2016-04-01

    Few studies have examined the acute cardiovascular effects of airborne allergens. We conducted a case-crossover study to evaluate the relationship between airborne allergen concentrations and emergency room visits for myocardial infarction (MI) in Ontario, Canada. In total, 17,960 cases of MI were identified between the months of April and October during the years 2004-2011. Daily mean aeroallergen concentrations (pollen and mold spores) were assigned to case and control periods using central-site monitors in each city along with daily measurements of meteorological data and air pollution (nitrogen dioxide and ozone). Odds ratios and their 95% confidence intervals were estimated using conditional logistic regression models adjusting for time-varying covariates. Risk of MI was 5.5% higher (95% confidence interval (CI): 3.4, 7.6) on days in the highest tertile of total pollen concentrations compared with days in the lowest tertile, and a significant concentration-response trend was observed (P < 0.001). Higher MI risk was limited to same-day pollen concentrations, with the largest risks being observed during May (odds ratio = 1.16, 95% CI: 1.00, 1.35) and June (odds ratio = 1.10, 95% CI: 1.00, 1.22), when tree and grass pollen are most common. Mold spore concentrations were not associated with MI. Our findings suggest that airborne pollen might represent a previously unidentified environmental risk factor for myocardial infarction.

  17. Transport of airborne pollen into the city of Thessaloniki: the effects of wind direction, speed and persistence

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Gioulekas, Dimitrios; Lazopoulou, Chariklia; Balafoutis, Christos; Vokou, Despina

    2005-01-01

    We examined the effect of the wind vector analyzed into its three components (direction, speed and persistence), on the circulation of pollen from differe nt plant taxa prominent in the Thessaloniki area for a 4-year period (1996- 1999). These plant taxa were Ambrosia spp., Artemisia spp., Chenopodiaceae, spp., Cupressaceae, Olea europaea, Pinaceae, Platanus spp., Poaceae, Populus spp., Quercus spp., and Urticaceae. Airborne pollen of Cupressaceae, Urticaceae, Quercus spp. and O. europaea make up approximately 70% of the total average annual pollen counts. The set of data that we worked with represented days without precipitation and time intervals during which winds blew from the same direction for at least 4 consecutive hours. We did this in order to study the effect of the different wind components independently of precipitation, and to avoid secondary effects produced by pollen resuspension phenomena. Factorial regression analysis among the summed bi-hourly pollen counts for each taxon and the values of wind speed and persistence per wind direction gave significant results in 22 cases (combinations of plant taxa and wind directions). The pollen concentrations of all taxa correlated significantly with at least one of the three wind components. In seven out of the 22 taxon-wind direction combinations, the pollen counts correlated positively with wind persistence, whereas this was the case for only two of the taxon-wind speed combinations. In seven cases, pollen counts correlated with the interaction effect of wind speed and persistence. This shows the importance of wind persistence in pollen transport, particularly when weak winds prevail for a considerable part of the year, as is the case for Thessaloniki. Medium/long-distance pollen transport was evidenced for Olea (NW, SW directions), Corylus (NW, SW), Poaceae (SW) and Populus (NW).

  18. The long distance transport of airborne Ambrosia pollen to the UK and the Netherlands from Central and south Europe.

    PubMed

    de Weger, Letty A; Pashley, Catherine H; Šikoparija, Branko; Skjøth, Carsten A; Kasprzyk, Idalia; Grewling, Łukasz; Thibaudon, Michel; Magyar, Donat; Smith, Matt

    2016-12-01

    The invasive alien species Ambrosia artemisiifolia (common or short ragweed) is increasing its range in Europe. In the UK and the Netherlands, airborne concentrations of Ambrosia pollen are usually low. However, more than 30 Ambrosia pollen grains per cubic metre of air (above the level capable to trigger allergic symptoms) were recorded in Leicester (UK) and Leiden (NL) on 4 and 5 September 2014. The aims of this study were to determine whether the highly allergenic Ambrosia pollen recorded during the episode could be the result of long distance transport, to identify the potential sources of these pollen grains and to describe the conditions that facilitated this possible long distance transport. Airborne Ambrosia pollen data were collected at 10 sites in Europe. Back trajectory and atmospheric dispersion calculations were performed using HYSPLIT_4. Back trajectories calculated at Leicester and Leiden show that higher altitude air masses (1500 m) originated from source areas on the Pannonian Plain and Ukraine. During the episode, air masses veered to the west and passed over the Rhône Valley. Dispersion calculations showed that the atmospheric conditions were suitable for Ambrosia pollen released from the Pannonian Plain and the Rhône Valley to reach the higher levels and enter the airstream moving to northwest Europe where they were deposited at ground level and recorded by monitoring sites. The study indicates that the Ambrosia pollen grains recorded during the episode in Leicester and Leiden were probably not produced by local sources but transported long distances from potential source regions in east Europe, i.e. the Pannonian Plain and Ukraine, as well as the Rhône Valley in France.

  19. The long distance transport of airborne Ambrosia pollen to the UK and the Netherlands from Central and south Europe

    NASA Astrophysics Data System (ADS)

    de Weger, Letty A.; Pashley, Catherine H.; Šikoparija, Branko; Skjøth, Carsten A.; Kasprzyk, Idalia; Grewling, Łukasz; Thibaudon, Michel; Magyar, Donat; Smith, Matt

    2016-12-01

    The invasive alien species Ambrosia artemisiifolia (common or short ragweed) is increasing its range in Europe. In the UK and the Netherlands, airborne concentrations of Ambrosia pollen are usually low. However, more than 30 Ambrosia pollen grains per cubic metre of air (above the level capable to trigger allergic symptoms) were recorded in Leicester (UK) and Leiden (NL) on 4 and 5 September 2014. The aims of this study were to determine whether the highly allergenic Ambrosia pollen recorded during the episode could be the result of long distance transport, to identify the potential sources of these pollen grains and to describe the conditions that facilitated this possible long distance transport. Airborne Ambrosia pollen data were collected at 10 sites in Europe. Back trajectory and atmospheric dispersion calculations were performed using HYSPLIT_4. Back trajectories calculated at Leicester and Leiden show that higher altitude air masses (1500 m) originated from source areas on the Pannonian Plain and Ukraine. During the episode, air masses veered to the west and passed over the Rhône Valley. Dispersion calculations showed that the atmospheric conditions were suitable for Ambrosia pollen released from the Pannonian Plain and the Rhône Valley to reach the higher levels and enter the airstream moving to northwest Europe where they were deposited at ground level and recorded by monitoring sites. The study indicates that the Ambrosia pollen grains recorded during the episode in Leicester and Leiden were probably not produced by local sources but transported long distances from potential source regions in east Europe, i.e. the Pannonian Plain and Ukraine, as well as the Rhône Valley in France.

  20. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications.

    PubMed

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  1. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications

    NASA Astrophysics Data System (ADS)

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  2. Airborne pollen and fungal spore sampling on the central California coast: the San Luis Obispo pollen project.

    PubMed

    McLean, A C; Parker, L; von Reis, J; von Reis, J

    1991-10-01

    A semiarid coastal location in San Luis Obispo, California was surveyed for 3 years (1986-1988) using a Rotorod sampler. Significant year-to-year variations in predominant pollen occurred, and abundant levels of fungal spores were observed. Coincidently, a large wildlands fire that may have affected pollen levels occurred in the region shortly before sampling began. The entire survey period took place during a drought.

  3. Impact and correlation of environmental conditions on pollen counts in Karachi, Pakistan.

    PubMed

    Perveen, Anjum; Khan, Muneeba; Zeb, Shaista; Imam, Asif Ali

    2015-02-01

    A quantitative and qualitative survey of airborne pollen was performed in the city of Karachi, and the pollen counts were correlated with different climatic conditions. The aim of the study was to determine the possible effect of meteorological factors on airborne pollen distribution in the atmosphere of Karachi city. Pollen sampling was carried out by using Burkard spore Trap for the period of August 2009 to July 2010, and a total of 2,922 pollen grains/m(3) were recorded. In this survey, 22 pollen types were recognized. The highest pollen count was contributed by Poaceae pollen type (1,242 pollen grains/m(3)) followed by Amaranthaceae/Chenopodiaceae (948 pollen grains/m(3)), Cyperus rotundus (195 pollen grains/m(3)) and Prosopis juliflora (169 pollen grains/m(3)). Peak pollen season was in August showing a total of 709 pollen grains/m(3) and lowest pollen count was observed in January-2010. Pearson's chi-square test was performed for the possible correlation of pollen counts and climatic factors. The test revealed significant positive correlation of wind speed with pollen types of Amaranthaceae/Chenopodiaceae; Brassica campestris; Asteraceae; and Thuja orientalis. While the correlation of "average temperature" showed significant positive value with Asteraceae and Tamarix indica pollen types. Negative correlation was observed between humidity/ precipitation and pollen types of Brassica campestris; Daucus carota; Ephedra sp.; and Tamarix indica. In the light of above updated data one could identify various aeroallergens present in the air of Karachi city.

  4. Aerobiology of Artemisia airborne pollen in Murcia (SE Spain) and its relationship with weather variables: annual and intradiurnal variations for three different species. Wind vectors as a tool in determining pollen origin

    NASA Astrophysics Data System (ADS)

    Giner, M. Munuera; Carrión García, José S.; García Sellés, Javier

    Detailed results from a 2-year survey of airborne pollen concentrations of Artemisia in Murcia are presented. Three consecutive pollen seasons of Artemisia occurring each year, related to three different species (A.campestris, A.herba-alba and A.barrelieri), were observed. A winter blooming of Artemisia could explain the incidence of subsequent pollinosis in the Murcia area. With regard to meteorological parameters, mathematical analyses showed relationships between daily pollen concentrations of Artemisia in summer-autumn and precipitations that occurred 6-8 weeks before. The cumulative percentage of insolation from 1 March seemed to be related to blooming onsets. Once pollination has begun, meteorological factors do not seem to influence pollen concentrations significantly. Intradiurnal patterns of pollen concentrations were similar for late summer and winter species (A. campestris and A.barrelieri). During autumn blooming (A.herba-alba), the intradiurnal pattern was particularly erratic. Theoretical values of wind run were obtained for each pollen season by the graphical sum of hourly wind vectors. When theoretical wind run was mapped onto the vegetation pattern, supposed pollen source locations were obtained for each hour. By comparing supposed hourly pollen origins with the intradiurnal patterns of pollen concentrations, it can be seen that this simple model explains variations in mean pollen concentrations throughout the day.

  5. Analysis of high allergenicity airborne pollen dispersion: common ragweed study case in Lithuania.

    PubMed

    Šaulienė, Ingrida; Veriankaitė, Laura

    2012-01-01

    The appearance of ragweed pollen in the air became more frequent in northerly countries. Attention of allergologists and aerobiologists in these countries is focused on the phenomenon that Ambrosia plants found relatively sporadic but the amount of pollen is high in particular days. Over the latter decade, a matter of particular concern has been Ambrosia pollen, whose appearance in the air is determined by the plants dispersing it and meteorological processes that alter pollen release, dissemination, transport or deposition on surfaces. Pollen data used in this study were collected in three pollen-trapping sites in Lithuania. The data corresponding to 2006-2011 years of pollen monitoring were documented graphically and evaluated statistically. Analysis of the pollen data suggests that although the number of ragweed plants identified has not increased over the latter decade, the total pollen count has been on the increase during the recent period. The highest atmospheric pollen load is established on the last days of August and first days of September. The estimated effect of meteorological parameters on pollen dispersal in the air showed that in Lithuania ragweed pollen is recorded when the relative air humidity is about 70%, and the minimal air temperature is not less than 12°C. Analysis of wind change effect on pollen count indicates that pollen is most often recorded in the air when the changes in wind speed are low (1-2 m/s). We have established a regularity exhibiting an increase in ragweed pollen count conditioned by south-eastern winds in Lithuania.

  6. Diurnal variations of airborne pollen concentration and the effect of ambient temperature in three sites of Mexico City.

    PubMed

    Ríos, B; Torres-Jardón, R; Ramírez-Arriaga, E; Martínez-Bernal, A; Rosas, I

    2016-05-01

    Pollen is an important cause of allergic respiratory ailments in the Mexico City Metropolitan Area (MCMA). However, very little is known if ambient air temperature correlates with the early blooming of plants observed in other urban areas around the world. A research study was conducted during the dry season of 2012-2013 at three representative sites of the MCMA with different urban characteristics with the aim to understand the relationships between the profusion and diversity of pollen against temperature and other meteorological variables and degree of urbanization. Pollen samples were collected using a Hirst-type trap sampler in the sites: Merced (highly urbanized), Iztapalapa (medium-high urbanized) and Coyoacan (moderately urbanized). Urbanization levels were determined using a composite index based on population density, proportion of surface covered by construction and asphalt, and urban heat island intensity. A set of representative pollen sampling tapes were assayed under a light microscope at magnification of ×1,000 and converted to grains per cubic meter. The most representative pollen types found in the three sites were, regardless of urbanization levels were: Fraxinus, Cupressaceae/Taxodiaceae, Casuarina, Alnus, Myrtaceae, and Pinus. Total pollen concentration was greatest in the moderately urbanized area, although earlier blooming took place at the highly urbanized zone. Total pollen concentration in the medium-high urbanized site has the lowest because the green areas in this zone of MCMA are few. In a diurnal basis, the most abundant pollen types peaked near midday or in the afternoon evening at the three sites. A Spearman test showed a positive correlation among bihourly pollen concentrations, temperature and relative humidity in all sites, but wind speed just correlated in Iztapalapa and Coyoacan. The results obtained suggest that Urban Heat Island Intensity can disturb flowering periods and pollen concentrations, largely in the highly urbanized

  7. Diurnal variations of airborne pollen concentration and the effect of ambient temperature in three sites of Mexico City

    NASA Astrophysics Data System (ADS)

    Ríos, B.; Torres-Jardón, R.; Ramírez-Arriaga, E.; Martínez-Bernal, A.; Rosas, I.

    2016-05-01

    Pollen is an important cause of allergic respiratory ailments in the Mexico City Metropolitan Area (MCMA). However, very little is known if ambient air temperature correlates with the early blooming of plants observed in other urban areas around the world. A research study was conducted during the dry season of 2012-2013 at three representative sites of the MCMA with different urban characteristics with the aim to understand the relationships between the profusion and diversity of pollen against temperature and other meteorological variables and degree of urbanization. Pollen samples were collected using a Hirst-type trap sampler in the sites: Merced (highly urbanized), Iztapalapa (medium-high urbanized) and Coyoacan (moderately urbanized). Urbanization levels were determined using a composite index based on population density, proportion of surface covered by construction and asphalt, and urban heat island intensity. A set of representative pollen sampling tapes were assayed under a light microscope at magnification of ×1,000 and converted to grains per cubic meter. The most representative pollen types found in the three sites were, regardless of urbanization levels were: Fraxinus, Cupressaceae/Taxodiaceae, Casuarina, Alnus, Myrtaceae, and Pinus. Total pollen concentration was greatest in the moderately urbanized area, although earlier blooming took place at the highly urbanized zone. Total pollen concentration in the medium-high urbanized site has the lowest because the green areas in this zone of MCMA are few. In a diurnal basis, the most abundant pollen types peaked near midday or in the afternoon evening at the three sites. A Spearman test showed a positive correlation among bihourly pollen concentrations, temperature and relative humidity in all sites, but wind speed just correlated in Iztapalapa and Coyoacan. The results obtained suggest that Urban Heat Island Intensity can disturb flowering periods and pollen concentrations, largely in the highly urbanized

  8. The effect of meteorological factors on airborne Betula pollen concentrations in Lublin (Poland).

    PubMed

    Piotrowska, Krystyna; Kubik-Komar, Agnieszka

    2012-12-01

    The present study investigated the pattern of the birch atmospheric pollen seasons in Lublin in the period 2001-2010. Pollen monitoring was conducted using a Lanzoni VPPS 2000 sampler. The atmospheric pollen seasons were determined with the 98% method. Regression analysis was used to determine correlations between meteorological conditions and the pattern of the birch pollen season. On average, the birch pollen season started on 12 April, ended on 13 May, and lasted 32 days. The peak value and the Seasonal Pollen Index showed the greatest variation in particular years. All the seasons were right-skewed. During the study years, a trend was found towards earlier occurrence of the seasonal peak. Regression equations were developed for the following parameters of the atmospheric pollen season: start, duration, peak value and average pollen concentration during the season. The obtained model fit was at a level of 64-81%. Statistical analysis shows that minimum temperature of February and March and total rainfall in June in the year preceding pollen release have the greatest effect on the birch atmospheric pollen season in Lublin. Low temperatures in February promote the occurrence of high pollen concentrations.

  9. Airborne pollen of Carya, Celtis, Cupressus, Fraxinus and Pinus in the metropolitan area of Monterrey Nuevo Leon, Mexico.

    PubMed

    Rocha-Estrada, Alejandra; Alvarado-Vázquez, Marco Antonio; Torres-Cepeda, Teresa Elizabeth; Foroughbakhch-Pournavab, Rahim; Hernández-Piñero, Jorge Luis

    2008-01-01

    The concentration of pollen grains in the atmosphere over the metropolitan area of Monterrey, Nuevo Leon, Mexico, was analyzed throughout a year from March 2003-February 2004, focused on the genus Carya, Celtis, Cupressus, Fraxinus and Pinus owing to their interest as etiological pollinosis agents in diverse regions of the world. A 7-day Hirst type volumetric spore and pollen trap was located on a building roof of the city at 15 m from ground level for continuous sampling. The total quantity of pollen recorded for the study period was 21,083 grains/m(3), corresponding to 49.75 % of the taxa of interest. February and March were the months with higher pollen amounts in the air with 7,525 and 2,781 grains/m(3), respectively, and amounted to 49 % of total year through pollen. Fraxinus was the genus which contributed to the largest amount of pollen with 28 % of total grains (5,935 grains/m(3)) followed by Cupressus with 13 % (2,742 grains/ m(3)). Celtis, Pinus and Carya contributed with 5.3 % , 2.7 % , and 0.6 % of total pollen, respectively. These results indicate that Fraxinus and Cupressus are present in the area in sufficient quantity to indicate likely involvement in the origin of allergic disorders in the human population.

  10. Airborne pollen assemblages and weather regime in the central-eastern Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Li, Yuecong; Ge, Yawen; Xu, Qinghai; Bunting, Jane M.; Lv, Suqing; Wang, Junting; Li, Zetao

    2015-04-01

    This paper presents the results of pollen trapping studies designed to quantify the pollen assemblages carried in the winds of the Loess Plateau in Luochuan and Hunyuan. The one-year-collection samples analysis results show that pollen assemblages can be more sensitive to the change of climate than the vegetation composition, because of the change of pollen production. The analysis results of pollen traps in different weather regimes indicate that the pollen influx coming from dust weather contribute more to the total pollen influx than that coming from non-dust weather. The wind speed is the most important influenced factor to pollen assemblages, then the mean temperature and the mean relative humidity, the wind direction also contributes some. Strong wind coming from dust direction can make the percent and influx of Artemisia and Chenopodiaceae increase obviously with averagely higher than over 2.7 times in dust weather than in non-dust samples. The influences of wind speed and wind direction are not serious to some arboreal pollen such as Rosaceae, Quercus, Betula, Pinus and Ostryopsis, which are mainly influenced by temperature or the relative humidity such as Salix, Hippophae, Carpinus, Brassicaceae, Cupressaceae, Fabaceae.

  11. Towards a "crime pollen calendar" - pollen analysis on corpses throughout one year.

    PubMed

    Montali, Elisa; Mercuri, Anna Maria; Trevisan Grandi, Giuliana; Accorsi, Carla Alberta

    2006-11-22

    A palynological study was carried out on 28 corpses brought in one year (June 2003-May 2004) to the morgue of the Institute of Legal Medicine of Parma (Northern Italy). This preliminary research focuses on the date of death, which was known for all corpses examined. Pollen sampling and analyses were made with the first aim of comparing the pollen grains found on corpses with those diffused in the atmosphere in the region in the same season as the known date of death. Eyebrows, hair-line near the forehead, facial skin and nasal cavities were sampled. Most of the corpses had trapped pollen grains, with the exception of two December corpses. All pollen grains were found with cytoplasm and in a good state of preservation. In this way, a series of reference data was collected for the area where the deaths occurred, and we examined whether pollen grains on corpses could be an index of the season of death. To verify this hypothesis, the pollen analyses were compared with data reported in the airborne pollen calendars of Parma and the region around. Pollen calendars record pollen types and their concentrations in the air, month by month. The quantity of pollen recorded on corpses did not prove to be directly related to the quantity of pollen in the air. But qualitatively, many pollen types which are seasonal markers were found on corpses. Main corpse/air discrepancies were also observed due to the great influence that the local environmental conditions of the death scene have in determining the pollen trapped by a corpse. Qualitative plus quantitative pollen data from corpses appeared helpful in indicating the season of death. A preliminary sketch of a "crime pollen calendar" in a synthetic graphic form was made by grouping the corpse pollen records into three main seasons: A, winter/spring; B, spring/summer; C, summer/autumn. Trends match the general seasonal trend of pollen types in the air.

  12. Does particulate matter along roadsides interfere with plant reproduction? A comparison of effects of different road types on Cichorium intybus pollen deposition and germination.

    PubMed

    Jaconis, Susan Y; Culley, Theresa M; Meier, Alexandra M

    2017-03-01

    The roadside habitat can be challenging for plants, which must maintain normal biological processes despite an influx of airborne pollutants. While the effects of many gases on plants have been quantified, the impacts of particulate pollutants have been relatively less studied. This is especially true of field experiments where particle dispersion may be influenced by meteorology and roadway use. We examined chicory (Cichorium intybus L.) along roadsides in the Cincinnati, Ohio metropolitan area to assess particulate influence on plant pollination through stigmatic clogging. We compared flowers collected from plants situated along interstates, U.S. highways, state highways, and county roads as these different road-types vary in motor vehicle usage and thus should have varying levels of particulate deposition on flowers. We examined floral stigmas for total particulates, total pollen, and percentage of pollen tube germination to determine whether particulates may interfere with early reproductive processes. Our results suggest that there was minimal variation of particulate matter found on chicory stigmas among road-types. Furthermore, the deposition of particulates on stigmas based on road-type did not show a strong link to variation in pollen deposition and pollen germination. There was also no significant relationship between total particulate levels and pollen germination rates across all road types. Future studies should investigate other plant species that may be more sensitive to roadside pollution, such as economically important crops. Locations in which vehicle use is increasing and where pollutants are not regulated strictly should also be examined as the effects of airborne particulates in early plant reproduction would be expected to be more substantial in these areas.

  13. Fluorescence of Bacteria, Pollens, and Naturally Occurring Airborne Particles: Excitation/Emission Spectra

    DTIC Science & Technology

    2009-02-01

    biological particles (1–10) are important in the transmission of diseases (11, 12) of humans (e.g., tuberculosis , influenza), farm animals (e.g...the air. Bacteria, rickettsia, viruses, protein toxins, and some neurotoxins produced by microbes have been feared as potential airborne biological

  14. A principal component regression model to forecast airborne concentration of Cupressaceae pollen in the city of Granada (SE Spain), during 1995-2006.

    PubMed

    Ocaña-Peinado, Francisco M; Valderrama, Mariano J; Bouzas, Paula R

    2013-05-01

    The problem of developing a 2-week-on ahead forecast of atmospheric cypress pollen levels is tackled in this paper by developing a principal component multiple regression model involving several climatic variables. The efficacy of the proposed model is validated by means of an application to real data of Cupressaceae pollen concentration in the city of Granada (southeast of Spain). The model was applied to data from 11 consecutive years (1995-2005), with 2006 being used to validate the forecasts. Based on the work of different authors, factors as temperature, humidity, hours of sun and wind speed were incorporated in the model. This methodology explains approximately 75-80% of the variability in the airborne Cupressaceae pollen concentration.

  15. Tree pollen spectra and pollen allergy risk in the Osijek-Baranja County.

    PubMed

    Sikora, Magdalena; Valek, Marina; Šušić, Zdenka; Santo, Vera; Brdarić, Dario

    2013-01-01

    The forests of north-eastern Croatia, as well as various plants and trees in the parks and streets of the Osijek-Baranja County, produce large amounts of pollen during the pollen season, which can cause allergy symptoms in pollen sensitive individuals. The aim of this study was to determine the most frequent types of pollen in this area and estimate possible health risks, especially the risk of allergy. In 2009 and 2010, the staff of the Health Ecology Department of the Osijek Public Health Institute monitored tree pollen concentrations in four cities from the Osijek - Baranja County (Osijek, Našice, Đakovo and Beli Manastir) using a Burkard volumetric instrument. The results were affected by weather conditions. Windy and sunny days facilitated the transfer of pollen, whereas during rainy days, the concentration of pollen grains decreased. High pollen concentrations of Cupressaceae/Taxaceae, Betulaceae, Salicaceae and Aceraceae could be the cause for symptoms of pollen allergy. In 2009, conifers, birch and poplar pollen were dominant at all monitoring stations with 5000 pollen grains (PG), 3188 PG and 3113 PG respectively. The highest number of pollen grains was recorded at measuring site Osijek. The variations in airborne pollen concentration between pollen seasons were recorded at all monitoring stations. The most obvious variations were recorded at measuring site Osijek. The usual pollination period lasts two to three months, which means that most pollen grains remain present from February to early June. However, the Cupressaceae / Taxaceae pollination periods last the longest and their pollen grains remain present until the end of summer. The risk of allergy was determined at four monitored measuring stations and the obtained data confirmed that the largest number of days with a high health risk was at the Đakovo measuring station for a species of birch. The research information aims to help allergologists and individuals allergic to plant pollen develop

  16. Airborne pollen sampling in Manoa Valley, Hawaii: effect of rain, humidity and wind.

    PubMed

    Massey, D G; Fournier-Massey, G

    1984-05-01

    Kramer-Collins pollen sampling was conducted over 24 hours for 25 consecutive months at two valley sites in Honolulu. Of 1,059 expected samples, 699 (66.0%) were collected. Only 25 were considered excellent, i.e., eight three-hour collection bands. Twenty eight were considered good, ie., two to six bands. The difficulties in the study were associated with the weather directly (17.5%), the power source (3.9%), inadequancy of the samplers (63.1%) and the inexperience of technicians (15.3%). Sampler problems were also indirectly attributable to the high humidity, rain and wind, which differed at the two sites.

  17. Threat of allergenic airborne grass pollen in Szczecin, NW Poland: the dynamics of pollen seasons, effect of meteorological variables and air pollution.

    PubMed

    Puc, Małgorzata

    2011-09-01

    The dynamics of Poaceae pollen season, in particularly that of the Secale genus, in Szczecin (western Poland) 2004-2008 was analysed to establish a relationship between the meteorological variables, air pollution and the pollen count of the taxa studied. Consecutive phases during the pollen season were defined for each taxon (1, 2.5, 5, 25, 50, 75, 95, 97.5, 99% of annual total), and duration of the season was determined using the 98% method. On the basis of this analysis, the temporary differences in the dynamics of the seasons were most evident for Secale in 2005 and 2006 with the longest main pollen season (90% total pollen). The pollen season of Poaceae started the earliest in 2007, when thermal conditions were the most favourable. Correlation analysis with meteorological factors demonstrated that the relative humidity, mean and maximum air temperature, and rainfall were the factors influencing the average daily pollen concentrations in the atmosphere; also, the presence of air pollutants such as ozone, PM(10) and SO(2) was statistically related to the pollen count in the air. However, multiple regression models explained little part of the total variance. Atmospheric pollution induces aggravation of symptoms of grass pollen allergy.

  18. Concentric Ring Method for generating pollen maps. Quercus as case study.

    PubMed

    Oteros, Jose; Valencia, Rosa Mª; Del Río, Sara; Vega, Ana Mª; García-Mozo, Herminia; Galán, Carmen; Gutiérrez, Pablo; Mandrioli, Paolo; Fernández-González, Delia

    2017-01-15

    Mapping pollen concentrations is of great interest to study the health impact and ecological implications or for forestry or agronomical purposes. A deep knowledge about factors affecting airborne pollen is essential for predicting and understanding its dynamics. The present work sought to predict annual Quercus pollen over the Castilla and León region (Central and Northern Spain). Also to understand the relationship between airborne pollen and landscape. Records of Quercus and Quercus pyrenaica pollen types were collected at 13 monitoring sites over a period of 8years. They were analyzed together with land use data applying the Concentric Ring Method (CRM), a technique that we developed to study the relationship between airborne particle concentrations and emission sources in the region. The maximum correlation between the Quercus pollen and forms of vegetation was determined by shrubland and "dehesa" areas. For the specific Qi pyrenaica model (Q. pyrenaica pollen and Q. pyrenaica forest distribution), the maximum influence of emission sources on airborne pollen was observed at 14km from the pollen trap location with some positive correlations up to a distance of 43km. Apart from meteorological behavior, the local features of the region can explain pollen dispersion patterns. The method that we develop here proved to be a powerful tool for multi-source pollen mapping based on land use.

  19. An unusual appearance of a common pollen type indicates the scene of the crime.

    PubMed

    Mildenhall, D C

    2006-11-22

    Forensic palynology is a useful source of evidence in cases of violence committed in the open. A young girl was grabbed off the street, threatened and brutally raped. During the investigation the exact place of the rape became an issue. Growing around the scene identified by the victim were shrubs identified as Coprosma, a common New Zealand plant and one that produces abundant, easily wind-dispersed pollen. Abundant Coprosma pollen was found at the scene. The pollen were unusual in that the site was very damp, encouraging fungal growth, and fungal hyphae had penetrated the pores of many of the tricolporate pollen grains. Some grains had fungal spores inside. Coprosma pollen identical in preservational characteristics and morphology to those from the scene and containing fungal hyphae and spores were found in considerable numbers on the victim's clothes. This and rare Coprosma pollen grains and fungal remains recovered from vaginal swabs provided evidence that she had been at the scene where she claimed to have been raped. The diversity of pollen types recovered from the clothing in this case provides further evidence of the usefulness of clothing in picking up and retaining pollen from crime scenes and that obvious staining on clothes is not a pre-requisite for good pollen recovery. It also demonstrates the importance of collecting samples from different parts of the same garment in order to get a full picture of events since different parts of a garment can come into contact with different plants or different parts of the ground in a scuffle. It is also demonstrated that significant evidential material can be collected from the body, in this case from vaginal swabs from the victim. Forensic palynology should be considered in every case of violent assault, especially, but not exclusively, when having occurred in an open area subject to extensive pollen settlement.

  20. Utility of Surface Pollen Assemblages to Delimit Eastern Eurasian Steppe Types

    PubMed Central

    Qin, Feng; Wang, Yu-Fei; Ferguson, David K.; Chen, Wen-Li; Li, Ya-Meng; Cai, Zhe; Wang, Qing; Ma, Hong-Zhen; Li, Cheng-Sen

    2015-01-01

    Modern pollen records have been used to successfully distinguish between specific prairie types in North America. Whether the pollen records can be used to detect the occurrence of Eurasian steppe, or even to further delimit various steppe types was until now unclear. Here we characterized modern pollen assemblages of meadow steppe, typical steppe and desert steppe from eastern Eurasia along an ecological humidity gradient. The multivariate ordination of the pollen data indicated that Eurasian steppe types could be clearly differentiated. The different steppe types could be distinguished primarily by xerophilous elements in the pollen assemblages. Redundancy analysis indicated that the relative abundances of Ephedra, Tamarix, Nitraria and Zygophyllaceae were positively correlated with aridity. The relative abundances of Ephedra increased from meadow steppe to typical steppe and desert steppe. Tamarix and Zygophyllaceae were found in both typical steppe and desert steppe, but not in meadow steppe. Nitraria was only found in desert steppe. The relative abundances of xerophilous elements were greater in desert steppe than in typical steppe. These findings indicate that Eurasian steppe types can be differentiated based on recent pollen rain. PMID:25763576

  1. Cytochemical Analysis of Pollen Development in Wild-Type Arabidopsis and a Male-Sterile Mutant.

    PubMed Central

    Regan, SM; Moffatt, BA

    1990-01-01

    Microsporogenesis has been examined in wild-type Arabidopsis thaliana and the nuclear male-sterile mutant BM3 by cytochemical staining. The mutant lacks adenine phosphoribosyltransferase, an enzyme of the purine salvage pathway that converts adenine to AMP. Pollen development in the mutant began to diverge from wild type just after meiosis, as the tetrads of microspores were released from their callose walls. The first indication of abnormal pollen development in the mutant was a darker staining of the microspore wall due to an incomplete synthesis of the intine. Vacuole formation was delayed and irregular in the mutant, and the majority of the mutant microspores failed to undergo mitotic divisions. Enzyme activities of alcohol dehydrogenase and esterases decreased in the mutant soon after meiosis and were undetectable in mature pollen grains of the mutant. RNA accumulation was also diminished. These results are discussed in relation to the possible role(s) of adenine salvage in pollen development. PMID:12354970

  2. Environmental factors affecting the start of pollen season and concentrations of airborne Alnus pollen in two localities of Galicia (NW Spain).

    PubMed

    Rodriguez-Rajo, Francisco Javier; Dopazo, Angeles; Jato, Victoria

    2004-01-01

    Alnus pollen is an early component of the annual atmospheric aerosol of the north-west regions of Spain, which causes the first occurrence of allergic symptoms. Seasonal and intra-daily variation of Alnus pollination, and the influence that main meteorological parameters exert, was studied in this paper. Monitoring was carried out from 1993-2002, by using two Lanzoni VPPS 2000 volumetric samplers. Once the atmospheric behaviour of this pollen had been identified, the final objective was to elaborate predictive models to determine the onset of the Alnus pollen season and its concentrations during the pollination period in two localities of north-west Spain (Santiago and Ourense). Winter chilling required to overcome the bud-dormancy period was similar in both cities, with around 800 Chilling Hours (C.H.) and 5.5 degrees C threshold temperature. Calculation of heat requirement for bud growth was carried out with maximum temperature, with around 50 Growth Degree Days (G.D.D. degrees C) needed, with 6 degrees C threshold temperature. Data from 2002 were used in order to determine the real validity of the models. This year was not taken into account to establish the aforementioned models. The variation between the predicted start of the pollen season and the observed season was smallest in Ourense. Verifying the proposed models for predicting daily mean concentrations of Alnus pollen during the pollen season shows that the predicted curves fits the observed variations of daily mean concentrations.

  3. Influence of meteorological parameters and air pollution on hourly fluctuation of birch (Betula L.) and ash (Fraxinus L.) airborne pollen.

    PubMed

    Puc, Małgorzata

    2012-01-01

    Pollen grains are one of the most important groups of atmospheric biological particles that originate allergic processes. Knowledge of intradiurnal variation of the atmospheric pollen may be useful for the treatment and prevention of pollen allergies. Intradiurnal fluctuation of hourly pollen counts in 24 h are related to the daily rhythm of anther opening, and modified by various interacting factors. Flowering and pollen production of individual species are influenced by genetic, phenological, ecological, meteorological and climatic factors. Estimation of the intradiurnal variability in the pollen count permits evaluation of the threat posed by allergens over a given area. Measurements performed in Szczecin over a period of 7 years (2006-2012) permitted analysis of hourly variation of the pollen count of birch (Betula) and ash (Fraxinus) in 24 h, and evaluation of the impact of weather conditions and the concentration of gas air pollutants on the intradiurnal patterns of both taxa. Aerobiological monitoring was conducted using a Hirst volumetric trap (Lanzoni VPPS 2000). Consecutive phases during the day were defined as 1, 5, 25, 50, 75, 95, 99% of annual total pollen. The analysis revealed that 50% of total daily pollen was noted at 14:00 for Betula and Fraxinus. The hourly distribution of birch pollen count skewed to the left and the majority of pollen of this taxon appears in the air in the first 12 hours of the day. However, for ash, the hourly distribution of pollen count skewed to the right. Statistically significant correlation was noted between the Betula and Fraxinus pollen concentration and the mean air temperature, relative humidity, wind speed, air pressure, total radiation and nitrogen oxides (NO(x)).

  4. Atmospheric pollen season in Zagreb (Croatia) and its relationship with temperature and precipitation.

    PubMed

    Peternel, Renata; Srnec, Lidija; Culig, Josip; Zaninović, Ksenija; Mitić, Bozena; Vukusić, Ivan

    2004-05-01

    The number of individuals allergic to plant pollen has recently been on a constant increase, especially in large cities and industrial areas. Therefore, monitoring of airborne pollen types and concentrations during the pollen season is of the utmost medical importance. The research reported in this paper aims to determine the beginning, course and end of the pollen season for the plants in the City of Zagreb, to identify allergenic plants, and to assess the variation in airborne pollen concentration as a function of temperature and precipitation changes for the year 2002. A volumetric Hirst sampler was used for airborne pollen sampling. Qualitative and quantitative pollen analysis was performed under a light microscope (magnification x400). In the Zagreb area, 12 groups of highly allergenic plants (alder, hazel, cypress, birch, ash, hornbeam, grasses, elder, nettles, sweet chestnut, artemisia and ambrosia) were identified. Birch pollen predominated in spring, the highest concentrations being recorded in February and March. Grass pollen prevailed in May and June, and pollen of herbaceous plants of the genus Urtica (nettle) and of ambrosia in July, August and September. Air temperature was mostly higher or considerably higher than the annual average in those months, which resulted in a many days with high and very high airborne pollen concentrations. The exception was April, when these concentrations were lower because of high levels of precipitation. This also held for the first half of August and the second half of September. Pollen-sensitive individuals were at high risk from February till October because of the high airborne pollen concentrations, which only showed a transient decrease when the temperature fell or there was precipitation.

  5. [Airborne Japanese cedar allergens studied by immunoblotting technique using anti-Cry j I monoclonal antibody--comparison with actual pollen counts and effect of wind speed and directions].

    PubMed

    Iwaya, M; Murakami, G; Matsuno, M; Onoue, Y; Takayanagi, M; Kayahara, M; Adachi, Y; Adachi, Y; Okada, T; Kenda, S

    1995-07-01

    We collected airborne particles of Japanese cedar pollen with Burkard's sampling tape in Toyama from February to April 1992. The tape was cut into two pieces in parallel to time axis. The one of piece of the tapes was stained with glycerin-jerry and stained pollens were counted with a microscope. The other piece was treated according to the immunoblotting technique. The airborne pollen allergens, reacting with anti-Cry j I monoclonal antibody, were stained as blue spots. The spots were classified by diameter into two groups, large spots (> 50 microns) and small spots (< 50 microns). There were significant correlations found between the airborne Cry j I allergen spots (in large and small) and actual pollen counts obtained with the Burkard's sampler and the Durham's sampler (r = 0.729, 0.586 in large spots and r = 0.676, 0.489 in small spots, p < 0.001). The counts of small spots stayed in high level even in April when actual pollen counts decreased. We concluded that this discrepancy was caused by allergenic crushed cedar pollen particles staying floating longer than actual pollens. Secondly we set a gauge of wind speed and direction at the same point as the samplers. The actual pollen counts and large spots counts were significantly larger in the wind (SE wind in Toyama city) from cedar trees blooming area than other areas. However small spots counts did not differ significantly according to wind directions. Wind speed did not effect on actual pollen counts, large spots counts and small spots count.

  6. Biochemical and immunological studies on eight pollen types from South Assam, India.

    PubMed

    Sharma, Dhruba; Dutta, B K; Singh, A B

    2009-12-01

    A total of 65 pollen types were identified from two years atmospheric pollen survey in the environmental conditions of South Assam. Out of them, eight pollen types viz., Acacia auriculiformis, Amaranthus spinosus, Cassia alata, Cleome gynandra, Cocos nucifera, Imperata cylindrica, Ricinus communis and Trewia nudiflora, were selected for biochemical studies on the basis of their dominance in the study sites. Among the sample extract tested, Ricinus communis was found to contain the highest amount of soluble protein, free amino acid and total carbohydrate, per gram of dry weight followed by Imperata cylindrica and Cassia alata. Maximum numbers of protein polypeptide bands were detected in the sample extract of Cassia alata by polyacrylamide gel electrophoresis method followed by Acacia auriculiformis, Imperata cylindrica and Cocos nucifera. IgE binding protein fractions were maximum in Cassia alata and minimum in Trewia nudiflora.

  7. Intradiurnal variations of allergenic tree pollen in the atmosphere of Toledo (central Spain).

    PubMed

    Pérez-Badia, Rosa; Vaquero, Consolación; Sardinero, Santiago; Galán, Carmen; García-Mozo, Herminia

    2010-01-01

    To study the impact of inhaling airborne pollen on health, it is important to know not only their average daily concentrations but also the intradiurnal behaviour of these biological particles. This study reports the bi-hourly distribution of the arboreal airborne pollen types more abundant in the atmosphere of Toledo (central Spain), many of them triggering important allergic processes in Toledo citizens and tourist visitors. Knowledge of bi-hourly pattern atmospheric variation pollen may help pollinosis patients to adopt preventive measures and plan their outdoor activities accordingly. Intradiurnal variation has been studied for the arboreal pollen types: Cupressaceae, Fraxinus, Olea, Platanus, Populus, Quercus and Ulmus, during the period 2005-2008. The main hourly pollen concentrations were observed during sunlight hours and the maximum pollen values obtained at midday and in the afternoon, except for pollen types Quercus and Platanus, whose maximum pollen concentrations were obtained during the night. The statistical analyses performed to compare pollen concentration and main hourly meteorological variables proved to be significant for most of the taxa. The results show a significant and positive effect of temperature, solar radiation and wind speed on the daily variability undergone by atmospheric pollen. Relative humidity influenced in a negative way on the intradiurnal variation of pollen in the atmosphere of Toledo.

  8. First Evidence for Wollemi Pine-type Pollen (Dilwynites: Araucariaceae) in South America

    PubMed Central

    Macphail, Mike; Carpenter, Raymond J.; Iglesias, Ari; Wilf, Peter

    2013-01-01

    We report the first fossil pollen from South America of the lineage that includes the recently discovered, extremely rare Australian Wollemi Pine, Wollemia nobilis (Araucariaceae). The grains are from the late Paleocene to early middle Eocene Ligorio Márquez Formation of Santa Cruz, Patagonia, Argentina, and are assigned to Dilwynites, the fossil pollen type that closely resembles the pollen of modern Wollemia and some species of its Australasian sister genus, Agathis. Dilwynites was formerly known only from Australia, New Zealand, and East Antarctica. The Patagonian Dilwynites occurs with several taxa of Podocarpaceae and a diverse range of cryptogams and angiosperms, but not Nothofagus. The fossils greatly extend the known geographic range of Dilwynites and provide important new evidence for the Antarctic region as an early Paleogene portal for biotic interchange between Australasia and South America. PMID:23894439

  9. Functional conservation of MIKC*-Type MADS box genes in Arabidopsis and rice pollen maturation.

    PubMed

    Liu, Yuan; Cui, Shaojie; Wu, Feng; Yan, Shuo; Lin, Xuelei; Du, Xiaoqiu; Chong, Kang; Schilling, Susanne; Theißen, Günter; Meng, Zheng

    2013-04-01

    There are two groups of MADS intervening keratin-like and C-terminal (MIKC)-type MADS box genes, MIKC(C) type and MIKC* type. In seed plants, the MIKC(C) type shows considerable diversity, but the MIKC* type has only two subgroups, P- and S-clade, which show conserved expression in the gametophyte. To examine the functional conservation of MIKC*-type genes, we characterized all three rice (Oryza sativa) MIKC*-type genes. All three genes are specifically expressed late in pollen development. The single knockdown or knockout lines, respectively, of the S-clade MADS62 and MADS63 did not show a mutant phenotype, but lines in which both S-clade genes were affected showed severe defects in pollen maturation and germination, as did knockdown lines of MADS68, the only P-clade gene in rice. The rice MIKC*-type proteins form strong heterodimeric complexes solely with partners from the other subclade; these complexes specifically bind to N10-type C-A-rich-G-boxes in vitro and regulate downstream gene expression by binding to N10-type promoter motifs. The rice MIKC* genes have a much lower degree of functional redundancy than the Arabidopsis thaliana MIKC* genes. Nevertheless, our data indicate that the function of heterodimeric MIKC*-type protein complexes in pollen development has been conserved since the divergence of monocots and eudicots, roughly 150 million years ago.

  10. Regional forecast model for the Olea pollen season in Extremadura (SW Spain).

    PubMed

    Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Silva-Palacios, Inmaculada; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela

    2016-10-01

    The olive tree (Olea europaea) is a predominantly Mediterranean anemophilous species. The pollen allergens from this tree are an important cause of allergic problems. Olea pollen may be relevant in relation to climate change, due to the fact that its flowering phenology is related to meteorological parameters. This study aims to investigate airborne Olea pollen data from a city on the SW Iberian Peninsula, to analyse the trends in these data and their relationships with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1994 to 2013 in Badajoz (SW Spain) using a 7-day Hirst-type volumetric sampler. The main Olea pollen season lasted an average of 34 days, from May 4th to June 7th. The model proposed to forecast airborne pollen concentrations, described by one equation. This expression is composed of two terms: the first term represents the resilience of the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term was obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological variables multiplied by a fitting coefficient. Due to the allergenic characteristics of this pollen type, it should be necessary to forecast its short-term prevalence using a long record of data in a city with a Mediterranean climate. The model obtained provides a suitable level of confidence to forecast Olea airborne pollen concentration.

  11. Regional forecast model for the Olea pollen season in Extremadura (SW Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Silva-Palacios, Inmaculada; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela

    2016-10-01

    The olive tree ( Olea europaea) is a predominantly Mediterranean anemophilous species. The pollen allergens from this tree are an important cause of allergic problems. Olea pollen may be relevant in relation to climate change, due to the fact that its flowering phenology is related to meteorological parameters. This study aims to investigate airborne Olea pollen data from a city on the SW Iberian Peninsula, to analyse the trends in these data and their relationships with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1994 to 2013 in Badajoz (SW Spain) using a 7-day Hirst-type volumetric sampler. The main Olea pollen season lasted an average of 34 days, from May 4th to June 7th. The model proposed to forecast airborne pollen concentrations, described by one equation. This expression is composed of two terms: the first term represents the resilience of the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term was obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological variables multiplied by a fitting coefficient. Due to the allergenic characteristics of this pollen type, it should be necessary to forecast its short-term prevalence using a long record of data in a city with a Mediterranean climate. The model obtained provides a suitable level of confidence to forecast Olea airborne pollen concentration.

  12. Modeling olive pollen intensity in the Mediterranean region through analysis of emission sources.

    PubMed

    Rojo, J; Orlandi, F; Pérez-Badia, R; Aguilera, F; Ben Dhiab, A; Bouziane, H; Díaz de la Guardia, C; Galán, C; Gutiérrez-Bustillo, A M; Moreno-Grau, S; Msallem, M; Trigo, M M; Fornaciari, M

    2016-05-01

    Aerobiological monitoring of Olea europaea L. is of great interest in the Mediterranean basin because olive pollen is one of the most represented pollen types of the airborne spectrum for the Mediterranean region, and olive pollen is considered one of the major cause of pollinosis in this region. The main aim of this study was to develop an airborne-pollen map based on the Pollen Index across a 4-year period (2008-2011), to provide a continuous geographic map for pollen intensity that will have practical applications from the agronomical and allergological points of view. For this purpose, the main predictor variable was an index based on the distribution and abundance of potential sources of pollen emission, including intrinsic information about the general atmospheric patterns of pollen dispersal. In addition, meteorological variables were included in the modeling, together with spatial interpolation, to allow the definition of a spatial model of the Pollen Index from the main olive cultivation areas in the Mediterranean region. The results show marked differences with respect to the dispersal patterns associated to the altitudinal gradient. The findings indicate that areas located at an altitude above 300ma.s.l. receive greater amounts of olive pollen from shorter-distance pollen sources (maximum influence, 27km) with respect to areas lower than 300ma.s.l. (maximum influence, 59km).

  13. Separation of different pollen types by chemotactile sensing in Bombus terrestris.

    PubMed

    Ruedenauer, Fabian A; Leonhardt, Sara D; Schmalz, Fabian; Rössler, Wolfgang; Strube-Bloss, Martin F

    2017-02-09

    When tasting food, animals rely on chemical and tactile cues, which determine the animal's decision on whether or not to eat food. As food nutritional composition has enormous consequences for the survival of animals, food items should generally be tasted before they are eaten or collected for later consumption. Even though recent studies confirmed the importance of e.g. gustatory cues, compared to olfaction only little is known about the representation of chemotactile stimuli at the receptor level (let alone higher brain centers) in animals other than vertebrates. To better understand how invertebrates may process chemotactile cues, we used bumblebees as a model species and combined electroantennographical (EAG) recordings with a novel technique for chemotactile antennal stimulation in bees. The recorded EAG responses to chemotactile stimulation clearly separated volatile compounds by both compound identity and concentration, and could be successfully applied to test the receptor activity evoked by different types of pollen. We found that two different pollen types (apple and almond) (which were readily distinguished by bumblebees in a classical conditioning task) evoked significantly distinct neural activity already at the antennal receptor level. Our novel stimulation technique therefore enables investigation of chemotactile sensing which is highly important for assessing food nutritional quality while foraging. It can further be applied to test other chemosensory behaviors, such as mate or nest mate recognition, or to investigate whether toxic substances, e.g. in pollen, affect neuronal separation of different food types.

  14. Types of Artemisia pollen season depending on the weather conditions in Wrocław (Poland), 2002-2011.

    PubMed

    Malkiewicz, Małgorzata; Klaczak, Kamilla; Drzeniecka-Osiadacz, Anetta; Krynicka, Justyna; Migała, Krzysztof

    2014-01-01

    The aim of the study was to characterise Artemisia pollen season types according to weather conditions in Wrocław (south-western Poland) in the years 2002-2011. Over the period analysed, the start date of the pollen season (determined by the 95 % method) ranged from 10 July 2002 to 28 July 2010. The start date of the pollen season can be determined by using Crop Heat Units (CHUs). During the period 2002-2011, the Artemisia pollen season started after the cumulative value of CHUs had reached 2,000-2,100 °C. The three distinguished types of Artemisia pollen season are best described by the frequency of weather types defined by the type of circulation, mean daily air temperature, and the occurrence of rain. The variation in these factors affected the dynamics of the pollen season. The noteworthy frequency of days with rain and high seasonal sum of precipitation totals as well as the dominance of cyclonic weather from the westerly direction had an impact on the extension of the pollen season. The meteorological factors that directly affect pollen release and transport primarily include air humidity, expressed as vapour pressure (r > 0.3, p < 0.01), temperature(r from 0.2 to 0.4, p < 0.01). The relationships between averaged meteorological data and daily pollen concentration were stronger (r > 0.5, p < 0.01). Based on the correlation analysis, the meteorological variables were selected and regression equations were established using stepwise backward regression analysis.

  15. Dating Fossil Pollen: A Simulation.

    ERIC Educational Resources Information Center

    Sheridan, Philip

    1992-01-01

    Describes a hands-on simulation in which students determine the age of "fossil" pollen samples based on the pollen types present when examined microscopically. Provides instructions for the preparation of pollen slides. (MDH)

  16. Antisense-mediated silencing of a gene encoding a major ryegrass pollen allergen.

    PubMed

    Bhalla, P L; Swoboda, I; Singh, M B

    1999-09-28

    Type 1 allergic reactions, such as hay fever and allergic asthma, triggered by grass pollen allergens are a global health problem that affects approximately 20% of the population in cool, temperate climates. Ryegrass is the dominant source of allergens because of its prodigious production of airborne pollen. Lol p 5 is the major allergenic protein of ryegrass pollen, judging from the fact that almost all of the individuals allergic to grass pollen show presence of serum IgE antibodies against this protein. Moreover, nearly two-thirds of the IgE reactivity of ryegrass pollen has been attributed to this protein. Therefore, it can be expected that down-regulation of Lol p 5 production can significantly reduce the allergic potential of ryegrass pollen. Here, we report down-regulation of Lol p 5 with an antisense construct targeted to the Lol p 5 gene in ryegrass. The expression of antisense RNA was regulated by a pollen-specific promoter. Immunoblot analysis of proteins with allergen-specific antibodies did not detect Lol p 5 in the transgenic pollen. The transgenic pollen showed remarkably reduced allergenicity as reflected by low IgE-binding capacity of pollen extract as compared with that of control pollen. The transgenic ryegrass plants in which Lol p 5 gene expression is perturbed showed normal fertile pollen development, indicating that genetic engineering of hypoallergenic grass plants is possible.

  17. Reevaluation of pollen quantitation by an automatic pollen counter.

    PubMed

    Muradil, Mutarifu; Okamoto, Yoshitaka; Yonekura, Syuji; Chazono, Hideaki; Hisamitsu, Minako; Horiguchi, Shigetoshi; Hanazawa, Toyoyuki; Takahashi, Yukie; Yokota, Kunihiko; Okumura, Satoshi

    2010-01-01

    Accurate and detailed pollen monitoring is useful for selection of medication and for allergen avoidance in patients with allergic rhinitis. Burkard and Durham pollen samplers are commonly used, but are labor and time intensive. In contrast, automatic pollen counters allow simple real-time pollen counting; however, these instruments have difficulty in distinguishing pollen from small nonpollen airborne particles. Misidentification and underestimation rates for an automatic pollen counter were examined to improve the accuracy of the pollen count. The characteristics of the automatic pollen counter were determined in a chamber study with exposure to cedar pollens or soil grains. The cedar pollen counts were monitored in 2006 and 2007, and compared with those from a Durham sampler. The pollen counts from the automatic counter showed a good correlation (r > 0.7) with those from the Durham sampler when pollen dispersal was high, but a poor correlation (r < 0.5) when pollen dispersal was low. The new correction method, which took into account the misidentification and underestimation, improved this correlation to r > 0.7 during the pollen season. The accuracy of automatic pollen counting can be improved using a correction to include rates of underestimation and misidentification in a particular geographical area.

  18. Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands).

    PubMed

    Izquierdo, Rebeca; Belmonte, Jordina; Avila, Anna; Alarcón, Marta; Cuevas, Emilio; Alonso-Pérez, Silvia

    2011-01-01

    The Canary Islands, due to their geographical position, constitute an adequate site for the study of long-range pollen transport from the surrounding land masses. In this study, we analyzed airborne pollen counts at two sites: Santa Cruz de Tenerife (SCO), at sea level corresponding to the marine boundary layer (MBL), and Izaña at 2,367 m.a.s.l. corresponding to the free troposphere (FT), for the years 2006 and 2007. We used three approaches to describe pollen transport: (1) a classification of provenances with an ANOVA test to describe pollen count differences between sectors; (2) a study of special events of high pollen concentrations, taking into consideration the corresponding meteorological synoptic pattern responsible for transport and back trajectories; and (3) a source-receptor model applied to a selection of the pollen taxa to show pollen source areas. Our results indicate several extra-regional pollen transport episodes to Tenerife. The main provenances were: (1) the Mediterranean region, especially the southern Iberian Peninsula and Morocco, through the trade winds in the MBL. These episodes were characterized by the presence of pollen from trees (Casuarina, Olea, Quercus perennial and deciduous types) mixed with pollen from herbs (Artemisia, Chenopodiaceae/Amaranthaceae and Poaceae wild type). (2) The Saharan sector, through transport at the MBL level carrying pollen principally from herbs (Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type) and, in one case, Casuarina pollen, uplifted to the free troposphere. And (3) the Sahel, characterized by low pollen concentrations of Arecaceae, Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type in sporadic episodes. This research shows that sporadic events of long-range pollen transport need to be taken into consideration in Tenerife as possible responsible agents in respiratory allergy episodes. In particular, it is estimated that 89-97% of annual counts of the highly allergenous Olea

  19. Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Izquierdo, Rebeca; Belmonte, Jordina; Avila, Anna; Alarcón, Marta; Cuevas, Emilio; Alonso-Pérez, Silvia

    2011-01-01

    The Canary Islands, due to their geographical position, constitute an adequate site for the study of long-range pollen transport from the surrounding land masses. In this study, we analyzed airborne pollen counts at two sites: Santa Cruz de Tenerife (SCO), at sea level corresponding to the marine boundary layer (MBL), and Izaña at 2,367 m.a.s.l. corresponding to the free troposphere (FT), for the years 2006 and 2007. We used three approaches to describe pollen transport: (1) a classification of provenances with an ANOVA test to describe pollen count differences between sectors; (2) a study of special events of high pollen concentrations, taking into consideration the corresponding meteorological synoptic pattern responsible for transport and back trajectories; and (3) a source-receptor model applied to a selection of the pollen taxa to show pollen source areas. Our results indicate several extra-regional pollen transport episodes to Tenerife. The main provenances were: (1) the Mediterranean region, especially the southern Iberian Peninsula and Morocco, through the trade winds in the MBL. These episodes were characterized by the presence of pollen from trees ( Casuarina, Olea, Quercus perennial and deciduous types) mixed with pollen from herbs ( Artemisia, Chenopodiaceae/Amaranthaceae and Poaceae wild type). (2) The Saharan sector, through transport at the MBL level carrying pollen principally from herbs (Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type) and, in one case, Casuarina pollen, uplifted to the free troposphere. And (3) the Sahel, characterized by low pollen concentrations of Arecaceae, Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type in sporadic episodes. This research shows that sporadic events of long-range pollen transport need to be taken into consideration in Tenerife as possible responsible agents in respiratory allergy episodes. In particular, it is estimated that 89-97% of annual counts of the highly allergenous Olea

  20. Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling.

    PubMed

    Trondman, A-K; Gaillard, M-J; Mazier, F; Sugita, S; Fyfe, R; Nielsen, A B; Twiddle, C; Barratt, P; Birks, H J B; Bjune, A E; Björkman, L; Broström, A; Caseldine, C; David, R; Dodson, J; Dörfler, W; Fischer, E; van Geel, B; Giesecke, T; Hultberg, T; Kalnina, L; Kangur, M; van der Knaap, P; Koff, T; Kuneš, P; Lagerås, P; Latałowa, M; Lechterbeck, J; Leroyer, C; Leydet, M; Lindbladh, M; Marquer, L; Mitchell, F J G; Odgaard, B V; Peglar, S M; Persson, T; Poska, A; Rösch, M; Seppä, H; Veski, S; Wick, L

    2015-02-01

    We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene [around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1° × 1° spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types [evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.

  1. Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study

    NASA Astrophysics Data System (ADS)

    Buters, Jeroen T. M.; Thibaudon, Michel; Smith, Matt; Kennedy, Roy; Rantio-Lehtimäki, Auli; Albertini, Roberto; Reese, Gerald; Weber, Bernhard; Galan, Carmen; Brandao, Rui; Antunes, Celia M.; Jäger, Siegfried; Berger, Uwe; Celenk, Sevcan; Grewling, Łukasz; Jackowiak, Bogdan; Sauliene, Ingrida; Weichenmeier, Ingrid; Pusch, Gudrun; Sarioglu, Hakan; Ueffing, Marius; Behrendt, Heidrun; Prank, Marje; Sofiev, Mikhail; Cecchi, Lorenzo; Hialine Working Group

    2012-08-01

    Exposure to allergens is pivotal in determining sensitization and allergic symptoms in individuals. Pollen grain counts in ambient air have traditionally been assessed to estimate airborne allergen exposure. However, the exact allergen content of ambient air is unknown. We therefore monitored atmospheric concentrations of birch pollen grains and the matched major birch pollen allergen Bet v 1 simultaneously across Europe within the EU-funded project HIALINE (Health Impacts of Airborne Allergen Information Network). Pollen count was assessed with Hirst type pollen traps at 10 l min-1 at sites in France, United Kingdom, Germany, Italy and Finland. Allergen concentrations in ambient air were sampled at 800 l min-1 with a Chemvol® high-volume cascade impactor equipped with stages PM > 10 μm, 10 μm > PM > 2.5 μm, and in Germany also 2.5 μm > PM > 0.12 μm. The major birch pollen allergen Bet v 1 was determined with an allergen specific ELISA. Bet v 1 isoform patterns were analyzed by 2D-SDS-PAGE blots and mass spectrometric identification. Basophil activation was tested in an FcɛR1-humanized rat basophil cell line passively sensitized with serum of a birch pollen symptomatic patient. Compared to 10 previous years, 2009 was a representative birch pollen season for all stations. About 90% of the allergen was found in the PM > 10 μm fraction at all stations. Bet v 1 isoforms pattern did not vary substantially neither during ripening of pollen nor between different geographical locations. The average European allergen release from birch pollen was 3.2 pg Bet v 1/pollen and did not vary much between the European countries. However, in all countries a >10-fold difference in daily allergen release per pollen was measured which could be explained by long-range transport of pollen with a deviating allergen release. Basophil activation by ambient air extracts correlated better with airborne allergen than with pollen concentration. Although Bet v 1 is a mixture of different

  2. Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study

    NASA Astrophysics Data System (ADS)

    The HIALINE working Group; Buters, Jeroen T. M.; Thibaudon, Michel; Smith, Matt; Kennedy, Roy; Rantio-Lehtimäki, Auli; Albertini, Roberto; Reese, Gerald; Weber, Bernhard; Galan, Carmen; Brandao, Rui; Antunes, Celia M.; Jäger, Siegfried; Berger, Uwe; Celenk, Sevcan; Grewling, Łukasz; Jackowiak, Bogdan; Sauliene, Ingrida; Weichenmeier, Ingrid; Pusch, Gudrun; Sarioglu, Hakan; Ueffing, Marius; Behrendt, Heidrun; Prank, Marje; Sofiev, Mikhail; Cecchi, Lorenzo

    2012-08-01

    Exposure to allergens is pivotal in determining sensitization and allergic symptoms in individuals. Pollen grain counts in ambient air have traditionally been assessed to estimate airborne allergen exposure. However, the exact allergen content of ambient air is unknown. We therefore monitored atmospheric concentrations of birch pollen grains and the matched major birch pollen allergen Bet v 1 simultaneously across Europe within the EU-funded project HIALINE (Health Impacts of Airborne Allergen Information Network).Pollen count was assessed with Hirst type pollen traps at 10 l min-1 at sites in France, United Kingdom, Germany, Italy and Finland. Allergen concentrations in ambient air were sampled at 800 l min-1 with a Chemvol® high-volume cascade impactor equipped with stages PM > 10 μm, 10 μm > PM > 2.5 μm, and in Germany also 2.5 μm > PM > 0.12 μm. The major birch pollen allergen Bet v 1 was determined with an allergen specific ELISA. Bet v 1 isoform patterns were analyzed by 2D-SDS-PAGE blots and mass spectrometric identification. Basophil activation was tested in an FcɛR1-humanized rat basophil cell line passively sensitized with serum of a birch pollen symptomatic patient.Compared to 10 previous years, 2009 was a representative birch pollen season for all stations. About 90% of the allergen was found in the PM > 10 μm fraction at all stations. Bet v 1 isoforms pattern did not vary substantially neither during ripening of pollen nor between different geographical locations. The average European allergen release from birch pollen was 3.2 pg Bet v 1/pollen and did not vary much between the European countries. However, in all countries a >10-fold difference in daily allergen release per pollen was measured which could be explained by long-range transport of pollen with a deviating allergen release. Basophil activation by ambient air extracts correlated better with airborne allergen than with pollen concentration.Although Bet v 1 is a mixture of different

  3. Integration of Airborne Aerosol Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic,Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; VandeWater, Peter K.; Levetin, Estelle; Crimmins, Theresa; Weltzin, Jake

    2011-01-01

    This slide presentation reviews the study that used a model to forecast pollen to assist in warning for asthma populations. Using MODIS daily reflectances to input to a model, PREAM, adapted from the Dust REgional Atmospheric Modeling (DREAM) system, a product of predicted pollen is produced. Using the pollen from Juniper the PREAM model was shown to be an assist in alerting the public of pollen bursts, and reduce the health impact on asthma populations.

  4. Pollen and seed flow patterns of Carapa guianensis Aublet. (Meliaceae) in two types of Amazonian forest

    PubMed Central

    Martins, Karina; Raposo, Andréa; Klimas, Christie A.; Veasey, Elizabeth A.; Kainer, Karen; Wadt, Lúcia Helena O.

    2012-01-01

    Various factors affect spatial genetic structure in plant populations, including adult density and primary and secondary seed dispersal mechanisms. We evaluated pollen and seed dispersal distances and spatial genetic structure of Carapa guianensis Aublet. (Meliaceae) in occasionally inundated and terra firme forest environments that differed in tree densities and secondary seed dispersal agents. We used parentage analysis to obtain contemporary gene flow estimates and assessed the spatial genetic structure of adults and juveniles. Despite the higher density of adults (diameter at breast height ≥ 25 cm) and spatial aggregation in occasionally inundated forest, the average pollen dispersal distance was similar in both types of forest (195 ± 106 m in terra firme and 175 ± 87 m in occasionally inundated plots). Higher seed flow rates (36.7% of juveniles were from outside the plot) and distances (155 ± 84 m) were found in terra firme compared to the occasionally inundated plot (25.4% and 114 ± 69 m). There was a weak spatial genetic structure in juveniles and in terra firme adults. These results indicate that inundation may not have had a significant role in seed dispersal in the occasionally inundated plot, probably because of the higher levels of seedling mortality. PMID:23271944

  5. A Six-Year Study on the Changes in Airborne Pollen Counts and Skin Positivity Rates in Korea: 2008–2013

    PubMed Central

    Park, Hye Jung; Lee, Jae-Hyun; Park, Kyung Hee; Kim, Kyu Rang; Han, Mae Ja; Choe, Hosoeng

    2016-01-01

    Purpose The occurrence of pollen allergy is subject to exposure to pollen, which shows regional and temporal variations. We evaluated the changes in pollen counts and skin positivity rates for 6 years, and explored the correlation between their annual rates of change. Materials and Methods We assessed the number of pollen grains collected in Seoul, and retrospectively reviewed the results of 4442 skin-prick tests conducted at the Severance Hospital Allergy-Asthma Clinic from January 1, 2008 to December 31, 2013. Results For 6 years, the mean monthly total pollen count showed two peaks, one in May and the other in September. Pollen count for grasses also showed the same trend. The pollen counts for trees, grasses, and weeds changed annually, but the changes were not significant. The annual skin positivity rates in response to pollen from grasses and weeds increased significantly over the 6 years. Among trees, the skin positivity rates in response to pollen from walnut, popular, elm, and alder significantly increased over the 6 years. Further, there was a significant correlation between the annual rate of change in pollen count and the rate of change in skin positivity rate for oak and hop Japanese. Conclusion The pollen counts and skin positivity rates should be monitored, as they have changed annually. Oak and hop Japanese, which showed a significant correlation with the annual rate of change in pollen count and the rate of change in skin positivity rate over the 6 years may be considered the major allergens in Korea. PMID:26996572

  6. Types of Pollen Dispersal Units in Orchids, and their Consequences for Germination and Fertilization

    PubMed Central

    Pacini, Ettore; Hesse, Michael

    2002-01-01

    The various pollen dispersal units (PDU) found in orchids are discussed together with possible evolutionary trends and the consequences for germination and fertilization. Orchids with monad and tetrad pollen form more complex dispersal units by means of pollenkitt, elastoviscin, a callosic wall, common walls or a combination of these. Evolutionary trends include (1) from pollenkitt to elastoviscin; (2) from monad to tetrads and multiples of tetrads; (3) from partially dehydrated (<30 %) to partially hydrated (>30 %) pollen; and (4) from monad pollen to PDUs with many pollen grains. The biological consequences concern both male and female reproductive systems. Some features of the male side are present in all orchids irrespective of the pollen dispersal unit, whereas other characters are found only in orchids with pollinia; the same applies for the female counterpart. Pollen grains of orchids with pollinia germinate at least 24 h after pollination because the pollen grains/tetrads must swell and make space for the growth of pollen tubes. PMID:12102520

  7. The Effect of Pollinator Type and Plant Spatial Structure on Patterns of Pollen-Mediated Gene Dispersal in Aquilegia Coerulea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Question/Methods - Direct estimation of pollen dispersal distances from paternity type analyses is often not possible. Therefore, recent emphasis have been on the development of indirect methods relying on the assumed decay with spatial distance in a measure of the genetic structure of p...

  8. [Juniper pollen monitoring by Burkard sampler in Galveston, Texas, USA and Japanese cedar pollen counting in Fukuoka, Japan -- introduction of Pan American Aerobiology Association protocol counting technique].

    PubMed

    Kishikawa, Reiko; M-Horiuti, Terumi; Togawa, Akihisa; Kondoh, Yasuto; Janzy, Paul D; Goldblum, Randal M; Kotoh, Eiko; Shimoda, Teruhumi; Shoji, Shunsuke; Nishima, Sankei; Brooks, Edward G

    2004-06-01

    We have monitored Juniper pollen which caused winter allergy symptoms by Burkard sampler in Galveston, Texas. We identified and counted Juniper pollen grains by PAAA protocol which was a comprehensive guideline for the operation of Hirst-Type suction bioaerosol sampler, (original of Burkard sampler) in the USA. In Galveston we were able to detect the Mountain Cedar (Juniperus ashei) pollen from December to of January, and Eastern Red Cedar (Juniperus virginiana) which has cross reactivity to MC from almost middle of January to February. There is no MC vegetation in Galveston. We found the pollen grains were transported from west at Edward Plateau in West Texas where it was thickly wooded. Then, we tried to monitor Japanese Cedar (JC) pollen grains in Fukuoka, Japan according with the same method. We found the significant positive correlation between the pollen counts using one single longitudinal traverse counting technique in the PAAA protocol and the JC pollen counting on the whole of Melinex tape per 24 hours (R2=0.9212, p=0.0001), and the gravitational method that is Durham sampler's pollen counting in 2002 (R2=0.489, p=0.0001), and in 2003 (R2=0.948, p=0.0001) respectively. We suggested that we can use the PAAA protocol for airborne pollen investigation in Japan by Burkard sampler.

  9. Comparison of modern pollen distribution between the northern and southern parts of the South China Sea.

    PubMed

    Luo, Chuanxiu; Chen, Muhong; Xiang, Rong; Liu, Jianguo; Zhang, Lanlan; Lu, Jun

    2015-04-01

    The authors conducted a palynological analysis based on different number of air pollen samples for the northern and southern parts of the South China Sea, respectively, in order to give a reference to reconstruct the paleoclimate of the area. (1) Fifteen air pollen samples were collected from the northern part of the South China Sea from August to September 2011, and 13 air pollen samples were collected from the southern part of the South China Sea in December 2011. The pollen types were more abundant in the north than in the south. The total pollen number and concentration in the north was 10 times more than that in the south, which may be because of the sampling season. Airborne pollen types and concentrations have a close relationship with wind direction and distance from the sampling point to the continent. (2) Seventy-four samples were collected from surface sediments in the northern part of the South China Sea in the autumn. Thirty-three samples were collected from surface sediments in the southern part of the South China Sea in the winter. Pollen concentrations in the north were nearly 10 times higher than that in the south. This is because trilete spores are transported by rivers from Hainan Island to the sea and also by the summer monsoon-forced marine current. (3) Ten air pollen samples and 10 surface sediments samples were selected for comparison. The pollen and spores in the air were mainly herbaceous and woody pollen, excluding fern spores, having seasonal pollen characteristics. Pollen in the surface sediments were mainly trilete, Pinus, and herbaceous, and may also show a combination of annual pollen characteristics.

  10. Comparison of modern pollen distribution between the northern and southern parts of the South China Sea

    NASA Astrophysics Data System (ADS)

    Luo, Chuanxiu; Chen, Muhong; Xiang, Rong; Liu, Jianguo; Zhang, Lanlan; Lu, Jun

    2015-04-01

    The authors conducted a palynological analysis based on different number of air pollen samples for the northern and southern parts of the South China Sea, respectively, in order to give a reference to reconstruct the paleoclimate of the area. (1) Fifteen air pollen samples were collected from the northern part of the South China Sea from August to September 2011, and 13 air pollen samples were collected from the southern part of the South China Sea in December 2011. The pollen types were more abundant in the north than in the south. The total pollen number and concentration in the north was 10 times more than that in the south, which may be because of the sampling season. Airborne pollen types and concentrations have a close relationship with wind direction and distance from the sampling point to the continent. (2) Seventy-four samples were collected from surface sediments in the northern part of the South China Sea in the autumn. Thirty-three samples were collected from surface sediments in the southern part of the South China Sea in the winter. Pollen concentrations in the north were nearly 10 times higher than that in the south. This is because trilete spores are transported by rivers from Hainan Island to the sea and also by the summer monsoon-forced marine current. (3) Ten air pollen samples and 10 surface sediments samples were selected for comparison. The pollen and spores in the air were mainly herbaceous and woody pollen, excluding fern spores, having seasonal pollen characteristics. Pollen in the surface sediments were mainly trilete, Pinus, and herbaceous, and may also show a combination of annual pollen characteristics.

  11. Integration of Airborne Aerosol Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; VandeWater, Peter K.; Levetin, Estelle; Losleben, Mark; Weltzin, Jake

    2009-01-01

    The residual signal indicates that the pollen event may influence the seasonal signal to an extent that would allow detection, given accurate QA filtering and BRDF corrections. MODIS daily reflectances increased during the pollen season. The DREAM model (PREAM) was successfully modified for use with pollen and may provide 24-36 hour running pollen forecasts. Publicly available pollen forecasts are linked to general weather patterns and roughly-known species phenologies. These are too coarse for timely health interventions. PREAM addresses this key data gap so that targeting intervention measures can be determined temporally and geospatially. The New Mexico Department of Health (NMDOH) as part of its Environmental Public Health Tracking Network (EPHTN) would use PREAM a tool for alerting the public in advance of pollen bursts to intervene and reduce the health impact on asthma populations at risk.

  12. Pollen and microsporangium development in Hovenia dulcis (Rhamnaceae): a different type of tapetal cell ultrastructure.

    PubMed

    Gotelli, Marina M; Galati, Beatriz G; Zarlavsky, Gabriela; Medan, Diego

    2016-07-01

    Despite that there is some literature on pollen morphology of Rhamnaceae, studies addressing general aspects of the microsporogenesis, microgametogenesis, and anther development are rare. The aim of this paper is to describe the ultrastructure of pollen grain ontogeny with special attention to tapetum cytology in Hovenia dulcis. Anthers at different stages of development were processed for transmission and scanning electron microscopy, bright-field microscopy, and fluorescence microscopy. Different histochemical reactions were carried out. The ultrastructural changes observed during the development of the tapetal cells and pollen grains are described. Large vesicles containing carbohydrates occur in the tapetal cell cytoplasm during the early stages of pollen development. Its origin and composition are described and discussed. This is the first report on the ontogeny and ultrastructure of the pollen grain and related sporophytic structures of H. dulcis.

  13. Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development.

    PubMed

    Ito, Takuya; Nagata, Noriko; Yoshiba, Yoshu; Ohme-Takagi, Masaru; Ma, Hong; Shinozaki, Kazuo

    2007-11-01

    The Arabidopsis thaliana MALE STERILITY1 (MS1) gene encodes a nuclear protein with Leu zipper-like and PHD-finger motifs and is important for postmeiotic pollen development. Here, we examined MS1 function using both cell biological and molecular biological approaches. We introduced a fusion construct of MS1 and a transcriptional repression domain (MS1-SRDX) into wild-type Arabidopsis, and the transgenic plants showed a semisterile phenotype similar to that of ms1. Since the repression domain can convert various kinds of transcriptional activators to dominant repressors, this suggested that MS1 functioned as a transcriptional activator. The Leu zipper-like region and the PHD motif were required for the MS1 function. Phenotypic analysis of the ms1 mutant and the MS1-SRDX transgenic Arabidopsis indicated that MS1 was involved in formation of pollen exine and pollen cytosolic components as well as tapetum development. Next, we searched for MS1 downstream genes by analyzing publicly available microarray data and identified 95 genes affected by MS1. Using a transgenic ms1 plant showing dexamethasone-inducible recovery of fertility, we further examined whether these genes were immediately downstream of MS1. From these results, we discuss a role of MS1 in pollen and tapetum development and the conservation of MS1 function in flowering plants.

  14. Integration for Airborne Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Nickovic, S.; Huete, A.; Budge, A.; Flowers, L.

    2008-01-01

    The objective of the program is to assess the feasibility of combining a dust transport model with MODIS derived phenology to study pollen transport for integration with a public health decision support system. The use of pollen information has specifically be identified as a critical need by the New Mexico State Health department for inclusion in the Environmental Public Health Tracking (EPHT) program. Material and methods: Pollen can be transported great distances. Local observations of plan phenology may be consistent with the timing and source of pollen collected by pollen sampling instruments. The Dust REgional Atmospheric Model (DREAM) is an integrated modeling system designed to accurately describe the dust cycle in the atmosphere. The dust modules of the entire system incorporate the state of the art parameterization of all the major phases of the atmospheric dust life such as production, diffusion, advection, and removal. These modules also include effects of the particles size distribution on aerosol dispersion. The model was modified to use pollen sources instead of dust. Pollen release was estimated based on satellite-derived phenology of key plan species and vegetation communities. The MODIS surface reflectance product (MOD09) provided information on the start of the plant growing season, growth stage, and pollen release. The resulting deterministic model is useful for predicting and simulating pollen emission and downwind concentration to study details of phenology and meteorology and their dependencies. The proposed linkage in this project provided critical information on the location timing and modeled transport of pollen directly to the EPHT> This information is useful to support the centers for disease control and prevention (CDC)'s National EPHT and the state of New Mexico environmental public health decision support for asthma and allergies alerts.

  15. Stable isotope ratios of carbon and nitrogen in pollen grains in order to characterize plant functional groups and photosynthetic pathway types.

    PubMed

    Descolas-Gros, Chantal; Schölzel, Christian

    2007-01-01

    Measurements of delta(13)C, delta(15)N and C : N ratios on modern pollen grains from temperate plants, including whole grains as well as extracted sporopollenin, were analysed in order to characterize physiological plant types at the pollen level and to determine the variation of these parameters in modern pollen grains of the same climatic area. Measurements are presented for 95 batches of whole modern pollen from 58 temperate species and on the stable fraction of modern pollen grains, chemically extracted sporopollenin, for two modern species. Fourier transform infrared (FTIR) and cross-polarization and magic-angle spinning (CP/MAS) sporopollenin spectra were conducted in parallel. C(3) and C(4) plants can be separated by delta(13)C measurements based on pollen. Probabilistic assignments to plant functional groups (herbaceous, deciduous woody, evergreen woody) of C(3) plants by the means of a discriminant analysis can be made for C : N ratios and for delta(13)C. The results are related to other studies on sporopollenin in order to use this method in future work on fossil samples. Stable isotope measurements on pollen allow improved pollen diagrams, including forms that cannot be differentiated at species level, increasing the accuracy and resolution of plant physiological type distribution in quaternary and older fossil sediments.

  16. Effect of air temperature on forecasting the start of Cupressaceae pollen type in Ponferrada (Leon, Spain).

    PubMed

    Fuertes-Rodríguez, Carmen Reyes; González-Parrado, Zulima; Vega-Maray, Ana María; Valencia-Barrera, Rosa María; Fernández-González, Delia

    2007-01-01

    In order to survive periods of adverse cold climatic conditions, plant requirements are satisfied by means of physiological adaptations to prevent cells from freezing. Thus, the growth of woody plants in temperate regions slows down and they enter into a physiological state called dormancy. In order to identify the chilling and heat requirements to overcome the dormancy period of Cupressaceae pollen type in the south of Europe, we have carried out our study with aerobiological data from a 10-year (1996-2005) period in Ponferrada, León (Spain). For the chilling requirements the best result was with a threshold temperature of 7.1 degrees C and an average of 927 CH. Calculation of heat requirements was carried out with maximum temperature, with 490 growth degree days (GDD) needed, with a threshold temperature of 0 degrees C. We have used the 2002-2003, 2003-2004 and 2004-2005 periods in order to determine the real validity of the model. We have not used these years in developing the models. The dates predicted differ in only a few days from those observed: in 2002-2003 there was a difference of 11 days, in 2003-2004 predicted and observed dates were the same, but in 2004-2005 the difference obtained was of 43 days.

  17. KNS4/UPEX1: A Type II Arabinogalactan β-(1,3)-Galactosyltransferase Required for Pollen Exine Development1[OPEN

    PubMed Central

    Suzuki, Toshiya; Narciso, Joan Oñate; Zeng, Wei; van de Meene, Allison; Yasutomi, Masayuki; Takemura, Shunsuke

    2017-01-01

    Pollen exine is essential for protection from the environment of the male gametes of seed-producing plants, but its assembly and composition remain poorly understood. We previously characterized Arabidopsis (Arabidopsis thaliana) mutants with abnormal pollen exine structure and morphology that we named kaonashi (kns). Here we describe the identification of the causal gene of kns4 that was found to be a member of the CAZy glycosyltransferase 31 gene family, identical to UNEVEN PATTERN OF EXINE1, and the biochemical characterization of the encoded protein. The characteristic exine phenotype in the kns4 mutant is related to an abnormality of the primexine matrix laid on the surface of developing microspores. Using light microscopy with a combination of type II arabinogalactan (AG) antibodies and staining with the arabinogalactan-protein (AGP)-specific β-Glc Yariv reagent, we show that the levels of AGPs in the kns4 microspore primexine are considerably diminished, and their location differs from that of wild type, as does the distribution of pectin labeling. Furthermore, kns4 mutants exhibit reduced fertility as indicated by shorter fruit lengths and lower seed set compared to the wild type, confirming that KNS4 is critical for pollen viability and development. KNS4 was heterologously expressed in Nicotiana benthamiana, and was shown to possess β-(1,3)-galactosyltransferase activity responsible for the synthesis of AG glycans that are present on both AGPs and/or the pectic polysaccharide rhamnogalacturonan I. These data demonstrate that defects in AGP/pectic glycans, caused by disruption of KNS4 function, impact pollen development and viability in Arabidopsis. PMID:27837085

  18. A comparison of the performance of two types of inertial systems for strapdown airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Deurloo, R. A.; Martin, J.; Bastos, M. L.; Becker, M. H.

    2012-12-01

    Over the past two decades so-called strapdown airborne gravimetry systems have proven to have the potential to compete with more traditional measurement systems such as modified spring gravimeters (e.g. LaCoste & Romberg Air-Sea gravimeters). Strapdown gravimetry systems rely on the integration of high-accuracy data from a GNSS (Global Navigation Satellite System) receiver and from a strapdown IMU (Inertial Measurement Unit). These GNSS/IMU integrated systems have the advantage of being less expensive and more compact, while being easier to use and install than spring gravimeters, which tend to be bulky and require specialized human resources for its operation. In the scope of a research project developed through the collaboration of the University of Porto and the Portuguese Air Force (PAF), an airborne survey was recently performed over the middle and southern area of Continental Portugal using a CASA C212 aircraft. The goal of this survey was to acquire data to assess the performance of different GNSS/IMU systems and associated processing approaches to determine the gravity field and evaluate their potential and effectiveness for airborne gravimetry using different types of airborne platforms, including UAVs (Unmanned Airborne Vehicles). Among the systems on board were a medium-quality (tactical grade) IMU with fiber-optic gyros (FOG), a Litton LN-200, and a high-quality (navigation grade) IMU with ring-laser gyros (RLG), an iMAR RHQ-1003, which are the focus of the present comparison. The advantage of using a strapdown airborne gravimetry system with high-quality inertial sensor is that it allows the complete gravity vector to be determined from the triads of accelerometers and gyros in the IMU (vector gravimetry). On the other hand a medium-quality inertial system is limited to determining only the magnitude of the gravity vector (scalar gravimetry). The limited quality of the gyros of the medium-quality inertial systems does not allow the horizontal

  19. Short-term prediction of Betula airborne pollen concentration in Vigo (NW Spain) using logistic additive models and partially linear models

    NASA Astrophysics Data System (ADS)

    Cotos-Yáñez, Tomas R.; Rodríguez-Rajo, F. J.; Jato, M. V.

    Betula pollen is a common cause of pollinosis in localities in NW Spain and between 13% and 60% of individuals who are immunosensitive to pollen grains respond positively to its allergens. It is important in the case of all such people to be able to predict pollen concentrations in advance. We therefore undertook an aerobiological study in the city of Vigo (Pontevedra, Spain) from 1995 to 2001, using a Hirst active-impact pollen trap (VPPS 2000) situated in the city centre. Vigo presents a temperate maritime climate with a mean annual temperature of 14.9 °C and 1,412 mm annual total precipitation. This paper analyses two ways of quantifying the prediction of pollen concentration: first by means of a generalized additive regression model with the object of predicting whether the series of interest exceeds a certain threshold; second using a partially linear model to obtain specific prediction values for pollen grains. Both models use a self-explicative part and another formed by exogenous meteorological factors. The models were tested with data from 2001 (year in which the total precipitation registered was almost twice the climatological average overall during the flowering period), which were not used in formulating the models. A highly satisfactory classification and good forecasting results were achieved with the first and second approaches respectively. The estimated line taking into account temperature and a calm S-SW wind, corresponds to the real line recorded during 2001, which gives us an idea of the proposed model's validity.

  20. All-optical automatic pollen identification: Towards an operational system

    NASA Astrophysics Data System (ADS)

    Crouzy, Benoît; Stella, Michelle; Konzelmann, Thomas; Calpini, Bertrand; Clot, Bernard

    2016-09-01

    We present results from the development and validation campaign of an optical pollen monitoring method based on time-resolved scattering and fluorescence. Focus is first set on supervised learning algorithms for pollen-taxa identification and on the determination of aerosol properties (particle size and shape). The identification capability provides a basis for a pre-operational automatic pollen season monitoring performed in parallel to manual reference measurements (Hirst-type volumetric samplers). Airborne concentrations obtained from the automatic system are compatible with those from the manual method regarding total pollen and the automatic device provides real-time data reliably (one week interruption over five months). In addition, although the calibration dataset still needs to be completed, we are able to follow the grass pollen season. The high sampling from the automatic device allows to go beyond the commonly-presented daily values and we obtain statistically significant hourly concentrations. Finally, we discuss remaining challenges for obtaining an operational automatic monitoring system and how the generic validation environment developed for the present campaign could be used for further tests of automatic pollen monitoring devices.

  1. A study of oak-pollen production and phenology in northern California: prediction of annual variation in pollen counts based on geographic and meterologic factors.

    PubMed

    Fairley, D; Batchelder, G L

    1986-08-01

    To assess the characteristics of oak-pollen production and dispersal, 9 years of weekly volumetric air sampling, with modified swing-shield rotoslide pollen samplers, were obtained in San Francisco and San Jose, Calif. The Mediterranean climate of coastal California supports 9 million acres of oaks of nine different species. The major pollen contributors in the two sampling areas are coast live oak (Quercus agrifolia Neé) and valley oak (Quercus lobata neé). Sampling data indicate that grains may be wind transported at least 16 km (10 miles). A strong correlation exists between pollen capture and total rainfall a full year before pollen release. The correlation is statistically significant, based on a Spearman rank test. A positive regression line slope demonstrates that the greater the precipitation, the stronger the stimulus for pollen production. The median count can be predicted within a factor of two with high probability a full year before release. During most seasons, the peak pollen collection from coast live oak and valley oak occurs in early April. A second peak production period, in mid-May, represents the conglomerate of other oak-pollen types. However, there are major yearly differences in the relative amounts of pollen released during these two periods. Consequently, individual oak pollinosis may depend as much on variable production by the major species as on the total quantity of airborne oak pollen. These data will help clinicians predict and prepare for the intensity of the oak-pollen season and explain seasonal variations in clinical symptoms from year to year. The question of cross-reacting and specific allergens among oak species can be answered by RAST-inhibition studies.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Characterization of protein expression of Platanus pollen following exposure to gaseous pollutants and vehicle exhaust particles.

    PubMed

    Lu, Senlin; Ren, Jingjin; Hao, Xiaojie; Liu, Dingyu; Zhang, Rongci; Wu, Minghong; Yi, Fei; Lin, Jun; Shinich, Yonemochi; Wang, Qingyue

    2014-01-01

    Being major ornamental street trees, species of Platanus are widely planted in the Shanghai urban area. A great deal of allergenic Platanus pollen is released from the trees and suspended in the atmosphere during its flowering season, ultimately causing allergic respiratory diseases. Few papers have focused on the distribution of this type of pollen and its expression of allergenic proteins. In order to investigate any differences in protein expression in Platanus pollen following exposure to gaseous and particulate pollutants, a special apparatus was designed. Exposure condition (such as temperature, humidity, and exposure time) of Platanus pollen and gaseous pollutants can be simulated using of this apparatus. Fresh Platanus orientalis pollen, pollutant gases (NO2, SO2, NH3), and typical urban ambient particles (vehicle exhaust particles, VEPs) were mixed in this device to examine possible changes that might occur in ambient airborne urban pollen following exposure to such pollutants. Our results showed that the fresh P. orientalis pollen became swollen, and new kinds of particles could be found on the surface of the pollen grains after exposure to the pollutants. The results of SDS-PAGE showed that five protein bands with molecular weights of 17-19, 34, 61, 82, and 144 kDa, respectively, were detected and gray scale of these brands increased after the pollen exposure to gaseous pollutants. The two-dimensional gel electrophoresis analysis demonstrated that a Platanus pollen allergenic protein (Pla a1, with a molecular weight of 18 kDa) increased in abundance following exposure to pollutant gases and VEPs, implying that air pollutants may exacerbate the allergenicity of pollen.

  3. Cluster analysis of intradiurnal holm oak pollen cycles at peri-urban and rural sampling sites in southwestern Spain

    NASA Astrophysics Data System (ADS)

    Hernández-Ceballos, M. A.; García-Mozo, H.; Galán, C.

    2015-08-01

    The impact of regional and local weather and of local topography on intradiurnal variations in airborne pollen levels was assessed by analysing bi-hourly holm oak ( Quercus ilex subsp. ballota (Desf.) Samp.) pollen counts at two sampling stations located 40 km apart, in southwestern Spain (Cordoba city and El Cabril nature reserve) over the period 2010-2011. Pollen grains were captured using Hirst-type volumetric spore traps. Analysis of regional weather conditions was based on the computation of backward trajectories using the HYSPLIT model. Sampling days were selected on the basis of phenological data; rainy days were eliminated, as were days lying outside a given range of percentiles (P95-P5). Analysis of cycles for the study period, as a whole, revealed differences between sampling sites, with peak bi-hourly pollen counts at night in Cordoba and at midday in El Cabril. Differences were also noted in the influence of surface weather conditions (temperature, relative humidity and wind). Cluster analysis of diurnal holm oak pollen cycles revealed the existence of five clusters at each sampling site. Analysis of backward trajectories highlighted specific regional air-flow patterns associated with each site. Findings indicated the contribution of both nearby and distant pollen sources to diurnal cycles. The combined use of cluster analysis and meteorological analysis proved highly suitable for charting the impact of local weather conditions on airborne pollen-count patterns. This method, and the specific tools used here, could be used not only to study diurnal variations in counts for other pollen types and in other biogeographical settings, but also in a number of other research fields involving airborne particle transport modelling, e.g. radionuclide transport in emergency preparedness exercises.

  4. Cluster analysis of intradiurnal holm oak pollen cycles at peri-urban and rural sampling sites in southwestern Spain.

    PubMed

    Hernández-Ceballos, M A; García-Mozo, H; Galán, C

    2015-08-01

    The impact of regional and local weather and of local topography on intradiurnal variations in airborne pollen levels was assessed by analysing bi-hourly holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) pollen counts at two sampling stations located 40 km apart, in southwestern Spain (Cordoba city and El Cabril nature reserve) over the period 2010-2011. Pollen grains were captured using Hirst-type volumetric spore traps. Analysis of regional weather conditions was based on the computation of backward trajectories using the HYSPLIT model. Sampling days were selected on the basis of phenological data; rainy days were eliminated, as were days lying outside a given range of percentiles (P95-P5). Analysis of cycles for the study period, as a whole, revealed differences between sampling sites, with peak bi-hourly pollen counts at night in Cordoba and at midday in El Cabril. Differences were also noted in the influence of surface weather conditions (temperature, relative humidity and wind). Cluster analysis of diurnal holm oak pollen cycles revealed the existence of five clusters at each sampling site. Analysis of backward trajectories highlighted specific regional air-flow patterns associated with each site. Findings indicated the contribution of both nearby and distant pollen sources to diurnal cycles. The combined use of cluster analysis and meteorological analysis proved highly suitable for charting the impact of local weather conditions on airborne pollen-count patterns. This method, and the specific tools used here, could be used not only to study diurnal variations in counts for other pollen types and in other biogeographical settings, but also in a number of other research fields involving airborne particle transport modelling, e.g. radionuclide transport in emergency preparedness exercises.

  5. Boreal tree pollen sensed by polarization lidar: Depolarizing biogenic chaff

    NASA Astrophysics Data System (ADS)

    Sassen, Kenneth

    2008-09-01

    Polarization (0.694 μm) lidar measurements show that tree pollen can generate strong laser depolarization in the backscatter from the lower atmosphere. Examples are given illustrating that linear depolarization ratios up to 0.3 are measured in plumes of paper birch pollen at the onset of boreal forest green-out. These pollen are ~25 μm in diameter and near-spherical in shape, but with lobes protruding from a surface membrane, which appears to produce the depolarization. Similar lidar findings are frequently observed during the summer at Fairbanks, Alaska, indicating that various types of seasonal pollen releases may be identified by polarization lidar. This scattering behavior is likely a general attribute of pollen and other suspended biogenic debris, which has implications for benefiting human health. This source of laser depolarization should not be confused with the presence of airborne dust or certain pollution particles, but is a natural background aerosol component caused by plant reproduction, as should be recognized in current global polarization lidar aerosol research using the CALIPSO satellite.

  6. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    PubMed Central

    Zhang, Rui; Duhl, Tiffany; Salam, Muhammad T.; House, James M.; Flagan, Richard C.; Avol, Edward L.; Gilliland, Frank D.; Guenther, Alex; Chung, Serena H.; Lamb, Brian K.; VanReken, Timothy M.

    2014-01-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends

  7. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Duhl, T.; Salam, M. T.; House, J. M.; Flagan, R. C.; Avol, E. L.; Gilliland, F. D.; Guenther, A.; Chung, S. H.; Lamb, B. K.; VanReken, T. M.

    2014-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the coupled Weather Research and Forecasting Community Multiscale Air Quality (WRF/CMAQ) modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California (USA) for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to

  8. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Duhl, T.; Salam, M. T.; House, J. M.; Flagan, R. C.; Avol, E. L.; Gilliland, F. D.; Guenther, A.; Chung, S. H.; Lamb, B. K.; VanReken, T. M.

    2013-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends to

  9. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease.

    PubMed

    Zhang, Rui; Duhl, Tiffany; Salam, Muhammad T; House, James M; Flagan, Richard C; Avol, Edward L; Gilliland, Frank D; Guenther, Alex; Chung, Serena H; Lamb, Brian K; VanReken, Timothy M

    2013-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends

  10. A Pollen Primer | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Several types of pollen cause mild to severe seasonal respiratory allergy, including allergic rhinitis and asthma. But helpful defenses ... Pollen Grass pollens are regional as well as seasonal. Their levels also are ... Bermuda grass Johnson grass Kentucky bluegrass Sweet ...

  11. Increasing allergy potency of Zinnia pollen grains in polluted areas.

    PubMed

    Chehregani, Abdolkarim; Majde, Ahmad; Moin, Mostafa; Gholami, Mansour; Ali Shariatzadeh, Mohammad; Nassiri, Hosein

    2004-06-01

    There is much evidence that allergic symptoms represent a major health problem in polluted cities. The aim of this research is to elucidate some microscopic effects of air pollutants on pollen structure, proteins, and allergenicity. A scanning electron microscopy study of pollen grains indicated that in polluted areas, airborne particles accumulate on the surface of pollen grains and change the shape and tectum of pollen. Also, many vesicles are released from polluted pollen grains and the pollen material agglomerates on the surface of pollen grains. SDS-PAGE revealed that different proteins exist in mature and immature pollen grains. There were no significant differences between protein bands of polluted and nonpolluted pollen grains, but in polluted pollen, protein content decreases in response to air pollution, causing the release of pollen proteins. The results indicate that mature pollen have more allergenicity than immature pollen. According to the experiments polluted pollen grains are more effective than nonpolluted pollen grains in inducing allergic symptoms. Air pollutants can cause allergic symptoms, but when associated with allergen pollen grains, their allergenicity power is increased.

  12. Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznań (Western Poland)

    NASA Astrophysics Data System (ADS)

    Bogawski, Paweł; Grewling, Łukasz; Nowak, Małgorzata; Smith, Matt; Jackowiak, Bogdan

    2014-10-01

    A significant increase in summer temperatures has been observed for the period 1996-2011 in Poznań, Poland. The phenological response of four weed taxa, widely represented by anemophilous species ( Artemisia spp., Rumex spp. and Poaceae and Urticaceae species) to this recent climate warming has been analysed in Poznań by examining the variations in the course of airborne pollen seasons. Pollen data were collected by 7-day Hirst-type volumetric trap. Trends in pollen seasons were determined using Mann-Kendall test and Sen's slope estimator, whereas the relationships between meteorological and aerobiological data were established by Spearman's rank correlation coefficient. Significant trends in pollen data were detected. The duration of pollen seasons of all analysed taxa increased (from +2.0 days/year for Urticaceae to +3.8 days/year for Rumex), which can be attributed to a delay in pollen season end dates rather than earlier start dates. In addition, the intensity of Artemisia pollen seasons significantly decreased and correlates with mean July-September daily minimum temperatures ( r = -0.644, p < 0.01). In contrast, no significant correlations were found between temperature and characteristics of Rumex pollen seasons. The results of this study show that observed shifts in weed pollen seasons in Poznań, i.e. longer duration and later end dates, might be caused by the recorded increase in summer temperature. This influence was the strongest in relation to Artemisia, which is the taxon that flowers latest in the year. The general lack of significant correlations between Rumex and Urticaceae pollen seasons and spring and/or summer temperature suggests that other factors, e.g. land use practices, could also be partially responsible for the observed shifts in pollen seasons.

  13. A new measurement method for separating airborne and structureborne noise radiated by aircraft type panels

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1982-01-01

    The theoretical basis for and experimental validation of a measurement method for separating airborne and structure borne noise radiated by aircraft type panels are presented. An extension of the two microphone, cross spectral, acoustic intensity method combined with existing theory of sound radiation of thin shell structures of various designs, is restricted to the frequency range below the coincidence frequency of the structure. Consequently, the method lends itself to low frequency noise problems such as propeller harmonics. Both an aluminum sheet and two built up aircraft panel designs (two aluminum panels with frames and stringers) with and without added damping were measured. Results indicate that the method is quick, reliable, inexpensive, and can be applied to thin shell structures of various designs.

  14. The influence from synoptic weather on the variation of air pollution and pollen exposure

    NASA Astrophysics Data System (ADS)

    Grundström, Maria; Dahl, Åslög; Chen, Deliang; Pleijel, Håkan

    2014-05-01

    Exposure to elevated air pollution levels can make people more susceptible to allergies or result in more severe allergic reactions for people with an already pronounced sensitivity to pollen. The aim of this study was to investigate the relationships between urban air pollution (nitrogen oxides, ozone and particles) and airborne Betula pollen in Gothenburg, Sweden, during the pollen seasons for the years 2001-2012. Further, the influence from atmospheric weather pattern on pollen/pollution related risk, using Lamb Weather Types (LWT), was also considered. Daily LWTs were obtained by comparing the variation in atmospheric pressure from a 16 point grid over a given region on earth (scale ~1000km) and essentially describe the air mass movement for the region. They include two non-directional types, cyclonic (C) and anticyclonic (A) and eight directional types depending on the wind direction (N, NE, E... etc.). LWTs with dry and calm meteorological character e.g. limited precipitation and low to moderate wind speeds (A, NE, E, SE) were associated with strongly elevated air pollution and pollen levels where Betula was exceptionally high in LWTs NE and E. The co-variation between Betula pollen and ozone was strong and significant during situations with LWTs A, NE, E and SE. The most important conclusion from this study was that LWTs A, NE, E and SE were associated with high pollen and air pollution levels and can therefore be classified as high risk weather situations for combined air pollution and pollen exposure. Our study shows that LWTs have the potential to be developed into an objective tool for integrated air quality forecasting and a warning system for risk of high exposure situations.

  15. Pollen season and climate: is the timing of birch pollen release in the UK approaching its limit?

    PubMed

    Newnham, R M; Sparks, T H; Skjøth, C A; Head, K; Adams-Groom, B; Smith, M

    2013-05-01

    In light of heightened interest in the response of pollen phenology to temperature, we investigated recent changes to the onset of Betula (birch) pollen seasons in central and southern England, including a test of predicted advancement of the Betula pollen season for London. We calculated onset of birch pollen seasons using daily airborne pollen data obtained at London, Plymouth and Worcester, determined trends in the start of the pollen season and compared timing of the birch pollen season with observed temperature patterns for the period 1995-2010. We found no overall change in the onset of birch pollen in the study period although there was evidence that the response to temperature was nonlinear and that a lower asymptotic start of the pollen season may exist. The start of the birch pollen season was strongly correlated with March mean temperature. These results reinforce previous findings showing that the timing of the birch pollen season in the UK is particularly sensitive to spring temperatures. The climate relationship shown here persists over both longer decadal-scale trends and shorter, seasonal trends as well as during periods of 'sign-switching' when cooler spring temperatures result in later start dates. These attributes, combined with the wide geographical coverage of airborne pollen monitoring sites, some with records extending back several decades, provide a powerful tool for the detection of climate change impacts, although local site factors and the requirement for winter chilling may be confounding factors.

  16. The effect of pollen source vs. flower type on progeny performance and seed predation under contrasting light environments in a cleistogamous herb.

    PubMed

    Munguía-Rosas, Miguel A; Campos-Navarrete, María J; Parra-Tabla, Víctor

    2013-01-01

    Dimorphic cleistogamy is a specialized form of mixed mating system where a single plant produces both open, potentially outcrossed chasmogamous (CH) and closed, obligately self-pollinated cleistogamous (CL) flowers. Typically, CH flowers and seeds are bigger and energetically more costly than those of CL. Although the effects of inbreeding and floral dimorphism are critical to understanding the evolution and maintenance of cleistogamy, these effects have been repeatedly confounded. In an attempt to separate these effects, we compared the performance of progeny derived from the two floral morphs while controlling for the source of pollen. That is, flower type and pollen source effects were assessed by comparing the performance of progeny derived from selfed CH vs. CL and outcrossed CH vs. selfed CH flowers, respectively. The experiment was carried out with the herb Ruellia nudiflora under two contrasting light environments. Outcrossed progeny generally performed better than selfed progeny. However, inbreeding depression ranges from low (1%) to moderate (36%), with the greatest value detected under shaded conditions when cumulative fitness was used. Although flower type generally had less of an effect on progeny performance than pollen source did, the progeny derived from selfed CH flowers largely outperformed the progeny from CL flowers, but only under shaded conditions and when cumulative fitness was taken into account. On the other hand, the source of pollen and flower type influenced seed predation, with selfed CH progeny the most heavily attacked by predators. Therefore, the effects of pollen source and flower type are environment-dependant and seed predators may increase the genetic differences between progeny derived from CH and CL flowers. Inbreeding depression alone cannot account for the maintenance of a mixed mating system in R. nudiflora and other unidentified mechanisms must thus be involved.

  17. The Effect of Pollen Source vs. Flower Type on Progeny Performance and Seed Predation under Contrasting Light Environments in a Cleistogamous Herb

    PubMed Central

    Munguía-Rosas, Miguel A.; Campos-Navarrete, María J.; Parra-Tabla, Víctor

    2013-01-01

    Dimorphic cleistogamy is a specialized form of mixed mating system where a single plant produces both open, potentially outcrossed chasmogamous (CH) and closed, obligately self-pollinated cleistogamous (CL) flowers. Typically, CH flowers and seeds are bigger and energetically more costly than those of CL. Although the effects of inbreeding and floral dimorphism are critical to understanding the evolution and maintenance of cleistogamy, these effects have been repeatedly confounded. In an attempt to separate these effects, we compared the performance of progeny derived from the two floral morphs while controlling for the source of pollen. That is, flower type and pollen source effects were assessed by comparing the performance of progeny derived from selfed CH vs. CL and outcrossed CH vs. selfed CH flowers, respectively. The experiment was carried out with the herb Ruellia nudiflora under two contrasting light environments. Outcrossed progeny generally performed better than selfed progeny. However, inbreeding depression ranges from low (1%) to moderate (36%), with the greatest value detected under shaded conditions when cumulative fitness was used. Although flower type generally had less of an effect on progeny performance than pollen source did, the progeny derived from selfed CH flowers largely outperformed the progeny from CL flowers, but only under shaded conditions and when cumulative fitness was taken into account. On the other hand, the source of pollen and flower type influenced seed predation, with selfed CH progeny the most heavily attacked by predators. Therefore, the effects of pollen source and flower type are environment-dependant and seed predators may increase the genetic differences between progeny derived from CH and CL flowers. Inbreeding depression alone cannot account for the maintenance of a mixed mating system in R. nudiflora and other unidentified mechanisms must thus be involved. PMID:24260515

  18. Classification of Baltic Sea ice types by airborne multifrequency microwave radiometer

    SciTech Connect

    Kurvonen, L.; Hallikainen, M.

    1996-11-01

    An airborne multifrequency radiometer (24, 34, 48, and 94 GHz, vertical polarization) was used to investigate the behavior of the brightness temperature of different sea ice types in the Gulf of Bothnia (Baltic Sea). The measurements and the main results of the analysis are presented. The measurements were made in dry and wet conditions (air temperature above and below 0 C). The angle of incidence was 45{degree} in all measurements. The following topics are evaluated: (a) frequency dependency of the brightness temperature of different ice types, (b) the capability of the multifrequency radiometer to classify ice types for winter navigation purposes, and (c) the optimum measurement frequencies for mapping sea ice. The weather conditions had a significant impact on the radiometric signatures of some ice types (snow-covered compact pack ice and frost-covered new ice); the impact was the highest at 94 GHz. In all cases the overall classification accuracy was around 90% (the kappa coefficient was from 0.86 to 0.96) when the optimum channel combination (24/34 GHz and 94 GHz) was used.

  19. Near-surface and columnar measurements with a micro pulse lidar of atmospheric pollen in Barcelona, Spain

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël; Izquierdo, Rebeca; Alarcón, Marta; Belmonte, Jordina; Comerón, Adolfo; Baldasano, José Maria

    2016-06-01

    We present for the first time continuous hourly measurements of pollen near-surface concentration and lidar-derived profiles of particle backscatter coefficients and of volume and particle depolarization ratios during a 5-day pollination event observed in Barcelona, Spain, between 27 and 31 March 2015. Daily average concentrations ranged from 1082 to 2830 pollen m-3. Platanus and Pinus pollen types represented together more than 80 % of the total pollen. Maximum hourly pollen concentrations of 4700 and 1200 m-3 were found for Platanus and Pinus, respectively. Every day a clear diurnal cycle caused by the vertical transport of the airborne pollen was visible on the lidar-derived profiles with maxima usually reached between 12:00 and 15:00 UT. A method based on the lidar polarization capabilities was used to retrieve the contribution of the pollen to the total aerosol optical depth (AOD). On average the diurnal (09:00-17:00 UT) pollen AOD was 0.05, which represented 29 % of the total AOD. Maximum values of the pollen AOD and its contribution to the total AOD reached 0.12 and 78 %, respectively. The diurnal means of the volume and particle depolarization ratios in the pollen plume were 0.08 and 0.14, with hourly maxima of 0.18 and 0.33, respectively. The diurnal mean of the height of the pollen plume was found at 1.24 km with maxima varying in the range of 1.47-1.78 km. A correlation study is performed (1) between the depolarization ratios and the pollen near-surface concentration to evaluate the ability of the former parameter to monitor pollen release and (2) between the depolarization ratios as well as pollen AOD and surface downward solar fluxes, which cause the atmospheric turbulences responsible for the particle vertical motion, to examine the dependency of the depolarization ratios and the pollen AOD upon solar fluxes. For the volume depolarization ratio the first correlation study yields to correlation coefficients ranging 0.00-0.81 and the second to

  20. Detection of pollen grains in multifocal optical microscopy images of air samples.

    PubMed

    Landsmeer, Sander H; Hendriks, Emile A; de Weger, Letty A; Reiber, Johan H C; Stoel, Berend C

    2009-06-01

    Pollen is a major cause of allergy and monitoring pollen in the air is relevant for diagnostic purposes, development of pollen forecasts, and for biomedical and biological researches. Since counting airborne pollen is a time-consuming task and requires specialized personnel, an automated pollen counting system is desirable. In this article, we present a method for detecting pollen in multifocal optical microscopy images of air samples collected by a Burkard pollen sampler, as a first step in an automated pollen counting procedure. Both color and shape information was used to discriminate pollen grains from other airborne material in the images, such as fungal spores and dirt. A training set of 44 images from successive focal planes (stacks) was used to train the system in recognizing pollen color and for optimization. The performance of the system has been evaluated using a separate set of 17 image stacks containing 65 pollen grains, of which 86% was detected. The obtained precision of 61% can still be increased in the next step of classifying the different pollen in such a counting system. These results show that the detection of pollen is feasible in images from a pollen sampler collecting ambient air. This first step in automated pollen detection may form a reliable basis for an automated pollen counting system.

  1. Allergenic pollen in the atmosphere of Kayseri, Turkey.

    PubMed

    Ince, Ali; Kart, Levent; Demir, Ramazan; Ozyurt, M Sabri

    2004-01-01

    Airborne pollen are important allergens that cause sensitization in allergic rhinoconjunctivitis and asthma. Our aim was to detect the pollen in the atmosphere of Kayseri, to present a pollen calendar, and to detect the allergenic level of these pollen by performing skin tests on patients. Atmospheric pollen were collected by Durham gravimetric samplers in Kayseri between March and November in the years 1996 and 1997. In our study, we observed pollen belonging to 43 different taxa. The total number of pollen per cm2 was found to be 1,330.8 in 1996 and 1,182.5 in 1997. Most of the pollen were from the taxa Pinus, Poaceae, Chenopodiaceae/Amaranthaceae, Cupressaceae, Populus and Quercus in decreasing order. In the skin tests, pollen of the taxa Poaceae and Chenopodiaceae were found to give the most frequent allergic reactions. It was concluded that preparing an airborne pollen calendar could be useful for medical practice. Nevertheless the skin test data did not really correlate with the aerobiologic data, as skin test reactivity is related to the allergenicity of the pollen and not just to ambient exposure.

  2. A Method of Recording and Predicting the Pollen Count.

    ERIC Educational Resources Information Center

    Buck, M.

    1985-01-01

    A hair dryer, plastic funnel, and microscope slide can be used for predicting pollen counts on a day-to-day basis. Materials, methods for assembly, collection technique, meteorological influences, and daily patterns are discussed. Data collected using the apparatus suggest that airborne grass products other than pollen also affect hay fever…

  3. Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco).

    PubMed

    Aboulaich, Nadia; Achmakh, Lamiaa; Bouziane, Hassan; Trigo, M Mar; Recio, Marta; Kadiri, Mohamed; Cabezudo, Baltasar; Riadi, Hassane; Kazzaz, Mohamed

    2013-03-01

    Poaceae pollen is one of the most prevalent aeroallergens causing allergenic reactions. The aim of this study was to characterise the grass pollen season in Tetouan during the years 2008-2010, to analyse the effect of some meteorological parameters on the incidence of the airborne Poaceae pollen, and to establish forecasting variables for daily pollen concentrations. Aerobiological sampling was undertaken over three seasons using the volumetric method. The pollen season started in April and showed the highest pollen index in May and June, when the maximum temperature ranged from 23 to 27 °C, respectively. The annual pollen score recorded varied from year to year between 2,588 and 5,404. The main pollen season lasted 114-173 days, with peak days occurring mainly in May; the highest concentration reached 308 pollen grains/m(3). Air temperature was the most important meteorological parameter and correlated positively to daily pollen concentration increase. An increase in relative humidity and precipitation was usually related to a decrease in airborne pollen content. External validation of the models performed using data from 2011 showed that Poaceae pollen concentration can be highly predicted (64.2-78.6 %) from the maximum temperature, its mean concentration for the same day in other years, and its concentration recorded on the previous day. Sensitive patients suffering allergy to Poaceae pollen are at moderate to highest risk of manifesting allergic symptoms to grass pollen over 33-42 days. The results obtained provide new information on the quantitative contribution of the Poaceae pollen to the airborne pollen of Tetouan and on its temporal distribution. Airborne pollen can be surveyed and forecast in order to warn the atopic population.

  4. Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco)

    NASA Astrophysics Data System (ADS)

    Aboulaich, Nadia; Achmakh, Lamiaa; Bouziane, Hassan; Trigo, M. Mar; Recio, Marta; Kadiri, Mohamed; Cabezudo, Baltasar; Riadi, Hassane; Kazzaz, Mohamed

    2013-03-01

    Poaceae pollen is one of the most prevalent aeroallergens causing allergenic reactions. The aim of this study was to characterise the grass pollen season in Tetouan during the years 2008-2010, to analyse the effect of some meteorological parameters on the incidence of the airborne Poaceae pollen, and to establish forecasting variables for daily pollen concentrations. Aerobiological sampling was undertaken over three seasons using the volumetric method. The pollen season started in April and showed the highest pollen index in May and June, when the maximum temperature ranged from 23 to 27 °C, respectively. The annual pollen score recorded varied from year to year between 2,588 and 5,404. The main pollen season lasted 114-173 days, with peak days occurring mainly in May; the highest concentration reached 308 pollen grains/m3. Air temperature was the most important meteorological parameter and correlated positively to daily pollen concentration increase. An increase in relative humidity and precipitation was usually related to a decrease in airborne pollen content. External validation of the models performed using data from 2011 showed that Poaceae pollen concentration can be highly predicted (64.2-78.6 %) from the maximum temperature, its mean concentration for the same day in other years, and its concentration recorded on the previous day. Sensitive patients suffering allergy to Poaceae pollen are at moderate to highest risk of manifesting allergic symptoms to grass pollen over 33-42 days. The results obtained provide new information on the quantitative contribution of the Poaceae pollen to the airborne pollen of Tetouan and on its temporal distribution. Airborne pollen can be surveyed and forecast in order to warn the atopic population.

  5. Detecting coral reef substrate types by airborne and spaceborne hyperspectral sensors

    NASA Astrophysics Data System (ADS)

    Kutser, Tiit; Dekker, Arnold G.; Skirving, William

    2002-01-01

    Traditional approaches to remote sensing of coral reefs have been highly empirical, relying on classification of remote sensing images. We have chosen a physics based approach - the collection of reflectance spectra of different substrates and the determination of the inherent optical properties of the water column. This information, together with radiative transfer models of water and atmosphere as well as technical characteristics of different remote sensing sensors, allows us to estimate what benthic communities are spectrally resolvable with respect to water column depth and the sensor characteristics. A hyperspectral library of more than 140 different coral reefs substrates (living hard and soft corals, dead corals, rubble, sand, algae and sponges) were collected from the Great Barrier Reef. Hydrolight 4.1 model was used to simulate remote sensing reflectances above the water and a MODTRAN3 type in-house atmosphere model was used to simulate radiance at airborne and space borne sensor levels. Most of the spectral variability in reflectance of coral reef benthic communities occurs in the spectral range of 550-680 nm (green to red light). The water itself is a main limiting factor in remote detection of various reef substrates, as water itself is absorbing light strongly in the same part of the spectrum where most of the variability in reflectance spectra of different coral reef benthic substrates occurs. Hyperspectral information allows us to separate different substrates from each other more easily and in deeper waters than broad band sensors.

  6. Aerobiology of Juniperus Pollen in Oklahoma, Texas, and New Mexico

    NASA Technical Reports Server (NTRS)

    Levetin, Estelle; Bunderson, Landon; VandeWater, Pete; Luvall, Jeff

    2014-01-01

    Pollen from members of the Cupressaceae are major aeroallergens in many parts of the world. In the south central and southwest United States, Juniperus pollen is the most important member of this family with J. ashei (JA) responsible for severe winter allergy symptoms in Texas and Oklahoma. In New Mexico, pollen from J. monosperma (JM) and other Juniperus species are important contributors to spring allergies, while J. pinchotii (JP) pollinates in the fall affecting sensitive individuals in west Texas, southwest Oklahoma and eastern New Mexico. Throughout this region, JA, JM, and JP occur in dense woodland populations. Generally monitoring for airborne allergens is conducted in urban areas, although the source for tree pollen may be forested areas distant from the sampling sites. Improved pollen forecasts require a better understanding of pollen production at the source. The current study was undertaken to examine the aerobiology of several Juniperus species at their source areas for the development of new pollen forecasting initiatives.

  7. Radiometric Normalization of Large Airborne Image Data Sets Acquired by Different Sensor Types

    NASA Astrophysics Data System (ADS)

    Gehrke, S.; Beshah, B. T.

    2016-06-01

    Generating seamless mosaics of aerial images is a particularly challenging task when the mosaic comprises a large number of im-ages, collected over longer periods of time and with different sensors under varying imaging conditions. Such large mosaics typically consist of very heterogeneous image data, both spatially (different terrain types and atmosphere) and temporally (unstable atmo-spheric properties and even changes in land coverage). We present a new radiometric normalization or, respectively, radiometric aerial triangulation approach that takes advantage of our knowledge about each sensor's properties. The current implementation supports medium and large format airborne imaging sensors of the Leica Geosystems family, namely the ADS line-scanner as well as DMC and RCD frame sensors. A hierarchical modelling - with parameters for the overall mosaic, the sensor type, different flight sessions, strips and individual images - allows for adaptation to each sensor's geometric and radiometric properties. Additional parameters at different hierarchy levels can compensate radiome-tric differences of various origins to compensate for shortcomings of the preceding radiometric sensor calibration as well as BRDF and atmospheric corrections. The final, relative normalization is based on radiometric tie points in overlapping images, absolute radiometric control points and image statistics. It is computed in a global least squares adjustment for the entire mosaic by altering each image's histogram using a location-dependent mathematical model. This model involves contrast and brightness corrections at radiometric fix points with bilinear interpolation for corrections in-between. The distribution of the radiometry fixes is adaptive to each image and generally increases with image size, hence enabling optimal local adaptation even for very long image strips as typi-cally captured by a line-scanner sensor. The normalization approach is implemented in HxMap software. It has been

  8. Variations and trends of Fagaceae pollen in Northern Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Canu, Annalisa; Pellizzaro, Grazia; Arca, Bachisio; Vargiu, Arnoldo

    2016-04-01

    The aim of this study is to analyze variations in the start and the end dates of pollen season, date of maximum concentration peak, pollen season duration, pollen concentration value and Seasonal Pollen Index of airborne Fagaceae pollen series recorded in Sassari, Northern Italy, and to evaluate their relation to meteorological data. Daily pollen concentration data were measured from 1986 to 2008 in a urban area of northern Sardinia (Italy) using a Burkard seven-day recording volumetric spore trap. The date of the peak occurrence was defined as the day when the cumulated daily pollen values reached the 50 % of the total annual pollen concentration. Meteorological data were recorded during the same period by an automatic weather station. Cumulative Degree days were calculated, for each year, from different starting dates using the daily averaging method. The correlation between meteorological variables and the different characteristics of pollen seasons was analyzed using Spearman's correlation tests. In the city of Sassari the Fagaceae airborne pollen content was mainly due to Quercus. The main pollen season took place from April to June. The longest pollen season appeared in the year 2002. The cumulative counts varied over the years, with a mean value of 5,336 pollen grains, a lowest total of 550 in 1986 and a highest total of 8,678 in 2001. Daily pollen concentrations presented positive correlation with temperature, and negative with relative humidity (p<0,0001) and with rainfall. In addition, Cumulative Degree days were significantly correlated with the dates of maximum concentration peak (p<0,0001).

  9. Estimating forest canopy attributes via airborne, high-resolution, multispectral imagery in midwest forest types

    NASA Astrophysics Data System (ADS)

    Gatziolis, Demetrios

    An investigation of the utility of high spatial resolution (sub-meter), 16-bit, multispectral, airborne digital imagery for forest land cover mapping in the heterogeneous and structurally complex forested landscapes of northern Michigan is presented. Imagery frame registration and georeferencing issues are presented and a novel approach for bi-directional reflectance distribution function (BRDF) effects correction and between-frame brightness normalization is introduced. Maximum likelihood classification of five cover type classes is performed over various geographic aggregates of 34 plots established in the study area that were designed according to the Forest Inventory and Analysis protocol. Classification accuracy estimates show that although band registration and BRDF corrections and brightness normalization provide an approximately 5% improvement over the raw imagery data, overall classification accuracy remains relatively low, barely exceeding 50%. Computed kappa coefficients reveal no statistical differences among classification trials. Classification results appear to be independent of geographic aggregations of sampling plots. Estimation of forest stand canopy parameter parameters (stem density, canopy closure, and mean crown diameter) is based on quantifying the spatial autocorrelation among pixel digital numbers (DN) using variogram analysis and slope break analysis, an alternative non-parametric approach. Parameter estimation and cover type classification proceed from the identification of tree apexes. Parameter accuracy assessment is evaluated via value comparison with a spatially precise set of field observations. In general, slope-break-based parameter estimates are superior to those obtained using variograms. Estimated root mean square errors at the plot level for the former average 6.5% for stem density, 3.5% for canopy closure and 2.5% for mean crown diameter, which are less than or equal to error rates obtained via traditional forest stand

  10. Viability and seasonal distribution patterns of Scots pine pollen in Finland.

    PubMed

    Pulkkinen, P.; Rantio-Lehtimäki, A.

    1995-01-01

    Germination ability and airborne counts of Scots pine (Pinus sylvestris L.) pollen were studied during the spring of 1993 at Turku in southern Finland (60 degrees 32' N, 22 degrees 28' E) and at Utsjoki in northern Finland (69 degrees 45' N, 27 degrees 01' E). Pollen waas trapped from the beginning of May to the end of June in a high-volume air sampler. Germination tests were performed to determine the in vitro pollen viability of the trapped pollen. Airborne pine pollen counts were obtained from a continuously operating Burkard trap located near each high-volume sampler. When male flowering began, phenological observations were carried out on pollen grains collected in rotored samplers located in pine and spruce stands and open fields near Turku and Utsjoki. In southern Finland, the peak period of pine pollen production was short, lasting for only 3 days, but it accounted for about 80% of the total germinating pine pollen yield for the year. The peak count was on May 20, with over 2000 germinating pollen grains per cubic meter of air. Pollen germination rates of up to 70% were obtained during the week preceding the local pollen peak, and rates reached almost 90% on the peak day. Pollen viability remained at 45 to 65% for 1 week after the peak. There was no significant difference between the pollen counts for day and night, indicating that during the main pollen season, the pollen source was close to Turku. Before the local pollen peak, the counts of living pine pollen were low, indicating that pine pollen transported over long distances was of little ecological importance in 1993 in the Turku area. In northern Finland, the first pollen grains were caught on July 4, and the peak day was July 13. However, no viable pollen was observed during this period, indicating that there was little gene drift from southern to northern Finland in 1993.

  11. B cells play key roles in th2-type airway immune responses in mice exposed to natural airborne allergens.

    PubMed

    Drake, Li Yin; Iijima, Koji; Hara, Kenichiro; Kobayashi, Takao; Kephart, Gail M; Kita, Hirohito

    2015-01-01

    Humans are frequently exposed to various airborne allergens. In addition to producing antibodies, B cells participate in immune responses via various mechanisms. The roles of B cells in allergic airway inflammation and asthma have been controversial. We examined the functional importance of B cells in a mouse model of asthma, in which mice were exposed repeatedly to common airborne allergens. Naïve wild-type BALB/c mice or B cell-deficient JH-/- mice were exposed intranasally to a cocktail of allergen extracts, including Alternaria, Aspergillus, and house dust mite, every other day for two weeks. Ovalbumin was included in the cocktail to monitor the T cell immune response. Airway inflammation, lung pathology, and airway reactivity were analyzed. The airway exposure of naïve wild type mice to airborne allergens induced robust eosinophilic airway inflammation, increased the levels of Th2 cytokines and chemokines in the lung, and increased the reactivity to inhaled methacholine. These pathological changes and immune responses were attenuated in B cell-deficient JH-/- mice. The allergen-induced expansion of CD4+ T cells was impaired in the lungs and draining lymph nodes of JH-/- mice. Furthermore, lymphocytes from JH-/- mice failed to produce Th2 cytokines in response to ovalbumin re-stimulation in vitro. Our results suggest that B cells are required for the optimal development of Th2-type immune responses and airway inflammation when exposed to common airborne allergens. The therapeutic targeting of B cells may be beneficial to treat asthma in certain patients.

  12. Polarization Analysis of Light Scattered by Pollen Grains of Cryptomeria japonica

    NASA Astrophysics Data System (ADS)

    Iwai, Toshiaki

    2013-06-01

    Pollinosis to airborne pollen grains is a severe problem that concerns the whole world. Almost spring allergies in Japan are caused by pollen grains of Japan cedar (Cryptomeria japonica) during the period of pollination from February to May. One of the key technologies in a pollen monitoring and forecast system is a pollen sensor. The pollen grain of Japan cedar is identified by introducing the degree of polarization to the optical sensor based on the scattered intensity. The detectability and discriminability in identifying the pollen grains of Japan cedar from the polystyrene spherical particles and the Kanto loam grains are achieved up to 95 and 86%, respectively.

  13. Antibiotic resistance and OXA-type carbapenemases-encoding genes in airborne Acinetobacter baumannii isolated from burn wards.

    PubMed

    Gao, Jing; Zhao, Xiaonan; Bao, Ying; Ma, Ruihua; Zhou, Yufa; Li, Xinxian; Chai, Tongjie; Cai, Yumei

    2014-03-01

    The study was conducted to investigate drug resistance, OXA-type carbapenemases-encoding genes and genetic diversity in airborne Acinetobacter baumannii (A. baumannii) in burn wards. Airborne A. baumannii were collected in burn wards and their corridors using Andersen 6-stage air sampler from January to June 2011. The isolates susceptibility to 13 commonly used antibiotics was examined according to the CLSI guidelines; OXA-type carbapenemases-encoding genes and molecular diversity of isolates were analyzed, respectively. A total of 16 non-repetitive A. baumannii were isolated, with 10 strains having a resistance rate of greater than 50% against the 13 antibiotics. The resistance rate against ceftriaxone, cyclophosvnamide, ciprofloxacin, and imipenem was 93.75% (15/16), but no isolate observed to be resistant to cefoperazone/sulbactam. Resistance gene analyses showed that all 16 isolates carried OXA-51, and 15 isolates carried OXA-23 except No.15; but OXA-24 and OXA-58 resistance genes not detected. The isolates were classified into 13 genotypes (A-M) according to repetitive extragenic palindromic sequence PCR (REP-PCR) results and only six isolates had a homology ≥90%. In conclusion, airborne A. baumannii in the burn wards had multidrug resistance and complex molecular diversity, and OXA-23 and OXA-51 were dominant mechanisms for resisting carbapenems.

  14. BURSTING POLLEN is required to organize the pollen germination plaque and pollen tube tip in Arabidopsis thaliana.

    PubMed

    Hoedemaekers, Karin; Derksen, Jan; Hoogstrate, Suzanne W; Wolters-Arts, Mieke; Oh, Sung-Aeong; Twell, David; Mariani, Celestina; Rieu, Ivo

    2015-04-01

    Pollen germination may occur via the so-called germination pores or directly through the pollen wall at the site of contact with the stigma. In this study, we addressed what processes take place during pollen hydration (i.e. before tube emergence), in a species with extra-poral pollen germination, Arabidopsis thaliana. A T-DNA mutant population was screened by segregation distortion analysis. Histological and electron microscopy techniques were applied to examine the wild-type and mutant phenotypes. Within 1 h of the start of pollen hydration, an intine-like structure consisting of cellulose, callose and at least partly de-esterified pectin was formed at the pollen wall. Subsequently, this 'germination plaque' gradually extended and opened up to provide passage for the cytoplasm into the emerging pollen tube. BURSTING POLLEN (BUP) was identified as a gene essential for the correct organization of this plaque and the tip of the pollen tube. BUP encodes a novel Golgi-located glycosyltransferase related to the glycosyltransferase 4 (GT4) subfamily which is conserved throughout the plant kingdom. Extra-poral pollen germination involves the development of a germination plaque and BUP defines the correct plastic-elastic properties of this plaque and the pollen tube tip by affecting pectin synthesis or delivery.

  15. Modular method of detection, localization, and counting of multiple-taxon pollen apertures using bag-of-words

    NASA Astrophysics Data System (ADS)

    Lozano-Vega, Gildardo; Benezeth, Yannick; Marzani, Franck; Boochs, Frank

    2014-09-01

    Accurate recognition of airborne pollen taxa is crucial for understanding and treating allergic diseases which affect an important proportion of the world population. Modern computer vision techniques enable the detection of discriminant characteristics. Apertures are among the important characteristics which have not been adequately explored until now. A flexible method of detection, localization, and counting of apertures of different pollen taxa with varying appearances is proposed. Aperture description is based on primitive images following the bag-of-words strategy. A confidence map is estimated based on the classification of sampled regions. The method is designed to be extended modularly to new aperture types employing the same algorithm by building individual classifiers. The method was evaluated on the top five allergenic pollen taxa in Germany, and its robustness to unseen particles was verified.

  16. Pollen types and levels of total phenolic compounds in propolis produced by Apis mellifera L. (Apidae) in an area of the Semiarid Region of Bahia, Brazil.

    PubMed

    Matos, Vanessa R; Alencar, Severino M; Santos, Francisco A R

    2014-03-01

    Twenty-two propolis samples produced by Apis mellifera L. in an area of the Semiarid region the the State of Bahia (Agreste of Alagoinhas), Brazil, were palynologically analyzed and quantified regarding their levels of total phenolic compounds. These samples were processed using the acetolysis technique with the changes suggested for use with propolis. We found 59 pollen types belonging to 19 families and 36 genera. The family Fabaceae was the most representative in this study with nine pollen types, followed by the family Asteraceae with seven types. The types Mikania and Mimosa pudica occurred in all samples analyzed. The types Mimosa pudica and Eucalyptus had frequency of occurrence above 50% in at least one sample. The highest similarity index (c. 72%) occurred between the samples ER1 and ER2, belonging to the municipality of Entre Rios. Samples from the municipality of Inhambupe displayed the highest (36.78±1.52 mg/g EqAG) and lowest (7.68 ± 2.58 mg/g EqAG) levels of total phenolic compounds. Through the Spearman Correlation Coefficient we noticed that there was a negative linear correlation between the types Mimosa pudica (rs = -0.0419) and Eucalyptus (rs = -0.7090) with the profile of the levels of total phenolic compounds of the samples.

  17. Emerging pollen allergens.

    PubMed

    Rodríguez, Rosalía; Villalba, Mayte; Batanero, Eva; Palomares, Oscar; Salamanca, Guillermo

    2007-01-01

    Numerous pollen allergens have been reported over the last few years. Most of them belong to well-known families of proteins but some others constitute the first member of new allergenic families. Some of the factors that can contribute to the detection and identification of new pollen allergens are: a) advances in the technology tools for molecular analysis; and b) the deep knowledge of many allergenic sources. The combination of these factors has provided vast information on the olive pollen allergogram and the identification of minor allergens that become major ones for a significant population. The close taxonomical relationship between olive tree and ash -both Oleaceae- has permitted to identify Fra e 1 (the Ole e 1-like allergen) in ash pollen and to detect the presence of protein homologues of Ole e 3 and Ole e 6. In the other hand, extensive areas of south Europe are suffering an increasing desertification. As a consequence of this, new botanical species are spontaneously growing in these areas or being used in greening ground programs: Chenopodium album and Salsola kali are some examples recently recognized as allergenic woods. The identification of the complete panel of allergens from the hypersensitizing sources might help to develop more accurate diagnosis, and efficient and safer therapy tools for Type-I allergic diseases.

  18. Bioassaying for ozone with pollen systems.

    PubMed Central

    Feder, W A

    1981-01-01

    Sensitivity to ozone of pollen germinating in vitro is closely correlated with ozone sensitivity of the pollen parent. Ozone-sensitive and tolerant pollen populations have been identified in tobacco, petunia, and tomato cultivars. The rate of tube elongation can be reversibly slowed or stopped by exposure to low concentrations of ozone. Tube growth rates in the presence of a range of ozone dosages, of pollen populations exhibiting differing ozone sensitivity can be measured and different growth rates can be correlated with ozone dosages. The performance of selected pollen populations can then be used to bioassay ozone in ambient air by introducing the air sample into a growth chamber where ozone-sensitive pollen in growing. Petunia and tobacco pollen are especially useful because they store well at ordinary freezer temperatures and do not require special preparation prior to storage. Modified Brewbacker's growth medium is suitable for growth of both these pollen types. Four useful cultivars are Bel W-3, ozone-sensitive and Bel B, ozone-tolerant tobacco, and White Bountiful, ozone-sensitive and Blue Lagoon, ozone-tolerant petunia. Observations can be made directly by using a TV scanner, or by time lapse or interval photography. Year-round pollen production can be achieved in the greenhouse. Harvested pollen can be tested, packaged, and transported to user facilities without loss of vigor. Pollen populations are inexpensive to produce, respond reliably, and are simple to use as a bioassay for air quality. Images FIGURE 2. FIGURE 3. FIGURE 4. PMID:7460876

  19. Role of macrophage migration inhibitory factor (MIF) in pollen-induced allergic conjunctivitis and pollen dermatitis in mice.

    PubMed

    Nagata, Yuka; Yoshihisa, Yoko; Matsunaga, Kenji; Rehman, Mati Ur; Kitaichi, Nobuyoshi; Kitaichi, Nobuyuki; Shimizu, Tadamichi

    2015-01-01

    Pollen is a clinically important airborne allergen and one of the major causes of allergic conjunctivitis. A subpopulation of patients with atopic dermatitis (AD) are also known to have exacerbated skin eruptions on the face, especially around the eyelids, after contact with pollen. This pollen-induced skin reaction is now known as pollen dermatitis. Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that plays an essential role in allergic inflammation. Recent findings suggest that MIF is involved in several allergic disorders, including AD. In this study, MIF knockout (KO), MIF transgenic (Tg) and WT littermate mice were immunized with ragweed (RW) pollen or Japanese cedar (JC) pollen and challenged via eye drops. We observed that the numbers of conjunctiva- and eyelid-infiltrating eosinophils were significantly increased in RW and JC pollen-sensitized MIF Tg compared with WT mice or MIF KO mice. The mRNA expression levels of eotaxin, interleukin (IL)-5 and IL-13 were increased in pollen-sensitized eyelid skin sites of MIF Tg mice. An in vitro analysis revealed that high eotaxin expression was induced in dermal fibroblasts by MIF combined with stimulation of IL-4 or IL-13. This eotaxin expression was inhibited by the treatment with CD74 siRNA in fibroblasts. These findings indicate that MIF can induce eosinophil accumulation in the conjunctiva and eyelid dermis exposed to pollen. Therefore, targeted inhibition of MIF might result as a new option to control pollen-induced allergic conjunctivitis and pollen dermatitis.

  20. Role of Macrophage Migration Inhibitory Factor (MIF) in Pollen-Induced Allergic Conjunctivitis and Pollen Dermatitis in Mice

    PubMed Central

    Nagata, Yuka; Yoshihisa, Yoko; Matsunaga, Kenji; Rehman, Mati Ur; Kitaichi, Nobuyuki; Shimizu, Tadamichi

    2015-01-01

    Pollen is a clinically important airborne allergen and one of the major causes of allergic conjunctivitis. A subpopulation of patients with atopic dermatitis (AD) are also known to have exacerbated skin eruptions on the face, especially around the eyelids, after contact with pollen. This pollen-induced skin reaction is now known as pollen dermatitis. Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that plays an essential role in allergic inflammation. Recent findings suggest that MIF is involved in several allergic disorders, including AD. In this study, MIF knockout (KO), MIF transgenic (Tg) and WT littermate mice were immunized with ragweed (RW) pollen or Japanese cedar (JC) pollen and challenged via eye drops. We observed that the numbers of conjunctiva- and eyelid-infiltrating eosinophils were significantly increased in RW and JC pollen-sensitized MIF Tg compared with WT mice or MIF KO mice. The mRNA expression levels of eotaxin, interleukin (IL)-5 and IL-13 were increased in pollen-sensitized eyelid skin sites of MIF Tg mice. An in vitro analysis revealed that high eotaxin expression was induced in dermal fibroblasts by MIF combined with stimulation of IL-4 or IL-13. This eotaxin expression was inhibited by the treatment with CD74 siRNA in fibroblasts. These findings indicate that MIF can induce eosinophil accumulation in the conjunctiva and eyelid dermis exposed to pollen. Therefore, targeted inhibition of MIF might result as a new option to control pollen-induced allergic conjunctivitis and pollen dermatitis. PMID:25647395

  1. Seed set, pollen morphology and pollen surface composition response to heat stress in field pea.

    PubMed

    Jiang, Yunfei; Lahlali, Rachid; Karunakaran, Chithra; Kumar, Saroj; Davis, Arthur R; Bueckert, Rosalind A

    2015-11-01

    Pea (Pisum sativum L.) is a major legume crop grown in a semi-arid climate in Western Canada, where heat stress affects pollination, seed set and yield. Seed set and pod growth characteristics, along with in vitro percentage pollen germination, pollen tube growth and pollen surface composition, were measured in two pea cultivars (CDC Golden and CDC Sage) subjected to five maximum temperature regimes ranging from 24 to 36 °C. Heat stress reduced percentage pollen germination, pollen tube length, pod length, seed number per pod, and the seed-ovule ratio. Percentage pollen germination of CDC Sage was greater than CDC Golden at 36 °C. No visible morphological differences in pollen grains or the pollen surface were observed between the heat and control-treated pea. However, pollen wall (intine) thickness increased due to heat stress. Mid-infrared attenuated total reflectance (MIR-ATR) spectra revealed that the chemical composition (lipid, proteins and carbohydrates) of each cultivar's pollen grains responded differently to heat stress. The lipid region of the pollen coat and exine of CDC Sage was more stable compared with CDC Golden at 36 °C. Secondary derivatives of ATR spectra indicated the presence of two lipid types, with different amounts present in pollen grains from each cultivar.

  2. Relationship between Pollen Counts and Weather Variables in East-Mediterranean Coast of Turkey

    PubMed Central

    Karakoç, Gülbin Bingöl; Yilmaz, Mustafa; Pinar, Münevver; Kendirli, Seval Güneçer; Çakan, Halil

    2004-01-01

    Background: Aeroallergen sampling provides information regarding the onset, duration and severity of the pollen season that clinicians use to guide allergen selection for skin testing and treatment. Objectives: This atmospheric survey reports (1) airborne pollen contributions in Adana in one-year period (2) pollen onset, duration and peak level (3) the relationship between airborne pollen and selected meteorological variables and; (4) effects on symptoms in pollen allergic children. Methods: Pollen sampling was performed with a volumetric Burkard Spore Trap. Meteorological data were measured daily from April 2001 to April 2002. Asthma symptom scores were investigated in 186 pollen allergic children that were on follow up in pediatric allergy outpatient clinics during same period. Results: Average measurements included 82.5% tree pollen, 7.7% grass pollen and 9.8% herb pollen 54 taxa were identified during one year. The most prominent tree pollens were Cupressaceae, Eucalyptus and Pinus. The most common herb was Chenopodiaceae pollen family. When airborne pollen levels were examined in relation to single meteorological conditions; daily variations in total pollen counts were not significantly correlated with any variable studied (humidity, rainfall, temperature and wind) (p>0.05). On the other hand, statistically significant relationship between pollen concentration and symptom scores were found (p>0.05). Positive correlations were seen between both Gramineae and Herb pollen, and humidity and rainfall from March to July. However, positive correlations were detected between tree pollen counts and temperature and humidity in May and June. Conclusion: This survey is the first volumetric airborne pollen analysis conducted in the survey area in Adana. This study suggested that the effects of weather on pollen count and symptom scores in this population could not be clearly identified with the evaluation of one-year data. However, pollen counts had effect on allergic

  3. Marking live conifer pollen for long-distance dispersal experiments.

    PubMed

    Williams, Claire G; von Aderkas, Patrick

    2011-01-01

    Long-distance dispersal (LDD) theory requires a method for marking live LDD pollen. Such a method must complement more intensive sampling methods inclusive of molecular cytogenetics, proteomics and genomics. We developed a new method for marking live Pinus taeda pollen using two dyes, rhodamine 123 and aniline blue, dissolved in a sucrose solution. Marked and unmarked pollen were compared with respect to in vitro germination, storage, terminal velocity, and in vivo pollen tube penetration of ovules. We found that: (1) both types of marked pollen retained their capacity for germination, (2) both types of marked pollen had similar aerodynamic properties when compared to unmarked pollen controls, (3) marked pollen retained its germination capacity for 48 h, and (4) of the marked pollen, only the aniline-marked pollen penetrated ovules during pollination. Germination declined rapidly for both types of marked pollen after 48 h and before 37 days at -20°C storage, while unmarked pollen lots retained 93% germination at all stages. This method for marking live P. taeda pollen is feasible for tracing LDD pollen only if released and deposited within 48 h of dye treatment.

  4. Marking live conifer pollen for long-distance dispersal experiments.

    PubMed

    Williams, Claire G; von Aderkas, Patrick

    2011-01-01

    Study of long-distance dispersal (LDD) theory requires a method for marking live LDD pollen. Such a method must complement the more intensive sampling methods involving molecular cytogenetics, proteomics, and genomics. We have developed a new method for marking live Pinus taeda pollen using two dyes, rhodamine 123 and aniline blue, dissolved in a sucrose solution. Marked and unmarked pollen were compared with respect to in vitro germination, storage, terminal velocity and in vivo pollen-tube penetration of ovules. We found that: (1) both types of marked pollen retained their capacity for germination, (2) both types of marked pollen had similar aerodynamic properties as unmarked pollen controls, (3) marked pollen retained its germination capacity for 48 h, and (4) of the marked pollen, only the aniline-marked pollen penetrated ovules during pollination. Germination declined rapidly for both types of marked pollen after 48 h and before 37 days at -20°C storage, while the unmarked pollen lots retained 93% germination at all stages. Our method for marking live P. taeda pollen is feasible for tracing LDD pollen if released and deposited within 48 h of dye treatment.

  5. Comparison of fluorescence spectroscopy and FTIR in differentiation of plant pollens

    NASA Astrophysics Data System (ADS)

    Mularczyk-Oliwa, Monika; Bombalska, Aneta; Kaliszewski, Miron; Włodarski, Maksymilian; Kopczyński, Krzysztof; Kwaśny, Mirosław; Szpakowska, Małgorzata; Trafny, Elżbieta A.

    2012-11-01

    Spectroscopic techniques are under investigation on possibility of differentiation of airborne particles. This paper describes pollen discrimination among others bio-particles in laboratory conditions. Pollen samples were characterized with UV-Vis fluorescence, drift and KBr pellet techniques of infrared spectroscopy. Principal Component Analysis of UV-Vis fluorescence and FTIR spectra revealed that pollens can be distinguished from other bio-materials with use of these methods. Both methods resulted in similar classification capability. Combined FTIR and fluorescence data analysis did not improve the discrimination between pollen allergens and other airborne biological materials.

  6. Can we improve pollen season definitions by using the symptom load index in addition to pollen counts?

    PubMed

    Bastl, Katharina; Kmenta, Maximilian; Geller-Bernstein, Carmi; Berger, Uwe; Jäger, Siegfried

    2015-09-01

    Airborne pollen measurements are the foundation of aerobiological research and provide essential raw data for various disciplines. Pollen itself should be considered a relevant factor in air quality. Symptom data shed light on the relationship of pollen allergy and pollination. The aim of this study is to assess the spatial variation of local, regional and national symptom datasets. Ten pollen season definitions are used to calculate the symptom load index for the birch and grass pollen seasons (2013-2014) in Austria. (1) Local, (2) regional and (3) national symptom datasets are used to examine spatial variations and a consistent pattern was found. In conclusion, national datasets are suitable for first insights where no sufficient local or regional dataset is available and season definitions based on percentages provide a practical solution, as they can be applied in regions with different pollen loads and produce more constant results.

  7. [Allergic responses to date palm and pecan pollen in Israel].

    PubMed

    Waisel, Y; Keynan, N; Gil, T; Tayar, D; Bezerano, A; Goldberg, A; Geller-Bernstein, C; Dolev, Z; Tamir, R; Levy, I

    1994-03-15

    Date palm (Phoenix dactylifera) and pecan (Carya illinoensis) trees are commonly planted in Israel for fruit, for shade, or as ornamental plants. Pollen grains of both species are allergenic; however, the extent of exposure to such pollen and the incidence of allergic response have not been studied here. We therefore investigated skin-test responses to pollen extracts of 12 varieties of palm and 9 of pecan in 705 allergic patients living in 3 cities and 19 rural settlements. Sensitivity to the pollen extracts of both species was much higher among residents of rural than of urban communities. Moreover, there was a definite relationship between the abundance of these trees in a region and the incidence of skin responders to their pollen. Sensitivity was frequent in settlements rich in these 2 species, such as those with nearby commercial date or pecan plantations. In general, sensitivity to date pollen extracts was lower than to pecan. However, differences in skin responses to pollen extracts of various clones were substantiated. Air sampling revealed that pollen pollution decreased considerably with distance from the trees. At approximately 100 m from a source concentrations of airborne pollen were low. Since planting of male palm and pecan trees in population centers would increase pollen pollution, it should be avoided.

  8. Pollen dispersal in sugar beet production fields.

    PubMed

    Darmency, Henri; Klein, Etienne K; De Garanbé, Thierry Gestat; Gouyon, Pierre-Henri; Richard-Molard, Marc; Muchembled, Claude

    2009-04-01

    Pollen-mediated gene flow has important implications for biodiversity conservation and for breeders and farmers' activities. In sugar beet production fields, a few sugar beet bolters can produce pollen as well as be fertilized by wild and weed beet. Since the crop, the wild beets, and the weed beets are the same species and intercross freely, the question of pollen flow is an important issue to determine the potential dispersal of transgenes from field to field and to wild habitats. We report here an experiment to describe pollen dispersal from a small herbicide-resistant sugar beet source towards male sterile target plants located along radiating lines up to 1,200 m away. Individual dispersal functions were inferred from statistical analyses and compared. Pollen limitation, as expected in root-production fields, was confirmed at all the distances from the pollen source. The number of resistant seeds produced by bait plants best fitted a fat-tailed probability distribution curve of pollen grains (power-law) dependent on the distance from the pollen source. A literature survey confirmed that power-law function could fit in most cases. The b coefficient was lower than 2. The number of fertilized flowers by background (herbicide-susceptible) pollen grains was uniform across the whole field. Airborne pollen had a fertilization impact equivalent to that of one adjacent bolter. The individual dispersal function from different pollen sources can be integrated to provide the pollen cloud composition for a given target plant, thus allowing modeling of gene flow in a field, inter-fields in a small region, and also in seed-production area. Long-distance pollen flow is not negligible and could play an important role in rapid transgene dispersal from crop to wild and weed beets in the landscape. The removing of any bolting, herbicide-resistant sugar beet should be compulsory to prevent the occurrence of herbicide-resistant weed beet, thus preventing gene flow to wild

  9. Bees associate colour cues with differences in pollen rewards.

    PubMed

    Nicholls, Elizabeth; de Ibarra, Natalie Hempel

    2014-08-01

    In contrast to the wealth of knowledge concerning sucrose-rewarded learning, the question of whether bees learn when they collect pollen from flowers has been little addressed. The nutritional value of pollen varies considerably between species, and it may be that bees learn the features of flowers that produce pollen best suited to the dietary requirements of their larvae. It is still unknown, however, whether a non-ingestive reward pathway for pollen learning exists, and how foraging bees sense differences between pollen types. Here we adopt a novel experimental approach testing the learning ability of bees with pollen rewards. Bumblebees were reared under controlled laboratory conditions. To establish which pollen rewards are distinguishable, individual bees were given the choice of collecting two types of pollen, diluted to varying degrees with indigestible α-cellulose. Bees preferentially collected a particular pollen type, but this was not always the most concentrated sample. Preferences were influenced by the degree of similarity between samples and also by the period of exposure, with bees more readily collecting samples of lower pollen concentration after five trials. When trained differentially, bees were able to associate an initially less-preferred contextual colour with the more concentrated sample, whilst their pollen preferences did not change. Successful learning of contextual cues seems to maintain pollen foraging preferences over repeated exposures, suggesting that fast learning of floral cues may preclude continuous sampling and evaluation of alternative reward sources, leading to constancy in pollen foraging.

  10. Recent pollen spectra and zonal vegetation in the western USSR

    NASA Astrophysics Data System (ADS)

    Peterson, G. M.

    The relationship of modern pollen spectra to present-day vegetation is critical to the reconstruction of vegetation and climate from fossil pollen spectra. This study uses isopoll maps to illustrate the pollen-vegetation relationships in the Soviet Union west of 100°E and presents descriptive statistics for 544 modern samples of arboreal pollen and for 370 samples of herb pollen obtained from the Soviet palynological literature. Data are assembled from this large geographic region and presented in a standardized form on a scale which can be used to relate quantitative pollen data to zonal vegetation and climatic variables and to make comparisons with other regions. In order to show the relationship between pollen types and major ecotones in forested and non-forested areas, the pollen data are presented as percentages of a sum including both arboreal and non-arboreal pollen. Major pollen types which attain values of 10% or more in at least one vegetation zone include Betula (birch), Cyperaceae (sedges), Picea (spruce), Pinus (total pine), Pinus sibirica, Ericaceae (heath family), Gramineae (grasses), Artemisia (sage), and Chenopodiaceae (i.e., saltbush, Russian thistle, pigweed family). Samples from the tundra and forest-tundra have high values of Ericaceae (heath family), birch, alder, and sedge pollen. In the boreal forest, pine, spruce, and birch pollen predominate. In the mixed and deciduous forests, Tilia (linden), Quercus (oak), Ulmus (elm), and Corylus (hazel) pollen attain maximum values. In the forest-steppe and steppe zones, arboreal pollen decreases in importance and is replaced by non-arboreal pollen types. Pollen of Artemisia and Chenopodiaceae predominates in the semi-desert zones. In spite of variation in the pollen spectra arising from the use of different sediment types (soil, peat, and river sediments), and human disturbance of vegetation, the pollen spectra are clearly related to zonal vegetation. Pollen spectra from the western USSR show

  11. Visualization of plastids in pollen grains: involvement of FtsZ1 in pollen plastid division.

    PubMed

    Tang, Lay Yin; Nagata, Noriko; Matsushima, Ryo; Chen, Yuling; Yoshioka, Yasushi; Sakamoto, Wataru

    2009-04-01

    Visualizing organelles in living cells is a powerful method to analyze their intrinsic mechanisms. Easy observation of chlorophyll facilitates the study of the underlying mechanisms in chloroplasts, but not in other plastid types. Here, we constructed a transgenic plant enabling visualization of plastids in pollen grains. Combination of a plastid-targeted fluorescent protein with a pollen-specific promoter allowed us to observe the precise number, size and morphology of plastids in pollen grains of the wild type and the ftsZ1 mutant, whose responsible gene plays a central role in chloroplast division. The transgenic material presented in this work is useful for studying the division mechanism of pollen plastids.

  12. Pollen Forecast and Dispersion Modelling

    NASA Astrophysics Data System (ADS)

    Costantini, Monica; Di Giuseppe, Fabio; Medaglia, Carlo Maria; Travaglini, Alessandro; Tocci, Raffaella; Brighetti, M. Antonia; Petitta, Marcello

    2014-05-01

    The aim of this study is monitoring, mapping and forecast of pollen distribution for the city of Rome using in-situ measurements of 10 species of common allergenic pollens and measurements of PM10. The production of daily concentration maps, associated to a mobile phone app, are innovative compared to existing dedicated services to people who suffer from respiratory allergies. The dispersal pollen is one of the most well-known causes of allergic disease that is manifested by disorders of the respiratory functions. Allergies are the third leading cause of chronic disease and it is estimated that tens millions of people in Italy suffer from it. Recent works reveal that during the last few years there was a progressive increase of affected subjects, especially in urban areas. This situation may depend: on the ability to transport of pollutants, on the ability to react between pollutants and pollen and from a combination of other irritants, existing in densely populated and polluted urban areas. The methodology used to produce maps is based on in-situ measurements time series relative to 2012, obtained from networks of air quality and pollen stations in the metropolitan area of Rome. The monitoring station aerobiological of University of Rome "Tor Vergata" is located at the Department of Biology. The instrument used to pollen monitoring is a volumetric sampler type Hirst (Hirst 1952), Model 2000 VPPS Lanzoni; the data acquisition is carried out as reported in Standard UNI 11008:2004 - "Qualità dell'aria - Metodo di campionamento e conteggio dei granuli pollinici e delle spore fungine aerodisperse" - the protocol that describes the procedure for measuring of the concentration of pollen grains and fungal spores dispersed into the atmosphere, and reported in the "Manuale di gestione e qualità della R.I.M.A" (Travaglini et. al. 2009). All 10 allergenic pollen are monitored since 1996. At Tor Vergata university is also operating a meteorological station (SP2000, CAE

  13. Estimates of common ragweed pollen emission and dispersion over Europe using RegCM-pollen model

    NASA Astrophysics Data System (ADS)

    Liu, L.; Solmon, F.; Vautard, R.; Hamaoui-Laguel, L.; Torma, Cs. Zs.; Giorgi, F.

    2015-11-01

    Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic and invasive plant in Europe. Its pollen can be transported over large distances and has been recognized as a significant cause of hayfever and asthma (D'Amato et al., 2007; Burbach et al., 2009). To simulate production and dispersion of common ragweed pollen, we implement a pollen emission and transport module in the Regional Climate Model (RegCM) version 4 using the framework of the Community Land Model (CLM) version 4.5. In the online model environment where climate is integrated with dispersion and vegetation production, pollen emissions are calculated based on the modelling of plant distribution, pollen production, species-specific phenology, flowering probability, and flux response to meteorological conditions. A pollen tracer model is used to describe pollen advective transport, turbulent mixing, dry and wet deposition. The model is then applied and evaluated on a European domain for the period 2000-2010. To reduce the large uncertainties notably due to ragweed density distribution on pollen emission, a calibration based on airborne pollen observations is used. Resulting simulations show that the model captures the gross features of the pollen concentrations found in Europe, and reproduce reasonably both the spatial and temporal patterns of flowering season and associated pollen concentrations measured over Europe. The model can explain 68.6, 39.2, and 34.3 % of the observed variance in starting, central, and ending dates of the pollen season with associated root mean square error (RMSE) equal to 4.7, 3.9, and 7.0 days, respectively. The correlation between simulated and observed daily concentrations time series reaches 0.69. Statistical scores show that the model performs better over the central Europe source region where pollen loads are larger. From these simulations health risks associated common ragweed pollen spread are then evaluated through calculation of exposure time above health

  14. Allergenic pollen season variations in the past two decades under changing climate in the United States.

    PubMed

    Zhang, Yong; Bielory, Leonard; Mi, Zhongyuan; Cai, Ting; Robock, Alan; Georgopoulos, Panos

    2015-04-01

    Many diseases are linked with climate trends and variations. In particular, climate change is expected to alter the spatiotemporal dynamics of allergenic airborne pollen and potentially increase occurrence of allergic airway disease. Understanding the spatiotemporal patterns of changes in pollen season timing and levels is thus important in assessing climate impacts on aerobiology and allergy caused by allergenic airborne pollen. Here, we describe the spatiotemporal patterns of changes in the seasonal timing and levels of allergenic airborne pollen for multiple taxa in different climate regions at a continental scale. The allergenic pollen seasons of representative trees, weeds and grass during the past decade (2001-2010) across the contiguous United States have been observed to start 3.0 [95% Confidence Interval (CI), 1.1-4.9] days earlier on average than in the 1990s (1994-2000). The average peak value and annual total of daily counted airborne pollen have increased by 42.4% (95% CI, 21.9-62.9%) and 46.0% (95% CI, 21.5-70.5%), respectively. Changes of pollen season timing and airborne levels depend on latitude, and are associated with changes of growing degree days, frost free days, and precipitation. These changes are likely due to recent climate change and particularly the enhanced warming and precipitation at higher latitudes in the contiguous United States.

  15. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing

    NASA Astrophysics Data System (ADS)

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2016-08-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture—for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments—as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series—daily Poaceae pollen concentrations over the period 2006-2014—was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  16. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing

    NASA Astrophysics Data System (ADS)

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2017-02-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture—for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments—as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series—daily Poaceae pollen concentrations over the period 2006-2014—was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  17. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing.

    PubMed

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2017-02-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture-for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments-as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series-daily Poaceae pollen concentrations over the period 2006-2014-was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  18. Pollen Allergens for Molecular Diagnosis.

    PubMed

    Pablos, Isabel; Wildner, Sabrina; Asam, Claudia; Wallner, Michael; Gadermaier, Gabriele

    2016-04-01

    Pollen allergens are one of the main causes of type I allergies affecting up to 30% of the population in industrialized countries. Climatic changes affect the duration and intensity of pollen seasons and may together with pollution contribute to increased incidences of respiratory allergy and asthma. Allergenic grasses, trees, and weeds often present similar habitats and flowering periods compromising clinical anamnesis. Molecule-based approaches enable distinction between genuine sensitization and clinically mostly irrelevant IgE cross-reactivity due to, e. g., panallergens or carbohydrate determinants. In addition, sensitivity as well as specificity can be improved and lead to identification of the primary sensitizing source which is particularly beneficial regarding polysensitized patients. This review gives an overview on relevant pollen allergens and their usefulness in daily practice. Appropriate allergy diagnosis is directly influencing decisions for therapeutic interventions, and thus, reliable biomarkers are pivotal when considering allergen immunotherapy in the context of precision medicine.

  19. Discriminating Phytoplankton Functional Types (PFTs) in the Coastal Ocean Using the Inversion Algorithm Phydotax and Airborne Imaging Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Palacios, Sherry L.; Schafer, Chris; Broughton, Jennifer; Guild, Liane S.; Kudela, Raphael M.

    2013-01-01

    There is a need in the Biological Oceanography community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand energy flow through ecosystems, to track the fate of carbon in the ocean, and to detect and monitor-for harmful algal blooms (HABs). The ocean color community has responded to this demand with the development of phytoplankton functional type (PFT) discrimination algorithms. These PFT algorithms fall into one of three categories depending on the science application: size-based, biogeochemical function, and taxonomy. The new PFT algorithm Phytoplankton Detection with Optics (PHYDOTax) is an inversion algorithm that discriminates taxon-specific biomass to differentiate among six taxa found in the California Current System: diatoms, dinoflagellates, haptophytes, chlorophytes, cryptophytes, and cyanophytes. PHYDOTax was developed and validated in Monterey Bay, CA for the high resolution imaging spectrometer, Spectroscopic Aerial Mapping System with On-board Navigation (SAMSON - 3.5 nm resolution). PHYDOTax exploits the high spectral resolution of an imaging spectrometer and the improved spatial resolution that airborne data provides for coastal areas. The objective of this study was to apply PHYDOTax to a relatively lower resolution imaging spectrometer to test the algorithm's sensitivity to atmospheric correction, to evaluate capability with other sensors, and to determine if down-sampling spectral resolution would degrade its ability to discriminate among phytoplankton taxa. This study is a part of the larger Hyperspectral Infrared Imager (HyspIRI) airborne simulation campaign which is collecting Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery aboard NASA's ER-2 aircraft during three seasons in each of two years over terrestrial and marine targets in California. Our aquatic component seeks to develop and test algorithms to retrieve water quality properties (e.g. HABs and river plumes) in both marine and in

  20. Discriminating phytoplankton functional types (PFTs) in the coastal ocean using the inversion algorithm PHYDOTax and airborne imaging spectrometer data

    NASA Astrophysics Data System (ADS)

    Palacios, S. L.; Schafer, C. B.; Broughton, J.; Guild, L. S.; Kudela, R. M.

    2013-12-01

    There is a need in the Biological Oceanography community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand energy flow through ecosystems, to track the fate of carbon in the ocean, and to detect and monitor-for harmful algal blooms (HABs). The ocean color community has responded to this demand with the development of phytoplankton functional type (PFT) discrimination algorithms. These PFT algorithms fall into one of three categories depending on the science application: size-based, biogeochemical function, and taxonomy. The new PFT algorithm Phytoplankton Detection with Optics (PHYDOTax) is an inversion algorithm that discriminates taxon-specific biomass to differentiate among six taxa found in the California Current System: diatoms, dinoflagellates, haptophytes, chlorophytes, cryptophytes, and cyanophytes. PHYDOTax was developed and validated in Monterey Bay, CA for the high resolution imaging spectrometer, Spectroscopic Aerial Mapping System with On-board Navigation (SAMSON - 3.5 nm resolution). PHYDOTax exploits the high spectral resolution of an imaging spectrometer and the improved spatial resolution that airborne data provides for coastal areas. The objective of this study was to apply PHYDOTax to a relatively lower resolution imaging spectrometer to test the algorithm's sensitivity to atmospheric correction, to evaluate capability with other sensors, and to determine if down-sampling spectral resolution would degrade its ability to discriminate among phytoplankton taxa. This study is a part of the larger Hyperspectral Infrared Imager (HyspIRI) airborne simulation campaign which is collecting Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery aboard NASA's ER-2 aircraft during three seasons in each of two years over terrestrial and marine targets in California. Our aquatic component seeks to develop and test algorithms to retrieve water quality properties (e.g. HABs and river plumes) in both marine and in

  1. Preservation of cycad and Ginkgo pollen

    USGS Publications Warehouse

    Frederiksen, N.O.

    1978-01-01

    Pollen grains of Ginkgo, Cycas, and Encephalartos were chemically treated together with pollen of Quercus, Alnus, and Pinus, the latter three genera being used as standards. The experiments showed that: (1) boiling the pollen for 8-10 hours in 10% KOH had little if any effect on any of the grains; (2) lengthy acetolysis treatment produced some degradation or corrosion, particularly in Ginkgo and Cycas, but the grains of even these genera remained easily recognizable; (3) oxidation with KMnO4 followed by H2O2 showed that pollen of Ginkgo, Cycas, and Encephalartos remains better preserved than that of Quercus and Alnus, and although Ginkgo and Encephalartos probably are slightly less resistant to oxidation than Pinus, no great differences exists between these monosulcate types and Pinus. Thus the experiments show that, at least for sediments low in bacteria, cycad and Ginkgo pollen should be well represented in the fossil record as far as their preservational capabilities are concerned. ?? 1978.

  2. Differences in concentrations of allergenic pollens and spores at different heights on an agricultural farm in West Bengal, India.

    PubMed

    Chakraborty, P; Gupta-Bhattacharya, S; Chowdhury, I; Majumdar, M R; Chanda, S

    2001-01-01

    The aim of the study was to assess the vertical profile of the major airborne pollen and spore concentration in the lower heights (up to six meters) and to check their allergenic potential causing respiratory allergy in agricultural workers. The study was conducted using rotorod samplers mounted at different heights at weekly intervals for two consecutive years (November 1997-October 1999). The major pollen grains and fungal spores (from mass culture) were collected in bulk and studied by skin-prick tests to detect allergenicity. Of the recorded pollen, 10 major and perennial types (e.g., Poaceae, Cheno-Amaranthaceae, Cyperaceae, Areca, etc.) were considered for comparative analyses. The tree pollen count showed more or less good correlation with increasing heights, whereas herb/shrub members are dominant at lower heights during all the three seasons (winter, summer and rains). The 10 major and perennial fungal spore types included Aspergilli group, Cladosporium, Nigrospora, etc. The smaller spores were dominant at greater heights and larger spores and conidia were more prevalent at lower levels. The total spore count was higher just after the rainy season during winter. In terms of allergenicity, Saccharum officinarum (sugar cane) of Poaceae, showed highest reactivity (70.58%) in skin test carried out in 189 adult agricultural field workers with respiratory disorders living inside the study area. Among fungal spores, Aspergillus japonicus was the strongest allergen, evoking 74.07% positive reactions. Drechslera oryzae, the pathogen causing brown spot of rice was also found to be a potent allergen.

  3. Effects of load type (pollen or nectar) and load mass on hovering metabolic rate and mechanical power output in the honey bee Apis mellifera.

    PubMed

    Feuerbacher, Erica; Fewell, Jennifer H; Roberts, Stephen P; Smith, Elizabeth F; Harrison, Jon F

    2003-06-01

    In this study we tested the effect of pollen and nectar loading on metabolic rate (in mW) and wingbeat frequency during hovering, and also examined the effect of pollen loading on wing kinematics and mechanical power output. Pollen foragers had hovering metabolic rates approximately 10% higher than nectar foragers, regardless of the amount of load carried. Pollen foragers also had a more horizontal body position and higher inclination of stroke plane than measured previously for honey bees (probably nectar foragers). Thorax temperatures ranked pollen > nectar > water foragers, and higher flight metabolic rate could explain the higher thorax temperature of pollen foragers. Load mass did not affect hovering metabolic rate or wingbeat frequency in a regression-model experiment. However, using an analysis of variance (ANOVA) design, loaded pollen and nectar foragers (mean loads 27% and 40% of body mass, respectively) significantly increased metabolic rate by 6%. Mean pollen loads of 18% of body mass had no effect on wingbeat frequency, stroke amplitude, body angle or inclination of stroke plane, but increased the calculated mechanical power output by 16-18% (depending on the method of estimating drag). A rise in lift coefficient as bees carry loads without increasing wingbeat frequency or stroke amplitude (and only minimal increases in metabolic rate) suggests an increased use of unsteady power-generating mechanisms.

  4. Large Eddy Simulation of Pollen Transport in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Chamecki, Marcelo; Meneveau, Charles; Parlange, Marc B.

    2007-11-01

    The development of genetically modified crops and questions about cross-pollination and contamination of natural plant populations enhanced the importance of understanding wind dispersion of airborne pollen. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using large eddy simulation. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of great importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. The velocity field is discretized using a pseudospectral approach. However the application of the same discretization scheme to the pollen equation generates unphysical solutions (i.e. negative concentrations). The finite-volume bounded scheme SMART is used for the pollen equation. A conservative interpolation scheme to determine the velocity field on the finite volume surfaces was developed. The implementation is validated against field experiments of point source and area field releases of pollen.

  5. Stochastic gradient boosting classification trees for forest fuel types mapping through airborne laser scanning and IRS LISS-III imagery

    NASA Astrophysics Data System (ADS)

    Chirici, G.; Scotti, R.; Montaghi, A.; Barbati, A.; Cartisano, R.; Lopez, G.; Marchetti, M.; McRoberts, R. E.; Olsson, H.; Corona, P.

    2013-12-01

    This paper presents an application of Airborne Laser Scanning (ALS) data in conjunction with an IRS LISS-III image for mapping forest fuel types. For two study areas of 165 km2 and 487 km2 in Sicily (Italy), 16,761 plots of size 30-m × 30-m were distributed using a tessellation-based stratified sampling scheme. ALS metrics and spectral signatures from IRS extracted for each plot were used as predictors to classify forest fuel types observed and identified by photointerpretation and fieldwork. Following use of traditional parametric methods that produced unsatisfactory results, three non-parametric classification approaches were tested: (i) classification and regression tree (CART), (ii) the CART bagging method called Random Forests, and (iii) the CART bagging/boosting stochastic gradient boosting (SGB) approach. This contribution summarizes previous experiences using ALS data for estimating forest variables useful for fire management in general and for fuel type mapping, in particular. It summarizes characteristics of classification and regression trees, presents the pre-processing operation, the classification algorithms, and the achieved results. The results demonstrated superiority of the SGB method with overall accuracy of 84%. The most relevant ALS metric was canopy cover, defined as the percent of non-ground returns. Other relevant metrics included the spectral information from IRS and several other ALS metrics such as percentiles of the height distribution, the mean height of all returns, and the number of returns.

  6. Immersion freezing of birch pollen washing water

    NASA Astrophysics Data System (ADS)

    Augustin, S.; Wex, H.; Niedermeier, D.; Pummer, B.; Grothe, H.; Hartmann, S.; Tomsche, L.; Clauss, T.; Voigtländer, J.; Ignatius, K.; Stratmann, F.

    2013-11-01

    Birch pollen grains are known to be ice nucleating active biological particles. The ice nucleating activity has previously been tracked down to biological macromolecules that can be easily extracted from the pollen grains in water. In the present study, we investigated the immersion freezing behavior of these ice nucleating active (INA) macromolecules. Therefore we measured the frozen fractions of particles generated from birch pollen washing water as a function of temperature at the Leipzig Aerosol Cloud Interaction Simulator (LACIS). Two different birch pollen samples were considered, with one originating from Sweden and one from the Czech Republic. For the Czech and Swedish birch pollen samples, freezing was observed to start at -19 and -17 °C, respectively. The fraction of frozen droplets increased for both samples down to -24 °C. Further cooling did not increase the frozen fractions any more. Instead, a plateau formed at frozen fractions below 1. This fact could be used to determine the amount of INA macromolecules in the droplets examined here, which in turn allowed for the determination of nucleation rates for single INA macromolecules. The main differences between the Swedish birch pollen and the Czech birch pollen were obvious in the temperature range between -17 and -24 °C. In this range, a second plateau region could be seen for Swedish birch pollen. As we assume INA macromolecules to be the reason for the ice nucleation, we concluded that birch pollen is able to produce at least two different types of INA macromolecules. We were able to derive parameterizations for the heterogeneous nucleation rates for both INA macromolecule types, using two different methods: a simple exponential fit and the Soccer ball model. With these parameterization methods we were able to describe the ice nucleation behavior of single INA macromolecules from both the Czech and the Swedish birch pollen.

  7. Hygroscopic weight gain of pollen grains from Juniperus species

    NASA Astrophysics Data System (ADS)

    Bunderson, Landon D.; Levetin, Estelle

    2015-05-01

    Juniperus pollen is highly allergenic and is produced in large quantities across Texas, Oklahoma, and New Mexico. The pollen negatively affects human populations adjacent to the trees, and since it can be transported hundreds of kilometers by the wind, it also affects people who are far from the source. Predicting and tracking long-distance transport of pollen is difficult and complex. One parameter that has been understudied is the hygroscopic weight gain of pollen. It is believed that juniper pollen gains weight as humidity increases which could affect settling rate of pollen and thus affect pollen transport. This study was undertaken to examine how changes in relative humidity affect pollen weight, diameter, and settling rate. Juniperus ashei, Juniperus monosperma, and Juniperus pinchotii pollen were applied to greased microscope slides and placed in incubation chambers under a range of temperature and humidity levels. Pollen on slides were weighed using an analytical balance at 2- and 6-h intervals. The size of the pollen was also measured in order to calculate settling rate using Stokes' Law. All pollen types gained weight as humidity increased. The greatest settling rate increase was exhibited by J. pinchotii which increased by 24 %.

  8. Hygroscopic weight gain of pollen grains from Juniperus species.

    PubMed

    Bunderson, Landon D; Levetin, Estelle

    2015-05-01

    Juniperus pollen is highly allergenic and is produced in large quantities across Texas, Oklahoma, and New Mexico. The pollen negatively affects human populations adjacent to the trees, and since it can be transported hundreds of kilometers by the wind, it also affects people who are far from the source. Predicting and tracking long-distance transport of pollen is difficult and complex. One parameter that has been understudied is the hygroscopic weight gain of pollen. It is believed that juniper pollen gains weight as humidity increases which could affect settling rate of pollen and thus affect pollen transport. This study was undertaken to examine how changes in relative humidity affect pollen weight, diameter, and settling rate. Juniperus ashei, Juniperus monosperma, and Juniperus pinchotii pollen were applied to greased microscope slides and placed in incubation chambers under a range of temperature and humidity levels. Pollen on slides were weighed using an analytical balance at 2- and 6-h intervals. The size of the pollen was also measured in order to calculate settling rate using Stokes' Law. All pollen types gained weight as humidity increased. The greatest settling rate increase was exhibited by J. pinchotii which increased by 24 %.

  9. Aerodynamics of saccate pollen and its implications for wind pollination.

    PubMed

    Schwendemann, Andrew B; Wang, George; Mertz, Meredith L; McWilliams, Ryan T; Thatcher, Scott L; Osborn, Jeffrey M

    2007-08-01

    Pollen grains of many wind-pollinated plants contain 1-3 air-filled bladders, or sacci. Sacci are thought to help orient the pollen grain in the pollination droplet. Sacci also increase surface area of the pollen grain, yet add minimal mass, thereby increasing dispersal distance; however, this aerodynamic hypothesis has not been tested in a published study. Using scanning electron and transmission electron microscopy, mathematical modeling, and the saccate pollen of three extant conifers with structurally different pollen grains (Pinus, Falcatifolium, Dacrydium), we developed a computational model to investigate pollen flight. The model calculates terminal settling velocity based on structural characters of the pollen grain, including lengths, widths, and depths of the main body and sacci; angle of saccus rotation; and thicknesses of the saccus wall, endoreticulations, intine, and exine. The settling speeds predicted by the model were empirically validated by stroboscopic photography. This study is the first to quantitatively demonstrate the adaptive significance of sacci for the aerodynamics of wind pollination. Modeling pollen both with and without sacci indicated that sacci can reduce pollen settling speeds, thereby increasing dispersal distance, with the exception of pollen grains having robust endoreticulations and those with thick saccus walls. Furthermore, because the mathematical model is based on structural characters and error propagation methods show that the model yields valid results when sample sizes are small, the flight dynamics of fossil pollen can be investigated. Several fossils were studied, including bisaccate (Pinus, Pteruchus, Caytonanthus), monosaccate (Gothania), and nonsaccate (Monoletes) pollen types.

  10. Pollen tube development.

    PubMed

    Johnson, Mark A; Kost, Benedikt

    2010-01-01

    Pollen tubes grow rapidly in a strictly polarized manner as they transport male reproductive cells through female flower tissues to bring about fertilization. Vegetative pollen tube cells are an excellent model system to investigate processes underlying directional cell expansion. In this chapter, we describe materials and methods required for (1) the identification of novel factors essential for polarized cell growth through the isolation and analysis of Arabidopsis mutants with defects in pollen tube growth and (2) the detailed functional characterization of pollen tube proteins based on transient transformation and microscopic analysis of cultured tobacco pollen tubes.

  11. A biology-driven receptor model for daily pollen allergy risk in Korea based on Weibull probability density function

    NASA Astrophysics Data System (ADS)

    Kim, Kyu Rang; Kim, Mijin; Choe, Ho-Seong; Han, Mae Ja; Lee, Hye-Rim; Oh, Jae-Won; Kim, Baek-Jo

    2016-07-01

    Pollen is an important cause of respiratory allergic reactions. As individual sanitation has improved, allergy risk has increased, and this trend is expected to continue due to climate change. Atmospheric pollen concentration is highly influenced by weather conditions. Regression analysis and modeling of the relationships between airborne pollen concentrations and weather conditions were performed to analyze and forecast pollen conditions. Traditionally, daily pollen concentration has been estimated using regression models that describe the relationships between observed pollen concentrations and weather conditions. These models were able to forecast daily concentrations at the sites of observation, but lacked broader spatial applicability beyond those sites. To overcome this limitation, an integrated modeling scheme was developed that is designed to represent the underlying processes of pollen production and distribution. A maximum potential for airborne pollen is first determined using the Weibull probability density function. Then, daily pollen concentration is estimated using multiple regression models. Daily risk grade levels are determined based on the risk criteria used in Korea. The mean percentages of agreement between the observed and estimated levels were 81.4-88.2 % and 92.5-98.5 % for oak and Japanese hop pollens, respectively. The new models estimated daily pollen risk more accurately than the original statistical models because of the newly integrated biological response curves. Although they overestimated seasonal mean concentration, they did not simulate all of the peak concentrations. This issue would be resolved by adding more variables that affect the prevalence and internal maturity of pollens.

  12. A biology-driven receptor model for daily pollen allergy risk in Korea based on Weibull probability density function

    NASA Astrophysics Data System (ADS)

    Kim, Kyu Rang; Kim, Mijin; Choe, Ho-Seong; Han, Mae Ja; Lee, Hye-Rim; Oh, Jae-Won; Kim, Baek-Jo

    2017-02-01

    Pollen is an important cause of respiratory allergic reactions. As individual sanitation has improved, allergy risk has increased, and this trend is expected to continue due to climate change. Atmospheric pollen concentration is highly influenced by weather conditions. Regression analysis and modeling of the relationships between airborne pollen concentrations and weather conditions were performed to analyze and forecast pollen conditions. Traditionally, daily pollen concentration has been estimated using regression models that describe the relationships between observed pollen concentrations and weather conditions. These models were able to forecast daily concentrations at the sites of observation, but lacked broader spatial applicability beyond those sites. To overcome this limitation, an integrated modeling scheme was developed that is designed to represent the underlying processes of pollen production and distribution. A maximum potential for airborne pollen is first determined using the Weibull probability density function. Then, daily pollen concentration is estimated using multiple regression models. Daily risk grade levels are determined based on the risk criteria used in Korea. The mean percentages of agreement between the observed and estimated levels were 81.4-88.2 % and 92.5-98.5 % for oak and Japanese hop pollens, respectively. The new models estimated daily pollen risk more accurately than the original statistical models because of the newly integrated biological response curves. Although they overestimated seasonal mean concentration, they did not simulate all of the peak concentrations. This issue would be resolved by adding more variables that affect the prevalence and internal maturity of pollens.

  13. Fullerene fine particles adhere to pollen grains and affect their autofluorescence and germination.

    PubMed

    Aoyagi, Hideki; Ugwu, Charles U

    2011-01-01

    Adhesion of commercially produced fullerene fine particles to Cryptomeria japonica, Chamaecyparis obtusa and Camellia japonica pollen grains was investigated. The autofluorescence of pollen grains was affected by the adhesion of fullerene fine particles to the pollen grains. The degree of adhesion of fullerene fine particles to the pollen grains varied depending on the type of fullerene. Furthermore, germination of Camellia japonica pollen grains was inhibited by the adhesion of fullerene fine particles.

  14. Grass Pollen Allergens

    PubMed Central

    Augustin, Rosa

    1959-01-01

    Grass pollen allergens are shown to remain associated with protein material and a yellow pigment during paper chromatography and during dialyses and ultrafiltrations of various types. Dialysable* allergens comprise only a fraction of 1 per cent of the total activity and the amount of activity extractable by diethylene glycol (DEG) and similar solvents is of the same order. Besides the allergens, the DEG and aqueous extracts contain large amounts of inositol, glucose and fructose, also some yellow pigments and phosphates. Larger amounts of free and combined amino acids are found in the aqueous than in the DEG extracts, but the reverse is true for sucrose. In addition the DEG extracts contain a yellow glucoside different from the dactylen of the aqueous extracts, a glucosan and an arabinose-galactose-pigment complex, only the latter being associated with any activity. The spontaneous release of the crystalline dactylen from originally clear aqueous pollen extracts is found not to be caused by enzymes. The washed crystals are found to be chromatographically and electrophoretically homogeneous and devoid of allergenic activity. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7 PMID:13640676

  15. Christmas tree allergy: mould and pollen studies.

    PubMed

    Wyse, D M; Malloch, D

    1970-12-05

    A history of respiratory or other allergic symptoms during the Christmas season is occasionally obtained from allergic patients and can be related to exposure to conifers at home or in school. Incidence and mechanism of production of these symptoms were studied. Of 1657 allergic patients, respiratory and skin allergies to conifers occurred in 7%. This seasonal syndrome includes sneezing, wheezing and transitory skin rashes. The majority of patients develop their disease within 24 hours, but 15% experience symptoms after several days' delay. Mould and pollen studies were carried out in 10 test sites before, during and after tree placement in the home. Scrapings from pine and spruce bark yielded large numbers of Penicillium, Epicoccum and Alternaria, but these failed to become airborne. No significant alteration was discovered in the airborne fungi in houses when trees were present. Pollen studies showed release into air of weed, grass and tree pollens while Christmas trees were in the house. Oleoresins of the tree balsam are thought to be the most likely cause of the symptoms designated as Christmas tree allergy.

  16. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments.

    PubMed

    Bowers, Robert M; McLetchie, Shawna; Knight, Rob; Fierer, Noah

    2011-04-01

    Although bacteria are ubiquitous in the near-surface atmosphere and they can have important effects on human health, airborne bacteria have received relatively little attention and their spatial dynamics remain poorly understood. Owing to differences in meteorological conditions and the potential sources of airborne bacteria, we would expect the atmosphere over different land-use types to harbor distinct bacterial communities. To test this hypothesis, we sampled the near-surface atmosphere above three distinct land-use types (agricultural fields, suburban areas and forests) across northern Colorado, USA, sampling five sites per land-use type. Microbial abundances were stable across land-use types, with ∼10(5)-10(6) bacterial cells per m(3) of air, but the concentrations of biological ice nuclei, determined using a droplet freezing assay, were on average two and eight times higher in samples from agricultural areas than in the other two land-use types. Likewise, the composition of the airborne bacterial communities, assessed via bar-coded pyrosequencing, was significantly related to land-use type and these differences were likely driven by shifts in the sources of bacteria to the atmosphere across the land-uses, not local meteorological conditions. A meta-analysis of previously published data shows that atmospheric bacterial communities differ from those in potential source environments (leaf surfaces and soils), and we demonstrate that we may be able to use this information to determine the relative inputs of bacteria from these source environments to the atmosphere. This work furthers our understanding of bacterial diversity in the atmosphere, the terrestrial controls on this diversity and potential approaches for source tracking of airborne bacteria.

  17. Variability within the 10-Year Pollen Rain of a Seasonal Neotropical Forest and Its Implications for Paleoenvironmental and Phenological Research

    PubMed Central

    Haselhorst, Derek S.; Moreno, J. Enrique; Punyasena, Surangi W.

    2013-01-01

    Tropical paleoecologists use a combination of mud-water interface and modern pollen rain samples (local samples of airborne pollen) to interpret compositional changes within fossil pollen records. Taxonomic similarities between the composition of modern assemblages and fossil samples are the basis of reconstructing paleoclimates and paleoenvironments. Surface sediment samples reflect a time-averaged accumulation of pollen spanning several years or more. Due to experimental constraints, modern pollen rain samples are generally collected over shorter timeframes (1–3 years) and are therefore less likely to capture the full range of natural variability in pollen rain composition and abundance. This potentially biases paleoenvironmental interpretations based on modern pollen rain transfer functions. To determine the degree to which short-term environmental change affects the composition of the aerial pollen flux of Neotropical forests, we sampled ten years of the seasonal pollen rain from Barro Colorado Island, Panama and compared it to climatic and environmental data over the same ten-year span. We establish that the pollen rain effectively captured the strong seasonality and stratification of pollen flow within the forest canopy and that individual taxa had variable sensitivity to seasonal and annual changes in environmental conditions, manifested as changes in pollen productivity. We conclude that modern pollen rain samples capture the reproductive response of moist tropical plants to short-term environmental change, but that consequently, pollen rain-based calibrations need to include longer sampling periods (≥7 years) to reflect the full range of natural variability in the pollen output of a forest and simulate the time-averaging present in sediment samples. Our results also demonstrate that over the long-term, pollen traps placed in the forest understory are representative samples of the pollen output of both canopy and understory vegetation. Aerial pollen

  18. Variability within the 10-year pollen rain of a seasonal neotropical forest and its implications for paleoenvironmental and phenological research.

    PubMed

    Haselhorst, Derek S; Moreno, J Enrique; Punyasena, Surangi W

    2013-01-01

    Tropical paleoecologists use a combination of mud-water interface and modern pollen rain samples (local samples of airborne pollen) to interpret compositional changes within fossil pollen records. Taxonomic similarities between the composition of modern assemblages and fossil samples are the basis of reconstructing paleoclimates and paleoenvironments. Surface sediment samples reflect a time-averaged accumulation of pollen spanning several years or more. Due to experimental constraints, modern pollen rain samples are generally collected over shorter timeframes (1-3 years) and are therefore less likely to capture the full range of natural variability in pollen rain composition and abundance. This potentially biases paleoenvironmental interpretations based on modern pollen rain transfer functions. To determine the degree to which short-term environmental change affects the composition of the aerial pollen flux of Neotropical forests, we sampled ten years of the seasonal pollen rain from Barro Colorado Island, Panama and compared it to climatic and environmental data over the same ten-year span. We establish that the pollen rain effectively captured the strong seasonality and stratification of pollen flow within the forest canopy and that individual taxa had variable sensitivity to seasonal and annual changes in environmental conditions, manifested as changes in pollen productivity. We conclude that modern pollen rain samples capture the reproductive response of moist tropical plants to short-term environmental change, but that consequently, pollen rain-based calibrations need to include longer sampling periods (≥7 years) to reflect the full range of natural variability in the pollen output of a forest and simulate the time-averaging present in sediment samples. Our results also demonstrate that over the long-term, pollen traps placed in the forest understory are representative samples of the pollen output of both canopy and understory vegetation. Aerial pollen traps

  19. PECTIN METHYLESTERASE48 is involved in Arabidopsis pollen grain germination.

    PubMed

    Leroux, Christelle; Bouton, Sophie; Kiefer-Meyer, Marie-Christine; Fabrice, Tohnyui Ndinyanka; Mareck, Alain; Guénin, Stéphanie; Fournet, Françoise; Ringli, Christoph; Pelloux, Jérôme; Driouich, Azeddine; Lerouge, Patrice; Lehner, Arnaud; Mollet, Jean-Claude

    2015-02-01

    Germination of pollen grains is a crucial step in plant reproduction. However, the molecular mechanisms involved remain unclear. We investigated the role of PECTIN METHYLESTERASE48 (PME48), an enzyme implicated in the remodeling of pectins in Arabidopsis (Arabidopsis thaliana) pollen. A combination of functional genomics, gene expression, in vivo and in vitro pollen germination, immunolabeling, and biochemical analyses was used on wild-type and Atpme48 mutant plants. We showed that AtPME48 is specifically expressed in the male gametophyte and is the second most expressed PME in dry and imbibed pollen grains. Pollen grains from homozygous mutant lines displayed a significant delay in imbibition and germination in vitro and in vivo. Moreover, numerous pollen grains showed two tips emerging instead of one in the wild type. Immunolabeling and Fourier transform infrared analyses showed that the degree of methylesterification of the homogalacturonan was higher in pme48-/- pollen grains. In contrast, the PME activity was lower in pme48-/-, partly due to a reduction of PME48 activity revealed by zymogram. Interestingly, the wild-type phenotype was restored in pme48-/- with the optimum germination medium supplemented with 2.5 mm calcium chloride, suggesting that in the wild-type pollen, the weakly methylesterified homogalacturonan is a source of Ca(2+) necessary for pollen germination. Although pollen-specific PMEs are traditionally associated with pollen tube elongation, this study provides strong evidence that PME48 impacts the mechanical properties of the intine wall during maturation of the pollen grain, which, in turn, influences pollen grain germination.

  20. Influence of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter?

    PubMed Central

    Di Pasquale, Garance; Salignon, Marion; Le Conte, Yves; Belzunces, Luc P.; Decourtye, Axel; Kretzschmar, André; Suchail, Séverine; Brunet, Jean-Luc; Alaux, Cédric

    2013-01-01

    Honey bee colonies are highly dependent upon the availability of floral resources from which they get the nutrients (notably pollen) necessary to their development and survival. However, foraging areas are currently affected by the intensification of agriculture and landscape alteration. Bees are therefore confronted to disparities in time and space of floral resource abundance, type and diversity, which might provide inadequate nutrition and endanger colonies. The beneficial influence of pollen availability on bee health is well-established but whether quality and diversity of pollen diets can modify bee health remains largely unknown. We therefore tested the influence of pollen diet quality (different monofloral pollens) and diversity (polyfloral pollen diet) on the physiology of young nurse bees, which have a distinct nutritional physiology (e.g. hypopharyngeal gland development and vitellogenin level), and on the tolerance to the microsporidian parasite Nosemaceranae by measuring bee survival and the activity of different enzymes potentially involved in bee health and defense response (glutathione-S-transferase (detoxification), phenoloxidase (immunity) and alkaline phosphatase (metabolism)). We found that both nurse bee physiology and the tolerance to the parasite were affected by pollen quality. Pollen diet diversity had no effect on the nurse bee physiology and the survival of healthy bees. However, when parasitized, bees fed with the polyfloral blend lived longer than bees fed with monofloral pollens, excepted for the protein-richest monofloral pollen. Furthermore, the survival was positively correlated to alkaline phosphatase activity in healthy bees and to phenoloxydase activities in infected bees. Our results support the idea that both the quality and diversity (in a specific context) of pollen can shape bee physiology and might help to better understand the influence of agriculture and land-use intensification on bee nutrition and health. PMID:23940803

  1. Effects of CO₂ on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates.

    PubMed

    Silva, M; Ribeiro, H; Abreu, I; Cruz, A; Esteves da Silva, J C G

    2015-05-01

    Atmospheric gaseous pollutants can induce qualitative and quantitative changes in airborne pollen characteristics. In this work, it was investigated the effects of carbon dioxide (CO2) on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates. Pollen was collected directly from the anthers and in vitro exposed to three CO2 levels (500, 1000, and 3000 ppm) for 6 and 24 h in an environmental chamber. Pollen fertility was determined using viability and germination assays, total soluble protein was determined with Coomassie Protein Assay Reagent, and the antigenic and allergenic properties were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunological techniques using patients' sera. Also, pollen fructose, sucrose, and glucose values were determined. Carbon dioxide exposure affected negatively pollen fertility, total soluble protein content, and fructose content. The patient sera revealed increased IgE reactivity to proteins of A. negundo pollen exposed to increasing levels of the pollutant. No changes were detected in the SDS-PAGE protein profiles and in sucrose and glucose levels. Our results indicate that increase in atmospheric CO2 concentrations can have a negative influence of some features of A. negundo airborne pollen that can influence the reproductive processes as well as respiratory pollen allergies in the future.

  2. A combinatorial morphospace for angiosperm pollen

    NASA Astrophysics Data System (ADS)

    Mander, Luke

    2016-04-01

    The morphology of angiosperm (flowering plant) pollen is extraordinarily diverse. This diversity results from variations in the morphology of discrete anatomical components. These components include the overall shape of a pollen grain, the stratification of the exine, the number and form of any apertures, the type of dispersal unit, and the nature of any surface ornamentation. Different angiosperm pollen morphotypes reflect different combinations of these discrete components. In this talk, I ask the following question: given the anatomical components of angiosperm pollen that are known to exist in the plant kingdom, how many unique biologically plausible combinations of these components are there? I explore this question from the perspective of enumerative combinatorics using an algorithm I have written in the Python programming language. This algorithm (1) calculates the number of combinations of these components; (2) enumerates those combinations; and (3) graphically displays those combinations. The result is a combinatorial morphospace that reflects an underlying notion that the process of morphogenesis in angiosperm pollen can be thought of as an n choose k counting problem. I compare the morphology of extant and fossil angiosperm pollen grains to this morphospace, and suggest that from a combinatorial point of view angiosperm pollen is not as diverse as it could be, which may be a result of developmental constraints.

  3. [Birch pollen allergy].

    PubMed

    Lavaud, F; Fore, M; Fontaine, J-F; Pérotin, J M; de Blay, F

    2014-02-01

    In the North-East of France, birch is the main tree responsible of spring pollen allergy. However, the epidemiology of sensitization to birch pollen remains unclear. Monosensitization to birch pollen seems rare because of the frequency of cross-reactions with other pollens of the same botanical family via the major allergen Bet v 1. Around one third of patients with allergic rhinoconjunctivitis due to birch pollen are also asthmatics and a half suffer from a food allergy, essentially an oral syndrome due to rosaceae fruits eaten raw. The molecular allergens of birch pollen are well-known and have been cloned. They are available for use in in vitro diagnostic tests and also in clinical trials of specific immunotherapy.

  4. [Regional and extra-local pollen in tundra pollen samples].

    PubMed

    Vasil'chuk, A K

    2005-01-01

    Patterns of pollen spectra formation in the tundra zone of Eurasia were considered. Changes in total pollen concentration were traced in subfossil pollen samples of the tundra zone. The data on subfossil pollen spectra were used to evaluate the proportion between local and regional plus extra-local components of tundra pollen samples as well as the changes in concentration of pollen of Scots and Siberian stone pines as well as of tree and shrub birches. The diameter of dwarf birch pollen was determined in different tundra subzones of Western Siberia. The role of extra-local and regional pollen was considered for all vegetation subzones of tundra.

  5. Comparison of field and airborne laser scanning based crown cover estimates across land cover types in Kenya

    NASA Astrophysics Data System (ADS)

    Heiskanen, J.; Korhonen, L.; Hietanen, J.; Heikinheimo, V.; Schafer, E.; Pellikka, P. K. E.

    2015-04-01

    Tree crown cover (CC) provides means for the continuous land cover characterization of complex tropical landscapes with multiple land uses and variable degrees of degradation. It is also a key parameter in the international forest definitions that are basis for monitoring global forest cover changes. Recently, airborne laser scanning (ALS) has emerged as a practical method for accurate CC mapping, but ALS derived CC estimates have rarely been assessed with field data in the tropics. Here, our objective was to compare the various field and ALS based CC estimates across multiple land cover types in the Taita Hills, Kenya. The field data was measured from a total of 178 sample plots (0.1 ha) in 2013 and 2014. The most accurate field measurement method, line intersect sampling using Cajanus tube, was used in 37 plots. Other methods included CC estimate based on the tree inventory data (144 plots), crown relascope (43 plots) and hemispherical photography (30 plots). Three ALS data sets, including two scanners and flying heights, were acquired concurrently with the field data collection. According to the results, the first echo cover index (FCI) from ALS data had good agreement with the most accurate field based CC estimates (RMSD 7.1% and 2.7% depending on the area and scan). The agreement with other field based methods was considerably worse. Furthermore, we observed that ALS cover indices were robust between the different scans in the overlapping area. In conclusion, our results suggest that ALS provides a reliable method for continuous CC mapping across tropical land cover types although dense shrub layer and tree-like herbaceous plants can cause overestimation of CC.

  6. Size distributions of airborne microbes in moisture-damaged and reference school buildings of two construction types

    NASA Astrophysics Data System (ADS)

    Meklin, T.; Reponen, T.; Toivola, M.; Koponen, V.; Husman, T.; Hyvärinen, A.; Nevalainen, A.

    Any risk assessment of moisture-damaged buildings requires an accurate characterization of the factors contributing to the human exposure. In this study, the size distributions of indoor air viable fungi and bacteria and average mean diameters of the most common fungi in school buildings were determined. One special focus was to analyze how the microbial size distributions are affected by the building frame (either wooden or concrete) and moisture damage in the building. The study was performed in 32 school buildings classified as moisture-damaged (index) and non-damaged (reference) schools according to technical building investigations. Sampling for indoor air microbes was carried out using a cascade impactor that collects particles on six stages (range from 0.65 to >7 μm) according to their aerodynamic diameters. Both wooden and concrete schools had their highest fungal levels in the size range of 1.1-4.7 μm. However, the concentrations of fungi in all size classes were higher in wooden schools than in concrete schools. Moisture damage-associated differences in size distribution, in the particle size range of 1.1-2.1 μm, were seen in concrete schools but not in wooden schools. In general, the average geometric mean diameter ( dg,ave) of total viable fungi was smaller in wooden schools than in concrete schools, and smaller in index schools of both construction types than in their reference schools. Variation in particle size, however, by genus was observed. No differences in particle size distributions of viable airborne bacteria were found. Our results on the dependency of the particle size on the building type and presence of moisture damage provide an interesting point to be considered in assessing the complex issue of indoor-related bioaerosol exposures.

  7. Exposure to grass pollen--but not birch pollen--affects lung function in Swedish children.

    PubMed

    Gruzieva, O; Pershagen, G; Wickman, M; Melén, E; Hallberg, J; Bellander, T; Lõhmus, M

    2015-09-01

    Allergic response to pollen is increasing worldwide, leading to high medical and social costs. However, the effect of pollen exposure on lung function has rarely been investigated. Over 1800 children in the Swedish birth cohort BAMSE were lung-function- and IgE-tested at the age of 8 and 16 years old. Daily concentrations for 9 pollen types together with measurements for ozone, NO2 , PM10 , PM2.5 were estimated for the index day as well as up to 6 days before the testing. Exposure to grass pollen during the preceding day was associated with a reduced forced expiratory volume in 8-yr-olds; -32.4 ml; 95% CI: -50.6 to -14.2, for an increase in three pollen counts/m³. Associations appeared stronger in children sensitized to pollen allergens. As the grass species flower late in the pollen season, the allergy care routines might be weakened during this period. Therefore, allergy information may need to be updated to increase awareness among grass pollen-sensitized individuals.

  8. Pollen counts and their relationship to meteorological factors in Ankara, Turkey during 2005-2008

    NASA Astrophysics Data System (ADS)

    Kizilpinar, Ilginc; Civelek, Ersoy; Tuncer, Ayfer; Dogan, Cahit; Karabulut, Erdem; Sahiner, Umit M.; Yavuz, S. Tolga; Sackesen, Cansin

    2011-07-01

    Pollen plays an important role in the development and exacerbation of allergic diseases. We aimed to investigate the days with highest counts of the most allergenic pollens and to identify the meteorological factors affecting pollen counts in the atmosphere of Ankara, Turkey. Airborne pollen measurements were carried out from 2005 to 2008 with a Burkard volumetric 7-day spore trap. Microscope counts were converted into atmospheric concentrations and expressed as pollen grains/m3. Meteorological parameters were obtained from the State Meteorological Service. All statistical analyses were done with pollen counts obtained from March to October for each year. The percentages of tree, grass and weed pollens were 72.1% ( n = 24,923), 12.8% ( n = 4,433) and 15.1% ( n = 5,219), respectively. The Pinaceae family from tree taxa (39% to 57%) and the Chenopodiaceae/Amaranthaceae family from weed taxa, contributed the highest percentage of pollen (25% to 43%), while from the grass taxa, only the Poaceae family was detected from 2005 to 2008. Poaceae and Chenopodiaceae/Amaranthaceae families, which are the most allergenic pollens, were found in high numbers from May to August in Ankara. In multiple logistic regression analysis, wind speed (OR = 1.18, CI95% = 1.02-1.36, P = 0.023) for tree pollen, daily mean temperature (OR = 1.10, CI95% = 1.04-1.17, P = 0.001) and sunshine hours (OR = 1.15, CI95% = 1.01-1.30, P = 0.033) for grass pollen, and sunshine hours (OR = 3.79, CI95% = 1.03-13.92, P = 0.044) for weed pollen were found as significant risk factors for high pollen count. The pollen calendar and its association with meteorological factors depend mainly on daily temperature, sunshine hours and wind speed, which may help draw the attention of physicians and allergic patients to days with high pollen counts.

  9. Seasonal variation of birch and grass pollen loads and allergen release at two sites in the German Alps

    NASA Astrophysics Data System (ADS)

    Jochner, Susanne; Lüpke, Marvin; Laube, Julia; Weichenmeier, Ingrid; Pusch, Gudrun; Traidl-Hoffmann, Claudia; Schmidt-Weber, Carsten; Buters, Jeroen T. M.; Menzel, Annette

    2015-12-01

    Less vegetated mountainous areas may provide better conditions for allergy sufferers. However, atmospheric transport can result in medically relevant pollen loads in such regions. The majority of investigations has focused on the pollen load, expressed as daily averages of pollen per cubic meter of air (pollen grains/m³); however, the severity of allergic symptoms is also determined by the actual allergen content of this pollen, its pollen potency, which may differ between high and low altitudes. We analysed airborne birch and grass pollen concentrations along with allergen content (birch: Bet v 1, grass: Phl p 5) at two different altitudes (734 and 2650 m a.s.l.) in the Zugspitze region (2009-2010). Back-trajectories were calculated for the high altitude site and for specific days with abrupt increases in pollen potency. We observed several days with medically relevant pollen concentrations at the highest site. In addition, a few days with pollen were not associated with allergens and vice versa. The calculated seasonal mean allergen release per pollen grain was 1.8-3.3 pg Bet v 1 and 5.7 pg Phl p 5 in the valley and 1.1-3.7 pg Bet v 1 and 0.7-1.5 pg Phl p 5 at the high altitude site. Back-trajectories revealed that high pollen potency at the higher site was generally associated with south-westerly to south-easterly (birch), or northerly (grass) wind directions. By investigating days with sudden increases in pollen potency, however, it was difficult to draw definitive conclusions on long- or short-range transport. Our findings suggest that people allergic to pollen might suffer less at higher altitudes and further indicate that a risk assessment relying on the actual concentration of airborne pollen does not necessarily reflect the actual allergy exposure of individuals.

  10. Wind tunnel and field assessment of pollen dispersal in soybean [Glycine max (L.) Merr.].

    PubMed

    Yoshimura, Yasuyuki

    2011-01-01

    Although genetically modified (GM) soybean has never been cultivated commercially in Japan, it is essential to set up the isolation distance required to prevent out-crossing between GM and conventional soybean in preparation for any future possibility of pollen transfer. The airborne soybean pollen was sampled using some Durham pollen samplers located in the range of 20 m from the field edge. In addition, the dispersal distance was assessed in a wind tunnel under constant air flow and then it was compared with the anticipated distances based on the pollen diameter. In the field, the maximum pollen density per day observed was 1.235 grains cm(-2) day(-1) at three observation points within 2.5 m from the field and inside the field the mean density did not reach the rate of 1 grain cm(-2 )day(-1) during 19 flowering days. The results of the wind tunnel experiment also showed that the plants had almost no airborne release of pollen and the dispersal distance was shorter than theoretical value due to clustered dispersal. This study showed little airborne pollen in and around the soybean field and the dispersal is restricted to a small area. Therefore, wind-mediated pollination appears to be negligible.

  11. Functionality Based Detection of Airborne Engineered Nanoparticles in Quasi Real Time: A New Type of Detector and a New Metric

    PubMed Central

    Neubauer, Nicole

    2013-01-01

    A new type of detector which we call the Catalytic Activity Aerosol Monitor (CAAM) was investigated towards its capability to detect traces of commonly used industrial catalysts in ambient air in quasi real time. Its metric is defined as the catalytic activity concentration (CAC) expressed per volume of sampled workplace air. We thus propose a new metric which expresses the presence of nanoparticles in terms of their functionality - in this case a functionality of potential relevance for damaging effects - rather than their number, surface, or mass concentration in workplace air. The CAAM samples a few micrograms of known or anticipated airborne catalyst material onto a filter first and then initiates a chemical reaction which is specific to that catalyst. The concentration of specific gases is recorded using an IR sensor, thereby giving the desired catalytic activity. Due to a miniaturization effort, the laboratory prototype is compact and portable. Sensitivity and linearity of the CAAM response were investigated with catalytically active palladium and nickel nano-aerosols of known mass concentration and precisely adjustable primary particle size in the range of 3–30nm. With the miniature IR sensor, the smallest detectable particle mass was found to be in the range of a few micrograms, giving estimated sampling times on the order of minutes for workplace aerosol concentrations typically reported in the literature. Tests were also performed in the presence of inert background aerosols of SiO2, TiO2, and Al2O3. It was found that the active material is detectable via its catalytic activity even when the particles are attached to a non-active background aerosol. PMID:23504803

  12. Allergies, asthma, and pollen

    MedlinePlus

    ... Some trees Some grasses Weeds Ragweed Watch the Weather and the Season The amount of pollen in the air can affect whether you or your child has hay fever and asthma symptoms. On hot, dry, windy days, more pollen is in the air. ...

  13. Ultrastructure and germination of Vitis vinifera cv. Loureiro pollen.

    PubMed

    Abreu, I; Costa, I; Oliveira, M; Cunha, M; de Castro, R

    2006-08-01

    The cultivar Loureiro of Vitis vinifera is one of the most economically important, recommended in almost the totality of the Região Demarcada dos Vinhos Verdes. In vineyards, the grape productivity of this cultivar is normal while in others it is extremely low. The aim of this work was to study the morphology and germination of Vitis vinifera cv. Loureiro pollen with high and low productivity. The pollen grain was examined under light, transmission and scanning electron microscopy. Typically V. vinifera pollen present three furrows but in the cultivar Loureiro we found tricolporated and acolporated (without furrows or pores) pollen grains. Both pollen types present generative and vegetative cells with the usual aspect and a dense cytoplasm rich in organelles. In the acolporated pollen a continuous exine layer and an irregular intine layer were observed. Differences were found in the starch accumulation, since only in tricolporated pollen abundant plastids filled with numerous starch granules were observed. To determine the causes of the low productivity of this cultivar we tested pollen viability by the fluorochromatic reaction and pollen germinability by in vitro assays. We observed that the acolporated pollen grain is viable, but no germination was recorded.

  14. Spatial variation of modern pollen in Oregon and southern Washington, USA.

    PubMed

    Minckley; Whitlock

    2000-10-01

    Surface sediments from 95 lakes provide information on the spatial variation of modern pollen spectra in Oregon and southern Washington. Percentages for 13 pollen types were compared within and between vegetation zones to characterize regional patterns of pollen spectra. The percentage data were also compared with climate variables to determine relationships between pollen percentages and regional climate gradients. The composition of modern pollen spectra corresponds well with the distribution of the pollen producers. Most pollen assemblages were generally dominated by Pinus, but those west of the Cascade Range were dominated by Alnus. Low percentages of Pseudotsuga/Larix, Tsuga mertensiana, Abies, and Picea pollen coincided with local occurrence of the trees. The distributions of the pollen data were arranged along gradients of temperature and effective moisture. West of the Cascade Range, Alnus, Tsuga heterophylla, Pseudotsuga/Larix, and Cupressaceae pollen were abundant and correlate well with moderate temperature and high effective moisture. In the shrub-steppe and woodlands east of the Cascade Range, where effective moisture is low, Artemisia, Cupressaceae, and Pinus pollen were dominant. At high elevations, Pinus, T. mertensiana, Abies, and Picea were common pollen types in areas with short growing seasons and high effective moisture. Pollen percentages collected from lake surface sediments, moss polsters, and soils were compared within a number of vegetation types to assess their similarity. The three types of sample yielded similar results for forested areas, but lake sediment samples from upper- and lower-treeline sites captured a more regional picture of the vegetation.

  15. Fertilization recovery system is dependent on the number of pollen grains for efficient reproduction in plants.

    PubMed

    Kasahara, Ryushiro D; Maruyama, Daisuke; Higashiyama, Tetsuya

    2013-04-01

    For over a century, plant fertilization has been thought to depend on the fertility of a single pollen tube. However, we reported recently a "fertilization recovery system" in flowering plants that actively rescues failed fertilization of a defective mutant pollen tube by attracting a second, functional pollen tube. In typical flowering plants, two synergid cells beside the egg cell attract pollen tubes, one of which degenerates upon pollen tube discharge. We observed that fertilization was rescued when the second synergid cell accepted a wild-type pollen tube. Our results suggest that flowering plants precisely control the number of pollen tubes that arrive at each ovule and use a fertilization recovery mechanism to maximize the likelihood of successful seed set. Restricted pollination experiments showed that if sufficient pollen grains are provided, ovules attract a second pollen tube for recovery. These results support our previous finding that a long period of time is required for ovules to complete the system.

  16. Pollen and stigma morphology of some Phaseoleae species (Leguminosae) with different pollinators.

    PubMed

    Basso-Alves, J P; Agostini, K; Teixeira, S de Pádua

    2011-07-01

    Pollen transport to a receptive stigma can be facilitated through different pollinators, which submits the pollen to different selection pressures. This study aimed to associate pollen and stigma morphology with zoophily in species of the tribe Phaseoleae. Species of the genera Erythrina, Macroptilium and Mucuna with different pollinators were chosen. Pollen grains and stigmas were examined under light microscopy (anatomy), scanning electronic microscopy (surface analyses) and transmission electronic microscopy (ultrastructure). The three genera differ in terms of pollen wall ornamentation, pollen size, pollen aperture, thickness of the pollen wall, amount of pollenkitt, pollen hydration status and dominant reserves within the pollen grain, while species within each genus are very similar in most studied characteristics. Most of these features lack relationships to pollinator type, especially in Erythrina and Mucuna. Pollen reserves are discussed on a broad scale, according to the occurrence of protein in the pollen of invertebrate- or vertebrate-pollinated species. Some pollen characteristics are more associated to semi-dry stigma requirements. This apical, compact, cuticularised and secretory stigma occurs in all species investigated. We conclude that data on pollen and stigma structure should be included together with those on floral morphology and pollinator behaviour for the establishment of functional pollination classes.

  17. Taxonomic description of in situ bee pollen from the middle Eocene of Germany

    PubMed Central

    Grímsson, FriĐgeir; Zetter, Reinhard; Labandeira, Conrad C.; Engel, Michael S.; Wappler, Torsten

    2017-01-01

    Abstract The middle Eocene Messel and Eckfeld localities are renowned for their excellently preserved faunas and diverse floras. Here we describe for the first time pollen from insect-pollinated plants found in situ on well-preserved ancient bees using light and scanning electron microscopy. There have been 140 pollen types reported from Messel and 162 pollen types from Eckfeld. Here we document 23 pollen types, six from Messel and 18 from Eckfeld (one is shared). The taxa reported here are all pollinated by insects and mostly not recovered in the previously studied dispersed fossil pollen records. Typically, a single or two pollen types are found on each fossil bee specimen, the maximum number of distinct pollen types on a single individual is five. Only five of the 23 pollen types obtained are angiosperms of unknown affinity, the remainder cover a broad taxonomic range of angiosperm trees and include members of several major clades: monocots (1 pollen type), fabids (7), malvids (4), asterids (5) and other core eudicots (1). Seven types each can be assigned to individual genera or infrafamilial clades. Since bees visit only flowers in the relative vicinity of their habitat, the recovered pollen provides a unique insight into the autochthonous palaeo-flora. The coexistence of taxa such as Decodon, Elaeocarpus, Mortoniodendron and other Tilioideae, Mastixoideae, Olax, Pouteria and Nyssa confirms current views that diverse, thermophilic forests thrived at the Messel and Eckfeld localities, probably under a warm subtropical, fully humid climate. Our study calls for increased attention to pollen found in situ on pollen-harvesting insects such as bees, which can provide new insights on insect-pollinated plants and complement even detailed palaeo-palynological knowledge obtained mostly from pollen of wind-pollinated plants in the dispersed pollen record of sediments. In the case of Elaeocarpus, Mortoniodendron, Olax and Pouteria the pollen collected by the middle Eocene

  18. Suitability of different pollen as alternative food for the predatory mite Amblyseius swirskii (Acari, Phytoseiidae).

    PubMed

    Goleva, Irina; Zebitz, Claus P W

    2013-11-01

    The predacious mite Amblyseius swirskii Athias-Henriot is used as a biological control agent against various pests in greenhouses. Pollen offered as supplementary food is reported to improve their fast establishment and performance. However, the nutritional suitability of different pollens for A. swirskii is not sufficiently known yet. Pollens of 21 plant species were offered to the mites as exclusive food during preimaginal development. Preimaginal mortality and developmental time have been assessed, followed by a life-table analysis of the emerged adults and a calculation of demographic parameters. Amblyseius swirskii can feed exclusively on pollen, but the nutritional value of the pollens differed significantly. Pollens of Lilium martagon and Hippeastrum sp. were toxic, causing 100 % preimaginal mortality, probably due to secondary plant compounds. Hibiscus syriacus pollen was absolutely incompatible for the juvenile and adult mites, possibly due to their external morphology, differing from all the other pollens tested and leading to 100 % preimaginal mortality also. Considering all parameters, feeding on Aesculus hippocastanum, Crocus vernus, Echinocereus sp. and Paulownia tomentosa pollens lead to the best performance of the mites. Feeding on most pollens resulted in no or low preimaginal mortality of A. swirskii, but affected significantly developmental time, adult longevity, and reproduction parameters. Commercial bee pollen was not able to improve life-table parameters compared to pure pollen of the plant species. Pollens of Helianthus annuus, Corylus avellana and a Poaceae mix were less suitable as food source and resulted in a poor performance of all tested parameters. Compared with literature data, 18 pollens tested proved to be a similar or better food source than cattail pollen, qualifying A. swirskii as a positively omnivorous type IV species. Pollens of Ricinus communis and Zea mays can be recommended as supplementary food offered as banker plants

  19. Bias to pollen odors is affected by early exposure and foraging experience.

    PubMed

    Arenas, A; Farina, W M

    2014-07-01

    In many pollinating insects, foraging preferences are adjusted on the basis of floral cues learned at the foraging site. In addition, olfactory experiences gained at early adult stages might also help them to initially choose food sources. To understand pollen search behavior of honeybees, we studied how responses elicited by pollen-based odors are biased in foraging-age workers according to (i) their genetic predisposition to collect pollen, (ii) pollen related information gained during foraging and (iii) different experiences with pollen gained at early adult ages. Bees returning to the hive carrying pollen loads, were strongly biased to unfamiliar pollen bouquets when tested in a food choice device against pure odors. Moreover, pollen foragers' orientation response was specific to the odors emitted by the pollen type they were carrying on their baskets, which suggests that foragers retrieve pollen odor information to recognize rewarding flowers outside the hive. We observed that attraction to pollen odor was mediated by the exposure to a pollen diet during the first week of life. We did not observe the same attraction in foraging-age bees early exposed to an artificial diet that did not contain pollen. Contrary to the specific response observed to cues acquired during foraging, early exposure to single-pollen diets did not bias orientation response towards a specific pollen odor in foraging-age bees (i.e. bees chose equally between the exposed and the novel monofloral pollen odors). Our results show that pollen exposure at early ages together with olfactory experiences gained in a foraging context are both relevant to bias honeybees' pollen search behavior.

  20. Feature Extraction and Machine Learning for the Classification of Brazilian Savannah Pollen Grains

    PubMed Central

    Souza, Junior Silva; da Silva, Gercina Gonçalves

    2016-01-01

    The classification of pollen species and types is an important task in many areas like forensic palynology, archaeological palynology and melissopalynology. This paper presents the first annotated image dataset for the Brazilian Savannah pollen types that can be used to train and test computer vision based automatic pollen classifiers. A first baseline human and computer performance for this dataset has been established using 805 pollen images of 23 pollen types. In order to access the computer performance, a combination of three feature extractors and four machine learning techniques has been implemented, fine tuned and tested. The results of these tests are also presented in this paper. PMID:27276196

  1. Feature Extraction and Machine Learning for the Classification of Brazilian Savannah Pollen Grains.

    PubMed

    Gonçalves, Ariadne Barbosa; Souza, Junior Silva; Silva, Gercina Gonçalves da; Cereda, Marney Pascoli; Pott, Arnildo; Naka, Marco Hiroshi; Pistori, Hemerson

    2016-01-01

    The classification of pollen species and types is an important task in many areas like forensic palynology, archaeological palynology and melissopalynology. This paper presents the first annotated image dataset for the Brazilian Savannah pollen types that can be used to train and test computer vision based automatic pollen classifiers. A first baseline human and computer performance for this dataset has been established using 805 pollen images of 23 pollen types. In order to access the computer performance, a combination of three feature extractors and four machine learning techniques has been implemented, fine tuned and tested. The results of these tests are also presented in this paper.

  2. Analysis of Allergenic Pollen by FTIR Microspectroscopy.

    PubMed

    Zimmerman, B; Tafintseva, V; Bağcıoğlu, M; Høegh Berdahl, M; Kohler, A

    2016-01-05

    Fourier transform infrared (FTIR) spectroscopy is a powerful tool for the identification and characterization of pollen and spores. However, interpretation and multivariate analysis of infrared microscopy spectra of single pollen grains are hampered by Mie-type scattering. In this paper, we introduce a novel sampling setup for infrared microspectroscopy of pollens preventing strong Mie-type scattering. Pollen samples were embedded in a soft paraffin layer between two sheets of polyethylene foils without any further sample pretreatment. Single-grain infrared spectra of 13 different pollen samples, belonging to 11 species, were obtained and analyzed by the new approach and classified by sparse partial least-squares regression (PLSR). For the classification, chemical and physical information were separated by extended multiplicative signal correction and used together to build a classification model. A training set of 260 spectra and an independent test set of 130 spectra were used. Robust sparse classification models allowing the biochemical interpretation of the classification were obtained by the sparse PLSR, because only a subset of variables was retained for the analysis. With accuracy values of 95% and 98%, for the independent test set and full cross-validation respectively, the method is outperforming the previously published studies on development of an automated pollen analysis. Since the method is compatible with standard air-samplers, it can be employed with minimal modification in regular aerobiology studies. When compared with optical microscopy, which is the benchmark method in pollen analysis, the infrared microspectroscopy method offers better taxonomic resolution, as well as faster, more economical, and bias-free measurement.

  3. Levels and determinants of tree pollen in New York City.

    PubMed

    Weinberger, Kate R; Kinney, Patrick L; Robinson, Guy S; Sheehan, Daniel; Kheirbek, Iyad; Matte, Thomas D; Lovasi, Gina S

    2016-12-21

    Exposure to allergenic tree pollen is a risk factor for multiple allergic disease outcomes. Little is known about how tree pollen levels vary within cities and whether such variation affects the development or exacerbation of allergic disease. Accordingly, we collected integrated pollen samples at uniform height at 45 sites across New York City during the 2013 pollen season. We used these monitoring results in combination with adjacent land use data to develop a land use regression model for tree pollen. We evaluated four types of land use variables for inclusion in the model: tree canopy, distributed building height (a measure of building volume density), elevation, and distance to water. When included alone in the model, percent tree canopy cover within a 0.5 km radial buffer explained 39% of the variance in tree pollen (1.9% increase in tree pollen per one-percentage point increase in tree canopy cover, P<0.0001). The inclusion of additional variables did not improve model fit. We conclude that intra-urban variation in tree canopy is an important driver of tree pollen exposure. Land use regression models can be used to incorporate spatial variation in tree pollen exposure in studies of allergic disease outcomes.Journal of Exposure Science and Environmental Epidemiology advance online publication, 21 December 2016; doi:10.1038/jes.2016.72.

  4. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  5. The C-terminal hypervariable domain targets Aradopsis ROP9 to the invaginated pollen tube plasma membrane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rop9 is a small GTPase of the Type II class, whereas the often studied type I Rops play roles during pollen tube growth. In pollen, Rop9 is located at the invaginated plasma membrane that surrounds the sperm cells, whereas type I Rops are located at the apical membrane of the pollen tube. The C-ter...

  6. Hydrogen ions associated with the dry deposition of pollen

    SciTech Connect

    Noll, K.E.; Khalili, E.K. )

    1988-01-01

    The data provided in this paper demonstrates that pollen can generate significant amounts of hydrogen ions when added to water and that the deposition of tree pollen in forested areas represents a significant hydrogen ion source. Measurements of dry deposition of pollen were made during the months of May and June, 1987 in Northern Wisconsin, using a smooth surrogate surface. Rain samples were also collected. Deposited particles were weighed to determine mass fluxes, then washed and ion chromatographed for SO {sub 4} = and NO {sub 3} {minus} analysis. Species of pollen collected from different types of trees during the sampling period were analyzed for SO{sub 4} = NO {sub 3} and other trace constituents. The micrograms of hydrogen ions (protons) generated per gram for different types of pollen added to water, were measured. From 56 to 566 gm were generated per gram or pollen added. The amount generated varied with pollen type. Based on this information, the equivalent protons from the dry deposition of pollen were calculated and compared with the wet deposition proton data. The sulfate, nitrate, and protons associated with dry deposition were of a magnitude comparable with wet deposition.

  7. Molecular analysis confirms the long-distance transport of Juniperus ashei pollen

    PubMed Central

    Mohanty, Rashmi Prava; Buchheim, Mark Alan; Anderson, James; Levetin, Estelle

    2017-01-01

    Although considered rare, airborne pollen can be deposited far from its place of origin under a confluence of favorable conditions. Temporally anomalous records of Cupressacean pollen collected from January air samples in London, Ontario, Canada have been cited as a new case of long-distance transport. Data on pollination season implicated Juniperus ashei (mountain cedar), with populations in central Texas and south central Oklahoma, as the nearest source of the Cupressacean pollen in the Canadian air samples. This finding is of special significance given the allergenicity of mountain cedar pollen. While microscopy is used extensively to identify particles in the air spora, pollen from all members of the Cupressaceae, including Juniperus, are morphologically indistinguishable. Consequently, we implemented a molecular approach to characterize Juniperus pollen using PCR in order to test the long-distance transport hypothesis. Our PCR results using species-specific primers confirmed that the anomalous Cupressacean pollen collected in Canada was from J. ashei. Forward trajectory analysis from source areas in Texas and the Arbuckle Mountains in Oklahoma and backward trajectory analysis from the destination area near London, Ontario were completed using models implemented in HYSPLIT4 (Hybrid Single-Particle Lagrangian Integrated Trajectory). Results from these trajectory analyses strongly supported the conclusion that the J. ashei pollen detected in Canada had its origins in Texas or Oklahoma. The results from the molecular findings are significant as they provide a new method to confirm the long-distance transport of pollen that bears allergenic importance. PMID:28273170

  8. A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material

    NASA Astrophysics Data System (ADS)

    Healy, David A.; O'Connor, David J.; Burke, Aoife M.; Sodeau, John R.

    2012-12-01

    A Bioaerosol sensing instrument referred to as WIBS-4, designed to continuously monitor ambient bioaerosols on-line, has been used to record a multiparameter “signature” from each of a number of Primary Biological Aerosol Particulate (PBAP) samples found in air. These signatures were obtained in a controlled laboratory environment and are based on the size, asymmetry (“shape”) and auto-fluorescence of the particles. Fifteen samples from two separate taxonomic ranks (kingdoms), Plantae (×8) and Fungi (×7) were individually introduced to the WIBS-4 for measurement along with two non-fluorescing chemical solids, common salt and chalk. Over 2000 individual-particle measurements were recorded for each sample type and the ability of the WIBS spectroscopic technique to distinguish between chemicals, pollen and fungal spore material was examined by identifying individual PBAP signatures. The results obtained show that WIBS-4 could potentially be a very useful analytical tool for distinguishing between natural airborne PBAP samples, such as the fungal spores and may potentially play an important role in detecting and discriminating the toxic fungal spore, Aspergillus fumigatus, from others in real-time. If the sizing range of the commercial instrument was customarily increased and permitted to operate simultaneously in its two sizing ranges, pollen and spores could potentially be discriminated between. The data also suggest that the gain setting sensitivity on the detector would also have to be reduced by a factor >5, to routinely detect, in-range fluorescence measurements for pollen samples.

  9. The weak effects of climatic change on Plantago pollen concentration: 17 years of monitoring in Northwestern Spain

    NASA Astrophysics Data System (ADS)

    González-Parrado, Zulima; Valencia-Barrera, Rosa Ma.; Vega-Maray, Ana Ma.; Fuertes-Rodríguez, Carmen Reyes; Fernández-González, Delia

    2014-09-01

    Plantago L. species are very common in nitrified areas such as roadsides and their pollen is a major cause of pollinosis in temperate regions. In this study, we sampled airborne pollen grains in the city of León (NW, Spain) from January 1995 to December 2011, by using a Burkard® 7-day-recording trap. The percentage of Plantago pollen compared to the total pollen count ranged from 11 % (1997) to 3 % (2006) in the period under study. Peak pollen concentrations were recorded in May and June. Our 17-year analysis failed to disclose significant changes in the seasonal trend of plantain pollen concentration. In addition, there were no important changes in the start dates of pollen release and the meteorological parameters analyzed did not show significant variations in their usual trends. We analyzed the influence of several meteorological parameters on Plantago pollen concentration to explain the differences in pollen concentration trends during the study. Our results show that temperature, sun hours, evaporation, and relative humidity are the meteorological parameters best correlated to the behavior of Plantago pollen grains. In general, the years with low pollen concentrations correspond to the years with less precipitation or higher temperatures. We calculated the approximate Plantago flowering dates using the cumulative sum of daily maximum temperatures and compared them with the real bloom dates. The differences obtained were 4 days in 2009, 3 days in 2010, and 1 day in 2011 considering the complete period of pollination.

  10. Re-assignment of the Affinities of the Fossil Pollen Type Tricolpites trioblatus Mildenhall and Pocknall to Wilsonia (Convolvulaceae) and a reassessment of the ecological interpretations.

    PubMed

    Martin

    2000-09-01

    Tricolpites trioblatus Mildenhall and Pocknall was described from Upper Miocene-Pliocene sediments of New Zealand and attributed to the Hebe complex (Scrophulariaceae), which is common in the New Zealand vegetation, especially in montane and subalpine habitats. Pollen in Miocene-Pliocene sediments in central Australia is identified with T. trioblatus, and the depositional situations included shallow lakes, with fresh or brackish waters, sometimes becoming saline. The affinities of T. trioblatus are re-examined in the light of these disparate environments in Australia and New Zealand. It has been found that all the fossil grains examined are more comparable to pollen of Wilsonia, and perhaps Cressa (Convolvulaceae), than to those of the Hebe complex. Wilsonia and Cressa are found in salt marshes, hence affinities with them are ecologically more credible for central Australia. T. trioblatus is found in late Eocene sediments deposited under episodic marine transgressions; an environment likely to stimulate the evolution of new species tolerant to saline conditions.

  11. Characterization of Pollen Dispersion in the Neighborhood of Tokyo, Japan in the Spring of 2005 and 2006

    PubMed Central

    Ishibashi, Yoshinaga; Ohno, Hideki; Oh-ishi, Shuji; Matsuoka, Takeshi; Kizaki, Takako; Yoshizumi, Kunio

    2008-01-01

    The behavior of Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) pollens in an urban area was examined through the measurements of the dispersion characteristics at the various sampling locations in both outdoor and indoor environments. Airborne pollens were counted continuously for three months during the Japanese cedar pollen and Japanese cypress seasons in 2005 and 2006 by the use of Durham’s pollen trap method in and around Tokyo, Japan. The dispersion of pollens at the rooftop of Kyoritsu Women’s University was observed to be at extremely high levels in 2005 compared with previously reported results during the past two decades. As for Japanese cedar pollen, the maximum level was observed as 440 counts cm−2 day−1 on 18 March 2005. Japanese cypress pollen dispersed in that area in the latter period was compared with the Japanese cedar pollen dispersions. The maximum dispersion level was observed to be 351 counts cm−2 day−1 on 7 April 2005. Total accumulated dispersions of Japanese cedar and Japanese cypress pollens were 5,552 and 1,552 counts cm−2 for the three months (Feb., Mar. and Apr.) in 2005, respectively. However, the dispersion of both pollens in 2006 was very low. The total accumulated dispersions of Japanese cedar and Japanese cypress pollens were 421 and 98 counts cm−2 for three months (Feb., Mar. and Apr.) in 2006, respectively. Moreover, the pollen deposition on a walking person in an urban area showed that the pollen counts on feet were observed to be extremely high compared with the ones on the shoulder, back and legs. These findings suggested that pollen fell on the surface of the paved road at first, rebounded to the ambient air and was deposited on the residents again. Furthermore, the regional distribution of the total pollen dispersion in the South Kanto area was characterized on 15–16 March 2005 and on 14–15 March 2006. Although the pollen levels in 2005 were much higher than in 2006, it

  12. Characterization of pollen dispersion in the neighborhood of Tokyo, Japan in the spring of 2005 and 2006.

    PubMed

    Ishibashi, Yoshinaga; Ohno, Hideki; Oh-ishi, Shuji; Matsuoka, Takeshi; Kizaki, Takako; Yoshizumi, Kunio

    2008-03-01

    The behavior of Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) pollens in an urban area was examined through the measurements of the dispersion characteristics at the various sampling locations in both outdoor and indoor environments. Airborne pollens were counted continuously for three months during the Japanese cedar pollen and Japanese cypress seasons in 2005 and 2006 by the use of Durham's pollen trap method in and around Tokyo, Japan. The dispersion of pollens at the rooftop of Kyoritsu Women's University was observed to be at extremely high levels in 2005 compared with previously reported results during the past two decades. As for Japanese cedar pollen, the maximum level was observed as 440 counts cm(-2) day(-1) on 18 March 2005. Japanese cypress pollen dispersed in that area in the latter period was compared with the Japanese cedar pollen dispersions. The maximum dispersion level was observed to be 351 counts cm(-2) day(-1) on 7 April 2005. Total accumulated dispersions of Japanese cedar and Japanese cypress pollens were 5,552 and 1,552 counts cm(-2) for the three months (Feb., Mar. and Apr.) in 2005, respectively. However, the dispersion of both pollens in 2006 was very low. The total accumulated dispersions of Japanese cedar and Japanese cypress pollens were 421 and 98 counts cm(-2) for three months (Feb., Mar. and Apr.) in 2006, respectively. Moreover, the pollen deposition on a walking person in an urban area showed that the pollen counts on feet were observed to be extremely high compared with the ones on the shoulder, back and legs. These findings suggested that pollen fell on the surface of the paved road at first, rebounded to the ambient air and was deposited on the residents again. Furthermore, the regional distribution of the total pollen dispersion in the South Kanto area was characterized on 15-16 March 2005 and on 14-15 March 2006. Although the pollen levels in 2005 were much higher than in 2006, it was

  13. Down-Regulating CsHT1, a Cucumber Pollen-Specific Hexose Transporter, Inhibits Pollen Germination, Tube Growth, and Seed Development1[OPEN

    PubMed Central

    Cheng, Jintao; Wang, Zhenyu; Yao, Fengzhen; Gao, Lihong; Ma, Si; Zhang, Zhenxian

    2015-01-01

    Efficient sugar transport is needed to support the high metabolic activity of pollen tubes as they grow through the pistil. Failure of transport results in male sterility. Although sucrose transporters have been shown to play a role in pollen tube development, the role of hexoses and hexose transporters is not as well established. The pollen of some species can grow in vitro on hexose as well as on sucrose, but knockouts of individual hexose transporters have not been shown to impair fertilization, possibly due to transporter redundancy. Here, the functions of CsHT1, a hexose transporter from cucumber (Cucumis sativus), are studied using a combination of heterologous expression in yeast (Saccharomyces cerevisiae), histochemical and immunohistochemical localization, and reverse genetics. The results indicate that CsHT1 is a plasma membrane-localized hexose transporter with high affinity for glucose, exclusively transcribed in pollen development and expressed both at the levels of transcription and translation during pollen grain germination and pollen tube growth. Overexpression of CsHT1 in cucumber pollen results in a higher pollen germination ratio and longer pollen tube growth than wild-type pollen in glucose- or galactose-containing medium. By contrast, antisense suppression of CsHT1 leads to inhibition of pollen germination and pollen tube elongation in the same medium and results in a decrease of seed number per fruit and seed size when antisense transgenic pollen is used to fertilize wild-type or transgenic cucumber plants. The important role of CsHT1 in pollen germination, pollen tube growth, and seed development is discussed. PMID:25888616

  14. Down-Regulating CsHT1, a Cucumber Pollen-Specific Hexose Transporter, Inhibits Pollen Germination, Tube Growth, and Seed Development.

    PubMed

    Cheng, Jintao; Wang, Zhenyu; Yao, Fengzhen; Gao, Lihong; Ma, Si; Sui, Xiaolei; Zhang, Zhenxian

    2015-06-01

    Efficient sugar transport is needed to support the high metabolic activity of pollen tubes as they grow through the pistil. Failure of transport results in male sterility. Although sucrose transporters have been shown to play a role in pollen tube development, the role of hexoses and hexose transporters is not as well established. The pollen of some species can grow in vitro on hexose as well as on sucrose, but knockouts of individual hexose transporters have not been shown to impair fertilization, possibly due to transporter redundancy. Here, the functions of CsHT1, a hexose transporter from cucumber (Cucumis sativus), are studied using a combination of heterologous expression in yeast (Saccharomyces cerevisiae), histochemical and immunohistochemical localization, and reverse genetics. The results indicate that CsHT1 is a plasma membrane-localized hexose transporter with high affinity for glucose, exclusively transcribed in pollen development and expressed both at the levels of transcription and translation during pollen grain germination and pollen tube growth. Overexpression of CsHT1 in cucumber pollen results in a higher pollen germination ratio and longer pollen tube growth than wild-type pollen in glucose- or galactose-containing medium. By contrast, antisense suppression of CsHT1 leads to inhibition of pollen germination and pollen tube elongation in the same medium and results in a decrease of seed number per fruit and seed size when antisense transgenic pollen is used to fertilize wild-type or transgenic cucumber plants. The important role of CsHT1 in pollen germination, pollen tube growth, and seed development is discussed.

  15. Large Eddy Simulation and Field Experiments of Pollen Transport in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Chamecki, M.; Meneveau, C.; Parlange, M. B.; van Hout, R.

    2006-12-01

    Dispersion of airborne pollen by the wind has been a subject of interest for botanists and allergists for a long time. More recently, the development of genetically modified crops and questions about cross-pollination and subsequent contamination of natural plant populations has brought even more interest to this field. A critical question is how far from the source field pollen grains will be advected. Clearly the answer depends on the aerodynamic properties of the pollen, geometrical properties of the field, topography, local vegetation, wind conditions, atmospheric stability, etc. As a consequence, field experiments are well suited to provide some information on pollen transport mechanisms but are limited to specific field and weather conditions. Numerical simulations do not have this drawback and can be a useful tool to study pollen dispersal in a variety of configurations. It is well known that the dispersion of particles in turbulent fields is strongly affected by the large scale coherent structures. Large Eddy Simulation (LES) is a technique that allows us to study the typical distances reached by pollen grains and, at the same time, resolve the larger coherent structures present in the atmospheric boundary layer. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using LES. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of extreme importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. In both cases we make use of the theoretical profile for suspended particles derived by Kind (1992). Field experiments were performed to study the applicability of the theoretical profile to pollen grains and the results are encouraging. Airborne concentrations as well as ground deposition from the simulations are compared to experimental data to validate the

  16. Satellite Phenology Observations Inform Peak Season of Allergenic Grass Pollen Aerobiology across Two Continents

    NASA Astrophysics Data System (ADS)

    Huete, A. R.; Devadas, R.; Davies, J.

    2015-12-01

    Pollen exposure and prevalence of allergenic diseases have increased in many parts of the world during the last 30 years, with exposure to aeroallergen grass pollen expected to intensify with climate change, raising increased concerns for allergic diseases. The primary contributing factors to higher allergenic plant species presence are thought to be climate change, land conversion, and biotic mixing of species. Conventional methods for monitoring airborne pollen are hampered by a lack of sampling sites and heavily rely on meteorology with less attention to land cover updates and monitoring of key allergenic species phenology stages. Satellite remote sensing offers an alternative method to overcome the restrictive coverage afforded by in situ pollen networks by virtue of its synoptic coverage and repeatability of measurements that enable timely updates of land cover and land use information and monitoring landscape dynamics and interactions with human activity and climate. In this study, we assessed the potential of satellite observations of urban/peri-urban environments to directly inform landscape conditions conducive to pollen emissions. We found satellite measurements of grass cover phenological evolution to be highly correlated with in situ aerobiological grass pollen concentrations in five urban centres located across two hemispheres (Australia and France). Satellite greenness data from the Moderate Resolution Imaging Spectroradiometer (MODIS) were found to be strongly synchronous with grass pollen aerobiology in both temperate grass dominated sites (France and Melbourne), as well as in Sydney, where multiple pollen peaks coincided with the presence of subtropical grasses. Employing general additive models (GAM), the satellite phenology data provided strong predictive capabilities to inform airborne pollen levels and forecast periods of grass pollen emissions at all five sites. Satellite phenology offer promising opportunities of improving public health risk

  17. Pollen performance, cell number, and physiological state in the early-divergent angiosperm Annona cherimola Mill. (Annonaceae) are related to environmental conditions during the final stages of pollen development.

    PubMed

    Lora, J; Herrero, M; Hormaza, J I

    2012-09-01

    Pollen performance is an important determinant for fertilization success, but high variability in pollen behavior both between and within species occurs in different years and under varying environmental conditions. Annona cherimola, an early-divergent angiosperm, is a species that releases a variable ratio of bicellular and tricellular hydrated pollen at anther dehiscence depending on temperature. The presence of both bi- and tricellular types of pollen is an uncommon characteristic in angiosperms and makes Annona cherimola an interesting model to study the effect of varying environmental conditions on subsequent pollen performance during the final stages of pollen development. In this work, we study the influence of changes in temperature and humidity during the final stages of pollen development on subsequent pollen performance, evaluating pollen germination, presence of carbohydrates, number of nuclei, and water content. At 25 °C, which is the average field temperature during the flowering period of this species, pollen had a viability of 60-70 %, starch hydrolyzed just prior to shedding, and pollen mitosis II was taking place, resulting in a mixture of bi- and tricellular pollen. This activity may be related to the pollen retaining 70 % water content at shedding. Temperatures above 30 °C resulted in a decrease in pollen germination, whereas lower temperatures did not have a clear influence on pollen germination, although they did have a clear effect on starch hydrolysis. On the other hand, slightly higher dehydration accelerated mitosis II, whereas strong dehydration arrested starch hydrolysis and reduced pollen germination. These results show a significant influence of environmental conditions on myriad pollen characteristics during the final stages of pollen development modifying subsequent pollen behavior and contributing to our understanding of the variability observed in pollen tube performance.

  18. Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969-2006

    NASA Astrophysics Data System (ADS)

    Frei, Thomas; Gassner, Ewald

    2008-09-01

    As published by the Intergovernmental Panel on Climate Change (IPCC) global warming is a reality and its impact is huge like the increase of extreme weather events, glacier recession, sea level rise and also effects on human health. Among them allergies to airborne pollen might increase or change in pattern due to the invasion of new allergic plants or due to different behavior of plants like earlier flowering. In this study we used the longest Swiss airborne pollen data set to examine the influence of the temperature increase on the time of flowering. In the case of Basel, where pollen data for 38 years are available, it was shown that due to a temperature increase the start of flowering in the case of birch occurred about 15 days earlier. Apart from a shift of the start of the flowering there is also a trend towards higher annual birch pollen quantities and an increase of the highest daily mean pollen concentrations. Due to global warming and because symptoms may appear earlier in the year people suffering from a pollen allergy might face a new unaccustomed situation.

  19. Airborne Particles.

    ERIC Educational Resources Information Center

    Ojala, Carl F.; Ojala, Eric J.

    1987-01-01

    Describes an activity in which students collect airborne particles using a common vacuum cleaner. Suggests ways for the students to convert their data into information related to air pollution and human health. Urges consideration of weather patterns when analyzing the results of the investigation. (TW)

  20. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  1. The Role of Arabidopsis ABCG9 and ABCG31 ATP Binding Cassette Transporters in Pollen Fitness and the Deposition of Steryl Glycosides on the Pollen Coat[W

    PubMed Central

    Choi, Hyunju; Ohyama, Kiyoshi; Kim, Yu-Young; Jin, Jun-Young; Lee, Saet Buyl; Yamaoka, Yasuyo; Muranaka, Toshiya; Suh, Mi Chung; Fujioka, Shozo; Lee, Youngsook

    2014-01-01

    The pollen coat protects pollen grains from harmful environmental stresses such as drought and cold. Many compounds in the pollen coat are synthesized in the tapetum. However, the pathway by which they are transferred to the pollen surface remains obscure. We found that two Arabidopsis thaliana ATP binding cassette transporters, ABCG9 and ABCG31, were highly expressed in the tapetum and are involved in pollen coat deposition. Upon exposure to dry air, many abcg9 abcg31 pollen grains shriveled up and collapsed, and this phenotype was restored by complementation with ABCG9pro:GFP:ABCG9. GFP-tagged ABCG9 or ABCG31 localized to the plasma membrane. Electron microscopy revealed that the mutant pollen coat resembled the immature coat of the wild type, which contained many electron-lucent structures. Steryl glycosides were reduced to about half of wild-type levels in the abcg9 abcg31 pollen, but no differences in free sterols or steryl esters were observed. A mutant deficient in steryl glycoside biosynthesis, ugt80A2 ugt80B1, exhibited a similar phenotype. Together, these results indicate that steryl glycosides are critical for pollen fitness, by supporting pollen coat maturation, and that ABCG9 and ABCG31 contribute to the accumulation of this sterol on the surface of pollen. PMID:24474628

  2. Pollen Viability and Pollen Tube Attrition in Cranberry (Vaccinium macrocarpon)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The content of mature seed in a cranberry fruit increases with stigmatic pollen load. On average, however, only two seeds result for every tetrad of pollen deposited. What then is the fate of the two remaining pollen grains fused in each tetrad? Germination in vitro revealed that most of the grains ...

  3. [Allergenic pollens in Spain].

    PubMed

    Subiza Garrido-Lestache, J

    2004-01-01

    Allergenic pollens that cause rhinoconjuctivitis and/or asthma are those from trees or plants that pollinate through the air (anemophilic pollination) and not through insects (entomophilic pollination). Although pollen grains would seem to be too large to easily reach the intrapulmonary airways, the relationship between pollen counts and the presence of asthmatic symptoms is only too evident. This is probably because the allergens inducing seasonal asthma are not only found within pollen grains but also outside the grains in particles of less than 10 mm that are freely found in the atmosphere. The most important pollens producing pollinosis in Spain are those from cypress trees from January-March, birch trees in April (macizo galaico), Platanus hispanica (March-April), grasses and olive trees from April-June, Parietaria from April-July and Chenopodium and/or Salsola from July-September. By geographical areas, the main cause of pollinosis are grasses in the center and north of the peninsula, olive trees in the south (Jaén, Sevilla, Granada, Córdoba) and Parietaria in the Mediterranean coast (Barcelona, Murcia, Valencia).

  4. Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development.

    PubMed

    Cankar, Katarina; Kortstee, Anne; Toonen, Marcel A J; Wolters-Arts, Mieke; Houbein, Rudolf; Mariani, Celestina; Ulvskov, Peter; Jorgensen, Bodil; Schols, Henk A; Visser, Richard G F; Trindade, Luisa M

    2014-05-01

    Pectin is a complex polysaccharide and an integral part of the primary plant cell wall and middle lamella, contributing to cell wall mechanical strength and cell adhesion. To understand the structure-function relationships of pectin in the cell wall, a set of transgenic potato lines with altered pectin composition was analysed. The expression of genes encoding enzymes involved in pectin acetylation, degradation of the rhamnogalacturonan backbone and type and length of neutral side chains, arabinan and galactan in particular, has been altered. Upon crossing of different transgenic lines, some transgenes were not transmitted to the next generation when these lines were used as a pollen donor, suggesting male sterility. Viability of mature pollen was severely decreased in potato lines with reduced pectic arabinan, but not in lines with altered galactan side chains. Anthers and pollen of different developmental stages were microscopically examined to study the phenotype in more detail. Scanning electron microscopy of flowers showed collapsed pollen grains in mature anthers and in earlier stages cytoplasmic protrusions at the site of the of kin pore, eventually leading to bursting of the pollen grain and leaking of the cytoplasm. This phenomenon is only observed after the microspores are released and the tapetum starts to degenerate. Timing of the phenotype indicates a role for pectic arabinan side chains during remodelling of the cell wall when the pollen grain is maturing and dehydrating.

  5. Modern pollen deposition in Long Island Sound

    USGS Publications Warehouse

    Beuning, Kristina R.M.; Fransen, Lindsey; Nakityo, Berna; Mecray, Ellen L.; Bucholtz ten Brink, Marilyn R.

    2000-01-01

    Palynological analyses of 20 surface sediment samples collected from Long Island Sound show a pollen assemblage dominated by Carya, Betula, Pinus, Quercus, Tsuga, and Ambrosia, as is consistent with the regional vegetation. No trends in relative abundance of these pollen types occur either from west to east or associated with modern riverine inputs throughout the basin. Despite the large-scale, long-term removal of fine-grained sediment from winnowed portions of the eastern Sound, the composition of the pollen and spore component of the sedimentary matrix conforms to a basin-wide homogeneous signal. These results strongly support the use of select regional palynological boundaries as chronostratigraphic tools to provide a framework for interpretation of the late glacial and Holocene history of the Long Island Sound basin sediments.

  6. A mechanistic modeling system for estimating large-scale emissions and transport of pollen and co-allergens

    NASA Astrophysics Data System (ADS)

    Efstathiou, Christos; Isukapalli, Sastry; Georgopoulos, Panos

    2011-04-01

    Allergic airway diseases represent a complex health problem which can be exacerbated by the synergistic action of pollen particles and air pollutants such as ozone. Understanding human exposures to aeroallergens requires accurate estimates of the spatial distribution of airborne pollen levels as well as of various air pollutants at different times. However, currently there are no established methods for estimating allergenic pollen emissions and concentrations over large geographic areas such as the United States. A mechanistic modeling system for describing pollen emissions and transport over extensive domains has been developed by adapting components of existing regional scale air quality models and vegetation databases. First, components of the Biogenic Emissions Inventory System (BEIS) were adapted to predict pollen emission patterns. Subsequently, the transport module of the Community Multiscale Air Quality (CMAQ) modeling system was modified to incorporate description of pollen transport. The combined model, CMAQ-pollen, allows for simultaneous prediction of multiple air pollutants and pollen levels in a single model simulation, and uses consistent assumptions related to the transport of multiple chemicals and pollen species. Application case studies for evaluating the combined modeling system included the simulation of birch and ragweed pollen levels for the year 2002, during their corresponding peak pollination periods (April for birch and September for ragweed). The model simulations were driven by previously evaluated meteorological model outputs and emissions inventories for the eastern United States for the simulation period. A semi-quantitative evaluation of CMAQ-pollen was performed using tree and ragweed pollen counts in Newark, NJ for the same time periods. The peak birch pollen concentrations were predicted to occur within two days of the peak measurements, while the temporal patterns closely followed the measured profiles of overall tree pollen

  7. Pollen calendar of the city of Salamanca (Spain). Aeropalynological analysis for 1981-1982 and 1991-1992.

    PubMed

    Hernández Prieto, M; Lorente Toledano, F; Romo Cortina, A; Dávila González, I; Laffond Yges, E; Calvo Bullón, A

    1998-01-01

    We report a study on the contents of airborne pollen in the city of Salamanca (Spain) aimed at establishing a pollen calendar for the city for the yearly periods of maximum concentrations, relating these with quantifiable atmospheric variables over two two-year periods with an interval of 10 years between them: 1981-82 and 1991-92. The pollen was captured with Burkard spore-traps, based on Hirst's volumetric method. Determinations were made daily and were used to make preparations, previously stained with basic fuscin, for study under light microscopy at x 1,000 magnification. 946 preparations were analyzed, corresponding to the same number of days distributed over 150 weeks of the periods studied. The results afforded the identification of 48 different types of pollen grain: Grasses (Poaceae), Olea europea (olive), Quercus rotundifolia (Holm-oak), other Quercus spp. (Q. pyrenaica, Q. suber, Q. faginea, etc.), Cupressaceae (Cupressus sempervivens, C. arizonica, Juniperus communis etc.), Plantago (Plantago lanceolata, Plantago media, etc.), Pinaceae (Pinus communis, Abies alba, etc.), Rumex sp. (osier), Urtica dioica (nettle), Parietaria (Parietaria officinalis, P. judaica), Chenopodio-Amaranthaceae (Chenopodium sp., Amaranthus sp., Salsola kali, etc.), Artemisia vulgaris (Artemisia), other Compositae (Taraxacum officinalis, Hellianthus sp. etc.), Castanea sativa (Chestnut), Ligustrum sp. (privet), Betula sp. (birch), Alnus sp. (common alder), Fraxinus sp (ash), Populus sp. (poplar), Salix sp. (willow), Ulmus sp. (elm), Platanus sp. (plantain, plane), Carex sp. (sweet flag), Erica sp. (common heather), Leguminosae or Fabaceae:--Papillionaceae (Medicago sp.; Cercis sp., Robina sp.)--Cesalpinoideae Acacia sp. (Acacia),--Mimosoideae: Sophora japonica, Umbelliferae (Foeniculum sp., Cirsium sp., etc.), Centaurea sp., Cistus sp. (rock rose), Typha sp (bulrush), Mirtaceae (Myrtus communis), Juglans regia (Walnut), Galium verum, Filipendula sp. (spirea/drop wort), Rosaceae

  8. Monarch larvae sensitivity to Bacillus thuringiensis- purified proteins and pollen.

    PubMed

    Hellmich, R L; Siegfried, B D; Sears, M K; Stanley-Horn, D E; Daniels, M J; Mattila, H R; Spencer, T; Bidne, K G; Lewis, L C

    2001-10-09

    Laboratory tests were conducted to establish the relative toxicity of Bacillus thuringiensis (Bt) toxins and pollen from Bt corn to monarch larvae. Toxins tested included Cry1Ab, Cry1Ac, Cry9C, and Cry1F. Three methods were used: (i) purified toxins incorporated into artificial diet, (ii) pollen collected from Bt corn hybrids applied directly to milkweed leaf discs, and (iii) Bt pollen contaminated with corn tassel material applied directly to milkweed leaf discs. Bioassays of purified Bt toxins indicate that Cry9C and Cry1F proteins are relatively nontoxic to monarch first instars, whereas first instars are sensitive to Cry1Ab and Cry1Ac proteins. Older instars were 12 to 23 times less susceptible to Cry1Ab toxin compared with first instars. Pollen bioassays suggest that pollen contaminants, an artifact of pollen processing, can dramatically influence larval survival and weight gains and produce spurious results. The only transgenic corn pollen that consistently affected monarch larvae was from Cry1Ab event 176 hybrids, currently <2% corn planted and for which re-registration has not been applied. Results from the other types of Bt corn suggest that pollen from the Cry1Ab (events Bt11 and Mon810) and Cry1F, and experimental Cry9C hybrids, will have no acute effects on monarch butterfly larvae in field settings.

  9. Pollen Season Trends (1973-2013) in Stockholm Area, Sweden

    PubMed Central

    Lind, Tomas; Ekebom, Agneta; Alm Kübler, Kerstin; Östensson, Pia; Bellander, Tom

    2016-01-01

    In the present study, the phenological and quantitative changes in the pollen seasons between 1973 and 2013 in the Stockholm region of Sweden were studied for nine types of pollen (hazel, alder, elm, birch, oak, grass, mugwort, willow and pine). Linear regression models were used to estimate the long term trends in duration, start- and end-dates, peak-values and the yearly accumulated pollen sums of the pollen seasons. The pollen seasons of several arboreal plant species (e.g. birch, oak and pine) were found to start significantly earlier today compared to 41 years earlier, and have an earlier peak-date, while the season of other species seemed largely unaffected. However, the long term trends in the end-dates of pollen seasons differed between arboreal and herbaceous species. For herbaceous species (grass and mugwort), a significant change towards later end-dates was observed and the duration of season was found to have increased. A significant trend towards an earlier end-date was found in the majority of the arboreal plant species (i.e. elm, oak, pine and birch), but the length of the season seemed unaffected. A trend towards an increase in yearly concentrations of pollen was observed for several species; however the reasons for this phenomenon cannot be explained unambiguously by the present study design. The trend of increasing yearly mean air temperatures in the Stockholm area may be the reason to changed phenological patterns of pollen seasons. PMID:27898718

  10. Precipitation signal in pollen rain from tropical forests, South India.

    PubMed

    Barboni, D; Bonnefille, R

    2001-04-01

    We have analyzed the pollen content of 51 surface soil samples collected in tropical evergreen and deciduous forests from the Western Ghats of South India sampled along a west to east gradient of decreasing rainfall (between 11 degrees 30-13 degrees 20'N and 75 degrees 30-76 degrees 30'E). Values of mean annual precipitation (Pann, mm/yr) have been calculated at each of the 51 sampling sites from a great number of meteorological stations in South India, using a method of data interpolation based on artificial neural network. Interpolated values at the pollen sites of Pann range from 1200 to 5555mm/yr, while mean temperature of the coldest month (MTCO) remains >15 degrees C and humidity factor (AET/PET, the actual evapotranspiration to potential evapotranspiration ratio) remains also included between 65 and 72%.Results are presented in the form of percentage pollen diagrams where samples are arranged according to increasing values of annual precipitation. They indicate that the climatic signal of rainfall is clearly evidenced by distinct pollen associations. Numerical analyses show that annual precipitation is an important parameter explaining the modern distribution of pollen taxa in this region. Pollen taxa markers of high rainfall (Pann >2500mm/yr) are Mallotus type, Elaeocarpus, Syzygium type, Olea dioica, Gnetum ula, and Hopea type, associated with Ixora type and Caryota. Pollen taxa markers of low rainfall (Pann <2500mm/yr) are Melastomataceae/Combretaceae, Maytenus type, Lagerstroemia and Grewia. The proportions of evergreen taxa and of arboreal taxa vary according to rainfall values. Indeed, when rainfall is <2500mm/yr, percentage of arboreal pollen (AP) is <50% and proportion of evergreen taxa is <20%. When rainfall exceeds 2500mm/yr, AP values average 70%, and proportion of evergreen taxa increases from 60 to 90%. Moreover, a good correlation between precipitation and proportion of evergreen taxa (0.85) presumes that precipitation can be estimated from

  11. Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee.

    PubMed

    McFrederick, Quinn S; Rehan, Sandra M

    2016-05-01

    Many insects obtain gut microbes from their diet, but how a mother's foraging patterns influence the microbes found in her offspring's food remains an open question. To address this gap, we studied a bee that forages for pollen from multiple species of plants and may therefore acquire diverse bacteria from different plants. We tested the hypothesis that pollen diversity correlates with bacterial diversity by simultaneously characterizing these two communities in bee brood provisions for the first time. We used deep sequencing of the plant RBCL gene and the bacterial 16S rRNA gene to characterize pollen and bacterial diversity. We then tested for associations between pollen and bacterial species richness and community composition, as well as co-occurrence of specific bacteria and pollen types. We found that both pollen and bacterial communities were extremely diverse, indicating that mother bees visit a wide variety of flowers for pollen and nectar and subsequently bring a diversity of microbes back into their nests. Pollen and bacterial species richness and community composition, however, were not correlated. Certain pollen types significantly co-occurred with the most proportionally abundant bacteria, indicating that the plants these pollen types came from may serve as reservoirs for these bacteria. Even so, the overall diversity of these communities appears to mask these associations at a broader scale. Further study of these pollen and bacteria associations will be important for understanding the complicated relationship between bacteria and wild bees.

  12. Influence of pollen quality on ovarian development in honeybee workers (Apis mellifera scutellata).

    PubMed

    Human, H; Nicolson, S W; Strauss, K; Pirk, C W W; Dietemann, V

    2007-07-01

    Protein-rich diets are known to promote ovarian and egg development in workers of the honeybee, Apis mellifera, even in the presence of a queen. Since the main source of protein for honeybees is pollen, its quality and digestibility might be important dietary factors determining reproductive capacity. We have compared the effect of two types of pollen-sunflower, Helianthus annuus, and aloe, Aloe greatheadii var davyana-on ovarian development in A. mellifera scutellata workers. Under queenright conditions in the field, worker bees exhibited greater ovarian development when feeding on aloe pollen than on sunflower pollen. In their midgut, we observed higher extraction efficiency for aloe (80%) than for sunflower (69%) pollen. This may be attributed to the morphology and size of the two kinds of pollen grains and explains, together with the high protein content of aloe pollen (32% dry mass in bee-collected pollen) compared to sunflower pollen (15%), why aloe pollen promoted higher ovarian development. However, in the laboratory workers sustained on aloe pollen had significantly less-developed ovaries and higher mortality than those fed sunflower pollen. These detrimental effects may be due to an unbalanced protein:carbohydrate ratio. We discuss the effects of unbalanced diets on the physiology and ecology of honeybee reproduction.

  13. Transport and radiative impacts of atmospheric pollen using online, observation-based emissions

    NASA Astrophysics Data System (ADS)

    Wozniak, M. C.; Steiner, A. L.; Solmon, F.; Li, Y.

    2015-12-01

    Atmospheric pollen emitted from trees and grasses exhibits both a high temporal variability and a highly localized spatial distribution that has been difficult to quantify in the atmosphere. Pollen's radiative impact is also not quantified because it is neglected in climate modeling studies. Here we couple an online, meteorological active pollen emissions model guided by observations of airborne pollen to understand the role of pollen in the atmosphere. We use existing pollen counts from 2003-2008 across the continental U.S. in conjunction with a tree database and historical meteorological data to create an observation-based phenological model that produces accurately scaled and timed emissions. These emissions are emitted and transported within the regional climate model (RegCM4) and the direct radiative effect is calculated. Additionally, we simulate the rupture of coarse pollen grains into finer particles by adding a second size mode for pollen emissions, which contributes to the shortwave radiative forcing and also has an indirect effect on climate.

  14. Fraxinus pollen and allergen concentrations in Ourense (South-western Europe).

    PubMed

    Vara, A; Fernández-González, M; Aira, M J; Rodríguez-Rajo, F J

    2016-05-01

    In temperate zones of North-Central Europe the sensitization to ash pollen is a recognized problem, also extended to the Northern areas of the Mediterranean basin. Some observations in Switzerland suggest that ash pollen season could be as important as birch pollen period. The allergenic significance of this pollen has been poorly studied in Southern Europe as the amounts of ash pollen are low. Due to the high degree of family relationship with the olive pollen major allergen (backed by a sequence identity of 88%), the Fraxinus pollen could be a significant cause of early respiratory allergy in sensitized people to olive pollen as consequence of cross-reactivity processes. Ash tree flowers in the Northwestern Spain during the winter months. The atmospheric presence of Ole e 1-like proteins (which could be related with the Fra a 1 presence) can be accurately detected using Ole e 1 antibodies. The correlation analysis showed high Spearman correlation coefficients between pollen content and rainfall (R(2)=-0.333, p<0.01) or allergen concentration and maximum temperature (R(2)=-0.271, p<0.01). In addiction CCA analysis showed not significant differences (p<0.05) between the component 1 and 2 variables. PCFA analysis plots showed that the allergen concentrations are related to the presence of the Fraxinus pollen in the air, facilitating the wind speed its submicronic allergen proteins dispersion. In order to forecast the Fraxinus allergy risk periods, two regression equations were developed with Adjusted R(2) values around 0.48-0.49. The t-test for dependent samples shows no significant differences between the observed data and the estimated by the equations. The combination of the airborne pollen content and the allergen quantification must be assessed in the epidemiologic study of allergic respiratory diseases.

  15. An analysis of modern pollen rain from the Maya lowlands of northern Belize

    USGS Publications Warehouse

    Bhattacharya, T.; Beach, T.; Wahl, D.

    2011-01-01

    In the lowland Maya area, pollen records provide important insights into the impact of past human populations and climate change on tropical ecosystems. Despite a long history of regional paleoecological research, few studies have characterized the palynological signatures of lowland ecosystems, a fact which lowers confidence in ecological inferences made from palynological data. We sought to verify whether we could use pollen spectra to reliably distinguish modern ecosystem types in the Maya lowlands of Central America. We collected 23 soil and sediment samples from eight ecosystem types, including upland, riparian, secondary, and swamp (bajo) forests; pine savanna; and three distinct wetland communities. We analyzed pollen spectra with non-metric multidimensional scaling (NMDS), and found significant compositional differences in ecosystem types' pollen spectra. Forested sites had spectra dominated by Moraceae/Urticaceae pollen, while non-forested sites had significant portions of Poaceae, Asteraceae, and Amaranthaceae pollen. Upland, bajo, and riparian forest differed in representation of Cyperaceae, Bactris-type, and Combretaceae/Melastomataceae pollen. High percentages of pine (Pinus), oak (Quercus), and the presence of Byrsonima characterized pine savanna. Despite its limited sample size, this study provides one of the first statistical analyses of modern pollen rain in the Maya lowlands. Our results show that pollen assemblages can accurately reflect differences between ecosystem types, which may help refine interpretations of pollen records from the Maya area. ?? 2010 Elsevier B.V.

  16. Ethylene is involved in maintaining tomato (Solanum lycopersicum) pollen quality under heat-stress conditions

    PubMed Central

    Firon, Nurit; Pressman, Etan; Meir, Shimon; Khoury, Reham; Altahan, Leviah

    2012-01-01

    Background and aims Exposure to higher-than-optimal temperatures reduces crop yield and quality, mainly due to sensitivity of developing pollen grains. The mechanisms maintaining high pollen quality under heat-stress conditions are poorly understood. Our recently published data indicate high heat-stress-induced expression of ethylene-responsive genes in tomato pollen, indicating ethylene involvement in the pollen heat-stress response. Here we elucidated ethylene's involvement in pollen heat-stress response and thermotolerance by assessing the effects of interfering with the ethylene signalling pathway and altering ethylene levels on tomato pollen functioning under heat stress. Methodology Plants of the ethylene-insensitive mutant Never ripe (Nr)—defective in an ethylene response sensor (ERS)-like ethylene receptor—and the corresponding wild type were exposed to control or heat-stress growing conditions, and pollen quality was determined. Starch and carbohydrates were measured in isolated pollen grains from these plants. The effect of pretreating cv. Micro-Tom tomato plants, prior to heat-stress exposure, with an ethylene releaser or inhibitor of ethylene biosynthesis on pollen quality was assessed. Principal results Never ripe pollen grains exhibited higher heat-stress sensitivity, manifested by a significant reduction in the total number of pollen grains, reduction in the number of viable pollen and elevation of the number of non-viable pollen, compared with wild-type plants. Mature Nr pollen grains accumulated only 40 % of the sucrose level accumulated by the wild type. Pretreatment of tomato plants with an ethylene releaser increased pollen quality under heat stress, with an over 5-fold increase in the number of germinating pollen grains per flower. Pretreatment with an ethylene biosynthesis inhibitor reduced the number of germinating pollen grains following heat-stress exposure over 5-fold compared with non-treated controls. Conclusions Ethylene plays a

  17. The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses.

    PubMed

    Kouzaki, Hideaki; Iijima, Koji; Kobayashi, Takao; O'Grady, Scott M; Kita, Hirohito

    2011-04-01

    The molecular mechanisms underlying the initiation of innate and adaptive proallergic Th2-type responses in the airways are not well understood. IL-33 is a new member of the IL-1 family of molecules that is implicated in Th2-type responses. Airway exposure of naive mice to a common environmental aeroallergen, the fungus Alternaria alternata, induces rapid release of IL-33 into the airway lumen, followed by innate Th2-type responses. Biologically active IL-33 is constitutively stored in the nuclei of human airway epithelial cells. Exposing these epithelial cells to A. alternata releases IL-33 extracellularly in vitro. Allergen exposure also induces acute extracellular accumulation of a danger signal, ATP; autocrine ATP sustains increases in intracellular Ca(2+) concentration and releases IL-33 through activation of P2 purinergic receptors. Pharmacological inhibitors of purinergic receptors or deficiency in the P2Y2 gene abrogate IL-33 release and Th2-type responses in the Alternaria-induced airway inflammation model in naive mice, emphasizing the essential roles for ATP and the P2Y(2) receptor. Thus, ATP and purinergic signaling in the respiratory epithelium are critical sensors for airway exposure to airborne allergens, and they may provide novel opportunities to dampen the hypersensitivity response in Th2-type airway diseases such as asthma.

  18. Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia

    NASA Astrophysics Data System (ADS)

    Prtenjak, Maja Telišman; Srnec, Lidija; Peternel, Renata; Madžarević, Valentina; Hrga, Ivana; Stjepanović, Barbara

    2012-11-01

    We examined the atmospheric conditions favourable to the occurrence of maximum concentrations of ragweed pollen with an extremely high risk of producing allergy. Over the 2002-2009 period, daily pollen data collected in Zagreb were used to identify two periods of high pollen concentration (> 600 grains/m3) for our analysis: period A (3-4 September 2002) and period B (6-7 September 2003). Synoptic conditions in both periods were very similar: Croatia was under the influence of a lower sector high pressure system moving slowly eastward over Eastern Europe. During the 2002-2009 period, this type of weather pattern (on ~ 70% of days), in conjunction with almost non-gradient surface pressure conditions in the area (on ~ 30% of days) characterised days when the daily pollen concentrations were higher than 400 grains/m3. Numerical experiments using a mesoscale model at fine resolution showed successful multi-day simulations reproducing the local topographic influence on wind flow and in reasonable agreement with available observations. According to the model, the relatively weak synoptic flow (predominantly from the eastern direction) allowed local thermal circulations to develop over Zagreb during both high pollen episodes. Two-hour pollen concentrations and 48-h back-trajectories indicated that regional-range transport of pollen grains from the central Pannonian Plain was the cause of the high pollen concentrations during period A. During period B, the north-westward regional-range transport in Zagreb was supplemented significantly by pronounced horizontal recirculation of pollen grains. This recirculation happened within the diurnal local circulation over the city, causing a late-evening increase in pollen concentration.

  19. Trans-disciplinary research in synthesis of grass pollen aerobiology and its importance for respiratory health in Australasia.

    PubMed

    Davies, Janet M; Beggs, Paul J; Medek, Danielle E; Newnham, Rewi M; Erbas, Bircan; Thibaudon, Michel; Katelaris, Connstance H; Haberle, Simon G; Newbigin, Edward J; Huete, Alfredo R

    2015-11-15

    Grass pollen is a major trigger for allergic rhinitis and asthma, yet little is known about the timing and levels of human exposure to airborne grass pollen across Australasian urban environments. The relationships between environmental aeroallergen exposure and allergic respiratory disease bridge the fields of ecology, aerobiology, geospatial science and public health. The Australian Aerobiology Working Group comprised of experts in botany, palynology, biogeography, climate change science, plant genetics, biostatistics, ecology, pollen allergy, public and environmental health, and medicine, was established to systematically source, collate and analyse atmospheric pollen concentration data from 11 Australian and six New Zealand sites. Following two week-long workshops, post-workshop evaluations were conducted to reflect upon the utility of this analysis and synthesis approach to address complex multidisciplinary questions. This Working Group described i) a biogeographically dependent variation in airborne pollen diversity, ii) a latitudinal gradient in the timing, duration and number of peaks of the grass pollen season, and iii) the emergence of new methodologies based on trans-disciplinary synthesis of aerobiology and remote sensing data. Challenges included resolving methodological variations between pollen monitoring sites and temporal variations in pollen datasets. Other challenges included "marrying" ecosystem and health sciences and reconciling divergent expert opinion. The Australian Aerobiology Working Group facilitated knowledge transfer between diverse scientific disciplines, mentored students and early career scientists, and provided an uninterrupted collaborative opportunity to focus on a unifying problem globally. The Working Group provided a platform to optimise the value of large existing ecological datasets that have importance for human respiratory health and ecosystems research. Compilation of current knowledge of Australasian pollen aerobiology

  20. The Arabidopsis KINβγ Subunit of the SnRK1 Complex Regulates Pollen Hydration on the Stigma by Mediating the Level of Reactive Oxygen Species in Pollen.

    PubMed

    Gao, Xin-Qi; Liu, Chang Zhen; Li, Dan Dan; Zhao, Ting Ting; Li, Fei; Jia, Xiao Na; Zhao, Xin-Ying; Zhang, Xian Sheng

    2016-07-01

    Pollen-stigma interactions are essential for pollen germination. The highly regulated process of pollen germination includes pollen adhesion, hydration, and germination on the stigma. However, the internal signaling of pollen that regulates pollen-stigma interactions is poorly understood. KINβγ is a plant-specific subunit of the SNF1-related protein kinase 1 complex which plays important roles in the regulation of plant development. Here, we showed that KINβγ was a cytoplasm- and nucleus-localized protein in the vegetative cells of pollen grains in Arabidopsis. The pollen of the Arabidopsis kinβγ mutant could not germinate on stigma, although it germinated normally in vitro. Further analysis revealed the hydration of kinβγ mutant pollen on the stigma was compromised. However, adding water to the stigma promoted the germination of the mutant pollen in vivo, suggesting that the compromised hydration of the mutant pollen led to its defective germination. In kinβγ mutant pollen, the structure of the mitochondria and peroxisomes was destroyed, and their numbers were significantly reduced compared with those in the wild type. Furthermore, we found that the kinβγ mutant exhibited reduced levels of reactive oxygen species (ROS) in pollen. The addition of H2O2 in vitro partially compensated for the reduced water absorption of the mutant pollen, and reducing ROS levels in pollen by overexpressing Arabidopsis CATALASE 3 resulted in compromised hydration of pollen on the stigma. These results indicate that Arabidopsis KINβγ is critical for the regulation of ROS levels by mediating the biogenesis of mitochondria and peroxisomes in pollen, which is required for pollen-stigma interactions during pollination.

  1. Class XI Myosins Move Specific Organelles in Pollen Tubes and Are Required for Normal Fertility and Pollen Tube Growth in Arabidopsis1[OPEN

    PubMed Central

    Madison, Stephanie L.; Buchanan, Matthew L.; Glass, Jeremiah D.; McClain, Tarah F.; Park, Eunsook; Nebenführ, Andreas

    2015-01-01

    Pollen tube growth is an essential aspect of plant reproduction because it is the mechanism through which nonmotile sperm cells are delivered to ovules, thus allowing fertilization to occur. A pollen tube is a single cell that only grows at the tip, and this tip growth has been shown to depend on actin filaments. It is generally assumed that myosin-driven movements along these actin filaments are required to sustain the high growth rates of pollen tubes. We tested this conjecture by examining seed set, pollen fitness, and pollen tube growth for knockout mutants of five of the six myosin XI genes expressed in pollen of Arabidopsis (Arabidopsis thaliana). Single mutants had little or no reduction in overall fertility, whereas double mutants of highly similar pollen myosins had greater defects in pollen tube growth. In particular, myo11c1 myo11c2 pollen tubes grew more slowly than wild-type pollen tubes, which resulted in reduced fitness compared with the wild type and a drastic reduction in seed set. Golgi stack and peroxisome movements were also significantly reduced, and actin filaments were less organized in myo11c1 myo11c2 pollen tubes. Interestingly, the movement of yellow fluorescent protein-RabA4d-labeled vesicles and their accumulation at pollen tube tips were not affected in the myo11c1 myo11c2 double mutant, demonstrating functional specialization among myosin isoforms. We conclude that class XI myosins are required for organelle motility, actin organization, and optimal growth of pollen tubes. PMID:26358416

  2. Correlation of pollen counts and number of hospital visits of asthmatic and allergic rhinitis patients

    PubMed Central

    Singh, Nishtha; Singh, Udaiveer; Singh, Dimple; Daya, Mangal; Singh, Virendra

    2017-01-01

    Aims and Objectives: Environmental pollens are known to cause exacerbation of symptoms of patients with allergic rhinitis (AR) and asthma. During pollen months, number of patients visiting hospital has been shown to increase in some studies. However, in India, such studies are lacking. Therefore, we aimed to study pollen counts and to find its correlation with number of new patients attending Asthma Bhawan for 2 years. Materials and Methods: Aerobiological sampling was done using Burkard 24 h spore trap system. The site selected for the entrapment of the air spore was the building of Asthma Bhawan situated at Vidhyadhar Nagar, Jaipur. New patients coming with problems of respiratory allergy such as AR or asthma were recruited in the study. Skin prick tests (SPTs) were carried out after obtaining consent in these patients. Monthly pollen counts of trees, weeds and grasses were correlated with the number of new patients. Pollen calendar was prepared for 2 years. Results: Average annual pollen count during 2011 and 2012 were 14,460.5. In the analysis, 37 types of species or families were identified. Pollen count showed two seasonal peaks during March–April and from August to October. January and June showed the lowest pollen counts in 2 years. Average monthly count of grass pollens showed significant correlation with number of new patients (r = 0.59). However, monthly pollen count of trees and weeds did not correlate. The correlation of the pollen count of individual pollen with the SPT positivity to that pollen showed significant correlation with Chenopodium album only. Conclusions: It can be concluded that there were two peaks of pollen count in a year during March–April and August–October. Average monthly pollen counts of grass were significantly correlated with the number of hospital visits of new patients. PMID:28360459

  3. VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract.

    PubMed

    Jiang, Lixi; Yang, Shu-Lan; Xie, Li-Fen; Puah, Ching San; Zhang, Xue-Qin; Yang, Wei-Cai; Sundaresan, Venkatesan; Ye, De

    2005-02-01

    In flowering plants, penetration of the pollen tube through stigma, style, and transmitting tract is essential for delivery of sperm nuclei to the egg cells embedded deeply within female tissues. Despite its importance in plant reproduction, little is known about the underlying molecular mechanisms that regulate the navigation of the pollen tube through the stigma, style, and transmitting tract. Here, we report the identification and characterization of an Arabidopsis thaliana gene, VANGUARD1 (VGD1) that encodes a pectin methylesterase (PME)-homologous protein of 595 amino acids and is required for enhancing the growth of pollen tubes in the style and transmitting tract tissues. VGD1 was expressed specifically in pollen grain and the pollen tube. The VGD1 protein was distributed throughout the pollen grain and pollen tube, including the plasma membrane and cell wall. Functional interruption of VGD1 reduced PME activity in the pollen to 82% of the wild type and greatly retarded the growth of the pollen tube in the style and transmitting tract, resulting in a significant reduction of male fertility. In addition, the vgd1 pollen tubes were unstable and burst more frequently when germinated and grown on in vitro culture medium, compared with wild-type pollen tubes. Our study suggests that the VGD1 product is required for growth of the pollen tube, possibly via modifying the cell wall and enhancing the interaction of the pollen tube with the female style and transmitting tract tissues.

  4. [The effect of climate change on pollen allergy in the Netherlands].

    PubMed

    de Weger, Letty A; Hiemstra, Pieter S

    2009-01-01

    Climate change can exert a range of effects on pollen, which might have consequences for pollen-allergic patients. New allergenic pollen types might appear in the Netherlands, like common ragweed and olive, which result in allergy patients developing allergies that scarcely occur in the Netherlands at present. Trees, such as birches and planes, might produce larger quantities of pollen, which could result in more severe symptoms. The pollen season might become longer thereby extending the period in which patients suffer from allergy symptoms. This extension of the pollen season could be due to a prolonged flowering period of certain species, e.g. grasses, or the appearance of new species that flower in late summer, e.g. common ragweed. Climate change could cause an increase in heavy thunderstorms on summer days in the grass pollen season, which are known to increase the chance of asthma exacerbations.

  5. Elevation of Pollen Mitochondrial DNA Copy Number by WHIRLY2: Altered Respiration and Pollen Tube Growth in Arabidopsis1

    PubMed Central

    Cai, Qiang; Guo, Liang; Shen, Zhao-Rui; Wang, Dan-Yang; Zhang, Quan; Sodmergen

    2015-01-01

    In plants, the copy number of the mitochondrial DNA (mtDNA) can be much lower than the number of mitochondria. The biological significance and regulatory mechanisms of this phenomenon remain poorly understood. Here, using the pollen vegetative cell, we examined the role of the Arabidopsis (Arabidopsis thaliana) mtDNA-binding protein WHIRLY2 (AtWHY2). AtWHY2 decreases during pollen development, in parallel with the rapid degradation of mtDNA; to examine the importance of this decrease, we used the pollen vegetative cell-specific promoter Lat52 to express AtWHY2. The transgenic plants (LWHY2) had very high mtDNA levels in pollen, more than 10 times more than in the wild type (ecotype Columbia-0). LWHY2 plants were fertile, morphologically normal, and set seeds; however, reciprocal crosses with heterozygous plants showed reduced transmission of LWHY2-1 through the male and slower growth of LWHY2-1 pollen tubes. We found that LWHY2-1 pollen had significantly more reactive oxygen species and less ATP compared with the wild type, indicating an effect on mitochondrial respiration. These findings reveal that AtWHY2 affects mtDNA copy number in pollen and suggest that low mtDNA copy numbers might be the normal means by which plant cells maintain mitochondrial genetic information. PMID:26195569

  6. Assessment of the Olea pollen and its major allergen Ole e 1 concentrations in the bioearosol of two biogeographical areas

    NASA Astrophysics Data System (ADS)

    Moreno-Grau, S.; Aira, M. J.; Elvira-Rendueles, B.; Fernández-González, M.; Fernández-González, D.; García-Sánchez, A.; Martínez-García, M. J.; Moreno, J. M.; Negral, L.; Vara, A.; Rodríguez-Rajo, F. J.

    2016-11-01

    The Olea pollen is currently an important allergy source. In some regions of Southern Spain, olive pollen is the main cause of allergic sensitization exceeding 40% of the sensitized individuals. Due to the scarce presence of olive trees in Northern Spain, limited to some cultivated fields in the South of the Galicia region where they also grow wild, only 8% of the sensitized individuals showed positive results for Olea pollen. The aim of the paper was to assess the behaviour pattern of the Olea pollen and its aeroallergens in the atmosphere, as this information could help us to improve the understanding and prevention of clinical symptoms. Airborne Olea pollen and Ole e 1 allergens were quantified in Cartagena (South-eastern Spain) and Ourense (North-western Spain). A volumetric pollen trap and a Burkard Cyclone sampler were used for pollen and allergen quantification. The Olea flowering took place in April or May in both biometeorological sampling areas. The higher concentrations were registered in the Southern area of Spain, for both pollen and Ole e 1, with values 8 times higher for pollen concentrations and 40 times higher for allergens. An alternate bearing pattern could be observed, characterized by years with high pollen values and low allergen concentrations and vice versa. Moreover, during some flowering seasons the allergen concentrations did not correspond to the atmospheric pollen values. Variations in weather conditions or Long Distance Transport (LDT) processes could explain the discordance. The back trajectory analysis shows that the most important contributions of pollen and allergens in the atmosphere are coincident with air masses passing through potential source areas. The exposure to olive pollen may not be synonym of antigen exposure.

  7. PECTIN METHYLESTERASE48 Is Involved in Arabidopsis Pollen Grain Germination1[OPEN

    PubMed Central

    Leroux, Christelle; Bouton, Sophie; Kiefer-Meyer, Marie-Christine; Fabrice, Tohnyui Ndinyanka; Mareck, Alain; Guénin, Stéphanie; Fournet, Françoise; Ringli, Christoph; Pelloux, Jérôme; Driouich, Azeddine; Lerouge, Patrice; Lehner, Arnaud; Mollet, Jean-Claude

    2015-01-01

    Germination of pollen grains is a crucial step in plant reproduction. However, the molecular mechanisms involved remain unclear. We investigated the role of PECTIN METHYLESTERASE48 (PME48), an enzyme implicated in the remodeling of pectins in Arabidopsis (Arabidopsis thaliana) pollen. A combination of functional genomics, gene expression, in vivo and in vitro pollen germination, immunolabeling, and biochemical analyses was used on wild-type and Atpme48 mutant plants. We showed that AtPME48 is specifically expressed in the male gametophyte and is the second most expressed PME in dry and imbibed pollen grains. Pollen grains from homozygous mutant lines displayed a significant delay in imbibition and germination in vitro and in vivo. Moreover, numerous pollen grains showed two tips emerging instead of one in the wild type. Immunolabeling and Fourier transform infrared analyses showed that the degree of methylesterification of the homogalacturonan was higher in pme48−/− pollen grains. In contrast, the PME activity was lower in pme48−/−, partly due to a reduction of PME48 activity revealed by zymogram. Interestingly, the wild-type phenotype was restored in pme48−/− with the optimum germination medium supplemented with 2.5 mm calcium chloride, suggesting that in the wild-type pollen, the weakly methylesterified homogalacturonan is a source of Ca2+ necessary for pollen germination. Although pollen-specific PMEs are traditionally associated with pollen tube elongation, this study provides strong evidence that PME48 impacts the mechanical properties of the intine wall during maturation of the pollen grain, which, in turn, influences pollen grain germination. PMID:25524442

  8. Grass Pollen Allergens

    PubMed Central

    Augustin, Rosa

    1959-01-01

    Heat and pH stability studies and experiments with organic solvents show that the A-antigens discussed in the preceding paper (Augustin, 1959c) are much more labile than the I- (`inner ring') antigens. Breakdown products and/or aggregates are produced which no longer precipitate with antisera to the original extracts, but act as inhibitors. Solutions of pollen allergens, on the other hand, are found to withstand even autoclaving for 15 min. at 20 atm. and vigorous boiling over the naked flame of a bunsen burner. None of the carbohydrates tested has a demonstrable effect on skin reactivity which is, however, destroyed by crystalline pepsin, crystalline trypsin, a crystalline mould protease and a tissue protease (a partially purified extract from rabbit spleen). It follows that the bulk of the allergens—if not all—are proteins. The relation of skin reactivity, immuno-electrophoretic patterns, carbohydrate and protein reactions to the selective destruction of the pollen antigens is investigated. Pollen components prove to have a somewhat wider range of electrophoretic mobilities than serum proteins and are probably as complicated a mixture. The most and least highly negatively charged components are without skin reactivity in allergic subjects. The skin reactive allergens appear to have the mobilities of α- and β-globulins. Not all the hay fever subjects react equally to all the components, and Cocksfoot and Timothy activity patterns vary in different subjects. ImagesFIG. 5 PMID:13795119

  9. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States.

    PubMed

    Zhang, Yong; Bielory, Leonard; Georgopoulos, Panos G

    2014-07-01

    Climatic change is expected to affect the spatiotemporal patterns of airborne allergenic pollen, which has been found to act synergistically with common air pollutants, such as ozone, to cause allergic airway disease (AAD). Observed airborne pollen data from six stations from 1994 to 2011 at Fargo (North Dakota), College Station (Texas), Omaha (Nebraska), Pleasanton (California), Cherry Hill and Newark (New Jersey) in the US were studied to examine climate change effects on trends of annual mean and peak value of daily concentrations, annual production, season start, and season length of Betula (birch) and Quercus (oak) pollen. The growing degree hour (GDH) model was used to establish a relationship between start/end dates and differential temperature sums using observed hourly temperatures from surrounding meteorology stations. Optimum GDH models were then combined with meteorological information from the Weather Research and Forecasting (WRF) model, and land use land coverage data from the Biogenic Emissions Land use Database, version 3.1 (BELD3.1), to simulate start dates and season lengths of birch and oak pollen for both past and future years across the contiguous US (CONUS). For most of the studied stations, comparison of mean pollen indices between the periods of 1994-2000 and 2001-2011 showed that birch and oak trees were observed to flower 1-2 weeks earlier; annual mean and peak value of daily pollen concentrations tended to increase by 13.6%-248%. The observed pollen season lengths varied for birch and for oak across the different monitoring stations. Optimum initial date, base temperature, and threshold GDH for start date was found to be 1 March, 8 °C, and 1,879 h, respectively, for birch; 1 March, 5 °C, and 4,760 h, respectively, for oak. Simulation results indicated that responses of birch and oak pollen seasons to climate change are expected to vary for different regions.

  10. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Bielory, Leonard; Georgopoulos, Panos G.

    2014-07-01

    Climatic change is expected to affect the spatiotemporal patterns of airborne allergenic pollen, which has been found to act synergistically with common air pollutants, such as ozone, to cause allergic airway disease (AAD). Observed airborne pollen data from six stations from 1994 to 2011 at Fargo (North Dakota), College Station (Texas), Omaha (Nebraska), Pleasanton (California), Cherry Hill and Newark (New Jersey) in the US were studied to examine climate change effects on trends of annual mean and peak value of daily concentrations, annual production, season start, and season length of Betula (birch) and Quercus (oak) pollen. The growing degree hour (GDH) model was used to establish a relationship between start/end dates and differential temperature sums using observed hourly temperatures from surrounding meteorology stations. Optimum GDH models were then combined with meteorological information from the Weather Research and Forecasting (WRF) model, and land use land coverage data from the Biogenic Emissions Land use Database, version 3.1 (BELD3.1), to simulate start dates and season lengths of birch and oak pollen for both past and future years across the contiguous US (CONUS). For most of the studied stations, comparison of mean pollen indices between the periods of 1994-2000 and 2001-2011 showed that birch and oak trees were observed to flower 1-2 weeks earlier; annual mean and peak value of daily pollen concentrations tended to increase by 13.6 %-248 %. The observed pollen season lengths varied for birch and for oak across the different monitoring stations. Optimum initial date, base temperature, and threshold GDH for start date was found to be 1 March, 8 °C, and 1,879 h, respectively, for birch; 1 March, 5 °C, and 4,760 h, respectively, for oak. Simulation results indicated that responses of birch and oak pollen seasons to climate change are expected to vary for different regions.

  11. Atmospheric Poaceae pollen frequencies and associations with meteorological parameters in Brisbane, Australia: a 5-year record, 1994-1999

    NASA Astrophysics Data System (ADS)

    Green, Brett James; Dettmann, Mary; Yli-Panula, Eija; Rutherford, Shannon; Simpson, Rod

    Grass pollen is an important risk factor for allergic rhinitis and asthma in Australia and is the most prevalent pollen component of the aerospora of Brisbane, accounting for 71.6% of the annual airborne pollen load. A 5-year (June 1994-May 1999) monitoring program shows the grass pollen season to occur during the summer and autumn months (December-April), however the timing of onset and intensity of the season vary from year to year. During the pollen season, Poaceae counts exceeding 30 grains m-3 were recorded on 244 days and coincided with maximum temperatures of 28.1 +/- 2.0 °C. In this study, statistical associations between atmospheric grass pollen loads and several weather parameters, including maximum temperature, minimum temperature and precipitation, were investigated. Spearman's correlation analysis demonstrated that daily grass pollen counts were positively associated (P < 0.0001) with maximum and minimum temperature during each sampling year. Precipitation, although considered a less important daily factor (P < 0.05), was observed to remove pollen grains from the atmosphere during significant periods of rainfall. This study provides the first insight into the influence of meteorological variables, in particular temperature, on atmospheric Poaceae pollen counts in Brisbane. An awareness of these associations is critical for the prevention and management of allergy and asthma for atopic individuals within this region.

  12. Inositol polyphosphate 5-phosphatase-controlled Ins(1,4,5)P3/Ca2+ is crucial for maintaining pollen dormancy and regulating early germination of pollen.

    PubMed

    Wang, Yuan; Chu, Yu-Jia; Xue, Hong-Wei

    2012-06-01

    Appropriate pollen germination is crucial for plant reproduction. Previous studies have revealed the importance of dehydration in maintaining pollen dormancy; here, we show that phosphatidylinositol pathway-controlled Ins(1,4,5)P(3)/Ca(2+) levels are crucial for maintaining pollen dormancy in Arabidopsis thaliana. An interesting phenotype, precocious pollen germination within anthers, results from a disruption of inositol polyphosphate 5-phosphatase 12 (5PT12). The knockout mutant 5pt12 has normal early pollen development and pollen dehydration, and exhibits hypersensitive ABA responses, indicating that precocious pollen germination is not caused either by abnormal dehydration or by suppressed ABA signaling. Deficiency of 5PT13 (a close paralog of 5PT12) synergistically enhances precocious pollen germination. Both basal Ins(1,4,5)P(3) levels and endogenous Ca(2+) levels are elevated in pollen from 5pt12 mutants, and 5pt12 5pt13 double mutants show an even higher precocious germination rate along with much higher levels of Ins(1,4,5)P(3)/Ca(2+). Strikingly, exogenous Ca(2+) stimulates the germination of wild-type pollen at floral stage 12, even in very low humidity, both in vitro and in vivo, and treatment with BAPTA, a [Ca(2+)](cyt) inhibitor, reduces the precocious pollen germination rates of 5pt12, 5pt13 and 5pt12 5pt13 mutants. These results indicate that the increase in the levels of Ins(1,4,5)P(3)/Ca(2+) caused by deficiency of inositol polyphosphate 5-phosphatases is sufficient to break pollen dormancy and to trigger early germination. The study reveals that independent of dehydration, the control of Ins(1,4,5)P(3)/Ca(2+) levels by Inositol polyphosphate 5-phosphatases is crucial for maintaining pollen dormancy.

  13. [Allergy, pollen and the environment].

    PubMed

    Terán, Luis Manuel; Haselbarth-López, Michelle Marie Margarete; Quiroz-García, David Leonor

    2009-01-01

    Allergic respiratory diseases such asthma and allergic rhinitis are a health problem throughout the world. In Mexico City, pollens are an important cause of allergic respiratory disease. Both, the geographic location- and the vegetation surrounding this City favor the distribution of pollens leading to respiratory disease in susceptible patients. Aerobiological studies have shown that during the mild dry winter there is a large amount of pollens in the environment with tree pollens being the most abundant of all. The most frequent tree pollens found in Mexico City include Fraxinus, Cupressaseae, Alnus, Liquidambar, Callistemon, Pinus, and Casuarina. In contrast, grass- and weed pollens predominate during the summer (rainy season) including Compositae, Cheno-Am, Ambrosia and Gramineae. An additional health problem in Mexico City is the air pollution that exerts a direct effect on individuals. This in turn increases pollen allergenicity by disrupting them leading to the release of their particles which then penetrate the human airways causing disease. Thus, the polluted environment along with global warming which is also known to increase pollen quantities by inducing longer pollen seasons may represent a health risk to Mexico City inhabitants.

  14. Application of the personal aeroallergen sampler to assess personal exposures to Japanese cedar and cypress pollens.

    PubMed

    Yamamoto, Naomichi; Matsuki, Hideaki; Yanagisawa, Yukio

    2007-11-01

    We have recently developed the Personal Aeroallergen Sampler (PAAS), a passive sampler for aeroallergens. In the present study, the applicability of the PAAS for personal exposure assessments of cedar and cypress pollens was investigated by comparing with existing reference samplers. To investigate the usability of the PAAS as a personal sampler for the airborne pollens, it was compared with the Institute of Occupational Medicine (IOM) sampler, a traditionally used active personal sampler. Overall, the result showed a good correlation between the two methods, that is, R(2)=0.8082, suggesting the usability of the PAAS for the personal pollen samplings. The ratio of the pollen numbers collected by the PAAS to the IOM sampler was approximately 30%, which was consistent with our previous study investigating ambient dust particles. Meanwhile, the comparability of the PAAS to the Durham sampler, the most widely used stationary pollen trap, was also assured. Furthermore, we exemplified the seasonal peak of the personal pollen exposures was not necessarily reflected by the outdoor concentrations, indicating insufficiency of the stationary outdoor monitoring to represent the personal pollen exposures. The PAAS, a simple passive method, could be used in future field studies to elucidate the detailed mechanisms of allergic airway diseases such as cedar pollinosis.

  15. Atmospheric solids analysis probe mass spectrometry for the rapid identification of pollens and semi-quantification of flavonoid fingerprints

    DOE PAGES

    Xiao, Xiaoyin; Miller, Lance L.; Parchert, Kylea J.; ...

    2016-06-08

    From allergies to plant reproduction, pollens have important impacts on the health of human and plant populations, yet identification of pollen grains remains difficult and time-consuming. Low-volatility flavonoids generated from pollens cannot be easily characterized and quantified with current analytical techniques. Here we demonstrate the novel use of atmospheric solids analysis probe mass spectrometry (ASAP-MS) for the characterization of flavonoids in pollens. Flavonoid patterns were generated for pollens collected from different plant types (trees and bushes) in addition to bee pollens from distinct geographic regions. Standard flavonoids (kaempferol and rhamnazin) and those produced from pollens were compared and assessed withmore » ASAP-MS using low-energy collision MS/MS. Results for a semi-quantitative method for assessing the amount of a flavonoid in pollens are also presented.« less

  16. Atmospheric solids analysis probe mass spectrometry for the rapid identification of pollens and semi-quantification of flavonoid fingerprints

    SciTech Connect

    Xiao, Xiaoyin; Miller, Lance L.; Parchert, Kylea J.; Hayes, Dulce; Hochrein, James M.

    2016-06-08

    From allergies to plant reproduction, pollens have important impacts on the health of human and plant populations, yet identification of pollen grains remains difficult and time-consuming. Low-volatility flavonoids generated from pollens cannot be easily characterized and quantified with current analytical techniques. Here we demonstrate the novel use of atmospheric solids analysis probe mass spectrometry (ASAP-MS) for the characterization of flavonoids in pollens. Flavonoid patterns were generated for pollens collected from different plant types (trees and bushes) in addition to bee pollens from distinct geographic regions. Standard flavonoids (kaempferol and rhamnazin) and those produced from pollens were compared and assessed with ASAP-MS using low-energy collision MS/MS. Results for a semi-quantitative method for assessing the amount of a flavonoid in pollens are also presented.

  17. The Impact of the Invasive Alien Plant, Impatiens glandulifera, on Pollen Transfer Networks.

    PubMed

    Emer, Carine; Vaughan, Ian P; Hiscock, Simon; Memmott, Jane

    2015-01-01

    Biological invasions are a threat to the maintenance of ecological processes, including pollination. Plant-flower visitor networks are traditionally used as a surrogated for pollination at the community level, despite they do not represent the pollination process, which takes place at the stigma of plants where pollen grains are deposited. Here we investigated whether the invasion of the alien plant Impatiens glandulifera (Balsaminaceae) affects pollen transfer at the community level. We asked whether more alien pollen is deposited on the stigmas of plants on invaded sites, whether deposition is affected by stigma type (dry, semidry and wet) and whether the invasion of I. glandulifera changes the structure of the resulting pollen transfer networks. We sampled stigmas of plants on 10 sites invaded by I. glandulifera (hereafter, balsam) and 10 non-invaded control sites. All 20 networks had interactions with balsam pollen, although significantly more balsam pollen was found on plants with dry stigmas in invaded areas. Balsam pollen deposition was restricted to a small subset of plant species, which is surprising because pollinators are known to carry high loads of balsam pollen. Balsam invasion did not affect the loading of native pollen, nor did it affect pollen transfer network properties; networks were modular and poorly nested, both of which are likely to be related to the specificity of pollen transfer interactions. Our results indicate that pollination networks become more specialized when moving from the flower visitation to the level of pollen transfer networks. Therefore, caution is needed when inferring pollination from patterns of insect visitation or insect pollen loads as the relationship between these and pollen deposition is not straightforward.

  18. The Impact of the Invasive Alien Plant, Impatiens glandulifera, on Pollen Transfer Networks

    PubMed Central

    Emer, Carine; Vaughan, Ian P.; Hiscock, Simon; Memmott, Jane

    2015-01-01

    Biological invasions are a threat to the maintenance of ecological processes, including pollination. Plant-flower visitor networks are traditionally used as a surrogated for pollination at the community level, despite they do not represent the pollination process, which takes place at the stigma of plants where pollen grains are deposited. Here we investigated whether the invasion of the alien plant Impatiens glandulifera (Balsaminaceae) affects pollen transfer at the community level. We asked whether more alien pollen is deposited on the stigmas of plants on invaded sites, whether deposition is affected by stigma type (dry, semidry and wet) and whether the invasion of I. glandulifera changes the structure of the resulting pollen transfer networks. We sampled stigmas of plants on 10 sites invaded by I. glandulifera (hereafter, balsam) and 10 non-invaded control sites. All 20 networks had interactions with balsam pollen, although significantly more balsam pollen was found on plants with dry stigmas in invaded areas. Balsam pollen deposition was restricted to a small subset of plant species, which is surprising because pollinators are known to carry high loads of balsam pollen. Balsam invasion did not affect the loading of native pollen, nor did it affect pollen transfer network properties; networks were modular and poorly nested, both of which are likely to be related to the specificity of pollen transfer interactions. Our results indicate that pollination networks become more specialized when moving from the flower visitation to the level of pollen transfer networks. Therefore, caution is needed when inferring pollination from patterns of insect visitation or insect pollen loads as the relationship between these and pollen deposition is not straightforward. PMID:26633170

  19. Authentication of bee pollen grains in bright-field microscopy by combining one-class classification techniques and image processing.

    PubMed

    Chica, Manuel

    2012-11-01

    A novel method for authenticating pollen grains in bright-field microscopic images is presented in this work. The usage of this new method is clear in many application fields such as bee-keeping sector, where laboratory experts need to identify fraudulent bee pollen samples against local known pollen types. Our system is based on image processing and one-class classification to reject unknown pollen grain objects. The latter classification technique allows us to tackle the major difficulty of the problem, the existence of many possible fraudulent pollen types, and the impossibility of modeling all of them. Different one-class classification paradigms are compared to study the most suitable technique for solving the problem. In addition, feature selection algorithms are applied to reduce the complexity and increase the accuracy of the models. For each local pollen type, a one-class classifier is trained and aggregated into a multiclassifier model. This multiclassification scheme combines the output of all the one-class classifiers in a unique final response. The proposed method is validated by authenticating pollen grains belonging to different Spanish bee pollen types. The overall accuracy of the system on classifying fraudulent microscopic pollen grain objects is 92.3%. The system is able to rapidly reject pollen grains, which belong to nonlocal pollen types, reducing the laboratory work and effort. The number of possible applications of this authentication method in the microscopy research field is unlimited.

  20. Ambrosia artemisiifolia L. pollen simulations over the Euro-CORDEX domain: model description and emission calibration

    NASA Astrophysics Data System (ADS)

    liu, li; Solmon, Fabien; Giorgi, Filippo; Vautard, Robert

    2014-05-01

    Ragweed Ambrosia artemisiifolia L. is a highly allergenic invasive plant. Its pollen can be transported over large distances and has been recognized as a significant cause of hayfever and asthma (D'Amato et al., 2007). In the context of the ATOPICA EU program we are studying the links between climate, land use and ecological changes on the ragweed pollen emissions and concentrations. For this purpose, we implemented a pollen emission/transport module in the RegCM4 regional climate model in collaboration with ATOPICA partners. The Abdus Salam International Centre for Theoretical Physics (ICTP) regional climate model, i.e. RegCM4 was adapted to incorporate the pollen emissions from (ORCHIDEE French) Global Land Surface Model and a pollen tracer model for describing pollen convective transport, turbulent mixing, dry and wet deposition over extensive domains, using consistent assumption regarding the transport of multiple species (Fabien et al., 2008). We performed two families of recent-past simulations on the Euro-Cordex domain (simulation for future condition is been considering). Hindcast simulations (2000~2011) were driven by the ERA-Interim re-analyses and designed to best simulate past periods airborne pollens, which were calibrated with parts of observations and verified by comparison with the additional observations. Historical simulations (1985~2004) were driven by HadGEM CMPI5 and designed to serve as a baseline for comparison with future airborne concentrations as obtained from climate and land-use scenarios. To reduce the uncertainties on the ragweed pollen emission, an assimilation-like method (Rouǐl et al., 2009) was used to calibrate release based on airborne pollen observations. The observations were divided into two groups and used for calibration and validation separately. A wide range of possible calibration coefficients were tested for each calibration station, making the bias between observations and simulations within an admissible value then

  1. Determination of sound types and source levels of airborne vocalizations by California sea lions, Zalophus californianus, in rehabilitation at the Marine Mammal Center in Sausalito, California

    NASA Astrophysics Data System (ADS)

    Schwalm, Afton Leigh

    California sea lions (Zalophus californianus) are a highly popular and easily recognized marine mammal in zoos, aquariums, circuses, and often seen by ocean visitors. They are highly vocal and gregarious on land. Surprisingly, little research has been performed on the vocalization types, source levels, acoustic properties, and functions of airborne sounds used by California sea lions. This research on airborne vocalizations of California sea lions will advance the understanding of this aspect of California sea lions communication, as well as examine the relationship between health condition and acoustic behavior. Using a PhillipsRTM digital recorder with attached microphone and a calibrated RadioShackRTM sound pressure level meter, acoustical data were recorded opportunistically on California sea lions during rehabilitation at The Marine Mammal Center in Sausalito, CA. Vocalizations were analyzed using frequency, time, and amplitude variables with Raven Pro: Interactive Sound Analysis Software Version 1.4 (The Cornell Lab of Ornithology, Ithaca, NY). Five frequency, three time, and four amplitude variables were analyzed for each vocalization. Differences in frequency, time, and amplitude variables were not significant by sex. The older California sea lion group produced vocalizations that were significantly lower in four frequency variables, significantly longer in two time variables, significantly higher in calibrated maximum and minimum amplitude variables, and significantly lower in frequency at maximum and minimum amplitude compared with pups. Six call types were identified: bark, goat, growl/grumble, bark/grumble, bark/growl, and grumble/moan. The growl/grumble call was higher in dominant beginning, ending, and minimum frequency, as well as in the frequency at maximum amplitude compared with the bark, goat, bark/grumble calls in the first versus last vocalization sample. The goat call was significantly higher in first harmonic interval than any other call type

  2. Has Pollination Mode Shaped the Evolution of Ficus Pollen?

    PubMed Central

    Wang, Gang; Chen, Jin; Li, Zong-Bo; Zhang, Feng-Ping; Yang, Da-Rong

    2014-01-01

    Background The extent to which co-evolutionary processes shape morphological traits is one of the most fascinating topics in evolutionary biology. Both passive and active pollination modes coexist in the fig tree (Ficus, Moraceae) and fig wasp (Agaonidae, Hymenoptera) mutualism. This classic obligate relationship that is about 75 million years old provides an ideal system to consider the role of pollination mode shifts on pollen evolution. Methods and Main Findings Twenty-five fig species, which cover all six Ficus subgenera, and are native to the Xishuangbanna region of southwest China, were used to investigate pollen morphology with scanning electron microscope (SEM). Pollination mode was identified by the Anther/Ovule ratio in each species. Phylogenetic free regression and a correlated evolution test between binary traits were conducted based on a strong phylogenetic tree. Seventeen of the 25 fig species were actively pollinated and eight species were passively pollinated. Three pollen shape types and three kinds of exine ornamentation were recognized among these species. Pollen grains with ellipsoid shape and rugulate ornamentation were dominant. Ellipsoid pollen occurred in all 17 species of actively pollinated figs, while for the passively pollinated species, two obtuse end shapes were identified: cylinder and sphere shapes were identified in six of the eight species. All passively pollinated figs presented rugulate ornamentation, while for actively pollinated species, the smoother types - psilate and granulate-rugulate ornamentations - accounted for just five and two among the 17 species, respectively. The relationship between pollen shape and pollination mode was shown by both the phylogenetic free regression and the correlated evolution tests. Conclusions Three pollen shape and ornamentation types were found in Ficus, which show characteristics related to passive or active pollination mode. Thus, the pollen shape is very likely shaped by pollination mode

  3. Comparison of modern pollen distribution between northern and southern South China Sea

    NASA Astrophysics Data System (ADS)

    Luo, C.; Chen, M.; Xiang, R.; Liu, J.; Zhang, L.; Lu, J.

    2013-12-01

    To understand pollen transport mechanic and terrigenous area is the base to explain pollen data correctly in Southern South China Sea (Fig.1). Based on Palynology analyzing the following preliminary conclusions are listed. 1. Air pollen differences between northern and southern South China Sea 15 air pollen samples were collected from northern part of the South China Sea from August to September 2011. 13 air pollen samples were collected from southern South China Sea in December 2011. It was found that the air pollen are different between northern and southern part of South China Sea: the pollen types in the north are more abundant than in the south, Ulmaceae, Monolete spore, Cyperaceae, Euphorbiaceae, Rubiaceae, Artemisia, Chenopodiaceae, Rosaceae, Labiatae occur only in the north, they do not occur or is just sporadic in the south. The total pollen number and concentration in the north is 10 times of the south, one of the reasons may be that the sampling season in the north is autumn with more flowering plants, the sampling season in the south is winter, with fewer flowering plants; the second reason might be that pollen and spore in autumn and winter are mainly spread by the winter wind, thus they reduce from north to south. 2. Pollen differences of the surface sediments between northern and southern South China Sea 14 samples were collected from surface sediments in the northern part of the South China Sea from August to October, 2011. 12 samples were collected from surface sediments in the southern part of the South China Sea from year 1997 to 2002. The differences of pollen characteristics from the surface sediments between northern and southern part of South China Sea are: pollen types and quantities in the north are richer than in south. There are Trilete spores (35-100%), Pinus (3-65%) in northern of SCS, with pollen concentration of 33-1031grain/g. There are only a small amount of Trilete-spore and Pinus pollen in southern of SCS. Pollen concentration in

  4. Pollen assemblages as paleoenvironmental proxies in the Florida Everglades

    USGS Publications Warehouse

    Willard, D.A.; Weimer, L.M.; Riegel, W.L.

    2001-01-01

    Analysis of 170 pollen assemblages from surface samples in eight vegetation types in the Florida Everglades indicates that these wetland sub-environments are distinguishable from the pollen record and that they are useful proxies for hydrologic and edaphic parameters. Vegetation types sampled include sawgrass marshes, cattail marshes, sloughs with floating aquatics, wet prairies, brackish marshes, tree islands, cypress swamps, and mangrove forests. The distribution of these vegetation types is controlled by specific environmental parameters, such as hydrologic regime, nutrient availability, disturbance level, substrate type, and salinity; ecotones between vegetation types may be sharp. Using R-mode cluster analysis of pollen data, we identified diagnostic species groupings; Q-mode cluster analysis was used to differentiate pollen signatures of each vegetation type. Cluster analysis and the modern analog technique were applied to interpret vegetational and environmental trends over the last two millennia at a site in Water Conservation Area 3A. The results show that close modern analogs exist for assemblages in the core and indicate past hydrologic changes at the site, correlated with both climatic and land-use changes. The ability to differentiate marshes with different hydrologic and edaphic requirements using the pollen record facilitates assessment of relative impacts of climatic and anthropogenic changes on this wetland ecosystem on smaller spatial and temporal scales than previously were possible. ?? 2001 Elsevier Science B.V.

  5. Modelling past land use using archaeological and pollen data

    NASA Astrophysics Data System (ADS)

    Pirzamanbein, Behnaz; Lindström, johan; Poska, Anneli; Gaillard-Lemdahl, Marie-José

    2016-04-01

    Accurate maps of past land use are necessary for studying the impact of anthropogenic land-cover changes on climate and biodiversity. We develop a Bayesian hierarchical model to reconstruct the land use using Gaussian Markov random fields. The model uses two observations sets: 1) archaeological data, representing human settlements, urbanization and agricultural findings; and 2) pollen-based land estimates of the three land-cover types Coniferous forest, Broadleaved forest and Unforested/Open land. The pollen based estimates are obtained from the REVEALS model, based on pollen counts from lakes and bogs. Our developed model uses the sparse pollen-based estimations to reconstruct the spatial continuous cover of three land cover types. Using the open-land component and the archaeological data, the extent of land-use is reconstructed. The model is applied on three time periods - centred around 1900 CE, 1000 and, 4000 BCE over Sweden for which both pollen-based estimates and archaeological data are available. To estimate the model parameters and land use, a block updated Markov chain Monte Carlo (MCMC) algorithm is applied. Using the MCMC posterior samples uncertainties in land-use predictions are computed. Due to lack of good historic land use data, model results are evaluated by cross-validation. Keywords. Spatial reconstruction, Gaussian Markov random field, Fossil pollen records, Archaeological data, Human land-use, Prediction uncertainty

  6. [Cypress pollen allergy].

    PubMed

    Charpin, D; Calleja, M; Pichot, C; Penel, V; Hugues, B; Poncet, P

    2013-12-01

    Cypress belongs to the Cupressaceae family, which includes 140 species with non-deciduous foliage. The most important genera in allergic diseases are Cupressus sempervirens or Green cypress, Cupressus arizonica or Blue cypress, Juniperus oxycedrus, Juniperus communis and Thuya. Because J. oxycedrus pollinates in October, C. sempervirens in January and February, C. arizonica in February and March, J. communis in April, the symptomatic period is long-lasting. Because of global warming, the pollination period is tending to last longer and Cupressaceae species are becoming established further the north. In Mediterranean countries, cypress is by far the most important pollinating species, accounting for half of the total pollination. The major allergens belong to group 1. The other allergens from cypress and Juniper share 75 to 97 % structural homology with group 1 major allergens. The prevalence of cypress allergy in the general population ranges from 5 % to 13 %, according to exposure to the pollen. Among outpatients consulting an allergist, between 9 and 35 %, according to different studies, are sensitized to cypress pollen. Repeated cross-sectional studies performed at different time intervals have demonstrated a threefold increase in the percentage of cypress allergy. Risk factors include a genetic predisposition and/or a strong exposure to pollen, but air pollutants could play a synergistic role. The study of the natural history of cypress allergy allows the identification of a subgroup of patients who have no personal or family history of atopy, whose disease began later in life, with low total IgE and often monosensitization to cypress pollen. In these patients, the disease is allergic than rather atopic. In the clinical picture, rhinitis is the most prevalent symptom but conjunctivitis the most disabling. A cross-reactivity between cypress and peach allergy has been demonstrated. The pharmacological treatment of cypress allergy is not different from

  7. Contribution of pollen to atmospheric ice nuclei concentrations

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Hader, J.; Wright, T.; McMeeking, G. R.

    2013-12-01

    Primary biological aerosol particles (PBAP) contribute to the concentrations of ice nuclei (IN) in the atmosphere. Laboratory studies have shown that pollen grains, a subset of PBAP, can serve as immersion mode ice nuclei at temperatures ranging from -9 to -25 deg C. At the peak of the pollen season pollen concentrations can reach surface-level concentrations exceeding 1 per liter of air. Furthermore, previous studies have suggested that the ice nucleating ability of some types of pollen is derived from non-proteinaceous macromolecules, which may become dispersed by the rupturing of the pollen sac during wetting and drying cycles. If true, this mechanism is expected to produce highly elevated IN concentrations at temperatures warmer than -25 deg C. Here we test this hypothesis by measuring ambient IN concentrations from the beginning to the end of the 2013 pollen season in Raleigh, North Carolina. Raleigh is surrounded by a dense mixed hardwood forest composed primarily of oak, hickory, and pine species. Air samples were collected using a swirling aerosol collector twice per week and the solution was analyzed for ice nuclei activity using a droplet freezing assay setup. Rainwater samples were collected during rain events at the peak of the pollen season and analyzed with the drop freezing assay to compare the potentially enhanced IN concentrations measured near the ground with IN concentrations found aloft. Raw freezing spectra were used to probe the freezing activity of both abundant and rare IN contained in sample liquids by analysis of drops that had varying degrees of preconcentration and size (~50 to ~650 μm). Extreme value statistics is used to collapse the raw freezing data into a single ice nuclei spectrum, defined as number of ice nuclei per volume of air as a function of temperature, that spans ~6 orders of magnitude in IN concentration. For a selected number of samples, concentrations of biological and non-biological ambient aerosol and particles are

  8. Co-occurrence of Artemisia and Ambrosia pollen seasons against the background of the synoptic situations in Poland.

    PubMed

    Stępalska, Danuta; Myszkowska, Dorota; Katarzyna, Leśkiewicz; Katarzyna, Piotrowicz; Katarzyna, Borycka; Kazimiera, Chłopek; Łukasz, Grewling; Idalia, Kasprzyk; Barbara, Majkowska-Wojciechowska; Małgorzata, Malkiewicz; Małgorzata, Nowak; Krystyna, Piotrowska-Weryszko; Małgorzata, Puc; Elżbieta, Weryszko-Chmielewska

    2017-04-01

    The Asteraceae family is one of the largest families, comprising 67 genera and 264 species in Poland. However, only a few genera, including Artemisia and Ambrosia are potential allergenic sources. The aim of the study was to estimate how often and to what degree Artemisia and Ambrosia pollen seasons co-occur intensifying human health risk, and how synoptic situations influence frequency of days with high pollen concentrations of both taxa. Artemisia and Ambrosia pollen data were collected, using the volumetric method, at 8 sites in Poland. Daily concentrations of Artemisia pollen equal to 30 grains or more and Ambrosia pollen equal to 10 grains or more were accepted as high values. Concentrations of more than 10 pollen grains were defined as high in the case of Ambrosia because its allergenicity is considered higher. High concentrations were confronted with synoptic situations. Analysis was performed on the basis of two calendars on circulation types of atmosphere in Poland (Niedźwiedź, 2006, 2015). Co-occurrence of Artemisia and Ambrosia pollen seasons is being found most often, when Ambrosia pollen season starts in the first half of August. If it happens in the last 10 days of August high pollen concentrations of Artemisia and Ambrosia do not occur at the same days. At three sites (Sosnowiec, Rzeszów, Lublin) high Ambrosia pollen concentrations during the Artemisia pollen season appear more often than in other sites under question. The high Artemisia pollen concentrations occur, when continental or polar maritime old air masses inflow into Poland. The impact of air masses on high Ambrosia pollen concentrations depends on site localizations. It is likely, that in the south-eastern part of Poland high Ambrosia pollen concentrations result from the pollen transport from east-south-south-westerly directions and the local sources. Co-occurrence of both taxa pollen seasons depends on the air masses inflow and appears more often in a south-eastern part of Poland.

  9. Co-occurrence of Artemisia and Ambrosia pollen seasons against the background of the synoptic situations in Poland

    NASA Astrophysics Data System (ADS)

    Stępalska, Danuta; Myszkowska, Dorota; Katarzyna, Leśkiewicz; Katarzyna, Piotrowicz; Katarzyna, Borycka; Kazimiera, Chłopek; Łukasz, Grewling; Idalia, Kasprzyk; Barbara, Majkowska-Wojciechowska; Małgorzata, Malkiewicz; Małgorzata, Nowak; Krystyna, Piotrowska-Weryszko; Małgorzata, Puc; Elżbieta, Weryszko-Chmielewska

    2016-10-01

    The Asteraceae family is one of the largest families, comprising 67 genera and 264 species in Poland. However, only a few genera, including Artemisia and Ambrosia are potential allergenic sources. The aim of the study was to estimate how often and to what degree Artemisia and Ambrosia pollen seasons co-occur intensifying human health risk, and how synoptic situations influence frequency of days with high pollen concentrations of both taxa. Artemisia and Ambrosia pollen data were collected, using the volumetric method, at 8 sites in Poland. Daily concentrations of Artemisia pollen equal to 30 grains or more and Ambrosia pollen equal to 10 grains or more were accepted as high values. Concentrations of more than 10 pollen grains were defined as high in the case of Ambrosia because its allergenicity is considered higher. High concentrations were confronted with synoptic situations. Analysis was performed on the basis of two calendars on circulation types of atmosphere in Poland (Niedźwiedź, 2006, 2015). Co-occurrence of Artemisia and Ambrosia pollen seasons is being found most often, when Ambrosia pollen season starts in the first half of August. If it happens in the last 10 days of August high pollen concentrations of Artemisia and Ambrosia do not occur at the same days. At three sites (Sosnowiec, Rzeszów, Lublin) high Ambrosia pollen concentrations during the Artemisia pollen season appear more often than in other sites under question. The high Artemisia pollen concentrations occur, when continental or polar maritime old air masses inflow into Poland. The impact of air masses on high Ambrosia pollen concentrations depends on site localizations. It is likely, that in the south-eastern part of Poland high Ambrosia pollen concentrations result from the pollen transport from east-south-south-westerly directions and the local sources. Co-occurrence of both taxa pollen seasons depends on the air masses inflow and appears more often in a south-eastern part of Poland.

  10. Projected carbon dioxide to increase grass pollen and allergen exposure despite higher ozone levels.

    PubMed

    Albertine, Jennifer M; Manning, William J; DaCosta, Michelle; Stinson, Kristina A; Muilenberg, Michael L; Rogers, Christine A

    2014-01-01

    One expected effect of climate change on human health is increasing allergic and asthmatic symptoms through changes in pollen biology. Allergic diseases have a large impact on human health globally, with 10-30% of the population affected by allergic rhinitis and more than 300 million affected by asthma. Pollen from grass species, which are highly allergenic and occur worldwide, elicits allergic responses in 20% of the general population and 40% of atopic individuals. Here we examine the effects of elevated levels of two greenhouse gases, carbon dioxide (CO2), a growth and reproductive stimulator of plants, and ozone (O3), a repressor, on pollen and allergen production in Timothy grass (Phleum pratense L.). We conducted a fully factorial experiment in which plants were grown at ambient and/or elevated levels of O3 and CO2, to simulate present and projected levels of both gases and their potential interactive effects. We captured and counted pollen from flowers in each treatment and assayed for concentrations of the allergen protein, Phl p 5. We found that elevated levels of CO2 increased the amount of grass pollen produced by ∼50% per flower, regardless of O3 levels. Elevated O3 significantly reduced the Phl p 5 content of the pollen but the net effect of rising pollen numbers with elevated CO2 indicate increased allergen exposure under elevated levels of both greenhouse gases. Using quantitative estimates of increased pollen production and number of flowering plants per treatment, we estimated that airborne grass pollen concentrations will increase in the future up to ∼200%. Due to the widespread existence of grasses and the particular importance of P. pratense in eliciting allergic responses, our findings provide evidence for significant impacts on human health worldwide as a result of future climate change.

  11. A New Secondary Pollen Presentation Mechanism from a Wild Ginger (Zingiber densissimum) and Its Functional Roles in Pollination Process

    PubMed Central

    Fan, Yong-Li; Kress, W. John; Li, Qing-Jun

    2015-01-01

    Background and Aims Secondary pollen presentation (SPP), a floral mechanism of reproductive adaptation, has been described for more than 200 years, with nine types SPP recorded. However, few studies have been done experimentally to link the floral mechanism of SPP to its functional roles in pollination process. This study aims to describe a new SPP mechanism from a wild ginger (Zingiber densissimum, Zingiberaceae) and explore how the pollen arrangement of SPP affects pollen removal during the interaction with different pollinators. Methodology/Principal Findings Field observations and experiments revealed that flowers lasted for less than one day. The breeding system was partially self-incompatible. Two bee species, Macropis hedini (which carried pollen dorsally) and Amegilla zonata (which carried pollen ventrally) were the primary pollinators. About a third of pollen grains were relocated from the anther to the labellum staminode of flowers through the adherence of aggregated pollen chains, while other grains were presented on the anther. In a single visit, each bee species removed pollen grains from both the labellum staminode and the anther. Macropis hedini was more effective than Amegilla zonata. Conclusions/Significance Our study describes a new SPP mechanism in angiosperms. The new SPP mode enables pollen grains presented on the anther and the labellum staminode simultaneously via the adherence of aggregated pollen chains, thus promoting pollen to be taken away by different pollinators. This SPP mechanism plays a key role during pollen removal and may have evolved under the pressure to improve male fitness. PMID:26637125

  12. Grass pollen allergens globally: the contribution of subtropical grasses to burden of allergic respiratory diseases.

    PubMed

    Davies, J M

    2014-06-01

    types of subtropical grass pollens to achieve optimal diagnosis and treatment of patients with allergic respiratory disease in subtropical regions of the world.

  13. Ragweed pollen production and dispersion modelling within a regional climate system, calibration and application over Europe

    NASA Astrophysics Data System (ADS)

    Liu, Li; Solmon, Fabien; Vautard, Robert; Hamaoui-Laguel, Lynda; Zsolt Torma, Csaba; Giorgi, Filippo

    2016-05-01

    Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic and invasive plant in Europe. Its pollen can be transported over large distances and has been recognized as a significant cause of hay fever and asthma (D'Amato et al., 2007; Burbach et al., 2009). To simulate production and dispersion of common ragweed pollen, we implement a pollen emission and transport module in the Regional Climate Model (RegCM) version 4 using the framework of the Community Land Model (CLM) version 4.5. In this online approach pollen emissions are calculated based on the modelling of plant distribution, pollen production, species-specific phenology, flowering probability, and flux response to meteorological conditions. A pollen tracer model is used to describe pollen advective transport, turbulent mixing, dry and wet deposition. The model is then applied and evaluated on a European domain for the period 2000-2010. To reduce the large uncertainties notably due to the lack of information on ragweed density distribution, a calibration based on airborne pollen observations is used. Accordingly a cross validation is conducted and shows reasonable error and sensitivity of the calibration. Resulting simulations show that the model captures the gross features of the pollen concentrations found in Europe, and reproduce reasonably both the spatial and temporal patterns of flowering season and associated pollen concentrations measured over Europe. The model can explain 68.6, 39.2, and 34.3 % of the observed variance in starting, central, and ending dates of the pollen season with associated root mean square error (RMSE) equal to 4.7, 3.9, and 7.0 days, respectively. The correlation between simulated and observed daily concentrations time series reaches 0.69. Statistical scores show that the model performs better over the central Europe source region where pollen loads are larger and the model is better constrained. From these simulations health risks associated to common ragweed pollen

  14. The patterns of Corylus and Alnus pollen seasons and pollination periods in two Polish cities located in different climatic regions.

    PubMed

    Puc, Małgorzata; Kasprzyk, Idalia

    2013-01-01

    This study compares phenological observations of Corylus (hazel) and Alnus (alder) flowering with airborne pollen counts of these taxa recorded using volumetric spore traps (2009-2011). The work was carried out in the Polish cities of Szczecin and Rzeszów that are located in different climatic regions. Correlations between pollen concentrations and meteorological data were investigated using Spearman's rank correlation analysis. The timings of hazel and alder pollination and the occurrence of airborne pollen varied greatly and were significantly influenced by meteorological conditions (p < 0.05). The flowering synchronization of hazel and alder pollination in Szczecin and Rzeszów varied over the study period. Hazel and alder trees flowered notably earlier in stands located in places that were exposed to sunlight (insolated) and sheltered from the wind. On the other hand, a delay in the timing of pollination was observed in quite sunny but very windy sites. In Rzeszów, maximum hazel pollen concentrations did not coincide with the period of full pollination (defined as between 25 % hazel and alder and 75 % of flowers open). Conversely, in Szczecin, the highest hazel pollen concentrations were recorded during phenophases of the full pollination period. The period when the highest alder pollen concentrations were recorded varied between sites, with Rzeszów recording the highest concentrations at the beginning of pollination and Szczecin recording alder pollen throughout the full pollination period. Substantial amounts of hazel and alder pollen grains were recorded in the air of Rzeszów (but not Szczecin) before the onset of the respective pollen seasons.

  15. Pollen analysis of honey and pollen collected by Apis mellifera linnaeus, 1758 (Hymenoptera, Apidae), in a mixed environment of Eucalyptus plantation and native cerrado in Southeastern Brazil.

    PubMed

    Simeão, C M G; Silveira, F A; Sampaio, I B M; Bastos, E M A F

    2015-11-01

    Eucalyptus plantations are frequently used for the establishment of bee yards. This study was carried on at Fazenda Brejão, northwestern region of the State of Minas Gerais, Brazil. This farm is covered both with native Cerrado vegetation (Brazilian savanna) and eucalyptus plantations. This paper reports on the botanic origin of pollen pellets and honey collected from honeybee (Apis mellifera) hives along a thirteen-month period (January 2004 to January 2005). The most frequent pollen types found in the pollen pellets during the rainy season were Trema micrantha (Ulmaceae), Copaifera langsdorffii (Fabaceae), an unidentified Poaceae, unidentified Asteraceae-2, Cecropia sp. 1 (Cecropiaceae) and Eucalyptus spp. (Myrtaceae); during the dry season the most frequent pollen types were Acosmium dasycarpum (Fabaceae), Cecropia sp. 1 (Cecropiaceae) and Eucalyptus spp. (Myrtaceae). Pollen grains of Baccharis sp. (Asteraceae), Cecropia sp. 1 (Cecropiaceae), Copaifera langsdorffii (Fabaceae), Mimosa nuda (Fabaceae), Eucalyptus spp. (Myrtaceae) and Trema micrantha (Ulmaceae) were present in the honey samples throughout the study period.

  16. S-Adenosylmethionine Synthetase 3 Is Important for Pollen Tube Growth1[OPEN

    PubMed Central

    Zou, Ting

    2016-01-01

    S-Adenosylmethionine is widely used in a variety of biological reactions and participates in the methionine (Met) metabolic pathway. In Arabidopsis (Arabidopsis thaliana), one of the four S-adenosylmethionine synthetase genes, METHIONINE ADENOSYLTRANSFERASE3 (MAT3), is highly expressed in pollen. Here, we show that mat3 mutants have impaired pollen tube growth and reduced seed set. Metabolomics analyses confirmed that mat3 pollen and pollen tubes overaccumulate Met and that mat3 pollen has several metabolite profiles, such as those of polyamine biosynthesis, which are different from those of the wild type. Additionally, we show that disruption of Met metabolism in mat3 pollen affected transfer RNA and histone methylation levels. Thus, our results suggest a connection between metabolism and epigenetics. PMID:27482079

  17. CHARACTERIZATION OF THE MAIZE POLLEN TRANSCRIPTOME

    EPA Science Inventory

    Pollen is a primary vehicle for transgene flow from engineered plants to their non-transgenic, native or weedy relatives. Hence, gene flow will be affected by pollen fitness (e.g., how well a particular pollen grain can outcompete other pollen present on the stigma and complete ...

  18. Influence of wind direction on pollen concentration in the atmosphere

    NASA Astrophysics Data System (ADS)

    Silva Palacios, I.; Tormo Molina, R.; Muñoz Rodríguez, A. F.

    The daily pollen concentration in the atmosphere of Badajoz (SW Spain) was analysed over a 6-year period (1993-1998) using a volumetric aerobiological trap. The results for the main pollination period are compared with the number of hours of wind each day in the four quadrants: 1 (NE), 2 (SE), 3 (SW) and 4 (NW). The pollen source distribution allowed 16 pollen types to be analysed as a function of their distribution in the four quadrants with respect to the location of the trap. Four of them correspond to species growing in an irrigated farmland environment (Amaranthaceae-Chenopodiaceae, Plantago, Scirpus, and Typha), five to riparian and woodland species (Salix, Fraxinus, Alnus, Populus, and Eucalyptus), four to urban ornamentals (Ulmus, Arecaceae, Cupressaceae, and Casuarina), and three which include the most frequent pollen grains of widely distributed species (Poaceae, Quercus, and Olea). The results show that the distribution of the sources and the wind direction play a very major role in determining the pollen concentration in the atmosphere when these sources are located in certain quadrants, and that the widely distributed pollen sources show no relationship with wind direction. In some years the values of the correlations were not maintained, which leads one to presume that, in order to draw significant conclusions and establish clear patterns of the influence of wind direction, a continuous and more prolonged study will be required.

  19. Heterospecific pollen deposition: does diversity alter the consequences?

    PubMed

    Arceo-Gómez, Gerardo; Ashman, Tia-Lynn

    2011-11-01

    • In natural communities, plants can receive pollen from multiple heterospecifics as well as conspecifics. However, studies on the effects of interspecific pollen transfer have focused on interactions between species pairs. The potential exists for diverse interactions among heterospecific pollen (HP) grains on the stigma, and for these to affect plant reproduction, alone or in combination with conspecific pollen (CP) loss, but these interactions have not yet been explored. • We used hand-pollinations to simulate increasing community diversity and CP loss on Mimulus guttatus stigmas. We used pollen mixes of one to three heterospecific donors to determine how species composition and CP load size affect seed production and to characterize the mechanisms underlying fertilization failure. • Heterospecific pollen deposition reduced M. guttatus seed production and while the effect increased with the number of heterospecific donors, the strength depended on species composition and was independent of conspecific load size. Different types of interactions (additive and synergistic) are hypothesized to underlie the diverse effects on M. guttatus reproductive success. • Our results suggest that an increase in the diversity of heterospecific donors will not always lead to a greater decrease in fitness because multispecies effects depend on the interacting species.

  20. World Allergy Organization Study on Aerobiology for Creating First Pollen and Mold Calendar With Clinical Significance in Islamabad, Pakistan; A Project of World Allergy Organization and Pakistan Allergy, Asthma & Clinical Immunology Centre of Islamabad

    PubMed Central

    2012-01-01

    Pollen and mold allergies are highly problematic in Islamabad. This study was conducted to investigate the type and concentration of airborne pollens/molds causing allergic diseases in susceptible individuals. A volumetric spore trap (Burkard) was placed at the height of 11 m and ran continuously for 3 years. Once a week, the collecting drum was prepared by affixing Melinex tape with a double sided adhesive that was coated with a thin layer of silicone grease. Every Sunday at 9:00 AM the drum was replaced by another drum and the pollen/mold spores were removed and permanently mounted on slides. Using a microscope, the trapped particles were identified and recorded as counts per cubic meter of air per hour. From these data, the pollen and mold calendars were constructed and expressed as counts per cubic meter of air per day. Skin prick tests were performed on more than 1000 patients attending the Pakistan Allergy, Asthma & Clinical Immunology Centre of Islamabad. The results indicated that there were 2 main pollen plants that contributed to seasonal allergies. These were Broussonetia papyrifera and Cannabis sativa during the March/April season and the July/September season, respectively. Although mold spores were continuously detected throughout the year, the most prominent mold was undetected mold and unconfirmed mold species similar to Stachybotrys species, which was high from July to September/October. Two additional molds contributing to allergic reactions were Pithomyces species and Cladosporium species, which were active during January and April, with the latter also being detected between October and November. These results may prove beneficial to both patients and physicians in planning a therapeutic protocol for avoidance and amelioration. PMID:23283209

  1. Airborne Spectral BRDF of Various Surface Types (Ocean, Vegetation, Snow, Desert, Wetlands, Cloud Decks, Smoke Layers) for Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; King, Michael D.

    2016-01-01

    In this paper we describe measurements of the bidirectional reflectance-distribution function (BRDF) acquired over a 30-year period (1984-2014) by the National Aeronautics and Space Administration's (NASA's) Cloud Absorption Radiometer (CAR). Our BRDF database encompasses various natural surfaces that are representative of many land cover or ecosystem types found throughout the world. CAR's unique measurement geometry allows a comparison of measurements acquired from different satellite instruments with various geometrical configurations, none of which are capable of obtaining such a complete and nearly instantaneous BRDF. This database is therefore of great value in validating many satellite sensors and assessing corrections of reflectances for angular effects. These data can also be used to evaluate the ability of analytical models to reproduce the observed directional signatures, to develop BRDF models that are suitable for sub-kilometer-scale satellite observations over both homogeneous and heterogeneous landscape types, and to test future spaceborne sensors. All of these BRDF data are publicly available and accessible in hierarchical data format (http:car.gsfc.nasa.gov/).

  2. City scale pollen concentration variability

    NASA Astrophysics Data System (ADS)

    van der Molen, Michiel; van Vliet, Arnold; Krol, Maarten

    2016-04-01

    Pollen are emitted in the atmosphere both in the country-side and in cities. Yet the majority of the population is exposed to pollen in cities. Allergic reactions may be induced by short-term exposure to pollen. This raises the question how variable pollen concentration in cities are in temporally and spatially, and how much of the pollen in cities are actually produced in the urban region itself. We built a high resolution (1 × 1 km) pollen dispersion model based on WRF-Chem to study a city's pollen budget and the spatial and temporal variability in concentration. It shows that the concentrations are highly variable, as a result of source distribution, wind direction and boundary layer mixing, as well as the release rate as a function of temperature, turbulence intensity and humidity. Hay Fever Forecasts based on such high resolution emission and physical dispersion modelling surpass traditional hay fever warning methods based on temperature sum methods. The model gives new insights in concentration variability, personal and community level exposure and prevention. The model will be developped into a new forecast tool to serve allergic people to minimize their exposure and reduce nuisance, coast of medication and sick leave. This is an innovative approach in hay fever warning systems.

  3. Variations in Quercus sp. pollen seasons (1996-2011) in Poznań, Poland, in relation to meteorological parameters.

    PubMed

    Grewling, Lukasz; Jackowiak, Bogdan; Smith, Matt

    2014-01-01

    The aim of this study is to supply detailed information about oak (Quercus sp.) pollen seasons in Poznań, Poland, based on a 16-year aerobiological data series (1996-2011). The pollen data were collected using a volumetric spore trap of the Hirst design located in Poznań city center. The limits of the pollen seasons were calculated using the 95 % method. The influence of meteorological parameters on temporal variations in airborne pollen was examined using correlation analysis. Start and end dates of oak pollen seasons in Poznań varied markedly from year-to-year (14 and 17 days, respectively). Most of the pollen grains (around 75 % of the seasonal pollen index) were recorded within the first 2 weeks of the pollen season. The tenfold variation was observed between the least and the most intensive pollen seasons. These fluctuations were significantly related to the variation in the sum of rain during the period second fortnight of March to first fortnight of April the year before pollination (r = 0.799; p < 0.001). During the analyzing period, a significant advance in oak pollen season start dates was observed (-0.55 day/year; p = 0.021), which was linked with an increase in the mean temperature during the second half of March and first half of April (+0.2 °C; p = 0.014). Daily average oak pollen counts correlated positively with mean and maximum daily temperatures, and negatively with daily rainfall and daily mean relative humidity.

  4. The New Airborne Disease

    PubMed Central

    Goldsmith, John R.

    1970-01-01

    Community air pollution is the new airborne disease of our generation's communities. It is caused by the increasing use of fuel, associated with both affluence and careless waste. Photochemical air pollution of the California type involves newly defined atmospheric reactions, is due mostly to motor vehicle exhaust, is oxidizing, and produces ozone, plant damage, impairment of visibility and eye and respiratory symptoms. Aggravation of asthma, impairment of lung function among persons with chronic respiratory disease and a possible causal role, along with cigarette smoking in emphysema and chronic bronchitis, are some of the effects of photochemical pollution. More subtle effects of pollution include impairment of oxygen transport by the blood due to carbon monoxide and interference with porphyrin metabolism due to lead. Carbon monoxide exposures may affect survival of patients who are in hospitals because of myocardial infarction. While many uncertainties in pollution-health reactions need to be resolved, a large number of people in California have health impairment due to airborne disease of this new type. PMID:5485227

  5. Poaceae Pollen from Southern Brazil: Distinguishing Grasslands (Campos) from Forests by Analyzing a Diverse Range of Poaceae Species

    PubMed Central

    Radaeski, Jefferson N.; Bauermann, Soraia G.; Pereira, Antonio B.

    2016-01-01

    This aim of this study was to distinguish grasslands from forests in southern Brazil by analyzing Poaceae pollen grains. Through light microscopy analysis, we measured the size of the pollen grain, pore, and annulus from 68 species of Rio Grande do Sul. Measurements were recorded of 10 forest species and 58 grassland species, representing all tribes of the Poaceae in Rio Grande do Sul. We measured the polar, equatorial, pore, and annulus diameter. Results of statistical tests showed that arboreous forest species have larger pollen grain sizes than grassland and herbaceous forest species, and in particular there are strongly significant differences between arboreous and grassland species. Discriminant analysis identified three distinct groups representing each vegetation type. Through the pollen measurements we established three pollen types: larger grains (>46 μm), from the Bambuseae pollen type, medium-sized grains (46–22 μm), from herbaceous pollen type, and small grains (<22 μm), from grassland pollen type. The results of our compiled Poaceae pollen dataset may be applied to the fossil pollen of Quaternary sediments. PMID:27999585

  6. Cellular dynamics during early barley pollen embryogenesis revealed by time-lapse imaging

    PubMed Central

    Daghma, Diaa Eldin S.; Hensel, Goetz; Rutten, Twan; Melzer, Michael; Kumlehn, Jochen

    2014-01-01

    Plants display a remarkable capacity for cellular totipotency. An intriguing and useful example is that immature pollen cultured in vitro can pass through embryogenic development to form haploid or doubled haploid plants. However, a lack of understanding the initial mechanisms of pollen embryogenesis hampers the improvement and more effective and widespread employment of haploid technology in plant research and breeding. To investigate the cellular dynamics during the onset of pollen embryogenesis, we used time-lapse imaging along with transgenic barley expressing nuclear localized Green Fluorescent Protein. The results enabled us to identify nine distinct embryogenic and non-embryogenic types of pollen response to the culture conditions. Cell proliferation in embryogenic pollen normally started via a first symmetric mitosis (54.3% of pollen observed) and only rarely did so via asymmetric pollen mitosis I (4.3% of pollen observed). In the latter case, proliferation generally originated from the vegetative-like cell, albeit the division of the generative-like cell was observed in few types of pollen. Under the culture conditions used, fusion of cell nuclei was the only mechanism of genome duplication observed. PMID:25538715

  7. SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth.

    PubMed

    Cole, Rex A; Synek, Lukás; Zarsky, Viktor; Fowler, John E

    2005-08-01

    The exocyst, a complex of eight proteins, contributes to the morphogenesis of polarized cells in a broad range of eukaryotes. In these organisms, the exocyst appears to facilitate vesicle docking at the plasma membrane during exocytosis. Although we had identified orthologs for each of the eight exocyst components in Arabidopsis (Arabidopsis thaliana), no function has been demonstrated for any of them in plants. The gene encoding one exocyst component ortholog, AtSEC8, is expressed in pollen and vegetative tissues of Arabidopsis. Genetic studies utilizing an allelic series of six independent T-DNA mutations reveal a role for SEC8 in male gametophyte function. Three T-DNA insertions in SEC8 cause an absolute, male-specific transmission defect that can be complemented by expression of SEC8 from the LAT52 pollen promoter. Microscopic analysis shows no obvious abnormalities in the microgametogenesis of the SEC8 mutants, and the mutant pollen grains appear to respond to the signals that initiate germination. However, in vivo assays indicate that these mutant pollen grains are unable to germinate a pollen tube. The other three T-DNA insertions are associated with a partial transmission defect, such that the mutant allele is transmitted through the pollen at a reduced frequency. The partial transmission defect is only evident when mutant gametophytes must compete with wild-type gametophytes, and arises in part from a reduced pollen tube growth rate. These data support the hypothesis that one function of the putative plant exocyst is to facilitate the initiation and maintenance of the polarized growth of pollen tubes.

  8. SEC8, a Subunit of the Putative Arabidopsis Exocyst Complex, Facilitates Pollen Germination and Competitive Pollen Tube Growth1[w

    PubMed Central

    Cole, Rex A.; Synek, Lukás; Zarsky, Viktor; Fowler, John E.

    2005-01-01

    The exocyst, a complex of eight proteins, contributes to the morphogenesis of polarized cells in a broad range of eukaryotes. In these organisms, the exocyst appears to facilitate vesicle docking at the plasma membrane during exocytosis. Although we had identified orthologs for each of the eight exocyst components in Arabidopsis (Arabidopsis thaliana), no function has been demonstrated for any of them in plants. The gene encoding one exocyst component ortholog, AtSEC8, is expressed in pollen and vegetative tissues of Arabidopsis. Genetic studies utilizing an allelic series of six independent T-DNA mutations reveal a role for SEC8 in male gametophyte function. Three T-DNA insertions in SEC8 cause an absolute, male-specific transmission defect that can be complemented by expression of SEC8 from the LAT52 pollen promoter. Microscopic analysis shows no obvious abnormalities in the microgametogenesis of the SEC8 mutants, and the mutant pollen grains appear to respond to the signals that initiate germination. However, in vivo assays indicate that these mutant pollen grains are unable to germinate a pollen tube. The other three T-DNA insertions are associated with a partial transmission defect, such that the mutant allele is transmitted through the pollen at a reduced frequency. The partial transmission defect is only evident when mutant gametophytes must compete with wild-type gametophytes, and arises in part from a reduced pollen tube growth rate. These data support the hypothesis that one function of the putative plant exocyst is to facilitate the initiation and maintenance of the polarized growth of pollen tubes. PMID:16040664

  9. The Arabidopsis KINβγ Subunit of the SnRK1 Complex Regulates Pollen Hydration on the Stigma by Mediating the Level of Reactive Oxygen Species in Pollen

    PubMed Central

    Zhao, Ting Ting; Li, Fei; Jia, Xiao Na; Zhao, Xin-Ying; Zhang, Xian Sheng

    2016-01-01

    Pollen–stigma interactions are essential for pollen germination. The highly regulated process of pollen germination includes pollen adhesion, hydration, and germination on the stigma. However, the internal signaling of pollen that regulates pollen–stigma interactions is poorly understood. KINβγ is a plant-specific subunit of the SNF1-related protein kinase 1 complex which plays important roles in the regulation of plant development. Here, we showed that KINβγ was a cytoplasm- and nucleus-localized protein in the vegetative cells of pollen grains in Arabidopsis. The pollen of the Arabidopsis kinβγ mutant could not germinate on stigma, although it germinated normally in vitro. Further analysis revealed the hydration of kinβγ mutant pollen on the stigma was compromised. However, adding water to the stigma promoted the germination of the mutant pollen in vivo, suggesting that the compromised hydration of the mutant pollen led to its defective germination. In kinβγ mutant pollen, the structure of the mitochondria and peroxisomes was destroyed, and their numbers were significantly reduced compared with those in the wild type. Furthermore, we found that the kinβγ mutant exhibited reduced levels of reactive oxygen species (ROS) in pollen. The addition of H2O2 in vitro partially compensated for the reduced water absorption of the mutant pollen, and reducing ROS levels in pollen by overexpressing Arabidopsis CATALASE 3 resulted in compromised hydration of pollen on the stigma. These results indicate that Arabidopsis KINβγ is critical for the regulation of ROS levels by mediating the biogenesis of mitochondria and peroxisomes in pollen, which is required for pollen–stigma interactions during pollination. PMID:27472382

  10. Airborne particulate in Varanasi over middle Indo-Gangetic Plain: variation in particulate types and meteorological influences.

    PubMed

    Murari, Vishnu; Kumar, Manish; Mhawish, Alaa; Barman, S C; Banerjee, Tirthankar

    2017-04-01

    The variation in particulate mass and particulate types (PM2.5 and PM10) with respect to local/regional meteorology was analyzed from January to December 2014 (n = 104) for an urban location over the middle Indo-Gangetic Plain (IGP). Both coarser (mean ± SD; PM10 161.3 ± 110.4 μg m(-3), n = 104) and finer particulates (PM2.5 81.78 ± 66.4 μg m(-3)) revealed enormous mass loading with distinct seasonal effects (range: PM10 12-535 μg m(-3); PM2.5 8-362 μg m(-3)). Further, 56% (for PM2.5) to 81% (for PM10) of monitoring events revealed non-attainment national air quality standard especially during winter months. Particulate types (in terms of PM2.5/PM10 0.49 ± 0.19) also exhibited temporal variations with high PM2.5 loading particularly during winter (0.62) compared to summer months (0.38). Local meteorology has clear distinguishing trends in terms of dry summer (March to June), wet winter (December to February), and monsoon (July to September). Among all the meteorological variables (average temperature, rainfall, relative humidity (RH), wind speed (WS)), temperature was found to be inversely related with particulate loading (rPM10 -0.79; rPM2.5 -0.87) while RH only resulted a significant association with PM2.5 during summer (rPM10 0.07; rPM2.5 0.55) and with PM10 during winter (rPM10 0.53; rPM2.5 0.24). Temperature, atmospheric boundary layer (ABL), and RH were cumulatively recognized as the dominant factors regulating particulate concentration as days with high particulate loading (PM2.5 >150 μg m(-3); PM10 >260 μg m(-3)) appeared to have lower ABL (mean 660 m), minimum temperature (<22.6 °C), and high RH (∼79%). The diurnal variations of particulate ratio were mostly insignificant except minor increases during night having a high wintertime ratio (0.58 ± 0.07) over monsoon (0.34 ± 0.05) and summer (0.30 ± 0.07). Across the region, atmospheric visibility appeared to be inversely associated with particulate (rPM2.5 -0.84; r

  11. Modern pollen data from North America and Greenland for multi-scale paleoenvironmental applications

    USGS Publications Warehouse

    Whitmore, J.; Gajewski, K.; Sawada, M.; Williams, J.W.; Shuman, B.; Bartlein, P.J.; Minckley, T.; Viau, A.E.; Webb, T.; Shafer, S.; Anderson, P.; Brubaker, L.

    2005-01-01

    The modern pollen network in North America and Greenland is presented as a database for use in quantitative calibration studies and paleoenvironmental reconstructions. The georeferenced database includes 4634 samples from all regions of the continent and 134 pollen taxa that range from ubiquitous to regionally diagnostic taxa. Climate data and vegetation characteristics were assigned to every site. Automated and manual procedures were used to verify the accuracy of geographic coordinates and identify duplicate records among datasets, incomplete pollen sums, and other potential errors. Data are currently available for almost all of North America, with variable density. Pollen taxonomic diversity, as measured by the Shannon-Weiner coefficient, varies as a function of location, as some vegetation regions are dominated by one or two major pollen producers, while other regions have a more even composition of pollen taxa. Squared-chord distances computed between samples show that most modern pollen samples find analogues within their own vegetation zone. Both temperature and precipitation inferred from best analogues are highly correlated with observed values but temperature exhibits the strongest relation. Maps of the contemporary distribution of several pollen types in relation to the range of the plant taxon illustrate the correspondence between plant and pollen ranges. ?? 2005 Elsevier Ltd. All rights reserved.

  12. Self-compatibility of 'Katy' apricot (Prunus armeniaca L.) is associated with pollen-part mutations.

    PubMed

    Wu, Jun; Gu, Chao; Du, Yu-Hu; Wu, Hua-Qing; Liu, Wei-Sheng; Liu, Ning; Lu, Juan; Zhang, Shao-Ling

    2011-03-01

    Apricot (Prunus armeniaca L.) cultivars originated in China display a typical S-RNase-based gametophytic self-incompatibility (GSI). 'Katy', a natural self-compatible cultivar belonging to the European ecotype group, was used as a useful material for breeding new cultivars with high frequency of self-compatibility by hybridizing with Chinese native cultivars. In this work, the pollen-S genes (S-haplotype-specific F-box gene, or SFB gene) of 'Katy' were first identified as SFB₁ and SFB (8), and the S-genotype was determined as S₁ S₈. Genetic analysis of 'Katy' progenies under controlled pollination revealed that the stylar S₁-RNase and S₈-RNase have a normal function in rejecting wild-type pollen with the same S-haplotype, while the pollen grains carrying either the SFB₁ or the SFB₈ gene are both able to overcome the incompatibility barrier. However, the observed segregation ratios of the S-genotype did not fit the expected ratios under the assumption that the pollen-part mutations are linked to the S-locus. Moreover, alterations in the SFB₁ and SFB₈ genes and pollen-S duplications were not detected. These results indicated that the breakdown of SI in 'Katy' occurred in pollen, and other factors not linked to the S-locus, which caused a loss of pollen S-activity. These findings support a hypothesis that modifying factors other than the S-locus are required for GSI in apricot.

  13. Pollen Aquaporins: The Solute Factor.

    PubMed

    Pérez Di Giorgio, Juliana A; Soto, Gabriela C; Muschietti, Jorge P; Amodeo, Gabriela

    2016-01-01

    In the recent years, the biophysical properties and presumed physiological role of aquaporins (AQPs) have been expanded to specialized cells where water and solute exchange are crucial traits. Complex but unique processes such as stomatal movement or pollen hydration and germination have been addressed not only by identifying the specific AQP involved but also by studying how these proteins integrate and coordinate cellular activities and functions. In this review, we referred specifically to pollen-specific AQPs and analyzed what has been assumed in terms of transport properties and what has been found in terms of their physiological role. Unlike that in many other cells, the AQP machinery in mature pollen lacks plasma membrane intrinsic proteins, which are extensively studied for their high water capacity exchange. Instead, a variety of TIPs and NIPs are expressed in pollen. These findings have altered the initial understanding of AQPs and water exchange to consider specific and diverse solutes that might be critical to sustaining pollen's success. The spatial and temporal distribution of the pollen AQPs also reflects a regulatory mechanism that allowing a properly adjusting water and solute exchange.

  14. Statistical approach to the analysis of olive long-term pollen season trends in southern Spain.

    PubMed

    García-Mozo, H; Yaezel, L; Oteros, J; Galán, C

    2014-03-01

    Analysis of long-term airborne pollen counts makes it possible not only to chart pollen-season trends but also to track changing patterns in flowering phenology. Changes in higher plant response over a long interval are considered among the most valuable bioindicators of climate change impact. Phenological-trend models can also provide information regarding crop production and pollen-allergen emission. The interest of this information makes essential the election of the statistical analysis for time series study. We analysed trends and variations in the olive flowering season over a 30-year period (1982-2011) in southern Europe (Córdoba, Spain), focussing on: annual Pollen Index (PI); Pollen Season Start (PSS), Peak Date (PD), Pollen Season End (PSE) and Pollen Season Duration (PSD). Apart from the traditional Linear Regression analysis, a Seasonal-Trend Decomposition procedure based on Loess (STL) and an ARIMA model were performed. Linear regression results indicated a trend toward delayed PSE and earlier PSS and PD, probably influenced by the rise in temperature. These changes are provoking longer flowering periods in the study area. The use of the STL technique provided a clearer picture of phenological behaviour. Data decomposition on pollination dynamics enabled the trend toward an alternate bearing cycle to be distinguished from the influence of other stochastic fluctuations. Results pointed to show a rising trend in pollen production. With a view toward forecasting future phenological trends, ARIMA models were constructed to predict PSD, PSS and PI until 2016. Projections displayed a better goodness of fit than those derived from linear regression. Findings suggest that olive reproductive cycle is changing considerably over the last 30years due to climate change. Further conclusions are that STL improves the effectiveness of traditional linear regression in trend analysis, and ARIMA models can provide reliable trend projections for future years taking into

  15. Atmospheric pollen count in Monterrey, Mexico.

    PubMed

    González-Díaz, Sandra N; Rodríguez-Ortiz, Pablo G; Arias-Cruz, Alfredo; Macías-Weinmann, Alejandra; Cid-Guerrero, Dagoberto; Sedo-Mejia, Giovanni A

    2010-01-01

    There are few reports of pollen count and identification in Mexico; therefore, it is important to generate more information on the subject. This study was designed to describe the prevalence of pollen in the city of Monterrey, Mexico, during the year 2004. Atmospheric pollen was collected with a Hirst air sampler, with an airflow of 10 L/minute during 2004. Pollen was identified with light microscopy; the average monthly pollen count as well as total was calculated from January 2004 to January 2005. The months with the highest concentration of pollen were February and March (289 and 142 grains/m(3) per day, respectively), and July and November had the lowest concentration (20 and 11 grains/m(3) per day, respectively). Most of the pollen recollected corresponded to tree pollen (72%). Fraxinus spp had the highest concentration during the year (19 grains/m(3) per day; 27.5% of the total concentration of pollen). Tree pollen predominated from January through March; with Fraxinus spp, Morus spp, Celtis spp, Cupressus spp, and Pinus spp as the most important. Weed pollen predominated in May, June, and December and the most frequently identified, were Amaranthaceae/Chenopodiaceae, Ambrosia spp, and Parietaria spp. The highest concentration of grass pollen was reported during the months of May, June, September, October, and December with Gramineae/Poaceae predominating. Tree pollen was the most abundant during the year, with the ash tree having the highest concentration. Weed and grass pollen were perennial with peaks during the year.

  16. Comparative Structure and Pollen Production of the Stamens and Pollinator-deceptive Staminodes of Commelina coelestis and C. dianthifolia (Commelinaceae)

    PubMed Central

    HRYCAN, WILLIAM C.; DAVIS, ARTHUR R.

    2005-01-01

    • Background and Aims Flowers of Commelina coelestis and C. dianthifolia provide pollen alone as a floral reward, and rely on visual cues to attract pollinators. Three stamen types, all producing pollen, occur in each of these species: two cryptically coloured lateral stamens, a single cryptically coloured central stamen and three bright yellow staminodes that sharply contrast with the blue to purple corolla. The objective was to compare the stamen structure and pollen characteristics of each of the three stamen types, and to test the hypothesis that the staminodes are poor contributors of viable pollen for the siring of seed. The pollination roles of the three stamen types and the breeding systems of both species were also explored. • Methods Light, fluorescence and scanning electron microscopy were utilized to examine stamen morphology and pollen structure and viability. Controlled hand pollinations were used to explore the breeding system of each species. Filament and style lengths were measured to investigate herkogamy and autogamy. • Key Results Pollen from all stamen morphs is viable, but staminode pollen has significantly lower viability. Pollen polymorphism exists both (a) between the lateral and central stamens and the staminodes, and (b) within each anther. Lateral and central stamens have thicker endothecia with a greater number of secondary cell wall thickenings than the staminodes. • Conclusions Both species are entomophilous and facultatively autogamous. Lateral stamen pollen is important for cross-pollination, central stamen pollen is utilized by both species as a pollinator reward and for delayed autogamy in C. dianthifolia, and the staminodes mimic, by means of both colour and epidermal features, large amounts of pollen to attract insects to the flowers. Pollen from all three anther morphs is capable of siring seed, although staminode pollen is inferior. The thin staminode endothecium with fewer secondary thickenings retards staminode

  17. Season and landscape composition affect pollen foraging distances and habitat use of honey bees.

    PubMed

    Danner, Nadja; Molitor, Anna Maria; Schiele, Susanne; Härtel, Stephan; Steffan-Dewenter, Ingolf

    2016-09-01

    Honey bees (Apis mellifera L.) show a large variation in foraging distances and use a broad range of plant species as pollen resources, even in regions with intensive agriculture. However, it is unknown how increasing areas of mass-flowering crops like oilseed rape (Brassica napus; OSR) or a decrease of seminatural habitats (SNH) change the temporal and spatial availability of pollen resources for honey bee colonies, and thus foraging distances and frequency in different habitat types. We studied pollen foraging of honey bee colonies in 16 agricultural landscapes with independent gradients of OSR and SNH area within 2 km and used waggle dances and digital geographic maps with major land cover types to reveal the distance and visited habitat type on a landscape level. Mean pollen foraging distance of 1347 decoded bee dances was 1015 m (± 26 m; SEM). In spring, increasing area of flowering OSR within 2 km reduced mean pollen foraging distances from 1324 m to only 435 m. In summer, increasing cover of SNH areas close to the colonies (within 200 m radius) reduced mean pollen foraging distances from 846 to 469 m. Frequency of pollen foragers per habitat type, measured as the number of dances per hour and hectare, was equally high for SNH, grassland, and OSR fields, but lower for other crops and forests. In landscapes with a small proportion of SNH a significantly higher density of pollen foragers on SNH was observed, indicating that pollen resources in such simple agricultural landscapes are more limited. Overall, we conclude that SNH and mass-flowering crops can reduce foraging distances of honey bee colonies at different scales and seasons with possible benefits for the performance of honey bee colonies. Further, mixed agricultural landscapes with a high proportion of SNH reduce foraging densities of honey bees in SNH and thus possible competition for pollen resources.

  18. Distinct chromatin environment associated with phosphorylated H3S10 histone during pollen mitosis I in orchids.

    PubMed

    Sharma, Santosh Kumar; Yamamoto, Maki; Mukai, Yasuhiko

    2017-01-01

    Pollen developmental pathway in plants involving synchronized transferal of cellular divisions from meiosis (microsporogenesis) to mitosis (pollen mitosis I/II) eventually offers a unique "meiosis-mitosis shift" at pollen mitosis I. Since the cell type (haploid microspore) and fate of pollen mitosis I differ from typical mitosis (in meristem cells), it is immensely important to analyze the chromosomal distribution of phosphorylated H3S10 histone during atypical pollen mitosis I to comprehend the role of histone phosphorylation in pollen development. We investigated the chromosomal phosphorylation of H3S10 histone during pollen mitosis I in orchids using immunostaining technique. The chromosomal distribution of H3S10ph during pollen mitosis I revealed differential pattern than that of typical mitosis in plants, however, eventually following the similar trends of mitosis in animals where H3S10 phosphorylation begins in the pericentromeric regions first, later extending to the whole chromosomes, and finally declining at anaphase/early cytokinesis (differentiation of vegetative and generative cells). The study suggests that the chromosomal distribution of H3S10ph during cell division is not universal and can be altered between different cell types encoded for diverse cellular processes. During pollen development, phosphorylation of histone might play a critical role in chromosome condensation events throughout pollen mitosis I in plants.

  19. Pollen morphology of Rhizophora L. in Peninsular Malaysia

    SciTech Connect

    Mohd-Arrabe', A. B.; Noraini, Talip Noraini

    2013-11-27

    Rhizophora L. are common mangrove genus in Peninsular Malaysia, it contains 3 species and 1 hybrid (R. apiculata Blume, R. mucronata Lam., R. stylosa Griff., R. x lamarckii Montrouz). This genus has some unique adaptation towards extreme environment. Rhizophora has looping aerial stilt-root and uniformly viviparous. The aim of this study is to investigate the variation in the pollen morphology of Rhizophora that can be related to their habitat. Methods include in this study is pollen observation under light and acetolysis method under scanning electron microscope. Pollen type of Rhizophora species studied except hybrid species is classified tricolporate, shape spheroidal based on ratio of length polar axis/ length of equatorial axis (1.03 - 1.09). The exine ornamentation is perforate-reticulate for R. apiculata and R. mucronata, while R. stylosa is perforate. For the only hybrid in Peninsular Malaysia, R. x lamarckii (R. apiculata x R. stylosa) differs from others, tricolpate with the absence of porate, shape is subprolate and exine ornamentation is reticulate and striate in equatorial region. Pollenkitt is present due to the salty and extreme environment. This may enhance the volume of pollenkitt present surrounding the pollen grains in Rhizophora for protection and adaptation purposes. Based on these findings, it is evident that pollen morphology is somehow related to its natural habitat.

  20. An ABC transporter, OsABCG26, is required for anther cuticle and pollen exine formation and pollen-pistil interactions in rice.

    PubMed

    Chang, Zhenyi; Chen, Zhufeng; Yan, Wei; Xie, Gang; Lu, Jiawei; Wang, Na; Lu, Qiqing; Yao, Nan; Yang, Guangzhe; Xia, Jixing; Tang, Xiaoyan

    2016-12-01

    Wax, cutin and sporopollenin are essential components for the formation of the anther cuticle and the pollen exine, respectively. Their lipid precursors are synthesized by secretory tapetal cells and transported to the anther and microspore surface for deposition. However, the molecular mechanisms involved in the formation of the anther cuticle and pollen exine are poorly understood in rice. Here, we characterized a rice male sterile mutant osabcg26. Molecular cloning and sequence analysis revealed a point mutation in the gene encoding an ATP binding cassette transporter G26 (OsABCG26). OsABCG26 was specifically expressed in the anther and pistil. Cytological analysis revealed defects in tapetal cells, lipidic Ubisch bodies, pollen exine, and anther cuticle in the osabcg26 mutant. Expression of some key genes involved in lipid metabolism and transport, such as UDT1, WDA1, CYP704B2, OsABCG15, OsC4 and OsC6, was significantly altered in osabcg26 anther, possibly due to a disturbance in the homeostasis of anther lipid metabolism and transport. Additionally, wild-type pollen tubes showed a growth defect in osabcg26 pistils, leading to low seed setting in osabcg26 cross-pollinated with the wild-type pollen. These results indicated that OsABCG26 plays an important role in anther cuticle and pollen exine formation and pollen-pistil interactions in rice.

  1. Poor correlation between the removal or deposition of pollen grains and frequency of pollinator contact with sex organs

    NASA Astrophysics Data System (ADS)

    Sakamoto, Ryota L.; Morinaga, Shin-Ichi

    2013-09-01

    Pollinators deposit pollen grains on stigmas and remove pollen grains from anthers. The mechanics of these transfers can now be quantified with the use of high-speed video. We videoed hawkmoths, carpenter bees, and swallowtail butterflies pollinating Clerodendrum trichotomum. The number of grains deposited on stigmas did not vary significantly with the number of times pollinators contacted stigmas. In contrast, pollen removal from the anthers increased significantly with the number of contacts to anthers. Pollen removal varied among the three types of pollinators. Also, the three types carried pollen on different parts of their bodies. In hawkmoths and carpenter bees, a large number of contacted body part with anthers differed significantly from the body part that attached a large number of pollen grains. Our results indicate that a large number of contacts by pollinators does not increase either the male or female reproductive success of plants compared to a small number of contacts during a visit.

  2. Poor correlation between the removal or deposition of pollen grains and frequency of pollinator contact with sex organs.

    PubMed

    Sakamoto, Ryota L; Morinaga, Shin-Ichi

    2013-09-01

    Pollinators deposit pollen grains on stigmas and remove pollen grains from anthers. The mechanics of these transfers can now be quantified with the use of high-speed video. We videoed hawkmoths, carpenter bees, and swallowtail butterflies pollinating Clerodendrum trichotomum. The number of grains deposited on stigmas did not vary significantly with the number of times pollinators contacted stigmas. In contrast, pollen removal from the anthers increased significantly with the number of contacts to anthers. Pollen removal varied among the three types of pollinators. Also, the three types carried pollen on different parts of their bodies. In hawkmoths and carpenter bees, a large number of contacted body part with anthers differed significantly from the body part that attached a large number of pollen grains. Our results indicate that a large number of contacts by pollinators does not increase either the male or female reproductive success of plants compared to a small number of contacts during a visit.

  3. Pollen Aquaporins: The Solute Factor

    PubMed Central

    Pérez Di Giorgio, Juliana A.; Soto, Gabriela C.; Muschietti, Jorge P.; Amodeo, Gabriela

    2016-01-01

    In the recent years, the biophysical properties and presumed physiological role of aquaporins (AQPs) have been expanded to specialized cells where water and solute exchange are crucial traits. Complex but unique processes such as stomatal movement or pollen hydration and germination have been addressed not only by identifying the specific AQP involved but also by studying how these proteins integrate and coordinate cellular activities and functions. In this review, we referred specifically to pollen-specific AQPs and analyzed what has been assumed in terms of transport properties and what has been found in terms of their physiological role. Unlike that in many other cells, the AQP machinery in mature pollen lacks plasma membrane intrinsic proteins, which are extensively studied for their high water capacity exchange. Instead, a variety of TIPs and NIPs are expressed in pollen. These findings have altered the initial understanding of AQPs and water exchange to consider specific and diverse solutes that might be critical to sustaining pollen’s success. The spatial and temporal distribution of the pollen AQPs also reflects a regulatory mechanism that allowing a properly adjusting water and solute exchange. PMID:27881985

  4. Bioassaying for ozone with pollen systems

    SciTech Connect

    Feder, W.A.

    1981-01-01

    Sensitivity to ozone of pollen germinating in vitro is closely correlated with ozone sensitivity of the pollen parent. Ozone-sensitive and tolerant pollen populations have been identified in tobacco, petunia, and tomato cultivars. The rate of tube elongation can be reversibly slowed or stopped by exposure to low concentrations of ozone. The performance of selected pollen populations can then be used to bioassay ozone in ambient air by introducing the air sample into a growth chamber where ozone-sensitive pollen in growing. Year-round pollen producion can be achieved in the greenhouse. Harvested pollen can be tested, packaged, and transported to user facilities without loss of vigor. Pollen populations are inexpensive to produce, respond reliably, and are simple to use as a bioassay for air quality.

  5. Pollen aquaporins: What are they there for?

    PubMed

    Pérez Di Giorgio, Juliana Andrea; Barberini, María Laura; Amodeo, Gabriela; Muschietti, Jorge Prometeo

    2016-09-01

    In order to provide more insight into the function of aquaporins during pollination, we characterized NIP4;1 and NIP4;2, 2 pollen-specific aquaporins of Arabidopsis thaliana. NIP4;1 and NIP4;2 displayed high amino acid identity. RT-PCR and GUS promoter analysis showed that they have different expression patterns. NIP4;1 is expressed at low levels in mature pollen, while NIP4;2 is highly expressed only during pollen tube growth. Single T-DNA nip4;1 and nip4;2 mutants and double amiRNA nip4;1 nip4;2 knockdowns showed reduced male fertility due to deficient pollen germination and pollen tube length. Functional assays in oocytes showed that NIP4;1 and NIP4;2 transport water and nonionic solutes. Here, the participation of the different pollen aquaporins in pollen hydration and pollen tube growth is discussed.

  6. National Allergy Bureau Pollen and Mold Report

    MedlinePlus

    ... Search Search AAAAI National Allergy Bureau Pollen and Mold Report Date: April 12, 2017 Location: San Antonio ( ... Service can automatically email you daily pollen and mold reports. Click here sign up! Return to Map ...

  7. Variation of microsporogenesis in monocots producing monosulcate pollen grains

    PubMed Central

    Toghranegar, Z.; Nadot, S.; Albert, B.

    2013-01-01

    Background and Aims Microsporogenesis leading to monosulcate pollen grains has already been described for a wide range of monocot species. However, a detailed study of additional callose deposition after the completion of the cleavage walls has been neglected so far. The study of additional callose deposition in monosulcate pollen grain has gained importance since a correlation between additional callose deposition and aperture location has recently been revealed. Methods Microsporogenesis is described for 30 species belonging to eight families of the monocots: Acoraceae, Amaryllidaceae, Alstroemeriaceae, Asparagaceae, Butomaceae, Commelinaceae, Liliaceae and Xanthorrhoeaceae. Key Results Five different microsporogenesis pathways are associated with monosulcate pollen grain. They differ in the type of cytokinesis, tetrad shape, and the presence and shape of additional callose deposition. Four of them present additional callose deposition. Conclusions In all these different microsporogenesis pathways, aperture location seems to be linked to the last point of callose deposition. PMID:23666889

  8. Use of Remote Sensing and Dust Modelling to Evaluate Ecosystem Phenology and Pollen Dispersal

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Watts, Carol; Shaw, Patrick

    2007-01-01

    The impact of pollen release and downwind concentrations can be evaluated utilizing remote sensing. Previous NASA studies have addressed airborne dust prediction systems PHAiRS (Public Health Applications in Remote Sensing) which have determined that pollen forecasts and simulations are possible. By adapting the deterministic dust model (as an in-line system with the National Weather Service operational forecast model) used in PHAiRS to simulate downwind dispersal of pollen, initializing the model with pollen source regions from MODIS, assessing the results a rapid prototype concept can be produced. We will present the results of our effort to develop a deterministic model for predicting and simulating pollen emission and downwind concentration to study details or phenology and meteorology and their dependencies, and the promise of a credible real time forecast system to support public health and agricultural science and service. Previous studies have been done with PHAiRS research, the use of NASA data, the dust model and the PHAiRS potential to improve public health and environmental services long into the future.

  9. Pollen analysis of natural honeys from the central region of Shanxi, North China.

    PubMed

    Song, Xiao-Yan; Yao, Yi-Feng; Yang, Wu-De

    2012-01-01

    Based on qualitative and quantitative melissopalynological analyses, 19 Chinese honeys were classified by botanical origin to determine their floral sources. The honey samples were collected during 2010-2011 from the central region of Shanxi Province, North China. A diverse spectrum of 61 pollen types from 37 families was identified. Fourteen samples were classified as unifloral, whereas the remaining samples were multifloral. Bee-favoured families (occurring in more than 50% of the samples) included Caprifoliaceae (found in 10 samples), Laminaceae (10), Brassicaceae (12), Rosaceae (12), Moraceae (13), Rhamnaceae (15), Asteraceae (17), and Fabaceae (19). In the unifloral honeys, the predominant pollen types were Ziziphus jujuba (in 5 samples), Robinia pseudoacacia (3), Vitex negundo var. heterophylla (2), Sophora japonica (1), Ailanthus altissima (1), Asteraceae type (1), and Fabaceae type (1). The absolute pollen count (i.e., the number of pollen grains per 10 g honey sample) suggested that 13 samples belonged to Group I (<20,000 pollen grains), 4 to Group II (20,000-100,000), and 2 to Group III (100,000-500,000). The dominance of unifloral honeys without toxic pollen grains and the low value of the HDE/P ratio (i.e., honey dew elements/pollen grains from nectariferous plants) indicated that the honey samples are of good quality and suitable for human consumption.

  10. Pollen Analysis of Natural Honeys from the Central Region of Shanxi, North China

    PubMed Central

    Song, Xiao-Yan; Yao, Yi-Feng; Yang, Wu-De

    2012-01-01

    Based on qualitative and quantitative melissopalynological analyses, 19 Chinese honeys were classified by botanical origin to determine their floral sources. The honey samples were collected during 2010–2011 from the central region of Shanxi Province, North China. A diverse spectrum of 61 pollen types from 37 families was identified. Fourteen samples were classified as unifloral, whereas the remaining samples were multifloral. Bee-favoured families (occurring in more than 50% of the samples) included Caprifoliaceae (found in 10 samples), Laminaceae (10), Brassicaceae (12), Rosaceae (12), Moraceae (13), Rhamnaceae (15), Asteraceae (17), and Fabaceae (19). In the unifloral honeys, the predominant pollen types were Ziziphus jujuba (in 5 samples), Robinia pseudoacacia (3), Vitex negundo var. heterophylla (2), Sophora japonica (1), Ailanthus altissima (1), Asteraceae type (1), and Fabaceae type (1). The absolute pollen count (i.e., the number of pollen grains per 10 g honey sample) suggested that 13 samples belonged to Group I (<20,000 pollen grains), 4 to Group II (20,000–100,000), and 2 to Group III (100,000–500,000). The dominance of unifloral honeys without toxic pollen grains and the low value of the HDE/P ratio (i.e., honey dew elements/pollen grains from nectariferous plants) indicated that the honey samples are of good quality and suitable for human consumption. PMID:23185358

  11. [The epidemiology of pollen allergy].

    PubMed

    Charpin, D; Caillaud, D

    2014-04-01

    The prevalence of seasonal allergic rhinitis can be established through surveys performed in a sample of the general population. These surveys are based on a questionnaire, which could lead to an overestimate of prevalence rates, and on measurements of specific IgE, which need to be interpreted in the light of the responses to the questionnaire. Such surveys are few in France and need to be updated. Risk factors for seasonal allergic rhinitis are genetic, epigenetic and environmental. Relationships between exposure to pollen and health can be documented through ecological and panel surveys. Panel surveys may give information on threshold levels and dose-response relationships. In addition to pollen exposure, global warming and air pollutants act as cofactors. Monitoring of both pollen exposure and its health effects should be encouraged and strengthened.

  12. An aerobiological study on pollen grains in the atmosphere of North-West Turkey.

    PubMed

    Celenk, Sevcan; Canitez, Yakup; Bicakci, Adem; Sapan, Nihat; Malyer, Hulusi

    2009-11-01

    A continuous aerobiological survey of the atmosphere of Bursa was carried out from 1st January 2003 to 31st December 2004 by means of the volumetric method using a Lanzoni trap. During 2 years, a total of 57,124 pollen grains/m(3), which belonged to 66 taxa and 869 unidentified pollen grains, were recorded. In the region investigated, Pinus sp., Olea sp., Platanus sp., Cupressaceae/Taxaceae, Quercus sp., Poaceae, Moraceae, Urticaceae, and Castanea sp. were responsible for the greatest amounts of pollen. During the study period, the pollen concentration reached the highest level in May. A correlation analyses was made between the daily fluctuations of the main pollen types and meteorological parameters.

  13. Nutritional content of fresh, bee-collected and stored pollen of Aloe greatheadii var. davyana (Asphodelaceae).

    PubMed

    Human, Hannelie; Nicolson, Sue W

    2006-07-01

    Aloe greatheadii var. davyana is the most important indigenous South African bee plant. Fresh, bee-collected and stored pollen of this aloe was collected and analysed for its nutritional content, including amino acid and fatty acid composition. Highly significant differences were found between the three types of pollen. Collection and storage by the bees resulted in increased water (13-21% wet weight) and carbohydrate content (35-61% dry weight), with a resultant decrease in crude protein (51-28% dry weight) and lipid content (10-8% dry weight). Essential amino acids were present in equal or higher amounts than the required minimum levels for honeybee development, with the exception of tryptophan. Fatty acids comprised a higher proportion of total lipid in fresh pollen than in bee-collected and stored pollen. This study is the first to compare the changes that occur in pollen of a single species after collection by honeybees.

  14. Airborne Gamma-Spectrometry in Switzerland

    NASA Astrophysics Data System (ADS)

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-01

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of 137Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  15. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  16. The long-range transport of Pinaceae pollen: an example in Kraków (southern Poland).

    PubMed

    Szczepanek, Kazimierz; Myszkowska, Dorota; Worobiec, Elżbieta; Piotrowicz, Katarzyna; Ziemianin, Monika; Bielec-Bąkowska, Zuzanna

    2017-01-01

    High Pinaceae pollen concentrations in the air and on the surface of puddles before the main pollen season started were observed in Kraków (southern Poland) in May 2013. The paper presents the results of detailed studies of the composition and source of the "yellow rain" in 2013, and as a comparison, the Pinaceae pollen concentrations and samples collected from the ground surface in 2014 were considered. The air samples were collected using the volumetric method (Hirst-type device), while pollen grains sampled from the ground surface were processed using a modified Erdtman acetolysis method. Finally, all samples were studied using a light microscope. In 2013, the period of higher Abies, Picea and Pinus pollen concentrations was observed from the 5 to 12 of May, earlier than the main pollen season occurred. The presence of rainfall on the 12 and 13 of May 2013 caused the pollen deposition on the ground surface, where the prevalence of Pinaceae pollen was found. The synoptic situation and the analysis of the back-trajectories and air mass advection at the beginning of May 2013 indicated that Pinaceae pollen grains could have been transported from Ukraine, Romania, Hungary and Slovakia. In contrast, Pinaceae pollen grains deposited on the ground surface as a "yellow" film in May 2014, originated from local sources.

  17. Magnetic pollen grains as sorbents for facile removal of organic pollutants in aqueous media.

    PubMed

    Thio, Beng Joo Reginald; Clark, Kristin K; Keller, Arturo A

    2011-10-30

    Plant materials have long been demonstrated to sorb organic compounds. However, there are no known reports about pollen grains acting as sorbents to remove hydrophobic organic compounds (HOCs) such as pesticides, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) from contaminated waters. We report a facile and effective method to remove HOCs from water using magnetized short ragweed (Ambrosia artemisiifolia) pollen grains. We dispersed the magnetized pollen grains in two different water samples - deionized (DI) and natural storm water to mimic real environmental conditions likely to be encountered during treatment. The magnetized pollen grains were readily separated from the aqueous media via a magnetic field after adsorption of the HOCs. We measured the adsorption of five representative HOCs (acenaphthene, phenanthrene, atrazine, diuron, and lindane) onto magnetized ragweed pollen in different aqueous matrices. We demonstrate that the adsorption capacity of the magnetized ragweed pollen can be regenerated to a large extent for reuse as a sorbent. Our results also indicate that the magnetized pollen grains are as effective as activated carbon (AC) in removing HOCs from both types of contaminated waters. The high HOC sorption of the ragweed pollen allows it to have potential remediation application in the field under realistic conditions.

  18. Pollen limitation and its influence on natural selection through seed set.

    PubMed

    Bartkowska, M P; Johnston, M O

    2015-11-01

    Stronger pollen limitation should increase competition among plants, leading to stronger selection on traits important for pollen receipt. The few explicit tests of this hypothesis, however, have provided conflicting support. Using the arithmetic relationship between these two quantities, we show that increased pollen limitation will automatically result in stronger selection (all else equal) although other factors can alter selection independently of pollen limitation. We then tested the hypothesis using two approaches. First, we analysed the published studies containing information on both pollen limitation and selection. Second, we explored how natural selection measured in one Ontario population of Lobelia cardinalis over 3 years and two Michigan populations in 1 year relates to pollen limitation. For the Ontario population, we also explored whether pollinator-mediated selection is related to pollen limitation. Consistent with the hypothesis, we found an overall positive relationship between selection strength and pollen limitation both among species and within L. cardinalis. Unexpectedly, this relationship was found even for vegetative traits among species, and was not found in L. cardinalis for pollinator-mediated selection on nearly all trait types.

  19. Quantifying modern biomes based on surface pollen data in China

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Ni, Jian; Herzschuh, Ulrike

    2010-12-01

    Large-scale surface pollen records and reconstructions of modern biomes are a necessary prerequisite for the understanding of past vegetation and climate changes, especially in large countries such as China which is subject to a variety of climatic regimes and has experienced long-term intensive anthropogenic disturbances. An updated surface pollen data set consisting of 2324 samples and 737 taxa is used to reconstruct biome distribution in China according to a newly established and well-tested global classification of plant functional types, based on the regional assessment of pollen taxa and the quantitative pollen-biome assignment method of biomization. Nineteen reconstructed types of biome present a reasonable reflection of the latitudinal and altitudinal distributions of modern vegetation in China. Incorrect assignment has previously occurred in some biomes, for example among the cold and cool temperate coniferous forests and mixed forest, among warm-temperate evergreen forest, mixed forest and tropical forests, and among temperate shrubland, grassland, desert and tundra biomes. Mega-biomes, grouped for the same bioclimatic zones, result in a better reconstruction than the nineteen separate biome types. The correct assignments increased from 68.8% to 80.6%. However, comparison of pollen-based biome reconstructions to climate-driven vegetation simulations performed using the global vegetation model BIOME4 indicates a low correlation rate (only 24.8%), suggesting that more needs to be done to combine palaeoenvironmental data with model simulations of past vegetation changes. The misassignment of surface pollen to modern biomes usually occurs in areas which have similar bioclimatic features and vegetation types and for biomes which share the same plant functional types. These mis-matches often occur in mountainous regions where transitional vegetation zones occur on hill slopes at mid-altitudes. Our new modern biome reconstruction for China is more robust and

  20. A new approach used to explore associations of current Ambrosia pollen levels with current and past meteorological elements

    NASA Astrophysics Data System (ADS)

    Matyasovszky, István; Makra, László; Csépe, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Fülöp, Andrea; Tusnády, Gábor

    2015-09-01

    The paper examines the sensitivity of daily airborne Ambrosia (ragweed) pollen levels of a current pollen season not only on daily values of meteorological variables during this season but also on the past meteorological conditions. The results obtained from a 19-year data set including daily ragweed pollen counts and ten daily meteorological variables are evaluated with special focus on the interactions between the phyto-physiological processes and the meteorological elements. Instead of a Pearson correlation measuring the strength of the linear relationship between two random variables, a generalised correlation that measures every kind of relationship between random vectors was used. These latter correlations between arrays of daily values of the ten meteorological elements and the array of daily ragweed pollen concentrations during the current pollen season were calculated. For the current pollen season, the six most important variables are two temperature variables (mean and minimum temperatures), two humidity variables (dew point depression and rainfall) and two variables characterising the mixing of the air (wind speed and the height of the planetary boundary layer). The six most important meteorological variables before the current pollen season contain four temperature variables (mean, maximum, minimum temperatures and soil temperature) and two variables that characterise large-scale weather patterns (sea level pressure and the height of the planetary boundary layer). Key periods of the past meteorological variables before the current pollen season have been identified. The importance of this kind of analysis is that a knowledge of the past meteorological conditions may contribute to a better prediction of the upcoming pollen season.

  1. Pollen tube and root-hair tip growth is disrupted in a mutant of Arabidopsis thaliana.

    PubMed Central

    Schiefelbein, J; Galway, M; Masucci, J; Ford, S

    1993-01-01

    The expansion of both root hairs and pollen tubes occurs by a process known as tip growth. In this report, an Arabidopsis thaliana mutant (tip1) is described that displays defects in both root-hair and pollen-tube growth. The root hairs of the tip1 mutant plants are shorter than those of the wild-type plants and branched at their base. The tip1 pollen-tube growth defect was identified by the aberrant segregation ratio of phenotypically normal to mutant seeds in siliques from self-pollinated, heterozygous plants. Homozygous mutant seeds are not randomly distributed in the siliques, comprising only 14.4% of the total seeds, 5.3% of the seeds from the bottom half, and 2.2% of the seeds from the bottom quarter of the heterozygous siliques. Studies of pollen-tube growth in vivo showed that mutant pollen tubes grow more slowly than wild-type pollen through the transmitting tissue of wild-type flowers. Cosegregation studies indicate that the root-hair and pollen-tube defects are caused by the same genetic lesion. Based on these findings, the TIP1 gene is likely to encode a product involved in a fundamental aspect of tip growth in plant cells. PMID:8022944

  2. Incompatibility and pollen competition in Alnus glutinosa: Evidence from pollination experiments.

    PubMed

    Steiner, W; Gregorius, H R

    1999-03-01

    Different types of incompatibility systems were found to operate simultaneously in Alnus glutinosa in the course of numerous pollination experiments, including self-pollination and pollination with controlled pollen mixtures. Isozyme genetic markers were used to identify the pollen parent of each offspring from the mixed pollination experiments, thus allowing specification of the fertilization success of each pollen parent. In a first step, these results were compared with observations on in vitro pollen germination experiments. This comparison allows for exploration of the explanatory value of different germination media as models of germination conditions on stigmas. In most cases, the data suggest that the in vitro germination conditions resemble the fertilization conditions in vivo, at least in the sense that they favor the same pollen parents. By providing a generic and operable definition of the two basic types of incompatibility, eliminating (inability to fertilize ovules) and cryptic (resulting in lowered fertilization success of a pollen parent under competition), evidence was detected for the existence of both types of incompatibility in Alnus glutinosa, where eliminating incompatibility occurred as self-incompatibility only. However, since this incompatibility seems to act primarily via pollen elimination, seed production is not likely to be negatively affected in natural populations, even for comparatively large amounts of self-pollination.

  3. Sampling for Airborne Radioactivity

    DTIC Science & Technology

    2007-10-01

    compared to betas, gammas and neutrons. For an airborne radioactivity detection system, it is most important to be able to detect alpha particles and... Airborne radioactive particles may emit alpha, beta, gamma or neutron radiation, depending on which radioisotope is present. From a health perspective...

  4. Proteomics of pollen development and germination.

    PubMed

    Dai, Shaojun; Wang, Tai; Yan, Xiufeng; Chen, Sixue

    2007-12-01

    In higher plants, pollen grains represent the vestiges of a highly reduced male gametophyte generation. After germination, the pollen tube delivers the sperm cells by tip-growing to the embryo sac for fertilization. Besides the intrinsic importance for sexual reproduction, pollen development and germination serve as an attractive system to address important questions related to cell division, cell differentiation, polar growth, cell-cell interaction, and cell fate. Recently, pollen functional specification has been well-studied using multidisciplinary approaches. Here, we review recent advances in proteomics of pollen development and germination.

  5. Cytochemical localization of some hydrolases in the pollen and pollen tubes of Amaryllis vittata Ait.

    PubMed

    Sharma, D

    1982-01-01

    Some hydrolases are localized cytochemically in the pollen and pollen tubes of Amaryllis vittata Ait. The function of different enzymes is discussed in relation to pollen tubes morphogenesis. Activity of most of the enzymes was confined to colpus region, pollen wall and general cytoplasm of pollen and pollen tube. The activity of hydrolytic enzymes like acid monophosphoesterase and lipase and was nil in the exine of both germinated and ungerminated pollen, whereas intense reaction for esterase was observed in exine. Enzyme activity increased after germination which suggest the hydrolysis of stored metabolites and synthesis of proteins and other metabolites for the active growth of pollen tube. Intense reaction for enzymes like alkaline phosphomonoesterase, ATP-ase, 5-nucleotidase etc. at the tip region of pollen tube suggest their role in physiological processes associated with exchange of materials through intercellular transport during tube wall polysaccharide biogenesis.

  6. Initial invasion of gametophytic self-incompatibility alleles in the absence of tight linkage between pollen and pistil S alleles.

    PubMed

    Sakai, Satoki; Wakoh, Haluka

    2014-08-01

    In homomorphic self-incompatibility (SI) systems of plants, the loci controlling the pollen and pistil types are tightly linked, and this prevents the generation of compatible combinations of alleles expressing pollen and pistil types, which would result in self-fertilization. We modeled the initial invasion of the first pollen and pistil alleles in gametophytic SI to determine whether these alleles can stably coexist in a population without tight linkage. We assume pollen and pistil loci each carry an incompatibility allele S and an allele without an incompatibility function N. We assume that pollen with an S allele are incompatible with pistils carrying S alleles, whereas other crosses are compatible. Ovules in pistils carrying an S allele suffer viability costs because recognition consumes resources. We found that the cost of carrying a pistil S allele allows pollen and pistil S alleles to coexist in a stable equilibrium if linkage is partial. This occurs because parents that carry pistil S alleles but are homozygous for pollen N alleles cannot avoid self-fertilization; however, they suffer viability costs. Hence, pollen N alleles are selected again. When pollen and pistil S alleles can coexist in a polymorphic equilibrium, selection will favor tighter linkage.

  7. Pollen resistance to water in 80 angiosperm species: flower structures protect rain-susceptible pollen.

    PubMed

    Mao, Yun-Yun; Huang, Shuang-Quan

    2009-08-01

    Flowers exhibit adaptive responses to biotic and abiotic factors. It remains unclear whether pollen susceptibility to rain damage plays a role in the evolution of floral form. We investigated flower performance in rain and compared pollen longevity in dry conditions, pure water and solutions with different sucrose concentrations in 80 flowering species from 46 families with diverse floral shapes and pollination modes. A pollen viability test showed that pollen longevity in all studied species was greatly reduced by wetting. We found that pollen of species with complete protection by flower structures was susceptible to water damage and a high proportion of resistant pollen occurred in unprotected species. Flowers whose structures expose pollen to rain may also reduce rain damage through temporal patterns of pollen presentation. This prediction was supported by our direct measurement of pollen presentation duration on rainy days. Our observations showed that variation in pollen performance in water was associated with differences in floral forms. Water-resistant pollen and extended pollen presentation duration were favored by selection via rain contact in species in which pollen was not protected from rain. These findings support the functional hypothesis that flower structures protect susceptible pollen from rain, demonstrating that rain acts as a force shaping floral form.

  8. Pollen selection under acid rain stress

    SciTech Connect

    Zhang, Y.

    1994-01-01

    To investigate whether acid rain stress induces pollen selection in nature, three different approaches were used, based on the assumption that the response of pollen grains to acid rain is controlled by an acid sensitive gene product. Germination of pollen from homozygous and heterozygous individuals under acid rain stress was examined to detect any differences in rate of germination between populations of homogeneous and heterogeneous pollen grains. In vitro and in vivo bulked segregant analysis using RAPDs was used to search for differences in DNA constitution between the survivors of acid rain stressed and non-acid rain stressed pollen populations in vitro and between the progenies of acid rain stressed and non-acid rain stressed populations during pollination, respectively. No evidence for the pollen selection under acid rain stress was obtained in any of the test systems. Inhibition of protein synthesis using cycloheximide led to significant reduction of tube elongation at 4 hr and had no effect on pollen germination at any time interval tested. Total proteins extracted from control and acid rain stressed pollen grain populations exhibited no differences. The reduction of corn pollen germination in vitro under acid rain stress was mainly due to pollen rupture. The present data indicates the reduction of pollen germination and tube growth under acid rain stress may be a physiological response rather than a genetic response. A simple, nontoxic, and effective method to separate germinated from ungerminated pollen grains has been developed using pollen from corn (Zea mays, L. cv. Pioneer 3747). The separated germinated pollen grains retained viability and continued tube growth when placed in culture medium.

  9. Pollen-Stigma Adhesion in Kale Is Not Dependent on the Self-(In)Compatibility Genotype.

    PubMed Central

    Luu, D. T.; Heizmann, P.; Dumas, C.

    1997-01-01

    The adhesion of pollen on the stigmas of flowering plants is a critical step for the success of reproduction in angiosperms, long considered to present some specificity in terms of self-incompatibility. We carried out quantitative measurements of the pollen-stigma adhesion (expressed in Newtons) in kale (Brassica oleracea), using the flotation force of Archimedes exerted by dense sucrose solutions (50%, w/v) to release pollen grains fixed on the surface of stigmas. We demonstrate that pollen adhesion varies with the genotypes of the plants used as partners, but increases with time in all cases for about 30 to 60 min after pollination. There is no correlation with the self- or cross-status of the pollinations, nor with the self-compatible or -incompatible genotypes of the parents. Only late events of pollination, after the germination or arrest of the pollen tube, depend on compatibility type. Biochemical and physiological dissection of pollen-stigma adhesion points to major components of this interaction: among male components, the pollen coating, eliminated by delipidation (or modified by mutation in the case of the cer mutants of the related species Arabidopsis thaliana), plays a major role in adhesion; the genetic background of the pollen parent is also of some importance. On the female side, the developmental stage of the stigma and the protein constituents of the stigmatic pellicle are critical for pollen capture. The SLG and SLR1 proteins are not involved in the initial stages of pollen adhesion on the stigma but one or both may be involved in the later stages. PMID:12223868

  10. Parentage versus two-generation analyses for estimating pollen-mediated gene flow in plant populations.

    PubMed

    Burczyk, Jaroslaw; Koralewski, Tomasz E

    2005-07-01

    Assessment of contemporary pollen-mediated gene flow in plants is important for various aspects of plant population biology, genetic conservation and breeding. Here, through simulations we compare the two alternative approaches for measuring pollen-mediated gene flow: (i) the NEIGHBORHOOD model--a representative of parentage analyses, and (ii) the recently developed TWOGENER analysis of pollen pool structure. We investigate their properties in estimating the effective number of pollen parents (N(ep)) and the mean pollen dispersal distance (delta). We demonstrate that both methods provide very congruent estimates of N(ep) and delta, when the methods' assumptions considering the shape of pollen dispersal curve and the mating system follow those used in data simulations, although the NEIGHBORHOOD model exhibits generally lower variances of the estimates. The violations of the assumptions, especially increased selfing or long-distance pollen dispersal, affect the two methods to a different degree; however, they are still capable to provide comparable estimates of N(ep). The NEIGHBORHOOD model inherently allows to estimate both self-fertilization and outcrossing due to the long-distance pollen dispersal; however, the TWOGENER method is particularly sensitive to inflated selfing levels, which in turn may confound and suppress the effects of distant pollen movement. As a solution we demonstrate that in case of TWOGENER it is possible to extract the fraction of intraclass correlation that results from outcrossing only, which seems to be very relevant for measuring pollen-mediated gene flow. The two approaches differ in estimation precision and experimental efforts but they seem to be complementary depending on the main research focus and type of a population studied.

  11. Volumetric studies of aeroallergen prevalence. I. Pollens of weedy forbs at a midwestern station.

    PubMed

    Solomon, W R

    1976-04-01

    Volumetric levels of pollens derived from broad-leaved herbaceous plant species heve been determined at a midwestern urban site with suction and rotating arm samplers. The resulting data confirm an abundance of ragweed and nettle emanations but suggest that those of plantains, chenopods, and amaranths achieve modest levels, at best, despite their prominence in gravity slide recoveries. Regular seasonal occurrence periods for pollens, including those of entemophilous composites, the hophemp group, wilg grape, and the mustard and pea families, were evident in volumetric recoveries. In general, prevalence peaks of the most prominent pollen types correlated with intermediate, rather than extreme, values for air speed and relative humidity.

  12. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  13. Pollen-Associated Microbiome Correlates with Pollution Parameters and the Allergenicity of Pollen.

    PubMed

    Obersteiner, Andrea; Gilles, Stefanie; Frank, Ulrike; Beck, Isabelle; Häring, Franziska; Ernst, Dietrich; Rothballer, Michael; Hartmann, Anton; Traidl-Hoffmann, Claudia; Schmid, Michael

    2016-01-01

    Pollen allergies have been rapidly increasing over the last decades. Many allergenic proteins and non-allergenic adjuvant compounds of pollen are involved in the plant defense against environmental or microbial stress. The first aim of this study was to analyze and compare the colonizing microbes on allergenic pollen. The second aim was to investigate detectable correlations between pollen microbiota and parameters of air pollution or pollen allergenicity. To reach these aims, bacterial and fungal DNA was isolated from pollen samples of timothy grass (Phleum pratense, n = 20) and birch trees (Betula pendula, n = 55). With this isolated DNA, a terminal restriction fragment length polymorphism analysis was performed. One result was that the microbial diversity on birch tree and timothy grass pollen samples (Shannon/Simpson diversity indices) was partly significantly correlated to allergenicity parameters (Bet v 1/Phl p 5, pollen-associated lipid mediators). Furthermore, the microbial diversity on birch pollen samples was correlated to on-site air pollution (nitrogen dioxide (NO2), ammonia (NH3), and ozone (O3)). What is more, a significant negative correlation was observed between the microbial diversity on birch pollen and the measured NO2 concentrations on the corresponding trees. Our results showed that the microbial composition of pollen was correlated to environmental exposure parameters alongside with a differential expression of allergen and pollen-associated lipid mediators. This might translate into altered allergenicity of pollen due to environmental and microbial stress.

  14. Pollen-Associated Microbiome Correlates with Pollution Parameters and the Allergenicity of Pollen

    PubMed Central

    Obersteiner, Andrea; Gilles, Stefanie; Frank, Ulrike; Beck, Isabelle; Häring, Franziska; Ernst, Dietrich; Rothballer, Michael; Hartmann, Anton; Traidl-Hoffmann, Claudia; Schmid, Michael

    2016-01-01

    Pollen allergies have been rapidly increasing over the last decades. Many allergenic proteins and non-allergenic adjuvant compounds of pollen are involved in the plant defense against environmental or microbial stress. The first aim of this study was to analyze and compare the colonizing microbes on allergenic pollen. The second aim was to investigate detectable correlations between pollen microbiota and parameters of air pollution or pollen allergenicity. To reach these aims, bacterial and fungal DNA was isolated from pollen samples of timothy grass (Phleum pratense, n = 20) and birch trees (Betula pendula, n = 55). With this isolated DNA, a terminal restriction fragment length polymorphism analysis was performed. One result was that the microbial diversity on birch tree and timothy grass pollen samples (Shannon/Simpson diversity indices) was partly significantly correlated to allergenicity parameters (Bet v 1/Phl p 5, pollen-associated lipid mediators). Furthermore, the microbial diversity on birch pollen samples was correlated to on-site air pollution (nitrogen dioxide (NO2), ammonia (NH3), and ozone (O3)). What is more, a significant negative correlation was observed between the microbial diversity on birch pollen and the measured NO2 concentrations on the corresponding trees. Our results showed that the microbial composition of pollen was correlated to environmental exposure parameters alongside with a differential expression of allergen and pollen-associated lipid mediators. This might translate into altered allergenicity of pollen due to environmental and microbial stress. PMID:26910418

  15. Pollen and ovule development in Arabidopsis thaliana under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Musgrave, M. E.; Matthews, S. W.; Cummins, D. B.; Tucker, S. C.

    1995-01-01

    The development of pollen and ovules in Arabidopsis thaliana on the space shuttle 'Endeavour' (STS-54) was investigated. Plants were grown on nutrient agar for 14 days prior to loading into closed plant growth chambers that received light and temperature control inside the Plant Growth Unit flight hardware on the shuttle middeck. After 6 days in spaceflight the plants were retrieved and immediately dissected and processed for light and electron microscope observation. Reproductive development aborted at an early stage. Pistils were collapsed and ovules inside were seen to he empty. No viable pollen was observed from STS-54 plants; young microspores were deformed and empty. At a late stage, the cytoplasm of the pollen contracted and became disorganized, but the pollen wall developed and the exine appeared normal. The tapetum in the flight flowers degenerated at early stages. Ovules from STS-54 flight plants stopped growing and the integuments and nucellus collapsed and degenerated. The megasporocytes appeared abnormal and rarely underwent meiosis. Apparently they enlarged, or occasionally produced a dyad or tetrad, to assume the form of a female gametophyte with the single nucleus located in an egglike cell that lacks a cell wall. Synergids, polar nuclei, and antipodals were not observed. The results demonstrate the types of lesions occurring in plant reproductive material under spaceflight conditions.

  16. The challenge of pollen analysis in palaeoenvironmental studies of hominid beds: the record from Sterkfontein caves.

    PubMed

    Carrión, J S; Scott, L

    1999-04-01

    The search for pollen in carbonate-rich sediments from the hominid site Sterkfontein has been justified because previous investigations suggested that although pollen contamination is a problem, speleothems (e.g. travertines and stalagmites) are most likely to contain reliable assemblages. The new results confirm that, although they have some potential, most sediment types from the site, even speleothems, are usually not suitable for analysis and that they contain very low concentrations of pollen, if any. The extraction of pollen from them is complicated by the problem of contamination from the modern environment. Such contamination has shown up in many previous investigations at this and similar sites and judging from published literature, its significance has not been fully appreciated. Cave palynology can be a very valuable tool in palaeoenvironmental research but the caveats associated with palynology of different sediment types especially carbonate impregnated sediments must be emphasized.

  17. Ultrastructure and pollen morphology of Bromeliaceae species from the Atlantic Rainforest in Southeastern Brazil.

    PubMed

    Silva, Vanessa J D; Ribeiro, Ester M; Luizi-Ponzo, Andrea P; Faria, Ana Paula G

    2016-01-01

    Pollen grain morphology of Bromeliaceae species collected in areas of the Atlantic Rainforest of southeastern Brazil was studied. The following species were analyzed: Aechmea bambusoides L.B.Sm. & Reitz, A. nudicaulis (L.) Griseb., A. ramosa Mart. ex Schult.f., Ananas bracteatus (Lindl.) Schult.f., Billbergia distachia (Vell.) Mez, B. euphemiae E. Morren, B. horrida Regel, B. zebrina (Herb.) Lindl., Portea petropolitana (Wawra) Mez, Pitcairnia flammea Lindl., Quesnelia indecora Mez, Tillandsia polystachia (L.) L., T. stricta Sol., T. gardneri Lindl., T. geminiflora Brongn. and Vriesea grandiflora Leme. Light and scanning electron microscopy were used and the species were grouped into three pollen types, organized according to aperture characteristics: Type I - pantoporate pollen grains observed in P. petropolitana, Type II - 2-porate pollen grains, observed in the genera Ananas, Aechmea and Quesnelia, and Type III - 1-colpate pollen grains, observed in the genera Billbergia, Pitcairnia, Tillandsia and Vriesea. Pollen data led to the construction of an identification key. The results showed that the species analyzed can be distinguished using mainly aperture features and exine ornamentation, and that these characteristics may assist in taxonomic studies of the family.

  18. [Identification of cattail pollen (puhuang), pine pollen (songhuafen) and its adulterants by ITS2 sequence].

    PubMed

    Ma, Xiao-Xi; Sun, Wei; Ren, Wei-Chao; Xiang, Li; Zhao, Bo; Zhang, Ya-Qin; Song, Ming; Mu, Ze-Jing; Chen, Shi-Lin

    2014-06-01

    DNA barcoding method was conducted for the authentication of pollen materials due to difficulty of discriminating pollen materials bearing morphological similarity. In this study, a specific focus was to identify cattail pollen (Puhuang) and pine pollen (Songhuafen) samples from their adulterants which are frequently mixed-together. Regions of the internal transcribed spacer (ITS2) from 60 samples were sequenced, and new primers for cattail pollen were designed according to the sequence information. The results from the NJ trees showed that the species of pine pollen, Puhuang and their adulterants can be classified as obvious monophyly. Therefore, we propose to adapt DNA barcoding methodology to accurately distinguish cattail pollen, pine pollen and their adulterant materials. It is a great help for drug regulatory agency to supervise the quality of medicinal materials.

  19. Honey Pollen: Using Melissopalynology to Understand Foraging Preferences of Bees in Tropical South India

    PubMed Central

    Ponnuchamy, Raja; Bonhomme, Vincent; Prasad, Srinivasan; Das, Lipi; Patel, Prakash; Gaucherel, Cédric; Pragasam, Arunachalam; Anupama, Krishnamurthy

    2014-01-01

    The aim of the study was to use melissopalynology to delineate the foraging preferences of bees in tropical environs. This was done by comparing pollen spectra obtained from the same hives every three months for three years at four sampling locations (in two sites) within a confined landscape mosaic. If melissopalynology is highly replicable, the spatial variation of the pollen spectrum from the honey samples would be much more than the temporal (inter-annual) variations. In other words, given the three factors, Month, Year and Location, honey pollen from different Locations, in a given Year and Month, would be much less similar than samples from different Years, in a given Location and Month. We then determined how the factors, Month, Year and Location, influenced the pollen influx of honey. The pollen analyses of the 42 honey samples collected during the three years yielded 80 pollen taxa/types: 72 dicotyledonous and 8 monocotyledonous, encompassing 41 botanical families spread into seven life forms namely, trees, shrubs, epiphytes, herbs, climbers, grasses, and sedges. Our results showed that pollen spectra were equally comparable between Locations and between Months and Years; the importance of this result is that it helped to demonstrate the complexity of ecological/environmental phenomena involved in the process of foraging by bees in a heterogeneous and complex landscape. PMID:25004103

  20. Honey pollen: using melissopalynology to understand foraging preferences of bees in tropical South India.

    PubMed

    Ponnuchamy, Raja; Bonhomme, Vincent; Prasad, Srinivasan; Das, Lipi; Patel, Prakash; Gaucherel, Cédric; Pragasam, Arunachalam; Anupama, Krishnamurthy

    2014-01-01

    The aim of the study was to use melissopalynology to delineate the foraging preferences of bees in tropical environs. This was done by comparing pollen spectra obtained from the same hives every three months for three years at four sampling locations (in two sites) within a confined landscape mosaic. If melissopalynology is highly replicable, the spatial variation of the pollen spectrum from the honey samples would be much more than the temporal (inter-annual) variations. In other words, given the three factors, Month, Year and Location, honey pollen from different Locations, in a given Year and Month, would be much less similar than samples from different Years, in a given Location and Month. We then determined how the factors, Month, Year and Location, influenced the pollen influx of honey. The pollen analyses of the 42 honey samples collected during the three years yielded 80 pollen taxa/types: 72 dicotyledonous and 8 monocotyledonous, encompassing 41 botanical families spread into seven life forms namely, trees, shrubs, epiphytes, herbs, climbers, grasses, and sedges. Our results showed that pollen spectra were equally comparable between Locations and between Months and Years; the importance of this result is that it helped to demonstrate the complexity of ecological/environmental phenomena involved in the process of foraging by bees in a heterogeneous and complex landscape.

  1. MALE STERILITY1 Is Required for Tapetal Development and Pollen Wall Biosynthesis[W][OA

    PubMed Central

    Yang, Caiyun; Vizcay-Barrena, Gema; Conner, Katie; Wilson, Zoe A.

    2007-01-01

    The Arabidopsis thaliana MALE STERILITY1 (MS1) gene is critical for viable pollen formation and has homology to the PHD-finger class of transcription factors; however, its role in pollen development has not been fully defined. We show that MS1 transcription appears to be autoregulated by the wild-type MS1 transcript or protein. Using a functional green fluorescent protein (GFP) fusion to analyze the temporal and spatial expression of MS1, we demonstrate that the MS1:GFP protein is nuclear localized within the tapetum and is expressed in a developmentally regulated manner between late tetraspore and microspore release, then rapidly breaks down, probably by ubiquitin-dependent proteolysis. Absence of MS1 expression results in changes in tapetal secretion and exine structure. Microarray analysis has shown that 260 (228 downregulated and 32 upreglated) genes have altered expression in young ms1 buds. These genes are primarily associated with pollen wall and coat formation; however, a number of transcription factors and Cys proteases have also been identified as the putative primary regulatory targets of MS1. Ectopic expression of MS1 alters transcriptional regulation of vegetative gene expression, resulting in stunted plants with increased levels of branching, partially fertile flowers and an apparent increase in wall material on mature pollen. MS1 therefore plays a critical role in the induction of pollen wall and pollen coat materials in the tapetum and, ultimately, the production of viable pollen. PMID:18032629

  2. Heterospecific pollen deposition in Delphinium barbeyi: linking stigmatic pollen loads to reproductive output in the field

    PubMed Central

    Briggs, Heather M.; Anderson, Lucy M.; Atalla, Laila M.; Delva, André M.; Dobbs, Emily K.; Brosi, Berry J.

    2016-01-01

    Background and Aims Most pollinators are generalists and therefore are likely to transfer heterospecific pollen among co-flowering plants. Most work on the impacts of heterospecific pollen deposition on plant fecundity has utilized hand-pollination experiments in greenhouse settings, and we continue to know very little about the reproductive effects of heterospecific pollen in field settings. Methods We explored how patterns of naturally deposited heterospecific pollen relate to the reproductive output of Delphinium barbeyi, a common subalpine perennial herb in the Rocky Mountains (USA). We assessed a wide range of naturally occurring heterospecific pollen proportions and pollen load sizes, and linked stigmatic pollen deposition directly to seed set in individual carpels in the field. Key Results We found that heterospecific pollen deposition in D. barbeyi is common, but typically found at low levels across stigmas collected in our sites. Neither conspecific nor heterospecific pollen deposition was related to carpel abortion. By contrast, we saw a significant positive relationship between conspecific pollen amount and viable seed production, as well as a significant negative interaction between the effects of conspecific pollen and heterospecific pollen amount, whereby the effect of conspecific pollen on viable seed production became weaker with greater heterospecific deposition on stigmas. Conclusions To our knowledge, this is the first demonstration of a relationship between heterospecific pollen and seed production in a field setting. In addition, it is the first report of an interaction between conspecific and heterospecific pollen quantities on seed production. These findings, taken with the results from other studies, suggest that greenhouse hand-pollination studies and field studies should be more tightly integrated in future work to better understand how heterospecific pollen transfer can be detrimental for plant reproduction. PMID:26658101

  3. Defective Pollen Wall 2 (DPW2) Encodes an Acyl Transferase Required for Rice Pollen Development1[OPEN

    PubMed Central

    Shi, Jianxin; Rautengarten, Carsten; Yang, Li; Uzair, Muhammad; Zhu, Lu; Luo, Qian; An, Gynheung; Waßmann, Fritz

    2017-01-01

    Aliphatic and aromatic lipids are both essential structural components of the plant cuticle, an important interface between the plant and environment. Although cross links between aromatic and aliphatic or other moieties are known to be associated with the formation of leaf cutin and root and seed suberin, the contribution of aromatic lipids to the biosynthesis of anther cuticles and pollen walls remains elusive. In this study, we characterized the rice (Oryza sativa) male sterile mutant, defective pollen wall 2 (dpw2), which showed an abnormal anther cuticle, a defective pollen wall, and complete male sterility. Compared with the wild type, dpw2 anthers have increased amounts of cutin and waxes and decreased levels of lipidic and phenolic compounds. DPW2 encodes a cytoplasmically localized BAHD acyltransferase. In vitro assays demonstrated that recombinant DPW2 specifically transfers hydroxycinnamic acid moieties, using ω-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs as acyl donors. Thus, The cytoplasmic hydroxycinnamoyl-CoA:ω-hydroxy fatty acid transferase DPW2 plays a fundamental role in male reproduction via the biosynthesis of key components of the anther cuticle and pollen wall. PMID:27246096

  4. Grass pollen immunotherapy: where are we now.

    PubMed

    Würtzen, Peter A; Gupta, Shashank; Brand, Stephanie; Andersen, Peter S

    2016-01-01

    During allergen immunotherapy (AIT), the allergic patient is exposed to the disease-inducing antigens (allergens) in order to induce clinical and immunological tolerance and obtain disease modification. Large trials of grass AIT with highly standardized subcutaneous and sublingual tablet vaccines have been conducted to document the clinical effect. Induction of blocking antibodies as well as changes in the balance between T-cell phenotypes, including induction of regulatory T-cell subtypes, have been demonstrated for both treatment types. These observations increase the understanding of the immunological mechanism behind the clinical effect and may make it possible to use the immunological changes as biomarkers of clinical effect. The current review describes the recent mechanistic findings for subcutaneous immunotherapy and sublingual immunotherapy/tablet treatment and discusses how the observed immunological changes translate into a scientific foundation for the observed clinical effects of grass pollen immunotherapy and lead to new treatment strategies for grass AIT.

  5. Controlling Hay Fever Symptoms with Accurate Pollen Counts

    MedlinePlus

    ... Library ▸ Hay fever and pollen counts Share | Controlling Hay Fever Symptoms with Accurate Pollen Counts This article has ... Pongdee, MD, FAAAAI Seasonal allergic rhinitis known as hay fever is caused by pollen carried in the air ...

  6. In vitro pollen viability and pollen germination in cherry laurel (Prunus laurocerasus L.).

    PubMed

    Sulusoglu, Melekber; Cavusoglu, Aysun

    2014-01-01

    Pollen quality is important for growers and breeders. This study was carried out to determine in vitro pollen viability and pollen germination in seven genotypes of cherry laurel (Prunus laurocerasus L.). Two pollen viability tests, TTC (2,3,5-triphenyl tetrazolium chloride) and IKI (iodine potassium iodide), were used. Pollen traits of genotypes were studied using an in vitro medium containing 0%, 5%, 10%, 15%, and 20% sucrose to determine the best sucrose concentrations for germination. In the second step, the germinated pollen was counted 1, 4, 6, 10, 12, 24, and 48 hours later until there was no further germination. The viability rates were different according to genotypes and tests used. The IKI and TTC staining tests and pollen germination had low correlation (r(2) = 0.0614 and r(2) = 0.0015, resp.). Painted pollen rate was higher and pollen was well-stained with IKI test and pollen viability estimated with TTC staining test was better than that estimated with the IKI staining test. 15% sucrose gave the best germination rates in most of the genotypes. Pollen germination rates were recorded periodically from one hour to 48 hours in 15% sucrose and the results showed that pollen germination rates increased after 6 hours of being placed in culture media.

  7. [A monoclonal antibody against ragweed pollen cross-reacting with yellow dock pollen].

    PubMed

    Shen, H D; Chang, L Y; Gong, Y J; Chang, H N; Han, S H

    1985-11-01

    Using monoclonal antibodies with different specificity against the major allergenic components of ragweed pollen, we analyzed their cross-reactivity with two tree pollens, two grass pollens and five other weed pollens which are common in Taiwan by the immunoblot method. It was found that besides reacting with AgE and AgK of the ragweed pollen, the monoclonal antibody 48-5 also reacted with antigens of yellow dock pollen with molecular weights of 40K, 38K, 24K, and 21K. In a preliminary study, sera of two patients containing IgE antibodies to ragweed pollen antigens also reacted to the 40K component of the yellow dock pollen. Furthermore, from the results of allergenic skin testings on 109 patients with bronchial asthma, we found that of 22 patients who had a positive reaction to a crude extract of ragweed pollen, 18(81.8%) also reacted to the crude extract of yellow dock pollen. In conclusion, our results suggest that there exists a common allergenic determinant between pollens of ragweed and yellow dock. It may play an important role in the expression of the sensitivity of patients to these two kinds of pollens.

  8. Some carbohydrates found in pollen and pollen substitutes are toxic to honey bees.

    PubMed

    Barker, R J

    1977-10-01

    Carbohydrates in some pollen substitutes (galactose, lactose, raffinose, stachyose, glucuronic acid, galacturonic acid, polygalacturonic acid, and pectin) were toxic to caged adult Apis mellifera L. These toxins can be diluted to safe levels by sucrose. Collected nectar apparently dilutes the toxic sugars in pollen thus permitting assimilation of essential nutrients from pollen.

  9. Cross-reactivity to olive tree pollen and orchard grass pollen in patients with pollinosis.

    PubMed

    Miyahara, S; Nakada, M; Nishizaki, K; Kawarai, Y; Nishioka, K; Hino, H

    1997-06-01

    We studied 92 patients with allergic rhinitis in Syodoshima, Japan, during the pollen season between April and June to evaluate the cross-reactivity to different antigens, including pollen from the olive tree (Olea europaea) and orchard grass (Dactylis glomerata). Olive tree pollen was present in the atmosphere for 23 days, from May 19 to June 12, 1994. Specific IgE antibodies for olive tree pollen antigen were present in 21 (26.9%) of the 78 patients with allergic rhinitis. Nine (24.3%) of the 37 patients with allergic rhinitis exhibited positive skin reactivity to an extract of olive tree pollen. Fifteen (88.2%) of the 17 patients who had IgE reactivity in their sera to olive tree pollen antigen demonstrated allergic reactions to an extract of olive tree pollen. Specific IgE antibodies for orchard grass pollen antigen were present in 43 (48.3%) of the 89 patients with allergic rhinitis and 20 (95.2%) of the 21 patients who had IgE reactivity in their sera to olive tree pollen antigen. The inhibition test using the CAP System revealed that the reactivity of the IgE antibody specific for olive tree pollen antigen was inhibited dose-dependently by an extract of orchard grass pollen. These findings show that there is a reaction in some patients with grass (Gramineae) pollinosis that might be induced by olive tree pollen.

  10. In Vitro Pollen Viability and Pollen Germination in Cherry Laurel (Prunus laurocerasus L.)

    PubMed Central

    Sulusoglu, Melekber; Cavusoglu, Aysun

    2014-01-01

    Pollen quality is important for growers and breeders. This study was carried out to determine in vitro pollen viability and pollen germination in seven genotypes of cherry laurel (Prunus laurocerasus L.). Two pollen viability tests, TTC (2,3,5-triphenyl tetrazolium chloride) and IKI (iodine potassium iodide), were used. Pollen traits of genotypes were studied using an in vitro medium containing 0%, 5%, 10%, 15%, and 20% sucrose to determine the best sucrose concentrations for germination. In the second step, the germinated pollen was counted 1, 4, 6, 10, 12, 24, and 48 hours later until there was no further germination. The viability rates were different according to genotypes and tests used. The IKI and TTC staining tests and pollen germination had low correlation (r2 = 0.0614 and r2 = 0.0015, resp.). Painted pollen rate was higher and pollen was well-stained with IKI test and pollen viability estimated with TTC staining test was better than that estimated with the IKI staining test. 15% sucrose gave the best germination rates in most of the genotypes. Pollen germination rates were recorded periodically from one hour to 48 hours in 15% sucrose and the results showed that pollen germination rates increased after 6 hours of being placed in culture media. PMID:25405230

  11. Personal pollen exposure compared to stationary measurements.

    PubMed

    Riediker, M; Keller, S; Wüthrich, B; Koller, T; Monn, C

    2000-01-01

    The aim of this study was to examine to what extent stationary outdoor pollen measurements are representative for estimating personal exposure to pollen. Ten subjects were studied during a total of 36 days in spring and summer Pollen was sampled using personal SKC total dust samplers and stationary Burkard pollen traps. The personal activity pattern was recorded quarter-hourly as well as the time spent outdoors. As a reference, SKC and Burkard samplers were run stationary and in parallel. Stationary comparison of the samplers showed good correlation (r = 0.981, p <0.001). However, the SKC sampler collected systematically about four times less pollen than the Burkard sampler. Taking into account the systematic difference between the sampling devices, the personal exposure data were about 30% of the stationary pollen concentrations with significant correlation (log-transformed data, r = 0.719, p <0.0001). Considering the average time the subjects spent outdoors (14% of sampling time), the indoor-outdoor ratio for pollen was 0.2. In conclusion, pollen reports are reliable for estimating personal exposure over a limited time period although personal pollen exposure is much lower.

  12. Simultaneous allergy to vine pollen and grape.

    PubMed

    Mur, P; Feo Brito, F; Bartolomé, B; Galindo, P A; Gómez, E; Borja, J; Alonso, A

    2006-01-01

    We report the case of an 18-year-old female student suffering from seasonal rhinoconjunctivitis with sensitization to pollens from vine and also from grass, olive, and Chenopodiaceae plants who had recently developed episodes of itching, maculopapular rash, and facial angioedema after eating grapes. Testing revealed positive reactions to vine pollen and grapes, and specific IgE were found for both allergens. Immunoblotting and inhibition assays revealed cross-reactivity between the allergenic structures of vine pollen and grape fruit and also among botanically unrelated pollens.

  13. Use of MODIS Satellite Data to Evaluate Juniperus spp. Pollen Phenology to Support a Pollen Dispersal Model, PREAM, to Support Public Health Allergy Alerts

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W.; Levetin, E.; Huete, A.; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P.; Budge, A.; Hudspeth, W.; Krapfl, H.; Toth, B.; Zelicoff, A.; Myers, O.; Bunderson, L.; Ponce-Campos, G.; Crimmins, T.; Menache, M.

    2012-01-01

    Juniperus spp. pollen is a significant aeroallergen that can be transported 200-600 km from the source. Local observations of Juniperus spp. phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. Methods: The Dust REgional Atmospheric Model (DREAM)is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We successfully modified the DREAM model to incorporate pollen transport (PREAM) and used MODIS satellite images to develop Juniperus ashei pollen input source masks. The Pollen Release Potential Source Map, also referred to as a source mask in model applications, may use different satellite platforms and sensors and a variety of data sets other than the USGS GAP data we used to map J. ashei cover type. MODIS derived percent tree cover is obtained from MODIS Vegetation Continuous Fields (VCF) product (collection 3 and 4, MOD44B, 500 and 250 m grid resolution). We use updated 2010 values to calculate pollen concentration at source (J. ashei ). The original MODIS derived values are converted from native approx. 250 m to 990m (approx. 1 km) for the calculation of a mask to fit the model (PREAM) resolution. Results: The simulation period is chosen following the information that in the last 2 weeks of December 2010. The PREAM modeled near-surface concentrations (Nm-3) shows the transport patterns of J. ashei pollen over a 5 day period (Fig. 2). Typical scales of the simulated transport process are regional.

  14. Monitoring of airborne biological particles in outdoor atmosphere. Part 1: Importance, variability and ratios.

    PubMed

    Núñez, Andrés; Amo de Paz, Guillermo; Rastrojo, Alberto; García, Ana M; Alcamí, Antonio; Gutiérrez-Bustillo, A Montserrat; Moreno, Diego A

    2016-03-01

    The first part of this review ("Monitoring of airborne biological particles in outdoor atmosphere. Part 1: Importance, variability and ratios") describes the current knowledge on the major biological particles present in the air regarding their global distribution, concentrations, ratios and influence of meteorological factors in an attempt to provide a framework for monitoring their biodiversity and variability in such a singular environment as the atmosphere. Viruses, bacteria, fungi, pollen and fragments thereof are the most abundant microscopic biological particles in the air outdoors. Some of them can cause allergy and severe diseases in humans, other animals and plants, with the subsequent economic impact. Despite the harsh conditions, they can be found from land and sea surfaces to beyond the troposphere and have been proposed to play a role also in weather conditions and climate change by acting as nucleation particles and inducing water vapour condensation. In regards to their global distribution, marine environments act mostly as a source for bacteria while continents additionally provide fungal and pollen elements. Within terrestrial environments, their abundances and diversity seem to be influenced by the land-use type (rural, urban, coastal) and their particularities. Temporal variability has been observed for all these organisms, mostly triggered by global changes in temperature, relative humidity, et cetera. Local fluctuations in meteorological factors may also result in pronounced changes in the airbiota. Although biological particles can be transported several hundreds of meters from the original source, and even intercontinentally, the time and final distance travelled are strongly influenced by factors such as wind speed and direction. [Int Microbiol 2016; 19(1):1-1 3].

  15. Surface pollen and its relationship to vegetation in the Zoige Basin, eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Furong; Zhao, Yan; Sun, Jinghui; Zhao, Wenwei; Guo, Xiaoli; Zhang, Ke

    2011-09-01

    We use a data set of 23 surface pollen samples from moss polsters in the Zoige Basin to explore the relationship between modern pollen assemblages and contemporary vegetation patterns. The surface pollen samples spanned four types of plant communities: Carex muliensis marsh, Stipa and Kobresia meadow, Carex-dominated forb meadow and Sibiraea angustata scrub. Principal-components analysis (PCA) was used to determine the relationships between modern pollen and vegetation and environmental variables. The results show that the pollen assemblages of surface moss samples generally reflect the features of the modern vegetation, basically similar in the vegetation types and the dominant genera; however, they don't show a very clear distinction between different communities. Our results also demonstrate that pollen representation of different families or genus varied. Some tree taxa, such as Pinus and Betula, and herb types, such as Artemisia are over-represented, while Asteraceae, Ranunculaceae and Cyperaceae are moderately represented, and Poaceae and Rosaceae are usually under-represented in our study region. PCA results indicate that the distribution of vegetation in the Zoige Basin is mainly controlled by precipitation and altitude.

  16. The Unique Pollen Morphology of Duparquetia (Leguminosae: Caesalpinioideae): Developmental Evidence of Aperture Orientation Using Confocal Microscopy

    PubMed Central

    BANKS, HANNAH; FEIST-BURKHART, SUSANNE; KLITGAARD, BENTE

    2006-01-01

    legume pollen types. PMID:16735411

  17. Release of developmental constraints on tetrad shape is confirmed in inaperturate pollen of Potamogeton

    PubMed Central

    Nunes, Elaine Lopes Pereira; Bona, Cleusa; de Chiara Moço, Maria Cecília; Coan, Alessandra Ike

    2009-01-01

    Background and Aims Microsporogenesis in monocots is often characterized by successive cytokinesis with centrifugal cell plate formation. Pollen grains in monocots are predominantly monosulcate, but variation occurs, including the lack of apertures. The aperture pattern can be determined by microsporogenesis features such as the tetrad shape and the last sites of callose deposition among the microspores. Potamogeton belongs to the early divergent Potamogetonaceae and possesses inaperturate pollen, a type of pollen for which it has been suggested that there is a release of the constraint on tetrad shape. This study aimed to investigate the microsporogenesis and the ultrastructure of pollen wall in species of Potamogeton in order to better understand the relationship between microsporogenesis features and the inaperturate condition. Methods The microsporogenesis was investigated using both light and epifluorescence microscopy. The ultrastructure of the pollen grain was studied using transmission electron microscopy. Key Results The cytokinesis is successive and formation of the intersporal callose wall is achieved by centrifugal cell plates, as a one-step process. The microspore tetrads were tetragonal, decussate, T-shaped and linear, except in P. pusillus, which showed less variation. This species also showed a callose ring in the microsporocyte, and some rhomboidal tetrads. In the mature pollen, the thickening observed in a broad area of the intine was here interpreted as an artefact. Conclusions The data support the view that there is a correlation between the inaperturate pollen production and the release of constraint on tetrad shape. However, in P. pusillus the tetrad shape may be constrained by a callose ring. It is also suggested that the lack of apertures in the pollen of Potamogeton may be due to the lack of specific sites on which callose deposition is completed. Moreover, inaperturate pollen of Potamogeton would be better classified as omniaperturate

  18. Roles of pollen-specific boron efflux transporter, OsBOR4, in the rice fertilization process.

    PubMed

    Tanaka, Nobuhiro; Uraguchi, Shimpei; Saito, Akihiro; Kajikawa, Masataka; Kasai, Koji; Sato, Yutaka; Nagamura, Yoshiaki; Fujiwara, Toru

    2013-12-01

    Arabidopsis thaliana BOR1 was the first boron (B) transporter identified in living systems. There are four AtBOR1-like genes, OsBOR1, 2, 3 and 4, present in the rice genome. We characterized the activity, expression and physiological function of OsBOR4. OsBOR4 is an active efflux transporter of B. Quantitative PCR analysis and OsBOR4 promoter-green fluorescent protein (GFP) fusion revealed that OsBOR4 was both highly and specifically expressed in pollen. We obtained five Tos17 insertion mutants of osbor4. The pollen grains were viable and development of floral organs was normal in the homozygous osbor4 mutants. We observed that in all Tos17 insertion lines tested, the frequency of osbor4 homozygous plants was lower than expected in the progeny of self-fertilized heterozygous plants. These results establish that OsBOR4 is essential for normal reproductive processes. Pollen from osbor4 homozygous plants elongated fewer tubes on wild-type stigmas, and tube elongation of mutant pollen was less efficient compared with the wild-type pollen, suggesting reduced competence of osbor4 mutant pollen. The reduced competence of mutant pollen was further supported by the crosses of independent Tos17-inserted alleles of OsBOR4. Our results suggest that OsBOR4, a boron efflux transporter, is required for normal pollen germination and/or tube elongation.

  19. High humidity partially rescues the Arabidopsis thaliana exo70A1 stigmatic defect for accepting compatible pollen.

    PubMed

    Safavian, Darya; Jamshed, Muhammad; Sankaranarayanan, Subramanian; Indriolo, Emily; Samuel, Marcus A; Goring, Daphne R

    2014-09-01

    We have previously proposed that Exo70A1 is required in the Brassicaceae stigma to control the early stages of pollen hydration and pollen tube penetration through the stigmatic surface, following compatible pollination. However, recent work has raised questions regarding Arabidopsis thaliana Exo70A1's expression in the stigma and its role in stigma receptivity to compatible pollen. Here, we verified the expression of Exo70A1 in stigmas from three Brassicaceae species and carefully re-examined Exo70A1's function in the stigmatic papillae. With previous studies showing that high relative humidity can rescue some pollination defects, essentially bypassing the control of pollen hydration by the Brassicaceae dry stigma, the effect of high humidity was investigated on pollinations with the Arabidopsis exo70A1-1 mutant. Pollinations under low relative humidity resulted in a complete failure of wild-type compatible pollen acceptance by the exo70A1-1 mutant stigma as we had previously seen. However, high relative humidity resulted in a partial rescue of the exo70A1-1 stigmatic papillar defect resulting is some wild-type compatible pollen acceptance and seed set. Thus, these results reaffirmed Exo70A1's proposed role in the stigma regulating compatible pollen hydration and pollen tube entry and demonstrate that high relative humidity can partially bypass these functions.

  20. Pollen concentration and asthma exacerbations in Wake County, North Carolina, 2006-2012.

    PubMed

    Sun, Xuezheng; Waller, Anna; Yeatts, Karin B; Thie, Lauren

    2016-02-15

    Pollen has been generally linked to an increased risk for asthma exacerbation. However, the delayed effect (lag), the length of effect duration, and the association heterogeneity by pollen types have not been well characterized. Short-term associations between ambient concentration of various pollen types (tree, grass, and weed) and emergency department (ED) visits for asthma were assessed using data in Wake County, North Carolina, during 2006-2012. Distributed lag nonlinear models (DLNM) were used to characterize the associations, while adjusting for air pollutants, meteorological, and temporal factors. A strong association between same-day tree pollen and asthma ED visits was detected. This association lasted four days, with a 4-day cumulative risk ratio (RR) up to 2.10 (3500 grains/m(3) vs. 0 grains/m(3), 95% confidence interval [CI]=1.21-3.65). The associations of asthma ED visits with weed pollen and grass pollen were weak, suggestively starting from lag 2 and lasting 3 days, with the strongest association a 3-day cumulative RR of 1.08 (32 grains/m(3) vs. 0 grains/m(3), 95% CI=1.01-1.15) and 1.05 (11 grains/m(3) vs. 0 grains/m(3), 95% CI=1.00-1.11). Our results indicate that the association of ambient pollen and asthma exacerbation vary by pollen type, both quantitatively and temporally. These findings have important implications for optimizing targeted allergic disease prevention and management, and helping understand the etiology of ambient exposure-induced allergic diseases.

  1. Airborne Next: Rethinking Airborne Organization and Applying New Concepts

    DTIC Science & Technology

    2015-06-01

    structures since its employment on a large scale during World War II. It is puzzling to consider how little airborne organizational structures and employment...future potential of airborne concepts by rethinking traditional airborne organizational structures and employment concepts. Using a holistic approach in... structures of airborne forces to model a “small and many” approach over a “large and few” approach, while incorporating a “swarming” concept. Utilizing

  2. The combined use of pollen and soil analyses in a search and subsequent murder investigation.

    PubMed

    Brown, Antony G; Smith, Andrew; Elmhurst, Orlando

    2002-05-01

    This case report shows how soil analyses (particularly petrology) can be used in conjunction with pollen in order to refine or strengthen an association. Soil samples from a car believed to have been used by the suspect in a missing persons case was subjected to soil and pollen analyses. The soil characteristics and petrology were used to redefine the search area using geology and soils maps, the pollen and vegetative remains were used to target woodlands with a particular species mix. As a result two bodies were located and the environmental evidence was used in the subsequent trial. In this case the history of the vehicle was well known and the wheel arches and footwells provided reliable soil traps. The advantage of combining the techniques is that soil evidence (both mineralogy and other inclusions) provides a geological/soils match while the pollen provides independent evidence of vegetation type providing a combination that may be rare or unique.

  3. Allergens of weed pollen: an overview on recombinant and natural molecules.

    PubMed

    Gadermaier, Gabriele; Hauser, Michael; Ferreira, Fatima

    2014-03-01

    Weeds represent a botanically unrelated group of plants that usually lack commercial or aesthetical value. Pollen of allergenic weeds are able to trigger type I reactions in allergic patients and can be found in the plant families of Asteraceae, Amaranthaceae, Plantaginaceae, Urticaceae, and Euphorbiaceae. To date, 34 weed pollen allergens are listed in the IUIS allergen nomenclature database, which were physicochemically and immunologically characterized to varying degrees. Relevant allergens of weeds belong to the pectate lyase family, defensin-like family, Ole e 1-like family, non-specific lipid transfer protein 1 family and the pan-allergens profilin and polcalcins. This review provides an overview on weed pollen allergens primarily focusing on the molecular level. In particular, the characteristics and properties of purified recombinant allergens and hypoallergenic derivatives are described and their potential use in diagnosis and therapy of weed pollen allergy is discussed.

  4. Impact of a city centre on the dispersal of a regional pollen cloud. Cas of Montréal, Canada.

    NASA Astrophysics Data System (ADS)

    Goyette-Pernot, J.

    2003-04-01

    Highly allergenic ragweed pollen is released into the air in large quantities at the end of every summer in and around Montreal. More than 19% of the city's population experiences hay fever (DSP-Montreal Center, 2000). The aim of this study is to obtain a deeper insight into the manner in which a North American urban area may influence the dispersal of a regional pollen clouds, how it modifies the dispersal and thereby its concentration. Downtown areas provide particular surface characteristics that result in strong disturbances to regional meteorological conditions. Strong pollen concentrations are modified by the passage of fronts and may increase the occurrence of regional-scale pollen peaks. They offer the best conditions for the local dilution of pollen and even the best dynamic conditions for external pollen that reaches Montreal from southern regions. On the contrary, anticyclonic situations seem to offer the best conditions for local production but inhibit dilution on a larger scale. Observations have been made in order to investigate the vertical as well as the regional versus the local and street-level differences in pollen abundance. The aim is to develop an original statistical downscaling technique, inferring pollen concentrations from the largest to the smallest scales. At the regional scale, the emphasis is placed on the typical meteorological conditions or weather types influencing the regional pollen cloud. At the street level, the discussion focuses on whether these prior regional conditions continue to influence the micro-scale pollen diffusion or whether they are themselves modified by the characteristics of the surface. If this were to be the case, then it would be essential to address the issue of how it affects the pollen concentrations at the pedestrian level, with all this may imply in term of public health.

  5. Pyrrolizidine alkaloids in food: downstream contamination in the food chain caused by honey and pollen.

    PubMed

    Kempf, M; Wittig, M; Schönfeld, K; Cramer, L; Schreier, P; Beuerle, T

    2011-03-01

    In recent years, there has been a steadily growing number of published data on pyrrolizidine alkaloids (PAs) in honey and pollen. This raises the question whether honey and/or pollen used as ingredients in food processing might provoke a downstream contamination in the food chain. Here we addressed two different facets in connection with PAs in honey and pollen. First, we analysed the PA content of several food types such as mead (n = 19), candy (n = 10), fennel honey (n = 9), soft drinks (n = 5), power bars and cereals (n = 7), jelly babies (n = 3), baby food (n = 3), supplements (n = 3) and fruit sauce (n = 1) that contained honey as an ingredient in the range of 5% to approximately 37%. Eight out of 60 retail samples were tested as being PA-positive, corresponding to 13%. Positive samples were found in mead, candy and fennel honey, and the average PA content was calculated to be 0.10 µg g(-1) retronecine equivalents (ranging from 0.010 to 0.484 µg g(-1)). Furthermore, we investigated the question whether and how PAs from PA pollen are transferred from pollen into honey. We conducted model experiments with floral pollen of Senecio vernalis and PA free honey and tested the influence of the quantity of PA pollen, contact time and a simulated honey filtration on the final PA content of honey. It could clearly be demonstrated that the PA content of honey was directly proportional to the amount of PA pollen in honey and that the transfer of PAs from pollen to honey was a rather quick process. Consequently, PA pollen represents a major source for the observed PA content in honey. On the other hand, a good portion remains in the pollen. This fraction is not detected by the common analytical methods, but will be ingested, and it represents an unknown amount of 'hidden' PAs. In addition, the results showed that a technically and legally possible honey filtration (including the removal of all pollen) would not be an option to reduce the PA level of the final product

  6. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity.

    PubMed

    Sénéchal, Hélène; Visez, Nicolas; Charpin, Denis; Shahali, Youcef; Peltre, Gabriel; Biolley, Jean-Philippe; Lhuissier, Franck; Couderc, Rémy; Yamada, Ohri; Malrat-Domenge, Audrey; Pham-Thi, Nhân; Poncet, Pascal; Sutra, Jean-Pierre

    2015-01-01

    This review summarizes the available data related to the effects of air pollution on pollen grains from different plant species. Several studies carried out either on in situ harvested pollen or on pollen exposed in different places more or less polluted are presented and discussed. The different experimental procedures used to monitor the impact of pollution on pollen grains and on various produced external or internal subparticles are listed. Physicochemical and biological effects of artificial pollution (gaseous and particulate) on pollen from different plants, in different laboratory conditions, are considered. The effects of polluted pollen grains, subparticles, and derived aeroallergens in animal models, in in vitro cell culture, on healthy human and allergic patients are described. Combined effects of atmospheric pollutants and pollen grains-derived biological material on allergic population are specifically discussed. Within the notion of "polluen," some methodological biases are underlined and research tracks in this field are proposed.

  7. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity

    PubMed Central

    Sénéchal, Hélène; Visez, Nicolas; Charpin, Denis; Shahali, Youcef; Peltre, Gabriel; Biolley, Jean-Philippe; Lhuissier, Franck; Couderc, Rémy; Yamada, Ohri; Malrat-Domenge, Audrey; Pham-Thi, Nhân; Poncet, Pascal; Sutra, Jean-Pierre

    2015-01-01

    This review summarizes the available data related to the effects of air pollution on pollen grains from different plant species. Several studies carried out either on in situ harvested pollen or on pollen exposed in different places more or less polluted are presented and discussed. The different experimental procedures used to monitor the impact of pollution on pollen grains and on various produced external or internal subparticles are listed. Physicochemical and biological effects of artificial pollution (gaseous and particulate) on pollen from different plants, in different laboratory conditions, are considered. The effects of polluted pollen grains, subparticles, and derived aeroallergens in animal models, in in vitro cell culture, on healthy human and allergic patients are described. Combined effects of atmospheric pollutants and pollen grains-derived biological material on allergic population are specifically discussed. Within the notion of “polluen,” some methodological biases are underlined and research tracks in this field are proposed. PMID:26819967

  8. Developmental and ultrastructural characters of the pollen grains and tapetum in species of Nymphaea subgenus Hydrocallis.

    PubMed

    Zini, Lucía Melisa; Galati, Beatriz Gloria; Zarlavsky, Gabriela; Ferrucci, María Silvia

    2017-01-12

    Variations in pollen characters and tapetum behavior were recently acknowledged in the early-divergent family Nymphaeaceae and even within the genus Nymphaea, which probably is not monophyletic; some traits such as infratectum and tapetum type are also a matter of different interpretations. In this study, developmental characters of the pollen grains and tapetum in Nymphaea subgenus Hydrocallis are provided for the first time. Observations were made in N. amazonum, N. gardneriana, and N. prolifera using light, scanning, and transmission electron microscopy. Tapetum is of the secretory type and produces orbicules. At microspore and pollen grain stages, the distal and proximal walls differ considerably. This result supports the operculate condition of the aperture in Hydrocallis, and such aperture might be plesiomorphic for Nymphaeoideae. The infratectum is intermediate, composed of inter-columellae granular elements, robust columellae consisting of agglomerated granules, complete columellae, and fused columellae. Narrow microchannels are present and persist until the mature pollen grain stage. The membranous granular layer is often present in the pollen grains of Nymphaeaceae. In N. gardneriana, this layer is most probably a component of the intine because it is lost after acetolysis. Orbicules in the Nymphaeaceae are characterized as spherical or subspherical, with a smooth sporopolleninic wall that surrounds an electron-lucent core and with individual orbicules that usually merge to give irregular aggregations. The aperture, pollen wall ultrastructure, and the tapetum of the studied species are discussed in an evolutionary and systematic context, and these characters are also compared with those of other angiosperm lineages.

  9. Multiple Developmental Pathways Leading to a Single Morph: Monosulcate Pollen (Examples From the Asparagales)

    PubMed Central

    PENET, L.; NADOT, S.; RESSAYRE, A.; FORCHIONI, A.; DREYER, L.; GOUYON, P. H.

    2004-01-01

    • Background and Aims Early developmental events in microsporogenesis are known to play a role in pollen morphology: variation in cytokinesis type, cell wall formation, tetrad shape and aperture polarity are responsible for pollen aperture patterning. Despite the existence of other morphologies, monosulcate pollen is one of the most common aperture types in monocots, and is also considered as the ancestral condition in this group. It is known to occur from either a successive or a simultaneous cytokinesis. In the present study, the developmental sequence of microsporogenesis is investigated in several species of Asparagales that produce such monosulcate pollen, representing most families of this important monocot clade. • Methods The developmental pathway of microsporogenesis was investigated using light transmission and epifluorescence microscopy for all species studied. Confocal microscopy was used to confirm centripetal cell plate formation. • Key Results Microsporogenesis is diverse in Asparagales, and most variation is generally found between families. It is confirmed that the whole higher Asparagales clade has a very conserved microsporogenesis, with a successive cytokinesis and centrifugal cell plate formation. Centripetal cell wall formation is described in Tecophilaeaceae and Iridaceae, a feature that had so far only been reported for eudicots. • Conclusions Monosulcate pollen can be obtained from several developmental pathways, leading thus to homoplasy in the monosulcate character state. Monosulcate pollen should not therefore be considered as the ancestral state unless it is produced through the ancestral developmental pathway. The question about the ancestral developmental pathway leading to monosulcy remains open. PMID:15567807

  10. Antioxidant Activity of Sonoran Desert Bee Pollen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bee products have been consumed by mankind since antiquity and their health benefits are becoming more apparent. Bee pollen (pollen collected by honey bees) was collected in the high intensity ultraviolet (UV) Sonoran desert and was analyzed by the anti-2,2-diphenyl-1-picryhydrazyl (DPPH) assay and...

  11. ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize.

    PubMed

    Somaratne, Yamuna; Tian, Youhui; Zhang, Hua; Wang, Mingming; Huo, Yanqing; Cao, Fengge; Zhao, Li; Chen, Huabang

    2017-01-12

    Anther cuticle and pollen exine are the major protective barriers against various stresses. The proper functioning of genes expressed in the tapetum is vital for the development of pollen exine and anther cuticle. In this study, we report a tapetum-specific gene, Abnormal Pollen Vacuolation1 (APV1), in maize that affects anther cuticle and pollen exine formation. The apv1 mutant was completely male sterile. Its microspores were swollen, less vacuolated, with a flat and empty anther locule. In the mutant, the anther epidermal surface was smooth, shiny, and plate-shaped compared with the three-dimensional crowded ridges and randomly formed wax crystals on the epidermal surface of the wild-type. The wild-type mature pollen had elaborate exine patterning, whereas the apv1 pollen surface was smooth. Only a few unevenly distributed Ubisch bodies were formed on the apv1 mutant, leading to a more apparent inner surface. A significant reduction in the cutin monomers was observed in the mutant. APV1 encodes a member of the P450 subfamily, CYP703A2-Zm, which contains 530 amino acids. APV1 appeared to be widely expressed in the tapetum at the vacuolation stage, and its protein signal co-localized with the endoplasmic reticulum (ER) signal. RNA-Seq data revealed that most of the genes in the fatty acid metabolism pathway were differentially expressed in the apv1 mutant. Altogether, we suggest that APV1 functions in the fatty acid hydroxylation pathway which is involved in forming sporopollenin precursors and cutin monomers that are essential for the development of pollen exine and anther cuticle in maize.

  12. Endogenous Gibberellins of Pine Pollen

    PubMed Central

    Kamienska, Aniela; Durley, Richard C.; Pharis, Richard P.

    1976-01-01

    Gibberellins A1 and A34 (possibly A2) were found as products of metabolism of 1,2-[3H]GA4 during germination of Pinus attenuata pollen. The conversion from GA4 to GA1 and GA34 occurred as hydroxylations at atoms C-13 and C-2 of the ent-gibberellane skeleton, respectively. Percentage interconversion of the GA4 absorbed was in the range of 0.15 to 0.43% for GA1 and 1.54 to 3.22% for GA34. Identifications were made on a gas-liquid chromatograph with radioactive monitoring by comparison with standards. PMID:16659622

  13. Importance of saprotrophic freshwater fungi for pollen degradation.

    PubMed

    Wurzbacher, Christian; Rösel, Stefan; Rychła, Anna; Grossart, Hans-Peter

    2014-01-01

    Fungi and bacteria are the major organic matter (OM) decomposers in aquatic ecosystems. While bacteria are regarded as primary mineralizers in the pelagic zone of lakes and oceans, fungi dominate OM decomposition in streams and wetlands. Recent findings indicate that fungal communities are also active in lakes, but little is known about their diversity and interactions with bacteria. Therefore, the decomposer niche overlap of saprotrophic fungi and bacteria was studied on pollen (as a seasonally recurring source of fine particulate OM) by performing microcosm experiments with three different lake types. Special emphasis was placed on analysis of fungal community composition and diversity. We hypothesized that (I) pollen select for small saprotrophic fungi and at the same time for typical particle-associated bacteria; (II) fungal communities form specific free-living and attached sub-communities in each lake type; (III) the ratio between fungi or bacteria on pollen is controlled by the lake's chemistry. Bacteria-to-fungi ratios were determined by quantitative PCR (qPCR), and bacterial and fungal diversity were studied by clone libraries and denaturing gradient gel electrophoresis (DGGE) fingerprints. A protease assay was used to identify functional differences between treatments. For generalization, systematic differences in bacteria-to-fungi ratios were analyzed with a dataset from the nearby Baltic Sea rivers. High abundances of Chytridiomycota as well as occurrences of Cryptomycota and yeast-like fungi confirm the decomposer niche overlap of saprotrophic fungi and bacteria on pollen. As hypothesized, microbial communities consistently differed between the lake types and exhibited functional differences. Bacteria-to-fungi ratios correlated well with parameters such as organic carbon and pH. The importance of dissolved organic carbon and nitrogen for bacteria-to-fungi ratios was supported by the Baltic Sea river dataset. Our findings highlight the fact that carbon

  14. Pollen tube guidance by attractant molecules: LUREs.

    PubMed

    Okuda, Satohiro; Higashiyama, Tetsuya

    2010-01-01

    Sexual reproduction in flowering plants requires pollen-tube guidance, which is thought to be mediated by chemoattractants derived from target ovules. To date, however, no convincing evidence has been reported of a particular molecule being the true attractant. Emerging data indicate that two synergid cells, which are on either side of the egg cell, emit a diffusible, species-specific signal to attract the pollen tube at the last step of pollen-tube guidance. Recently, it was demonstrated that LUREs (LURE1 and LURE2), cysteine-rich polypeptides secreted from the synergid cell, are the key molecules in pollen-tube guidance. In this review, we summarize the mechanism of pollen-tube guidance, with special focus on gametophytic guidance and the attractants.

  15. New insights into ragweed pollen allergens.

    PubMed

    Bordas-Le Floch, Véronique; Groeme, Rachel; Chabre, Henri; Baron-Bodo, Véronique; Nony, Emmanuel; Mascarell, Laurent; Moingeon, Philippe

    2015-11-01

    Pollen allergens from short ragweed (Ambrosia artemisiifolia) cause severe respiratory allergies in North America and Europe. To date, ten short ragweed pollen allergens belonging to eight protein families, including the recently discovered novel major allergen Amb a 11, have been recorded in the International Union of Immunological Societies (IUIS) allergen database. With evidence that other components may further contribute to short ragweed pollen allergenicity, a better understanding of the allergen repertoire is a requisite for the design of proper diagnostic tools and efficient immunotherapies. This review provides an update on both known as well as novel candidate allergens from short ragweed pollen, identified through a comprehensive characterization of the ragweed pollen transcriptome and proteome.

  16. Plant Responses to Climate Change: The Case Study of Betulaceae and Poaceae Pollen Seasons (Northern Italy, Vignola, Emilia-Romagna).

    PubMed

    Mercuri, Anna Maria; Torri, Paola; Fornaciari, Rita; Florenzano, Assunta

    2016-12-06

    Aerobiological data have especially demonstrated that there is correlation between climate warming and the pollination season of plants. This paper focuses on airborne pollen monitoring of Betulaceae and Poaceae, two of the main plant groups with anemophilous pollen and allergenic proprieties in Northern Italy. The aim is to investigate plant responses to temperature variations by considering long-term pollen series. The 15-year aerobiological analysis is reported from the monitoring station of Vignola (located near Modena, in the Emilia-Romagna region) that had operated in the years 1990-2004 with a Hirst spore trap. The Yearly Pollen Index calculated for these two botanical families has shown contrasting trends in pollen production and release. These trends were well identifiable but fairly variable, depending on both meteorological variables and anthropogenic causes. Based on recent reference literature, we considered that some oscillations in pollen concentration could have been a main effect of temperature variability reflecting global warming. The duration of pollen seasons of Betulaceae and Poaceae, depending on the different species included in each family, has not unequivocally been determined. Phenological responses were particularly evident in Alnus and especially in Corylus as a general moving up of the end of pollination. The study shows that these trees can be affected by global warming more than other, more tolerant, plants. The research can be a contribution to the understanding of phenological plant responses to climate change and suggests that alder and hazelnut trees have to be taken into high consideration as sensible markers of plant responses to climate change.

  17. Plant Responses to Climate Change: The Case Study of Betulaceae and Poaceae Pollen Seasons (Northern Italy, Vignola, Emilia-Romagna)

    PubMed Central

    Mercuri, Anna Maria; Torri, Paola; Fornaciari, Rita; Florenzano, Assunta

    2016-01-01

    Aerobiological data have especially demonstrated that there is correlation between climate warming and the pollination season of plants. This paper focuses on airborne pollen monitoring of Betulaceae and Poaceae, two of the main plant groups with anemophilous pollen and allergenic proprieties in Northern Italy. The aim is to investigate plant responses to temperature variations by considering long-term pollen series. The 15-year aerobiological analysis is reported from the monitoring station of Vignola (located near Modena, in the Emilia-Romagna region) that had operated in the years 1990–2004 with a Hirst spore trap. The Yearly Pollen Index calculated for these two botanical families has shown contrasting trends in pollen production and release. These trends were well identifiable but fairly variable, depending on both meteorological variables and anthropogenic causes. Based on recent reference literature, we considered that some oscillations in pollen concentration could have been a main effect of temperature variability reflecting global warming. The duration of pollen seasons of Betulaceae and Poaceae, depending on the different species included in each family, has not unequivocally been determined. Phenological responses were particularly evident in Alnus and especially in Corylus as a general moving up of the end of pollination. The study shows that these trees can be affected by global warming more than other, more tolerant, plants. The research can be a contribution to the understanding of phenological plant responses to climate change and suggests that alder and hazelnut trees have to be taken into high consideration as sensible markers of plant responses to climate change. PMID:27929423

  18. Quantifying Aerial Concentrations of Maize Pollen in the Atmospheric Surface Layer Using Remote-Piloted Airplanes and Lagrangian Stochastic Modeling

    NASA Astrophysics Data System (ADS)

    Aylor, Donald E.; Boehm, Matthew T.; Shields, Elson J.

    2006-07-01

    The extensive adoption of genetically modified crops has led to a need to understand better the dispersal of pollen in the atmosphere because of the potential for unwanted movement of genetic traits via pollen flow in the environment. The aerial dispersal of maize pollen was studied by comparing the results of a Lagrangian stochastic (LS) model with pollen concentration measurements made over cornfields using a combination of tower-based rotorod samplers and airborne radio-controlled remote-piloted vehicles (RPVs) outfitted with remotely operated pollen samplers. The comparison between model and measurements was conducted in two steps. In the first step, the LS model was used in combination with the rotorod samplers to estimate the pollen release rate Q for each sampling period. In the second step, a modeled value for the concentration Cmodel, corresponding to each RPV measured value Cmeasure, was calculated by simulating the RPV flight path through the LS model pollen plume corresponding to the atmospheric conditions, field geometry, wind direction, and source strength. The geometric mean and geometric standard deviation of the ratio Cmodel/Cmeasure over all of the sampling periods, except those determined to be upwind of the field, were 1.42 and 4.53, respectively, and the lognormal distribution corresponding to these values was found to fit closely the PDF of Cmodel/Cmeasure. Model output was sensitive to the turbulence parameters, with a factor-of-100 difference in the average value of Cmodel over the range of values encountered during the experiment. In comparison with this large potential variability, it is concluded that the average factor of 1.4 between Cmodel and Cmeasure found here indicates that the LS model is capable of accurately predicting, on average, concentrations over a range of atmospheric conditions.

  19. Biphasic regulation of the transcription factor ABORTED MICROSPORES (AMS) is essential for tapetum and pollen development in Arabidopsis.

    PubMed

    Ferguson, Alison C; Pearce, Simon; Band, Leah R; Yang, Caiyun; Ferjentsikova, Ivana; King, John; Yuan, Zheng; Zhang, Dabing; Wilson, Zoe A

    2017-01-01

    Viable pollen is essential for plant reproduction and crop yield. Its production requires coordinated expression at specific stages during anther development, involving early meiosis-associated events and late pollen wall formation. The ABORTED MICROSPORES (AMS) transcription factor is a master regulator of sporopollenin biosynthesis, secretion and pollen wall formation in Arabidopsis. Here we show that it has complex regulation and additional essential roles earlier in pollen formation. An inducible-AMS reporter was created for functional rescue, protein expression pattern analysis, and to distinguish between direct and indirect targets. Mathematical modelling was used to create regulatory networks based on wild-type RNA and protein expression. Dual activity of AMS was defined by biphasic protein expression in anther tapetal cells, with an initial peak around pollen meiosis and then later during pollen wall development. Direct AMS-regulated targets exhibit temporal regulation, indicating that additional factors are associated with their regulation. We demonstrate that AMS biphasic expression is essential for pollen development, and defines distinct functional activities during early and late pollen development. Mathematical modelling suggests that AMS may competitively form a protein complex with other tapetum-expressed transcription factors, and that biphasic regulation is due to repression of upstream regulators and promotion of AMS protein degradation.

  20. Angiosperm-like pollen and Afropollis from the Middle Triassic (Anisian) of the Germanic Basin (Northern Switzerland)

    PubMed Central

    Hochuli, Peter A.; Feist-Burkhardt, Susanne

    2013-01-01

    Here we report on angiosperm-like pollen and Afropollis from the Anisian (Middle Triassic, 247.2–242.0 Ma) of a mid-latitudinal site in Northern Switzerland. Small monosulcate pollen grains with typical reticulate (semitectate) sculpture, columellate structure of the sexine and thin nexine show close similarities to early angiosperm pollen known from the Early Cretaceous. However, they differ in their extremely thin inner layer (nexine). Six different pollen types (I–VI) are differentiated based on size, reticulation pattern, and exine structure. The described pollen grains show all the essential features of angiosperm pollen. However, considering the lack of a continuous record throughout the lower part of the Mesozoic and the comparison with the oldest Cretaceous finds we suggest an affinity to an angiosperm stem group. Together with the previously published records from the Middle Triassic of the Barents Sea area the angiosperm-like pollen grains reflect a considerable diversity of the parent plants during the Middle Triassic. Sedimentological evidence and associated palynofloras also suggest a remarkable ecological range for these plants. Associated with these grains we found pollen comparable to the genus Afropollis. Representatives of this genus are commonly recorded in Lower Cretaceous sediments of low latitudes, but until now had no record from the lower part of the Mesozoic. PMID:24106492

  1. Tapetosomes in Brassica Tapetum Accumulate Endoplasmic Reticulum–Derived Flavonoids and Alkanes for Delivery to the Pollen Surface[W

    PubMed Central

    Hsieh, Kai; Huang, Anthony H.C.

    2007-01-01

    Tapetosomes are abundant organelles in tapetum cells during the active stage of pollen maturation in Brassicaceae species. They possess endoplasmic reticulum (ER)–derived vesicles and oleosin-coated lipid droplets, but their overall composition and function have not been established. In situ localization analyses of developing Brassica napus anthers revealed flavonoids present exclusively in tapetum cells, first in an ER network along with flavonoid-3′-hydroxylase and then in ER-derived tapetosomes. Flavonoids were absent in the cytosol, elaioplasts, vacuoles, and nuclei. Subcellular fractionation of developing anthers localized both flavonoids and alkanes in tapetosomes. Subtapetosome fractionation localized flavonoids in ER-derived vesicles, and alkanes and oleosins in lipid droplets. After tapetum cell death, flavonoids, alkanes, and oleosins were located on mature pollen. In the Arabidopsis thaliana mutants tt12 and tt19 devoid of a flavonoid transporter, flavonoids were present in the cytosol in reduced amounts but absent in tapetosomes and were subsequently located on mature pollen. tt4, tt12, and tt19 pollen was more susceptible than wild-type pollen to UV-B irradiation on subsequent germination. Thus, tapetosomes accumulate ER-derived flavonoids, alkanes, and oleosins for discharge to the pollen surface upon cell death. This tapetosome-originated pollen coat protects the haploidic pollen from UV light damage and water loss and aids water uptake. PMID:17307923

  2. Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface.

    PubMed

    Hsieh, Kai; Huang, Anthony H C