Science.gov

Sample records for airborne precision spacing

  1. A Concept for Airborne Precision Spacing for Dependent Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Baxley, Brian T.; Abbott, Terence S.; Capron, William R.; Smith, Colin L.; Shay, Richard F.; Hubbs, Clay

    2012-01-01

    The Airborne Precision Spacing concept of operations has been previously developed to support the precise delivery of aircraft landing successively on the same runway. The high-precision and consistent delivery of inter-aircraft spacing allows for increased runway throughput and the use of energy-efficient arrivals routes such as Continuous Descent Arrivals and Optimized Profile Descents. This paper describes an extension to the Airborne Precision Spacing concept to enable dependent parallel approach operations where the spacing aircraft must manage their in-trail spacing from a leading aircraft on approach to the same runway and spacing from an aircraft on approach to a parallel runway. Functionality for supporting automation is discussed as well as procedures for pilots and controllers. An analysis is performed to identify the required information and a new ADS-B report is proposed to support these information needs. Finally, several scenarios are described in detail.

  2. Airborne Precision Spacing for Dependent Parallel Operations Interface Study

    NASA Technical Reports Server (NTRS)

    Volk, Paul M.; Takallu, M. A.; Hoffler, Keith D.; Weiser, Jarold; Turner, Dexter

    2012-01-01

    This paper describes a usability study of proposed cockpit interfaces to support Airborne Precision Spacing (APS) operations for aircraft performing dependent parallel approaches (DPA). NASA has proposed an airborne system called Pair Dependent Speed (PDS) which uses their Airborne Spacing for Terminal Arrival Routes (ASTAR) algorithm to manage spacing intervals. Interface elements were designed to facilitate the input of APS-DPA spacing parameters to ASTAR, and to convey PDS system information to the crew deemed necessary and/or helpful to conduct the operation, including: target speed, guidance mode, target aircraft depiction, and spacing trend indication. In the study, subject pilots observed recorded simulations using the proposed interface elements in which the ownship managed assigned spacing intervals from two other arriving aircraft. Simulations were recorded using the Aircraft Simulation for Traffic Operations Research (ASTOR) platform, a medium-fidelity simulator based on a modern Boeing commercial glass cockpit. Various combinations of the interface elements were presented to subject pilots, and feedback was collected via structured questionnaires. The results of subject pilot evaluations show that the proposed design elements were acceptable, and that preferable combinations exist within this set of elements. The results also point to potential improvements to be considered for implementation in future experiments.

  3. Airborne Precision Spacing (APS) Dependent Parallel Arrivals (DPA)

    NASA Technical Reports Server (NTRS)

    Smith, Colin L.

    2012-01-01

    The Airborne Precision Spacing (APS) team at the NASA Langley Research Center (LaRC) has been developing a concept of operations to extend the current APS concept to support dependent approaches to parallel or converging runways along with the required pilot and controller procedures and pilot interfaces. A staggered operations capability for the Airborne Spacing for Terminal Arrival Routes (ASTAR) tool was developed and designated as ASTAR10. ASTAR10 has reached a sufficient level of maturity to be validated and tested through a fast-time simulation. The purpose of the experiment was to identify and resolve any remaining issues in the ASTAR10 algorithm, as well as put the concept of operations through a practical test.

  4. Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.; Baxley, Brian T.

    2008-01-01

    This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners.

  5. Research Of Airborne Precision Spacing to Improve Airport Arrival Operations

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Baxley, Brian T.; Murdoch, Jennifer L.

    2011-01-01

    In September 2004, the European Organization for the Safety of Air Navigation (EUROCONTROL) and the United States Federal Aviation Administration (FAA) signed a Memorandum of Cooperation to mutually develop, modify, test, and evaluate systems, procedures, facilities, and devices to meet the need for safe and efficient air navigation and air traffic control in the future. In the United States and Europe, these efforts are defined within the architectures of the Next Generation Air Transportation System (NextGen) Program and Single European Sky Air Traffic Management Research (SESAR) Program respectively. Both programs have identified Airborne Spacing as a critical component, with Automatic Dependent Surveillance Broadcast (ADS-B) as a key enabler. Increased interest in reducing airport community noise and the escalating cost of aviation fuel has led to the use of Continuous Descent Arrival (CDA) procedures to reduce noise, emissions, and fuel usage compared to current procedures. To provide these operational enhancements, arrival flight paths into terminal areas are planned around continuous vertical descents that are closer to an optimum trajectory than those in use today. The profiles are designed to be near-idle descents from cruise altitude to the Final Approach Fix (FAF) and are typically without any level segments. By staying higher and faster than conventional arrivals, CDAs also save flight time for the aircraft operator. The drawback is that the variation of optimized trajectories for different types and weights of aircraft requires the Air Traffic Controller to provide more airspace around an aircraft on a CDA than on a conventional arrival procedure. This additional space decreases the throughput rate of the destination airport. Airborne self-spacing concepts have been developed to increase the throughput at high-demand airports by managing the inter-arrival spacing to be more precise and consistent using on-board guidance. It has been proposed that the

  6. Performance of Airborne Precision Spacing Under Realistic Wind Conditions

    NASA Technical Reports Server (NTRS)

    Wieland, Frederick; Santos, Michel; Krueger, William; Houston, Vincent E.

    2011-01-01

    With the expected worldwide increase of air traffic during the coming decade, both the Federal Aviation Administration s (FAA s) Next Generation Air Transportation System (NextGen), as well as Eurocontrol s Single European Sky ATM Research (SESAR) program have, as part of their plans, air traffic management solutions that can increase performance without requiring time-consuming and expensive infrastructure changes. One such solution involves the ability of both controllers and flight crews to deliver aircraft to the runway with greater accuracy than is possible today. Previous research has shown that time-based spacing techniques, wherein the controller assigns a time spacing to each pair of arriving aircraft, is one way to achieve this goal by providing greater runway delivery accuracy that produces a concomitant increase in system-wide performance. The research described herein focuses on a specific application of time-based spacing, called Airborne Precision Spacing (APS), which has evolved over the past ten years. This research furthers APS understanding by studying its performance with realistic wind conditions obtained from atmospheric sounding data and with realistic wind forecasts obtained from the Rapid Update Cycle (RUC) short-range weather forecast. In addition, this study investigates APS performance with limited surveillance range, as provided by the Automatic Dependent Surveillance-Broadcast (ADS-B) system, and with an algorithm designed to improve APS performance when an ADS-B signal is unavailable. The results presented herein quantify the runway threshold delivery accuracy of APS un-der these conditions, and also quantify resulting workload metrics such as the number of speed changes required to maintain spacing.

  7. Evaluation of Airborne Precision Spacing in a Human-in-the-Loop Experiment

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.

    2005-01-01

    A significant bottleneck in the current air traffic system occurs at the runway. Expanding airports and adding new runways will help solve this problem; however, this comes with significant costs: financially, politically and environmentally. A complementary solution is to safely increase the capacity of current runways. This can be achieved by precisely spacing aircraft at the runway threshold, with a resulting reduction in the spacing bu er required under today s operations. At NASA's Langley Research Center, the Airspace Systems program has been investigating airborne technologies and procedures that will assist the flight crew in achieving precise spacing behind another aircraft. A new spacing clearance allows the pilot to follow speed cues from a new on-board guidance system called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR). AMSTAR receives Automatic Dependent Surveillance-Broadcast (ADS-B) reports from an assigned, leading aircraft and calculates the appropriate speed for the ownship to fly to achieve the desired spacing interval, time- or distance-based, at the runway threshold. Since the goal is overall system capacity, the speed guidance algorithm is designed to provide system-wide benefits and stability to a string of arriving aircraft. An experiment was recently performed at the NASA Langley Air Traffic Operations Laboratory (ATOL) to test the flexibility of Airborne Precision Spacing operations under a variety of operational conditions. These included several types of merge and approach geometries along with the complementary merging and in-trail operations. Twelve airline pilots and four controllers participated in this simulation. Performance and questionnaire data were collected from a total of eighty-four individual arrivals. The pilots were able to achieve precise spacing with a mean error of 0.5 seconds and a standard deviation of 4.7 seconds. No statistically significant di erences in spacing performance were found between in

  8. Airborne Precision Spacing: A Trajectory-based Approach to Improve Terminal Area Operations

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan

    2006-01-01

    Airborne Precision Spacing has been developed by the National Aeronautics and Space Administration (NASA) over the past seven years as an attempt to benefit from the capabilities of the flight deck to precisely space their aircraft relative to another aircraft. This development has leveraged decades of work on improving terminal area operations, especially the arrival phase. With APS operations, the air traffic controller instructs the participating aircraft to achieve an assigned inter-arrival spacing interval at the runway threshold, relative to another aircraft. The flight crew then uses airborne automation to manage the aircraft s speed to achieve the goal. The spacing tool is designed to keep the speed within acceptable operational limits, promote system-wide stability, and meet the assigned goal. This reallocation of tasks with the controller issuing strategic goals and the flight crew managing the tactical achievement of those goals has been shown to be feasible through simulation and flight test. A precision of plus or minus 2-3 seconds is generally achievable. Simulations of long strings of arriving traffic show no signs of instabilities or compression waves. Subject pilots have rated the workload to be similar to current-day operations and eye-tracking data substantiate this result. This paper will present a high-level review of research results over the past seven years from a variety of tests and experiments. The results will focus on the precision and accuracy achievable, flow stability and some major sources of uncertainty. The paper also includes a summary of the flight crew s procedures and interface and a brief concept overview.

  9. Performance of Airborne Precision Spacing Under Realistic Wind Conditions and Limited Surveillance Range

    NASA Technical Reports Server (NTRS)

    Wieland, Frederick; Santos, Michel; Krueger, William; Houston, Vincent E.

    2011-01-01

    With the expected worldwide increase of air traffic during the coming decade, both the Federal Aviation Administration's (FAA's) Next Generation Air Transportation System (NextGen), as well as Eurocontrol's Single European Sky ATM Research (SESAR) program have, as part of their plans, air traffic management (ATM) solutions that can increase performance without requiring time-consuming and expensive infrastructure changes. One such solution involves the ability of both controllers and flight crews to deliver aircraft to the runway with greater accuracy than they can today. Previous research has shown that time-based spacing techniques, wherein the controller assigns a time spacing to each pair of arriving aircraft, can achieve this goal by providing greater runway delivery accuracy and producing a concomitant increase in system-wide performance. The research described herein focuses on one specific application of time-based spacing, called Airborne Precision Spacing (APS), which has evolved over the past ten years. This research furthers APS understanding by studying its performance with realistic wind conditions obtained from atmospheric sounding data and with realistic wind forecasts obtained from the Rapid Update Cycle (RUC) short-range weather forecast. In addition, this study investigates APS performance with limited surveillance range, as provided by the Automatic Dependent Surveillance-Broadcast (ADS-B) system, and with an algorithm designed to improve APS performance when ADS-B surveillance data is unavailable. The results presented herein quantify the runway threshold delivery accuracy of APS under these conditions, and also quantify resulting workload metrics such as the number of speed changes required to maintain spacing.

  10. Technology-enabled Airborne Spacing and Merging

    NASA Technical Reports Server (NTRS)

    Hull, James; Barmore, Bryan; Abbott, Tetence

    2005-01-01

    Over the last several decades, advances in airborne and groundside technologies have allowed the Air Traffic Service Provider (ATSP) to give safer and more efficient service, reduce workload and frequency congestion, and help accommodate a critically escalating traffic volume. These new technologies have included advanced radar displays, and data and communication automation to name a few. In step with such advances, NASA Langley is developing a precision spacing concept designed to increase runway throughput by enabling the flight crews to manage their inter-arrival spacing from TRACON entry to the runway threshold. This concept is being developed as part of NASA s Distributed Air/Ground Traffic Management (DAG-TM) project under the Advanced Air Transportation Technologies Program. Precision spacing is enabled by Automatic Dependent Surveillance-Broadcast (ADS-B), which provides air-to-air data exchange including position and velocity reports; real-time wind information and other necessary data. On the flight deck, a research prototype system called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR) processes this information and provides speed guidance to the flight crew to achieve the desired inter-arrival spacing. AMSTAR is designed to support current ATC operations, provide operationally acceptable system-wide increases in approach spacing performance and increase runway throughput through system stability, predictability and precision spacing. This paper describes problems and costs associated with an imprecise arrival flow. It also discusses methods by which Air Traffic Controllers achieve and maintain an optimum interarrival interval, and explores means by which AMSTAR can assist in this pursuit. AMSTAR is an extension of NASA s previous work on in-trail spacing that was successfully demonstrated in a flight evaluation at Chicago O Hare International Airport in September 2002. In addition to providing for precision inter-arrival spacing, AMSTAR

  11. A Brief History of Airborne Self-Spacing Concepts

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2009-01-01

    This paper presents a history of seven of the more significant airborne and airborne-assisted aircraft spacing concepts that have been developed and evaluated during the past 40 years. The primary focus of the earlier concepts was on enhancing airport terminal area productivity and reducing air traffic controller workload. The more recent efforts were designed to increase runway throughput through improved aircraft spacing precision at landing. The latest concepts are aimed at supporting more fuel efficient and lower community noise operations while maintaining or increasing runway throughput efficiency.

  12. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  13. Airborne Evaluation and Demonstration of a Time-Based Airborne Inter-Arrival Spacing Tool

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Oseguera-Lohr, Rosa M.; Abbott, Terence S.; Capron, William R.; Howell, Charles T.

    2005-01-01

    An airborne tool has been developed that allows an aircraft to obtain a precise inter-arrival time-based spacing interval from the preceding aircraft. The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast (ADS-B) data to compute speed commands for the ATAAS-equipped aircraft to obtain this inter-arrival spacing behind another aircraft. The tool was evaluated in an operational environment at the Chicago O'Hare International Airport and in the surrounding terminal area with three participating aircraft flying fixed route area navigation (RNAV) paths and vector scenarios. Both manual and autothrottle speed management were included in the scenarios to demonstrate the ability to use ATAAS with either method of speed management. The results on the overall delivery precision of the tool, based on a target spacing of 90 seconds, were a mean of 90.8 seconds with a standard deviation of 7.7 seconds. The results for the RNAV and vector cases were, respectively, M=89.3, SD=4.9 and M=91.7, SD=9.0.

  14. Airborne Dust in Space Vehicles and Habitats

    NASA Technical Reports Server (NTRS)

    James, John

    2006-01-01

    Airborne dust, suspended inside a space vehicle or in future celestial habitats, can present a serious threat to crew health if it is not controlled. During the Apollo missions to the moon, lunar dust brought inside the capsule caused eye irritation and breathing difficulty to the crew when they launched from the moon and re-acquired "microgravity." During Shuttle flights reactive and toxic dusts such as lithium hydroxide have created a risk to crew health, and fine particles from combustion events can be especially worrisome. Under nominal spaceflight conditions, airborne dusts and particles tend to be larger than on earth because of the absence of gravity settling. Aboard the ISS, dusts are effectively managed by HEPA filters, although floating dust in newly-arrived modules can be a nuisance. Future missions to the moon and to Mars will present additional challenges because of the possibility that external dust will enter the breathing atmosphere of the habitat and reach the crew's respiratory system. Testing with simulated lunar and Martian dust has shown that these materials are toxic when placed into the lungs of test animals. Defining and evaluating the physical and chemical properties of Martian dusts through robotic missions will challenge our ability to prepare better dust simulants and to determine the risk to crew health from exposure to such dusts.

  15. Precision optical interferometry in space

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    POINTS, an astrometric Optical interferometer with a nominal measurement accuracy of 5 microarcseconds for the angle between a pair of stars separated by about 90 deg, is presently under consideration by two divisions of NASA-OSSA. It will be a powerful new multi-disciplinary tool for astronomical research. If chosen as the TOPS-1 (Toward Other Planetary Systems) instrument by the Solar-System Exploration Division, it will perform a definitive search for extra-solar planetary systems, either finding and characterizing a large number of them or showing that they are far less numerous than now believed. If chosen as the AIM (Astrometric Interferometry Mission) by the Astrophysics Division, POINTS will open new areas of astrophysical research and change the nature of the questions being asked in some old areas. In either case. it will be the first of a new class of powerful instruments in space and will prove the technology for the larger members of that class to follow. Based on a preliminary indication of the observational needs of the two missions, we find that a single POINTS mission will meet the science objectives of both TOPS-1 and AIM. The instrument detects dispersed fringe (channel led spectrum) and therefore can tolerate large pointing errors.

  16. High Resolution Airborne Digital Imagery for Precision Agriculture

    NASA Technical Reports Server (NTRS)

    Herwitz, Stanley R.

    1998-01-01

    The Environmental Research Aircraft and Sensor Technology (ERAST) program is a NASA initiative that seeks to demonstrate the application of cost-effective aircraft and sensor technology to private commercial ventures. In 1997-98, a series of flight-demonstrations and image acquisition efforts were conducted over the Hawaiian Islands using a remotely-piloted solar- powered platform (Pathfinder) and a fixed-wing piloted aircraft (Navajo) equipped with a Kodak DCS450 CIR (color infrared) digital camera. As an ERAST Science Team Member, I defined a set of flight lines over the largest coffee plantation in Hawaii: the Kauai Coffee Company's 4,000 acre Koloa Estate. Past studies have demonstrated the applications of airborne digital imaging to agricultural management. Few studies have examined the usefulness of high resolution airborne multispectral imagery with 10 cm pixel sizes. The Kodak digital camera integrated with ERAST's Airborne Real Time Imaging System (ARTIS) which generated multiband CCD images consisting of 6 x 106 pixel elements. At the designated flight altitude of 1,000 feet over the coffee plantation, pixel size was 10 cm. The study involved the analysis of imagery acquired on 5 March 1998 for the detection of anomalous reflectance values and for the definition of spectral signatures as indicators of tree vigor and treatment effectiveness (e.g., drip irrigation; fertilizer application).

  17. A floating-point/multiple-precision processor for airborne applications

    NASA Technical Reports Server (NTRS)

    Yee, R.

    1982-01-01

    A compact input output (I/O) numerical processor capable of performing floating-point, multiple precision and other arithmetic functions at execution times which are at least 100 times faster than comparable software emulation is described. The I/O device is a microcomputer system containing a 16 bit microprocessor, a numerical coprocessor with eight 80 bit registers running at a 5 MHz clock rate, 18K random access memory (RAM) and 16K electrically programmable read only memory (EPROM). The processor acts as an intelligent slave to the host computer and can be programmed in high order languages such as FORTRAN and PL/M-86.

  18. Evaluation of an Airborne Spacing Concept to Support Continuous Descent Arrival Operations

    NASA Technical Reports Server (NTRS)

    Murdoch, Jennifer L.; Barmore, Bryan E.; Baxley, Brian T.; Capron, William R.; Abbott, Terence S.

    2009-01-01

    This paper describes a human-in-the-loop experiment of an airborne spacing concept designed to support Continuous Descent Arrival (CDA) operations. The use of CDAs with traditional air traffic control (ATC) techniques may actually reduce an airport's arrival throughput since ATC must provide more airspace around aircraft on CDAs due to the variances in the aircraft trajectories. The intent of airborne self-spacing, where ATC delegates the speed control to the aircraft, is to maintain or even enhance an airport s landing rate during CDA operations by precisely achieving the desired time interval between aircraft at the runway threshold. This paper describes the operational concept along with the supporting airborne spacing tool and the results of a piloted evaluation of this concept, with the focus of the evaluation on pilot acceptability of the concept during off-nominal events. The results of this evaluation show a pilot acceptance of this airborne spacing concept with little negative performance impact over conventional CDAs.

  19. A Simulation Testbed for Airborne Merging and Spacing

    NASA Technical Reports Server (NTRS)

    Santos, Michel; Manikonda, Vikram; Feinberg, Art; Lohr, Gary

    2008-01-01

    The key innovation in this effort is the development of a simulation testbed for airborne merging and spacing (AM&S). We focus on concepts related to airports with Super Dense Operations where new airport runway configurations (e.g. parallel runways), sequencing, merging, and spacing are some of the concepts considered. We focus on modeling and simulating a complementary airborne and ground system for AM&S to increase efficiency and capacity of these high density terminal areas. From a ground systems perspective, a scheduling decision support tool generates arrival sequences and spacing requirements that are fed to the AM&S system operating on the flight deck. We enhanced NASA's Airspace Concept Evaluation Systems (ACES) software to model and simulate AM&S concepts and algorithms.

  20. Development and Utilization of High Precision Digital Elevation Data taken by Airborne Laser Scanner

    NASA Astrophysics Data System (ADS)

    Akutsu, Osamu; Ohta, Masataka; Isobe, Tamio; Ando, Hisamitsu, Noguchi, Takahiro; Shimizu, Masayuki

    2005-03-01

    Disasters caused by heavy rain in urban areas bring a damage such as chaos in the road and railway transport systems, power failure, breakdown of the telephone system and submersion of built up areas, subways and underground shopping arcades, etc. It is important to obtain high precision elevation data which shows the detailed landform because a slight height difference affects damages by flood very considerably. Therefore, The Geographical Survey Institute (GSI) is preparing 5m grid digital terrain model (DTM) based on precise ground elevation data taken by using airborne laser scanner. This paper describes the process and an example of the use of a 5m grid digital data set.

  1. Composite materials for precision space reflector panels

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Funk, Joan G.; Bowles, David E.; Towell, Timothy W.; Connell, John W.

    1992-01-01

    One of the critical technology needs of large precision reflectors for future astrophysical and optical communications satellites lies in the area of structural materials. Results from a materials research and development program at NASA Langley Research Center to provide materials for these reflector applications are discussed. Advanced materials that meet the reflector panel requirements are identified, and thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared. A parabolic, graphite-phenolic honeycomb composite panel having a surface accuracy of 70.8 microinches rms and an areal weight of 1.17 lbm/sq ft was fabricated with T50/ERL1962 facesheets, a PAEI thermoplastic surface film, and Al and SiO(x) coatings.

  2. Space Telescope precision pointing control system

    NASA Technical Reports Server (NTRS)

    Beals, G. A.; Crum, R. C.; Dougherty, H. J.; Hegel, D. K.; Kelley, J. L.

    1986-01-01

    The Hubble Space Telescope has the most stringent pointing requirements imposed on any spacecraft to date. The overall HST stability shall not exceed 0.007 arc-seconds rms. The Pointing Control System utilizes fine guidance sensors and rate gyros for attitude reference and rate information. Control torques are provided by reaction wheels. A digital computer collects the sensor data, performs the control law computations, and sends torque commands to the reaction wheels. To attain this precision pointing, improvements were made to the rate gyros to lower their noise characteristics and to the reaction wheels to reduce their emitted vibration levels. The control system design was validated in a test sequence which progressed from model verification tests on an air-bearing to operations-oriented, closed loop testing on the assembled vehicle. A test system is described which allowed the simultaneous production of test case command loads for the flight computer and plots of predicted profiles to assist in test data analysis. Workarounds were required during system test to accommodate gyro biases and noise introduced into the closed loop system. Testing and analysis indicate that the HST will provide the capability to meet the requirements for precision pointing.

  3. Precise mapping of annual river bed changes based on airborne laser bathymetry

    NASA Astrophysics Data System (ADS)

    Mandlburger, Gottfried; Wieser, Martin; Pfeifer, Norbert; Pfennigbauer, Martin; Steinbacher, Frank; Aufleger, Markus

    2014-05-01

    Airborne Laser Bathymtery (ALB) is a method for capturing relatively shallow water bodies from the air using a pulsed green laser (wavelength=532nm). While this technique was first used for mapping coastal waters only, recent progress in sensor technology has opened the field to apply ALB to running inland waters. Especially for alpine rivers the precise mapping of the channel topography is a challenging task as the flow velocities are often high and the area is difficult and/or dangerous to access by boat or by feet. Traditional mapping techniques like tachymetry or echo sounding fail in such situations while ALB provides, both, high spot position accuracy in the cm range and high spatial resolution in the dm range. Furthermore, state-of-the-art ALB systems allow simultaneous mapping of the river bed and the riparian area and, therefore, represent a comprehensive and efficient technology for mapping the entire floodplain area. The maximum penetration depth depends on, both, water turbidity and bottom reflectivity. Consequently, ALB provides the highest accuracy and resolution over bright gravel rivers with relatively clear water. We demonstrate the capability of ALB for precise mapping of river bed changes based on three flight campaigns in April, May and October 2013 at the River Pielach (Lower Austria) carried out with Riegl's VQ-820-G topo-bathymetric laser scanner. Operated at a flight height of 600m above ground with a pulse repetition rate of 510kHz (effective measurement rate 200kHz) this yielded a mean point spacing within the river bed of 20cm (i.e. point density: 25 points/m2). The positioning accuracy of the river bed points is approx. 2-5cm and depends on the overall ranging precision (20mm), the quality of the water surface model (derived from the ALB point cloud), and the signal intensity (decreasing with water depth). All in all, the obtained point cloud allowed the derivation of a dense grid model of the channel topography (0.25m cell size) for all

  4. Fast-Time Evaluations of Airborne Merging and Spacing in Terminal Arrival Operations

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Karthik; Barmore, Bryan; Bussink, Frank; Weitz, Lesley; Dahlene, Laura

    2005-01-01

    NASA researchers are developing new airborne technologies and procedures to increase runway throughput at capacity-constrained airports by improving the precision of inter-arrival spacing at the runway threshold. In this new operational concept, pilots of equipped aircraft are cleared to adjust aircraft speed to achieve a designated spacing interval at the runway threshold, relative to a designated lead aircraft. A new airborne toolset, prototypes of which are being developed at the NASA Langley Research Center, assists pilots in achieving this objective. The current prototype allows precision spacing operations to commence even when the aircraft and its lead are not yet in-trail, but are on merging arrival routes to the runway. A series of fast-time evaluations of the new toolset were conducted at the Langley Research Center during the summer of 2004. The study assessed toolset performance in a mixed fleet of aircraft on three merging arrival streams under a range of operating conditions. The results of the study indicate that the prototype possesses a high degree of robustness to moderate variations in operating conditions.

  5. Space-Wise approach for airborne gravity data modelling

    NASA Astrophysics Data System (ADS)

    Sampietro, D.; Capponi, M.; Mansi, A. H.; Gatti, A.; Marchetti, P.; Sansò, F.

    2016-12-01

    Regional gravity field modelling by means of remove-compute-restore procedure is nowadays widely applied in different contexts: it is the most used technique for regional gravimetric geoid determination, and it is also used in exploration geophysics to predict grids of gravity anomalies (Bouguer, free-air, isostatic, etc.), which are useful to understand and map geological structures in a specific region. Considering this last application, due to the required accuracy and resolution, airborne gravity observations are usually adopted. However, due to the relatively high acquisition velocity, presence of atmospheric turbulence, aircraft vibration, instrumental drift, etc., airborne data are usually contaminated by a very high observation error. For this reason, a proper procedure to filter the raw observations in both the low and high frequencies should be applied to recover valuable information. In this work, a software to filter and grid raw airborne observations is presented: the proposed solution consists in a combination of an along-track Wiener filter and a classical Least Squares Collocation technique. Basically, the proposed procedure is an adaptation to airborne gravimetry of the Space-Wise approach, developed by Politecnico di Milano to process data coming from the ESA satellite mission GOCE. Among the main differences with respect to the satellite application of this approach, there is the fact that, while in processing GOCE data the stochastic characteristics of the observation error can be considered a-priori well known, in airborne gravimetry, due to the complex environment in which the observations are acquired, these characteristics are unknown and should be retrieved from the dataset itself. The presented solution is suited for airborne data analysis in order to be able to quickly filter and grid gravity observations in an easy way. Some innovative theoretical aspects focusing in particular on the theoretical covariance modelling are presented too

  6. Airborne pseudolite aiding BeiDou system to improve positioning precision in low latitude areas

    NASA Astrophysics Data System (ADS)

    Ma, Weihua; Yuan, Jianping; Luo, Jianjun

    2005-11-01

    The BeiDou System (BDS), which has three satellites in Geostationary Earth Orbit (GEO), is a regional satellite navigation system of China and its positioning performance is notorious in low latitude areas. The two mending plans using Airborne Pseudolite (APL) aiding BDS to improve navigation precision in such areas are put forward. Plan I uses three BDS satellites and one APS to supply navigation data and Plan II employs two BDS satellites, one APS and altimeter to work. Both of the plans adopt point positioning with code pseudo-range algorithm. Geometric Dilution of Precision (GDOP), which is calculated by Positioning Error Transfer Coefficient Matrix (PETCM), is used to evaluate the positioning performance of new plans. PETCM is predigested when user is in low latitude areas. The key elements of predigested PETCM that effect the Geometric Dilution of Precision (GDOP) are analyzed. The character of GDOP is forecasted easily with the predigested PETCM. The simulations show that the precision of plans are expected to be hundreds of meters except some region where the latitudes of user and APL are close to each other and Plan II is better than plan I. The phenomenal consists with the theoretical analysis.

  7. How to Compute a Slot Marker - Calculation of Controller Managed Spacing Tools for Efficient Descents with Precision Scheduling

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas

    2012-01-01

    This paper describes the underlying principles and algorithms for computing the primary controller managed spacing (CMS) tools developed at NASA for precisely spacing aircraft along efficient descent paths. The trajectory-based CMS tools include slot markers, delay indications and speed advisories. These tools are one of three core NASA technologies integrated in NASAs ATM technology demonstration-1 (ATD-1) that will operationally demonstrate the feasibility of fuel-efficient, high throughput arrival operations using Automatic Dependent Surveillance Broadcast (ADS-B) and ground-based and airborne NASA technologies for precision scheduling and spacing.

  8. Evaluation of an Airborne Spacing Concept, On-Board Spacing Tool, and Pilot Interface

    NASA Technical Reports Server (NTRS)

    Swieringa, Kurt; Murdoch, Jennifer L.; Baxley, Brian; Hubbs, Clay

    2011-01-01

    The number of commercial aircraft operations is predicted to increase in the next ten years, creating a need for improved operational efficiency. Two areas believed to offer significant increases in efficiency are optimized profile descents and dependent parallel runway operations. It is envisioned that during both of these types of operations, flight crews will precisely space their aircraft behind preceding aircraft at air traffic control assigned intervals to increase runway throughput and maximize the use of existing infrastructure. This paper describes a human-in-the-loop experiment designed to study the performance of an onboard spacing algorithm and pilots ratings of the usability and acceptability of an airborne spacing concept that supports dependent parallel arrivals. Pilot participants flew arrivals into the Dallas Fort-Worth terminal environment using one of three different simulators located at the National Aeronautics and Space Administration s (NASA) Langley Research Center. Scenarios were flown using Interval Management with Spacing (IM-S) and Required Time of Arrival (RTA) control methods during conditions of no error, error in the forecast wind, and offset (disturbance) to the arrival flow. Results indicate that pilots delivered their aircraft to the runway threshold within +/- 3.5 seconds of their assigned arrival time and reported that both the IM-S and RTA procedures were associated with low workload levels. In general, pilots found the IM-S concept, procedures, speeds, and interface acceptable; with 92% of pilots rating the procedures as complete and logical, 218 out of 240 responses agreeing that the IM-S speeds were acceptable, and 63% of pilots reporting that the displays were easy to understand and displayed in appropriate locations. The 22 (out of 240) responses, indicating that the commanded speeds were not acceptable and appropriate occurred during scenarios containing wind error and offset error. Concerns cited included the occurrence

  9. Airborne LaCoste & Romberg gravimetry: a space domain approach

    NASA Astrophysics Data System (ADS)

    Abbasi, M.; Barriot, J. P.; Verdun, J.

    2007-04-01

    This paper introduces a new approach to reduce the airborne gravity data acquired by a LaCoste & Romberg (L&R) air/sea gravimeter, or other similar gravimeters. The acceleration exerted on the gravimeter is the sum of gravity and the vertical and Eötvös accelerations of the aircraft. The L&R gravimeter outputs are: (1) the beam position, (2) the spring tension and (3) the cross coupling. Vertical and Eötvös accelerations are computed from GPS-derived aircraft positions. However, the vertical perturbing acceleration sensed by the gravimeter is not the same as the one sensed by the aircraft (via GPS). A determination of the aircraft-to-sensor transfer function is necessary. The second-order differential equation of the motion of the gravimeter’s beam mixes all the input and output parameters of the gravimeter. Conventionally, low-pass filtering in the frequency domain is used to extract the gravity signal, the filter being applied to each flight-line individually. By transforming the differential equation into an integral equation and by introducing related covariance matrices, we develop a new filtering method based on a least-squares approach that is able to take into account, in one stage, the data corresponding to all flight-lines. The a posteriori covariance matrix of the estimated gravity signal is an internal criterion of the precision of the method. As an example, we estimate the gravity values along the flight-lines from an airborne gravity survey over the Alps and introduce an a priori covariance matrix of the gravity disturbances from a global geopotential model. This matrix is used to regularize the ill-posed Fredholm integral equation introduced in this paper.

  10. Speed Control Law for Precision Terminal Area In-Trail Self Spacing

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2002-01-01

    This document describes a speed control law for precision in-trail airborne self-spacing during final approach. This control law was designed to provide an operationally viable means to obtain a desired runway threshold crossing time or minimum distance, one aircraft relative to another. The control law compensates for dissimilar final approach speeds between aircraft pairs and provides guidance for a stable final approach. This algorithm has been extensively tested in Monte Carlo simulation and has been evaluated in piloted simulation, with preliminary results indicating acceptability from operational and workload standpoints.

  11. Precise leveling, space geodesy and geodynamics

    NASA Technical Reports Server (NTRS)

    Reilinger, R.

    1981-01-01

    The implications of currently available leveling data on understanding the crustal dynamics of the continental United States are investigated. Neotectonic deformation, near surface movements, systematic errors in releveling measurements, and the implications of this information for earthquake prediction are described. Vertical crustal movements in the vicinity of the 1931 Valentine, Texas, earthquake which may represent coseismic deformation are investigated. The detection of vertical fault displacements by precise leveling in western Kentucky is reported. An empirical basis for defining releveling anomalies and its implications for crustal deformation in southern California is presented. Releveling measurements in the eastern United States and their meaning in the context of possible crustal deformation, including uplift of the Appalachian Mountains, eastward tilting of the Atlantic Coastal Plain, and apparent movements associated with a number of structural features along the east coast, are reported.

  12. Simulator Evaluation of Airborne Information for Lateral Spacing (AILS) Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Elliott, Dawn M.

    2001-01-01

    The Airborne Information for Lateral Spacing (AILS) concept is designed to support independent parallel approach operations to runways spaced as close as 2500 ft. This report describes the AILS operational concept and the results of a ground-based flight simulation experiment of one implementation of this concept. The focus of this simulation experiment was to evaluate pilot performance, pilot acceptability, and minimum miss-distances for the rare situation in which all aircraft oil one approach intrudes into the path of an aircraft oil the other approach. Results from this study showed that the design-goal mean miss-distance of 1200 ft to potential collision situations was surpassed with an actual mean miss-distance of 2236 ft. Pilot reaction times to the alerting system, which was an operational concern, averaged 1.11 sec, well below the design-goal reaction time 2.0 sec.These quantitative results and pilot subjective data showed that the AILS concept is reasonable from an operational standpoint.

  13. From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L. (Editor)

    1992-01-01

    This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.

  14. Improving the precision of astrometry for space debris

    SciTech Connect

    Sun, Rongyu; Zhao, Changyin; Zhang, Xiaoxiang

    2014-03-01

    The data reduction method for optical space debris observations has many similarities with the one adopted for surveying near-Earth objects; however, due to several specific issues, the image degradation is particularly critical, which makes it difficult to obtain precise astrometry. An automatic image reconstruction method was developed to improve the astrometry precision for space debris, based on the mathematical morphology operator. Variable structural elements along multiple directions are adopted for image transformation, and then all the resultant images are stacked to obtain a final result. To investigate its efficiency, trial observations are made with Global Positioning System satellites and the astrometry accuracy improvement is obtained by comparison with the reference positions. The results of our experiments indicate that the influence of degradation in astrometric CCD images is reduced, and the position accuracy of both objects and stellar stars is improved distinctly. Our technique will contribute significantly to optical data reduction and high-order precision astrometry for space debris.

  15. Building ultra-precision laser interferometers for space applications

    NASA Astrophysics Data System (ADS)

    Robertson, David; Fitzsimons, Ewan; Killow, Christian; Perreur-Lloyd, Michael; Ward, Henry

    Laser interferometry for space applications typically requires both great precision of optical component placing and alignment and high long-term stability. Construction therefore requires both precision measurement and a jointing technique that allows extremely fine initial adjust-ment and which provides high ultimate strength. We present techniques that allow us to measure mm scale optical beams to better than 10 microns and 20 microrad. These measurements are then combined with precision alignment and hydroxy-catalysis bonding of optical components. The results of applying these techniques to the construction of the four interferometers on each of the LISA Pathfinder optical benches are discussed.

  16. Space camera optical axis pointing precision measurement system

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Meng, Fanbo; Yang, Zijun; Guo, Yubo; Ye, Dong

    2016-01-01

    In order to realize the space camera which on satellite optical axis pointing precision measurement, a monocular vision measurement system based on object-image conjugate is established. In this system the algorithms such as object-image conjugate vision models and point by point calibration method are applied and have been verified. First, the space camera axis controller projects a laser beam to the standard screen for simulating the space camera's optical axis. The laser beam form a target point and has been captured by monocular vision camera. Then the two-dimensional coordinates of the target points on the screen are calculated by a new vision measurement model which based on a looking-up and matching table, the table has been generated by object-image conjugate algorithm through point by point calibration. Finally, compare the calculation of coordinates offered by measurement system with the theory of coordinate offered by optical axis controller, the optical axis pointing precision can be evaluated. Experimental results indicate that the absolute precision of measurement system up to 0.15mm in 2m×2m FOV. This measurement system overcome the nonlinear distortion near the edge of the FOV and can meet the requirement of space camera's optical axis high precision measurement and evaluation.

  17. Control of airborne infectious diseases in ventilated spaces.

    PubMed

    Nielsen, Peter V

    2009-12-06

    We protect ourselves from airborne cross-infection in the indoor environment by supplying fresh air to a room by natural or mechanical ventilation. The air is distributed in the room according to different principles: mixing ventilation, displacement ventilation, etc. A large amount of air is supplied to the room to ensure a dilution of airborne infection. Analyses of the flow in the room show that there are a number of parameters that play an important role in minimizing airborne cross-infection. The air flow rate to the room must be high, and the air distribution pattern can be designed to have high ventilation effectiveness. Furthermore, personalized ventilation may reduce the risk of cross-infection, and in some cases, it can also reduce the source of infection. Personalized ventilation can especially be used in hospital wards, aircraft cabins and, in general, where people are in fixed positions.

  18. Interval Management: Development and Implementation of an Airborne Spacing Concept

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Penhallegon, William J.; Weitz, Lesley A.; Bone, Randall S.; Levitt, Ian; Flores Kriegsfeld, Julia A.; Arbuckle, Doug; Johnson, William C.

    2016-01-01

    Interval Management is a suite of ADS-B-enabled applications that allows the air traffic controller to instruct a flight crew to achieve and maintain a desired spacing relative to another aircraft. The flight crew, assisted by automation, manages the speed of their aircraft to deliver more precise inter-aircraft spacing than is otherwise possible, which increases traffic throughput at the same or higher levels of safety. Interval Management has evolved from a long history of research and is now seen as a core NextGen capability. With avionics standards recently published, completion of an Investment Analysis Readiness Decision by the FAA, and multiple flight tests planned, Interval Management will soon be part of everyday use in the National Airspace System. Second generation, Advanced Interval Management capabilities are being planned to provide a wider range of operations and improved performance and benefits. This paper briefly reviews the evolution of Interval Management and describes current development and deployment plans. It also reviews concepts under development as the next generation of applications.

  19. Precision Cosmic Ray physics with space-born experiment

    NASA Astrophysics Data System (ADS)

    Incagli, Marco

    2016-07-01

    More than 100 years after their discoveries, cosmic rays have been extensively studied, both with balloon experiments and with ground observatories. More recently, the possibility of mounting detectors on satellites or on the International Space Station has allowed for a long duration (several years) continuous observation of primary cosmic rays, i.e. before their interaction with the earth atmosphere, thus opening a new regime of precision measurements. In this review, recent results from major space experiments, as Pamela, AMS02 and Fermi, as well as next generation experiments proposed for the International Space Station, for standalone satellites or for the yet to come Chinese Space Station, will be presented. The impact of these experiment on the knowledge of Cosmic Ray propagation will also be discussed.

  20. Airborne measurements of cloud forming nuclei and aerosol particles at Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Radke, L. F.; Langer, G.; Hindman, E. E., II

    1978-01-01

    Results of airborne measurements of the sizes and concentrations of aerosol particles, ice nuclei, and cloud condensation nuclei that were taken at Kennedy Space Center, Florida, are presented along with a detailed description of the instrumentation and measuring capabilities of the University of Washington airborne measuring facility (Douglas B-23). Airborne measurements made at Ft. Collins, Colorado, and Little Rock, Arkansas, during the ferry of the B-23 are presented. The particle concentrations differed significantly between the clean air over Ft. Collins and the hazy air over Little Rock and Kennedy Space Center. The concentrations of cloud condensation nuclei over Kennedy Space Center were typical of polluted eastern seaboard air. Three different instruments were used to measure ice nuclei: one used filters to collect the particles, and the others used optical and acoustical methods to detect ice crystals grown in portable cloud chambers. A comparison of the ice nucleus counts, which are in good agreement, is presented.

  1. Modular Gravitational Reference Sensor for High Precision Astronomical Space Missions

    NASA Astrophysics Data System (ADS)

    Sun, Ke-Xun; Allen, G.; Buchman, S.; Byer, R. L.; Conklin, J. W.; DeBra, D. B.; Gill, D.; Goh, A.; Higuchi, S.; Lu, P.; Robertson, N.; Swank, A.

    2006-12-01

    We review the progress in developing the Modular Gravitational Reference Sensor (modular GRS) [1], which was first proposed as a simplified core sensor for space gravitational wave detection missions. In a modular GRS, laser beam from the remote the sensor does not illuminate the proof mass directly. The internal measurement from housing to proof mass is separated from the external interferometry. A double side grating may further simplify the structure and may better preserve the measurement precision. We review the recent progress in developing modular GRS at Stanford. We have further studied optical sensing design that combines advantage of high precision interferometric measurement and robust optical shadow sensing scheme. We have made critical progress in optical measurement of the center of mass position of a spherical proof mass at a precision without costing the dynamic range while spinning. We have successfully demonstrated the feasibility of fabricating localized grating pattern onto the dielectric and gold materials. We have conducted an initial experiment of rf heterodyne of cavity reflection and thus lowered optical power than that in the direct detection. We have further studied UV LED that will be used for AC charge management experiment. The modular GRS will be an in-time, cost effective product for the advanced Laser Interferometric Space Antenna (LISA) and the Big Bang Observatory (BBO). [1] K. Sun, G. Allen, S. Buchman, D. DeBra, and R. L. Byer, “Advanced Architecture for High Precision Space Laser Interferometers”, 5th International LISA Symposium, ESTEC, Noordwijk, The Netherlands, 12-16 July 2004. Class. Quantum Grav. 22 (2005) S287-S296.

  2. Airborne Supplemental Navigation Equipment Using The Global Positioning System (GPS) Precise Positioning Service (PPS)

    DTIC Science & Technology

    2002-08-30

    Global Positioning System ( GPS ) Precise Positioning ...The Global Positioning System ( GPS ) Precise Positioning Service (PPS) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...EQUIPMENT USING THE GLOBAL POSITIONING SYSTEM ( GPS ) / PRECISE POSITIONING SERVICE (PPS) DISTRIBUTION: SMC/CZ (3 cys); AFFSA; NAWCAD; ESC/GA; SPAWAR Code

  3. Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS)/Precise Positioning Service (PPS)

    DTIC Science & Technology

    2005-10-13

    GLOBAL POSITIONING SYSTEM ( GPS ) I PRECISE POSITIONING SERVICE (PPS) MSO RELEASE AUTHORIZED BY: ttl~ .. J ,M~·., Configurat!fJ...Equipment Using The Global Positioning System ( GPS )/ Precise Positioning Service (PPS) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...EQUIPMENT USING THE GLOBAL POSITIONING SYSTEM ( GPS ) / PRECISE POSITIONING SERVICE (PPS) DISTRIBUTION: SMC/ GP (5

  4. Space Technology 7 Disturbance Reduction System - precision control flight Validation

    NASA Technical Reports Server (NTRS)

    Carmain, Andrew J.; Dunn, Charles; Folkner, William; Hruby, Vlad; Spence, Doug; O'Donnell, James; Markley, Landis; Maghami, Peiman; Hsu, Oscar; Demmons, N.; Roy, T.; Gasdaska, C.; Young, J.; Connolly, W.; McCormick, R.; Gasdaska, C.

    2005-01-01

    The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The Disturbance Reduction System (DRS) will be part of the European Space Agency's LISA Pathfinder project. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control, the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro- Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control reference will be provided by the European LISA Technology Package, which will include two nearly freefloating test masses. The test mass positions and orientations will be measured using a capacitance bridge. The test mass position and attitude will be adjustable using electrostatically applied forces and torques. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom: six for each of the test masses and six for the spacecraft. After launch in late 2009 to a low Earth orbit, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun L1 Lagrange point for operations.

  5. Astrophysical Adaptation of Points, the Precision Optical Interferometer in Space

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.; Babcock, Robert W.; Murison, Marc A.; Noecker, M. Charles; Phillips, James D.; Schumaker, Bonny L.; Ulvestad, James S.; McKinley, William; Zielinski, Robert J.; Lillie, Charles F.

    1996-01-01

    POINTS (Precision Optical INTerferometer in Space) would perform microarcsecond optical astrometric measurements from space, yielding submicroarcsecond astrometric results from the mission. It comprises a pair of independent Michelson stellar interferometers and a laser metrology system that measures both the critical starlight paths and the angle between the baselines. The instrument has two baselines of 2 m, each with two subapertures of 35 cm; by articulating the angle between the baselines, it observes targets separated by 87 to 93 deg. POINTS does global astrometry, i.e., it measures widely separated targets, which yields closure calibration, numerous bright reference stars, and absolute parallax. Simplicity, stability, and the mitigation of systematic error are the central design themes. The instrument has only three moving-part mechanisms, and only one of these must move with sub-milliradian precision; the other two can tolerate a precision of several tenths of a degree. Optical surfaces preceding the beamsplitter or its fold flat are interferometrically critical; on each side of the interferometer, there are only three such. Thus, light loss and wavefront distortion are minimized. POINTS represents a minimalistic design developed ab initio for space. Since it is intended for astrometry, and therefore does not require the u-v-plane coverage of an imaging, instrument, each interferometer need have only two subapertures. The design relies on articulation of the angle between the interferometers and body pointing to select targets; the observations are restricted to the 'instrument plane.' That plane, which is fixed in the pointed instrument, is defined by the sensitive direction for the two interferometers. Thus, there is no need for siderostats and moving delay lines, which would have added many precision mechanisms with rolling and sliding parts that would be required to function throughout the mission. Further, there is no need for a third interferometer

  6. Space-time adaptive processing with sum and multiple difference beams for airborne radars

    NASA Astrophysics Data System (ADS)

    Maher, John E.; Zhang, Yuhong; Wang, Hong

    1999-07-01

    This paper describes some new results on a signal processing approach for airborne surveillance radars. This is a space- time adaptive processing technique that simultaneously processes temporal data from sum and difference ((Sigma) (Delta) ) beams to suppress clutter returns. The approach also includes employing spatial adaptive pre- suppression to suppress wideband noise jammers in a two- stage processor.

  7. Space-time airborne disease mapping applied to detect specific behaviour of varicella in Valencia, Spain.

    PubMed

    Iftimi, Adina; Montes, Francisco; Santiyán, Ana Míguez; Martínez-Ruiz, Francisco

    2015-01-01

    Airborne diseases are one of humanity's most feared sicknesses and have regularly caused concern among specialists. Varicella is an airborne disease which usually affects children before the age of 10. Because of its nature, varicella gives rise to interesting spatial, temporal and spatio-temporal patterns. This paper studies spatio-temporal exploratory analysis tools to detect specific behaviour of varicella in the city of Valencia, Spain, from 2008 to 2013. These methods have shown a significant association between the spatial and the temporal component, confirmed by the space-time models applied to the data. High relative risk of varicella is observed in economically disadvantaged regions, areas less involved in vaccination programmes.

  8. Airborne measurements of launch vehicle effluent: Launch of Space Shuttle (STS-1) on 12 April 1981

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Woods, D. C.; Sebacher, D. I.

    1983-01-01

    Launch vehicle effluent environmental impact activities from the first space shuttle (STS-1) included airborne measurements within the exhaust cloud from about 9 min after launch (T + 9) to T + 120 min. Measurements included total hydrogen chloride (gaseous plus aqueous) concentrations, particulate concentrations, temperature, and dewpoint temperature. The airborne measurements are summarized. The physical growth and behavior of exhaust clouds is presented as well as the results of laboratory analysis of elemental composition of particulate samples collected by the aircraft. Observed results from the STS-1 launch are compared with earlier Titan III results. Shuttle effluent concentrations are found to be within the range of Titan III observations.

  9. Assessment of a non-dedicated GPS receiver system for precise airborne attitude determination

    SciTech Connect

    Cannon, M.E.; Sun, H.; Owen, T.E.; Meindl, M.A.

    1994-09-01

    The use of a non-dedicated GPS receiver system for attitude determination was assessed in airborne mode through a test conducted at Sandia National Laboratories. Four independent NovAtel GPSCard{trademark} receivers were installed in Sandia`s Twin Engine Otter with two antennas mounted on the fuselage and two on the wing tips at separations of 6 to 18 m. A strapdown INS was also on board the aircraft in order to provide an independent attitude reference at rates between 4 and 10 Hz. During the multi-day test, GPS measurements were recorded between 1 and 10 Hz. Carrier phase measurements were post-processed using a double difference approach developed at The University of Calgary in which integer ambiguities were resolved in seconds using the known antenna separations as constraints. The tracking capability of the system is demonstrated under dynamics consisting of roll and pitch angles up to 45 and 12 degrees, respectively. Comparisons between the GPS and INS attitude angles are presented for two of the test days and show agreement at the several arcminute level. Conclusions are made with respect to system accuracy and performance in an operational airborne environment.

  10. Determining the Orbit Locations of Turkish Airborne Early Warning and Control Aircraft Over the Turkish Air Space

    DTIC Science & Technology

    2009-03-01

    DETERMINING THE ORBIT LOCATIONS OF TURKISH AIRBORNE EARLY WARNING AND CONTROL AIRCRAFT OVER THE...Defense, the U.S. Government. AFIT/GOR/ENS/09-14 DETERMINING THE ORBIT LOCATIONS OF TURKISH AIRBORNE EARLY WARNING AND CONTROL AIRCRAFT OVER THE...AFIT/GOR/09-14 DETERMINING THE ORBIT LOCATIONS OF TURKISH AIRBORNE EARLY WARNING AND CONTROL AIRCRAFT OVER THE TURKISH AIR SPACE Nebi

  11. Design and algorithm research of high precision airborne infrared touch screen

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Bing; Wang, Shuang-Jie; Fu, Yan; Chen, Zhao-Quan

    2016-10-01

    There are shortcomings of low precision, touch shaking, and sharp decrease of touch precision when emitting and receiving tubes are failure in the infrared touch screen. A high precision positioning algorithm based on extended axis is proposed to solve these problems. First, the unimpeded state of the beam between emitting and receiving tubes is recorded as 0, while the impeded state is recorded as 1. Then, the method of oblique scan is used, in which the light of one emitting tube is used for five receiving tubes. The impeded information of all emitting and receiving tubes is collected as matrix. Finally, according to the method of arithmetic average, the position of the touch object is calculated. The extended axis positioning algorithm is characteristic of high precision in case of failure of individual infrared tube and affects slightly the precision. The experimental result shows that the 90% display area of the touch error is less than 0.25D, where D is the distance between adjacent emitting tubes. The conclusion is gained that the algorithm based on extended axis has advantages of high precision, little impact when individual infrared tube is failure, and using easily.

  12. Hybrid space-airborne bistatic SAR geometric resolutions

    NASA Astrophysics Data System (ADS)

    Moccia, Antonio; Renga, Alfredo

    2009-09-01

    Performance analysis of Bistatic Synthetic Aperture Radar (SAR) characterized by arbitrary geometric configurations is usually complex and time-consuming since system impulse response has to be evaluated by bistatic SAR processing. This approach does not allow derivation of general equations regulating the behaviour of image resolutions with varying the observation geometry. It is well known that for an arbitrary configuration of bistatic SAR there are not perpendicular range and azimuth directions, but the capability to produce an image is not prevented as it depends only on the possibility to generate image pixels from time delay and Doppler measurements. However, even if separately range and Doppler resolutions are good, bistatic SAR geometries can exist in which imaging capabilities are very poor when range and Doppler directions become locally parallel. The present paper aims to derive analytical tools for calculating the geometric resolutions of arbitrary configuration of bistatic SAR. The method has been applied to a hybrid bistatic Synthetic Aperture Radar formed by a spaceborne illuminator and a receiving-only airborne forward-looking Synthetic Aperture Radar (F-SAR). It can take advantage of the spaceborne illuminator to dodge the limitations of monostatic FSAR. Basic modeling and best illumination conditions have been detailed in the paper.

  13. Airborne and satellite imagery for mapping crop yield variability and other precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With increased use of precision agriculture techniques, information concerning within-field yield variability is becoming important for effective crop management. Despite the commercial availability of yield monitors, most of the harvesters are not equipped with them. Moreover, yield monitor data ca...

  14. Prospects for Precision Measurement of CO2 Column from Space

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Kawa, S. Randolph; Burris, John F.; Wilson, Emily L.; Georgieva, Elena; Miodek, Marty

    2005-01-01

    In order to address the problem of sources and sinks of CO2 measurements are needed on a global scale. Clearly a satellite is a promising approach to meeting this requirement. Unfortunately, most methods for making a CO2 measurement from space involve the whole column. Since sources and sinks at the surface represent a small perturbation to the total column one is faced with the need to measure the column with a precision better than 1%. No species has ever been measured from space at this level. We have developed over the last 3 years a small instrument based upon a Fabry-Perot interferometer that is very sensitive to atmospheric CO2 and has a high signal to noise ratio. We have tested this instrument in a ground based configuration and from aircraft platforms simulating operation from a satellite. We will present results from these tests and discuss ways that this promising new instrument could be used to improve our understanding of the global carbon budget.

  15. Airborne Sunphotometer, Airborne in-situ, Space-borne, and Ground-Based Measurements of Troposoheric Aerosol in Ace-2

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Collins, D.; Gasso, S.; Ostrom, E.; Powell, D.; Welton, E.; Durkee, P.; Livingstron, J.; Russell, P.; Flagan, R.; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    We report on clear-sky column closure experiments performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present results obtained by combining airborne sunphotometer and in-situ aerosol measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidars A wide range of aerosol types was encountered throughout the ACE-2 area, including background Atlantic marine, European pollution-derived, and African mineral dust. During !he two days discussed here, vertical profiles flown in cloud free air masses revealed three distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. We found that the presence of the elevated dust layer removes the good agreement between satellite and sunphotometer AOD usually found in the absence of the dust layer. Using size-resolved composition information we have computed optical properties of the ambient aerosol from the in-situ measurements and subsequently compared those to the sunphotometer results. In the dust, the agreement in layer aerosol optical depth (380-1060 nm) is 3-8%. In the MBL there is tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at 525 nm), but these differences are within the combined error bars of the measurements and computations.

  16. The Price of Precision: Large-Scale Mapping of Forest Structure and Biomass Using Airborne Lidar

    NASA Astrophysics Data System (ADS)

    Dubayah, R.

    2015-12-01

    Lidar remote sensing provides one of the best means for acquiring detailed information on forest structure. However, its application over large areas has been limited largely because of its expense. Nonetheless, extant data exist over many states in the U.S., funded largely by state and federal consortia and mainly for infrastructure, emergency response, flood plain and coastal mapping. These lidar data are almost always acquired in leaf-off seasons, and until recently, usually with low point count densities. Even with these limitations, they provide unprecedented wall-to-wall mappings that enable development of appropriate methodologies for large-scale deployment of lidar. In this talk we summarize our research and lessons learned in deriving forest structure over regional areas as part of NASA's Carbon Monitoring System (CMS). We focus on two areas: the entire state of Maryland and Sonoma County, California. The Maryland effort used low density, leaf-off data acquired by each county in varying epochs, while the on-going Sonoma work employs state-of-the-art, high density, wall-to-wall, leaf-on lidar data. In each area we combine these lidar coverages with high-resolution multispectral imagery from the National Agricultural Imagery Program (NAIP) and in situ plot data to produce maps of canopy height, tree cover and biomass, and compare our results against FIA plot data and national biomass maps. Our work demonstrates that large-scale mapping of forest structure at high spatial resolution is achievable but products may be complex to produce and validate over large areas. Furthermore, fundamental issues involving statistical approaches, plot types and sizes, geolocation, modeling scales, allometry, and even the definitions of "forest" and "non-forest" must be approached carefully. Ultimately, determining the "price of precision", that is, does the value of wall-to-wall forest structure data justify their expense, should consider not only carbon market applications

  17. Fast-Time Analysis Support for the Terminal Area Precision Scheduling and Spacing (TAPSS) Simulation

    NASA Technical Reports Server (NTRS)

    Mulfinger, Daniel

    2011-01-01

    This poster describes research conducted using the Stochastic Terminal Area Simulation Software to determine spacing buffers for the Terminal Area Precision Scheduling and Spacing human-in-the-loop simulation.

  18. Study of airborne science experiment management concepts for application to space shuttle, volume 2

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    Airborne research management and shuttle sortie planning at the Ames Research Center are reported. Topics discussed include: basic criteria and procedures for the formulation and approval of airborne missions; ASO management structure and procedures; experiment design, development, and testing aircraft characteristics and experiment interfaces; information handling for airborne science missions; mission documentation requirements; and airborne science methods and shuttle sortie planning.

  19. Concepts, analysis and development for precision deployable space structures

    NASA Technical Reports Server (NTRS)

    Miller, Richard K.; Thomson, Mark; Hedgepeth, John M.

    1991-01-01

    Several issues surrounding the development of large Precision Segmented Reflector (PSR) designs are investigated. The concerns include nonlinear dynamics of large unruly masses such as the multi-layer thermal insulation of sunshades for instruments such as the precision pointing 20-m-diameter Large Deployable Reflector (LDR). A study of the residual oscillations after bang-bang reorientation maneuvers of a rigid satellite with a string appendage is presented. Application is made to the design of a sunshade (thermal blanket) for the LDE satellite. Another concern is the development of a deployable truss that has minimum structural redundancy (such as the tetrahedral truss) and that can be configured with planar and doubly curved geometries. A kinematically synchronized articulation scheme for a deployable tetrahedral truss is presented. Called the Tetrapac, this truss is currently limited to a planar configuration that has two rings. The final concern is the development and demonstration of hardware that enables astronauts to attach large, cumbersome, and fragile precision reflector segments to an erectable truss structure. This task must be accomplished with a high degree of precision and with relative ease. A design for a Panel Attachment Device (PAD) was developed and manufactured for neutral buoyancy simulations to be performed by LaRC.

  20. Precision Linear Actuator for Space Interferometry Mission (SIM) Siderostat Pointing

    NASA Technical Reports Server (NTRS)

    Cook, Brant; Braun, David; Hankins, Steve; Koenig, John; Moore, Don

    2008-01-01

    'SIM PlanetQuest will exploit the classical measuring tool of astrometry (interferometry) with unprecedented precision to make dramatic advances in many areas of astronomy and astrophysics'(1). In order to obtain interferometric data two large steerable mirrors, or Siderostats, are used to direct starlight into the interferometer. A gimbaled mechanism actuated by linear actuators is chosen to meet the unprecedented pointing and angle tracking requirements of SIM. A group of JPL engineers designed, built, and tested a linear ballscrew actuator capable of performing submicron incremental steps for 10 years of continuous operation. Precise, zero backlash, closed loop pointing control requirements, lead the team to implement a ballscrew actuator with a direct drive DC motor and a precision piezo brake. Motor control commutation using feedback from a precision linear encoder on the ballscrew output produced an unexpected incremental step size of 20 nm over a range of 120 mm, yielding a dynamic range of 6,000,000:1. The results prove linear nanometer positioning requires no gears, levers, or hydraulic converters. Along the way many lessons have been learned and will subsequently be shared.

  1. Precision Laser Development for Gravitational Wave Space Mission

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2011-01-01

    Optical fiber and semiconductor laser technologies have evolved dramatically over the last decade due to the increased demands from optical communications. We are developing a laser (master oscillator) and optical amplifier based on those technologies for interferometric space missions, such as the gravitational-wave mission LISA, and GRACE follow-on, by fully utilizing the mature wave-guided optics technologies. In space, where a simple and reliable system is preferred, the wave-guided components are advantageous over bulk, crystal-based, free-space laser, such as NPRO (Non-planar Ring Oscillator) and bulk-crystal amplifier, which are widely used for sensitive laser applications on the ground.

  2. System Performance of an Integrated Airborne Spacing Algorithm with Ground Automation

    NASA Technical Reports Server (NTRS)

    Swieringa, Kurt A.; Wilson, Sara R.; Baxley, Brian T.

    2016-01-01

    The National Aeronautics and Space Administration's (NASA's) first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature ATM technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise time-based scheduling in the Terminal airspace; Controller Managed Spacing (CMS), which provides controllers with decision support tools to enable precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain precise spacing behind another aircraft. Recent simulations and IM algorithm development at NASA have focused on trajectory-based IM operations where aircraft equipped with IM avionics are expected to achieve a spacing goal, assigned by air traffic controllers, at the final approach fix. The recently published IM Minimum Operational Performance Standards describe five types of IM operations. This paper discusses the results and conclusions of a human-in-the-loop simulation that investigated three of those IM operations. The results presented in this paper focus on system performance and integration metrics. Overall, the IM operations conducted in this simulation integrated well with ground-based decisions support tools and certain types of IM operational were able to provide improved spacing precision at the final approach fix; however, some issues were identified that should be addressed prior to implementing IM procedures into real-world operations.

  3. Design and implementation of active members for precision space structures

    NASA Technical Reports Server (NTRS)

    Webster, M. S.; Fanson, J. L.; Lurie, B. J.; O'Brien, J. F.

    1992-01-01

    This paper describes the development and implementation of an active member in a precision truss structure. The active member utilizes a piezoelectric actuator motor imbedded in a steel case with built-in displacement sensor. This active member is used in structural quieting. Collocated active damping control loops are designed in order to impedance match piezoelectric active members to the structure. Results from application of these controllers and actuators to the JPL Phase B testbed are given.

  4. Precision Requirements for Space-based XCO2 Data

    NASA Technical Reports Server (NTRS)

    Miller, C. E.; Crisp, D.; DeCola, P. C.; Olsen, S. C.; Randerson, J. T.; Rayner, P.; Jacob, D.J.; Jones, D.; Suntharalingam, P.

    2005-01-01

    Precision requirements have been determined for the column-averaged CO2 dry air mole fraction (X(sub CO2)) data products to be delivered by the Orbiting Carbon Observatory (OCO). These requirements result from an assessment of the amplitude and spatial gradients in X(sub CO2), the relationship between X(sub CO2) precision and surface CO2 flux uncertainties calculated from inversions of the X(sub CO2) data, and the effects of X,,Z biases on CO2 flux inversions. Observing system simulation experiments and synthesis inversion modeling demonstrate that the OCO mission design and sampling strategy provide the means to achieve the X(sub CO2) precision requirements. The impact of X(sub CO2) biases on CO2 flux uncertainties depend on their spatial and temporal extent since CO2 sources and sinks are inferred from regional-scale X(sub CO2) gradients. Simulated OCO sampling of the TRACE-P CO2 fields shows the ability of X(sub CO2) data to constrain CO2 flux inversions over Asia and distinguish regional fluxes from India and China.

  5. Creating and testing large space structures of high precision surface

    NASA Astrophysics Data System (ADS)

    Medzmariashvili, Elgudja; Iacobashvili, Alexander; Beducadze, Guram

    The authors describe work on the development of large structures for use in space. This work involves development of structural classes (types), theoretical studis, systems manufacturing and full scale structure testing. Collecting solar energy in space and sending it down to Earth is of great interest to humanity because of the large need for energy on Earth. Building any large solar power station requires industry and construction engineering in space. The problem, as a whole, as well as specific parts thereof virtually always requires certain engineering support, i.e. erection of supporting, reflecting and other large-sized structures in orbit. The Institute of Transformed Structures carries out research, design manufacturing, ground testing and supply of launchable prototypes. The work is performed in an unified manner and contains several trends (categories) which define structures that can be assembled in space.

  6. Mass Efficiencies for Common Large-Scale Precision Space Structures

    NASA Technical Reports Server (NTRS)

    Williams, R. Brett; Agnes, Gregory S.

    2005-01-01

    This paper presents a mass-based trade study for large-scale deployable triangular trusses, where the longerons can be monocoque tubes, isogrid tubes, or coilable longeron trusses. Such structures are typically used to support heavy reflectors, solar panels, or other instruments, and are subject to thermal gradients that can vary a great deal based on orbital altitude, location in orbit, and self-shadowing. While multi layer insulation (MLI) blankets are commonly used to minimize the magnitude of these thermal disturbances, they subject the truss to a nonstructural mass penalty. This paper investigates the impact of these add-on thermal protection layers on selecting the lightest precision structure for a given loading scenario.

  7. Acceleration Disturbances onboard of Geodetic Precision Space Laboratories

    NASA Astrophysics Data System (ADS)

    Peterseim, Nadja; Jakob, Flury; Schlicht, Anja

    Bartlomiej Oszczak, b@dgps.pl University of Warmia and Mazury in Olsztyn, Poland, Olsztyn, Poland Olga Maciejczyk, omaciejczyk@gmail.com Poland In this paper there is presented the study on the parameters of the ASG-EUPOS real-time RTK service NAWGEO such as: accuracy, availability, integrity and continuity. Author's model is used for tests. These parameters enable determination of the quality of received information and practical applications of the service. Paper includes also the subject related to the NAWGEO service and algorithms used in determination of mentioned parameters. The results of accuracy and precision analyses and study on availability demonstrated that NAWGEO service enables a user a position determination with a few centimeters accuracy with high probability in any moment of time.

  8. Precision Pointing for the Laser Interferometer Space Antenna (LISA) Mission

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H. (Technical Monitor); Hyde, T. Tupper; Maghami, P.

    2003-01-01

    The Laser Interferometer Space Antenna (LISA) mission is a planned NASA-ESA gravity wave detector consisting of three spacecraft in heliocentric orbit. Lasers are used to measure distance fluctuations between the proof masses aboard the spacecraft to the picometer level over the 5 million kilometer spacing. Each spacecraft and it's two laser transmit/receive telescopes must be held stable in pointing to less than 8 nanoradians per root Hertz in the frequency band 0.1 mHz to 0.1 Hz. This is accomplished by sensing the pointing error in the received beam and controlling the spacecraft attitude with a set of micronewton thrusters. Requirements, sensors, actuators, control design, and simulations are described in this paper.

  9. Precision Pointing for the Laser Interferometry Space Antenna Mission

    NASA Technical Reports Server (NTRS)

    Hyde, T. Tupper; Maghami, P. G.

    2003-01-01

    The Laser Interferometer Space Antenna (LISA) mission is a planned NASA-ESA gravitational wave detector consisting of three spacecraft in heliocentric orbit. Lasers are used to measure distance fluctuations between proof masses aboard each spacecraft to the picometer level over a 5 million kilometer separation. Each spacecraft and its two laser transmit/receive telescopes must be held stable in pointing to less than 8 nanoradians per root Hertz in the frequency band 0.1-100 mHz. The pointing error is sensed in the received beam and the spacecraft attitude is controlled with a set of micro-Newton thrusters. Requirements, sensors, actuators, control design, and simulations are described.

  10. Constraining extra space dimensions using precision molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Gato-Rivera, Beatriz

    2015-07-01

    Highly accurate measurements of quantum level energies in molecular systems provide a test ground for new physics, as such effects could manifest themselves as minute shifts in the quantum level structures of atoms and molecules. For the lightest molecular systems, neutral molecular hydrogen (H2, HD and D2) and the molecular hydrogen ions (H+2, HD+ and D+2), weak force effects are several orders weaker than current experimental and theoretical results, while contributions of Newtonian gravity and the strong force at the characteristic molecular distance scale of 1 Å can be safely neglected. Comparisons between experiment and QED calculations for these molecular systems can be interpreted in terms of probing large extra space dimensions, under which gravity could become much stronger than in ordinary 3-D space. Under this assumption, using the spectra of H2 we have derived constraints on the compactification scales for extra dimensions within the Arkani-Hamed-Dimopoulos-Dvali (ADD) framework, and constraints on the brane separation and bulk curvature within the Randall-Sundrum (RS-I and RS-II) frameworks.

  11. Development of high precision laser measurement to Space Debris and Applications in SHAO

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongping; Chen, Juping; Xiong, Yaoheng; Han, Xingwei

    2016-07-01

    Artificial space debris has become the focus during the space exploration because of producing the damage for the future active spacecrafts and high precision measurement for space debris are required for debris surveillance and collision avoidance. Laser ranging technology is inherently high accurate and will play an important role in precise orbit determination, accurate catalog of space debris. Shanghai Astronomical Observatory (SHAO) of CAS, has been developing the technology of laser measurement to space debris for several years. According to characteristics of laser echoes from space debris and the experiences of relevant activities, high repetition rate, high power laser system and low dark noise APD detector with high quantum efficiency and high transmissivity of narrow bandwidth spectral filter are applied to laser measurement to space debris in SHAO. With these configurations, great achievements of laser measurement to space debris are made with hundreds of passes of laser data from space debris in the distance between 500km and 2500km with Radar Cross Section (RCS) of more than 10 m^{2} to less than 0.5m^{2} at the measuring precision of less than 1m (RMS). For better application of laser ranging technology, Chinese Space Debris Observation network, consisting of Shanghai, Changchun and Kunming station, has been preliminary developed and the coordinated observation has been performed to increase the measuring efficiency for space debris. It is referred from data that laser ranging technology can be as the essential high accuracy measurement technology in the study of space debris.

  12. Advances in Mechanical Architectures of Large Precision Space Apertures

    NASA Astrophysics Data System (ADS)

    Datashvili, Leri; Maghaldadze, Nikoloz; Endler, Stephan; Pauw, Julian; He, Peng; Baier, Horst; Ihle, Alexander; Santiago Prowlad, Julian

    2014-06-01

    Recent advances in development of mechanical architectures of large deployable reflectors (LDRs) through the projects of the European Space Agency are addressed in this paper. Two different directions of LDR architectures are being investigated and developed at LSS and LLB. These are LDRs with knitted metal mesh and with flexible shell-membrane reflecting surfaces. The first direction is matured and required advancing of the novel architecture of the supporting structure that provides deployment and final shape accuracy of the metal mesh is underway. The second direction is rather new and its current development stage is focused on investigations of dimensional stability of the flexible shell-membrane reflecting surface. In both directions 5 m diameter functional models will be built to demonstrate achieved performances, which shall prepare the basis for further improvement of their technology readiness levels.

  13. Flight Test Evaluation of the Airborne Information for Lateral Spacing (AILS) Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2002-01-01

    The Airborne Information for Lateral Spacing (AILS) concept is designed to support independent parallel approach operations to runways spaced as close as 2,500 feet. This report briefly describes the AILS operational concept and the results of a flight test of one implementation of this concept. The focus of this flight test experiment was to validate a prior simulator study, evaluating pilot performance, pilot acceptability, and minimum miss-distances for the rare situation in which an aircraft on one approach intrudes into the path of an aircraft on the other approach. Although the flight data set was not meant to be a statistically valid sample, the trends acquired in flight followed those of the simulator and therefore met the intent of validating the findings from the simulator. Results from this study showed that the design-goal mean miss-distance of 1,200 feet to potential collision situations was surpassed with an actual mean miss-distance of 1,859 feet. Pilot reaction times to the alerting system, which was an operational concern, averaged 0.65 seconds, were well below the design goal reaction time of 2.0 seconds. From the results of both of these tests, it can be concluded that this operational concept, with supporting technology and procedures, may provide an operationally viable means for conducting simultaneous, independent instrument approaches to runways spaced as close as 2500 ft.

  14. Airborne Navigation Sensors Using The Global Positioning System (GPS) / Precise Positioning Service (PPS) for Area Navigation (RNAV) in Required Navigation Performance (RNP) Airspace; RNP-20 RNAV Through RNP-0.3 RNAV

    DTIC Science & Technology

    2010-02-11

    GLOBAL POSITIONING SYSTEM ( GPS ) I PRECISE POSITIONING SERVICE (PPS) FOR AREA NAVIGATION (RNA...Navigation Sensors Using The Global Positioning System ( GPS ) / Precise Positioning Service (PPS) For Area Navigation (RNAV) In Required Navigation...Rev. 8-98) Prescribed by ANSI Std Z39-18 Subject: MSO-C145, AIRBORNE NAVIGATION SENSORS USING THE GLOBAL POSITIONING SYSTEM ( GPS

  15. Precision Clocks in Space and alpha-Variations

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute

    2003-01-01

    Important developments of both in theoretical and observational cosmology have fueled considerable interest in searches for variations of the fine structure constant. Experimentally, Webb et. al. have found evidence for a cosmological variation of the fine structure constant through an analysis of the absorption lines in galactic halos from quasar-emitted light. Recently developed small ion atomic clocks enable Solar System tests for equivalence principle (EP) violating (alpha)-variations by way of rate-comparisons of three ultra-stable atomic clocks near-to and far-from the sun where gravitational red-shift changes are more than 10(exp 4) larger than in low Earth orbit. No space tests of the EP have been made in nearly 30 years, since the GP-A hydrogen maser reached a 10,000 km apogee confirming EP red-shift predictions 1 part in 10(exp 4). Today's small ion clocks, nearly 100x more stable and 100x smaller then the GP-A H-maser, could probe for EP violating scalar fields near the sun for mission costs comparable to low Earth orbiters and improve the GP-A sensitivity by 5 to 6 orders of magnitude.

  16. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  17. Evaluation of Operational Procedures for Using a Time-Based Airborne Inter-arrival Spacing Tool

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa M.; Lohr, Gary W.; Abbott, Terence S.; Eischeid, Todd M.

    2002-01-01

    An airborne tool has been developed based on the concept of an aircraft maintaining a time-based spacing interval from the preceding aircraft. The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast (ADS-B) aircraft state data to compute a speed command for the ATAAS-equipped aircraft to obtain a required time interval behind another aircraft. The tool and candidate operational procedures were tested in a high-fidelity, full mission simulator with active airline subject pilots flying an arrival scenario using three different modes for speed control. The objectives of this study were to validate the results of a prior Monte Carlo analysis of the ATAAS algorithm and to evaluate the concept from the standpoint of pilot acceptability and workload. Results showed that the aircraft was able to consistently achieve the target spacing interval within one second (the equivalent of approximately 220 ft at a final approach speed of 130 kt) when the ATAAS speed guidance was autothrottle-coupled, and a slightly greater (4-5 seconds), but consistent interval with the pilot-controlled speed modes. The subject pilots generally rated the workload level with the ATAAS procedure as similar to that with standard procedures, and also rated most aspects of the procedure high in terms of acceptability. Although pilots indicated that the head-down time was higher with ATAAS, the acceptability of head-down time was rated high. Oculometer data indicated slight changes in instrument scan patterns, but no significant change in the amount of time spent looking out the window between the ATAAS procedure versus standard procedures.

  18. Study of airborne science experiment management concepts for application to space shuttle. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    The management concepts and operating procedures are documented as they apply to the planning of shuttle spacelab operations. Areas discussed include: airborne missions; formulation of missions; management procedures; experimenter involvement; experiment development and performance; data handling; safety procedures; and applications to shuttle spacelab planning. Characteristics of the airborne science experience are listed, and references and figures are included.

  19. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  20. Automatic co-registration of space-based sensors for precision change detection and analysis

    NASA Technical Reports Server (NTRS)

    Bryant, N.; Zobrist, A.; Logan, T.

    2003-01-01

    A variety of techniques were developed at JPL to assure sub-pixel co-registration of scenes and ortho-rectification of satellite imagery to other georeferenced information to permit precise change detection and analysis of low and moderate resolution space sensors.

  1. A Concept for In-space, System-level Validation of Spacecraft Precision Formation Flying

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse; Carpenter, J. Russell; Naasz, Bo J.; Scharf, Daniel P.; Hadaegh, Fred Y.; Ahmed, Asif

    2007-01-01

    A number of international space agencies and organizations, to include the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Centre National d'Etudes Spatiales (CNES), to name a few, have embraced the concept of spacecraft formation flying to revolutionize the capabilities of astronomy and Earth remote sensing from space. The concept has been around well over a decade and a wide array of technologies and capabilities have been developed to enable multiple spacecraft to collaborate in a highly-coupled manner as would be required for a formation flying mission. Furthermore, many relevant capabilities for formation flying have been demonstrated in the area of rendezvous and docking, loosely-controlled formations, and in missions with collaborating spacecraft with very precise metrology. .However, in considering the case of precision formation flying (PFF), i.e, when the relative geometry of multiple vehicles must be controlled on-board in a continuous and precise manner, there have been several missions proposed, but the realization in space has not yet occurred due to a range of issues. This paper will briefly examine those issues and present a concept for demonstrating a core capability for performing PFF, necessary for virtually any PFF mission concept, that will help to overcome the problems encountered in prior attempts and help to allay the risks to enable future PFF science missions.

  2. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  3. Propellantless precision formation flying with photonic laser thrusters for large space telescopes

    NASA Astrophysics Data System (ADS)

    Bae, Young K.

    2009-08-01

    One economically and technologically feasible bedrock structure for constructing large (diameter > 10 m) space telescopes is a segmented or sparse aperture system with subcomponents in precision formation flight. For UV/Visible/IR systems, initial targeting and targeting new objects to establish initial fringes requires the positioning precision to nm - μm accuracy, thus the control system should be capable of the required precision positioning and attitude controls without producing contaminations from thruster exhaust plumes. A nanometer accuracy contaminationfree formation architecture, Photon Tether Formation Flight (PTFF), based on Photonic Laser Thrusters (PLTs) and tethers has been proposed to exploit a force equilibrium formed by PLT thrust and tether tension for forming precision persistent 3-D formation structures ideal for the large UV/Visible/IR space telescopes. The range of the PLT force can theoretically extend over several kms. Under previous NASA sponsorship, we have successfully demonstrated a proofof- concept PLT. In addition, the demonstrations of required laser components, optics and tracking technologies developed under military laser applications now support that implementation of PLTs for large space telescopes is one step closer to reality.

  4. Estimating lava volume by precision combination of multiple baseline spaceborne and airborne interferometric synthetic aperture radar: The 1997 eruption of Okmok Volcano, Alaska

    USGS Publications Warehouse

    Lu, Zhiming; Fielding, E.; Patrick, M.R.; Trautwein, C.M.

    2003-01-01

    Interferometric synthetic aperture radar (InSAR) techniques are used to calculate the volume of extrusion at Okmok volcano, Alaska by constructing precise digital elevation models (DEMs) that represent volcano topography before and after the 1997 eruption. The posteruption DEM is generated using airborne topographic synthetic aperture radar (TOPSAR) data where a three-dimensional affine transformation is used to account for the misalignments between different DEM patches. The preeruption DEM is produced using repeat-pass European Remote Sensing satellite data; multiple interferograms are combined to reduce errors due to atmospheric variations, and deformation rates are estimated independently and removed from the interferograms used for DEM generation. The extrusive flow volume associated with the 1997 eruption of Okmok volcano is 0.154 ?? 0.025 km3. The thickest portion is approximately 50 m, although field measurements of the flow margin's height do not exceed 20 m. The in situ measurements at lava edges are not representative of the total thickness, and precise DEM data are absolutely essential to calculate eruption volume based on lava thickness estimations. This study is an example that demonstrates how InSAR will play a significant role in studying volcanoes in remote areas.

  5. A new fabrication method for precision antenna reflectors for space flight and ground test

    NASA Technical Reports Server (NTRS)

    Sharp, G. Richard; Wanhainen, Joyce S.; Ketelsen, Dean A.

    1991-01-01

    Communications satellites are using increasingly higher frequencies that require increasingly precise antenna reflectors for use in space. Traditional industry fabrication methods for space antenna reflectors employ successive modeling techniques using high- and low-temperature molds for reflector face sheets and then a final fit-up of the completed honeycomb sandwich panel antenna reflector to a master pattern. However, as new missions are planned at much higher frequencies, greater accuracies will be necessary than are achievable using these present methods. A new approach for the fabrication of ground-test solid-surface antenna reflectors is to build a rigid support structure with an easy-to-machine surface. This surface is subsequently machined to the desired reflector contour and coated with a radio-frequency-reflective surface. This method was used to fabricate a 2.7-m-diameter ground-test antenna reflector to an accuracy of better than 0.013 mm (0.0005 in.) rms. A similar reflector for use on spacecraft would be constructed in a similar manner but with space-qualified materials. The design, analysis, and fabrication of the 2.7-m-diameter precision antenna reflector for antenna ground tests and the extension of this technology to precision, space-based antenna reflectors are described.

  6. Deciphering the Precision of Stereo IKONOS Canopy Height Models for U.S. Forests with G-LiHT Airborne LiDAR

    NASA Technical Reports Server (NTRS)

    Rudasill-Neigh, Christopher S.; Masek, Jeffrey G.; Bourget, Paul; Cook, Bruce; Huang, Chengquan; Rishmawi, Khaldoun; Zhao, Feng

    2014-01-01

    Few studies have evaluated the precision of IKONOS stereo data for measuring forest canopy height. The high cost of airborne light detection and ranging (LiDAR) data collection for large area studies and the present lack of a spaceborne instrument lead to the need to explore other low cost options. The US Government currently has access to a large archive of commercial high-resolution imagery, which could be quite valuable to forest structure studies. At 1 m resolution, we here compared canopy height models (CHMs) and height data derived from Goddard's airborne LiDAR Hyper-spectral and Thermal Imager (G-LiHT) with three types of IKONOS stereo derived digital surface models (DSMs) that estimate CHMs by subtracting National Elevation Data (NED) digital terrain models (DTMs). We found the following in three different forested regions of the US after excluding heterogeneous and disturbed forest samples: (1) G-LiHT DTMs were highly correlated with NED DTMs with R (sup 2) greater than 0.98 and root mean square errors (RMSEs) less than 2.96 m; (2) when using one visually identifiable ground control point (GCP) from NED, G-LiHT DSMs and IKONOS DSMs had R (sup 2) greater than 0.84 and RMSEs of 2.7 to 4.1 m; and (3) one GCP CHMs for two study sites had R (sup 2) greater than 0.7 and RMSEs of 2.6 to 3 m where data were collected less than four years apart. Our results suggest that IKONOS stereo data are a useful LiDAR alternative where high-quality DTMs are available.

  7. High Precision Time Transfer in Space with a Hydrogen Maser on MIR

    NASA Technical Reports Server (NTRS)

    Mattison, Edward M.; Vessot, Robert F. C.

    1996-01-01

    An atomic hydrogen maser clock system designed for long term operation in space will be installed on the Russian space station Mir, in late 1997. The H-maser's frequency stability will be measured using pulsed laser time transfer techniques. Daily time comparisons made with a precision of better than 100 picoseconds will allow an assessment of the long term stability of the space maser at a level on the order of 1 part in 10(sup 15) or better. Laser pulse arrival times at the spacecraft will be recorded with a resolution of 10 picoseconds relative to the space clock's time scale. Cube corner reflectors will reflect the pulses back to the Earth laser station to determine the propagation delay and enable comparison with the Earth-based time scale. Data for relativistic and gravitational frequency corrections will be obtained from a Global Positioning System (GPS) receiver.

  8. An application of space-time adaptive processing to airborne and spaceborne monostatic and bistatic radar systems

    NASA Astrophysics Data System (ADS)

    Czernik, Richard James

    A challenging problem faced by Ground Moving Target Indicator (GMTI) radars on both airborne and spaceborne platforms is the ability to detect slow moving targets due the presence of non-stationary and heterogeneous ground clutter returns. Space-Time Adaptive Processing techniques process both the spatial signals from an antenna array as well as radar pulses simultaneously to aid in mitigating this clutter which has an inherent Doppler shift due to radar platform motion, as well as spreading across Angle-Doppler space attributable to a variety of factors. Additional problems such as clutter aliasing, widening of the clutter notch, and range dependency add additional complexity when the radar is bistatic in nature, and vary significantly as the bistatic radar geometry changes with respect to the targeted location. The most difficult situation is that of a spaceborne radar system due to its high velocity and altitude with respect to the earth. A spaceborne system does however offer several advantages over an airborne system, such as the ability to cover wide areas and to provide access to areas denied to airborne platforms. This dissertation examines both monostatic and bistatic radar performance based upon a computer simulation developed by the author, and explores the use of both optimal STAP and reduced dimension STAP architectures to mitigate the modeled clutter returns. Factors such as broadband jamming, wind, and earth rotation are considered, along with their impact on the interference covariance matrix, constructed from sample training data. Calculation of the covariance matrix in near real time based upon extracted training data is computer processor intensive and reduced dimension STAP architectures relieve some of the computation burden. The problems resulting from extending both monostatic and bistatic radar systems to space are also simulated and studied.

  9. Space-Time Cube Analytics of Evolving Landforms Captured by Airborne and Terrestrial Lidar

    NASA Astrophysics Data System (ADS)

    Mitasova, H.; Starek, M. J.; Hardin, E. J.; Wegmann, K. W.; Blundell, B. S.

    2012-12-01

    A multidimensional framework for analysis of land surface dynamics from time series of lidar data is presented. The framework integrates the standard line feature extraction and raster-based statistics with novel volume representation of evolving terrain and defines metrics for quantification of observed change. Within the raster-based approach, the stable core and envelope surfaces are derived by applying per-cell statistics to time series of lidar-based digital elevation models (DEMs). The core and envelope are then used to map the contour displacement range and compute the relative volume intensity graphs that characterize the redistribution of mass in the study area. To fully capture the properties of evolving surfaces in both space and time, a discrete and a continuous space-time cube (STC) approach is introduced. Simple to implement, discrete STC stacks series of DEMs into a voxel model which is then used to derive isosurfaces representing a given contour evolution and to extract space-time crossections that represent evolution of elevation along a given profile. Raster maps representing DEM differences can also be stacked into a voxel model and evolution of change of a given magnitude is then extracted as an isosurface. Continuous STC represents the dynamic surface as a trivariate function where time is the third dimension and elevation is the modeled variable. To compute the continuous STC the time series of point cloud data is merged into a single point cloud that is then interpolated into a voxel model at a desired spatial and temporal resolution. Trivariate regularized smoothing spline with octree-based segmentation is used to compute voxel models of elevation evolution and its first and second order derivatives directly from time series of point cloud data. The resulting voxel models are then used to identify the locations and time of the fastest rate of change, possible acceleration or areas and time intervals of stability. The presented concepts and

  10. Study of airborne science experiment management concepts for application to space shuttle. Volume 3: Appendixes

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    Detailed information is presented concerning specific airborne missions in support of the ASSESS program. These missions are the AIDJEX expeditions, meteor shower expeditions, CAT and atmospheric sampling missions, ocean color expeditions, and the Lear Jet missions. For Vol. 2, see N73-31729.

  11. Streamlined design and self reliant hardware for active control of precision space structures

    NASA Technical Reports Server (NTRS)

    Hyland, David C.; King, James A.; Phillips, Douglas J.

    1994-01-01

    Precision space structures may require active vibration control to satisfy critical performance requirements relating to line-of-sight pointing accuracy and the maintenance of precise, internal alignments. In order for vibration control concepts to become operational, it is necessary that their benefits be practically demonstrated in large scale ground-based experiments. A unique opportunity to carry out such demonstrations on a wide variety of experimental testbeds was provided by the NASA Control-Structure Integration (CSI) Guest Investigator (GI) Program. This report surveys the experimental results achieved by the Harris Corporation GI team on both Phases 1 and 2 of the program and provides a detailed description of Phase 2 activities. The Phase 1 results illustrated the effectiveness of active vibration control for space structures and demonstrated a systematic methodology for control design, implementation test. In Phase 2, this methodology was significantly streamlined to yield an on-site, single session design/test capability. Moreover, the Phase 2 research on adaptive neural control techniques made significant progress toward fully automated, self-reliant space structure control systems. As a further thrust toward productized, self-contained vibration control systems, the Harris Phase II activity concluded with experimental demonstration of new vibration isolation hardware suitable for a wide range of space-flight and ground-based commercial applications.The CSI GI Program Phase 1 activity was conducted under contract NASA1-18872, and the Phase 2 activity was conducted under NASA1-19372.

  12. Study on analysis from sources of error for Airborne LIDAR

    NASA Astrophysics Data System (ADS)

    Ren, H. C.; Yan, Q.; Liu, Z. J.; Zuo, Z. Q.; Xu, Q. Q.; Li, F. F.; Song, C.

    2016-11-01

    With the advancement of Aerial Photogrammetry, it appears that to obtain geo-spatial information of high spatial and temporal resolution provides a new technical means for Airborne LIDAR measurement techniques, with unique advantages and broad application prospects. Airborne LIDAR is increasingly becoming a new kind of space for earth observation technology, which is mounted by launching platform for aviation, accepting laser pulses to get high-precision, high-density three-dimensional coordinate point cloud data and intensity information. In this paper, we briefly demonstrates Airborne laser radar systems, and that some errors about Airborne LIDAR data sources are analyzed in detail, so the corresponding methods is put forwarded to avoid or eliminate it. Taking into account the practical application of engineering, some recommendations were developed for these designs, which has crucial theoretical and practical significance in Airborne LIDAR data processing fields.

  13. Piezoelectric Polymers Actuators for Precise Shape Control of Large Scale Space Antennas

    NASA Technical Reports Server (NTRS)

    Chen, Qin; Natale, Don; Neese, Bret; Ren, Kailiang; Lin, Minren; Zhang, Q. M.; Pattom, Matthew; Wang, K. W.; Fang, Houfei; Im, Eastwood

    2007-01-01

    Extremely large, lightweight, in-space deployable active and passive microwave antennas are demanded by future space missions. This paper investigates the development of PVDF based piezopolymer actuators for controlling the surface accuracy of a membrane reflector. Uniaxially stretched PVDF films were poled using an electrodeless method which yielded high quality poled piezofilms required for this application. To further improve the piezoperformance of piezopolymers, several PVDF based copolymers were examined. It was found that one of them exhibits nearly three times improvement in the in-plane piezoresponse compared with PVDF and P(VDF-TrFE) piezopolymers. Preliminary experimental results indicate that these flexible actuators are very promising in controlling precisely the shape of the space reflectors.

  14. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.

    1999-01-01

    Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) performs many research and development programs that require hardware and assemblies to be cleaned to levels that are compatible with fuels and oxidizers (liquid oxygen, solid propellants, etc.). Also, the Center is responsible for developing large telescope satellites which requires a variety of optical systems to be cleaned. A precision cleaning shop is operated with-in MSFC by the Fabrication Services Division of the Materials & Processes Division. Verification of cleanliness is performed for all precision cleaned articles in the Analytical Chemistry Branch. Since the Montreal Protocol was instituted, MSFC had to find substitutes for many materials that has been in use for many years, including cleaning agents and organic solvents. As MSFC is a research Center, there is a great variety of hardware that is processed in the Precision Cleaning Shop. This entails the use of many different chemicals and solvents, depending on the nature and configuration of the hardware and softgoods being cleaned. A review of the manufacturing cleaning and verification processes, cleaning materials and solvents used at MSFC and changes that resulted from the Montreal Protocol will be presented.

  15. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.; Cox, Jack A.; McGee, Kathleen A.

    1998-01-01

    Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration performs many research and development programs that require hardware and assemblies to be cleaned to levels that are compatible with fuels and oxidizers (liquid oxygen, solid propellants, etc.). Also, MSFC is responsible for developing large telescope satellites which require a variety of optical systems to be cleaned. A precision cleaning shop is operated within MSFC by the Fabrication Services Division of the Materials & Processes Laboratory. Verification of cleanliness is performed for all precision cleaned articles in the Environmental and Analytical Chemistry Branch. Since the Montreal Protocol was instituted, MSFC had to find substitutes for many materials that have been in use for many years, including cleaning agents and organic solvents. As MSFC is a research center, there is a great variety of hardware that is processed in the Precision Cleaning Shop. This entails the use of many different chemicals and solvents, depending on the nature and configuration of the hardware and softgoods being cleaned. A review of the manufacturing cleaning and verification processes, cleaning materials and solvents used at MSFC and changes that resulted from the Montreal Protocol will be presented.

  16. Design and Evaluation of the Terminal Area Precision Scheduling and Spacing System

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Thipphavong, Jane; Sadovsky, Alex; Chen, Liang; Sullivan, Chris; Martin, Lynne

    2011-01-01

    This paper describes the design, development and results from a high fidelity human-in-the-loop simulation of an integrated set of trajectory-based automation tools providing precision scheduling, sequencing and controller merging and spacing functions. These integrated functions are combined into a system called the Terminal Area Precision Scheduling and Spacing (TAPSS) system. It is a strategic and tactical planning tool that provides Traffic Management Coordinators, En Route and Terminal Radar Approach Control air traffic controllers the ability to efficiently optimize the arrival capacity of a demand-impacted airport while simultaneously enabling fuel-efficient descent procedures. The TAPSS system consists of four-dimensional trajectory prediction, arrival runway balancing, aircraft separation constraint-based scheduling, traffic flow visualization and trajectory-based advisories to assist controllers in efficient metering, sequencing and spacing. The TAPSS system was evaluated and compared to today's ATC operation through extensive series of human-in-the-loop simulations for arrival flows into the Los Angeles International Airport. The test conditions included the variation of aircraft demand from a baseline of today's capacity constrained periods through 5%, 10% and 20% increases. Performance data were collected for engineering and human factor analysis and compared with similar operations both with and without the TAPSS system. The engineering data indicate operations with the TAPSS show up to a 10% increase in airport throughput during capacity constrained periods while maintaining fuel-efficient aircraft descent profiles from cruise to landing.

  17. Precision Column CO2 Measurement from Space Using Broad Band LIDAR

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2009-01-01

    In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. To uncover the missing sink" that is responsible for the large discrepancies in the budget as we presently understand it, calculation has indicated that measurement accuracy of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of 0.25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong constraints on the laser system used for the measurement. This work presents an overview of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics. We are examining the possibility of making precise measurements of atmospheric carbon dioxide using a broad band source of radiation. This means that many of the difficulties in wavelength control can be treated in the detector portion of the system rather than the laser source. It also greatly reduces the number of individual lasers required to make a measurement. Simplifications such as these are extremely desirable for systems designed to operate from space.

  18. Airborne multispectral remote sensing data to estimate several oenological parameters in vineyard production. A case study of application of remote sensing data to precision viticulture in central Italy.

    NASA Astrophysics Data System (ADS)

    Tramontana, Gianluca; Girard, Filippo; Belli, Claudio; Comandini, Maria Cristina; Pietromarchi, Paolo; Tiberi, Domenico; Papale, Dario

    2010-05-01

    It is widely recognized that environmental differences within the vineyard, with respect to soils, microclimate, and topography, can influence grape characteristics and crop yields. Besides, the central Italy landscape is characterized by a high level of fragmentation and heterogeneity It requires stringent Remote sensing technical features in terms of spectral, geometric and temporal resolution to aimed at supporting applications for precision viticulture. In response to the needs of the Italian grape and wine industry for an evaluation of precision viticulture technologies, the DISAFRI (University of Tuscia) and the Agricultural Research Council - Oenological research unit (ENC-CRA) jointly carried out an experimental study during the year 2008. The study was carried out on 2 areas located in the town of Velletri, near Rome; for each area, two varieties (red and white grape) were studied: Nero d'Avola and Sauvignon blanc in first area , Merlot and Sauvignon blanc in second. Remote sensing data were acquired in different periods using a low cost multisensor Airborne remote sensing platform developed by DISAFRI (ASPIS-2 Advanced Spectroscopic Imager System). ASPIS-2, an evolution of the ASPIS sensor (Papale et al 2008, Sensors), is a multispectral sensor based on 4 CCD and 3 interferential filters per CCD. The filters are user selectable during the flight and in this way Aspis is able to acquire data in 12 bands in the visible and near infrared regions with a bandwidth of 10 or 20 nm. To the purposes of this study 7 spectral band were acquired and 15 vegetation indices calculated. During the ripeness period several vegetative and oenochemical parameters were monitored. Anova test shown that several oenochemical variables, such as sugars, total acidity, polyphenols and anthocyanins differ according to the variety taken into consideration. In order to evaluate the time autocorrelation of several oenological parameters value, a simple linear regression between

  19. Progress on Passive Sensor for Ultra-Precise Measurement of Carbon Dioxide from Space

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Kawa, S. Randolph

    2002-01-01

    Global measurements of atmospheric carbon dioxides (CO2) are needed to resolve significant discrepancies that exist in our understanding of the global carbon budget and, therefore, man's role in global climate change. The science measurement requirements for CO2 are extremely demanding (precision c .3%) No atmospheric chemical species has ever been measured from space with this precision. We are developing a novel application of a Fabry-Perot interferometer to detect spectral absorption of reflected sunlight by CO2 and O2 in the atmosphere. Preliminary design studies indicate that the method will be able to achieve the sensitivity and signal-to-noise required to measure column CO2 at the target specification. We are presently engaged in the construction of a prototype instrument for deployment on an aircraft to test the instrument performance and our ability to retrieve the data in the real atmosphere. In the first 6 months we have assembled a laboratory bench system to begin testing the optical and electronic components. We are also undertaking some measurements of signal and noise levels for actual sunlight reflecting from the ground. We shall present results from some of these ground based studies and discuss their implications for a space based system.

  20. The Space Technology-7 Disturbance Reduction System Precision Control Flight Validation Experiment Control System Design

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R.; Hsu, Oscar C.; Maghami, Peirman G.; Markley, F. Landis

    2006-01-01

    As originally proposed, the Space Technology-7 Disturbance Reduction System (DRS) project, managed out of the Jet Propulsion Laboratory, was designed to validate technologies required for future missions such as the Laser Interferometer Space Antenna (LISA). The two technologies to be demonstrated by DRS were Gravitational Reference Sensors (GRSs) and Colloidal MicroNewton Thrusters (CMNTs). Control algorithms being designed by the Dynamic Control System (DCS) team at the Goddard Space Flight Center would control the spacecraft so that it flew about a freely-floating GRS test mass, keeping it centered within its housing. For programmatic reasons, the GRSs were descoped from DRS. The primary goals of the new mission are to validate the performance of the CMNTs and to demonstrate precise spacecraft position control. DRS will fly as a part of the European Space Agency (ESA) LISA Pathfinder (LPF) spacecraft along with a similar ESA experiment, the LISA Technology Package (LTP). With no GRS, the DCS attitude and drag-free control systems make use of the sensor being developed by ESA as a part of the LTP. The control system is designed to maintain the spacecraft s position with respect to the test mass, to within 10 nm/the square root of Hz over the DRS science frequency band of 1 to 30 mHz.

  1. Tactile display landing safety and precision improvements for the Space Shuttle

    NASA Astrophysics Data System (ADS)

    Olson, John M.

    A tactile display belt using 24 electro-mechanical tactile transducers (tactors) was used to determine if a modified tactile display system, known as the Tactile Situation Awareness System (TSAS) improved the safety and precision of a complex spacecraft (i.e. the Space Shuttle Orbiter) in guided precision approaches and landings. The goal was to determine if tactile cues enhance safety and mission performance through reduced workload, increased situational awareness (SA), and an improved operational capability by increasing secondary cognitive workload capacity and human-machine interface efficiency and effectiveness. Using both qualitative and quantitative measures such as NASA's Justiz Numerical Measure and Synwork1 scores, an Overall Workload (OW) measure, the Cooper-Harper rating scale, and the China Lake Situational Awareness scale, plus Pre- and Post-Flight Surveys, the data show that tactile displays decrease OW, improve SA, counteract fatigue, and provide superior warning and monitoring capacity for dynamic, off-nominal, high concurrent workload scenarios involving complex, cognitive, and multi-sensory critical scenarios. Use of TSAS for maintaining guided precision approaches and landings was generally intuitive, reduced training times, and improved task learning effects. Ultimately, the use of a homogeneous, experienced, and statistically robust population of test pilots demonstrated that the use of tactile displays for Space Shuttle approaches and landings with degraded vehicle systems, weather, and environmental conditions produced substantial improvements in safety, consistency, reliability, and ease of operations under demanding conditions. Recommendations for further analysis and study are provided in order to leverage the results from this research and further explore the potential to reduce the risk of spaceflight and aerospace operations in general.

  2. Precision-Deployable, Stable, Optical Benches for Cost-Effective Space Telescopes

    NASA Astrophysics Data System (ADS)

    Danner, Rolf; Pellegrino, S.; Dailey, D.; Marks, G.; Bookbinder, J.

    2012-05-01

    To explore the universe at the arcsecond resolution of Chandra, while increasing collecting area by at least an order of magnitude and maintaining affordability, we will need to make creative use of existing and new technology. Precision-deployable, stable, optical benches that fit inside smaller, lower-cost launch vehicles are a prime example of a technology well within current reach that will yield breakthrough benefits for future astrophysics missions. Deployable optical benches for astrophysical applications have a reputation for complexity; however, we are offering an approach, based on techniques used in space for decades, that reduces overall mission cost. Currently, deployable structures are implemented on JAXA’s Astro-H and NASA’s NuStar high-energy astrophysics missions. We believe it is now time to evolve these structures into precision, stable optical benches that are stiff, lightweight, and suitable for space telescopes with focal lengths of 20 meters or more. Such optical benches are required for advanced observatory class missions and can be scaled to Explorer and medium-class missions. To this end, we have formed a partnership between Space Structures Laboratory (SSL) at the California Institute of Technology, Northrop Grumman Aerospace Systems (NGAS), Northrop Grumman Astro Aerospace (Astro), and Smithsonian Astrophysical Observatory (SAO). Combining the expertise and tools from academia and industry is the most effective approach to take this concept to Technology Readiness Level (TRL) 6. We plan to perform small sub-scale demonstrations, functional tests, and analytical modeling in the academic environment. Using results from SSL, larger prototypes will be developed at facilities at NGAS in Redondo Beach and Carpinteria, CA.

  3. Space and time resolved monitoring of airborne particulate matter in proximity of a traffic roundabout in Sweden.

    PubMed

    Wilkinson, Kai E; Lundkvist, Johanna; Netrval, Julia; Eriksson, Mats; Seisenbaeva, Gulaim A; Kessler, Vadim G

    2013-11-01

    Concerns over exposure to airborne particulate matter (PM) are on the rise. Currently monitoring of PM is done on the basis of interpolating a mass of PM by volume (μg/m(3)) but has the drawback of not taking the chemical nature of PM into account. Here we propose a method of collecting PM at its emission source and employing automated analysis with scanning electron microscopy associated with EDS-analysis together with light scattering to discern the chemical composition, size distribution, and time and space resolved structure of PM emissions in a heavily trafficated roundabout in Sweden. Multivariate methods (PCA, ANOVA) indicate that the technogenic marker Fe follows roadside dust in spreading from the road, and depending on time and location of collection, a statistically significant difference can be seen, adding a useful tool to the repertoiré of detailed PM monitoring and risk assessment of local emission sources.

  4. Airborne/Space-Based Doppler Lidar Wind Sounders Sampling the PBL and Other Regions of Significant Beta and U Inhomogeneities

    NASA Technical Reports Server (NTRS)

    Emmitt, Dave

    1998-01-01

    This final report covers the period from April 1994 through March 1998. The proposed research was organized under four main tasks. Those tasks were: (1) Investigate the vertical and horizontal velocity structures within and adjacent to thin and subvisual cirrus; (2) Investigate the lowest 1 km of the PBL and develop algorithms for processing pulsed Doppler lidar data obtained from single shots into regions of significant inhomogeneities in Beta and U; (3) Participate in OSSEs including those designed to establish shot density requirements for meso-gamma scale phenomena with quasi-persistent locations (e.g., jets, leewaves, tropical storms); and (4) Participate in the planning and execution of an airborne mission to measure winds with a pulsed CO2 Doppler lidar. Over the four year period of this research contract, work on all four tasks has yielded significant results which have led to 38 professional presentations (conferences and publications) and have been folded into the science justification for an approved NASA space mission, SPARCLE (SPAce Readiness Coherent Lidar Experiment), in 2001. Also this research has, through Task 4, led to a funded proposal to work directly on a NASA field campaign, CAMEX III, in which an airborne Doppler wind lidar will be used to investigate the cloud-free circulations near tropical storms. Monthly progress reports required under this contract are on file. This final report will highlight major accomplishments, including some that were not foreseen in the original proposal. The presentation of this final report includes this written document as well as material that is better presented via the internet (web pages). There is heavy reference to appended papers and documents. Thus, the main body of the report will serve to summarize the key efforts and findings.

  5. Precision Pointing in Space Using Arrays of Shape Memory Based Linear Actuators

    NASA Astrophysics Data System (ADS)

    Sonawane, Nikhil

    Space systems such as communication satellites, earth observation satellites and telescope require accurate pointing to observe fixed targets over prolonged time. These systems typically use reaction wheels to slew the spacecraft and gimballing systems containing motors to achieve precise pointing. Motor based actuators have limited life as they contain moving parts that require lubrication in space. Alternate methods have utilized piezoelectric actuators. This paper presents Shape memory alloys (SMA) actuators for control of a deployable antenna placed on a satellite. The SMAs are operated as a series of distributed linear actuators. These distributed linear actuators are not prone to single point failures and although each individual actuator is imprecise due to hysteresis and temperature variation, the system as a whole achieves reliable results. The SMAs can be programmed to perform a series of periodic motion and operate as a mechanical guidance system that is not prone to damage from radiation or space weather. Efforts are focused on developing a system that can achieve 1 degree pointing accuracy at first, with an ultimate goal of achieving a few arc seconds accuracy. Bench top model of the actuator system has been developed and working towards testing the system under vacuum. A demonstration flight of the technology is planned aboard a CubeSat.

  6. A Broad Bank Lidar for Precise Atmospheric CO2 Column Absorption Measurement from Space

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Heaps, W. S.; Huang, W.

    2010-01-01

    Accurate global measurement of carbon dioxide column with the aim of discovering and quantifying unknown sources and sinks has been a high priority for the last decade. In order to uncover the "missing sink" that is responsible for the large discrepancies in the budget the critical precision for a measurement from space needs to be on the order of 1 ppm. To better understand the CO2 budget and to evaluate its impact on global warming the National Research Council (NRC) in its recent decadal survey report (NACP) to NASA recommended a laser based total CO2 mapping mission in the near future. That's the goal of Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission - to significantly enhance the understanding of the role of CO2 in the global carbon cycle. Our current goal is to develop an ultra precise, inexpensive new lidar system for column measurements of CO2 changes in the lower atmosphere that uses a Fabry-Perot interferometer based system as the detector portion of the instrument and replaces the narrow band laser commonly used in lidars with a high power broadband source. This approach reduces the number of individual lasers used in the system and considerably reduces the risk of failure. It also tremendously reduces the requirement for wavelength stability in the source putting this responsibility instead on the Fabry- Perot subsystem.

  7. MEASURING HIGH-PRECISION ASTROMETRY WITH THE INFRARED ARRAY CAMERA ON THE SPITZER SPACE TELESCOPE

    SciTech Connect

    Esplin, T. L.; Luhman, K. L.

    2016-01-15

    The Infrared Array Camera (IRAC) on the Spitzer Space Telescope currently offers the greatest potential for high-precision astrometry of faint mid-IR sources across arcminute-scale fields, which would be especially valuable for measuring parallaxes of cold brown dwarfs in the solar neighborhood and proper motions of obscured members of nearby star-forming regions. To more fully realize IRAC's astrometric capabilities, we have sought to minimize the largest sources of uncertainty in astrometry with its 3.6 and 4.5 μm bands. By comparing different routines that estimate stellar positions, we have found that Point Response Function (PRF) fitting with the Spitzer Science Center's Astronomical Point Source Extractor produces both the smallest systematic errors from varying intra-pixel sensitivity and the greatest precision in measurements of positions. In addition, self-calibration has been used to derive new 7th and 8th order distortion corrections for the 3.6 and 4.5 μm arrays of IRAC, respectively. These corrections are suitable for data throughout the mission of Spitzer when a time-dependent scale factor is applied to the corrections. To illustrate the astrometric accuracy that can be achieved by combining PRF fitting with our new distortion corrections, we have applied them to archival data for a nearby star-forming region, arriving at total astrometric errors of ∼20 and 70 mas at signal to noise ratios of 100 and 10, respectively.

  8. Efficiency Benefits Using the Terminal Area Precision Scheduling and Spacing System

    NASA Technical Reports Server (NTRS)

    Thipphavong, Jane; Swenson, Harry N.; Lin, Paul; Seo, Anthony Y.; Bagasol, Leonard N.

    2011-01-01

    NASA has developed a capability for terminal area precision scheduling and spacing (TAPSS) to increase the use of fuel-efficient arrival procedures during periods of traffic congestion at a high-density airport. Sustained use of fuel-efficient procedures throughout the entire arrival phase of flight reduces overall fuel burn, greenhouse gas emissions and noise pollution. The TAPSS system is a 4D trajectory-based strategic planning and control tool that computes schedules and sequences for arrivals to facilitate optimal profile descents. This paper focuses on quantifying the efficiency benefits associated with using the TAPSS system, measured by reduction of level segments during aircraft descent and flight distance and time savings. The TAPSS system was tested in a series of human-in-the-loop simulations and compared to current procedures. Compared to the current use of the TMA system, simulation results indicate a reduction of total level segment distance by 50% and flight distance and time savings by 7% in the arrival portion of flight (200 nm from the airport). The TAPSS system resulted in aircraft maintaining continuous descent operations longer and with more precision, both achieved under heavy traffic demand levels.

  9. How Cities Breathe: Ground-Referenced, Airborne Hyperspectral Imaging Precursor Measurements To Space-Based Monitoring

    NASA Technical Reports Server (NTRS)

    Leifer, Ira; Tratt, David; Quattrochi, Dale; Bovensmann, Heinrich; Gerilowski, Konstantin; Buchwitz, Michael; Burrows, John

    2013-01-01

    Methane's (CH4) large global warming potential (Shindell et al., 2012) and likely increasing future emissions due to global warming feedbacks emphasize its importance to anthropogenic greenhouse warming (IPCC, 2007). Furthermore, CH4 regulation has far greater near-term climate change mitigation potential versus carbon dioxide CO2, the other major anthropogenic Greenhouse Gas (GHG) (Shindell et al., 2009). Uncertainties in CH4 budgets arise from the poor state of knowledge of CH4 sources - in part from a lack of sufficiently accurate assessments of the temporal and spatial emissions and controlling factors of highly variable anthropogenic and natural CH4 surface fluxes (IPCC, 2007) and the lack of global-scale (satellite) data at sufficiently high spatial resolution to resolve sources. Many important methane (and other trace gases) sources arise from urban and mega-urban landscapes where anthropogenic activities are centered - most of humanity lives in urban areas. Studying these complex landscape tapestries is challenged by a wide and varied range of activities at small spatial scale, and difficulty in obtaining up-to-date landuse data in the developed world - a key desire of policy makers towards development of effective regulations. In the developing world, challenges are multiplied with additional political access challenges. As high spatial resolution satellite and airborne data has become available, activity mapping applications have blossomed - i.e., Google maps; however, tap a minute fraction of remote sensing capabilities due to limited (three band) spectral information. Next generation approaches that incorporate high spatial resolution hyperspectral and ultraspectral data will allow detangling of the highly heterogeneous usage megacity patterns by providing diagnostic identification of chemical composition from solids (refs) to gases (refs). To properly enable these next generation technologies for megacity include atmospheric radiative transfer modeling

  10. Evaluation of SMART sensor displays for multidimensional precision control of Space Shuttle remote manipulator

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Brown, J. W.; Lewis, J. L.

    1982-01-01

    An enhanced proximity sensor and display system was developed at the Jet Propulsion Laboratory (JPL) and tested on the full scale Space Shuttle Remote Manipulator at the Johnson Space Center (JSC) Manipulator Development Facility (MDF). The sensor system, integrated with a four-claw end effector, measures range error up to 6 inches, and pitch and yaw alignment errors within + or 15 deg., and displays error data on both graphic and numeric displays. The errors are referenced to the end effector control axes through appropriate data processing by a dedicated microcomputer acting on the sensor data in real time. Both display boxes contain a green lamp which indicates whether the combination of range, pitch and yaw errors will assure a successful grapple. More than 200 test runs were completed in early 1980 by three operators at JSC for grasping static and capturing slowly moving targets. The tests have indicated that the use of graphic/numeric displays of proximity sensor information improves precision control of grasp/capture range by more than a factor of two for both static and dynamic grapple conditions.

  11. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  12. Consequences of flight height and line spacing on airborne (helicopter) gravity gradient resolution in the Great Sand Dunes National Park and Preserve, Colorado

    USGS Publications Warehouse

    Kass, M. Andy

    2013-01-01

    Line spacing and flight height are critical parameters in airborne gravity gradient surveys; the optimal trade-off between survey costs and desired resolution, however, is different for every situation. This article investigates the additional benefit of reducing the flight height and line spacing though a study of a survey conducted over the Great Sand Dunes National Park and Preserve, which is the highest-resolution public-domain airborne gravity gradient data set available, with overlapping high- and lower-resolution surveys. By using Fourier analysis and matched filtering, it is shown that while the lower-resolution survey delineates the target body, reducing the flight height from 80 m to 40 m and the line spacing from 100 m to 50 m improves the recoverable resolution even at basement depths.

  13. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.; Cox, Jack A.; McGee, Kathleen A.

    1999-01-01

    This presentation discuss the Marshall Space Flight Center Operations and Responsibilities. These are propulsion, microgravity experiments, international space station, space transportation systems, and advance vehicle research.

  14. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general.

  15. Shipboard Radio Frequency and Free Space Optics Communications System using an Airborne Relay

    DTIC Science & Technology

    2005-09-01

    According to Sklar , systems employing new technologies often require additional margin compared to systems that have been built and tested many times over...and Klein, Bernard J. “Optical Antenna Gain. 2: Receiving Antennas,” Applied Optics, Vol. 13, No. 9. 1974. [22] Killinger, Dennis. “Free Space

  16. High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link

    NASA Technical Reports Server (NTRS)

    Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli

    2016-01-01

    We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.

  17. Micro-precision control/structure interaction technology for large optical space systems

    NASA Technical Reports Server (NTRS)

    Sirlin, Samuel W.; Laskin, Robert A.

    1993-01-01

    The CSI program at JPL is chartered to develop the structures and control technology needed for sub-micron level stabilization of future optical space systems. The extreme dimensional stability required for such systems derives from the need to maintain the alignment and figure of critical optical elements to a small fraction (typically 1/20th to 1/50th) of the wavelength of detected radiation. The wavelength is about 0.5 micron for visible light and 0.1 micron for ultra-violet light. This lambda/50 requirement is common to a broad class of optical systems including filled aperture telescopes (with monolithic or segmented primary mirrors), sparse aperture telescopes, and optical interferometers. The challenge for CSI arises when such systems become large, with spatially distributed optical elements mounted on a lightweight, flexible structure. In order to better understand the requirements for micro-precision CSI technology, a representative future optical system was identified and developed as an analytical testbed for CSI concepts and approaches. An optical interferometer was selected as a stressing example of the relevant mission class. The system that emerged was termed the Focus Mission Interferometer (FMI). This paper will describe the multi-layer control architecture used to address the FMI's nanometer level stabilization requirements. In addition the paper will discuss on-going and planned experimental work aimed at demonstrating that multi-layer CSI can work in practice in the relevant performance regime.

  18. High-Precision Shape Control of In-Space Deployable Large Membrane/Thin-Shell Reflectors

    NASA Technical Reports Server (NTRS)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    This innovation has been developed to improve the resolutions of future spacebased active and passive microwave antennas for earth-science remote sensing missions by maintaining surface figure precisions of large membrane/thin-shell reflectors during orbiting. The intention is for these sensing instruments to be deployable at orbit altitudes one or two orders of magnitude higher than Low Earth Orbit (LEO), but still being able to acquire measurements at spatial resolution and sensitivity similar to those of LEO. Because active and passive microwave remote sensors are able to penetrate through clouds to acquire vertical profile measurements of geophysical parameters, it is desirable to elevate them to the higher orbits to obtain orbital geometries that offer large spatial coverage and more frequent observations. This capability is essential for monitoring and for detailed understanding of the life cycles of natural hazards, such as hurricanes, tropical storms, flash floods, and tsunamis. Major components of this high-precision antenna-surface-control system include a membrane/thin shell reflector, a metrology sensor, a controller, actuators, and corresponding power amplifier and signal conditioning electronics (see figure). Actuators are attached to the back of the reflector to produce contraction/ expansion forces to adjust the shape of the thin-material reflector. The wavefront-sensing metrology system continuously measures the surface figure of the reflector, converts the surface figure to digital data and feeds the data to the controller. The controller determines the control parameters and generates commands to the actuator system. The flexible, piezoelectric polymer actuators are thus activated, providing the control forces needed to correct any distortions that exist in the reflector surface. Piezoelectric polymer actuators are very thin and flexible. They can be implemented on the back of the membrane/thin-shell reflector without introducing significant

  19. Design of an airborne launch vehicle for an air launched space booster

    NASA Technical Reports Server (NTRS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-01-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  20. Evaluation of a Tool for Airborne-Managed In-Trail Approach Spacing

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa M.; Lohr, Gary W.; Abbott, Terence S.; Nadler, Eric D.; Eischeid, Todd

    2005-01-01

    The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast aircraft state data to compute a speed command for an ATAAS-equipped aircraft to follow and obtain a required time interval behind another aircraft. The ATAAS tool and candidate operational procedures were tested in a high-fidelity, full mission simulator with active airline subject pilots flying an arrival scenario to obtain pilot perceptions of acceptability and workload for the concept. The aircraft consistently achieved the target spacing interval within 1 s when the ATAAS speed guidance was autothrottle-coupled and a slightly greater (4 - 5 s) but consistent interval with pilot-controlled speed changes. The subject pilots rated the ATAAS workload as similar to one with standard procedures for a nominal Instrument Landing System (ILS) approach. They also rated highly various procedural aspects (including amount of head-down time required). Eyetracker data showed only slight changes in instrument scan patterns for ATAAS versus standard ILS procedures.

  1. HIGH-PRECISION TIMING OF FIVE MILLISECOND PULSARS: SPACE VELOCITIES, BINARY EVOLUTION, AND EQUIVALENCE PRINCIPLES

    SciTech Connect

    Gonzalez, M. E.; Stairs, I. H.; Ferdman, R. D.; Lyne, A. G.; Freire, P. C. C.; Kramer, M.; Nice, D. J.; Demorest, P. B.; Ransom, S. M.; Camilo, F.; Hobbs, G.; Manchester, R. N.

    2011-12-20

    We present high-precision timing of five millisecond pulsars (MSPs) carried out for more than seven years; four pulsars are in binary systems and one is isolated. We are able to measure the pulsars' proper motions and derive an estimate for their space velocities. The measured two-dimensional velocities are in the range 70-210 km s{sup -1}, consistent with those measured for other MSPs. We also use all the available proper motion information for isolated and binary MSPs to update the known velocity distribution for these populations. As found by earlier works, we find that the velocity distribution of binary and isolated MSPs are indistinguishable with the current data. Four of the pulsars in our observing program are highly recycled with low-mass white dwarf companions and we are able to derive accurate binary parameters for these systems. For three of these binary systems, we are able to place initial constraints on the pulsar masses with best-fit values in the range 1.0-1.6 M{sub Sun }. The implications of the results presented here to our understanding of binary pulsar evolution are discussed. The updated parameters for the binary systems studied here, together with recently discovered similar systems, allowed us to update previous limits on the violation of the strong equivalence principle through the parameter |{Delta}| to 4.6 Multiplication-Sign 10{sup -3} (95% confidence) and the violation of Lorentz invariance/momentum conservation through the parameter |{alpha}-hat3| to 5.5 Multiplication-Sign 10{sup -20} (95% confidence).

  2. Synopsis of Precision Landing and Hazard Avoidance (PL&HA) Capabilities for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.

    2017-01-01

    Until recently, robotic exploration missions to the Moon, Mars, and other solar system bodies relied upon controlled blind landings. Because terrestrial techniques for terrain relative navigation (TRN) had not yet been evolved to support space exploration, landing dispersions were driven by the capabilities of inertial navigation systems combined with surface relative altimetry and velocimetry. Lacking tight control over the actual landing location, mission success depended on the statistical vetting of candidate landing areas within the predicted landing dispersion ellipse based on orbital reconnaissance data, combined with the ability of the spacecraft to execute a controlled landing in terms of touchdown attitude, attitude rates, and velocity. In addition, the sensors, algorithms, and processing technologies required to perform autonomous hazard detection and avoidance in real time during the landing sequence were not yet available. Over the past decade, NASA has invested substantial resources on the development, integration, and testing of autonomous precision landing and hazard avoidance (PL&HA) capabilities. In addition to substantially improving landing accuracy and safety, these autonomous PL&HA functions also offer access to targets of interest located within more rugged and hazardous terrain. Optical TRN systems are baselined on upcoming robotic landing missions to the Moon and Mars, and NASA JPL is investigating the development of a comprehensive PL&HA system for a Europa lander. These robotic missions will demonstrate and mature PL&HA technologies that are considered essential for future human exploration missions. PL&HA technologies also have applications to rendezvous and docking/berthing with other spacecraft, as well as proximity navigation, contact, and retrieval missions to smaller bodies with microgravity environments, such as asteroids.

  3. Subnanosecond GPS-based clock synchronization and precision deep-space tracking

    NASA Technical Reports Server (NTRS)

    Dunn, C. E.; Lichten, S. M.; Jefferson, D. C.; Border, J. S.

    1992-01-01

    Interferometric spacecraft tracking is accomplished by the Deep Space Network (DSN) by comparing the arrival time of electromagnetic spacecraft signals at ground antennas separated by baselines on the order of 8000 km. Clock synchronization errors within and between DSN stations directly impact the attainable tracking accuracy, with a 0.3-nsec error in clock synchronization resulting in an 11-nrad angular position error. This level of synchronization is currently achieved by observing a quasar which is angularly close to the spacecraft just after the spacecraft observations. By determining the differential arrival times of the random quasar signal at the stations, clock offsets and propagation delays within the atmosphere and within the DSN stations are calibrated. Recent developments in time transfer techniques may allow medium accuracy (50-100 nrad) spacecraft tracking without near-simultaneous quasar-based calibrations. Solutions are presented for a worldwide network of Global Positioning System (GPS) receivers in which the formal errors for DSN clock offset parameters are less than 0.5 nsec. Comparisons of clock rate offsets derived from GPS measurements and from very long baseline interferometry (VLBI), as well as the examination of clock closure, suggest that these formal errors are a realistic measure of GPS-based clock offset precision and accuracy. Incorporating GPS-based clock synchronization measurements into a spacecraft differential ranging system would allow tracking without near-simultaneous quasar observations. The impact on individual spacecraft navigation-error sources due to elimination of quasar-based calibrations is presented. System implementation, including calibration of station electronic delays, is discussed.

  4. High-precision CTE measurement of hybrid C/SiC composite for cryogenic space telescopes

    NASA Astrophysics Data System (ADS)

    Enya, K.; Yamada, N.; Imai, T.; Tange, Y.; Kaneda, H.; Katayama, H.; Kotani, M.; Maruyama, K.; Naitoh, M.; Nakagawa, T.; Onaka, T.; Suganuma, M.; Ozaki, T.; Kume, M.; Krödel, M. R.

    2012-01-01

    This paper presents highly precise measurements of thermal expansion of a "hybrid" carbon-fiber reinforced silicon carbide composite, HB-Cesic® - a trademark of ECM, in the temperature region of ˜310-10 K. Whilst C/SiC composites have been considered to be promising for the mirrors and other structures of space-borne cryogenic telescopes, the anisotropic thermal expansion has been a potential disadvantage of this material. HB-Cesic® is a newly developed composite using a mixture of different types of chopped, short carbon-fiber, in which one of the important aims of the development was to reduce the anisotropy. The measurements indicate that the anisotropy was much reduced down to 4% as a result of hybridization. The thermal expansion data obtained are presented as functions of temperature using eighth-order polynomials separately for the horizontal (XY-) and vertical (Z-) directions of the fabrication process. The average CTEs and their dispersion (1σ) in the range 293-10 K derived from the data for the XY- and Z-directions were 0.805 ± 0.003 × 10-6 K-1 and 0.837 ± 0.001 × 10-6 K-1, respectively. The absolute accuracy and the reproducibility of the present measurements are suggested to be better than 0.01 × 10-6 K-1 and 0.001 × 10-6 K-1, respectively. The residual anisotropy of the thermal expansion was consistent with our previous speculation regarding carbon-fiber, in which the residual anisotropy tended to lie mainly in the horizontal plane.

  5. Two-dimensional focal plane detector arrays for LWIR/VLWIR space and airborne sounding missions

    NASA Astrophysics Data System (ADS)

    Hanna, S.; Bauer, A.; Bitterlich, H.; Bruder, M.; Haas, L.-D.; Haiml, M.; Hofmann, K.; Mahlein, K.-M.; Nothaft, H.-P.; Schallenberg, T.; Weber, A.; Wendler, J.; Wollrab, R.; Ziegler, J.

    2010-10-01

    An increasing need for high-precision atmospheric data especially in the long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) spectral ranges has arisen in the past years not only for the analysis of climate change and its effect on the earth's ecosystem, but also for weather forecast and atmospheric monitoring purposes. Spatially and spectrally resolved atmospheric emission data are advantageously gathered through limb or nadir sounding using an imaging Fourier transform (FT) interferometer with a two-dimensional (2D) high-speed focal plane detector array (FPA). In this paper, AIM reports on its latest results on MCT VLWIR FPAs for Fourier transform infrared sounding applications in the 8-15μm spectral range. The performance of a (112x112) pixel photodiode array with a 40μm pixel pitch incorporating extrinsic p-doping for low dark current, a technique for linearity improvement at high photon fluxes, pixel guards, pixel select/de-select, and a (2x2) super-pixel architecture is discussed. The customized read-out integrated circuit (ROIC) supporting integrate while-read (IWR) operation has a buffered direct injection (BDI) input stage and a full well capacity (FWC) of 143 Megaelectrons per super-pixel. It consists of two independently operating halves with two analog video outputs each. The full frame rate is typically 4k frames/sec, making it suitable for use with rapid scan FT infrared spectrometers. At a 55K operating temperature and an ~14.4μm cut-off wavelength, a photo response of 12.1mV/K and a noise equivalent temperature difference of 24.8mK at half well filling are demonstrated for a 286K reference scene. The nonlinearity error is <0.5%.

  6. Backscatter Modeling at 2.1 Micron Wavelength for Space-Based and Airborne Lidars Using Aerosol Physico-Chemical and Lidar Datasets

    NASA Technical Reports Server (NTRS)

    Srivastava, V.; Rothermel, J.; Jarzembski, M. A.; Clarke, A. D.; Cutten, D. R.; Bowdle, D. A.; Spinhirne, J. D.; Menzies, R. T.

    1999-01-01

    Space-based and airborne coherent Doppler lidars designed for measuring global tropospheric wind profiles in cloud-free air rely on backscatter, beta from aerosols acting as passive wind tracers. Aerosol beta distribution in the vertical can vary over as much as 5-6 orders of magnitude. Thus, the design of a wave length-specific, space-borne or airborne lidar must account for the magnitude of 8 in the region or features of interest. The SPAce Readiness Coherent Lidar Experiment under development by the National Aeronautics and Space Administration (NASA) and scheduled for launch on the Space Shuttle in 2001, will demonstrate wind measurements from space using a solid-state 2 micrometer coherent Doppler lidar. Consequently, there is a critical need to understand variability of aerosol beta at 2.1 micrometers, to evaluate signal detection under varying aerosol loading conditions. Although few direct measurements of beta at 2.1 micrometers exist, extensive datasets, including climatologies in widely-separated locations, do exist for other wavelengths based on CO2 and Nd:YAG lidars. Datasets also exist for the associated microphysical and chemical properties. An example of a multi-parametric dataset is that of the NASA GLObal Backscatter Experiment (GLOBE) in 1990 in which aerosol chemistry and size distributions were measured concurrently with multi-wavelength lidar backscatter observations. More recently, continuous-wave (CW) lidar backscatter measurements at mid-infrared wavelengths have been made during the Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment in 1995. Using Lorenz-Mie theory, these datasets have been used to develop a method to convert lidar backscatter to the 2.1 micrometer wavelength. This paper presents comparison of modeled backscatter at wavelengths for which backscatter measurements exist including converted beta (sub 2.1).

  7. Clear-Sky Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-2 Using Airborne Sunphotometer, Airborne In-Situ, Space-Borne, and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Livingston, John M.; Russell, Philip B.; Durkee, Philip A.; Jonsson, Haflidi H.; Collins, Donald R.; Flagan, Richard C.; Seinfield, John H.; Gasso, Santiago; Hegg, Dean A.

    2000-01-01

    We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (optical particle counter, nephelometer, and absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidar and sunphotometer measurements. During both days discussed here, vertical profiles flown in cloud-free air masses revealed 3 distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. A key result of this study is the achievement of closure between extinction or layer aerosol optical depth (AOD) computed from continuous in-situ aerosol size-distributions and composition and those measured with the airborne sunphotometer. In the dust, the agreement in layer AOD (lambda = 380-1060 nm) is 3-8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at lambda = 525 nm), but these differences are within the combined error bars of the measurements and computations.

  8. [Value of the space perception test for evaluation of the aptitude for precision work in geodesy].

    PubMed

    Remlein-Mozolewska, G

    1982-01-01

    The visual spatial localization ability of geodesy and cartography - employers and of the pupils trained for the mentioned profession has been examined. The examination has been based on work duration and the time of its performance. A correlation between the localization ability and the precision of the hand - movements required in everyday work has been proven. The better the movement precision, the more efficient the visual spatial localization. The length of work has not been significant. The test concerned appeared to be highly useful in geodesy for qualifying workers for the posts requiring good hands efficiency.

  9. Cognitive Operations on Space and Their Impact on the Precision of Location Memory

    ERIC Educational Resources Information Center

    Lansdale, Mark; Humphries, Joyce; Flynn, Victoria

    2013-01-01

    Learning about object locations in space usually involves the summation of information from different experiences of that space and requires various cognitive operations to make this possible. These processes are poorly understood and, in the extreme, may not occur--leading to mutual exclusivity of memories (Baguley, Lansdale, Lines, & Parkin,…

  10. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Seventh Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2015-01-01

    This paper presents an overview of the seventh revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This paper supersedes the previous documentation and presents a modification to the algorithm referred to as the Airborne Spacing for Terminal Arrival Routes version 13 (ASTAR13). This airborne self-spacing concept contains both trajectory-based and state-based mechanisms for calculating the speeds required to achieve or maintain a precise spacing interval. The trajectory-based capability allows for spacing operations prior to the aircraft being on a common path. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm adds the state-based capability in support of evolving industry standards relating to airborne self-spacing.

  11. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Sixth Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2015-01-01

    This paper presents an overview of the sixth revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This algorithm is referred to as the Airborne Spacing for Terminal Arrival Routes version 13 (ASTAR13). This airborne self-spacing concept contains both trajectory-based and state-based mechanisms for calculating the speeds required to achieve or maintain a precise spacing interval. The trajectory-based capability allows for spacing operations prior to the aircraft being on a common path. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm adds the state-based capability in support of evolving industry standards relating to airborne self-spacing.

  12. Precision Laser Development for Interferometric Space Missions NGO, SGO, and GRACE Follow-On

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2011-01-01

    Optical fiber and semiconductor laser technologies have evolved dramatically over the last decade due to the increased demands from optical communications. We are developing a laser (master oscillator) and optical amplifier based on those technologies for interferometric space missions, including the gravitational-wave missions NGO/SGO (formerly LISA) and the climate monitoring mission GRACE Follow-On, by fully utilizing the matured wave-guided optics technologies. In space, where simpler and more reliable system is preferred, the wave-guided components are advantageous over bulk, crystal-based, free-space laser, such as NPRO (Nonplanar Ring Oscillator) and bulk-crystal amplifier.

  13. Comparison of Precision of Biomass Estimates in Regional Field Sample Surveys and Airborne LiDAR-Assisted Surveys in Hedmark County, Norway

    NASA Technical Reports Server (NTRS)

    Naesset, Erik; Gobakken, Terje; Bollandsas, Ole Martin; Gregoire, Timothy G.; Nelson, Ross; Stahl, Goeran

    2013-01-01

    Airborne scanning LiDAR (Light Detection and Ranging) has emerged as a promising tool to provide auxiliary data for sample surveys aiming at estimation of above-ground tree biomass (AGB), with potential applications in REDD forest monitoring. For larger geographical regions such as counties, states or nations, it is not feasible to collect airborne LiDAR data continuously ("wall-to-wall") over the entire area of interest. Two-stage cluster survey designs have therefore been demonstrated by which LiDAR data are collected along selected individual flight-lines treated as clusters and with ground plots sampled along these LiDAR swaths. Recently, analytical AGB estimators and associated variance estimators that quantify the sampling variability have been proposed. Empirical studies employing these estimators have shown a seemingly equal or even larger uncertainty of the AGB estimates obtained with extensive use of LiDAR data to support the estimation as compared to pure field-based estimates employing estimators appropriate under simple random sampling (SRS). However, comparison of uncertainty estimates under SRS and sophisticated two-stage designs is complicated by large differences in the designs and assumptions. In this study, probability-based principles to estimation and inference were followed. We assumed designs of a field sample and a LiDAR-assisted survey of Hedmark County (HC) (27,390 km2), Norway, considered to be more comparable than those assumed in previous studies. The field sample consisted of 659 systematically distributed National Forest Inventory (NFI) plots and the airborne scanning LiDAR data were collected along 53 parallel flight-lines flown over the NFI plots. We compared AGB estimates based on the field survey only assuming SRS against corresponding estimates assuming two-phase (double) sampling with LiDAR and employing model-assisted estimators. We also compared AGB estimates based on the field survey only assuming two-stage sampling (the NFI

  14. Development of precision structure of a large-size space radio telescope

    NASA Astrophysics Data System (ADS)

    Astavin, A. S.; Kovalev, V. S.; Komaev, R. V.; Moisheev, A. A.; Tsvelev, V. M.; Serebrennikov, V. A.

    2015-12-01

    The paper presents methods for the design and engineering concepts, which made it possible to develop and manufacture the space radio telescope with a large size and high accuracy of the effective reflector area and focal assembly position.

  15. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Third Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2012-01-01

    This paper presents an overview of the third major revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This algorithm is referred to as the Airborne Spacing for Terminal Arrival Routes version 11 (ASTAR11). This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. Because this algorithm is trajectory-based, it also has the inherent ability to support required time-of-arrival (RTA) operations. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft.

  16. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.

  17. Precise Orbit Solution for Swarm Using Space-Borne GPS Data and Optimized Pseudo-Stochastic Pulses

    PubMed Central

    Zhang, Bingbing; Wang, Zhengtao; Zhou, Lv; Feng, Jiandi; Qiu, Yaodong; Li, Fupeng

    2017-01-01

    Swarm is a European Space Agency (ESA) project that was launched on 22 November 2013, which consists of three Swarm satellites. Swarm precise orbits are essential to the success of the above project. This study investigates how well Swarm zero-differenced (ZD) reduced-dynamic orbit solutions can be determined using space-borne GPS data and optimized pseudo-stochastic pulses under high ionospheric activity. We choose Swarm space-borne GPS data from 1–25 October 2014, and Swarm reduced-dynamic orbits are obtained. Orbit quality is assessed by GPS phase observation residuals and compared with Precise Science Orbits (PSOs) released by ESA. Results show that pseudo-stochastic pulses with a time interval of 6 min and a priori standard deviation (STD) of 10−2 mm/s in radial (R), along-track (T) and cross-track (N) directions are optimized to Swarm ZD reduced-dynamic precise orbit determination (POD). During high ionospheric activity, the mean Root Mean Square (RMS) of Swarm GPS phase residuals is at 9–11 mm, Swarm orbit solutions are also compared with Swarm PSOs released by ESA and the accuracy of Swarm orbits can reach 2–4 cm in R, T and N directions. Independent Satellite Laser Ranging (SLR) validation indicates that Swarm reduced-dynamic orbits have an accuracy of 2–4 cm. Swarm-B orbit quality is better than those of Swarm-A and Swarm-C. The Swarm orbits can be applied to the geomagnetic, geoelectric and gravity field recovery. PMID:28335538

  18. Precise Orbit Solution for Swarm Using Space-Borne GPS Data and Optimized Pseudo-Stochastic Pulses.

    PubMed

    Zhang, Bingbing; Wang, Zhengtao; Zhou, Lv; Feng, Jiandi; Qiu, Yaodong; Li, Fupeng

    2017-03-20

    Swarm is a European Space Agency (ESA) project that was launched on 22 November 2013, which consists of three Swarm satellites. Swarm precise orbits are essential to the success of the above project. This study investigates how well Swarm zero-differenced (ZD) reduced-dynamic orbit solutions can be determined using space-borne GPS data and optimized pseudo-stochastic pulses under high ionospheric activity. We choose Swarm space-borne GPS data from 1-25 October 2014, and Swarm reduced-dynamic orbits are obtained. Orbit quality is assessed by GPS phase observation residuals and compared with Precise Science Orbits (PSOs) released by ESA. Results show that pseudo-stochastic pulses with a time interval of 6 min and a priori standard deviation (STD) of 10(-2) mm/s in radial (R), along-track (T) and cross-track (N) directions are optimized to Swarm ZD reduced-dynamic precise orbit determination (POD). During high ionospheric activity, the mean Root Mean Square (RMS) of Swarm GPS phase residuals is at 9-11 mm, Swarm orbit solutions are also compared with Swarm PSOs released by ESA and the accuracy of Swarm orbits can reach 2-4 cm in R, T and N directions. Independent Satellite Laser Ranging (SLR) validation indicates that Swarm reduced-dynamic orbits have an accuracy of 2-4 cm. Swarm-B orbit quality is better than those of Swarm-A and Swarm-C. The Swarm orbits can be applied to the geomagnetic, geoelectric and gravity field recovery.

  19. Analytical representations of precise orbit predictions for Earth orbiting space objects

    NASA Astrophysics Data System (ADS)

    Sang, Jizhang; Li, Bin; Chen, Junyu; Zhang, Pin; Ning, Jinsheng

    2017-01-01

    Accurate orbits of Earth orbiting space objects are usually generated from an orbit determination/prediction process using numerical integrators, and presented to users in a tabulated form or a state vector including force model parameters. When dealing with hundreds of thousands of space objects such as in the space conjunction assessment, the memory required for the tabulated orbits or the computing time for propagating orbits using the state vector are both confronting to users. This paper presents two methods of analytically representing numerical orbits considering the accuracy, computing efficiency and memory. The first one is a two-step TLE-based method in which the numerical orbits are first fitted into a TLE set and then correction functions are applied to improve the position accuracy. In the second method, the orbit states are represented in equinoctial elements first, and then again correction functions are applied to reduce the position errors. Experiments using six satellite laser ranging (SLR) satellites and 12 debris objects with accurate orbits show that both methods can represent the accurate orbits over 5 days in an accuracy of a few dozens of meters for the circular orbits and several hundred meters for the eccentric orbits. The computing time is similar to that using the NORAD TLE/SGP4 algorithm, and storage for the orbit elements and function coefficients is about 3-5 KB. These features could make the two methods beneficial for the maintenance of orbit catalog of large numbers of space objects.

  20. Parameter space of experimental chaotic circuits with high-precision control parameters

    NASA Astrophysics Data System (ADS)

    de Sousa, Francisco F. G.; Rubinger, Rero M.; Sartorelli, José C.; Albuquerque, Holokx A.; Baptista, Murilo S.

    2016-08-01

    We report high-resolution measurements that experimentally confirm a spiral cascade structure and a scaling relationship of shrimps in the Chua's circuit. Circuits constructed using this component allow for a comprehensive characterization of the circuit behaviors through high resolution parameter spaces. To illustrate the power of our technological development for the creation and the study of chaotic circuits, we constructed a Chua circuit and study its high resolution parameter space. The reliability and stability of the designed component allowed us to obtain data for long periods of time (˜21 weeks), a data set from which an accurate estimation of Lyapunov exponents for the circuit characterization was possible. Moreover, this data, rigorously characterized by the Lyapunov exponents, allows us to reassure experimentally that the shrimps, stable islands embedded in a domain of chaos in the parameter spaces, can be observed in the laboratory. Finally, we confirm that their sizes decay exponentially with the period of the attractor, a result expected to be found in maps of the quadratic family.

  1. The PLATO Simulator: modelling of high-precision high-cadence space-based imaging

    NASA Astrophysics Data System (ADS)

    Marcos-Arenal, P.; Zima, W.; De Ridder, J.; Aerts, C.; Huygen, R.; Samadi, R.; Green, J.; Piotto, G.; Salmon, S.; Catala, C.; Rauer, H.

    2014-06-01

    Context. Many aspects of the design trade-off of a space-based instrument and its performance can best be tackled through simulations of the expected observations. The complex interplay of various noise sources in the course of the observations make such simulations an indispensable part of the assessment and design study of any space-based mission. Aims: We present a formalism to model and simulate photometric time series of CCD images by including models of the CCD and its electronics, the telescope optics, the stellar field, the jitter movements of the spacecraft, and all of the important natural noise sources. Methods: This formalism has been implemented in a versatile end-to-end simulation software tool, specifically designed for the PLATO (Planetary Transists and Oscillations of Stars) space mission to be operated from L2, but easily adaptable to similar types of missions. We call this tool Plato Simulator. Results: We provide a detailed description of several noise sources and discuss their properties in connection with the optical design, the allowable level of jitter, the quantum efficiency of the detectors, etc. The expected overall noise budget of generated light curves is computed, as a function of the stellar magnitude, for different sets of input parameters describing the instrument properties. The simulator is offered to the scientific community for future use. Software package available at the Plato Simulator web site (http://https://fys.kuleuven.be/ster/Software/PlatoSimulator/).

  2. Simplified Architecture for Precise Aiming of a Deep-Space Communication Laser Transceiver

    NASA Technical Reports Server (NTRS)

    Ortiz, Gerard G.; Farr, William H.; Charles, Jeffrey R.

    2011-01-01

    The simplified architecture is a minimal system for a deep-space optical communications transceiver. For a deepspace optical communications link the simplest form of the transceiver requires (1) an efficient modulated optical source, (2) a point-ahead mechanism (PAM) to compensate for two-way light travel, (3) an aperture to reduce the divergence of the transmit laser communication signal and also to collect the uplink communication signal, and (4) a receive detector to sense the uplink communication signal. Additional components are introduced to mitigate for spacecraft microvibrations and to improve the pointing accuracy. The Canonical Transceiver implements this simplified architecture (see figure). A single photon-counting smart focal plane sensor combines acquisition, tracking, and forward link data detection functionality. This improves optical efficiency by eliminating channel splits. A transmit laser blind sensor (e.g. silicon with 1,550-nm beam) provides transmit beam-pointing feedback via the two-photon absorption (TPA) process. This vastly improves the transmit/receive isolation because only the focused transmit beam is detected. A piezoelectric tiptilt actuator implements the required point-ahead angle. This point-ahead mechanism has been demonstrated to have near zero quiescent power and is flight qualified. This architecture also uses an innovative 100-mHz resonant frequency passive isolation platform to filter spacecraft vibrations with voice coil actuators for active tip-tilt correction below the resonant frequency. The canonical deep-space optical communications transceiver makes synergistic use of innovative technologies to reduce size, weight, power, and cost. This optical transceiver can be used to retire risks associated with deep-space optical communications on a planetary pathfinder mission and is complementary to ongoing lunar and access link developments.

  3. a Method for Self-Calibration in Satellite with High Precision of Space Linear Array Camera

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Qian, Fangming; Miao, Yuzhe; Wang, Rongjian

    2016-06-01

    At present, the on-orbit calibration of the geometric parameters of a space surveying camera is usually processed by data from a ground calibration field after capturing the images. The entire process is very complicated and lengthy and cannot monitor and calibrate the geometric parameters in real time. On the basis of a large number of on-orbit calibrations, we found that owing to the influence of many factors, e.g., weather, it is often difficult to capture images of the ground calibration field. Thus, regular calibration using field data cannot be ensured. This article proposes a real time self-calibration method for a space linear array camera on a satellite using the optical auto collimation principle. A collimating light source and small matrix array CCD devices are installed inside the load system of the satellite; these use the same light path as the linear array camera. We can extract the location changes of the cross marks in the matrix array CCD to determine the real-time variations in the focal length and angle parameters of the linear array camera. The on-orbit status of the camera is rapidly obtained using this method. On one hand, the camera's change regulation can be mastered accurately and the camera's attitude can be adjusted in a timely manner to ensure optimal photography; in contrast, self-calibration of the camera aboard the satellite can be realized quickly, which improves the efficiency and reliability of photogrammetric processing.

  4. Effects of ATC automation on precision approaches to closely space parallel runways

    NASA Technical Reports Server (NTRS)

    Slattery, R.; Lee, K.; Sanford, B.

    1995-01-01

    Improved navigational technology (such as the Microwave Landing System and the Global Positioning System) installed in modern aircraft will enable air traffic controllers to better utilize available airspace. Consequently, arrival traffic can fly approaches to parallel runways separated by smaller distances than are currently allowed. Previous simulation studies of advanced navigation approaches have found that controller workload is increased when there is a combination of aircraft that are capable of following advanced navigation routes and aircraft that are not. Research into Air Traffic Control automation at Ames Research Center has led to the development of the Center-TRACON Automation System (CTAS). The Final Approach Spacing Tool (FAST) is the component of the CTAS used in the TRACON area. The work in this paper examines, via simulation, the effects of FAST used for aircraft landing on closely spaced parallel runways. The simulation contained various combinations of aircraft, equipped and unequipped with advanced navigation systems. A set of simulations was run both manually and with an augmented set of FAST advisories to sequence aircraft, assign runways, and avoid conflicts. The results of the simulations are analyzed, measuring the airport throughput, aircraft delay, loss of separation, and controller workload.

  5. Coordinated airborne, space borne, and ground based measurements of massive, thick haze layers during the SAFARI-2000 Dry Season Campaign

    NASA Astrophysics Data System (ADS)

    Schmid, B.; Russell, P.; Pilewskie, P.; Redemann, J.; Hobbs, P.; Holben, B.; Welton, E.; Campbell, J.; Hlavka, D.; McGill, M.; Chu, A.; Remer, L.; Torres, O.; Kahn, R.

    2001-12-01

    From August 13 to September 25, the Southern African Regional Science Initiative's (SAFARI 2000) dry-season airborne campaign coordinated ground-based measurement teams, multiple research aircraft, and satellite overpasses across nine African nations. Among many others, unique coordinated observations were made of the evolution of massive, thick haze layers produced by biomass burning, industrial emissions, marine and biogenic sources. The NASA Ames Airborne Tracking 14-channel Sunphotometer (AATS-14) was operated successfully aboard the University of Washington CV-580 during 24 data flights. The AATS-14 instrument measures the transmission of the direct solar beam at 14 discrete wavelengths (354-1558 nm) from which we derive spectral aerosol optical depths (AOD), columnar water vapor (CWV) and columnar ozone. Flying at different altitudes over a fixed location allows derivation of layer AOD and CWV. Data taken during feasible vertical profiles allows derivation of aerosol extinction and water vapor density. In the talk, we show comparisons with ground-based AERONET sun/sky photometer results, with ground based MPL-Net lidar data, and with measurements from a lidar (CPL) aboard the high-flying ER-2 aircraft. We will use measurements from the Ames Solar Spectral Flux Radiometer to derive estimates of solar spectral forcing as a function of aerosol thickness. Validations of MODIS, MISR and TOMS satellite aerosol and water vapor retrievals will also be presented.

  6. Monitoring and Modeling Crop Health and Water Use via in-situ, Airborne and Space-based Platforms

    NASA Astrophysics Data System (ADS)

    McCabe, M. F.

    2014-12-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress, understanding the sustainable use of available water supplies is critical. Unfortunately, this need is all too often limited by a lack of reliable observations. Techniques that balance the demand for reliable ground-based data with the rapid retrieval of spatially distributed crop characteristics represent a needed line of research. Data from in-situ monitoring coupled with advances in satellite retrievals of key land surface variables, provide the information necessary to characterize many crop health and water use features, including evaporation, leaf-chlorophyll and other common vegetation indices. With developments in UAV and quadcopter solutions, the opportunity to bridge the spatio-temporal gap between satellite and ground based sensing now exists, along with the capacity for customized retrievals of crop information. While there remain challenges in the routine application of autonomous airborne systems, the state of current technology and sensor developments provide the capacity to explore the operational potential. While this presentation will focus on the multi-scale estimation of crop-water use and crop-health characteristics from satellite-based sensors, the retrieval of high resolution spatially distributed information from near-surface airborne and ground-based systems will also be examined.

  7. A High-Precision, Fast-Response Airborne CO2 Analyzer for In Situ Sampling From the Surface to the Middle Stratosphere

    NASA Technical Reports Server (NTRS)

    Daube, B. C., Jr.; Boering, K. A.; Andrews, Arlyn E.; Wofsy, S. C.

    2001-01-01

    Two in situ CO2 analyzers have been developed for deployment on the NASA ER-2 aircraft and on stratospheric balloons. The ER-2 instrument has had more than 150 flights during 21 deployments from 1992 to 2000, resulting in a dataset with nearly pole-to-pole coverage that includes data from all seasons in both hemispheres except austral summer. In-flight calibrations show that the typical long-term (i.e. flight-to-flight) precision of the instruments is better than plus or minus 0.1 ppmv. The flight standards are traceable to standards held by the Scripps Institute of Oceanography and the National Oceanic and Atmospheric Administration's Climate Monitoring and Diagnostics Laboratory. The balloon instrument has had 8 balloon flights since September 1996, providing the first in situ observations of CO2 above approx. 21 km. In addition, the balloon instrument has been flown onboard a Cessna Citation II aircraft for sampling between the surface and 10 km. In this paper, the instrumentation and calibration procedures for both instruments are described in detail. An intercomparison of the two instruments during the Photochemistry of Ozone Loss in the Arctic Region In Summer (POLARIS) project showed that, on average, the instruments agreed to within 0.05 ppmv.

  8. POINTS - A global reference frame opportunity. [Precision Optical Interferometer in Space

    NASA Technical Reports Server (NTRS)

    Chandler, J. F.; Reasenberg, R. D.

    1990-01-01

    POINTS is a space-based optical astrometric interferometer capable of measuring the angular separation of two stars about 90 degrees apart with 5-microarcsec nominal accuracy . During the intended ten-year mission, a repeated survey of a few hundred targets over the whole sky, including a few bright quasars, establish a 'rigid' reference grid with 0.5 microarcsec position uncertainties. At that level, the grid is free of regional biases and tied to the extra-Galactic frame that is the present best candidate for an inertial frame. POINTS will also determine parallaxes and annual proper motions at about the same level. Further, the planetary ephemeris frame is tied through stellar aberration to the grid at about 300 microarcsec. Additional targets of interest, to a limiting magnitude of greater than 20, are observed relative to the grid, yielding determinations with uncertainties depending on the observing schedule. Measurement at the microarcsec/year level of the apparent relative velocities of quasars that are widely separated on the sky severely test the assumption of cosmological quasar distances and may also constrain models of the early universe.

  9. PICASSO: an end-to-end image simulation tool for space and airborne imaging systems II. Extension to the thermal infrared: equations and methods

    NASA Astrophysics Data System (ADS)

    Cota, Stephen A.; Lomheim, Terrence S.; Florio, Christopher J.; Harbold, Jeffrey M.; Muto, B. Michael; Schoolar, Richard B.; Wintz, Daniel T.; Keller, Robert A.

    2011-10-01

    In a previous paper in this series, we described how The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) tool may be used to model space and airborne imaging systems operating in the visible to near-infrared (VISNIR). PICASSO is a systems-level tool, representative of a class of such tools used throughout the remote sensing community. It is capable of modeling systems over a wide range of fidelity, anywhere from conceptual design level (where it can serve as an integral part of the systems engineering process) to as-built hardware (where it can serve as part of the verification process). In the present paper, we extend the discussion of PICASSO to the modeling of Thermal Infrared (TIR) remote sensing systems, presenting the equations and methods necessary to modeling in that regime.

  10. High-precision opto-mechanical lens system for space applications assembled by innovative local soldering technique

    NASA Astrophysics Data System (ADS)

    Ribes, P.; Koechlin, C.; Burkhardt, T.; Hornaff, M.; Burkhardt, D.; Kamm, A.; Gramens, S.; Beckert, E.; Fiault, G.; Eberhardt, R.; Tünnermann, A.

    2016-02-01

    Solder joining using metallic solder alloys is an alternative to adhesive bonding. Laser-based soldering processes are especially well suited for the joining of optical components made of fragile and brittle materials such as glasses, ceramics and optical crystals. This is due to a localized and minimized input of thermal energy. Solderjet bumping technology has been used to assemble a lens mount breadboard taking as input specifications the requirements found for the optical beam expander for the European Space Agency (ESA) EarthCare Mission. The silica lens and a titanium barrel have been designed and assembled with this technology in order to withstand the stringent mission demands; handling high mechanical and thermal loads without losing its optical performances. Finally a high-precision opto-mechanical lens mount has been assembled with a minimal localized stress (<1 MPa) showing outstanding performances in terms of wave-front error measurements and beam depolarization ratio before and after environmental tests.

  11. Development and Testing of a High-Precision Position and Attitude Measuring System for a Space Mechanism

    NASA Technical Reports Server (NTRS)

    Khanenya, Nikolay; Paciotti, Gabriel; Forzani, Eugenio; Blecha, Luc

    2016-01-01

    This paper describes a high-precision optical metrology system - a unique ground test equipment which was designed and implemented for simultaneous precise contactless measurements of 6 degrees-of-freedom (3 translational + 3 rotational) of a space mechanism end-effector [1] in a thermally controlled ISO 5 clean environment. The developed contactless method reconstructs both position and attitude of the specimen from three cross-sections measured by 2D distance sensors [2]. The cleanliness is preserved by the hermetic test chamber filled with high purity nitrogen. The specimen's temperature is controlled by the thermostat [7]. The developed method excludes errors caused by the thermal deformations and manufacturing inaccuracies of the test jig. Tests and simulations show that the measurement accuracy of an object absolute position is of 20 micron in in-plane measurement (XY) and about 50 micron out of plane (Z). The typical absolute attitude is determined with an accuracy better than 3 arcmin in rotation around X and Y and better than 10 arcmin in Z. The metrology system is able to determine relative position and movement with an accuracy one order of magnitude lower than the absolute accuracy. Typical relative displacement measurement accuracies are better than 1 micron in X and Y and about 2 micron in Z. Finally, the relative rotation can be measured with accuracy better than 20 arcsec in any direction.

  12. A study on ultra-precision machining technique for Al6061-T6 to fabricate space infrared optics

    NASA Astrophysics Data System (ADS)

    Ryu, Geun-man; Lee, Gil-jae; Hyun, Sang-won; Sung, Ha-yeong; Chung, Euisik; Kim, Geon-hee

    2014-08-01

    In this paper, analysis of variance on designed experiments with full factorial design was applied to determine the optimized machining parameters for ultra-precision fabrication of the secondary aspheric mirror, which is one of the key elements of the space cryogenic infrared optics. A single point diamond turning machine (SPDTM, Nanotech 4μpL Moore) was adopted to fabricate the material, AL6061-T6, and the three machining parameters of cutting speed, feed rate and depth of cut were selected. With several randomly assigned experimental conditions, surface roughness of each condition was measured by a non-contact optical profiler (NT2000; Vecco). As a result of analysis using Minitab, the optimum cutting condition was determined as following; cutting speed: 122 m/min, feed rate: 3 mm/min and depth of cut: 1 μm. Finally, a 120 mm diameter aspheric secondary mirror was attached to a particularly designed jig by using mixture of paraffin and wax and successfully fabricated under the optimum machining parameters. The profile of machined surface was measured by a high-accuracy 3-D profilometer(UA3P; Panasonic) and we obtained the geometrical errors of 30.6 nm(RMS) and 262.4 nm(PV), which satisfy the requirements of the space cryogenic infrared optics.

  13. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  14. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  15. Navigation for space shuttle approach and landing using an inertial navigation system augmented by data from a precision ranging system or a microwave scan beam landing guidance system

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.

    1970-01-01

    A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.

  16. Precision Composite Space Structures

    DTIC Science & Technology

    2007-10-15

    analysis of composite laminates with bolted joints under bending loads. J Compos Mater 1995;29(1):15-36. 283 [D.52]. Lee JD. Three dimensional...fiber reinforced composite bends . J Compos Mater 1986;20(1):30-45. [D.57]. Nagesh. Finite-element analysis of pressure vessels with progressive...composite cylinder subjected to three-point bending : Correlation of beam theory with experiment. Compos Struct 2004;63(3-4):439-445. [D.135]. Huang ZM

  17. The 4-Corners methane hotspot: Mapping CH4 plumes at 60km through 1m resolution using space- and airborne spectrometers

    NASA Astrophysics Data System (ADS)

    Frankenberg, C.; Thorpe, A. K.; Hook, S. J.; Green, R. O.; Thompson, D. R.; Kort, E. A.; Hulley, G. C.; Vance, N.; Bue, B. D.; Aubrey, A. D.

    2015-12-01

    The SCIAMACHY instrument onboard the European research satellite ENVISAT detected a large methane hotspot in the 4-Corners area, specifically in New Mexico and Colorado. Total methane emissions in this region were estimated to be on the order of 0.5Tg/yr, presumably related to coal-bed methane exploration. Here, we report on NASA efforts to augment the TOPDOWN campaign intended to enable regional methane source inversions and identify source types in this area. The Jet Propulsion Laboratory was funded to fly two airborne imaging spectrometers, viz. AVIRIS-NG and HyTES. In April 2015, we used both instruments to continuously map about 2000km2 in the 4-Corners area at 1-5m spatial resolution, with special focus on the most enhanced areas as observed from space. During our weeklong campaign, we detected more than 50 isolated and strongly enhanced methane plumes, ranging from coal mine venting shafts and gas processing facilities through individual well-pads, pipeline leaks and outcrop. Results could be immediately shared with ground-based teams and TOPDOWN aircraft so that ground-validation and identification was feasible for a number of sources. We will provide a general overview of the JPL-led mapping campaign efforts and show individual results, derive source strength estimates and discuss how the results fit in with space borne estimates.

  18. Airborne Particles.

    ERIC Educational Resources Information Center

    Ojala, Carl F.; Ojala, Eric J.

    1987-01-01

    Describes an activity in which students collect airborne particles using a common vacuum cleaner. Suggests ways for the students to convert their data into information related to air pollution and human health. Urges consideration of weather patterns when analyzing the results of the investigation. (TW)

  19. Clear-Sky Closure Studies of Tropospheric Aerosol and Water Vapor During ACE-2 Using Airborne Sunphotometer, Airborne In-Situ, Space-Borne, and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Collins, Donald R.; Gasso, Santiago; Oestroem, Elisabeth; Powell, Donna M.; Welton, Ellsworth J.; Durkee, Philip A.; Livingston, John M.; Russell, Philip B.; Flagan, Richard C.; Seinfeld, John H.; Hegg, Dean A.; Noone, Kevin J.; Voss, Kenneth J.; Gordon, Howard R.; Reagan, John A.; Spinhirne, James D.

    2000-01-01

    We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (a differential mobility analyzer, three optical particle counters, three nephelometers, and one absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidars. A wide range of aerosol types was encountered throughout the ACE-2 area, including background Atlantic marine, European pollution-derived, and (although less frequently than expected) African mineral dust. During the two days discussed here, vertical profiles flown in cloud free air masses revealed three distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. Based on size-resolved composition information we have established an aerosol model that allows us to compute optical properties of the ambient aerosol using the optical particle counter results. In the dust, the agreement in layer AOD (lambda=380-1060 nm) is 3-8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at lambda=525 nm), but these differences are within the combined error bars of the measurements and computations. Aerosol size-distribudon closure based on in-situ size distributions and inverted sunphotometer extinction spectra has been achieved in the MBL (total surface area and volume agree within 0.2, and 7%, respectively) but not in the dust layer. The fact that the three nephelometers operated at three different relative humidities (RH) allowed to parameterize hygroscopic growth and to therefore estimate optical properties at ambient RH. The parameters derived for different aerosol types are themselves useful for the aerosol modeling

  20. NASA Airborne Science Program: NASA Stratospheric Platforms

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  1. CALIOPE and TAISIR airborne experiment platform

    SciTech Connect

    Chocol, C.J.

    1994-07-01

    Between 1950 and 1970, scientific ballooning achieved many new objectives and made a substantial contribution to understanding near-earth and space environments. In 1986, the Lawrence Livermore National Laboratory (LLNL) began development of ballooning technology capable of addressing issues associated with precision tracking of ballistic missiles. In 1993, the Radar Ocean Imaging Project identified the need for a low altitude (1 km) airborne platform for its Radar system. These two technologies and experience base have been merged with the acquisition of government surplus Aerostats by Lawrence Livermore National Laboratory. The CALIOPE and TAISIR Programs can benefit directly from this technology by using the Aerostat as an experiment platform for measurements of the spill facility at NTS.

  2. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  3. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  4. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  5. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  6. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  7. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  8. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  9. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  10. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  11. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  12. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  13. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  14. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  15. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  16. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  17. Development of an open source LIDAR modeling framework for space or airborne multi-wavelength LIDAR in support of the ASCENDS mission

    NASA Astrophysics Data System (ADS)

    Pliutau, D.; Prasad, N. S.

    2011-12-01

    The NRC Decadal Survey has identified the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as an important atmospheric science mission. An accuracy of 0.5 percent or better is required for the CO2 mixing ratio retrievals. NASA LaRC, working with its partners, is developing lidar technology in the 1.57 μm CO2 and 1.26-1.27 μm O2 bands for ASCENDS measurements. Simultaneous measurement of CO2 and O2 will be used to obtain CO2 column mixing ratios (XCO2). A generalized open-source LIDAR modeling framework is being developed to quantify errors and evaluate the performance of space and airborne lidar in the 1.57-μm and 1.26-1.27-μm bands of CO2 and O2. The general character of the simulation will also allow calculations for alternative 2.05 μm band of CO2 and the A-band of oxygen being investigated by other ASCENDS groups. Such cross-comparison is useful for validation purposes. Lidar simulation package components planned are presented in Table 1 (Ref. 1, 2, 3, 4) describing the main module and auxiliary programs. Our ongoing efforts include implementation of alternative lineshapes for 1.57μm CO2 and 1.26-1.27 μm O2 bands including the effects of speed dependence and line mixing. The accuracy of alternative lineshape models will be validated through comparison of airborne simulations with test-flights data. Figure 2 presents an overview of the lidar simulation framework where geographical location, date/time input are used to derive parameters for subsequent transmission and lidar calculations. The framework will rely upon the use of several databases and satellite datasets such as CALIPSO, MODIS, Google Earth, and GEOS-5 with an option to use radiosonde data. Our lidar framework is anticipated to also become useful for analysis of other missions based on active sensing for a variety of gasses and spectral ranges. (The authors acknowledge the support from ESTO and NPP). 1) L. S. Rothman et al., JQSRT, 110, 533-572, (2009) 2) Clough S. A

  18. A simulation analysis of space-based and airborne moving platform radars in look-down clutter

    NASA Astrophysics Data System (ADS)

    Repak, P. L.

    1983-05-01

    A simulation technique has been developed to provide the radar engineer with a tool for comparative examination of radar systems and target detection in the presence of look-down clutter. Using a plotting interface such as the Dedicated User Interface System (DUIS), an engineer can evaluate proposed radar designs against one another for target detection performance in a precise graphical format. The user is able to select an antenna function from either measured data or derived data under the existing Parametric Antenna Analysis Software (PAAS). The antenna platform may be at any designated altitude and velocity with respect to ground clutter scatterers. Entry of an exoatmospheric altitude automatically computes the proper circular satellite orbit velocity and introduces Earth rotation. Target radar echoes at specified ground locations are compared to clutter echoes in the sidelobes as well as the radar mainbeam. Analysis of output date serves as a measure of moving target minimum detectable velocity (MDV) for the total radar system. Written for analysts with some technical Doppler radar and clutter understanding this report leads the engineer through the theory and equations which develop the simulation computer program. Example cases and analyses are given to show program utility and output results.

  19. Contribution of space platforms to a ground and airborne remote-sensing programme over active Italian volcanoes

    NASA Technical Reports Server (NTRS)

    Cassinis, R.; Lechi, G. M.; Tonelli, A. M.

    1974-01-01

    ERTS-1 imagery of the volcanic areas of southern Italy was used primarily for the evaluation of space platform capabilties in the domains of regional geology, soil and rock-type classification and, more generally, to study the environment of active volcanoes. The test sites were selected and equipped primarily to monitor thermal emission, but ground truth data was also collected in other domains (reflectance of rocks, soils and vegetation). The test areas were overflown with a two channel thermal scanner, while a thermo camera was used on the ground to monitor the hot spots. The primary goal of this survey was to plot the changes in thermal emission with time in the framework of a research program for the surveillance of active volcanoes. However, another task was an evaluation of emissivity changes by comparing the outputs of the two thermal channels. These results were compared with the reflectance changes observed on multispectral ERTS-1 imagery.

  20. Past, present, and future of the INTA airborne remote sensing laboratory

    NASA Astrophysics Data System (ADS)

    Diaz de Aguilar, Javier; Fernandez Renau, Alix; Gomez Sanchez, Jose A.; Gutierrez de la Camara, Oscar

    2003-04-01

    The remote sensing laboratory belongs to the Earth Observation, Remote Sensing and Atmospheric Research division of INTA. INTA is a government research organization of the Spanish Department of Defense. INTA has been performing airborne remote sensing campaigns since 1975. The Remote Sensing Laboratory is devoted to the application and development of both aerial and space remote sensing technqiues. It owns both, personnel and technology suitable to perform flight campaigns in order to acquire remote sensing images and, with the help of precise image processing techniques, extract useful information. Currently has two different airborne platforms, for remote sensing and for atmospheric research, and is in the process of specification of a new platform for generation research. INTA is partner of the Concerted Action 'European Fleet for Airborne Research'. This paper describes the INTA platform, sensors, systems and its integration in the aircraft. The experience in airborne remote sensing campaigns also described. The research campaigns performed show their application in comparison with satellite remote sensing. Some examples of this are, evaluation of future space sensors, calibration and validation of images acquired by operative space platforms, environmental impact of ecological distasters, ocean surfaces characteristics, wetland mapping and fire analysis.

  1. Simulation Framework to Estimate the Performance of CO2 and O2 Sensing from Space and Airborne Platforms for the ASCENDS Mission Requirements Analysis

    NASA Technical Reports Server (NTRS)

    Plitau, Denis; Prasad, Narasimha S.

    2012-01-01

    The Active Sensing of CO2 Emissions over Nights Days and Seasons (ASCENDS) mission recommended by the NRC Decadal Survey has a desired accuracy of 0.3% in carbon dioxide mixing ratio (XCO2) retrievals requiring careful selection and optimization of the instrument parameters. NASA Langley Research Center (LaRC) is investigating 1.57 micron carbon dioxide as well as the 1.26-1.27 micron oxygen bands for our proposed ASCENDS mission requirements investigation. Simulation studies are underway for these bands to select optimum instrument parameters. The simulations are based on a multi-wavelength lidar modeling framework being developed at NASA LaRC to predict the performance of CO2 and O2 sensing from space and airborne platforms. The modeling framework consists of a lidar simulation module and a line-by-line calculation component with interchangeable lineshape routines to test the performance of alternative lineshape models in the simulations. As an option the line-by-line radiative transfer model (LBLRTM) program may also be used for line-by-line calculations. The modeling framework is being used to perform error analysis, establish optimum measurement wavelengths as well as to identify the best lineshape models to be used in CO2 and O2 retrievals. Several additional programs for HITRAN database management and related simulations are planned to be included in the framework. The description of the modeling framework with selected results of the simulation studies for CO2 and O2 sensing is presented in this paper.

  2. Research on the Problem of High-Precision Deployment for Large-Aperture Space-Based Science Instruments

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Peterson, Lee D.; Hachkowski, M. Roman; Hinkle, Jason D.; Hardaway, Lisa R.

    1998-01-01

    The present paper summarizes results from an ongoing research program conducted jointly by the University of Colorado and NASA Langley Research Center since 1994. This program has resulted in general guidelines for the design of high-precision deployment mechanisms, and tests of prototype deployable structures incorporating these mechanisms have shown microdynamically stable behavior (i.e., dimensional stability to parts per million). These advancements have resulted from the identification of numerous heretofore unknown microdynamic and micromechanical response phenomena, and the development of new test techniques and instrumentation systems to interrogate these phenomena. In addition, recent tests have begun to interrogate nanomechanical response of materials and joints and have been used to develop an understanding of nonlinear nanodynamic behavior in microdynamically stable structures. The ultimate goal of these efforts is to enable nano-precision active control of micro-precision deployable structures (i.e., active control to a resolution of parts per billion).

  3. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  4. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Fourth Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2013-01-01

    This paper presents an overview of the fourth major revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. Because this algorithm is trajectory-based, it also has the inherent ability to support required-time-of-arrival (RTA) operations. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. Revisions to this algorithm were based on a change to the expected operational environment.

  5. Modeling Airborne Gravity Data with Local Functions for Regional Geoid Enhancement ---- A Case Study in Puerto Rico Area

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng

    2016-04-01

    Airborne gravimetry has been used as the primary method to quickly and economically obtain updated gravity field information over a region, targeted specifically. Thus, unlike the satellite missions that provide global or near global data coverage, the observables from airborne campaigns are apparently space limited. Moreover, they are also band limited in the frequency domain, considering that various filter banks and/or de-noising techniques have to be applied to overcome the low signal to noise ratio problem that are presented in the airborne systems due to mechanical and mathematical limitations in computing the accelerations, both the kinematic one and the dynamic one. As a result, in this study, a band-limited local function system based on the point mass model is used to process these airborne gravity data that have both a limited frequency domain and a limited space domain in the target area: Puerto Rico Island and its nearby ocean areas. The resulting geoid model show obvious middle to short wavelength geoid changes due to airborne gravity data contribution. In the land area, these changes improved the geoid precision from 3.27cm to 2.09cm at the local GNSS/Leveling bench marks. More importantly, the error trend in the geoid models is largely reduced if not completely removed. Various oceanographic models will be used to validate the geoid changes in the nearby open sea areas.

  6. Space shuttle guidance, navigation and control equation document no. 4: Precision state and filter weighting matrix extrapolation

    NASA Technical Reports Server (NTRS)

    Robertson, W. M.

    1972-01-01

    The Precision State and Filter Weighting Matrix Extrapolation Routine is described which provides the capability to extrapolate any spacecraft geocentric state vector either backwards or forwards in time through a force field consisting of the earth's primary central-force gravitational attraction and a superimposed perturbing acceleration. The routine also provides the capability of extrapolating the filter-weighting matrix along the precision trajectory. This matrix is a square root form of the error covariance matrix and contains statistical information relative to the accuracies of the state vectors and certain other optionally estimated quantities. The routine is a cooled algorithm for the numerical solution of modified forms of the basic differential equations which are satisfied by the geocentric state vector of the spacecraft's center of mass and by the filter-weighting matrix.

  7. UAVSAR: An Airborne Window on Earth Surface Deformation

    NASA Technical Reports Server (NTRS)

    Hensley, Scott

    2011-01-01

    This study demonstrates that UAVSAR's precision autopilot and electronic steering have allowed for the reliable collection of airborne repeat pass radar interferometric data for deformation mapping. Deformation maps from temporal scales ranging from hours to months over a variety of signals of geophysical interest illustrate the utility of UAVSAR airborne repeat pass interferometry to these studies.

  8. Evapotranspiration from Airborne Simulators as a Proxy Datasets for NASA's ECOSTRESS mission - A new Thermal Infrared Instrument on the International Space Station

    NASA Astrophysics Data System (ADS)

    Guillevic, P. C.; Hulley, G. C.; Hook, S. J.; Olioso, A.; Sanchez, J. M.; Drewry, D.; Running, S. W.; Fisher, J. B.

    2014-12-01

    Surface evapotranspiration (ET) represents the loss of water from the Earth's surface both by soil evaporation and vegetation transpiration processes. ET is a key climate variable linking the water, carbon, and energy cycles, and is very sensitive to changes in atmospheric forcing and soil water content. The response of ET to water and heat stress directly affects the surface energy balance and temperature which can be measured by thermal infrared remote sensing observations. The NASA ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) will be deployed in 2019 to address critical questions on plant-water dynamics, ecosystem productivity and future ecosystem changes with climate through an optimal combination of thermal infrared measurements in 5 spectral bands between 8-12 µm with pixel sizes of 38×57 m and an average revisit of 5 days over the contiguous United States at varying times of day. Two instruments capable of providing proxy datasets are the MODIS/ASTER (MASTER) airborne simulator and Hyperspectral Thermal Emissions Spectrometer (HyTES). This study is focused on estimating evapotranspiration using shortwave and thermal infrared remote sensing observations from these instruments. The thermal infrared data from MASTER/HyTES is used as a proxy dataset for ECOSTRESS to demonstrate the capability of the future spaceborne system to derive ET and water stress information from thermal based retrievals of land surface temperature. MASTER and HyTES data collected from 2004 to present over the Western United States at different seasons are used to test and evaluate different ET algorithms using ground-based measurements. Selected algorithms are 1) explicitly based on surface energy budget calculation or 2) based on the Penman-Monteith equation and use information on land surface temperature to estimate the surface resistance to convective fluxes. We use ground data from the Fluxnet and Ameriflux networks, and from permanent validation

  9. Proceedings of the Annual Precise Time and Time Interval (PTTI) applications and Planning Meeting (9th), Held at NASA Goddard Space Flight Center, November 29 - December 1, 1977

    DTIC Science & Technology

    1978-03-01

    relating the time recovered from the satellite to the masterclock at Wallops Island is given below. Term 1 is known to better thanI 0s using the data logger...34/. .- ’."’" _’ _ . _.., , _ " . • • II I , Best Available Copy NASA Technical Memorandum 78104 ROCEEDINGS CO F THE INTH ANNUAL RECISE TIME AND IME INTERVAL (PTTI...Distribt Itd TM 78104 PROCEEDINGS OF THE NINTH ANNUAL PRECISE TIME AND TIME INTERVAL (PTTI) APPLICATIONS AND PLANNING MEETING Held at NASA Goddard Space

  10. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing to Include Parallel Runway Operations

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2011-01-01

    This paper presents an overview of an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. This implementation provides the ability to manage spacing against two traffic aircraft, with one of these aircraft operating to a parallel dependent runway. Because this algorithm is trajectory-based, it also has the inherent ability to support required-time-of-arrival (RTA) operations

  11. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Fifth Edition

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2015-01-01

    This paper presents an overview of the fifth revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This algorithm is referred to as the Airborne Spacing for Terminal Arrival Routes version 12 (ASTAR12). This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. Because this algorithm is trajectory-based, it also has the inherent ability to support required-time-of- arrival (RTA) operations. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm includes a ground speed feedback term to compensate for slower than expected traffic aircraft speeds based on the accepted air traffic control tendency to slow aircraft below the nominal arrival speeds when they are farther from the airport.

  12. The Mass of HD 38529c from Hubble Space Telescope Astrometry and High-precision Radial Velocities

    NASA Astrophysics Data System (ADS)

    Benedict, G. Fritz; McArthur, Barbara E.; Bean, Jacob L.; Barnes, Rory; Harrison, Thomas E.; Hatzes, Artie; Martioli, Eder; Nelan, Edmund P.

    2010-05-01

    Hubble Space Telescope Fine Guidance Sensor astrometric observations of the G4 IV star HD 38529 are combined with the results of the analysis of extensive ground-based radial velocity (RV) data to determine the mass of the outermost of two previously known companions. Our new RVs obtained with the Hobby-Eberly Telescope and velocities from the Carnegie-California group now span over 11 yr. With these data we obtain improved RV orbital elements for both the inner companion, HD 38529b, and the outer companion, HD 38529c. We identify a rotational period of HD 38529 (P rot = 31.65 ± 0fd17) with Fine Guidance Sensor photometry. The inferred star spot fraction is consistent with the remaining scatter in velocities being caused by spot-related stellar activity. We then model the combined astrometric and RV measurements to obtain the parallax, proper motion, perturbation period, perturbation inclination, and perturbation size due to HD 38529c. For HD 38529c we find P = 2136.1 ± 0.3 d, perturbation semimajor axis α = 1.05 ± 0.06 mas, and inclination i = 48fdg3 ± 3fdg7. Assuming a primary mass M * = 1.48 M sun, we obtain a companion mass Mc = 17.6+1.5 -1.2 M Jup, 3σ above a 13 M Jup deuterium burning, brown dwarf lower limit. Dynamical simulations incorporating this accurate mass for HD 38529c indicate that a near-Saturn mass planet could exist between the two known companions. We find weak evidence of an additional low amplitude signal that can be modeled as a planetary-mass (~0.17 M Jup) companion at P ~194 days. Including this component in our modeling lowers the error of the mass determined for HD 38529c. Additional observations (RVs and/or Gaia astrometry) are required to validate an interpretation of HD 38529d as a planetary-mass companion. If confirmed, the resulting HD 38529 planetary system may be an example of a "Packed Planetary System." Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute

  13. Precise, motion-free polarization control in Second Harmonic Generation microscopy using a liquid crystal modulator in the infinity space.

    PubMed

    Lien, Chi-Hsiang; Tilbury, Karissa; Chen, Shean-Jen; Campagnola, Paul J

    2013-01-01

    Second Harmonic Generation (SHG) microscopy coupled with polarization analysis has great potential for use in tissue characterization, as molecular and supramolecular structural details can be extracted. Such measurements are difficult to perform quickly and accurately. Here we present a new method that uses a liquid crystal modulator (LCM) located in the infinity space of a SHG laser scanning microscope that allows the generation of any desired linear or circular polarization state. As the device contains no moving parts, polarization can be rotated accurately and faster than by manual or motorized control. The performance in terms of polarization purity was validated using Stokes vector polarimetry, and found to have minimal residual polarization ellipticity. SHG polarization imaging characteristics were validated against well-characterized specimens having cylindrical and/or linear symmetries. The LCM has a small footprint and can be implemented easily in any standard microscope and is cost effective relative to other technologies.

  14. Modelling an arbitrarily oriented magnetic dipole over a homogeneous half-space for a rapid topographic correction of airborne EM data

    NASA Astrophysics Data System (ADS)

    Guillemoteau, Julien; Sailhac, Pascal; Behaegel, Mickael

    2015-10-01

    Most airborne electromagnetic (EM) processing programs assume a flat ground surface. However, in mountainous areas, the system can be at an angle with regard to the ground. As the system is no longer parallel to the ground surface, the measured magnetic field has to be corrected and the ground induced eddy current has to be modelled in a better way when performing a very fine interpretation of the data. We first recall the theoretical background for the modelling of a magnetic dipole source and study it in regard to the case of an arbitrarily oriented magnetic dipole. We show in particular how transient central loop helicopter borne data are influenced by this inclination. The result shows that the effect of topography on airborne EM is more important at early time windows and for systems using a short cut-off source. In this paper, we suggest that an estimate be made off the locally averaged inclination of the system to the ground and then to correct the data for this before inverting it (whether the inversion assumes a flat 1D, 2D or 3D sub-surface). Both 1D and 2D inversions are applied to synthetic and real data sets with such a correction. The consequence on the ground imaging is small for slopes with an angle less than 25° but the correction factor can be useful for improving the estimation of depths in mountainous areas.

  15. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  16. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  17. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  18. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  19. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  20. 54. DETAIL OF GENERAL ELECTRIC AIRBORNE BEACON EQUIPMENT TEST SET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. DETAIL OF GENERAL ELECTRIC AIRBORNE BEACON EQUIPMENT TEST SET (LEFT) AND ASSOCIATED GOULD BRUSH CHART RECORDERS (RIGHT). ELAPSED TIME COUNTER SITS ATOP AIRBORNE BEACON EQUIPMENT TEST SET. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. Miniaturized Airborne Imaging Central Server System

    NASA Technical Reports Server (NTRS)

    Sun, Xiuhong

    2011-01-01

    In recent years, some remote-sensing applications require advanced airborne multi-sensor systems to provide high performance reflective and emissive spectral imaging measurement rapidly over large areas. The key or unique problem of characteristics is associated with a black box back-end system that operates a suite of cutting-edge imaging sensors to collect simultaneously the high throughput reflective and emissive spectral imaging data with precision georeference. This back-end system needs to be portable, easy-to-use, and reliable with advanced onboard processing. The innovation of the black box backend is a miniaturized airborne imaging central server system (MAICSS). MAICSS integrates a complex embedded system of systems with dedicated power and signal electronic circuits inside to serve a suite of configurable cutting-edge electro- optical (EO), long-wave infrared (LWIR), and medium-wave infrared (MWIR) cameras, a hyperspectral imaging scanner, and a GPS and inertial measurement unit (IMU) for atmospheric and surface remote sensing. Its compatible sensor packages include NASA s 1,024 1,024 pixel LWIR quantum well infrared photodetector (QWIP) imager; a 60.5 megapixel BuckEye EO camera; and a fast (e.g. 200+ scanlines/s) and wide swath-width (e.g., 1,920+ pixels) CCD/InGaAs imager-based visible/near infrared reflectance (VNIR) and shortwave infrared (SWIR) imaging spectrometer. MAICSS records continuous precision georeferenced and time-tagged multisensor throughputs to mass storage devices at a high aggregate rate, typically 60 MB/s for its LWIR/EO payload. MAICSS is a complete stand-alone imaging server instrument with an easy-to-use software package for either autonomous data collection or interactive airborne operation. Advanced multisensor data acquisition and onboard processing software features have been implemented for MAICSS. With the onboard processing for real time image development, correction, histogram-equalization, compression, georeference, and

  2. Airborne Measurements of Atmospheric Methane Using Pulsed Laser Transmitters

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Wu, Stewart; Gonzalez, Brayler; Rodriguez, Michael; Hasselbrack, William; Fahey, Molly; Yu, Anthony; Stephen, Mark; Mao, Jianping; Kawa, Stephan

    2016-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. At NASA Goddard Space Flight Center (GSFC) we have been developing a laser-based technology needed to remotely measure CH4 from orbit. We report on our development effort for the methane lidar, especially on our laser transmitters and recent airborne demonstration. Our lidar transmitter is based on an optical parametric process to generate near infrared laser radiation at 1651 nanometers, coincident with a CH4 absorption. In an airborne flight campaign in the fall of 2015, we tested two kinds of laser transmitters --- an optical parametric amplifier (OPA) and an optical parametric oscillator (OPO). The output wavelength of the lasers was rapidly tuned over the CH4 absorption by tuning the seed laser to sample the CH4 absorption line at several wavelengths. This approach uses the same Integrated Path Differential Absorption (IPDA) technique we have used for our CO2 lidar for ASCENDS. The two laser transmitters were successfully operated in the NASAs DC-8 aircraft, measuring methane from 3 to 13 kilometers with high precision.

  3. Stellar Occultations from Airborne Platforms: 1988 to 2016

    NASA Astrophysics Data System (ADS)

    Bosh, Amanda S.; Dunham, Edward W.; Zuluaga, Carlos; Levine, Stephen; Person, Michael J.; Van Cleve, Jeffrey E.

    2016-10-01

    Observing a stellar occultation by a solar system body with an airborne telescope requires precise positioning of the observer within the shadow cast onto the Earth. For small bodies like Pluto and Kuiper Belt objects, smaller than the Earth, the challenge is particularly intense, with the accuracy of the astrometric and flight planning determining whether the observation succeeds or fails. From our first airborne occultation by Pluto in 1988 aboard the Kuiper Airborne Observatory (KAO), to our most recent event by Pluto in 2015 aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA), we have refined our astrometric and flight planning systems to the point where we can now place an airborne observer into the small central flash zone. We will discuss the history of airborne observation of occultations while detailing the improvements in the astrometric processes. Support for this work was provided by NASA SSO grant NNX15AJ82G to Lowell Observatory.

  4. Precision Measurement.

    ERIC Educational Resources Information Center

    Radius, Marcie; And Others

    The manual provides information for precision measurement (counting of movements per minute of a chosen activity) of achievement in special education students. Initial sections give guidelines for the teacher, parent, and student to follow for various methods of charting behavior. It is explained that precision measurement is a way to measure the…

  5. Airborne Crowd Density Estimation

    NASA Astrophysics Data System (ADS)

    Meynberg, O.; Kuschk, G.

    2013-10-01

    This paper proposes a new method for estimating human crowd densities from aerial imagery. Applications benefiting from an accurate crowd monitoring system are mainly found in the security sector. Normally crowd density estimation is done through in-situ camera systems mounted on high locations although this is not appropriate in case of very large crowds with thousands of people. Using airborne camera systems in these scenarios is a new research topic. Our method uses a preliminary filtering of the whole image space by suitable and fast interest point detection resulting in a number of image regions, possibly containing human crowds. Validation of these candidates is done by transforming the corresponding image patches into a low-dimensional and discriminative feature space and classifying the results using a support vector machine (SVM). The feature space is spanned by texture features computed by applying a Gabor filter bank with varying scale and orientation to the image patches. For evaluation, we use 5 different image datasets acquired by the 3K+ aerial camera system of the German Aerospace Center during real mass events like concerts or football games. To evaluate the robustness and generality of our method, these datasets are taken from different flight heights between 800 m and 1500 m above ground (keeping a fixed focal length) and varying daylight and shadow conditions. The results of our crowd density estimation are evaluated against a reference data set obtained by manually labeling tens of thousands individual persons in the corresponding datasets and show that our method is able to estimate human crowd densities in challenging realistic scenarios.

  6. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  7. Airborne Gravimetry and Downward Continuation (Invited)

    NASA Astrophysics Data System (ADS)

    Jekeli, C.; Yang, H.; Kwon, J.

    2009-12-01

    Measuring the Earth’s gravity field using airborne instrumentation is fully operational and has been widely practiced for nearly three decades since its official debut in the early 1980s (S. Hammer: “Airborne Gravity is Here!”) coinciding with the precision kinematic positioning capability of GPS. Airborne gravimetry is undertaken for both efficient geophysical exploration purposes, as well as the determination of the regional geoid to aid in the modernization of height systems. Especially for the latter application, downward continuation of the data and combination with existing terrestrial gravimetry pose theoretical as well as practical challenges, which, on the other hand, create multiple processing possibilities. Downward continuation may be approached in various ways from the viewpoint of potential theory and the boundary-value problem to using gradients either estimated locally or computed from existing models. Logistical constraints imposed by the airborne survey, instrumental noise, and the intrinsic numerical instability of downward continuation all conspire to impact the final product in terms of achievable resolution and accuracy. In this paper, we review the theory of airborne gravimetry and the methodology of downward continuation, and provide a numerical comparison of possible schemes and their impact on geoid determination.

  8. Sampling for Airborne Radioactivity

    DTIC Science & Technology

    2007-10-01

    compared to betas, gammas and neutrons. For an airborne radioactivity detection system, it is most important to be able to detect alpha particles and... Airborne radioactive particles may emit alpha, beta, gamma or neutron radiation, depending on which radioisotope is present. From a health perspective...

  9. Precision Medicine

    PubMed Central

    Cholerton, Brenna; Larson, Eric B.; Quinn, Joseph F.; Zabetian, Cyrus P.; Mata, Ignacio F.; Keene, C. Dirk; Flanagan, Margaret; Crane, Paul K.; Grabowski, Thomas J.; Montine, Kathleen S.; Montine, Thomas J.

    2017-01-01

    Three key elements to precision medicine are stratification by risk, detection of pathophysiological processes as early as possible (even before clinical presentation), and alignment of mechanism of action of intervention(s) with an individual's molecular driver(s) of disease. Used for decades in the management of some rare diseases and now gaining broad currency in cancer care, a precision medicine approach is beginning to be adapted to cognitive impairment and dementia. This review focuses on the application of precision medicine to address the clinical and biological complexity of two common neurodegenerative causes of dementia: Alzheimer disease and Parkinson disease. PMID:26724389

  10. Assessment of long-range kinematic GPS positioning errors by comparison with airborne laser altimetry and satellite altimetry

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohong; Forsberg, Rene

    2007-03-01

    Long-range airborne laser altimetry and laser scanning (LIDAR) or airborne gravity surveys in, for example, polar or oceanic areas require airborne kinematic GPS baselines of many hundreds of kilometers in length. In such instances, with the complications of ionospheric biases, it can be a real challenge for traditional differential kinematic GPS software to obtain reasonable solutions. In this paper, we will describe attempts to validate an implementation of the precise point positioning (PPP) technique on an aircraft without the use of a local GPS reference station. We will compare PPP solutions with other conventional GPS solutions, as well as with independent data by comparison of airborne laser data with “ground truth” heights. The comparisons involve two flights: A July 5, 2003, airborne laser flight line across the North Atlantic from Iceland to Scotland, and a May 24, 2004, flight in an area of the Arctic Ocean north of Greenland, near-coincident in time and space with the ICESat satellite laser altimeter. Both of these flights were more than 800 km long. Comparisons between different GPS methods and four different software packages do not suggest a clear preference for any one, with the heights generally showing decimeter-level agreement. For the comparison with the independent ICESat- and LIDAR-derived “ground truth” of ocean or sea-ice heights, the statistics of comparison show a typical fit of around 10 cm RMS in the North Atlantic, and 30 cm in the sea-ice region north of Greenland. Part of the latter 30 cm error is likely due to errors in the airborne LIDAR measurement and calibration, as well as errors in the “ground truth” ocean surfaces due to drifting sea-ice. Nevertheless, the potential of the PPP method for generating 10 cm level kinematic height positioning over long baselines is illustrated.

  11. Comparison of TOPEX/Poseidon orbit determination solutions obtained by the Goddard Space Flight Center Flight Dynamics Division and Precision Orbit Determination Teams

    NASA Astrophysics Data System (ADS)

    Doll, C.; Mistretta, G.; Hart, R.; Oza, D.; Cox, C.; Nemesure, M.; Bolvin, D.; Samii, Mina V.

    Orbit determination results are obtained by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) using the Goddard Trajectory Determination System (GTDS) and a real-time extended Kalman filter estimation system to process Tracking Data and Relay Satellite (TDRS) System (TDRSS) measurements in support of the Ocean Topography Experiment (TOPEX)/Poseidon spacecraft navigation and health and safety operations. GTDS is the operational orbit determination system used by the FDD, and the extended Kalman fliter was implemented in an analysis prototype system, the Real-Time Orbit Determination System/Enhanced (RTOD/E). The Precision Orbit Determination (POD) team within the GSFC Space Geodesy Branch generates an independent set of high-accuracy trajectories to support the TOPEX/Poseidon scientific data. These latter solutions use the Geodynamics (GEODYN) orbit determination system with laser ranging tracking data. The TOPEX/Poseidon trajectories were estimated for the October 22 - November 1, 1992, timeframe, for which the latest preliminary POD results were available. Independent assessments were made of the consistencies of solutions produced by the batch and sequential methods. The batch cases were assessed using overlap comparisons, while the sequential cases were assessed with covariances and the first measurement residuals. The batch least-squares and forward-filtered RTOD/E orbit solutions were compared with the definitive POD orbit solutions. The solution differences were generally less than 10 meters (m) for the batch least squares and less than 18 m for the sequential estimation solutions. The differences among the POD, GTDS, and RTOD/E solutions can be traced to differences in modeling and tracking data types, which are being analyzed in detail.

  12. Planar electrostatic gradiometer for airborne geodesy

    NASA Astrophysics Data System (ADS)

    Foulon, B.; Christophe, B.; Lebat, V.; Boulanger, D.

    2011-12-01

    The knowledge of the gravity field of the Earth has been considerably improved for the last decades, thanks to satellites, in particular, both for gravity measurements and positioning. Gravity, and especially gravity gradiometry data are then of great interest to the study of the structure of the continental margins. Space gravity measurements, in particular with the GOCE satellite in orbit since 2009, provide an absolute gravity reference and should contribute to estimate the systematic effects that would affect the surface datasets. But the spatial resolution of those data essentially addresses the large and medium wavelengths of the field (down to a resolution of 90km) and it is therefore essential to complete them at the shorter wavelengths in particular in the littoral area. To this aim, gravity gradiometry systems may be particularly suitable by covering the land/sea transition zone with a uniform precision, and a spatial resolution higher than from gravimetry. The GREMLIT instrument is taking advantage of technologies, formerly developed by ONERA for the GRACE and GOCE space missions, by adapting them to an airborne environment, using a planar configuration for the gradiometer and designing and building a dedicated stabilized platform controlled by the common mode outputs of the instrument itself similarly to the drag free control of the GOCE satellite. The mains interests of the planar configuration are: - its definition, optimized for levitation in the Earth's gravity field ; - its intrinsic linearity, which minimizes the aliasing due to high frequency vibrations or motions generated outside the measurement bandwidth ; - its compactness, ensuring an excellent dimensional stability, a better thermal homogeneity and making the realization of the decoupling platform easier. The performance objective is 0.1 Eötvös. This lowered performance level with respect to a one hundred times better GOCE-type instrument, takes into account the difficulty of measurements

  13. Precision measurement of the proton and helium flux in primary cosmic rays with the Alpha Magnetic Spectrometer on the International Space Station

    NASA Astrophysics Data System (ADS)

    Heil, M.

    2016-11-01

    The precise measurements of the proton and helium flux in primary cosmic rays based on on data collected by the Alpha Magnetic Spectrometer during the first 30 months of operation (May 19, 2012 to November 26, 2013) onboard the International Space Station are presented. Knowledge of the rigidity dependence of the proton and helium flux is important in understanding the origin, acceleration, and propagation of cosmic rays in our galaxy. The high statistics of the measurements (300 mio. protons, 50 mio. helium) allow to study the detailed variations with rigidity of the fluxes spectral index. The spectral index of both the proton and the helium flux progressively hardens at rigidities larger than 100 GV. The rigidity dependence of the helium flux spectral index is similar to that of the proton spectral index though the magnitudes are different. Remarkably, the spectral index of the proton to helium flux ratio increases with rigidity up to 45 GV and then becomes constant; the flux ratio above 45 GV is well described by a single power law.

  14. Flight Testing of an Advanced Airborne Natural Gas Leak Detection System

    SciTech Connect

    Dawn Lenz; Raymond T. Lines; Darryl Murdock; Jeffrey Owen; Steven Stearns; Michael Stoogenke

    2005-10-01

    ITT Industries Space Systems Division (Space Systems) has developed an airborne natural gas leak detection system designed to detect, image, quantify, and precisely locate leaks from natural gas transmission pipelines. This system is called the Airborne Natural Gas Emission Lidar (ANGEL) system. The ANGEL system uses a highly sensitive differential absorption Lidar technology to remotely detect pipeline leaks. The ANGEL System is operated from a fixed wing aircraft and includes automatic scanning, pointing system, and pilot guidance systems. During a pipeline inspection, the ANGEL system aircraft flies at an elevation of 1000 feet above the ground at speeds of between 100 and 150 mph. Under this contract with DOE/NETL, Space Systems was funded to integrate the ANGEL sensor into a test aircraft and conduct a series of flight tests over a variety of test targets including simulated natural gas pipeline leaks. Following early tests in upstate New York in the summer of 2004, the ANGEL system was deployed to Casper, Wyoming to participate in a set of DOE-sponsored field tests at the Rocky Mountain Oilfield Testing Center (RMOTC). At RMOTC the Space Systems team completed integration of the system and flew an operational system for the first time. The ANGEL system flew 2 missions/day for the duration for the 5-day test. Over the course of the week the ANGEL System detected leaks ranging from 100 to 5,000 scfh.

  15. The Mass of the Candidate Exoplanet Companion to HD 33636 from Hubble Space Telescope Astrometry and High-Precision Radial Velocities

    NASA Astrophysics Data System (ADS)

    Bean, Jacob L.; McArthur, Barbara E.; Benedict, G. Fritz; Harrison, Thomas E.; Bizyaev, Dmitry; Nelan, Edmund; Smith, Verne V.

    2007-08-01

    We have determined a dynamical mass for the companion to HD 33636 that indicates it is a low-mass star instead of an exoplanet. Our result is based on an analysis of Hubble Space Telescope (HST) astrometry and ground-based radial velocity data. We have obtained high-cadence radial velocity measurements spanning 1.3 yr of HD 33636 with the Hobby-Eberly Telescope at McDonald Observatory. We combined these data with previously published velocities to create a data set that spans 9 yr. We used this data set to search for, and place mass limits on, the existence of additional companions in the HD 33636 system. Our high-precision astrometric observations of the system with the HST Fine Guidance Sensor 1r span 1.2 yr. We simultaneously modeled the radial velocity and astrometry data to determine the parallax, proper motion, and perturbation orbit parameters of HD 33636. Our derived parallax, πabs=35.6+/-0.2 mas, agrees within the uncertainties with the Hipparcos value. We find a perturbation period P=2117.3+/-0.8 days, semimajor axis aA=14.2+/-0.2 mas, and system inclination i=4.1deg+/-0.1deg. Assuming the mass of the primary star to be MA=1.02+/-0.03 Msolar, we obtain a companion mass MB=142+/-11 MJup=0.14+/-0.01 Msolar. The much larger true mass of the companion relative to its minimum mass estimated from the spectroscopic orbit parameters (Msini=9.3 MJup) is due to the nearly face-on orbit orientation. This result demonstrates the value of follow-up astrometric observations to determine the true masses of exoplanet candidates detected with the radial velocity method. Based on data obtained with the NASA/ESA Hubble Space Telescope (HST) and the Hobby-Eberly Telescope (HET). The HST observations were obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. The HET is a joint project of the University of Texas at Austin, Pennsylvania State University, Stanford

  16. Ultra-Precision Optics

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Under a Joint Sponsored Research Agreement with Goddard Space Flight Center, SEMATECH, Inc., the Silicon Valley Group, Inc. and Tinsley Laboratories, known as SVG-Tinsley, developed an Ultra-Precision Optics Manufacturing System for space and microlithographic applications. Continuing improvements in optics manufacture will be able to meet unique NASA requirements and the production needs of the lithography industry for many years to come.

  17. Precision metrology.

    PubMed

    Jiang, X; Whitehouse, D J

    2012-08-28

    This article is a summary of the Satellite Meeting, which followed on from the Discussion Meeting at the Royal Society on 'Ultra-precision engineering: from physics to manufacture', held at the Kavli Royal Society International Centre, Chicheley Hall, Buckinghamshire, UK. The meeting was restricted to 18 invited experts in various aspects of precision metrology from academics from the UK and Sweden, Government Institutes from the UK and Germany and global aerospace industries. It examined and identified metrology problem areas that are, or may be, limiting future developments in precision engineering and, in particular, metrology. The Satellite Meeting was intended to produce a vision that will inspire academia and industry to address the solutions of those open-ended problems identified. The discussion covered three areas, namely the function of engineering parts, their measurement and their manufacture, as well as their interactions.

  18. Optimetrics for Precise Navigation

    NASA Technical Reports Server (NTRS)

    Yang, Guangning; Heckler, Gregory; Gramling, Cheryl

    2017-01-01

    Optimetrics for Precise Navigation will be implemented on existing optical communication links. The ranging and Doppler measurements are conducted over communication data frame and clock. The measurement accuracy is two orders of magnitude better than TDRSS. It also has other advantages of: The high optical carrier frequency enables: (1) Immunity from ionosphere and interplanetary Plasma noise floor, which is a performance limitation for RF tracking; and (2) High antenna gain reduces terminal size and volume, enables high precision tracking in Cubesat, and in deep space smallsat. High Optical Pointing Precision provides: (a) spacecraft orientation, (b) Minimal additional hardware to implement Precise Optimetrics over optical comm link; and (c) Continuous optical carrier phase measurement will enable the system presented here to accept future optical frequency standard with much higher clock accuracy.

  19. Urban greenness influences airborne bacterial community composition.

    PubMed

    Mhuireach, Gwynne; Johnson, Bart R; Altrichter, Adam E; Ladau, Joshua; Meadow, James F; Pollard, Katherine S; Green, Jessica L

    2016-11-15

    Urban green space provides health benefits for city dwellers, and new evidence suggests that microorganisms associated with soil and vegetation could play a role. While airborne microorganisms are ubiquitous in urban areas, the influence of nearby vegetation on airborne microbial communities remains poorly understood. We examined airborne microbial communities in parks and parking lots in Eugene, Oregon, using high-throughput sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq platform to identify bacterial taxa, and GIS to measure vegetation cover in buffer zones of different diameters. Our goal was to explore variation among highly vegetated (parks) versus non-vegetated (parking lots) urban environments. A secondary objective was to evaluate passive versus active collection methods for outdoor airborne microbial sampling. Airborne bacterial communities from five parks were different from those of five parking lots (p=0.023), although alpha diversity was similar. Direct gradient analysis showed that the proportion of vegetated area within a 50m radius of the sampling station explained 15% of the variation in bacterial community composition. A number of key taxa, including several Acidobacteriaceae were substantially more abundant in parks, while parking lots had higher relative abundance of Acetobacteraceae. Parks had greater beta diversity than parking lots, i.e. individual parks were characterized by unique bacterial signatures, whereas parking lot communities tended to be similar to each other. Although parks and parking lots were selected to form pairs of nearby sites, spatial proximity did not appear to affect compositional similarity. Our results also showed that passive and active collection methods gave comparable results, indicating the "settling dish" method is effective for outdoor airborne sampling. This work sets a foundation for understanding how urban vegetation may impact microbial communities, with potential implications for designing

  20. Precision translator

    DOEpatents

    Reedy, Robert P.; Crawford, Daniel W.

    1984-01-01

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  1. Precision translator

    DOEpatents

    Reedy, R.P.; Crawford, D.W.

    1982-03-09

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  2. Optical Communications Link to Airborne Transceiver

    NASA Technical Reports Server (NTRS)

    Regehr, Martin W.; Kovalik, Joseph M.; Biswas, Abhijit

    2011-01-01

    An optical link from Earth to an aircraft demonstrates the ability to establish a link from a ground platform to a transceiver moving overhead. An airplane has a challenging disturbance environment including airframe vibrations and occasional abrupt changes in attitude during flight. These disturbances make it difficult to maintain pointing lock in an optical transceiver in an airplane. Acquisition can also be challenging. In the case of the aircraft link, the ground station initially has no precise knowledge of the aircraft s location. An airborne pointing system has been designed, built, and demonstrated using direct-drive brushless DC motors for passive isolation of pointing disturbances and for high-bandwidth control feedback. The airborne transceiver uses a GPS-INS system to determine the aircraft s position and attitude, and to then illuminate the ground station initially for acquisition. The ground transceiver participates in link-pointing acquisition by first using a wide-field camera to detect initial illumination from the airborne beacon, and to perform coarse pointing. It then transfers control to a high-precision pointing detector. Using this scheme, live video was successfully streamed from the ground to the aircraft at 270 Mb/s while simultaneously downlinking a 50 kb/s data stream from the aircraft to the ground.

  3. Airborne Double Pulsed 2-Micron IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Singh, Upendra

    2015-01-01

    We have developed an airborne 2-micron Integrated Path Differential Absorption (IPDA) lidar for atmospheric CO2 measurements. The double pulsed, high pulse energy lidar instrument can provide high-precision CO2 column density measurements.

  4. Development of an airborne remote sensing system for crop pest management: System integration and verification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing along with Global Positioning Systems, Geographic Information Systems, and variable rate technology has been developed, which scientists can implement to help farmers maximize the economic and environmental benefits of crop pest management through precision agriculture. Airborne remo...

  5. Airborne Next: Rethinking Airborne Organization and Applying New Concepts

    DTIC Science & Technology

    2015-06-01

    structures since its employment on a large scale during World War II. It is puzzling to consider how little airborne organizational structures and employment...future potential of airborne concepts by rethinking traditional airborne organizational structures and employment concepts. Using a holistic approach in... structures of airborne forces to model a “small and many” approach over a “large and few” approach, while incorporating a “swarming” concept. Utilizing

  6. Comparison of Continuous Wave CO2 Doppler Lidar Calibration Using Earth Surface Targets in Laboratory and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1999-01-01

    Routine backscatter, beta, measurements by an airborne or space-based lidar from designated earth surfaces with known and fairly uniform beta properties can potentially offer lidar calibration opportunities. This can in turn be used to obtain accurate atmospheric aerosol and cloud beta measurements on large spatial scales. This is important because achieving a precise calibration factor for large pulsed lidars then need not rest solely on using a standard hard target procedure. Furthermore, calibration from designated earth surfaces would provide an inflight performance evaluation of the lidar. Hence, with active remote sensing using lasers with high resolution data, calibration of a space-based lidar using earth's surfaces will be extremely useful. The calibration methodology using the earth's surface initially requires measuring beta of various earth surfaces simulated in the laboratory using a focused continuous wave (CW) CO2 Doppler lidar and then use these beta measurements as standards for the earth surface signal from airborne or space-based lidars. Since beta from the earth's surface may be retrieved at different angles of incidence, beta would also need to be measured at various angles of incidences of the different surfaces. In general, Earth-surface reflectance measurements have been made in the infrared, but the use of lidars to characterize them and in turn use of the Earth's surface to calibrate lidars has not been made. The feasibility of this calibration methodology is demonstrated through a comparison of these laboratory measurements with actual earth surface beta retrieved from the same lidar during the NASA/Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on NASA's DC8 aircraft from 13 - 26 September, 1995. For the selected earth surface from the airborne lidar data, an average beta for the surface was established and the statistics of lidar efficiency was determined. This was compared with the actual lidar efficiency

  7. PRECISE ESTIMATES OF THE PHYSICAL PARAMETERS FOR THE EXOPLANET SYSTEM HD 17156 ENABLED BY HUBBLE SPACE TELESCOPE FINE GUIDANCE SENSOR TRANSIT AND ASTEROSEISMIC OBSERVATIONS

    SciTech Connect

    Nutzman, Philip; Charbonneau, David; Holman, Matthew J.; Gilliland, Ronald L.; McCullough, Peter R.; Nelan, Edmund P.; Christensen-Dalsgaard, Joergen; Kjeldsen, Hans; Brown, Timothy M.

    2011-01-01

    We present observations of three distinct transits of HD 17156b obtained with the Fine Guidance Sensors on board the Hubble Space Telescope. We analyzed both the transit photometry and previously published radial velocities to find the planet-star radius ratio R{sub p} /R{sub *} = 0.07454 {+-} 0.00035, inclination i = 86.49{sup +0.24}{sub -0.20} deg, and scaled semimajor axis a/R{sub *} = 23.19{sup +0.32}{sub -0.27}. This last value translates directly to a mean stellar density determination {rho}{sub *} = 0.522{sup +0.021}{sub -0.018} g cm{sup -3}. Analysis of asteroseismology observations by the companion paper of Gilliland et al. provides a consistent but significantly refined measurement of {rho}{sub *} = 0.5308 {+-} 0.0040. We compare stellar isochrones to this density estimate and find M{sub *} = 1.275 {+-} 0.018 M{sub sun} and a stellar age of 3.37{sup +0.20}{sub -0.47} Gyr. Using this estimate of M{sub *} and incorporating the density constraint from asteroseismology, we model both the photometry and published radial velocities to estimate the planet radius R{sub p} = 1.0870 {+-} 0.0066 R{sub J} and the stellar radius R{sub *} = 1.5007 {+-} 0.0076 R{sub sun}. The planet radius is larger than that found in previous studies and consistent with theoretical models of a solar-composition gas giant of the same mass and equilibrium temperature. For the three transits, we determine the times of mid-transit to a precision of 6.2 s, 7.6 s, and 6.9 s, and the transit times for HD 17156 do not show any significant departures from a constant period. The joint analysis of transit photometry and asteroseismology presages similar studies that will be enabled by the NASA Kepler Mission.

  8. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  9. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  10. Airborne Microwave Imaging of River Velocities

    NASA Technical Reports Server (NTRS)

    Plant, William J.

    2002-01-01

    The objective of this project was to determine whether airborne microwave remote sensing systems can measure river surface currents with sufficient accuracy to make them prospective instruments with which to monitor river flow from space. The approach was to fly a coherent airborne microwave Doppler radar, developed by APL/UW, on a light airplane along several rivers in western Washington state over an extended period of time. The fundamental quantity obtained by this system to measure river currents is the mean offset of the Doppler spectrum. Since this scatter can be obtained from interferometric synthetic aperture radars (INSARs), which can be flown in space, this project provided a cost effective means for determining the suitability of spaceborne INSAR for measuring river flow.

  11. Airborne Topographic Mapper Calibration Procedures and Accuracy Assessment

    NASA Technical Reports Server (NTRS)

    Martin, Chreston F.; Krabill, William B.; Manizade, Serdar S.; Russell, Rob L.; Sonntag, John G.; Swift, Robert N.; Yungel, James K.

    2012-01-01

    Description of NASA Airborn Topographic Mapper (ATM) lidar calibration procedures including analysis of the accuracy and consistancy of various ATM instrument parameters and the resulting influence on topographic elevation measurements. The ATM elevations measurements from a nominal operating altitude 500 to 750 m above the ice surface was found to be: Horizontal Accuracy 74 cm, Horizontal Precision 14 cm, Vertical Accuracy 6.6 cm, Vertical Precision 3 cm.

  12. Validation of Airborne CO2 Laser Measurements

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Dobler, J. T.; Kooi, S.; Fenn, M. A.; Choi, Y.; Vay, S. A.; Harrison, F. W.; Moore, B.; Zaccheo, T. S.

    2010-12-01

    This paper discusses the flight test validation of a unique, multi-frequency, intensity-modulated, single-beam laser absorption spectrometer (LAS) that operates near 1.57 μm for remote column CO2 measurements. This laser system is under development for a future space-based mission to determine the global distribution of regional-scale CO2 sources and sinks, which is the objective of the NASA Active Sensing of CO2 Emissions during Nights, Days, and Seasons (ASCENDS) mission. A prototype of this LAS system, called the Multi-frequency Fiber Laser Lidar (MFLL), was developed by ITT, and it has been flight tested in nine airborne campaigns since May 2005. This paper focuses on the most recent results obtained over the last two years of flight-testing where the MFLL remote CO2 column measurements were evaluated against airborne in situ CO2 profile measurements traceable to World Meteorological Organization standards. A comprehensive multiple-aircraft flight test program was conducted over Oklahoma and Virginia in July-August 2009. The MFLL obtained surface reflectance and average CO2 column variations along the 50-km flight legs over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Central Facility (CF) in Lamont, Oklahoma; over rural Virginia and North Carolina; and over the Chesapeake Bay. For a flight altitude of 4.6 km, the average signal to noise ratio (SNR) for a 1-s CO2 column measurement was found to be 760, which is the equivalent of a CO2 mixing ratio precision of 0.60 ppmv, and for a 10-s average the SNR was found to be 2002 or 0.20 ppmv. Absolute comparisons of MFLL-derived and in situ-derived CO2 column measurements were made for all daytime flights conducted over Oklahoma and Virginia with an average agreement to within 0.32 ppmv. A major ASCENDS flight test campaign was conducted using the NASA DC-8 during 6-18 July 2010. The MFLL system and associated in situ CO2 instrumentation were operated on DC-8 flights over the Central Valley

  13. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  14. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  15. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  16. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  17. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  18. Modelling the risk of airborne infectious disease using exhaled air.

    PubMed

    Issarow, Chacha M; Mulder, Nicola; Wood, Robin

    2015-05-07

    In this paper we develop and demonstrate a flexible mathematical model that predicts the risk of airborne infectious diseases, such as tuberculosis under steady state and non-steady state conditions by monitoring exhaled air by infectors in a confined space. In the development of this model, we used the rebreathed air accumulation rate concept to directly determine the average volume fraction of exhaled air in a given space. From a biological point of view, exhaled air by infectors contains airborne infectious particles that cause airborne infectious diseases such as tuberculosis in confined spaces. Since not all infectious particles can reach the target infection site, we took into account that the infectious particles that commence the infection are determined by respiratory deposition fraction, which is the probability of each infectious particle reaching the target infection site of the respiratory tracts and causing infection. Furthermore, we compute the quantity of carbon dioxide as a marker of exhaled air, which can be inhaled in the room with high likelihood of causing airborne infectious disease given the presence of infectors. We demonstrated mathematically and schematically the correlation between TB transmission probability and airborne infectious particle generation rate, ventilation rate, average volume fraction of exhaled air, TB prevalence and duration of exposure to infectors in a confined space.

  19. Airborne X-band SAR tomography for forest volumes

    NASA Astrophysics Data System (ADS)

    Muirhead, Fiona; Woodhouse, Iain H.; Mulgrew, Bernard

    2016-10-01

    We evaluate the usefulness of X-band, airborne (helicopter) data for tomography over forestry regions and discuss the use of compressive sensing algorithms to aid X-band airborne tomography. This work examines if there is any information that can be gained from forest volumes when analysing forestry sites using X-band data. To do so, different forest scenarios were simulated and a fast SAR simulator was used to model airborne multipass SAR data, at X-band, with parameters based on Leonardo's PicoSAR instrument. Model simulations considered varying factors that affect the height determination when using tomography. The main parameters that are considered here are: motion errors of the platform, the spacing of the flight paths, the resolution of the SAR images and plant life being present under the canopy (an understory). It was found that residual motion errors from the airborne platform cause the largest error in the tomographic profile.

  20. Absolute airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  1. Controlling airborne cues to study small animal navigation

    PubMed Central

    Gershow, Marc; Berck, Matthew; Mathew, Dennis; Luo, Linjiao; Kane, Elizabeth A.; Carlson, John R.; Samuel, Aravinthan D.T.

    2012-01-01

    Small animals like nematodes and insects analyze airborne chemical cues to infer the direction of favorable and noxious locations. In these animals, the study of navigational behavior evoked by airborne cues has been limited by the difficulty of precise stimulus control. We present a system that enables us to deliver gaseous stimuli in defined spatial and temporal patterns to freely moving small animals. We use this apparatus, in combination with machine vision algorithms, to assess and quantify navigational decision-making of Drosophila larvae in response to ethyl acetate (a volatile attractant) and carbon dioxide (a gaseous repellant). PMID:22245808

  2. Airborne Laser/GPS Mapping of Beaches

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Swift, R. N.; Fredrick, E. B.; Manizade, S. S.; Martin, C. F.; Sonntag, J. G.; Duffy, Mark

    1999-01-01

    Results are presented from topographic surveys of the Assateague National Seashore Park using recently developed airborne laser and Global Positioning System (GPS) technology. During November, 1995, and again in May, 1996, the NASA Arctic Ice Mapping (AIM) group from the NASA Goddard Space Flight Center's Wallops Flight Facility conducted surveys as a part of technology enhancement activities or warm-up missions prior to conducting elevation measurements of the Greenland Ice Sheet as part of NASA's Global Climate Change program. The resulting data are compared to surface surveys using standard techniques. The goal of these projects is to make these measurements to an accuracy of 10 cm. The measurements were made from NASA's 4-engine P-3 Orion aircraft using the Airborne Topographic Mapper (ATM), a scanning laser system. The necessary high accuracy vertical as well as horizontal positioning are provided by Global Positioning System (GPS) receivers located both on board the aircraft and at a fixed site at Wallops Island.

  3. BOREAS RSS-12 Airborne Tracking Sunphotometer Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Lobitz, Brad; Spanner, Michael; Wrigley, Robert

    2000-01-01

    The BOREAS RSS-12 team collected both ground and airborne sunphotometer measurements for use in characterizing the aerosol optical properties of the atmosphere during the BOREAS data collection activities. These measurements are to be used to: 1) measure the magnitude and variability of the aerosol optical depth in both time and space; 2) determine the optical properties of the boreal aerosols; and 3) atmospherically correct remotely sensed data acquired during BOREAS. This data set contains airborne tracking sunphotometer data that were acquired from the C-130 aircraft during its flights over the BOREAS study areas. The data cover selected days and times from May to September 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  4. Airborne Intercept Monitoring

    DTIC Science & Technology

    2006-04-01

    Primary mirror of Zerodur with Pilkington 747 coating • FOV = 0.104 degrees Airborne Intercept Monitoring RTO-MP-SET-105 16 - 3 UNCLASSIFIED...Pointing System (SPS). The STS is a 0.75 meter aperture Mersenne Cassegrain telescope and the SAT is a 0.34 meter aperture 3- mirror anastigmat telescope...UNLIMITED UNCLASSIFIED/UNLIMITED • Air Flow to Mitigate Thermal “Seeing” Effects • Light weighted primary mirror to reduce mass The SAT

  5. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  6. Airborne Infrared Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2017-01-01

    A unique program of infrared astronomical observations from aircraft evolved at NASA’s Ames Research Center, beginning in the 1960s. Telescopes were flown on a Convair 990, a Lear Jet, and a Lockheed C-141 - the Kuiper Airborne Observatory (KAO) - leading to the planning and development of SOFIA: a 2.7 m telescope now flying on a Boeing 747SP. The poster describes these telescopes and highlights of some of the scientific results obtained from them.

  7. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  8. Precise Truss Assembly using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2013-01-01

    We describe an Intelligent Precision Jigging Robot (IPJR), which allows high precision assembly of commodity parts with low-precision bonding. We present preliminary experiments in 2D that are motivated by the problem of assembling a space telescope optical bench on orbit using inexpensive, stock hardware and low-precision welding. An IPJR is a robot that acts as the precise "jigging", holding parts of a local assembly site in place while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (in this case, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. We report the challenges of designing the IPJR hardware and software, analyze the error in assembly, document the test results over several experiments including a large-scale ring structure, and describe future work to implement the IPJR in 3D and with micron precision.

  9. Precise Truss Assembly Using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, W. R.; Correll, Nikolaus

    2014-01-01

    Hardware and software design and system integration for an intelligent precision jigging robot (IPJR), which allows high precision assembly using commodity parts and low-precision bonding, is described. Preliminary 2D experiments that are motivated by the problem of assembling space telescope optical benches and very large manipulators on orbit using inexpensive, stock hardware and low-precision welding are also described. An IPJR is a robot that acts as the precise "jigging", holding parts of a local structure assembly site in place, while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (for this prototype, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. The analysis of the assembly error and the results of building a square structure and a ring structure are discussed. Options for future work, to extend the IPJR paradigm to building in 3D structures at micron precision are also summarized.

  10. Vine variety discrimination with airborne imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferreiro-Armán, M.; Alba-Castro, J. L.; Homayouni, S.; da Costa, J. P.; Martín-Herrero, J.

    2007-09-01

    We aim at the discrimination of varieties within a single plant species (Vitis vinifera) by means of airborne hyperspectral imagery collected using a CASI-2 sensor and supervised classification, both under constant and varying within-scene illumination conditions. Varying illumination due to atmospheric conditions (such as clouds) and shadows cause different pixels belonging to the same class to present different spectral vectors, increasing the within class variability and hindering classification. This is specially serious in precision applications such as variety discrimination in precision agriculture, which depends on subtle spectral differences. In this study, we use machine learning techniques for supervised classification, and we also analyze the variability within and among plots and within and among sites, in order to address the generalizability of the results.

  11. Arm tremor and precision of hand force control in a short and long term flight on the Mir-Space-Station

    NASA Astrophysics Data System (ADS)

    Gallasch, E.; Kozlovskaya, I.; Löscher, W. N.; Konev, A.; Kenner, T.

    To determine whether long and short time exposure of man in 0g alters normal physiological tremor patterns we recorded arm tremor using an accelerometer as well as hand forces and tremor during constant isometric contraction using a load cell. Arm tremor was decreased during both flights in amplitude and frequency. Shortly after the long term flight arm tremor amplitude was increased, indicating adaptive changes in the tonic reflex loop. Isometric hand tremor remained unchanged during the long and short time flight demonstrating that the contractile properties of hand muscles remained constant. Precision of hand force was decreased until the half duration of the long term flight.

  12. A simulator for airborne laser swath mapping via photon counting

    NASA Astrophysics Data System (ADS)

    Slatton, K. C.; Carter, W. E.; Shrestha, R.

    2005-06-01

    Commercially marketed airborne laser swath mapping (ALSM) instruments currently use laser rangers with sufficient energy per pulse to work with return signals of thousands of photons per shot. The resulting high signal to noise level virtually eliminates spurious range values caused by noise, such as background solar radiation and sensor thermal noise. However, the high signal level approach requires laser repetition rates of hundreds of thousands of pulses per second to obtain contiguous coverage of the terrain at sub-meter spatial resolution, and with currently available technology, affords little scalability for significantly downsizing the hardware, or reducing the costs. A photon-counting ALSM sensor has been designed by the University of Florida and Sigma Space, Inc. for improved topographic mapping with lower power requirements and weight than traditional ALSM sensors. Major elements of the sensor design are presented along with preliminary simulation results. The simulator is being developed so that data phenomenology and target detection potential can be investigated before the system is completed. Early simulations suggest that precise estimates of terrain elevation and target detection will be possible with the sensor design.

  13. High-precision measurements of the groove spacing of diffraction gratings using the interference diffractometer and study of the quality of diffraction gratings

    SciTech Connect

    Vitushkin, L.F.; Zeilikovich, I.S.; Korotkov, V.I.

    1994-07-01

    An interference-diffractometric method for measuring the groove spacing of diffraction gratings (periodical standards of small length) and a method for examining the quality of diffraction gratings are developed and investigated. They are based on the holographic method of controlling the sensitivity of the interference measurements using the repeat recording of holograms with compensation for the aberrations of the optical system. Measurements of the groove spacing (398 nm) of the holographic grating were performed with an error of 5 nm. 4 refs., 4 figs.

  14. Adaptive structures to enable ground test validation of precision structures

    NASA Technical Reports Server (NTRS)

    Wada, Ben K.; Fanson, James F.; Chen, Gun-Shing; Kuo, Chin-Po

    1990-01-01

    The use of analytical models and ground-based experimental validation of precision space structures is addressed. The application of adaptive structures to such validation of precision space structures is addressed, with the focus on adaptive truss structures.

  15. First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-350 GeV

    NASA Astrophysics Data System (ADS)

    Aguilar, M.; Alberti, G.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Anderhub, H.; Arruda, L.; Azzarello, P.; Bachlechner, A.; Barao, F.; Baret, B.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Basili, A.; Batalha, L.; Bates, J.; Battiston, R.; Bazo, J.; Becker, R.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Berges, P.; Bertucci, B.; Bigongiari, G.; Biland, A.; Bindi, V.; Bizzaglia, S.; Boella, G.; de Boer, W.; Bollweg, K.; Bolmont, J.; Borgia, B.; Borsini, S.; Boschini, M. J.; Boudoul, G.; Bourquin, M.; Brun, P.; Buénerd, M.; Burger, J.; Burger, W.; Cadoux, F.; Cai, X. D.; Capell, M.; Casadei, D.; Casaus, J.; Cascioli, V.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, C. R.; Chen, H.; Cheng, G. M.; Chen, H. S.; Cheng, L.; Chernoplyiokov, N.; Chikanian, A.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Commichau, V.; Consolandi, C.; Contin, A.; Corti, C.; Costado Dios, M. T.; Coste, B.; Crespo, D.; Cui, Z.; Dai, M.; Delgado, C.; Della Torre, S.; Demirkoz, B.; Dennett, P.; Derome, L.; Di Falco, S.; Diao, X. H.; Diago, A.; Djambazov, L.; Díaz, C.; von Doetinchem, P.; Du, W. J.; Dubois, J. M.; Duperay, R.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eppling, F. J.; Eronen, T.; van Es, J.; Esser, H.; Falvard, A.; Fiandrini, E.; Fiasson, A.; Finch, E.; Fisher, P.; Flood, K.; Foglio, R.; Fohey, M.; Fopp, S.; Fouque, N.; Galaktionov, Y.; Gallilee, M.; Gallin-Martel, L.; Gallucci, G.; García, B.; García, J.; García-López, R.; García-Tabares, L.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gentile, S.; Gervasi, M.; Gillard, W.; Giovacchini, F.; Girard, L.; Goglov, P.; Gong, J.; Goy-Henningsen, C.; Grandi, D.; Graziani, M.; Grechko, A.; Gross, A.; Guerri, I.; de la Guía, C.; Guo, K. H.; Habiby, M.; Haino, S.; Hauler, F.; He, Z. H.; Heil, M.; Heilig, J.; Hermel, R.; Hofer, H.; Huang, Z. C.; Hungerford, W.; Incagli, M.; Ionica, M.; Jacholkowska, A.; Jang, W. Y.; Jinchi, H.; Jongmanns, M.; Journet, L.; Jungermann, L.; Karpinski, W.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Kossakowski, R.; Koulemzine, A.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; Laudi, E.; Laurenti, G.; Lauritzen, C.; Lebedev, A.; Lee, M. W.; Lee, S. C.; Leluc, C.; León Vargas, H.; Lepareur, V.; Li, J. Q.; Li, Q.; Li, T. X.; Li, W.; Li, Z. H.; Lipari, P.; Lin, C. H.; Liu, D.; Liu, H.; Lomtadze, T.; Lu, Y. S.; Lucidi, S.; Lübelsmeyer, K.; Luo, J. Z.; Lustermann, W.; Lv, S.; Madsen, J.; Majka, R.; Malinin, A.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masciocchi, F.; Masi, N.; Maurin, D.; McInturff, A.; McIntyre, P.; Menchaca-Rocha, A.; Meng, Q.; Menichelli, M.; Mereu, I.; Millinger, M.; Mo, D. C.; Molina, M.; Mott, P.; Mujunen, A.; Natale, S.; Nemeth, P.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Obermeier, A.; Oh, S.; Oliva, A.; Palmonari, F.; Palomares, C.; Paniccia, M.; Papi, A.; Park, W. H.; Pauluzzi, M.; Pauss, F.; Pauw, A.; Pedreschi, E.; Pensotti, S.; Pereira, R.; Perrin, E.; Pessina, G.; Pierschel, G.; Pilo, F.; Piluso, A.; Pizzolotto, C.; Plyaskin, V.; Pochon, J.; Pohl, M.; Poireau, V.; Porter, S.; Pouxe, J.; Putze, A.; Quadrani, L.; Qi, X. N.; Rancoita, P. G.; Rapin, D.; Ren, Z. L.; Ricol, J. S.; Riihonen, E.; Rodríguez, I.; Roeser, U.; Rosier-Lees, S.; Rossi, L.; Rozhkov, A.; Rozza, D.; Sabellek, A.; Sagdeev, R.; Sandweiss, J.; Santos, B.; Saouter, P.; Sarchioni, M.; Schael, S.; Schinzel, D.; Schmanau, M.; Schwering, G.; Schulz von Dratzig, A.; Scolieri, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Shi, Y. M.; Siedenburg, T.; Siedling, R.; Son, D.; Spada, F.; Spinella, F.; Steuer, M.; Stiff, K.; Sun, W.; Sun, W. H.; Sun, X. H.; Tacconi, M.; Tang, C. P.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tassan-Viol, J.; Ting, Samuel C. C.; Ting, S. M.; Titus, C.; Tomassetti, N.; Toral, F.; Torsti, J.; Tsai, J. R.; Tutt, J. C.; Ulbricht, J.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vargas Trevino, M.; Vaurynovich, S.; Vecchi, M.; Vergain, M.; Verlaat, B.; Vescovi, C.; Vialle, J. P.; Viertel, G.; Volpini, G.; Wang, D.; Wang, N. H.; Wang, Q. L.; Wang, R. S.; Wang, X.; Wang, Z. X.; Wallraff, W.; Weng, Z. L.; Willenbrock, M.; Wlochal, M.; Wu, H.; Wu, K. Y.; Wu, Z. S.; Xiao, W. J.; Xie, S.; Xiong, R. Q.; Xin, G. M.; Xu, N. S.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Ye, Q. H.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, J. G.; Zhang, Z.; Zhang, M. M.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zuccon, P.; Zurbach, C.

    2013-04-01

    A precision measurement by the Alpha Magnetic Spectrometer on the International Space Station of the positron fraction in primary cosmic rays in the energy range from 0.5 to 350 GeV based on 6.8×106 positron and electron events is presented. The very accurate data show that the positron fraction is steadily increasing from 10 to ˜250GeV, but, from 20 to 250 GeV, the slope decreases by an order of magnitude. The positron fraction spectrum shows no fine structure, and the positron to electron ratio shows no observable anisotropy. Together, these features show the existence of new physical phenomena.

  16. Galaxy: a new state of the art airborne lidar system

    NASA Astrophysics Data System (ADS)

    Hartsell, Daryl; LaRocque, Paul E.; Tripp, Jeffrey

    2016-10-01

    Recent advancements in lidar technologies have led to significant improvements in Teledyne Optech's airborne lidar systems. This paper will present the performance enhancements that have led to the creation of the Galaxy, a compact scanning lidar system. Unlike the previous generation of conventional airborne lidar, the Galaxy offers fundamentally improved specifications for long-range airborne lidar systems. The Galaxy system is capable of acquiring high-density, multiple-return data with unique pulse separation characteristics and exceptional precision. Utilizing discrete time-of-flight measurement electronics, this new system is capable of seamlessly operating at very high laser repetition rates through blind zones and with multiple pulses in the air. By utilizing even higher scan products , the system outperforms previous generations of systems and optimizes point density during collection.

  17. GOCE Precise Science Orbits

    NASA Astrophysics Data System (ADS)

    Bock, Heike; Jäggi, Adrian; Meyer, Ulrich; Beutler, Gerhard; Heinze, Markus; Hugentobler, Urs

    GOCE (Gravity field and steady-state Ocean Circulation Explorer), as the first ESA (European Space Agency) Earth Explorer Core Mission, is dedicated for gravity field recovery of unprece-dented accuracy using data from the gradiometer, its primary science instrument. Data from the secondary instrument, the 12-channel dual-frequency GPS (Global Positioning System) receiver, is used for precise orbit determination of the satellite. These orbits are used to accu-rately geolocate the gradiometer observations and to provide complementary information for the long-wavelength part of the gravity field. A precise science orbit (PSO) product is provided by the GOCE High-Level Processing Facility (HPF) with a precision of about 2 cm and a 1-week latency. The reduced-dynamic and kinematic orbit determination strategies for the PSO product are presented together with results of about one year of data. The focus is on the improvement achieved by the use of empirically derived azimuth-and elevation-dependent variations of the phase center of the GOCE GPS antenna. The orbits are validated with satellite laser ranging (SLR) measurements.

  18. Airborne multispectral detection of regrowth cotton fields

    NASA Astrophysics Data System (ADS)

    Westbrook, John K.; Suh, Charles P.-C.; Yang, Chenghai; Lan, Yubin; Eyster, Ritchie S.

    2015-01-01

    Effective methods are needed for timely areawide detection of regrowth cotton plants because boll weevils (a quarantine pest) can feed and reproduce on these plants beyond the cotton production season. Airborne multispectral images of regrowth cotton plots were acquired on several dates after three shredding (i.e., stalk destruction) dates. Linear spectral unmixing (LSU) classification was applied to high-resolution airborne multispectral images of regrowth cotton plots to estimate the minimum detectable size and subsequent growth of plants. We found that regrowth cotton fields can be identified when the mean plant width is ˜0.2 m for an image resolution of 0.1 m. LSU estimates of canopy cover of regrowth cotton plots correlated well (r2=0.81) with the ratio of mean plant width to row spacing, a surrogate measure of plant canopy cover. The height and width of regrowth plants were both well correlated (r2=0.94) with accumulated degree-days after shredding. The results will help boll weevil eradication program managers use airborne multispectral images to detect and monitor the regrowth of cotton plants after stalk destruction, and identify fields that may require further inspection and mitigation of boll weevil infestations.

  19. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  20. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  1. SGA-WZ: a new strapdown airborne gravimeter.

    PubMed

    Huang, Yangming; Olesen, Arne Vestergaard; Wu, Meiping; Zhang, Kaidong

    2012-01-01

    Inertial navigation systems and gravimeters are now routinely used to map the regional gravitational quantities from an aircraft with mGal accuracy and a spatial resolution of a few kilometers. However, airborne gravimeter of this kind is limited by the inaccuracy of the inertial sensor performance, the integrated navigation technique and the kinematic acceleration determination. As the GPS technique developed, the vehicle acceleration determination is no longer the limiting factor in airborne gravity due to the cancellation of the common mode acceleration in differential mode. A new airborne gravimeter taking full advantage of the inertial navigation system is described with improved mechanical design, high precision time synchronization, better thermal control and optimized sensor modeling. Apart from the general usage, the Global Positioning System (GPS) after differentiation is integrated to the inertial navigation system which provides not only more precise altitude information along with the navigation aiding, but also an effective way to calculate the vehicle acceleration. Design description and test results on the performance of the gyroscopes and accelerations will be emphasized. Analysis and discussion of the airborne field test results are also given.

  2. Aerial imaging with manned aircraft for precision agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the last two decades, numerous commercial and custom-built airborne imaging systems have been developed and deployed for diverse remote sensing applications, including precision agriculture. More recently, unmanned aircraft systems (UAS) have emerged as a versatile and cost-effective platform f...

  3. The New Airborne Disease

    PubMed Central

    Goldsmith, John R.

    1970-01-01

    Community air pollution is the new airborne disease of our generation's communities. It is caused by the increasing use of fuel, associated with both affluence and careless waste. Photochemical air pollution of the California type involves newly defined atmospheric reactions, is due mostly to motor vehicle exhaust, is oxidizing, and produces ozone, plant damage, impairment of visibility and eye and respiratory symptoms. Aggravation of asthma, impairment of lung function among persons with chronic respiratory disease and a possible causal role, along with cigarette smoking in emphysema and chronic bronchitis, are some of the effects of photochemical pollution. More subtle effects of pollution include impairment of oxygen transport by the blood due to carbon monoxide and interference with porphyrin metabolism due to lead. Carbon monoxide exposures may affect survival of patients who are in hospitals because of myocardial infarction. While many uncertainties in pollution-health reactions need to be resolved, a large number of people in California have health impairment due to airborne disease of this new type. PMID:5485227

  4. Variation in the mantle sources of the northern Izu arc with time and space — Constraints from high-precision Pb isotopes

    NASA Astrophysics Data System (ADS)

    Ishizuka, Osamu; Taylor, Rex N.; Milton, J. Andy; Nesbitt, Robert W.; Yuasa, Makoto; Sakamoto, Izumi

    2006-09-01

    We present new ages and geochemical data for back-arc lavas from the northern Izu Bonin arc 33 35° N including high-precision double-spike Pb isotope measurements. The northern part of the Izu Bonin arc is distinct from the rest of the arc as it lacks active rifting behind the volcanic front but it does have Quaternary volcanoes (e.g. Niijima). However, in common with the rest of the arc the northern section has back-arc seamount chains and NE SW volcanic ridges. 40Ar/39Ar dating of volcanic rocks has revealed that Quaternary volcanism is limited to within 40 km of the volcanic front. Miocene and Pliocene volcanism extended as far as 120 km west of the current volcanic front along the back-arc seamounts and ridges. The chemical characteristics of back-arc volcanism are significantly different in the Pliocene Quaternary compared to the Miocene. Opx cpx andesite and hornblende andesite are dominant in Miocene volcanic centres, while Pliocene and Quaternary centres are characterized by basalt and rhyolite. Miocene volcanic centres show a marked correlation between Th/Ce and Pb and Nd isotopes. Generally, these lavas have higher Δ7/4 and lower 143Nd/144Nd with increasing Th/Ce. In contrast, the Pliocene and Quaternary lavas show little, if any, Th enrichment relative to potential mantle sources and no correlation with isotopes. These correlations suggest that partial melt of sediment from the subducting slab was an important component in the Miocene, whereas, the Pliocene Quaternary volcanic centres show little evidence of sediment melt and are restricted to a contribution of fluid from altered oceanic crust and fluid from sediment. Quaternary volcanoes at similar distances from the volcanic front are calculated to have similar compositions and amounts of slab-derived fluid in their sources. However, on Pb Pb isotope plots, they lie closer to the NHRL towards south (i.e., Δ8/4 decreases towards south). Almost parallel but distinct trends on Pb Pb plots imply

  5. GREMLIT : an airborne gravity gradiometer inheriting from GOCE

    NASA Astrophysics Data System (ADS)

    Foulon, B.; Douch, K.; Christophe, B.; Panet, I.; Boulanger, D.; Lebat, V.

    2012-04-01

    The knowledge of the gravity field of the Earth has been considerably improved thanks to global positioning satellites constellations and to space gravity measurements from recent GRACE and GOCE missions. But the spatial resolution of those gravity data essentially addresses the large and medium wavelengths of the field (down to a resolution of 90km) and it is therefore essential to complete them at the shorter wavelengths in particular in the areas where spatial distribution and quality of ground data remain quite uneven like in high mountain or coastal areas. To this aim, gravity gradiometry systems may be particularly suitable by covering the land/sea transition zone with a uniform precision, and a spatial resolution higher than from gravimetry. The GREMLIT instrument is taking advantage of technologies, formerly developed by ONERA for the GRACE and GOCE space missions. The gradiometer is built using a planar configuration for the gradiometer and is mounted on a dedicated stabilized platform which is controlled by the common mode outputs of the instrument itself to achieve a sufficient rejection ratio of the perturbations/vibrations induced by the airborne environment. Such a planar configuration is especially well suited to sustain the proof-mass levitation in the Earth's gravity field. It also presents intrinsic linearity, which minimizes the aliasing due to high frequency vibrations or motions generated outside the measurement bandwidth. The compactness of the design ensures excellent dimensional stability, good thermal homogeneity and makes the conception of the stabilized platform easier. The performance objective is between 0.1 and 1 Eötvös taking into account the difficulty of measurements onboard an aircraft by comparison to the particularly conducive satellite measurement environment.

  6. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  7. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  8. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  9. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  10. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  11. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  12. NASA three-laser airborne differential absorption lidar system electronics

    NASA Technical Reports Server (NTRS)

    Allen, R. J.; Copeland, G. D.

    1984-01-01

    The system control and signal conditioning electronics of the NASA three laser airborne differential absorption lidar (DIAL) system are described. The multipurpose DIAL system was developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. A brief description and photographs of the majority of electronics units developed under this contract are presented. The precision control system; which includes a master control unit, three combined NASA laser control interface/quantel control units, and three noise pulse discriminator/pockels cell pulser units; is described in detail. The need and design considerations for precision timing and control are discussed. Calibration procedures are included.

  13. Airborne bacteria in the atmosphere: Presence, purpose, and potential

    NASA Astrophysics Data System (ADS)

    Smets, Wenke; Moretti, Serena; Denys, Siegfried; Lebeer, Sarah

    2016-08-01

    Numerous recent studies have highlighted that the types of bacteria present in the atmosphere often show predictable patterns across space and time. These patterns can be driven by differences in bacterial sources of the atmosphere and a wide range of environmental factors, including UV intensity, precipitation events, and humidity. The abundance of certain bacterial taxa is of interest, not only for their ability to mediate a range of chemical and physical processes in the atmosphere, such as cloud formation and ice nucleation, but also for their implications -both beneficial and detrimental-for human health. Consequently, the widespread importance of airborne bacteria has stimulated the search for their applicability. Improving air quality, modelling the dispersal of airborne bacteria (e.g. pathogens) and biotechnological purposes are already being explored. Nevertheless, many technological challenges still need to be overcome to fully understand the roles of airborne bacteria in our health and global ecosystems.

  14. Airborne backscatter lidar measurements at three wavelengths during ELITE

    NASA Astrophysics Data System (ADS)

    Schreiber, H. G.; Wirth, Martin; Moerl, P.; Renger, Wolfgang

    1995-09-01

    The German Aerospace Establishment (DLR) operates an airborne backscatter lidar based on a Nh:YAG laser which is flashlamp-pumped at 10 Hz. It works on the wavelengths 1064, 532, and 354 nm. It is mounted downward-looking on the research aircraft Falcon 20, flying at about 12 km altitude at speeds of 200 m/s. We present airborne measurements correlated with the orbit tracks of the shuttle-borne LITE-instrument (lidar in-space technology experiment). The emphasis in data evalution is on the comparison between the airborne and the shuttle- borne lidars. First results show excellent agreement between the two instruments even on details of cirrus clouds. The results comprise cloud geometrical and optical depths, as well as profiles of aerosol backscattering coefficients at three wavelengths.

  15. Airborne Trace Gas Mapping During the GOSAT-COMEX Experiment

    NASA Astrophysics Data System (ADS)

    Tratt, D. M.; Leifer, I.; Buckland, K. N.; Johnson, P. D.; Van Damme, M.; Pierre-Francois, C.; Clarisse, L.

    2015-12-01

    The GOSAT-COMEX-IASI (Greenhouse gases Observing SATellite - CO2 and Methane EXperiment - Infrared Atmospheric Sounding Interferometer) experiment acquired data on 24-27 April 2015 with two aircraft, a mobile ground-based sampling suite, and the GOSAT and IASI platforms. Collections comprised the Kern Front and Kern River oil fields north of Bakersfield, Calif. and the Chino stockyard complex in the eastern Los Angeles Basin. The nested-grid experiment examined the convergence of multiple approaches to total trace gas flux estimation from the experimental area on multiple length-scales, which entailed the integrated analysis of ground-based, airborne, and space-based measurements. Airborne remote sensing was employed to map the spatial distribution of discrete emission sites - crucial information to understanding their relative aggregate contribution to the overall flux estimation. This contribution discusses the methodology in the context of the airborne GHG source mapping component of the GOSAT-COMEX experiment and its application to satellite validation.

  16. Variation in the Source Mantle of the Northern Izu arc with Time and Space -Constraints from High-precision Pb Isotopes -

    NASA Astrophysics Data System (ADS)

    Ishizuka, O.; Taylor, R. N.; Milton, J. A.; Nesbitt, R. W.; Uto, K.; Yuasa, M.; Sakamoto, I.

    2002-12-01

    We present new isotopic and trace element data for back-arc lavas from the northern Izu arc (33-36oN) including high-precision double-spike Pb isotope measurements. The northern part of the Izu arc is distinct from the rest of the arc in the lack of active rifting and presence of Quaternary volcanoes behind the front (e.g. Niijima). Common features with the rest of the arc include the presence of the back-arc seamounts chains and NE-SW volcanic ridges. 40Ar/39Ar dating of volcanic rocks has revealed that Quaternary volcanism is limited to within 40 km of the volcanic front. Active volcanism occurred from Miocene and Pliocene in the back-arc seamounts and ridges as far as 120km west of the current volcanic front. Chemical characteristics of the Quaternary behind-the-front volcanism and Tertiary volcanism in the back-arc seamounts are significantly different. Opx-cpx andesite and hornblende andesite are dominant in the back-arc seamounts, while Quaternary behind-the-front volcanism is characterized by basalt and rhyolite. In terms of the trace element and isotopic characteristics, Tertiary back-arc seamount lavas show a marked correlation between Th/Ce and Pb and Nd isotopes. Generally these lavas have higher Δ7/4 and lower 143Nd/144Nd with increasing Th/Ce. In contrast, the Quaternary lavas show little, if any, Th enrichment relative to potential mantle sources and no correlation with isotopes. These correlations suggest that sediment melt from the subducting slab is an important component in the Tertiary back-arc seamounts, whereas, the Quaternary volcanism behind the front shows little indication of sediment melt and is restricted to a contribution of fluid from altered oceanic crust. Quaternary volcanoes at similar distances from the volcanic front are estimated to have similar compositions and amounts of slab-derived fluid in their sources. However, on Pb-Pb isotope plots, they lie closer to the NHRL towards south (i.e., Δ8/4 decreases towards south). Almost

  17. Airborne Radar Interferometric Repeat-Pass Processing

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Michel, Thierry R.; Jones, Cathleen E.; Muellerschoen, Ronald J.; Chapman, Bruce D.; Fore, Alexander; Simard, Marc; Zebker, Howard A.

    2011-01-01

    Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements.

  18. First result from the Alpha Magnetic Spectrometer on the International Space Station: precision measurement of the positron fraction in primary cosmic rays of 0.5-350 GeV.

    PubMed

    Aguilar, M; Alberti, G; Alpat, B; Alvino, A; Ambrosi, G; Andeen, K; Anderhub, H; Arruda, L; Azzarello, P; Bachlechner, A; Barao, F; Baret, B; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Basili, A; Batalha, L; Bates, J; Battiston, R; Bazo, J; Becker, R; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Berges, P; Bertucci, B; Bigongiari, G; Biland, A; Bindi, V; Bizzaglia, S; Boella, G; de Boer, W; Bollweg, K; Bolmont, J; Borgia, B; Borsini, S; Boschini, M J; Boudoul, G; Bourquin, M; Brun, P; Buénerd, M; Burger, J; Burger, W; Cadoux, F; Cai, X D; Capell, M; Casadei, D; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, C R; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chernoplyiokov, N; Chikanian, A; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Commichau, V; Consolandi, C; Contin, A; Corti, C; Costado Dios, M T; Coste, B; Crespo, D; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirkoz, B; Dennett, P; Derome, L; Di Falco, S; Diao, X H; Diago, A; Djambazov, L; Díaz, C; von Doetinchem, P; Du, W J; Dubois, J M; Duperay, R; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eppling, F J; Eronen, T; van Es, J; Esser, H; Falvard, A; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Flood, K; Foglio, R; Fohey, M; Fopp, S; Fouque, N; Galaktionov, Y; Gallilee, M; Gallin-Martel, L; Gallucci, G; García, B; García, J; García-López, R; García-Tabares, L; Gargiulo, C; Gast, H; Gebauer, I; Gentile, S; Gervasi, M; Gillard, W; Giovacchini, F; Girard, L; Goglov, P; Gong, J; Goy-Henningsen, C; Grandi, D; Graziani, M; Grechko, A; Gross, A; Guerri, I; de la Guía, C; Guo, K H; Habiby, M; Haino, S; Hauler, F; He, Z H; Heil, M; Heilig, J; Hermel, R; Hofer, H; Huang, Z C; Hungerford, W; Incagli, M; Ionica, M; Jacholkowska, A; Jang, W Y; Jinchi, H; Jongmanns, M; Journet, L; Jungermann, L; Karpinski, W; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Koulemzine, A; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Laudi, E; Laurenti, G; Lauritzen, C; Lebedev, A; Lee, M W; Lee, S C; Leluc, C; León Vargas, H; Lepareur, V; Li, J Q; Li, Q; Li, T X; Li, W; Li, Z H; Lipari, P; Lin, C H; Liu, D; Liu, H; Lomtadze, T; Lu, Y S; Lucidi, S; Lübelsmeyer, K; Luo, J Z; Lustermann, W; Lv, S; Madsen, J; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masciocchi, F; Masi, N; Maurin, D; McInturff, A; McIntyre, P; Menchaca-Rocha, A; Meng, Q; Menichelli, M; Mereu, I; Millinger, M; Mo, D C; Molina, M; Mott, P; Mujunen, A; Natale, S; Nemeth, P; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oh, S; Oliva, A; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Park, W H; Pauluzzi, M; Pauss, F; Pauw, A; Pedreschi, E; Pensotti, S; Pereira, R; Perrin, E; Pessina, G; Pierschel, G; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pochon, J; Pohl, M; Poireau, V; Porter, S; Pouxe, J; Putze, A; Quadrani, L; Qi, X N; Rancoita, P G; Rapin, D; Ren, Z L; Ricol, J S; Riihonen, E; Rodríguez, I; Roeser, U; Rosier-Lees, S; Rossi, L; Rozhkov, A; Rozza, D; Sabellek, A; Sagdeev, R; Sandweiss, J; Santos, B; Saouter, P; Sarchioni, M; Schael, S; Schinzel, D; Schmanau, M; Schwering, G; Schulz von Dratzig, A; Scolieri, G; Seo, E S; Shan, B S; Shi, J Y; Shi, Y M; Siedenburg, T; Siedling, R; Son, D; Spada, F; Spinella, F; Steuer, M; Stiff, K; Sun, W; Sun, W H; Sun, X H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tassan-Viol, J; Ting, Samuel C C; Ting, S M; Titus, C; Tomassetti, N; Toral, F; Torsti, J; Tsai, J R; Tutt, J C; Ulbricht, J; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vargas Trevino, M; Vaurynovich, S; Vecchi, M; Vergain, M; Verlaat, B; Vescovi, C; Vialle, J P; Viertel, G; Volpini, G; Wang, D; Wang, N H; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Wallraff, W; Weng, Z L; Willenbrock, M; Wlochal, M; Wu, H; Wu, K Y; Wu, Z S; Xiao, W J; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J G; Zhang, Z; Zhang, M M; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zuccon, P; Zurbach, C

    2013-04-05

    A precision measurement by the Alpha Magnetic Spectrometer on the International Space Station of the positron fraction in primary cosmic rays in the energy range from 0.5 to 350 GeV based on 6.8 × 10(6) positron and electron events is presented. The very accurate data show that the positron fraction is steadily increasing from 10 to ∼ 250  GeV, but, from 20 to 250 GeV, the slope decreases by an order of magnitude. The positron fraction spectrum shows no fine structure, and the positron to electron ratio shows no observable anisotropy. Together, these features show the existence of new physical phenomena.

  19. Spatial variability in airborne pollen concentrations.

    PubMed

    Raynor, G S; Ogden, E C; Hayes, J V

    1975-03-01

    Tests were conducted to determine the relationship between airborne pollen concentrations and distance. Simultaneous samples were taken in 171 tests with sets of eight rotoslide samplers spaced from one to 486 M. apart in straight lines. Use of all possible pairs gave 28 separation distances. Tests were conducted over a 2-year period in urban and rural locations distant from major pollen sources during both tree and ragweed pollen seasons. Samples were taken at a height of 1.5 M. during 5-to 20-minute periods. Tests were grouped by pollen type, location, year, and direction of the wind relative to the line. Data were analyzed to evaluate variability without regard to sampler spacing and variability as a function of separation distance. The mean, standard deviation, coefficient of variation, ratio of maximum to the mean, and ratio of minimum to the mean were calculated for each test, each group of tests, and all cases. The average coefficient of variation is 0.21, the maximum over the mean, 1.39 and the minimum over the mean, 0.69. No relationship was found with experimental conditions. Samples taken at the minimum separation distance had a mean difference of 18 per cent. Differences between pairs of samples increased with distance in 10 of 13 groups. These results suggest that airborne pollens are not always well mixed in the lower atmosphere and that a sample becomes less representative with increasing distance from the sampling location.

  20. Airborne gravimetry, altimetry, and GPS navigation errors

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.

    1992-01-01

    Proper interpretation of airborne gravimetry and altimetry requires good knowledge of aircraft trajectory. Recent advances in precise navigation with differential GPS have made it possible to measure gravity from the air with accuracies of a few milligals, and to obtain altimeter profiles of terrain or sea surface correct to one decimeter. These developments are opening otherwise inaccessible regions to detailed geophysical mapping. Navigation with GPS presents some problems that grow worse with increasing distance from a fixed receiver: the effect of errors in tropospheric refraction correction, GPS ephemerides, and the coordinates of the fixed receivers. Ionospheric refraction and orbit error complicate ambiguity resolution. Optimal navigation should treat all error sources as unknowns, together with the instantaneous vehicle position. To do so, fast and reliable numerical techniques are needed: efficient and stable Kalman filter-smoother algorithms, together with data compression and, sometimes, the use of simplified dynamics.

  1. SOFIA: The future of airborne astronomy

    NASA Technical Reports Server (NTRS)

    Erickson, Edwin F.; Davidson, Jacqueline A.

    1995-01-01

    For the past 20 years, the 91 cm telescope in NASA's Kuiper Airborne Observatory (KAO) has enabled scientists to observe infrared sources which are obscured by the earth's atmosphere at ground-based sites, and to observe transient astronomical events from anywhere in the world. To augment this capability, the United States and German Space Agencies (NASA and DARA) are collaborating in plans to replace the KAO with a 2.5 meter telescope installed in a Boeing 747 aircraft: SOFIA - The Stratospheric Observatory for Infrared Astronomy. SOFIA's large aperture, wide wavelength coverage, mobility, accessibility, and sophisticated instruments will permit a broad range of scientific studies, some of which are described here. Its unique features complement the capabilities of other future space missions. In addition, SOFIA has important potential as a stimulus for development of new technology and as a national resource for education of K-12 teachers. If started in 1996, SOFIA will be flying in the year 2000.

  2. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  3. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Bagherian, A. B.; Mielke, R. R.

    1983-01-01

    Use of calculation program START and modeling program P 3D to produce radiation patterns of antennas mounted on a space station is discussed. Basic components of two space stations in the early design stage are simulated and radiation patterns for antennas mounted on the modules are presented.

  4. Design and implementation of digital airborne multispectral camera system

    NASA Astrophysics Data System (ADS)

    Lin, Zhaorong; Zhang, Xuguo; Wang, Li; Pan, Deai

    2012-10-01

    The multispectral imaging equipment is a kind of new generation remote sensor, which can obtain the target image and the spectra information simultaneously. A digital airborne multispectral camera system using discrete filter method had been designed and implemented for unmanned aerial vehicle (UAV) and manned aircraft platforms. The digital airborne multispectral camera system has the advantages of larger frame, higher resolution, panchromatic and multispectral imaging. It also has great potential applications in the fields of environmental and agricultural monitoring and target detection and discrimination. In order to enhance the measurement precision and accuracy of position and orientation, Inertial Measurement Unit (IMU) is integrated in the digital airborne multispectral camera. Meanwhile, the Temperature Control Unit (TCU) guarantees that the camera can operate in the normal state in different altitudes to avoid the window fogging and frosting which will degrade the imaging quality greatly. Finally, Flying experiments were conducted to demonstrate the functionality and performance of the digital airborne multispectral camera. The resolution capability, positioning accuracy and classification and recognition ability were validated.

  5. Airborne Hyperspectral Imaging of Seagrass and Coral Reef

    NASA Astrophysics Data System (ADS)

    Merrill, J.; Pan, Z.; Mewes, T.; Herwitz, S.

    2013-12-01

    This talk presents the process of project preparation, airborne data collection, data pre-processing and comparative analysis of a series of airborne hyperspectral projects focused on the mapping of seagrass and coral reef communities in the Florida Keys. As part of a series of large collaborative projects funded by the NASA ROSES program and the Florida Fish and Wildlife Conservation Commission and administered by the NASA UAV Collaborative, a series of airborne hyperspectral datasets were collected over six sites in the Florida Keys in May 2012, October 2012 and May 2013 by Galileo Group, Inc. using a manned Cessna 172 and NASA's SIERRA Unmanned Aerial Vehicle. Precise solar and tidal data were used to calculate airborne collection parameters and develop flight plans designed to optimize data quality. Two independent Visible and Near-Infrared (VNIR) hyperspectral imaging systems covering 400-100nm were used to collect imagery over six Areas of Interest (AOIs). Multiple collections were performed over all sites across strict solar windows in the mornings and afternoons. Independently developed pre-processing algorithms were employed to radiometrically correct, synchronize and georectify individual flight lines which were then combined into color balanced mosaics for each Area of Interest. The use of two different hyperspectral sensor as well as environmental variations between each collection allow for the comparative analysis of data quality as well as the iterative refinement of flight planning and collection parameters.

  6. Airborne FTIR remote sensing of methane from the FAAM aircraft

    NASA Astrophysics Data System (ADS)

    Allen, Grant; Illingworth, Samuel; Mead, Iq; Harlow, Chawn; Newman, Stuart; Vance, Alan

    2015-04-01

    This paper presents the first campaign results for retrievals of methane (and other gases and thermodynamic parameters) from the Airborne Research Interferometer Evaluation System (ARIES) FTIR instrument on the UK Facility for Airborne Atmospheric Measurement (FAAM) BAE-146 aircraft. The ARIES is a thermal infrared BOMEM FTS tailored for airborne use and has an unapodised spectral resolution of 1 cm-1. It was developed as an IASI analogue for radiometric calibration of its satellite countepart. We will discuss the technical and theoretical assessment of the ARIES retrieval processor and present retrievals and interpretation of remote sampling over several years of campaign data in the tropics, around the UK, and in the high Arctic, during the Jaivex, GAUGE and MAMM campaigns respectively. Validation studies against airborne in situ data have shown that ARIES can achieve accuracties of ~2% in partial column retrievals of methane, while providing simultaneous information on a wide range of other trace gases typical of FTIR measurement. The ARIES has now beein in operation on the FAAM aircraft for a range of campaigns around the world and represents a useful validation bridge between high precision in situ point measurements (on the ground and by aircraft) and satellite remote sensing.

  7. Airborne rescue system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1991-01-01

    The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

  8. ISRO's dual frequency airborne SAR pre-cursor to NISAR

    NASA Astrophysics Data System (ADS)

    Ramanujam, V. Manavala; Suneela, T. J. V. D.; Bhan, Rakesh

    2016-05-01

    The Indian Space Research Organisation (ISRO) and the National Aeronautics and Space Administration (NASA) have jointly embarked on NASA-ISRO Synthetic Aperture Radar (NISAR) operating in L-band and S-band, which will map Earth's surface every 12 days. As a pre-cursor to the NISAR mission, ISRO is planning an airborne SAR (L&S band) which will deliver NISAR analogue data products to the science community. ISRO will develop all the hardware with the aim of adhering to system design aspects of NISAR to the maximum extent possible. It is a fully polarimetric stripmap SAR and can be operated in single, dual, compact, quasi-quad and full polarimetry modes. It has wide incidence angle coverage from 24°-77° with swath coverage from 5.5km to 15 km. Apart from simultaneous imaging operations, this system can also operate in standalone L/S SAR modes. This system is planned to operate from an aircraft platform with nominal altitude of 8000meters. Antenna for this SAR will be rigidly mounted to the aircraft, whereas, motion compensation will be implemented in the software processor to generate data products. Data products for this airborne SAR will be generated in slant & ground range azimuth dimension and geocoded in HDF5/Geotiff formats. This airborne SAR will help to prepare the Indian scientific community for optimum utilization of NISAR data. In-order to collect useful science data, airborne campaigns are planned from end of 2016 onwards.

  9. Airborne seeker evaluation and test system

    NASA Astrophysics Data System (ADS)

    Jollie, William B.

    1991-08-01

    The Airborne Seeker Evaluation Test System (ASETS) is an airborne platform for development, test, and evaluation of air-to-ground seekers and sensors. ASETS consists of approximately 10,000 pounds of equipment, including sixteen racks of control, display, and recording electronics, and a very large stabilized airborne turret, all carried by a modified C- 130A aircraft. The turret measures 50 in. in diameter and extends over 50 in. below the aircraft. Because of the low ground clearance of the C-130, a unique retractor mechanism was designed to raise the turret inside the aircraft for take-offs and landings, and deploy the turret outside the aircraft for testing. The turret has over 7 cubic feet of payload space and can accommodate up to 300 pounds of instrumentation, including missile seekers, thermal imagers, infrared mapping systems, laser systems, millimeter wave radar units, television cameras, and laser rangers. It contains a 5-axis gyro-stabilized gimbal system that will maintain a line of sight in the pitch, roll, and yaw axes to an accuracy better than +/- 125 (mu) rad. The rack-mounted electronics in the aircraft cargo bay can be interchanged to operate any type of sensor and record the data. Six microcomputer subsystems operate and maintain all of the system components during a test mission. ASETS is capable of flying at altitudes between 200 and 20,000 feet, and at airspeeds ranging from 100 to 250 knots. Mission scenarios can include air-to-surface seeker testing, terrain mapping, surface target measurement, air-to-air testing, atmospheric transmission studies, weather data collection, aircraft or missile tracking, background signature measurements, and surveillance. ASETS is fully developed and available to support test programs.

  10. An Algorithm to Atmospherically Correct Visible and Thermal Airborne Imagery

    NASA Technical Reports Server (NTRS)

    Rickman, Doug L.; Luvall, Jeffrey C.; Schiller, Stephen; Arnold, James E. (Technical Monitor)

    2000-01-01

    The program Watts implements a system of physically based models developed by the authors, described elsewhere, for the removal of atmospheric effects in multispectral imagery. The band range we treat covers the visible, near IR and the thermal IR. Input to the program begins with atmospheric pal red models specifying transmittance and path radiance. The system also requires the sensor's spectral response curves and knowledge of the scanner's geometric definition. Radiometric characterization of the sensor during data acquisition is also necessary. While the authors contend that active calibration is critical for serious analytical efforts, we recognize that most remote sensing systems, either airborne or space borne, do not as yet attain that minimal level of sophistication. Therefore, Watts will also use semi-active calibration where necessary and available. All of the input is then reduced to common terms, in terms of the physical units. From this it Is then practical to convert raw sensor readings into geophysically meaningful units. There are a large number of intricate details necessary to bring an algorithm or this type to fruition and to even use the program. Further, at this stage of development the authors are uncertain as to the optimal presentation or minimal analytical techniques which users of this type of software must have. Therefore, Watts permits users to break out and analyze the input in various ways. Implemented in REXX under OS/2 the program is designed with attention to the probability that it will be ported to other systems and other languages. Further, as it is in REXX, it is relatively simple for anyone that is literate in any computer language to open the code and modify to meet their needs. The authors have employed Watts in their research addressing precision agriculture and urban heat island.

  11. Airborne 2 color ranging experiment

    NASA Technical Reports Server (NTRS)

    Millar, Pamela S.; Abshire, James B.; Mcgarry, Jan F.; Zagwodzki, Thomas W.; Pacini, Linda K.

    1993-01-01

    Horizontal variations in the atmospheric refractivity are a limiting error source for many precise laser and radio space geodetic techniques. This experiment was designed to directly measure horizontal variations in atmospheric refractivity, for the first time, by using 2 color laser ranging measurements to an aircraft. The 2 color laser system at the Goddard Optical Research Facility (GORF) ranged to a cooperative laser target package on a T-39 aircraft. Circular patterns which extended from the southern edge of the Washington D.C. Beltway to the southern edge of Baltimore, MD were flown counter clockwise around Greenbelt, MD. Successful acquisition, tracking, and ranging for 21 circular paths were achieved on three flights in August 1992, resulting in over 20,000 two color ranging measurements.

  12. Curved PVDF airborne transducer.

    PubMed

    Wang, H; Toda, M

    1999-01-01

    In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.

  13. Up-dated configuration of the planar electrostatic gradiometer GREMLIT for airborne geodesy

    NASA Astrophysics Data System (ADS)

    Foulon, Bernard; Douch, Karim; Christophe, Bruno; Panet, Isabelle; Boulanger, Damien; Lebat, Vincent

    2013-04-01

    The knowledge of the gravity field of the Earth has been considerably improved thanks to global positioning satellites constellations and to space gravity measurements from recent GRACE and GOCE missions. But the spatial resolution of those gravity data essentially addresses the large and medium wavelengths of the field (down to a resolution of 90km) and it is therefore essential to complete them at the shorter wavelengths in particular in the areas where spatial distribution and quality of ground data remain quite uneven like in high mountain or coastal areas. Taking advantage of technologies, formerly developed by ONERA for the GRACE and GOCE space missions, the GREMLIT airborne gravity gradiometer is more particularly developed to cover the land/sea transition zone with a uniform precision, and a spatial resolution expected higher than from classical airborne gravimetry. Built using a configuration with eight planar proof-masses at the corners of a cube, the gradiometer is mounted on a dedicated stabilized platform which is controlled by the common mode outputs of the instrument itself to achieve a sufficient rejection ratio of the perturbations/vibrations induced by the airborne environment in the horizontal directions. The levitation of the proof-masses along the normal gravity and the vibration isolation of the platform are designed to allow the instrument to support between +2.5 g and 0 g along the vertical axis. The gradiometer differential measurements along the two horizontal axes provide the necessary information to extract the six components of the gravity gradient tensor at the location of the instrument. Well suited to sustain the proof-mass levitation in the Earth's gravity field, the planar configuration of each accelerometer also presents an intrinsic linearity of the horizontal control loops which minimizes the aliasing due to high frequency vibrations or motions generated outside the measurement bandwidth. The compactness of the gradiometer

  14. Calibration Matters: Advances in Strapdown Airborne Gravimetry

    NASA Astrophysics Data System (ADS)

    Becker, D.

    2015-12-01

    Using a commercial navigation-grade strapdown inertial measurement unit (IMU) for airborne gravimetry can be advantageous in terms of cost, handling, and space consumption compared to the classical stable-platform spring gravimeters. Up to now, however, large sensor errors made it impossible to reach the mGal-level using such type IMUs as they are not designed or optimized for this kind of application. Apart from a proper error-modeling in the filtering process, specific calibration methods that are tailored to the application of aerogravity may help to bridge this gap and to improve their performance. Based on simulations, a quantitative analysis is presented on how much IMU sensor errors, as biases, scale factors, cross couplings, and thermal drifts distort the determination of gravity and the deflection of the vertical (DOV). Several lab and in-field calibration methods are briefly discussed, and calibration results are shown for an iMAR RQH unit. In particular, a thermal lab calibration of its QA2000 accelerometers greatly improved the long-term drift behavior. Latest results from four recent airborne gravimetry campaigns confirm the effectiveness of the calibrations applied, with cross-over accuracies reaching 1.0 mGal (0.6 mGal after cross-over adjustment) and DOV accuracies reaching 1.1 arc seconds after cross-over adjustment.

  15. A Multi-Use Airborne Research Facility

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.

    2003-01-01

    Much of our progress in understanding the Earth system comes from measurements made in the atmosphere. Aircraft are widely used to collect in situ measurements of the troposphere and lower stratosphere, and they also serve as platforms for many remote sensing instruments. Airborne field measurement campaigns require a capable aircraft, a specially trained support team, a suite of basic instrumentation, space and power for new instruments, and data analysis and processing capabilities (e.g. Veal et al., 1977). However, these capabilities are expensive and there is a need to reduce costs while maintaining the capability to perform this type of research. To this end, NASA entered a Cooperative Agreement with the University of North Dakota (UND) to help support the operations of the UND Cessna Citation research aircraft. This Cooperative Agreement followed in form and substance a previous agreement. The Cooperative Agreement has benefited both NASA and UND. In part because of budget reductions, the NASA Airborne Science Office has elected to take advantage of outside operators of science research platforms to off-load some science requirements (Huning, 1996). UND has worked with NASA to identify those requirements that could be met more cost effectively with the UND platform. This has resulted in significant cost savings to NASA while broadening the base of researchers in the NASA science programs. At the same time, the Agreement has provided much needed support to UND to help sustain the Citation research facility. In this report, we describe the work conducted under this Cooperative Agreement.

  16. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  17. MARA (Multimode Airborne Radar Altimeter) system documentation. Volume 1: MARA system requirements document

    NASA Astrophysics Data System (ADS)

    Parsons, C. L.

    1989-07-01

    The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.

  18. MARA (Multimode Airborne Radar Altimeter) system documentation. Volume 1: MARA system requirements document

    NASA Technical Reports Server (NTRS)

    Parsons, C. L. (Editor)

    1989-01-01

    The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.

  19. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  20. Precise Countersinking Tool

    NASA Technical Reports Server (NTRS)

    Jenkins, Eric S.; Smith, William N.

    1992-01-01

    Tool countersinks holes precisely with only portable drill; does not require costly machine tool. Replaceable pilot stub aligns axis of tool with centerline of hole. Ensures precise cut even with imprecise drill. Designed for relatively low cutting speeds.

  1. Husbandry Trace Gas Emissions from a Dairy Complex By Mobile in Situ and Airborne and Spaceborne Remote Sensing: A Comex Campaign Focus

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Tratt, D. M.; Bovensmann, H.; Buckland, K. N.; Burrows, J. P.; Frash, J.; Gerilowski, K.; Iraci, L. T.; Johnson, P. D.; Kolyer, R.; Krautwurst, S.; Krings, T.; Leen, J. B.; Hu, C.; Melton, C.; Vigil, S. A.; Yates, E. L.; Zhang, M.

    2014-12-01

    Recent field study reviews on the greenhouse gas methane (CH4) found significant underestimation from fossil fuel industry and husbandry. The 2014 COMEX campaign seeks to develop methods to derive CH4 and carbon dioxide (CO2) from remote sensing data by combining hyperspectral imaging (HSI) and non-imaging spectroscopy (NIS) with in situ airborne and surface data. COMEX leverages synergies between high spatial resolution HSI column abundance maps and moderate spectral/spatial resolution NIS. Airborne husbandry data were collected for the Chino dairy complex (East Los Angeles Basin) by NIS-MAMAP, HSI-Mako thermal-infrared (TIR); AVIRIS NG shortwave IR (SWIR), with in situ surface mobile-AMOG Surveyor (AutoMObile greenhouse Gas)-and airborne in situ from a Twin Otter and the AlphaJet. AMOG Surveyor uses in situ Integrated Cavity Off Axis Spectroscopy (OA-ICOS) to measure CH4, CO2, H2O, H2S and NH3 at 5-10 Hz, 2D winds, and thermal anomaly in an adapted commuter car. OA-ICOS provides high precision and accuracy with excellent stability. NH3 and CH4 emissions were correlated at dairy size-scales but not sub-dairy scales in surface and Mako data, showing fine-scale structure and large variations between the numerous dairies in the complex (herd ~200,000-250,000) embedded in an urban setting. Emissions hotspots were consistent between surface and airborne surveys. In June, surface and MAMAP data showed a weak overall plume, while surface and Mako data showed a stronger plume in late (hotter) July. Multiple surface plume transects using NH3 fingerprinting showed East and then NE advection out of the LA Basin consistent with airborne data. Long-term trends were investigated in satellite data. This study shows the value of synergistically combined NH3 and CH4 remote sensing data to the task of CH4 source attribution using airborne and space-based remote sensing (IASI for NH3) and top of atmosphere sensitivity calculations for Sentinel V and Carbon Sat (CH4).

  2. Precision agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture is a new farming practice that has been developing since late 1980s. It has been variously referred to as precision farming, prescription farming, site-specific crop management, to name but a few. There are numerous definitions for precision agriculture, but the central concept...

  3. Airborne transmission of Bordetella pertussis.

    PubMed

    Warfel, Jason M; Beren, Joel; Merkel, Tod J

    2012-09-15

    Pertussis is a contagious, acute respiratory illness caused by the bacterial pathogen Bordetella pertussis. Although it is widely believed that transmission of B. pertussis occurs via aerosolized respiratory droplets, no controlled study has ever documented airborne transmission of pertussis. We set out to determine if airborne transmission occurs between infected and naive animals, utilizing the baboon model of pertussis. Our results showed that 100% of exposed naive animals became infected even when physical contact was prevented, demonstrating that pertussis transmission occurs via aerosolized respiratory droplets.

  4. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2015-01-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new 2-miron pulsed IPDA lidar has been flown in spring of 2014 for total ten flights with 27 flight hours. It provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  5. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Astrophysics Data System (ADS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2016-06-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new instrument has been flown in spring of 2014 for a total of ten flights with 27 flight hours. This IPDA lidar provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the results.

  6. Prompt and Precise Prototyping

    NASA Technical Reports Server (NTRS)

    2003-01-01

    For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.

  7. Integrated approach to airborne laser communication

    NASA Astrophysics Data System (ADS)

    Louthain, James A.; Schmidt, Jason D.

    2008-10-01

    Lasers offer tremendous advantages over RF communication systems in bandwidth and security, due to their ultrahigh frequency and narrow spatial beamwidth. Unfortunately, atmospheric turbulence causes severe received power variations and significant bit error rates (BERs) in free-space optical communication (FSOC). Airborne optical communication systems require special considerations in size, complexity, power, and weight. We alleviate the deleterious effects of turbulence by integrating multiple techniques into an on/off keying direct detection system. Wave optics simulations show a combination of transmitter diversity, receiver and transmitter trackers, and adaptive thresholding significantly reduces the BER in air-to-air FSOC (up to 13 dB). Two transmitters alone provide a significant BER improvement over one transmitter, especially for the strong turbulence regime with up to a 9 dB improvement. Two beams also provide a reduction in fade length, indicating they will probably provide even greater improvement with interleaving and forward error correction coding.

  8. Airborne Remote Sensing of River Flow and Morphology

    NASA Astrophysics Data System (ADS)

    Zuckerman, S.; Anderson, S. P.; McLean, J.; Redford, R.

    2014-12-01

    River morphology, surface slope and flow are some of the fundamental measurements required for surface water monitoring and hydrodynamic research. This paper describes a method of combining bathymetric lidar with space-time processing of mid-wave infrared (MWIR) imagery to simultaneously measure bathymetry, currents and surface slope from an airborne platform. In May 2014, Areté installed a Pushbroom Imaging Lidar for Littoral Surveillance (PILLS) and a FLIR SC8000 MWIR imaging system sampling at 2 Hz in a small twin-engine aircraft. Data was collected over the lower Colorado River between Picacho Park and Parker. PILLS is a compact bathymetric lidar based on streak-tube sensor technology. It provides channel and bank topography and water surface elevation at 1 meter horizontal scales and 25 cm vertical accuracy. Surface currents are derived from the MWIR imagery by tracking surface features using a cross correlation algorithm. This approach enables the retrieval of currents along extended reaches at the forward speed of the aircraft with spatial resolutions down to 5 m with accuracy better than 10 cm/s. The fused airborne data captures current and depth variability on scales of meters over 10's of kilometers collected in just a few minutes. The airborne MWIR current retrievals are combined with the bathymetric lidar data to calculate river discharge which is then compared with real-time streamflow stations. The results highlight the potential for improving our understanding of complex river environments with simultaneous collections from multiple airborne sensors.

  9. CHARM-F: the Airborne MERLIN Demonstrator

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Amediek, A.; Büdenbender, C.; Fix, A.; Quatrevalet, M.; Wirth, M.

    2013-12-01

    A common and efficient method for demonstration of the usefulness of new remote sensing instruments in space science is to test them on airborne platforms prior to fly them on space-borne platform. CHARM-F comprises a new IPDA lidar sensor for the simultaneous measurement of the greenhouse gases carbon dioxide (CO2) and methane (CH4). This instrument is regarded to serve as an MERLIN demonstrator when operated on an airborne platform measuring the differential atmospheric optical depth (DAOD) of CH4 beneath the aircraft. The data products of the French-German climate mission MERLIN are DAOD and XCH4 that will be measured by a small OPO-based IPDA lidar at 1.64 μm. Similar to the MERLIN transmitter, the transmitter of CHARM-F emits two frequency-controlled, spectrally narrow-band OPO pulses into the atmosphere serving for the on- and off-line measurements. The ground echoes are measured by means of fast IR sensors in the direct detection mode. A special feature of CHARM-F comprises its weighting function which is quite similar to the one considered for MERLIN since the on- and off-line frequencies can be selected to be identically. Moreover, CHARM-F is designed for operation on the German HALO aircraft that can cruise at an altitude as high as 15 km. Thus a large portion of the MERLIN DAOD will be measured by CHARM-F offering the unique possibility to validate DAOD of MERLIN which is not possible by any other means. In our presentation we will introduce the CHARM-F instrument as a demonstrator for MERLIN. Further we report on results of the qualification tests of the subsystems which are required prior to fly the instrument on the HALO aircraft. Finally, we present first results from ground-based long-path absorption measurements of CH4 employing topographic targets.

  10. High precision modeling for fundamental physics experiments

    NASA Astrophysics Data System (ADS)

    Rievers, Benny; Nesemann, Leo; Costea, Adrian; Andres, Michael; Stephan, Ernst P.; Laemmerzahl, Claus

    With growing experimental accuracies and high precision requirements for fundamental physics space missions the needs for accurate numerical modeling techniques are increasing. Motivated by the challenge of length stability in cavities and optical resonators we propose the develop-ment of a high precision modeling tool for the simulation of thermomechanical effects up to a numerical precision of 10-20 . Exemplary calculations for simplified test cases demonstrate the general feasibility of high precision calculations and point out the high complexity of the task. A tool for high precision analysis of complex geometries will have to use new data types, advanced FE solver routines and implement new methods for the evaluation of numerical precision.

  11. Airborne Synthetic Aperature Radar (AIRSAR) on left rear fuselage of DC-8 Airborne Laboratory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A view of the Airborne Synthetic Aperature Radar (AIRSAR) antenna on the left rear fuselage of the DC-8. The AIRSAR captures images of the ground from the side of the aircraft and can provide precision digital elevation mapping capabilities for a variety of studies. The AIRSAR is one of a number of research systems that have been added to the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  12. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  13. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  14. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  15. AARD - Autonomous Airborne Refueling Demonstration

    NASA Technical Reports Server (NTRS)

    Ewers, Dick

    2007-01-01

    This viewgraph document reviews the Autonomous Airborne Refueling Demonstration program, and NASA Dryden's work in the program. The primary goal of the program is to make one fully automatic probe-to-drogue engagement using the AARD system. There are pictures of the aircraft approaching to the docking.

  16. Airborne Lidar Measurements of Atmospheric Column CO2 Concentration to Cloud Tops

    NASA Astrophysics Data System (ADS)

    Mao, J.; Ramanathan, A. K.; Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.

    2015-12-01

    Globally distributed atmospheric CO2 measurements with high precision, low bias and full seasonal sampling are crucial to advance carbon cycle sciences. However, two thirds of the Earth's surface is typically covered by clouds, and passive remote sensing approaches from space, e.g., OCO-2 and GOSAT, are limited to cloud-free scenes. They are unable to provide useful retrievals in cloudy areas where the photon path-length can't be well characterized. Thus, passive approaches have limited global coverage and poor sampling in cloudy regions, even though some cloudy regions have active carbon surface fluxes. NASA Goddard is developing a pulsed integrated-path, differential absorption (IPDA) lidar approach to measure atmospheric column CO2 concentrations from space as a candidate for NASA's ASCENDS mission. Measurements of time-resolved laser backscatter profiles from the atmosphere also allow this technique to estimate column CO2 and range to cloud tops in addition to those to the ground with precise knowledge of the photon path-length. This allows retrievals of column CO2 concentrations to cloud tops, providing much higher spatial coverage and some information about vertical structure of CO2. This is expected to benefit atmospheric transport process studies, carbon data assimilation in models, and global and regional carbon flux estimation. We show some preliminary results of the all-sky retrieval capability using airborne lidar measurements from the 2011, 2013 and 2014 ASCENDS airborne campaigns on the NASA DC-8. These show retrievals of atmospheric CO2 over low-level marine stratus clouds, cumulus clouds at the top of planetary boundary layer, some mid-level clouds and visually thin high-level cirrus clouds. The CO2 retrievals from the lidar are validated against in-situ measurements and compared to Goddard PCTM model simulations. Lidar cloud slicing to derive CO2 abundance in the planetary boundary layer and free troposphere also has been demonstrated. The

  17. Precision performance lamp technology

    NASA Astrophysics Data System (ADS)

    Bell, Dean A.; Kiesa, James E.; Dean, Raymond A.

    1997-09-01

    A principal function of a lamp is to produce light output with designated spectra, intensity, and/or geometric radiation patterns. The function of a precision performance lamp is to go beyond these parameters and into the precision repeatability of performance. All lamps are not equal. There are a variety of incandescent lamps, from the vacuum incandescent indictor lamp to the precision lamp of a blood analyzer. In the past the definition of a precision lamp was described in terms of wattage, light center length (LCL), filament position, and/or spot alignment. This paper presents a new view of precision lamps through the discussion of a new segment of lamp design, which we term precision performance lamps. The definition of precision performance lamps will include (must include) the factors of a precision lamp. But what makes a precision lamp a precision performance lamp is the manner in which the design factors of amperage, mscp (mean spherical candlepower), efficacy (lumens/watt), life, not considered individually but rather considered collectively. There is a statistical bias in a precision performance lamp for each of these factors; taken individually and as a whole. When properly considered the results can be dramatic to the system design engineer, system production manage and the system end-user. It can be shown that for the lamp user, the use of precision performance lamps can translate to: (1) ease of system design, (2) simplification of electronics, (3) superior signal to noise ratios, (4) higher manufacturing yields, (5) lower system costs, (6) better product performance. The factors mentioned above are described along with their interdependent relationships. It is statistically shown how the benefits listed above are achievable. Examples are provided to illustrate how proper attention to precision performance lamp characteristics actually aid in system product design and manufacturing to build and market more, market acceptable product products in the

  18. Precision Cleaning - Path to Premier

    NASA Technical Reports Server (NTRS)

    Mackler, Scott E.

    2008-01-01

    ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.

  19. AIRBORNE RADIATION DETECTOR

    DOEpatents

    Cartmell, T.R.; Gifford, J.F.

    1959-08-01

    An ionization chamber used for measuring the radioactivity of dust present in atmospheric air is described. More particularly. the patent describes a device comprising two concentric open ended, electrically connected cylinders between which is disposed a wire electrcde. A heating source is disposed inside of the cylinder to circulate air through the space between the two cylinders by convective flow. A high voltage electric field between the wire electrcde of the electrically connected cylinder will cause ionization of the air as it passes therethrough.

  20. Precision cosmological parameter estimation

    NASA Astrophysics Data System (ADS)

    Fendt, William Ashton, Jr.

    2009-09-01

    Experimental efforts of the last few decades have brought. a golden age to mankind's endeavor to understand tine physical properties of the Universe throughout its history. Recent measurements of the cosmic microwave background (CMB) provide strong confirmation of the standard big bang paradigm, as well as introducing new mysteries, to unexplained by current physical models. In the following decades. even more ambitious scientific endeavours will begin to shed light on the new physics by looking at the detailed structure of the Universe both at very early and recent times. Modern data has allowed us to begins to test inflationary models of the early Universe, and the near future will bring higher precision data and much stronger tests. Cracking the codes hidden in these cosmological observables is a difficult and computationally intensive problem. The challenges will continue to increase as future experiments bring larger and more precise data sets. Because of the complexity of the problem, we are forced to use approximate techniques and make simplifying assumptions to ease the computational workload. While this has been reasonably sufficient until now, hints of the limitations of our techniques have begun to come to light. For example, the likelihood approximation used for analysis of CMB data from the Wilkinson Microwave Anistropy Probe (WMAP) satellite was shown to have short falls, leading to pre-emptive conclusions drawn about current cosmological theories. Also it can he shown that an approximate method used by all current analysis codes to describe the recombination history of the Universe will not be sufficiently accurate for future experiments. With a new CMB satellite scheduled for launch in the coming months, it is vital that we develop techniques to improve the analysis of cosmological data. This work develops a novel technique of both avoiding the use of approximate computational codes as well as allowing the application of new, more precise analysis

  1. [Precision and personalized medicine].

    PubMed

    Sipka, Sándor

    2016-10-01

    The author describes the concept of "personalized medicine" and the newly introduced "precision medicine". "Precision medicine" applies the terms of "phenotype", "endotype" and "biomarker" in order to characterize more precisely the various diseases. Using "biomarkers" the homogeneous type of a disease (a "phenotype") can be divided into subgroups called "endotypes" requiring different forms of treatment and financing. The good results of "precision medicine" have become especially apparent in relation with allergic and autoimmune diseases. The application of this new way of thinking is going to be necessary in Hungary, too, in the near future for participants, controllers and financing boards of healthcare. Orv. Hetil., 2016, 157(44), 1739-1741.

  2. Precision positioning device

    DOEpatents

    McInroy, John E.

    2005-01-18

    A precision positioning device is provided. The precision positioning device comprises a precision measuring/vibration isolation mechanism. A first plate is provided with the precision measuring mean secured to the first plate. A second plate is secured to the first plate. A third plate is secured to the second plate with the first plate being positioned between the second plate and the third plate. A fourth plate is secured to the third plate with the second plate being positioned between the third plate and the fourth plate. An adjusting mechanism for adjusting the position of the first plate, the second plate, the third plate, and the fourth plate relative to each other.

  3. Dissemination of developed in VNIIOFI high temperature Fix-points based on Metal-Carbon Eutectics for Space Applications of ultra-precise Radiometry and Spectral Radiation Thermometry Measurements

    NASA Astrophysics Data System (ADS)

    Sapritsky, V.; Ogarev, S.; Khlevnoy, B.

    Several fixed-point cells (with 2 and 4 mm apertures for spectral-radiance application, and with 8 and 10 mm apertures (for the spectral irradiance measurements) have been designed and investigated at VNIIOFI consisted of a high- purity graphite crucibles containing Re-C ingots with nominal total impurity levels of 5,5N at the eutectic composition(s). It was investigated that fix-point reproducibility (freezing plateau level for all measured cells) was up to 0.01...0.02% between series of measurements / crucibles, and 0.002...0.004% within a sample measurement session, i.e. better than 100 mK. Measurements of high-temperature fixed points blackbodies based on Ir-C and Re-C eutectics were carried out to investigate their applicability as radiation sources for precision photometry and radiometry, in particular for astronomy and space applications, like long-term measurements of solar variability, etc. The measurement results encourage that the utilization of a new series of a high-temperature fix-point sources hand in hand with cryo-radiometer detector could cardinally change the situation in reproduction of spectral radiance, irradiance and temperature international scales. Several more high-temperature eutectics (e.g. TiC-C metal- carbon eutectics with T = 3057 C) are being investigated further for use as high- temperature fixed-point radiance and irradiance sources in o der to increase ther accuracy of radiometric and radiance-temperature scales above the conventionally assigned values of temperatures of ITS-90.

  4. Mapping Slumgullion Landslide in Colorado, USA Using Airborne Repeat-Pass InSAR

    NASA Astrophysics Data System (ADS)

    Lee, H.; Shrestha, R. L.; Carter, W. E.; Glennie, C. L.; Wang, G.; Lu, Z.; Fernandez-Diaz, J. C.; Cao, N.; Zaugg, E.

    2015-12-01

    Interferometric Synthetic Aperture Radar (InSAR) uses two or more SAR images over the same area to determine landscape topography or ground deformation. An interferogram, generated by the phase components of two coherent SAR images, depicts range changes between the radar and the ground resolution elements, and can be used to derive both landscape topography and subtle changes in surface elevation. However, spaceborne repeat-pass interferometry has two main drawbacks: effects due to differences in atmospheric temperature, pressure, and water vapour at two observation times, and loss of coherence due to long spatial and temporal baselines between observations. Airborne repeat-pass interferometry does not suffer from these drawbacks. The atmospheric effect in case of airborne DInSAR becomes negligible due to smaller swath coverage, and the coherence can be maintained by using smaller spatial and temporal baselines. However, the main technical limitation concerning airborne DInSAR is the need of precise motion compensation with an accurate navigation system to correct for the significant phase errors due to typical flight instability from air turbulence. Here, we present results from a pilot study conducted on July 2015 using both X-band and L-band SlimSAR airborne system over the Slumgullion landslide in Colorado in order to (1) acquire the differential interferograms from the airborne platform, (2) understand their source of errors, and (3) pave a way to improve the precision of the derived surface deformation. The landslide movement estimated from airborne DInSAR is also compared with coincident GPS, terrestrial laser scanning (TLS), airborne LiDAR, and spaceborne DInSAR measurements using COSMO-SkyMed images. The airborne DInSAR system has a potential to provide time-transient variability in land surface topography with high-precision and high-resolution, and provide researchers with greater flexibility in selecting the temporal and spatial baselines of the data

  5. Combined Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.; Miller, James J.

    2015-01-01

    Besides providing position, navigation, and timing (PNT) services to traditional terrestrial and airborne users, GPS is also being increasingly used as a tool to enable precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis attitude control of Earth orbiting satellites. With additional Global Navigation Satellite System (GNSS) constellations being replenished and coming into service (GLONASS, Beidou, and Galileo), it will become possible to benefit from greater signal availability and robustness by using evolving multi-constellation receivers. The paper, "GPS in the Space Service Volume," presented at the ION GNSS 19th International Technical Meeting in 2006 (Ref. 1), defined the Space Service Volume, and analyzed the performance of GPS out to seventy thousand kilometers. This paper will report a similar analysis of the signal coverage of GPS in the space domain; however, the analyses will also consider signal coverage from each of the additional GNSS constellations noted earlier to specifically demonstrate the expected benefits to be derived from using GPS in conjunction with other foreign systems. The Space Service Volume is formally defined as the volume of space between three thousand kilometers altitude and geosynchronous altitude circa 36,000 km, as compared with the Terrestrial Service Volume between 3,000 km and the surface of the Earth. In the Terrestrial Service Volume, GNSS performance is the same as on or near the Earth's surface due to satellite vehicle availability and geometry similarities. The core GPS system has thereby established signal requirements for the Space Service Volume as part of technical Capability Development Documentation (CDD) that specifies system performance. Besides the technical discussion, we also present diplomatic efforts to extend the GPS Space Service Volume concept to other PNT service providers in an effort to assure that all space users will benefit from the enhanced

  6. Dual channel airborne hygrometer for climate research

    NASA Astrophysics Data System (ADS)

    Tatrai, David; Gulyas, Gabor; Bozoki, Zoltan; Szabo, Gabor

    2015-04-01

    Airborne hygrometry has an increasing role in climate research and nowadays the determination of cloud content especially of cirrus clouds is gaining high interest. The greatest challenges for such measurements are being used from ground level up to the lower stratosphere with appropriate precision and accuracy the low concentration and varying environment pressure. Such purpose instrument was probably presented first by our research group [1-2]. The development of the system called WaSUL-Hygro and some measurement results will be introduced. The measurement system is based on photoacoustic spectroscopy and contains two measuring cells, one is used to measure water vapor concentration which is typically sampled by a sideward or backward inlet, while the second one measures total water content (water vapor plus ice crystals) after evaporation in a forward facing sampler. The two measuring cells are simultaneously illuminated through with one distributed feedback diode laser (1371 or 1392 nm). Two early versions have been used within the CARIBIC project. During the recent years, efforts were made to turn the system into a more reliable and robust one [3]. The first important development was the improvement of the wavelength stabilization method of the applied laser. As a result the uncertainty of the wavelength is less than 40fm, which corresponds to less than 0.05% of PA signal uncertainty. This PA signal uncertainty is lower than the noise level of the system itself. The other main development was the improvement of the concentration determination algorithm. For this purpose several calibration and data evaluation methods were developed, the combination of the latest ones have made the system traceable to the humidity generator applied during the calibration within 1.5% relative deviation or within noise level, whichever is greater. The improved system was several times blind tested at the Environmental Simulation Facility (Forschungszentrum Jülich, Germany) in

  7. Head-mounted workstation displays for airborne reconnaissance applications

    NASA Astrophysics Data System (ADS)

    Browne, Michael P.

    1998-09-01

    Aircraft reconnaissance operators need to access increasing amounts of information to perform their job effectively. Unfortunately, there is no excess weight, space or power capacity in most airborne platforms for the installation of additional display surfaces. Head mounted workstation displays solve these weight, space and power problems and mitigate information overload by providing a user-friendly interface to displayed information. Savings can be tremendous for large platforms. Over 18 kW of power and over 5,000 pounds could be saved on each Rivet Joint or AWACS platform. Even small platforms such as the E-2C or UAV ground control stations benefit from removal of large, heavy CRT or LCD displays. In addition, head mounted workstation displays provide an increased capability for collaborative mission planning and reduce motion-induced nausea. Kaiser Electronics has already designed and demonstrated a prototype system, VIEWTM, that addresses the needs of the airborne workstation operator. This system is easily reconfigured for multiple tasks and can be designed as a portable workstation for use anywhere within the aircraft (especially for maintenance or supervisory roles). We have validated the VIEWTM design with hundreds of user trials within the airborne reconnaissance community. Adopting such a display system in reconnaissance aircraft will gain significant benefits such as longer on-station time, increased operational altitude and improved operator performance.

  8. Integrated approach to airborne laser communication

    NASA Astrophysics Data System (ADS)

    Louthain, James A.

    Lasers offer tremendous advantages over RF communication systems in terms of bandwidth and security due to their ultra-high frequency and narrow spatial beamwidth. Unfortunately, atmospheric turbulence significantly increases the received power variation and bit error rate (BER) in free-space optical communication (FSOC) systems. Further, airborne optical communication systems require special considerations in size, complexity, power, and weight. If two or more laser beams are sufficiently separated so that their turbulence effects are uncorrelated (i.e. anisoplanatic), they can effectively "average out" turbulence effects. This requisite separation distance is derived for multiple geometries, turbulence conditions, and optical properties. In most cases and geometries, the angles ordered from largest to smallest are: phase uncorrelated angle (equivalent to the tilt uncorrelated angle and phase anisoplanatic angle), tilt isoplanatic angle, phase isoplanatic angle, scintillation uncorrelated angle (or scintillation anisoplanatic angle), and scintillation isoplanatic angle ( qyind > thetaTA > theta0 > qcind > qc0 ). Conventional adaptive optics (AO) systems only correct for phase and cannot correct for strong scintillation, while multiple-transmitter systems use several transmission paths to "average out" effects of the strong scintillation by incoherently summing up the beams in the receiver. Since all three airborne geometries (air-to-air, air-to-ground, and ground-to-air) are studied, a comparison of multiple-beam airborne laser communication system performance is presented for the first time. Wave optics simulations show that a combination of transmitter diversity, receiver and transmitter trackers, and adaptive thresholding can significantly reduce BER in an air-to-air FSOC system by over 10,000 times. As demonstrated in this work, two transmitters alone separated by only 31 cm (100 km path length, 1.55 mum wavelength, 4 km in altitude) provide a significant BER

  9. SOFIA'S Challenge: Scheduling Airborne Astronomy Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy

    2005-01-01

    generate flights enables humans to assess and analyze complex tradeoffs between fuel consumption, estimated science quality and the percentage of scheduled observations. Due to the changing nature of SOFIA scheduling problems, this functionality will play a crucial role in optimizing science and minimizing costs during operations. In the full paper, we will summarize the technical challenges that have been met in order to build this system. These include: design of the search algorithm, design of appropriate heuristics and approximations, and reduction in the size of the search space. We will also describe technical challenges that are currently being addressed, including the extension of the existing approach to handle new solution criteria. Finally, we will describe a variety of cultural challenges that the astronomical community must address in order to successfully use SOFIA, and describe how the AFT can be used to address some of these challenges. Specifically, many of the intended science users are accustomed to using ground-based or space-based observatories; we will identify some differences that arise due to the nature of airborne observatories, and how the AFT can be extended to provide useful services to ease these cultural differences.

  10. Procedure for rapid determination of nickel, cobalt, and chromium in airborne particulate samples

    NASA Technical Reports Server (NTRS)

    Davis, W. F.; Graab, J. W.

    1972-01-01

    A rapid, selective procedure for the determination of 1 to 20 micrograms of nickel, chromium, and cobalt in airborne particulates is described. The method utilizes the combined techniques of low temperature ashing and atomic absorption spectroscopy. The airborne particulates are collected on analytical filter paper. The filter papers are ashed, and the residues are dissolved in hydrochloric acid. Nickel, chromium, and cobalt are determined directly with good precision and accuracy by means of atomic absorption. The effects of flame type, burner height, slit width, and lamp current on the atomic absorption measurements are reported.

  11. Determination of coal dust in airborne particulate materials by automated optical microscopy

    SciTech Connect

    McQuaker, N.R.; Sandberg, D.K.

    1984-11-01

    An automated optical technique for the determination of coal in airborne particulate materials is described. The technique may be used over the interval 1-5% (wt) coal when the sample is uniformly deposited as a monolayer on a cellulose acetate filter. The analytical precision is found to be acceptable. The accuracy for reference samples is shown to be either +/- 0.5% (by weight) or +/- 10% over the analytical range. The application of the method to authentic samples of airborne particulate materials is also discussed.

  12. Precision antenna reflector structures

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1985-01-01

    The assembly of the Large Precise Reflector Infrared Telescope is detailed. Also given are the specifications for the Aft Cargo Carrier and the Large Precision Reflector structure. Packaging concepts and options, stowage depth and support truss geometry are also considered. An example of a construction scenario is given.

  13. Precision Optics Curriculum.

    ERIC Educational Resources Information Center

    Reid, Robert L.; And Others

    This guide outlines the competency-based, two-year precision optics curriculum that the American Precision Optics Manufacturers Association has proposed to fill the void that it suggests will soon exist as many of the master opticians currently employed retire. The model, which closely resembles the old European apprenticeship model, calls for 300…

  14. The Airborne Measurements of Methane Fluxes (AIRMETH) Arctic Campaign (Invited)

    NASA Astrophysics Data System (ADS)

    Serafimovich, A.; Metzger, S.; Hartmann, J.; Kohnert, K.; Sachs, T.

    2013-12-01

    biophysical drivers in the flux footprints. Lastly, the resulting ERFs are used to extrapolate the methane release over spatio-temporally explicit grids of the Alaskan North Slope. Metzger et al. (2013) have demonstrated the efficacy of this technique for regionalizing airborne EC heat flux observations to within an accuracy of ≤18% and a precision of ≤5%. Here, we show for the first time results from applying the ERF procedure to airborne methane EC measurements, and report its potential for spatio-temporally explicit inventories of the regional-scale methane exchange. References: Metzger, S., Junkermann, W., Mauder, M., Butterbach-Bahl, K., Trancón y Widemann, B., Neidl, F., Schäfer, K., Wieneke, S., Zheng, X. H., Schmid, H. P., and Foken, T.: Spatially explicit regionalization of airborne flux measurements using environmental response functions, Biogeosciences, 10, 2193-2217, doi:10.5194/bg-10-2193-2013, 2013.

  15. Axion Bounds from Precision Cosmology

    SciTech Connect

    Raffelt, G. G.; Hamann, J.; Hannestad, S.; Mirizzi, A.; Wong, Y. Y. Y.

    2010-08-30

    Depending on their mass, axions produced in the early universe can leave different imprints in cosmic structures. If axions have masses in the eV-range, they contribute a hot dark matter fraction, allowing one to constrain m{sub a} in analogy to neutrinos. In the more favored scenario where axions play the role of cold dark matter and if reheating after inflation does not restore the Peccei-Quinn symmetry, the axion field provides isocurvature fluctuations that are severely constrained by precision cosmology. There remains a small sliver in parameter space where isocurvature fluctuations could still show up in future probes.

  16. An airborne system for detection of volcanic surface deformations

    NASA Technical Reports Server (NTRS)

    Lunine, J.

    1980-01-01

    A technique is proposed for measuring volcanic deformation on the order of centimeters per day to centimeters per year. An airborne multifrequency pulsed radar, tracking passive ground reflectors spaced at 1 kilometer intervals over a 50 square kilometer area is employed. Identification of targets is accomplished by Doppler and range resolution techniques, with final relative position measurements accomplished by phase comparison of multifrequency signals. Atmospheric path length errors are corrected by an airborne refractometer, meteorological instruments, or other refractive index measuring devices. Anticipated system accuracy is 1-2 cm, with measuring times on the order of minutes. Potential problems exist in the high intrinsic data assimilation rate required of the system to overcome ground backscatter noise.

  17. Detecting inertial effects with airborne matter-wave interferometry

    PubMed Central

    Geiger, R.; Ménoret, V.; Stern, G.; Zahzam, N.; Cheinet, P.; Battelier, B.; Villing, A.; Moron, F.; Lours, M.; Bidel, Y.; Bresson, A.; Landragin, A.; Bouyer, P.

    2011-01-01

    Inertial sensors relying on atom interferometry offer a breakthrough advance in a variety of applications, such as inertial navigation, gravimetry or ground- and space-based tests of fundamental physics. These instruments require a quiet environment to reach their performance and using them outside the laboratory remains a challenge. Here we report the first operation of an airborne matter-wave accelerometer set up aboard a 0g plane and operating during the standard gravity (1g) and microgravity (0g) phases of the flight. At 1g, the sensor can detect inertial effects more than 300 times weaker than the typical acceleration fluctuations of the aircraft. We describe the improvement of the interferometer sensitivity in 0g, which reaches 2 x 10-4 ms-2 / √Hz with our current setup. We finally discuss the extension of our method to airborne and spaceborne tests of the Universality of free fall with matter waves. PMID:21934658

  18. On the Use of X-Band CW Nanosecond Airborne Radar for Terrain Profiling.

    DTIC Science & Technology

    2014-09-26

    Report 5599 On the Use of X-Band CW Nanosecond Airborne Radar for Terrain Profiling (D. T. CHEN AND E. A. ULIANA00 00 Space Sensing Branch Space...Radar for Terrain Profiling 2 ERSONAL AUTHOR(S) Chen, D.T. and Uliana, E.A. - 𔄀 SUPPLEMENTARY NOTATION Radar return waveform analysis Hfigh pass...filter. 79 ABSTRACT (Continue on reverse of necessary and identify by block number) - ’ Terrain profile sensed by a 10 GHz X-band airborne nanosecond radar

  19. Detection of airborne polyoma virus.

    PubMed Central

    McGarrity, G. J.; Dion, A. S.

    1978-01-01

    Polyoma virus was recovered from the air of an animal laboratory housing mice infected with the virus. Air samples were obtained by means of a high volume air sampler and further concentrated by high speed centrifugation. Total concentration of the air samples was 7.5 x 10(7). Assay for polyoma virus was by mouse antibody production tests. Airborne polyoma virus was detected in four of six samples. PMID:211163

  20. The Future of Airborne Reconnaissance

    DTIC Science & Technology

    1996-01-01

    biplanes to the worldwide Cold War missions of the U - 2 and SR-71, airborne reconnaissance has become an indispensable tool to the intelligence community...Reconnaissance Operations (SRO) procedures, such as the U - 2 , RC- 135, and the EP-3, and traditional theater/fleet tactical reconnaissance systems like...upgraded sensor package on the U -2.14 The Army Staffs argument centers around command and control of the asset. The Army agreed that the U - 2 ’s

  1. Evaluation of principal cannabinoids in airborne particulates.

    PubMed

    Balducci, C; Nervegna, G; Cecinato, A

    2009-05-08

    The determination of delta(9)-tetrahydrocannabinol (Delta9-THC), cannabidiol (CND) and cannabinol (CNB), primary active components in cannabis preparation, was carried out on airborne particulates by applying a specific procedure consisting of soot extraction by ultrasonic bath, purification by solvent partitioning, derivatization with N-(t-butyldimethylsilyl)-N-methyl-trifluoroacetamide, and separation/detection through gas chromatography coupled with tandem mass spectrometry. The optimized procedure was found suitable for measuring the three psychotropic substances at concentrations ranging from ca. 0.001 to ca. 5.0 ng cm(-3) of air, with recoveries always higher than 82%, accuracy >7.3% and precision >90%. Application of the procedure performed on field in Rome and Bari, Italy, demonstrated that all three compounds contaminate the air in Italian cities whereas in Algiers, Algeria, only cannabinol, the most stable in the atmosphere, exceeded the limit of quantification of the method. The relative percentages of the three cannabinoids in general reproduced those typical of the Cannabis sativa plant and were very different from those found in human blood, urine and sweat.

  2. Airborne LIDAR point cloud tower inclination judgment

    NASA Astrophysics Data System (ADS)

    liang, Chen; zhengjun, Liu; jianguo, Qian

    2016-11-01

    Inclined transmission line towers for the safe operation of the line caused a great threat, how to effectively, quickly and accurately perform inclined judgment tower of power supply company safety and security of supply has played a key role. In recent years, with the development of unmanned aerial vehicles, unmanned aerial vehicles equipped with a laser scanner, GPS, inertial navigation is one of the high-precision 3D Remote Sensing System in the electricity sector more and more. By airborne radar scan point cloud to visually show the whole picture of the three-dimensional spatial information of the power line corridors, such as the line facilities and equipment, terrain and trees. Currently, LIDAR point cloud research in the field has not yet formed an algorithm to determine tower inclination, the paper through the existing power line corridor on the tower base extraction, through their own tower shape characteristic analysis, a vertical stratification the method of combining convex hull algorithm for point cloud tower scarce two cases using two different methods for the tower was Inclined to judge, and the results with high reliability.

  3. ARM Airborne Continuous carbon dioxide measurements

    DOE Data Explorer

    Biraud, Sebastien

    2013-03-26

    The heart of the AOS CO2 Airborne Rack Mounted Analyzer System is the AOS Manifold. The AOS Manifold is a nickel coated aluminum analyzer and gas processor designed around two identical nickel-plated gas cells, one for reference gas and one for sample gas. The sample and reference cells are uniquely designed to provide optimal flushing efficiency. These cells are situated between a black-body radiation source and a photo-diode detection system. The AOS manifold also houses flow meters, pressure sensors and control valves. The exhaust from the analyzer flows into a buffer volume which allows for precise pressure control of the analyzer. The final piece of the analyzer is the demodulator board which is used to convert the DC signal generated by the analyzer into an AC response. The resulting output from the demodulator board is an averaged count of CO2 over a specified hertz cycle reported in volts and a corresponding temperature reading. The system computer is responsible for the input of commands and therefore works to control the unit functions such as flow rate, pressure, and valve control.The remainder of the system consists of compressors, reference gases, air drier, electrical cables, and the necessary connecting plumbing to provide a dry sample air stream and reference air streams to the AOS manifold.

  4. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

    NASA Astrophysics Data System (ADS)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-03-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  5. Precision volume measurement system.

    SciTech Connect

    Fischer, Erin E.; Shugard, Andrew D.

    2004-11-01

    A new precision volume measurement system based on a Kansas City Plant (KCP) design was built to support the volume measurement needs of the Gas Transfer Systems (GTS) department at Sandia National Labs (SNL) in California. An engineering study was undertaken to verify or refute KCP's claims of 0.5% accuracy. The study assesses the accuracy and precision of the system. The system uses the ideal gas law and precise pressure measurements (of low-pressure helium) in a temperature and computer controlled environment to ratio a known volume to an unknown volume.

  6. Real-time atmospheric absorption spectra for in-flight tuning of an airborne dial system

    NASA Technical Reports Server (NTRS)

    Dombrowski, M.; Walden, H.; Schwemmer, G. K.; Milrod, J.; Korb, C. L.

    1986-01-01

    Real-time measurements of atmospheric absorption spectra are displayed and used to precisely calibrate and fix the frequency of an Alexandrite laser to specific oxygen absorption features for airborne Differential Absorption Lidar (DIAL) measurements of atmospheric pressure and temperature. The DIAL system used contains two narrowband tunable Alexandrite lasers: one is electronically scanned to tune to oxygen absorption features for on-line signals while the second is used to obtain off-line (nonabsorbed) atmospheric return signals. The lidar operator may select the number of shots to be averaged, the altitude, and altitude interval over which the signals are averaged using single key stroke commands. The operator also determines exactly which oxygen absorption lines are scanned by comparing the line spacings and relative strengths with known line parameters, thus calibrating the laser wavelength readout. The system was used successfully to measure the atmospheric pressure profile on the first flights of this lidar, November 20, and December 9, 1985, aboard the NASA Wallops Electra aircraft.

  7. Experimental Advanced Airborne Research Lidar (EAARL) Data Processing Manual

    USGS Publications Warehouse

    Bonisteel, Jamie M.; Nayegandhi, Amar; Wright, C. Wayne; Brock, John C.; Nagle, David

    2009-01-01

    . Each pulse is focused into an illumination area that has a radius of about 20 centimeters on the ground. The pulse-repetition frequency of the EAARL transmitter varies along each across-track scan to produce equal cross-track sample spacing and near uniform density (Nayegandhi and others, 2006). Targets can have varying physical and optical characteristics that cause extreme fluctuations in laser backscatter complexity and signal strength. To accommodate this dynamic range, EAARL has the real-time ability to detect, capture, and automatically adapt to each laser return backscatter. The backscattered energy is collected by an array of four high-speed waveform digitizers connected to an array of four sub-nanosecond photodetectors. Each of the four photodetectors receives a finite range of the returning laser backscatter photons. The most sensitive channel receives 90% of the photons, the least sensitive receives 0.9%, and the middle channel receives 9% (Wright and Brock, 2002). The fourth channel is available for detection but is not currently being utilized. All four channels are digitized simultaneously into 65,536 samples for every laser pulse. Receiver optics consists of a 15-centimeter-diameter dielectric-coated Newtonian telescope, a computer-driven raster scanning mirror oscillating at 12.5 hertz (25 rasters per second), and an array of sub-nanosecond photodetectors. The signal emitted by the pulsed laser transmitter is amplified as backscatter by the optical telescope receiver. The photomultiplier tube (PMT) then converts the optical energy into electrical impulses (Nayegandhi and others, 2006). In addition to the full-waveform resolving laser, the EAARL sensor suite includes a down-looking 70-centimeter-resolution Red-Green-Blue (RGB) digital network camera, a high-resolution color infrared (CIR) multispectral camera (14-centimeter-resolution), two precision dual-frequency kinematic carrier-phase global positioning system (GPS) receivers, and an

  8. A method to quantify infectious airborne pathogens at concentrations below the threshold of quantification by culture.

    PubMed

    Cutler, Timothy D; Wang, Chong; Hoff, Steven J; Zimmerman, Jeffrey J

    2013-04-01

    In aerobiology, dose-response studies are used to estimate the risk of infection to a susceptible host presented by exposure to a specific dose of an airborne pathogen. In the research setting, host- and pathogen-specific factors that affect the dose-response continuum can be accounted for by experimental design, but the requirement to precisely determine the dose of infectious pathogen to which the host was exposed is often challenging. By definition, quantification of viable airborne pathogens is based on the culture of micro-organisms, but some airborne pathogens are transmissible at concentrations below the threshold of quantification by culture. In this paper we present an approach to the calculation of exposure dose at microbiologically unquantifiable levels using an application of the "continuous-stirred tank reactor (CSTR) model" and the validation of this approach using rhodamine B dye as a surrogate for aerosolized microbial pathogens in a dynamic aerosol toroid (DAT).

  9. Oceanic radiance model development and validation: application of airborne active-passive ocean color spectral measurements.

    PubMed

    Hoge, F E; Swift, R; Yungel, J

    1995-06-20

    It is shown that airborne active-passive (laser-solar) ocean color data can be used to develop and validate oceanic radiance models. The two principal inputs to the oceanic radiance model, chlorophyll pigment and incident solar irradiance, are obtained from a nadir-viewing laser-induced fluorescence spectrometer and a zenith-viewing radiometer, respectively. The computed water-leaving radiances are validated by comparison with the calibrated output of a separate nadir-viewing radiometer subsystem. In the North Atlantic Ocean, the calculated and the observed airborne radiances are found to compare very favorably for the 443-, 520-, and 550-nm wavelengths over an ∼ 170-km flight track east of St. John's, Newfoundland. The results further suggest that the semianalytical radiance model of ocean color, the airborne active (laser) fluorescence spectrometer, and the passive (solar) radiometric instrumentation are all remarkably precise.

  10. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  11. Precision Measurement in Biology

    NASA Astrophysics Data System (ADS)

    Quake, Stephen

    Is biology a quantitative science like physics? I will discuss the role of precision measurement in both physics and biology, and argue that in fact both fields can be tied together by the use and consequences of precision measurement. The elementary quanta of biology are twofold: the macromolecule and the cell. Cells are the fundamental unit of life, and macromolecules are the fundamental elements of the cell. I will describe how precision measurements have been used to explore the basic properties of these quanta, and more generally how the quest for higher precision almost inevitably leads to the development of new technologies, which in turn catalyze further scientific discovery. In the 21st century, there are no remaining experimental barriers to biology becoming a truly quantitative and mathematical science.

  12. Precision metrology using weak measurements.

    PubMed

    Zhang, Lijian; Datta, Animesh; Walmsley, Ian A

    2015-05-29

    Weak values and measurements have been proposed as a means to achieve dramatic enhancements in metrology based on the greatly increased range of possible measurement outcomes. Unfortunately, the very large values of measurement outcomes occur with highly suppressed probabilities. This raises three vital questions in weak-measurement-based metrology. Namely, (Q1) Does postselection enhance the measurement precision? (Q2) Does weak measurement offer better precision than strong measurement? (Q3) Is it possible to beat the standard quantum limit or to achieve the Heisenberg limit with weak measurement using only classical resources? We analyze these questions for two prototypical, and generic, measurement protocols and show that while the answers to the first two questions are negative for both protocols, the answer to the last is affirmative for measurements with phase-space interactions, and negative for configuration space interactions. Our results, particularly the ability of weak measurements to perform at par with strong measurements in some cases, are instructive for the design of weak-measurement-based protocols for quantum metrology.

  13. Precision displacement reference system

    DOEpatents

    Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.

    2000-02-22

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  14. Hyperspectral mapping of crop and soils for precision agriculture

    NASA Astrophysics Data System (ADS)

    Whiting, Michael L.; Ustin, Susan L.; Zarco-Tejada, Pablo; Palacios-Orueta, Alicia; Vanderbilt, Vern C.

    2006-08-01

    Precision agriculture requires high spectral and spatial resolution imagery for advanced analyses of crop and soil conditions to increase environmental protection and producers' sustainability. GIS models that anticipate crop responses to nutrients, water, and pesticides require high spatial detail to generate application prescription maps. While the added precision of geo-spatial interpolation to field scouting generates improved zone maps and are an improvement over field-wide applications, it is limited in detail due to expense, and lacks the high precision required for pixel level applications. Multi-spectral imagery gives the spatial detail required, but broad band indexes are not sensitive to many variables in the crop and soil environment. Hyperspectral imagery provides both the spatial detail of airborne imagery and spectral resolution for spectroscopic and narrow band analysis techniques developed over recent decades in the laboratory that will advance precise determination of water and bio-physical properties of crops and soils. For several years, we have conducted remote sensing investigations to improve cotton production through field spectrometer measurements, and plant and soil samples in commercial fields and crop trials. We have developed spectral analyses techniques for plant and soil conditions through determination of crop water status, effectiveness of pre-harvest defoliant applications, and soil characterizations. We present the most promising of these spectroscopic absorption and narrow band index techniques, and their application to airborne hyperspectral imagery in mapping the variability in crops and soils.

  15. Precision medicine in cardiology.

    PubMed

    Antman, Elliott M; Loscalzo, Joseph

    2016-10-01

    The cardiovascular research and clinical communities are ideally positioned to address the epidemic of noncommunicable causes of death, as well as advance our understanding of human health and disease, through the development and implementation of precision medicine. New tools will be needed for describing the cardiovascular health status of individuals and populations, including 'omic' data, exposome and social determinants of health, the microbiome, behaviours and motivations, patient-generated data, and the array of data in electronic medical records. Cardiovascular specialists can build on their experience and use precision medicine to facilitate discovery science and improve the efficiency of clinical research, with the goal of providing more precise information to improve the health of individuals and populations. Overcoming the barriers to implementing precision medicine will require addressing a range of technical and sociopolitical issues. Health care under precision medicine will become a more integrated, dynamic system, in which patients are no longer a passive entity on whom measurements are made, but instead are central stakeholders who contribute data and participate actively in shared decision-making. Many traditionally defined diseases have common mechanisms; therefore, elimination of a siloed approach to medicine will ultimately pave the path to the creation of a universal precision medicine environment.

  16. Fabry-Perot Based Radiometers for Precise Measurement of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Wilson, Emily L.; Georgieva, Elena

    2007-01-01

    Differential radiometers based upon the Fabry-Perot interferometer have been developed and demonstrated that exhibit very great sensitivity to changes in the atmospheric column of carbon dioxide, oxygen, and water vapor. These instruments employ a solid Fabry-Perot etalon that is tuned to the proper wavelength by changing the temperature. By choosing the thickness of the etalon its multiple pass bands can be made to align with regularly space absorption features of the molecule under investigation. Use of multiple absorption features improves the optical throughput of the instrument and improves the stability of the instrument response with respect to environmental changes. Efforts are underway at Goddard to extend this technique to the carbon 13 isotope of carbon dioxide and to methane. These instruments are intrinsically rugged and can be made rather small and inexpensively. They therefore hold promise for widespread use in ground based networks for calibration of satellite instruments such as OCO and GOSAT. Results will be presented for ground based and airborne operations for these systems. The effects of atmospheric scattering, pointing errors, pressure broadening and temperature effects will be discussed with regard to achieving precision better than .5% required for validation of carbon dioxide column measured from space. Designs permitting the extension of the technique to an even larger number of atmospheric species will be discussed along with theoretical analysis of potential system performance.

  17. Effect of land uses and wind direction on the contribution of local sources to airborne pollen.

    PubMed

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Fernández-González, Federico; Pérez-Badia, Rosa

    2015-12-15

    The interpretation of airborne pollen levels in cities based on the contribution of the surrounding flora and vegetation is a useful tool to estimate airborne allergen concentrations and, consequently, to determine the allergy risk for local residents. This study examined the pollen spectrum in a city in central Spain (Guadalajara) and analysed the vegetation landscape and land uses within a radius of 20km in an attempt to identify and locate the origin of airborne pollen and to determine the effect of meteorological variables on pollen emission and dispersal. The results showed that local wind direction was largely responsible for changes in the concentrations of different airborne pollen types. The land uses contributing most to airborne pollen counts were urban green spaces, though only 0.1% of the total surface area studied, and broadleaved forest which covered 5% of the study area. These two types of land use together accounted for 70% of the airborne pollen. Crops, scrubland and pastureland, though covering 80% of the total surface area, contributed only 18.6% to the total pollen count, and this contribution mainly consisted of pollen from Olea and herbaceous plants, including Poaceae, Urticaceae and Chenopodiaceae-Amaranthaceae. Pollen from ornamental species were mainly associated with easterly (Platanus), southerly (Cupressaceae) and westerly (Cupressaceae and Platanus) winds from the areas where the city's largest parks and gardens are located. Quercus pollen was mostly transported by winds blowing in from holm-oak stands on the eastern edge of the city. The highest Populus pollen counts were associated with easterly and westerly winds blowing in from areas containing rivers and streams. The airborne pollen counts generally rose with increasing temperature, solar radiation and hours of sunlight, all of which favour pollen release. In contrast, pollen counts declined with increased relative humidity and rainfall, which hinder airborne pollen transport.

  18. The alpine Swiss-French airborne gravity survey

    NASA Astrophysics Data System (ADS)

    Verdun, Jérôme; Klingelé, Emile E.; Bayer, Roger; Cocard, Marc; Geiger, Alain; Kahle, Hans-Gert

    2003-01-01

    In February 1998, a regional-scale, airborne gravity survey was carried out over the French Occidental Alps within the framework of the GéoFrance 3-D research program.The survey consisted of 18 NS and 16 EW oriented lines with a spacing of 10 and 20 km respectively, covering the whole of the Western French Alps (total area: 50 000 km2; total distance of lines flown: 10 000 km). The equipment was mounted in a medium-size aircraft (DeHavilland Twin Otter) flowing at a constant altitude of 5100 m a.s.l, and at a mean ground speed of about 280 km h-1. Gravity was measured using a LaCoste & Romberg relative, air/sea gravimeter (type SA) mounted on a laser gyro stabilized platform. Data from 5 GPS antennae located on fuselage and wings and 7 ground-based GPS reference stations were used to determine position and aircraft induced accelerations.The gravimeter passband was derived by comparing the vertical accelerations provided by the gravimeter with those estimated from the GPS positions. This comparison showed that the gravimeter is not sensitive to very short wavelength aircraft accelerations, and therefore a simplified formulation for computing airborne gravity measurements was developed. The intermediate and short wavelength, non-gravitational accelerations were eliminated by means of digital, exponential low-pass filters (cut-off wavelength: 16 km). An important issue in airborne gravimetry is the reliability of the airborne gravity surveys when compared to ground surveys. In our studied area, the differences between the airborne-acquired Bouguer anomaly and the ground upward-continued Bouguer anomaly of the Alps shows a good agreement: the rms of these differences is equal to 7.68 mGal for a spatial resolution of 8 km. However, in some areas with rugged topography, the amplitudes of those differences have a striking correlation with the topography. We then argue that the choice of an appropriate density (reduction by a factor of 10 per cent) for computing the

  19. The use of airborne geophysics for levee classification and assessment

    NASA Astrophysics Data System (ADS)

    Dunbar, Joseph B.

    2011-12-01

    purpose for segmenting the levee system is for identifying reaches with similar geotechnical properties for an engineering evaluation and to identify areas where anomalous conditions may occur. Airborne geophysical methods offer added benefits and improvements over traditional engineering methods to evaluate levees based solely on evenly spaced borings along the levee right-of-way, where zones of weakness may be missed. The volume of earth being measured by multiple frequency airborne EM techniques corresponds primarily to the foundation of the levee instead of the body of the levee in smaller levees. Ideally, airborne methods would be supplemented with high resolution ground based EM methods to better define anomalous conditions. Data derived from airborne sur-veys are used in a levee screening process developed during this research to rank levees for the most efficient use of limited maintenance resources and subsequently target reaches for focused studies using traditional engineering methods. Airborne EM surveys show that local variations in electrical conductivity occur, and usually corre-spond to abrupt geologic boundaries in the levee foundation associated with different types of depositional environments (i.e., abandoned channel, abandoned course, point bar, flood basin, crevasse splay, chute, etc.).

  20. Airborne trace contaminants of possible interest in CELSS

    NASA Technical Reports Server (NTRS)

    Garavelli, J. S.

    1986-01-01

    One design goal of Closed Ecological Life Support Systems (CELSS) for long duration space missions is to maintain an atmosphere which is healthy for all the desirable biological species and not deleterious to any of the mechanical components in that atmosphere. CELESS design must take into account the interactions of at least six major components; (1) humans and animals, (2) higher plants, (3) microalgae, (4) bacteria and fungi, (5) the waste processing system, and (6) other mechanical systems. Each of these major components can be both a source and a target of airborne trace contaminants in a CELSS. A range of possible airborne trace contaminants is discussed within a chemical classification scheme. These contaminants are analyzed with respect to their probable sources among the six major components and their potential effects on those components. Data on airborne chemical contaminants detected in shuttle missions is presented along with this analysis. The observed concentrations of several classes of compounds, including hydrocarbons, halocarbons, halosilanes, amines and nitrogen oxides, are considered with respect to the problems which they present to CELSS.

  1. Simulation and analysis of airborne antenna radiation patterns

    NASA Astrophysics Data System (ADS)

    Kim, J. J.; Burnside, Walter D.

    1984-12-01

    The objective is to develop an accurate and efficient analytic solution for predicting high frequency radiation patterns of fuselage-mounted airborne antennas. This is an analytic study of airborne antenna patterns using the Uniform Geometrical Theory of Diffraction (UTD). The aircraft is modeled in its most basic form so that the solution is applicable to general-type aircraft. The fuselage is modeled as a perfectly conducting composite ellipsoid; whereas, the wings, stabilizers, nose, fuel tanks, and engines, are simulated as perfectly conducting flat plates that can be attached to the fuselage and/or to each other. The composite-ellipsoid fuselage model is necessary to successfully simulate the wide variety of real world fuselage shapes. Since the antenna is mounted on the fuselage, it has a dominant effect on the resulting radiation pattern so it must be simulated accurately, especially near the antenna. Various radiation patterns are calculated for commercial, private, and military aircraft, and the Space Shuttle Orbiter. The application of this solution to numerous practical airborne antenna problems illustrates its versatility and design capability. In most cases, the solution accuracy is verified by the comparisons between the calculated and measured data.

  2. Simulation and analysis of airborne antenna radiation patterns

    NASA Astrophysics Data System (ADS)

    Kim, J. J. G.

    An accurate and efficient analytic solution for predicting high frequency radiation patterns of fuselage-mounted airborne antennas is described. This is an analytic study of airborne antenna patterns using the Uniform Geometrical Theory of Diffraction (UTD). The aircraft is modelled in its most basic form so that the solution is applicable to general-type aircraft. The fuselage is modelled as a perfectly conducting composite ellipsoid; whereas, the wings, stabilizers, nose, fuel tanks, and engines, etc., are simulated as perfectly conducting flat plates that can be attached to the fuselage and/or to each other. The composite-ellipsoid fuselage model is necessary to successfully simulate the wide variety of real world fuselage shapes. Since the antenna is mounted on the fuselage, it has a dominant effect on the resulting radiation pattern so it must be simulated accurately, especially near the antenna. Various radiation patterns are calculated for commercial, private, and military aircraft, and the space shuttle Orbiter. The application of this solution to numerous practical airborne antenna problems illustrates its versatility and design capability. In most cases, the solution accuracy is verified by the comparisons between the calculated and measured data.

  3. Field of view selection for optimal airborne imaging sensor performance

    NASA Astrophysics Data System (ADS)

    Goss, Tristan M.; Barnard, P. Werner; Fildis, Halidun; Erbudak, Mustafa; Senger, Tolga; Alpman, Mehmet E.

    2014-05-01

    The choice of the Field of View (FOV) of imaging sensors used in airborne targeting applications has major impact on the overall performance of the system. Conducting a market survey from published data on sensors used in stabilized airborne targeting systems shows a trend of ever narrowing FOVs housed in smaller and lighter volumes. This approach promotes the ever increasing geometric resolution provided by narrower FOVs, while it seemingly ignores the influences the FOV selection has on the sensor's sensitivity, the effects of diffraction, the influences of sight line jitter and collectively the overall system performance. This paper presents a trade-off methodology to select the optimal FOV for an imaging sensor that is limited in aperture diameter by mechanical constraints (such as space/volume available and window size) by balancing the influences FOV has on sensitivity and resolution and thereby optimizing the system's performance. The methodology may be applied to staring array based imaging sensors across all wavebands from visible/day cameras through to long wave infrared thermal imagers. Some examples of sensor analysis applying the trade-off methodology are given that highlights the performance advantages that can be gained by maximizing the aperture diameters and choosing the optimal FOV for an imaging sensor used in airborne targeting applications.

  4. Simulation and analysis of airborne antenna radiation patterns

    NASA Technical Reports Server (NTRS)

    Kim, J. J.; Burnside, Walter D.

    1984-01-01

    The objective is to develop an accurate and efficient analytic solution for predicting high frequency radiation patterns of fuselage-mounted airborne antennas. This is an analytic study of airborne antenna patterns using the Uniform Geometrical Theory of Diffraction (UTD). The aircraft is modeled in its most basic form so that the solution is applicable to general-type aircraft. The fuselage is modeled as a perfectly conducting composite ellipsoid; whereas, the wings, stabilizers, nose, fuel tanks, and engines, are simulated as perfectly conducting flat plates that can be attached to the fuselage and/or to each other. The composite-ellipsoid fuselage model is necessary to successfully simulate the wide variety of real world fuselage shapes. Since the antenna is mounted on the fuselage, it has a dominant effect on the resulting radiation pattern so it must be simulated accurately, especially near the antenna. Various radiation patterns are calculated for commercial, private, and military aircraft, and the Space Shuttle Orbiter. The application of this solution to numerous practical airborne antenna problems illustrates its versatility and design capability. In most cases, the solution accuracy is verified by the comparisons between the calculated and measured data.

  5. Stability of airborne microbes in the Louvre Museum over time.

    PubMed

    Gaüzère, C; Moletta-Denat, M; Blanquart, H; Ferreira, S; Moularat, S; Godon, J-J; Robine, E

    2014-02-01

    The microbial content of air has as yet been little described, despite its public health implications, and there remains a lack of environmental microbial data on airborne microflora in enclosed spaces. In this context, the aim of this study was to characterize the diversity and dynamics of airborne microorganisms in the Louvre Museum using high-throughput molecular tools and to underline the microbial signature of indoor air in this human-occupied environment. This microbial community was monitored for 6 month during occupied time. The quantitative results revealed variations in the concentrations of less than one logarithm, with average values of 10(3) and 10(4) Escherichia coli/Aspergillus fumigatus genome equivalent per m(3) for bacteria and fungi, respectively. Our observations highlight the stability of the indoor airborne bacterial diversity over time, while the corresponding eukaryote community was less stable. Bacterial diversity characterized by pyrosequencing 454 showed high diversity dominated by the Proteobacteria which represented 51.1%, 46.9%, and 38.4% of sequences, for each of the three air samples sequenced. A common bacterial diversity was underlined, corresponding to 58.4% of the sequences. The core species were belonging mostly to the Proteobacteria and Actinobacteria, and to the genus Paracoccus spp., Acinetobacter sp., Pseudomonas sp., Enhydrobacter sp., Sphingomonas sp., Staphylococcus sp., and Streptococcus sp.

  6. Three years of practical use of airborne gravity gradiometry

    NASA Astrophysics Data System (ADS)

    van Leeuwen, E.

    2003-04-01

    BHP Billiton has successfully built and deployed three airborne gravity gradiometer (AGG) systems, (Newton, Einstein and Galileo) based upon the Bell Airspace (now Lockheed Martin) Gravity Gradient Instruments developed for the United States Department of Defense. A second-generation gradiometer (Feynman) is presently nearing completion. The GGI technology is based on groups of four (4) accelerometers where the accelerometers are equi-spaced on a circle. The configuration successfully rejects both common mode accelerations and rotations about the axis perpendicular to the plane of the complement. The GGI is mounted within an aircraft in a specially designed, inertially stabilized platform, which significantly reduces sensitivity to noise and turbulence. The BHP Billiton AGG Technology provides high quality gravity maps with a resolution and sensitivity to map gravity anomalies associated with both minerals and hydrocarbon deposits. To date the purpose built and designed hardware and data processing algorithms, in conjunction with several other geophysical survey instruments, have been deployed against a broad range of mineral and hydrocarbon targets, a total of over 300,000km of operational flights having been made. Data will also be presented on the in-flight sensitivity of a gravity gradiometer to the airborne environment. It will also outline some of the many unexpected problems that were encountered in the 18-month flight trials required to achieve satisfactory airborne operation.

  7. Requirements for airborne vector gravimetry

    NASA Technical Reports Server (NTRS)

    Schwarz, K. P.; Colombo, O.; Hein, G.; Knickmeyer, E. T.

    1992-01-01

    The objective of airborne vector gravimetry is the determination of the full gravity disturbance vector along the aircraft trajectory. The paper briefly outlines the concept of this method using a combination of inertial and GPS-satellite data. The accuracy requirements for users in geodesy and solid earth geophysics, oceanography and exploration geophysics are then specified. Using these requirements, accuracy specifications for the GPS subsystem and the INS subsystem are developed. The integration of the subsystems and the problems connected with it are briefly discussed and operational methods are indicated that might reduce some of the stringent accuracy requirements.

  8. Biological monitoring of airborne pollution

    SciTech Connect

    Ditz, D.W. )

    1990-01-01

    Common plants such as grasses, mosses, and even goldenrod may turn out to have a new high-tech role as monitors of airborne pollution from solid waste incinerators. Certain plants that respond to specific pollutants can provide continuous surveillance of air quality over long periods of time: they are bio-indicators. Other species accumulate pollutants and can serve as sensitive indicators of pollutants and of food-chain contamination: they are bio-accumulators. Through creative use of these properties, biological monitoring can provide information that cannot be obtained by current methods such as stack testing.

  9. Cyberinfrastructure for Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  10. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.J.; Keiswetter, D.

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  11. Geophex airborne unmanned survey system

    SciTech Connect

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  12. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  13. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  14. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  15. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  16. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  17. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  18. Airborne Global Positioning System Antenna System

    DTIC Science & Technology

    2004-10-14

    GLOBAL POSITIONING SYSTEM ANTENNA SYSTEM DISTRIBUTION: SMC/ GP (3 cys); AFFSA...standard that airborne Global Positioning System ( GPS ) antenna system must meet to be identified with the applicable MSO marking. The similarity of...UNCLASSIFIED DOCUMENT NO. DATE NO. MSO-C144 14 Oct 04 Initial Release REV: REV: SHEET 1 OF 16 TITLE: AIRBORNE GLOBAL POSITIONING SYSTEM

  19. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-08-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/sqrt{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/sqrt{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  20. Challenges and Successes Managing Airborne Science Data for CARVE

    NASA Astrophysics Data System (ADS)

    Hardman, S. H.; Dinardo, S. J.; Lee, E. C.

    2014-12-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission collects detailed measurements of important greenhouse gases on local to regional scales in the Alaskan Arctic and demonstrates new remote sensing and improved modeling capabilities to quantify Arctic carbon fluxes and carbon cycle-climate processes. Airborne missions offer a number of challenges when it comes to collecting and processing the science data and CARVE is no different. The biggest challenge relates to the flexibility of the instrument payload. Within the life of the mission, instruments may be removed from or added to the payload, or even reconfigured on a yearly, monthly or daily basis. Although modification of the instrument payload provides a distinct advantage for airborne missions compared to spaceborne missions, it does tend to wreak havoc on the underlying data system when introducing changes to existing data inputs or new data inputs that require modifications to the pipeline for processing the data. In addition to payload flexibility, it is not uncommon to find unsupported files in the field data submission. In the case of CARVE, these include video files, photographs taken during the flight and screen shots from terminal displays. These need to captured, saved and somehow integrated into the data system. The CARVE data system was built on a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This well-tested and proven infrastructure allows the CARVE data system to be easily adapted in order to handle the challenges posed by the CARVE mission and to successfully process, manage and distribute the mission's science data. This

  1. Self-sustainability of optical fibers in airborne communications

    NASA Astrophysics Data System (ADS)

    Dwivedi, Anurag; Finnegan, Eric J.

    2005-05-01

    A large number of communications technologies co-exist today in both civilian and military space with their relative strengths and weaknesses. The information carrying capacity of optical fiber communication, however, surpasses any other communications technology in use today. Additionally, optical fiber is immune to environmental effects and detection, and can be designed to be resistant to exploitation and jamming. However, fiber-optic communication applications are usually limited to static, pre-deployed cable systems. Enabling the fiber applications in dynamically deployed and ad-hoc conditions will open up a large number of communication possibilities in terrestrial, aerial, and oceanic environments. Of particular relevance are bandwidth intensive data, video and voice applications such as airborne imagery, multispectral and hyperspectral imaging, surveillance and communications disaster recovery through surveillance platforms like Airships (also called balloons, aerostats or blimps) and Unmanned Aerial Vehicles (UAVs). Two major considerations in the implementation of airborne fiber communications are (a) mechanical sustainability of optical fibers, and (b) variation in optical transmission characteristics of fiber in dynamic deployment condition. This paper focuses on the mechanical aspects of airborne optical fiber and examines the ability of un-cabled optical fiber to sustain its own weight and wind drag in airborne communications applications. Since optical fiber is made of silica glass, the material fracture characteristics, sub-critical crack growth, strength distribution and proof stress are the key parameters that determine the self-sustainability of optical fiber. Results are presented in terms of maximum self-sustainable altitudes for three types of optical fibers, namely silica-clad, Titania-doped Silica-clad, and carbon-coated hermetic fibers, for short and long service periods and a range of wind profiles and fiber dimensions.

  2. Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS)

    NASA Astrophysics Data System (ADS)

    Rhothermel, Jeffry; Jones, W. D.; Dunkin, J. A.; McCaul, E. W., Jr.

    1993-01-01

    This effort involves development of a calibrated, pulsed coherent CO2 Doppler lidar, followed by a carefully-planned and -executed program of multi-dimensional wind velocity and aerosol backscatter measurements from the NASA DC-8 research aircraft. The lidar, designated as the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS), will be applicable to two research areas. First, MACAWS will enable specialized measurements of atmospheric dynamical processes in the planetary boundary layer and free troposphere in geographic locations and over scales of motion not routinely or easily accessible to conventional sensors. The proposed observations will contribute fundamentally to a greater understanding of the role of the mesoscale, helping to improve predictive capabilities for mesoscale phenomena and to provide insights into improving model parameterizations of sub-grid scale processes within large-scale circulation models. As such, it has the potential to contribute uniquely to major, multi-institutional field programs planned for the mid 1990's. Second, MACAWS measurements can be used to reduce the degree of uncertainty in performance assessments and algorithm development for NASA's prospective Laser Atmospheric Wind Sounder (LAWS), which has no space-based instrument heritage. Ground-based lidar measurements alone are insufficient to address all of the key issues. To minimize costs, MACAWS is being developed cooperatively by the lidar remote sensing groups of the Jet Propulsion Laboratory, NOAA Wave Propagation Laboratory, and MSFC using existing lidar hardware and manpower resources. Several lidar components have already been exercised in previous airborne lidar programs (for example, MSFC Airborne Doppler Lidar System (ADLS) used in 1981,4 Severe Storms Wind Measurement Program; JPL Airborne Backscatter Lidar Experiment (ABLE) used in 1989,90 Global Backscatter Experiment Survey Missions). MSFC has been given responsibility for directing the overall

  3. Precision Muonium Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jungmann, Klaus P.

    2016-09-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s-2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium-antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter.

  4. How Physics Got Precise

    SciTech Connect

    Kleppner, Daniel

    2005-01-19

    Although the ancients knew the length of the year to about ten parts per million, it was not until the end of the 19th century that precision measurements came to play a defining role in physics. Eventually such measurements made it possible to replace human-made artifacts for the standards of length and time with natural standards. For a new generation of atomic clocks, time keeping could be so precise that the effects of the local gravitational potentials on the clock rates would be important. This would force us to re-introduce an artifact into the definition of the second - the location of the primary clock. I will describe some of the events in the history of precision measurements that have led us to this pleasing conundrum, and some of the unexpected uses of atomic clocks today.

  5. Precision gap particle separator

    DOEpatents

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  6. Final Report on the Airborne Field Mill Project (ABFM) 2000-2001 Field Campaign

    NASA Technical Reports Server (NTRS)

    Dye, James E.; Lewis, Sharon; Bateman, Monte, G.; Mach, Douglas M.; Merceret, Francis J.; Ward, Jennifer G.; Grainger, Cedric A.

    2004-01-01

    The Airborne Field Mill (ABFM) research program conducted under the direction of the John F. Kennedy Space Center during 2000 and 2001 is described. The purpose, methodology and initial results from the program are presented. Extensive appendices detailing the instrumentation used to collect the data are provided.

  7. ISMAR: an airborne submillimetre radiometer

    NASA Astrophysics Data System (ADS)

    Fox, Stuart; Lee, Clare; Moyna, Brian; Philipp, Martin; Rule, Ian; Rogers, Stuart; King, Robert; Oldfield, Matthew; Rea, Simon; Henry, Manju; Wang, Hui; Chawn Harlow, R.

    2017-02-01

    The International Submillimetre Airborne Radiometer (ISMAR) has been developed as an airborne demonstrator for the Ice Cloud Imager (ICI) that will be launched on board the next generation of European polar-orbiting weather satellites in the 2020s. It currently has 15 channels at frequencies between 118 and 664 GHz which are sensitive to scattering by cloud ice, and additional channels at 874 GHz are being developed. This paper presents an overview of ISMAR and describes the algorithms used for calibration. The main sources of bias in the measurements are evaluated, as well as the radiometric sensitivity in different measurement scenarios. It is shown that for downward views from high altitude, representative of a satellite viewing geometry, the bias in most channels is less than ±1 K and the NEΔT is less than 2 K, with many channels having an NEΔT less than 1 K. In-flight calibration accuracy is also evaluated by comparison of high-altitude zenith views with radiative-transfer simulations.

  8. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  9. Magnetic characterization of airborne particulates

    NASA Astrophysics Data System (ADS)

    Kim, W.; Doh, S.; Yu, Y.

    2010-12-01

    Burning fossil fuels from vehicles, domestics, industries and power plants in the large urban or industrial areas emit significant quantity of anthropogenic particulates which become a potential threat to human health. Here, we present temporal variability of particulate pollution associated with compositional differences, using magnetic measurements and electron microscopic observations. Six different grain-sizes of airborne particulates have been collected by filtering from 10 precipitation events in Seoul, Korea from February 2009 to June 2009. Magnetic concentration proxies show relatively better (R2 >0.6) and poorer correlations (R2 <0.3) with the masses of samples filtered by >0.45 μm and <0.45 μm sizes, respectively, suggesting the usefulness of magnetic characterization for the >0.45 μm particulates. Temporally, magnetic concentrations are higher in the cold season than the warm season. In particular, a significant increase of magnetic concentration is observed in 3 μm and 1 μm filters after the Chinese wind-blown dust events, indicating additional influx of fine-grained anthropogenic particulates into Seoul. Microscopic observations identify that increase of magnetic concentration is highly linked with the frequent occurrence of combustion derived particulates (i.e., carbon and/or sulfur mixed particles) than natural alumino-silicates. Overall, the present study demonstrates that magnetic measurements efficiently reflect the concentration of particulates produced from fossil-fuel combustion among the airborne particles from various sources.

  10. Precision electron polarimetry

    SciTech Connect

    Chudakov, Eugene A.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. M{\\o}ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at ~300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100\\%-polarized electron target for M{\\o}ller polarimetry.

  11. Precision electron polarimetry

    NASA Astrophysics Data System (ADS)

    Chudakov, E.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry.

  12. Precision electron polarimetry

    SciTech Connect

    Chudakov, E.

    2013-11-07

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry.

  13. Precision manometer gauge

    DOEpatents

    McPherson, M.J.; Bellman, R.A.

    1982-09-27

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  14. Precision manometer gauge

    DOEpatents

    McPherson, Malcolm J.; Bellman, Robert A.

    1984-01-01

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  15. Precision Heating Process

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A heat sealing process was developed by SEBRA based on technology that originated in work with NASA's Jet Propulsion Laboratory. The project involved connecting and transferring blood and fluids between sterile plastic containers while maintaining a closed system. SEBRA markets the PIRF Process to manufacturers of medical catheters. It is a precisely controlled method of heating thermoplastic materials in a mold to form or weld catheters and other products. The process offers advantages in fast, precise welding or shape forming of catheters as well as applications in a variety of other industries.

  16. Role of electrical properties in airborne and satellite borne sensing

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Kant, Yash; Sekhar, E. C.

    1992-07-01

    The role of geologic materials in studying the sensitivity behavior of airborne and satellite-based electromagnetic measurements is studied. Frechet derivatives are computed for the sensitivity analysis over homogeneous half space at frequencies of 10 exp 7 to 10 exp 9 Hz. The computed results show a characteristic dependence of sensitivity functions on the stratified models employed. Such studies are useful for investigating areas containing a mixture of dry sand, frozen ground, or rocks with low water content and moist rocks. This computational method is more effective than the usual response evaluation technique.

  17. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Development

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.

    2002-01-01

    In response to recommendations from the National Aviation Weather Program Council, the National Aeronautics and Space Administration (NASA) is working with industry to develop an electronic pilot reporting capability for small aircraft. This paper describes the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) sensor development effort. NASA is working with industry to develop a sensor capable of measuring temperature, relative humidity, magnetic heading, pressure, icing, and average turbulence energy dissipation. Users of the data include National Centers for Environmental Prediction (NCEP) forecast modelers, air traffic controllers, flight service stations, airline operation centers, and pilots. Preliminary results from flight tests are presented.

  18. Airborne Instrumentation Needs for Climate and Atmospheric Research

    SciTech Connect

    McFarquhar, Greg; Schmid, Beat; Korolev, Alexei; Ogren, John A.; Russell, P. B.; Tomlinson, Jason M.; Turner, David D.; Wiscombe, Warren J.

    2011-10-06

    Observational data are of fundamental importance for advances in climate and atmospheric research. Advances in atmospheric science are being made not only through the use of ground-based and space-based observations, but also through the use of in-situ and remote sensing observations acquired on instrumented aircraft. In order for us to enhance our knowledge of atmospheric processes, it is imperative that efforts be made to improve our understanding of the operating characteristics of current instrumentation and of the caveats and uncertainties in data acquired by current probes, as well as to develop improved observing methodologies for acquisition of airborne data.

  19. Airborne intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Gregory, Gerald L.; Mcdougal, David S.; Torres, Arnold L.; Davis, Douglas D.

    1987-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted during missions flown in the fall of 1983 and spring of 1984. Instruments intercompared included a laser-induced fluorescence (LIF) system and two chemiluminescence instruments (CL). NO mixing ratios from below 5 pptv (parts per trillion by volume) to greater than 100 pptv were reported, with the majority less than 20 pptv. Good correlation was observed between the measurements reported by the CL and LIF techniques. The general level of agreement observed for the ensemble of measurements obtained during the two missions provides the basis from which one can conclude that equally 'valid' measurements of background levels of NO can be expected from either CL or LIF instruments. At the same time the periods of disagreement that were observed between the CL and LIF instruments as well as between the two CL instruments highlight the difficulty of obtaining reliable measurements with NO mixing ratios in the 5-20 pptv range and emphasize the vigilance that should be maintained in future NO measurements.

  20. An airborne intensive care facility (fixed wing).

    PubMed

    Gilligan, J E; Goon, P; Maughan, G; Griggs, W; Haslam, R; Scholten, A

    1996-04-01

    A fixed-wing aircraft (Beechcraft KingAir B200 C) fitted as an airborne intensive care facility is described. It completed 2000 missions from 1987-1992 for distances up to 1300 km. Features include: 1. Space for carriage of two stretchers, medical cabin crew of up to five persons and equipment and two-pilot operation if necessary. A third stretcher may be carried in emergencies. 2. Two CARDIOCAP (TM) fixed monitors for ECG, invasive and noninvasive pressures pulse oximetry and end-tidal C02 plus SIEMENS 630(TM)/PROPAQ(TM) compact monitors for the ground transport phase of missions, or the total duration. 3. A medical oxygen reservoir of 4650 litres sufficient for two patients on IPPV with FiO2 = 1.0 for a four-hour trip. The medical suction system is powered from the engine or a vacuum pump. 4. Other medical equipment and drugs in portable packs, for ground transport and resuscitation needs and for replenishment by nursing staff at the parent hospitals. 5. Stretchers compatible with helicopter and road ambulance vehicles used. 6. A stretcher loading device energized from the aircraft, operating through a wide (cargo) door. 7. Provision of 24Ov AC (alternating current) and 28v DC (direct current) electrical energy. 8. Pressurization and climate control. 9. Satisfactory aviation performance for conditions encountered, with single-pilot operation.

  1. Multifunction multiband airborne radio architecture study

    NASA Astrophysics Data System (ADS)

    Ma, L. N.; Ogi, S. K.; Huang, M. Y.; Bodnar, L. L.; Martin, P.

    1982-01-01

    The demands of modern military avionic communication, radio navigation, and cooperative identification (CNI) equipment has been greatly expanded as the result of the need for antijam (AJ), low probability of intercept (LPI), higher navigation accuracy, and increased volume of information transfer. These demands are verified in programs such as GPS, JTIDS, SEEK TALK, SINCGARS and AFSAT I and II. The cost of this additional capability has severely hampered the ability of the Government to procure new CNI systems and equipment with desired performance capabilities. The problem is further compounded by the lack of available space in the tactical aircraft, the transition of new equipment into the inventory, and the retention of many current systems. The multifunction multiband airborne radio system (MFBARS) program is formulated to explore the feasibility of producing a modern CNI system at an affordable life cycle cost (LCC) and within real estate requirements. A cost effective system approach was developed that revolved around high technology RF-LSI analog components that are in the development stage, high speed digital pre-processor elements and a programmable signal processor all under control of a host processor configuration. This design trades the ultimate gain in volume, weight and life cycle cost against a reasonable risk for the mid 1980's development.

  2. Teaching with Precision.

    ERIC Educational Resources Information Center

    Raybould, Ted; Solity, Jonathan

    1982-01-01

    Use of precision teaching principles with learning problem students involves five steps: specifying performance, recording daily behavior, charting daily behavior, recording the teaching approach, and analyzing data. The approach has been successfully implemented through consultation of school psychologists in Walsall, England. (CL)

  3. Precision bolometer bridge

    NASA Technical Reports Server (NTRS)

    White, D. R.

    1968-01-01

    Prototype precision bolometer calibration bridge is manually balanced device for indicating dc bias and balance with either dc or ac power. An external galvanometer is used with the bridge for null indication, and the circuitry monitors voltage and current simultaneously without adapters in testing 100 and 200 ohm thin film bolometers.

  4. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  5. Precision liquid level sensor

    DOEpatents

    Field, Michael E.; Sullivan, William H.

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  6. Potential of Airborne Imaging Spectroscopy at Czechglobe

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Fabiánek, T.; Fajmon, L.

    2016-06-01

    Ecosystems, their services, structures and functions are affected by complex environmental processes, which are both natural and human-induced and globally changing. In order to understand how ecosystems behave in globally changing environment, it is important to monitor the current status of ecosystems and their structural and functional changes in time and space. An essential tool allowing monitoring of ecosystems is remote sensing (RS). Many ecosystems variables are being translated into a spectral response recorded by RS instruments. It is however important to understand the complexity and synergies of the key ecosystem variables influencing the reflected signal. This can be achieved by analysing high resolution RS data from multiple sources acquired simultaneously from the same platform. Such a system has been recently built at CzechGlobe - Global Change Research Institute (The Czech Academy of Sciences). CzechGlobe has been significantly extending its research infrastructure in the last years, which allows advanced monitoring of ecosystem changes at hierarchical levels spanning from molecules to entire ecosystems. One of the CzechGlobe components is a laboratory of imaging spectroscopy. The laboratory is now operating a new platform for advanced remote sensing observations called FLIS (Flying Laboratory of Imaging Spectroscopy). FLIS consists of an airborne carrier equipped with passive RS systems. The core instrument of FLIS is a hyperspectral imaging system provided by Itres Ltd. The hyperspectral system consists of three spectroradiometers (CASI 1500, SASI 600 and TASI 600) that cover the reflective spectral range from 380 to 2450 nm, as well as the thermal range from 8 to 11.5 μm. The airborne platform is prepared for mounting of full-waveform laser scanner Riegl-Q780 as well, however a laser scanner is not a permanent part of FLIS. In 2014 the installation of the hyperspectral scanners was completed and the first flights were carried out with all

  7. High Energy 2-Micron Solid-State Laser Transmitter for NASA's Airborne CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Bai, Yingxin

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  8. RaDARSAT precision transponder

    NASA Astrophysics Data System (ADS)

    Hawkins, R. K.; Teany, L. D.; Srivastava, S.; Tam, S. Y. K.

    1997-05-01

    This paper describes the set of four RADARSAT Precision Transponders (RPTs) developed for the Canadian Space Agency for the calibration and qualification of the spaceborne Synthetic Aperture Radar (SAR) carried on the Canadian remote sensing satellite known as RADARSAT, launched in November, 1995. The transponder system block diagram, RF diagram, and specification development are described, as well as the overall program which gives the transponder function in the calibration program for RADARSAT. The transponders are deployed at four strategically situated sites across Canada: Fredericton, NB; Ottawa, Ont.; Prince Albert, Sask.; and Resolute, NWT. Some details of the sites and their sensor visitation characteristics are given. Also provided are some early results showing the use and performance of the transponders using ERS-1/2 and RADARSAT.

  9. Spacecraft Maximum Allowable Concentrations for Airborne Contaminants

    NASA Technical Reports Server (NTRS)

    James, John T.

    2008-01-01

    The enclosed table lists official spacecraft maximum allowable concentrations (SMACs), which are guideline values set by the NASA/JSC Toxicology Group in cooperation with the National Research Council Committee on Toxicology (NRCCOT). These values should not be used for situations other than human space flight without careful consideration of the criteria used to set each value. The SMACs take into account a number of unique factors such as the effect of space-flight stress on human physiology, the uniform good health of the astronauts, and the absence of pregnant or very young individuals. Documentation of the values is given in a 5 volume series of books entitled "Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants" published by the National Academy Press, Washington, D.C. These books can be viewed electronically at http://books.nap.edu/openbook.php?record_id=9786&page=3. Short-term (1 and 24 hour) SMACs are set to manage accidental releases aboard a spacecraft and permit risk of minor, reversible effects such as mild mucosal irritation. In contrast, the long-term SMACs are set to fully protect healthy crewmembers from adverse effects resulting from continuous exposure to specific air pollutants for up to 1000 days. Crewmembers with allergies or unusual sensitivity to trace pollutants may not be afforded complete protection, even when long-term SMACs are not exceeded. Crewmember exposures involve a mixture of contaminants, each at a specific concentration (C(sub n)). These contaminants could interact to elicit symptoms of toxicity even though individual contaminants do not exceed their respective SMACs. The air quality is considered acceptable when the toxicity index (T(sub grp)) for each toxicological group of compounds is less than 1, where T(sub grp), is calculated as follows: T(sub grp) = C(sub 1)/SMAC(sub 1) + C(sub 2/SMAC(sub 2) + ...+C(sub n)/SMAC(sub n).

  10. Antihydrogen production and precision experiments

    SciTech Connect

    Nieto, M.M.; Goldman, T.; Holzscheiter, M.H.

    1996-12-31

    The study of CPT invariance with the highest achievable precision in all particle sectors is of fundamental importance for physics. Equally important is the question of the gravitational acceleration of antimatter. In recent years, impressive progress has been achieved in capturing antiprotons in specially designed Penning traps, in cooling them to energies of a few milli-electron volts, and in storing them for hours in a small volume of space. Positrons have been accumulated in large numbers in similar traps, and low energy positron or positronium beams have been generated. Finally, steady progress has been made in trapping and cooling neutral atoms. Thus the ingredients to form antihydrogen at rest are at hand. Once antihydrogen atoms have been captured at low energy, spectroscopic methods can be applied to interrogate their atomic structure with extremely high precision and compare it to its normal matter counterpart, the hydrogen atom. Especially the 1S-2S transition, with a lifetime of the excited state of 122 msec and thereby a natural linewidth of 5 parts in 10{sup 16}, offers in principle the possibility to directly compare matter and antimatter properties at a level of 1 part in 10{sup 16}.

  11. A method for computing the damage level due to the exposure to an airborne chemical with a time-varying concentration.

    PubMed

    Acquesta, Alejandro D; Sánchez, Erica Yanina; Porta, Andres; Jacovkis, Pablo M

    2011-09-01

    The calculation of damage level due to the exposure to a toxic cloud is usually not included in most popular software, or it is included using techniques that do not take into account the variation in concentration over a period of time. In this work, a method is introduced for calculating the temporal evolution of the potential damage level and to obtain a more precise and descriptive estimation of this level. The proposed goal is: to estimate the maximum and minimum damage level experienced by a population due to the exposure to an airborne chemical with a time-varying concentration; to be able to assess the damage level experienced in a progressive way, as the exposure to the airborne chemical occurs. The method relies on transformations of time-concentration pairs on a continuum of damage level curves based on the available guideline levels, obtaining maximum and minimum approximations of the expected damage level for any exposure duration. Consequently, applying this method to transport model output data and demographic information, damage evolution in relation to time and space can be predicted, as well as its effect on the local population, which enables the determination of threat zones. The comparison between the proposed method and the current (Spanish and ALOHA) ones showed that the former can offer a more precise estimation and a more descriptive approach of the potential damage level. This method can be used by atmospheric dispersion models to compute damage level and graphically display the regions exposed to each guideline level on area maps.

  12. Airborne thermography or infrared remote sensing.

    PubMed

    Goillot, C C

    1975-01-01

    Airborne thermography is part of the more general remote sensing activity. The instruments suitable for image display are infrared line scanners. A great deal of interest has developed during the past 10 years in airborne thermal remote sensing and many applications are in progress. Infrared scanners on board a satellite are used for observation of cloud cover; airborne infrared scanners are used for forest fire detection, heat budget of soils, detecting insect attack, diseases, air pollution damage, water stress, salinity stress on vegetation, only to cite some main applications relevant to agronomy. Using this system it has become possible to get a 'picture' of our thermal environment.

  13. Airborne remote sensing of forest biomes

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  14. Airborne microwave radiometric imaging system

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Futang; Zhang, Zuyin

    1999-09-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized channels. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees beamwidth scan the scene alternately and two pseudo- color images of two channels are displayed on the screen of PC in real time. Simultaneously, all parameters of flight and radiometric data are sorted in hard disk for post- processing. The sensitivity of the radiometer (Delta) T equals 0.16K. A new displaying method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate that the AMRI is available to work steadily and accurately.

  15. Airborne microwave radiometric imaging system

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Zhang, Zuyin; Chen, Zhengwen

    1998-08-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees 3 dB beamwidth scan the scene alternately and two pseudo-color images of two channels are displayed on the screen of PC in real time. Simultaneously all parameters of flight and radiometric data are stored in hard disk for postprocessing. The sensitivity of the radiometers of flight and radiometric data are stored in hard disk for postprocessing. The sensitivity of the radiometers (Delta) T equals 0.16K. A new display method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate the AMRI is available to work steadily and accurately.

  16. Recent modifications, enhancements, and measurements with an airborne lidar system

    NASA Astrophysics Data System (ADS)

    DeCoursey, Robert J.; Osborn, Mary T.; Winker, David M.; Woods, David C.

    1996-06-01

    The NASA Langley Research Center's 14-inch airborne aerosol lidar system, which is routinely flown on several NASA aircraft including the DC-8 and the P-3, has been upgraded with several modifications to enhance its measurement capabilities. A new 900 mJ, 10 pps Nd:YAG laser was added with the capability of producing 5 watts of power at 1064 nm, 2.5 watts at 532 nm and 1.5 watts at 355 nm. The existing detector package has been modified to accommodate the three wavelengths and to permit cross-polarization measurements at 532 nm. New software was developed for on- line data visualization and analysis, and computer- controlled laser alignment is being incorporated. The system is now capable of producing real-time color modulated backscatter plots. Other additions include a Pentium/90 processor, GPS (Global Positioning System) and ARINC (Aeronautical Radio Inc.) receivers for acquiring accurate aircraft position data. In 1992 and 1993 this system was flown on several airborne missions to map and characterize the stratospheric aerosol cloud produced by the 1991 eruption of the Mount Pinatubo volcano. Efforts to map the global distribution of Pinatubo were made on both daytime as well as nighttime flights from Moffett Field in California to the South Pacific, to Central and South America, to Australia and to Alaska. In September 1994, the system (aboard NASA's P-3) made correlative measurements along shuttle orbit ground tracks in support of the Lidar In-space Technology Experiment flown on the Space Shuttle. In this paper the system upgrades will be discussed and selected data obtained during these recent airborne campaigns will be presented.

  17. A passion for precision

    ScienceCinema

    None

    2016-07-12

    For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs  as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  18. A passion for precision

    SciTech Connect

    2010-05-19

    For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs  as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  19. Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station

    NASA Astrophysics Data System (ADS)

    Aguilar, M.; Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bindi, V.; Bizzaglia, S.; Bizzarri, M.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Borsini, S.; Boschini, M. J.; Bourquin, M.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Castellini, G.; Cernuda, I.; Cerreta, D.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, G. M.; Chen, H.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Gil, E. Cortina; Coste, B.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dai, Y. M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Di Masso, L.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Donnini, F.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eppling, F. J.; Eronen, T.; Fan, Y. Y.; Farnesini, L.; Feng, J.; Fiandrini, E.; Fiasson, A.; Finch, E.; Fisher, P.; Formato, V.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Giovacchini, F.; Goglov, P.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guandalini, C.; Guerri, I.; Guo, K. H.; Haas, D.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Korkmaz, M. A.; Kossakowski, R.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. L.; Li, J. Q.; Li, J. Q.; Li, Q.; Li, Q.; Li, T. X.; Li, W.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, H.; Liu, Hu; Lolli, M.; Lomtadze, T.; Lu, M. J.; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Majka, R.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Müller, M.; Nelson, T.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Obermeier, A.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Papi, A.; Pauluzzi, M.; Pedreschi, E.; Pensotti, S.; Pereira, R.; Picot-Clemente, N.; Pilo, F.; Piluso, A.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Putze, A.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Schael, S.; Schmidt, S. M.; von Dratzig, A. Schulz; Schwering, G.; Scolieri, G.; Seo, E. S.; Shan, B. S.; Shan, Y. H.; Shi, J. Y.; Shi, X. Y.; Shi, Y. M.; Siedenburg, T.; Son, D.; Song, J. W.; Spada, F.; Spinella, F.; Sun, W.; Sun, W. H.; Tacconi, M.; Tang, C. P.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vaurynovich, S.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Vitillo, S.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, R. S.; Wang, X.; Wang, Z. X.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Willenbrock, M.; Wu, H.; Wu, X.; Xia, X.; Xie, M.; Xie, S.; Xiong, R. Q.; Xu, N. S.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Yang, Y.; Ye, Q. H.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, C.; Zhang, J. H.; Zhang, M. T.; Zhang, S. D.; Zhang, S. W.; Zhang, X. B.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; AMS Collaboration

    2015-11-01

    Knowledge of the precise rigidity dependence of the helium flux is important in understanding the origin, acceleration, and propagation of cosmic rays. A precise measurement of the helium flux in primary cosmic rays with rigidity (momentum/charge) from 1.9 GV to 3 TV based on 50 million events is presented and compared to the proton flux. The detailed variation with rigidity of the helium flux spectral index is presented for the first time. The spectral index progressively hardens at rigidities larger than 100 GV. The rigidity dependence of the helium flux spectral index is similar to that of the proton spectral index though the magnitudes are different. Remarkably, the spectral index of the proton to helium flux ratio increases with rigidity up to 45 GV and then becomes constant; the flux ratio above 45 GV is well described by a single power law.

  20. Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station.

    PubMed

    Aguilar, M; Aisa, D; Alpat, B; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cernuda, I; Cerreta, D; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, G M; Chen, H; Chen, H S; Cheng, L; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Gil, E Cortina; Coste, B; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Haas, D; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Korkmaz, M A; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H L; Li, J Q; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Liu, Hu; Lolli, M; Lomtadze, T; Lu, M J; Lu, S Q; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Müller, M; Nelson, T; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pauluzzi, M; Pedreschi, E; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Putze, A; Quadrani, L; Qi, X M; Qin, X; Qu, Z Y; Räihä, T; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Schael, S; Schmidt, S M; von Dratzig, A Schulz; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Song, J W; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Vitillo, S; Wang, L Q; Wang, N H; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Willenbrock, M; Wu, H; Wu, X; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, C; Zhang, J H; Zhang, M T; Zhang, S D; Zhang, S W; Zhang, X B; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P

    2015-11-20

    Knowledge of the precise rigidity dependence of the helium flux is important in understanding the origin, acceleration, and propagation of cosmic rays. A precise measurement of the helium flux in primary cosmic rays with rigidity (momentum/charge) from 1.9 GV to 3 TV based on 50 million events is presented and compared to the proton flux. The detailed variation with rigidity of the helium flux spectral index is presented for the first time. The spectral index progressively hardens at rigidities larger than 100 GV. The rigidity dependence of the helium flux spectral index is similar to that of the proton spectral index though the magnitudes are different. Remarkably, the spectral index of the proton to helium flux ratio increases with rigidity up to 45 GV and then becomes constant; the flux ratio above 45 GV is well described by a single power law.

  1. Precision disablement aiming system

    SciTech Connect

    Monda, Mark J.; Hobart, Clinton G.; Gladwell, Thomas Scott

    2016-02-16

    A disrupter to a target may be precisely aimed by positioning a radiation source to direct radiation towards the target, and a detector is positioned to detect radiation that passes through the target. An aiming device is positioned between the radiation source and the target, wherein a mechanical feature of the aiming device is superimposed on the target in a captured radiographic image. The location of the aiming device in the radiographic image is used to aim a disrupter towards the target.

  2. Precision laser aiming system

    DOEpatents

    Ahrens, Brandon R.; Todd, Steven N.

    2009-04-28

    A precision laser aiming system comprises a disrupter tool, a reflector, and a laser fixture. The disrupter tool, the reflector and the laser fixture are configurable for iterative alignment and aiming toward an explosive device threat. The invention enables a disrupter to be quickly and accurately set up, aligned, and aimed in order to render safe or to disrupt a target from a standoff position.

  3. High precision detector robot arm system

    DOEpatents

    Shu, Deming; Chu, Yong

    2017-01-31

    A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.

  4. Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station

    NASA Astrophysics Data System (ADS)

    Aguilar, M.; Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bigongiari, G.; Bindi, V.; Bizzaglia, S.; Bizzarri, M.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Borsini, S.; Boschini, M. J.; Bourquin, M.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Cascioli, V.; Castellini, G.; Cernuda, I.; Cerreta, D.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, H.; Cheng, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Gil, E. Cortina; Coste, B.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dai, Y. M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Di Masso, L.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Donnini, F.; Du, W. J.; Duranti, M.; D'Urso, D.; Eline, A.; Eppling, F. J.; Eronen, T.; Fan, Y. Y.; Farnesini, L.; Feng, J.; Fiandrini, E.; Fiasson, A.; Finch, E.; Fisher, P.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Gillard, W.; Giovacchini, F.; Goglov, P.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guandalini, C.; Guerri, I.; Guo, K. H.; Haas, D.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Kossakowski, R.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Levi, G.; Li, H. L.; Li, J. Q.; Li, Q.; Li, Q.; Li, T. X.; Li, W.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, H.; Lolli, M.; Lomtadze, T.; Lu, M. J.; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, J. Z.; Lv, S. S.; Majka, R.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Müller, M.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Obermeier, A.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Papi, A.; Pauluzzi, M.; Pedreschi, E.; Pensotti, S.; Pereira, R.; Picot-Clemente, N.; Pilo, F.; Piluso, A.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Postaci, E.; Putze, A.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Sbarra, C.; Schael, S.; Schmidt, S. M.; von Dratzig, A. Schulz; Schwering, G.; Scolieri, G.; Seo, E. S.; Shan, B. S.; Shan, Y. H.; Shi, J. Y.; Shi, X. Y.; Shi, Y. M.; Siedenburg, T.; Son, D.; Spada, F.; Spinella, F.; Sun, W.; Sun, W. H.; Tacconi, M.; Tang, C. P.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vaurynovich, S.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Vitillo, S.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, R. S.; Wang, X.; Wang, Z. X.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Wu, H.; Wu, X.; Xia, X.; Xie, M.; Xie, S.; Xiong, R. Q.; Xin, G. M.; Xu, N. S.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Ye, Q. H.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, J. H.; Zhang, M. T.; Zhang, X. B.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; Zurbach, C.; AMS Collaboration

    2015-05-01

    A precise measurement of the proton flux in primary cosmic rays with rigidity (momentum/charge) from 1 GV to 1.8 TV is presented based on 300 million events. Knowledge of the rigidity dependence of the proton flux is important in understanding the origin, acceleration, and propagation of cosmic rays. We present the detailed variation with rigidity of the flux spectral index for the first time. The spectral index progressively hardens at high rigidities.

  5. Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station.

    PubMed

    Aguilar, M; Aisa, D; Alpat, B; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cerreta, D; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Cortina Gil, E; Coste, B; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Donnini, F; Du, W J; Duranti, M; D'Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Haas, D; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Levi, G; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lolli, M; Lomtadze, T; Lu, M J; Lu, S Q; Lu, Y S; Luebelsmeyer, K; Luo, J Z; Lv, S S; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pauluzzi, M; Pedreschi, E; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Qin, X; Qu, Z Y; Räihä, T; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Vitillo, S; Wang, L Q; Wang, N H; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Wu, X; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C

    2015-05-01

    A precise measurement of the proton flux in primary cosmic rays with rigidity (momentum/charge) from 1 GV to 1.8 TV is presented based on 300 million events. Knowledge of the rigidity dependence of the proton flux is important in understanding the origin, acceleration, and propagation of cosmic rays. We present the detailed variation with rigidity of the flux spectral index for the first time. The spectral index progressively hardens at high rigidities.

  6. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring

    PubMed Central

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-01-01

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413

  7. Measurements of Solar Induced Chlorophyll Fluorescence at 685 nm by Airborne Plant Fluorescence Sensor (APFS)

    NASA Astrophysics Data System (ADS)

    Morgan, F.; Yee, J. H.; Boldt, J.; Cook, W. B.; Corp, L. A.

    2015-12-01

    Solar-induced chlorophyll fluorescence (ChlF) by terrestrial vegetation is linked closely to photosynthetic efficiency that can be exploited to monitor the plant health status and to assess the terrestrial carbon budget from space. The weak, broad continuum ChlF signal can be detected from the fill-in of strong O2 absorption lines or solar Fraunhofer lines in the reflected spectral radiation. The Johns Hopkins University, Applied Physics Laboratory (JHU/APL) Airborne Plant Fluorescence Sensor (APFS) is a triple etalon Fabry-Perot interferometer designed and optimized specifically for the ChlF sensing from an airborne platform using this line fill-in technique. In this paper, we will present the results of APFS ChlF measurements obtained from a NASA Langley King Air during two airborne campaigns (12/12 in 2014 and 5/20 in 2015) over various land, river, and vegetated targets in Virginia during stressed and growth seasons.

  8. Remote Sensing of Chlorophyll Fluorescence by the Airborne Plant Fluorescence Sensor (APFS)

    NASA Astrophysics Data System (ADS)

    Yee, J. H.; Boldt, J.; Cook, W. B.; Morgan, F., II; Demajistre, R.; Cook, B. D.; Corp, L. A.

    2014-12-01

    Solar-induced chlorophyll fluorescence (ChlF) by terrestrial vegetation is linked closely to photosynthetic efficiency that can be exploited to monitor the plant health status and to assess the terrestrial carbon budget from space. The weak, broad continuum ChlF signal can be detected from the amount of fill-in of strong O2 absorption lines or Fraunhofer lines in the reflected solar spectral radiation. The Johns Hopkins University, Applied Physics Laboratory (JHU/APL) Airborne Plant Fluorescence Sensor (APFS) is designed and constructed specifically for airborne and groundbased ChlF measurements using the line fill-in ChlF measurement technique. In this paper, we will present the design of this triple etalon Fabry-Perot imaging instrument and the results of its vegetation fluorescence measurements obtained from the ground in the laboratory and from a NASA Langley King Air during our 2014 airborne campaign over vegetated targets in North Carolina and Virginia.

  9. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring.

    PubMed

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-09-30

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge.

  10. New Methods for Personal Exposure Monitoring for Airborne Particles

    PubMed Central

    Koehler, Kirsten A.; Peters, Thomas

    2016-01-01

    Airborne particles have been associated with a range of adverse cardiopulmonary outcomes, which has driven its monitoring at stationary, central sites throughout the world. Individual exposures, however, can differ substantially from concentrations measured at central sites due to spatial variability across a region and sources unique to the individual, such as cooking or cleaning in homes, traffic emissions during commutes, and widely varying sources encountered at work. Personal monitoring with small, battery-powered instruments enables the measurement of an individual’s exposure as they go about their daily activities. Personal monitoring can substantially reduce exposure misclassification and improve the power to detect relationships between particulate pollution and adverse health outcomes. By partitioning exposures to known locations and sources, it may be possible to account for variable toxicity of different sources. This review outlines recent advances in the field of personal exposure assessment for particulate pollution. Advances in battery technology have improved the feasibility of 24-hour monitoring, providing the ability to more completely attribute exposures to microenvironment (e.g., work, home, commute). New metrics to evaluate the relationship between particulate matter and health are also being considered, including particle number concentration, particle composition measures, and particle oxidative load. Such metrics provide opportunities to develop more precise associations between airborne particles and health and may provide opportunities for more effective regulations. PMID:26385477

  11. Development of an airborne lead analysis kit and its application.

    PubMed

    Kongtip, Pornpimol; Borisut, Pornchulee; Yoosook, Witaya; Osiri, Pramuk; Rojanavipart, Piangchan

    2010-11-01

    We developed a method to analyze airborne lead concentrations in the field. It was a modification of the colorimetric method using the reaction between 4(2-pyridylazo)-resorcinol (PAR) and lead with cyanex302 in an acid medium to reduce interfering metals. The lead concentration was detected with a photometer made in Thailand. The developed method uses an impinger containing 1% nitric acid solution as an absorbing agent to collect airborne lead at a flow rate of less than or equal to one liter/minute. Cyanex302 solution in toluene was used to extract metals from the samples and 0.1M nitric acid was used to extract just lead. The lead solution was reacted in 0.5 ml of 0.03% PAR solution, with 1 ml ammonium chloride buffer; the absorption of this solution was measured by a photometer. The results show the limit of detection (LOD) was 0.01 mg/l. The limit of quantification (LOQ) was 0.03 mg/l. The percent recovery of the lead concentrations of 0.05 - 3.0 mg/l was 94.0 to 103.5%. The precision presented as %CV ranged from 0.65 to 10.27%. Lead concentration in a lead smelting factory detected by this method was not significantly different from that detected by the NIOSH method: 7,303 at a 95% confidence level.

  12. Precision adjustable stage

    DOEpatents

    Cutburth, Ronald W.; Silva, Leonard L.

    1988-01-01

    An improved mounting stage of the type used for the detection of laser beams is disclosed. A stage center block is mounted on each of two opposite sides by a pair of spaced ball bearing tracks which provide stability as well as simplicity. The use of the spaced ball bearing pairs in conjunction with an adjustment screw which also provides support eliminates extraneous stabilization components and permits maximization of the area of the center block laser transmission hole.

  13. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings.

    PubMed

    Normand, Anne-Cécile; Ranque, Stéphane; Cassagne, Carole; Gaudart, Jean; Sallah, Kankoé; Charpin, Denis-André; Piarroux, Renaud

    2016-03-01

    Many ailments can be linked to exposure to indoor airborne fungus. However, obtaining a precise measurement of airborne fungal levels is complicated partly due to indoor air fluctuations and non-standardized techniques. Electrostatic dust collector (EDC) sampling devices have been used to measure a wide range of airborne analytes, including endotoxins, allergens, β-glucans, and microbial DNA in various indoor environments. In contrast, viable mold contamination has only been assessed in highly contaminated environments such as farms and archive buildings. This study aimed to assess the use of EDCs, compared with repeated air-impactor measurements, to assess airborne viable fungal flora in moderately contaminated indoor environments. Indoor airborne fungal flora was cultured from EDCs and daily air-impaction samples collected in an office building and a daycare center. The quantitative fungal measurements obtained using a single EDC significantly correlated with the cumulative measurement of nine daily air impactions. Both methods enabled the assessment of fungal exposure, although a few differences were observed between the detected fungal species and the relative quantity of each species. EDCs were also used over a 32-month period to monitor indoor airborne fungal flora in a hospital office building, which enabled us to assess the impact of outdoor events (e.g. ground excavations) on the fungal flora levels on the indoor environment. In conclusion, EDC-based measurements provided a relatively accurate profile of the viable airborne flora present during a sampling period. In particular, EDCs provided a more representative assessment of fungal levels compared with single air-impactor sampling. The EDC technique is also simpler than performing repetitive air-impaction measures over the course of several consecutive days. EDC is a versatile tool for collecting airborne samples and was efficient for measuring mold levels in indoor environments.

  14. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; Derksen, Chris; Royer, Alain; Belair, Stephane; Houser, Paul; McDonald, Kyle; Entin, Jared; Lewis, Kristen

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  15. Aspects regarding vertical distribution of greenhouse gases resulted from in situ airborne measurements

    NASA Astrophysics Data System (ADS)

    Boscornea, Andreea; Sorin Vajaiac, Nicolae; Ardelean, Magdalena; Benciu, Silviu Stefan

    2016-04-01

    In the last decades the air quality, as well as other components of the environment, has been severely affected by uncontrolled emissions of gases - most known as greenhouse gases (GHG). The main role of GHG is given by the direct influence on the Earth's radiative budget, through Sun light scattering and indirectly by participating in cloud formation. Aldo, many efforts were made for reducing the high levels of these pollutants, e.g., International Panel on Climate Change (IPCC) initiatives, Montreal Protocol, etc., this issue is still open. In this context, this study aims to present several aspects regarding the vertical distribution in the lower atmosphere of some greenhouse gases: water vapours, CO, CO2 and methane. Bucharest and its metropolitan area is one of the most polluted regions of Romania due to high traffic. For assessing the air quality of this area, in situ measurements of water vapours, CO, CO2 and CH4 were performed using a Britten Norman Islander BN2 aircraft equipped with a Picarro gas analyser, model G2401-mc, able to provide precised, continuous and accurate data in real time. This configuration consisting in aircraft and airborne instruments was tested for the first time in Romania. For accomplishing the objectives of the measurement campaign, there were proposed several flight strategies which included vertical and horizontal soundings from 105 m to 3300 m and vice-versa around Clinceni area (20 km West of Bucharest). During 5 days (25.08.2015 - 31.08.2015) were performed 7 flights comprising 10h 18min research flight hours. The measured concentrations of GHS ranged between 0.18 - 2.2 ppm for water vapours with an average maximum value of 1.7 ppm, 0.04 - 0.53 ppm for CO with an average maximum value of 0.21 ppm, 377 - 437.5 ppm for CO2 with an average maximum value of 397 ppm and 1.7 - 6.1 ppm for CH4 with an average maximum value of 2.195 ppm. It was noticed that measured concentrations of GHG are decreasing for high values of sounding

  16. Pluto's Atmosphere from the 29 June 2015 Occultation: SOFIA Airborne Results

    NASA Astrophysics Data System (ADS)

    Person, Michael J.; MIT-Williams Occulation Group (MIT/Williams College/Lowell Observatory/SAAO), HIPO Instrument Group (Lowell Observatory/MIT), FLITECAM Instrument Group (UCLA), FPI+ Instrument Group (DSI/U. Stuttgart), SOFIA Operations Group (NASA/USRA/DSI)

    2016-01-01

    After an extensive prediction effort, the 29 June 2015 occultation by Pluto was observed from both airborne (Stratospheric Observatory for Infrared Astronomy - SOFIA) and numerous ground-based telescopes (Bosh et al. 2015, in prep.). Real-time prediction updates allowed placement of the SOFIA telescope with its four detectors deep within the central-flash region of the atmospheric occultation. Fortuitously, the Mount John University Observatory (Lake Tekapo, New Zealand) was also within the central-flash region. This happenstance allowed for direct mutual calibration of the SOFIA data with the ground-based data in multiple central-flash detections in several colors from each facility resulting in a full maping of the central-flash evolute.Combining all of the data allows for a precise measurement of the SOFIA flight path through the shadow, and direct measurement of Pluto's atmospheric shadow size.We will examine and discuss the central-flash signatures from the deepest pass yet recorded through a Pluto central flash. The relative orientations and asymmetries in the various central flash data allow us to use them to tightly constrain the lower atmospheric ellipticity and orientation of likely winds with respect to Pluto's figure. The ratio of the two separate central flashes (airborne and ground-based) is also a strong constraint on the geometric solution for the full occultation data set, and the absolute height of the central flashes with respect to those expected for a clear isothermal atmosphere places constraints on haze densities and thermal gradients in Pluto's lower atmosphere. We can also compare the central-flash signatures in several colors to establish bounds on haze-particle sizes in the lower atmosphere.SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Support for this work was

  17. Photon-Counting Multikilohertz Microlaser Altimeters for Airborne and Spaceborne Topographic Measurements

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2000-01-01

    We consider the optimum design of photon-counting microlaser altimeters operating from airborne and spaceborne platforms under both day and night conditions. Extremely compact Q-switched microlaser transmitters produce trains of low energy pulses at multi-kHz rates and can easily generate subnanosecond pulse-widths for precise ranging. To guide the design, we have modeled the solar noise background and developed simple algorithms, based on Post-Detection Poisson Filtering (PDPF), to optimally extract the weak altimeter signal from a high noise background during daytime operations. Practical technology issues, such as detector and/or receiver dead times, have also been considered in the analysis. We describe an airborne prototype, being developed under NASA's instrument Incubator Program, which is designed to operate at a 10 kHz rate from aircraft cruise altitudes up to 12 km with laser pulse energies on the order of a few microjoules. We also analyze a compact and power efficient system designed to operate from Mars orbit at an altitude of 300 km and sample the Martian surface at rates up to 4.3 kHz using a 1 watt laser transmitter and an 18 cm telescope. This yields a Power-Aperture Product of 0.24 W-square meter, corresponding to a value almost 4 times smaller than the Mars Orbiting Laser Altimeter (0. 88W-square meter), yet the sampling rate is roughly 400 times greater (4 kHz vs 10 Hz) Relative to conventional high power laser altimeters, advantages of photon-counting laser altimeters include: (1) a more efficient use of available laser photons providing up to two orders of magnitude greater surface sampling rates for a given laser power-telescope aperture product; (2) a simultaneous two order of magnitude reduction in the volume, cost and weight of the telescope system; (3) the unique ability to spatially resolve the source of the surface return in a photon counting mode through the use of pixellated or imaging detectors; and (4) improved vertical and

  18. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  19. Airborne Gamma-Spectrometry in Switzerland

    NASA Astrophysics Data System (ADS)

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-01

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of 137Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  20. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  1. SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH

    EPA Science Inventory

    Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....

  2. Toolsets for Airborne Data Web Application

    Atmospheric Science Data Center

    2014-09-17

    ... relevant issues. Features Include Select data based on mission, date and/or scientific parameter Output original data ... Details:  Toolsets for Airborne Data (TAD) Web Application Category:  Instrument Specific Search, ...

  3. The Multi-Center Airborne Coherent Atmospheric Wind Sensor: Recent Measurements and Future Applications

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Howell, James N.; Darby, Lisa S.; Tratt, David M.; Menzies, Robert T.

    1999-01-01

    The coherent Doppler lidar, when operated from an airborne platform, offers a unique measurement capability for study of atmospheric dynamical and physical properties. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are at a disadvantage in terms of spatial resolution and coverage. Recent experience suggests airborne coherent Doppler lidar can yield unique wind measurements of--and during operation within--extreme weather phenomena. This paper presents the first airborne coherent Doppler lidar measurements of hurricane wind fields. The lidar atmospheric remote sensing groups of National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, and Jet Propulsion Laboratory jointly developed an airborne lidar system, the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS). The centerpiece of MACAWS is the lidar transmitter from the highly successful NOAA Windvan. Other field-tested lidar components have also been used, when feasible, to reduce costs and development time. The methodology for remotely sensing atmospheric wind fields with scanning coherent Doppler lidar was demonstrated in 1981; enhancements were made and the system was reflown in 1984. MACAWS has potentially greater scientific utility, compared to the original airborne scanning lidar system, owing to a factor of approx. 60 greater energy-per-pulse from the NOAA transmitter. MACAWS development was completed and the system was first flown in 1995. Following enhancements to improve performance, the system was re-flown in 1996 and 1998. The scientific motivation for MACAWS is three-fold: obtain fundamental measurements of subgrid scale (i.e., approx. 2-200 km) processes and features which may be used to improve parameterizations in hydrological, climate, and general

  4. Processing and analysis of radiometer measurements for airborne reconnaissance

    NASA Astrophysics Data System (ADS)

    Suess, Helmut

    1990-11-01

    Thi8 paper describes selected results of airborne, radiometric imaging measurements at 90 GHz and 140 GHz relevant for the application in reconnaissance. Using a temperature resolution below 0.5 K and an angular resolution of about 1 degree high quality images show the capability of discriminating between many brightness temperature classes within our natural environment and man-made objects. Measurement examples are given for cloud and fog penetration at 90 GHz, for the detection of vehicles on roads, and for the detection and classification of airports and airplanes. The application of different contour enhancement methods (Marr-Hildreth and Canny) shows the possibility of extracting lines and shapes precisely in order to improve automatic target recognition. The registration of the passive images with corresponding X-band synthetic aperture images from the same area is carried out and the high degree of correlation is dicussed.

  5. Processing and analysis of radiometer measurements for airborne reconnaissance

    NASA Technical Reports Server (NTRS)

    Suess, Helmut

    1990-01-01

    This paper describes selected results of airborne, radiometric imaging measurements at 90 GHz and 140 GHz relevant for the application in reconnaissance. Using a temperature resolution below 0.5 K and an angular resolution of about 1-degree high-quality images show the capability of discriminating between many brightness temperature classes within our natural environment and man-made objects. Measurement examples are given for cloud and fog penetration at 90 GHz, for the detection of vehicles on roads, and for the detection and classification of airports and airplanes. The application of different contour enhancement methods (Marr-Hildreth and Canny) shows the possibility of extracting lines and shapes precisely in order to improve automatic target recognition. The registration of the passive images with corresponding X-band synthetic aperture images from the same area is carried out and the high degree of correlation is discussed.

  6. Column atmospheric water vapor retrievals from airborne imaging spectrometer data

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Goetz, Alexander F. H.

    1989-01-01

    High-spatial-resolution column atmospheric water vapor amounts were derived from spectral data collected by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS). The quantitative derivation is made by curve fitting observed spectra with calculated spectra in the 1.14- and 0.94-micron water-vapor band absorption regions with a nonlinear least-squares technique. The precision of the retrieved column water vapor is approximately 5 percent. The derived column water vapor amounts are independent of the absolute surface reflectance. Curve fitting of spectra near 1 micron from areas covered with vegetation indicates that both the amount of atmospheric water vapor and the moisture content of vegetation can be retrieved simultaneously. It should be possible to measure column water vapor over land areas from satellite altitude with the proposed high-resolution imaging spectrometer or even the moderate-resolution imaging spectrometer.

  7. The airborne laser ranging system, its capabilities and applications

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Degnan, J. J.; Englar, T. S., Jr.

    1982-01-01

    The airborne laser ranging system is a multibeam short pulse laser ranging system on board an aircraft. It simultaneously measures the distances between the aircraft and six laser retroreflectors (targets) deployed on the Earth's surface. The system can interrogate over 100 targets distributed over an area of 25,000 sq, kilometers in a matter of hours. Potentially, a total of 1.3 million individual range measurements can be made in a six hour flight. The precision of these range measurements is approximately + or - 1 cm. These measurements are used in procedure which is basically an extension of trilateration techniques to derive the intersite vector between the laser ground targets. By repeating the estimation of the intersite vector, strain and strain rate errors can be estimated. These quantities are essential for crustal dynamic studies which include determination and monitoring of regional strain in the vicinity of active fault zones, land subsidence, and edifice building preceding volcanic eruptions.

  8. Polarimetric sensor systems for airborne ISR

    NASA Astrophysics Data System (ADS)

    Chenault, David; Foster, Joseph; Pezzaniti, Joseph; Harchanko, John; Aycock, Todd; Clark, Alex

    2014-06-01

    Over the last decade, polarimetric imaging technologies have undergone significant advancements that have led to the development of small, low-power polarimetric cameras capable of meeting current airborne ISR mission requirements. In this paper, we describe the design and development of a compact, real-time, infrared imaging polarimeter, provide preliminary results demonstrating the enhanced contrast possible with such a system, and discuss ways in which this technology can be integrated with existing manned and unmanned airborne platforms.

  9. 1981 Aeronautics and Space Highlights

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This video presentation covers Shuttle flights 1 and 2, Spacelab, mobile workstation, Voyager 2 Saturn, Infrared Astronomy Satellite, Hubble Space Telescope, Kuiper Airborne Observatory, High Altitude Earth Survey, Landsat, aerodynamic research, electric cars, wind energy, XV-15, Quiet Shorthaul Research Aircraft, X-14 BVTOL, 40 x 80 Wind Tunnel, and turboprop research.

  10. Downscaling of Airborne Wind Energy Systems

    NASA Astrophysics Data System (ADS)

    Fechner, Uwe; Schmehl, Roland

    2016-09-01

    Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that cannot be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the higher capacity factor and much lower total mass. This paper investigates the scaling effects of airborne wind energy systems. The energy yield of airborne wind energy systems, that work in pumping mode of operation is at least ten times higher than the energy yield of conventional solar systems. For airborne wind energy systems the yield is defined per square meter wing area. In this paper the dependency of the energy yield on the nominal generator power for systems in the range of 1 kW to 1 MW is investigated. For the onshore location Cabauw, The Netherlands, it is shown, that a generator of just 1.4 kW nominal power and a total system mass of less than 30 kg has the theoretical potential to harvest energy at only twice the price per kWh of large scale airborne wind energy systems. This would make airborne wind energy systems a very attractive choice for small scale remote and mobile applications as soon as the remaining challenges for commercialization are solved.

  11. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  12. Challenges and Opportunities of Airborne Metagenomics

    PubMed Central

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  13. Graph-based segmentation of airborne lidar point clouds

    NASA Astrophysics Data System (ADS)

    Vilariño, David L.; Martínez, Jorge; Rivera, Francisco F.; Cabaleiro, José C.; Pena, Tomás. F.

    2016-10-01

    In this paper, a graph-based technique originally intended for image processing has been tailored for the segmentation of airborne LiDAR points, that are irregularly distributed. Every LiDAR point is labeled as a node and interconnected as a graph extended to its neighborhood and defined in a 4D feature space (x, y, z, and the reflection intensity). The interconnections between pairs of neighboring nodes are weighted based on the distance in the feature space. The segmentation consists in an iterative process of classification of nodes into homogeneous groups based on their similarity. This approach is intended to be part of a complete system for classification of structures from LiDAR point clouds in applications needing fast response times. In this sense, a study of the performance/accuracy trade-off has been performed, extracting some conclusions about the benefits of the proposed solution.

  14. Instrument Attitude Precision Control

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2004-01-01

    A novel approach is presented in this paper to analyze attitude precision and control for an instrument gimbaled to a spacecraft subject to an internal disturbance caused by a moving component inside the instrument. Nonlinear differential equations of motion for some sample cases are derived and solved analytically to gain insight into the influence of the disturbance on the attitude pointing error. A simple control law is developed to eliminate the instrument pointing error caused by the internal disturbance. Several cases are presented to demonstrate and verify the concept presented in this paper.

  15. Precise Measurement for Manufacturing

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A metrology instrument known as PhaseCam supports a wide range of applications, from testing large optics to controlling factory production processes. This dynamic interferometer system enables precise measurement of three-dimensional surfaces in the manufacturing industry, delivering speed and high-resolution accuracy in even the most challenging environments.Compact and reliable, PhaseCam enables users to make interferometric measurements right on the factory floor. The system can be configured for many different applications, including mirror phasing, vacuum/cryogenic testing, motion/modal analysis, and flow visualization.

  16. Precision Robotic Assembly Machine

    ScienceCinema

    None

    2016-07-12

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  17. Precision electroweak measurements

    SciTech Connect

    Demarteau, M.

    1996-11-01

    Recent electroweak precision measurements fro {ital e}{sup +}{ital e}{sup -} and {ital p{anti p}} colliders are presented. Some emphasis is placed on the recent developments in the heavy flavor sector. The measurements are compared to predictions from the Standard Model of electroweak interactions. All results are found to be consistent with the Standard Model. The indirect constraint on the top quark mass from all measurements is in excellent agreement with the direct {ital m{sub t}} measurements. Using the world`s electroweak data in conjunction with the current measurement of the top quark mass, the constraints on the Higgs` mass are discussed.

  18. Precision Measurement of the (e++e-) Flux in Primary Cosmic Rays from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer on the International Space Station

    NASA Astrophysics Data System (ADS)

    Aguilar, M.; Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bigongiari, G.; Bindi, V.; Bizzaglia, S.; Bizzarri, M.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Borsini, S.; Boschini, M. J.; Bourquin, M.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Cascioli, V.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, H.; Cheng, G. M.; Chen, H. S.; Cheng, L.; Chikanian, A.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Coste, B.; Crispoltoni, M.; Cui, Z.; Dai, M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Di Masso, L.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Donnini, F.; Du, W. J.; Duranti, M.; D'Urso, D.; Eline, A.; Eppling, F. J.; Eronen, T.; Fan, Y. Y.; Farnesini, L.; Feng, J.; Fiandrini, E.; Fiasson, A.; Finch, E.; Fisher, P.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Gillard, W.; Giovacchini, F.; Goglov, P.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guandalini, C.; Guerri, I.; Guo, K. H.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Kossakowski, R.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; Kunz, S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. L.; Li, J. Q.; Li, Q.; Li, Q.; Li, T. X.; Li, W.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, H.; Lomtadze, T.; Lu, M. J.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Majka, R.; Malinin, A.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Müller, M.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Obermeier, A.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Papi, A.; Pauluzzi, M.; Pedreschi, E.; Pensotti, S.; Pereira, R.; Pilo, F.; Piluso, A.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Postaci, E.; Putze, A.; Quadrani, L.; Qi, X. M.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Sbarra, C.; Schael, S.; Schmidt, S. M.; Schuckardt, D.; Schulz von Dratzig, A.; Schwering, G.; Scolieri, G.; Seo, E. S.; Shan, B. S.; Shan, Y. H.; Shi, J. Y.; Shi, X. Y.; Shi, Y. M.; Siedenburg, T.; Son, D.; Spada, F.; Spinella, F.; Sun, W.; Sun, W. H.; Tacconi, M.; Tang, C. P.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vaurynovich, S.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Wang, L. Q.; Wang, Q. L.; Wang, R. S.; Wang, X.; Wang, Z. X.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Wu, H.; Xia, X.; Xie, M.; Xie, S.; Xiong, R. Q.; Xin, G. M.; Xu, N. S.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Ye, Q. H.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, J. H.; Zhang, M. T.; Zhang, X. B.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; Zurbach, C.; AMS Collaboration

    2014-11-01

    We present a measurement of the cosmic ray (e++e-) flux in the range 0.5 GeV to 1 TeV based on the analysis of 10.6 million (e++e-) events collected by AMS. The statistics and the resolution of AMS provide a precision measurement of the flux. The flux is smooth and reveals new and distinct information. Above 30.2 GeV, the flux can be described by a single power law with a spectral index γ =-3.170 ±0.008 (stat+syst)±0.008 (energy scale) .

  19. Precision Measurement of the(e++e-)Flux in Primary Cosmic Rays from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer on the International Space Station

    DOE PAGES

    Aguilar, M.; Aisa, D.; Alpat, B.; ...

    2014-11-26

    We present a measurement of the cosmic ray (e++e-) flux in the range 0.5 GeV to 1 TeV based on the analysis of 10.6 million (e++e-) events collected by AMS. The statistics and the resolution of AMS provide a precision measurement of the flux. The flux is smooth and reveals new and distinct information. Above 30.2 GeV, the flux can be described by a single power law with a spectral index γ= -3.170 ± 0.008(stat+syst) ± 0.008(energy scale).

  20. Precision Measurement of the (e^{+}+e^{-}) Flux in Primary Cosmic Rays from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer on the International Space Station.

    PubMed

    Aguilar, M; Aisa, D; Alpat, B; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chikanian, A; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Crispoltoni, M; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Donnini, F; Du, W J; Duranti, M; D'Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Kunz, S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lomtadze, T; Lu, M J; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pauluzzi, M; Pedreschi, E; Pensotti, S; Pereira, R; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Räihä, T; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schuckardt, D; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Wang, L Q; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C

    2014-11-28

    We present a measurement of the cosmic ray (e^{+}+e^{-}) flux in the range 0.5 GeV to 1 TeV based on the analysis of 10.6 million (e^{+}+e^{-}) events collected by AMS. The statistics and the resolution of AMS provide a precision measurement of the flux. The flux is smooth and reveals new and distinct information. Above 30.2 GeV, the flux can be described by a single power law with a spectral index γ=-3.170±0.008(stat+syst)±0.008(energy scale).

  1. Airborne spectrometer senses several gases

    NASA Technical Reports Server (NTRS)

    Mc Dowall, J.; Moffat, A. J.

    1970-01-01

    Spectrometer's variable shutter permits observation of a wide range of plume widths. Adjustable grating, counter, and access window enable operator to reset grating's position during flight by resetting the counter to a predetermined number. Quartz correlation mask and spectral-aperture instrument-function filter are mounted in a replaceable precision frame.

  2. Wind Field Measurements With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1999-01-01

    In collaboration with lidar atmospheric remote sensing groups at NASA Marshall Space Flight Center and National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, we have developed and flown the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) lidar on the NASA DC-8 research aircraft. The scientific motivations for this effort are: to obtain measurements of subgrid scale (i.e. 2-200 km) processes and features which may be used to improve parameterizations in global/regional-scale models; to improve understanding and predictive capabilities on the mesoscale; and to assess the performance of Earth-orbiting Doppler lidar for global tropospheric wind measurements. MACAWS is a scanning Doppler lidar using a pulsed transmitter and coherent detection; the use of the scanner allows 3-D wind fields to be produced from the data. The instrument can also be radiometrically calibrated and used to study aerosol, cloud, and surface scattering characteristics at the lidar wavelength in the thermal infrared. MACAWS was used to study surface winds off the California coast near Point Arena, with an example depicted in the figure below. The northerly flow here is due to the Pacific subtropical high. The coastal topography interacts with the northerly flow in the marine inversion layer, and when the flow passes a cape or point that juts into the winds, structures called "hydraulic expansion fans" are observed. These are marked by strong variation along the vertical and cross-shore directions. The plots below show three horizontal slices at different heights above sea level (ASL). Bottom plots are enlargements of the area marked by dotted boxes above. The terrain contours are in 200-m increments, with the white spots being above 600-m elevation. Additional information is contained in the original.

  3. Precision Joining Center

    SciTech Connect

    Powell, J.W.; Westphal, D.A.

    1991-08-01

    A workshop to obtain input from industry on the establishment of the Precision Joining Center (PJC) was held on July 10--12, 1991. The PJC is a center for training Joining Technologists in advanced joining techniques and concepts in order to promote the competitiveness of US industry. The center will be established as part of the DOE Defense Programs Technology Commercialization Initiative, and operated by EG G Rocky Flats in cooperation with the American Welding Society and the Colorado School of Mines Center for Welding and Joining Research. The overall objectives of the workshop were to validate the need for a Joining Technologists to fill the gap between the welding operator and the welding engineer, and to assure that the PJC will train individuals to satisfy that need. The consensus of the workshop participants was that the Joining Technologist is a necessary position in industry, and is currently used, with some variation, by many companies. It was agreed that the PJC core curriculum, as presented, would produce a Joining Technologist of value to industries that use precision joining techniques. The advantage of the PJC would be to train the Joining Technologist much more quickly and more completely. The proposed emphasis of the PJC curriculum on equipment intensive and hands-on training was judged to be essential.

  4. Precision flyer initiator

    DOEpatents

    Frank, A.M.; Lee, R.S.

    1998-05-26

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or ``flyer`` is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices. 10 figs.

  5. Precision flyer initiator

    DOEpatents

    Frank, Alan M.; Lee, Ronald S.

    1998-01-01

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or "flyer" is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices.

  6. Chase Plane Video Of Historic SpaceX Splashdown

    NASA Video Gallery

    During the re-entry of SpaceX's Dragon capsule, NASA and the United States Navy flew a P-3 Orion Cast Glance aircraft to capture airborne views of the spacecraft's descent. The aircraft, based at t...

  7. Monitoring Atmospheric CO2 From Space: Challenge & Approach

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Dobler, Jeremy; Campbell, Joel; Meadows, Byron; Obland, Michael; Kooi, Susan; Fan, Tai-Fang; Ismail, Syed

    2015-01-01

    Exelis, Inc. As prototype space IPDA lidars, airborne laser absorption lidar systems operating in 1.57 CO2 absorption band have been developed and tested through lab, ground-based range, and flight campaigns. Very encouraging results have been obtained. The signal-to-noise ratio (SNR) for clear sky IPDA measurements of CO2 differential absorption optical depth (DAOD) for a 10-s integration over vegetated areas with about 10 km range was found to be as high as 1300, resulting in an error 0.077% or equivalent CO2 mixing ratio (XCO2) column precision of 0.3 ppm. Precise range measurements using the IM-CW lidar approach were also achieved, and the uncertainties have been shown to be at sub meter level. Based on the airborne lidar development, space lidar and atmospheric CO2 observations are simulated. It shows that with the IM-CW approach, accurate atmospheric CO2 measurements can be achieved from space, and a space mission such as that proposed by the DS will meet science goals of atmospheric CO2 monitoring.

  8. Airborne Interferometry using GNSS Reflections for Surface Level Estimation

    NASA Astrophysics Data System (ADS)

    Semmling, Maximilian; Beyerle, Georg; Schön, Steffen; Stosius, Ralf; Gerber, Thomas; Beckheinrich, Jamila; Markgraf, Markus; Ge, Maorong; Wickert, Jens

    2013-04-01

    The interferometric use of GNSS reflections for ocean altimetry can fill the gap in coverage of ocean observations. Today radar altimeters are used for large scale ocean observations to monitor e.g. global sea level change or circulation processes like El Niño. Spacial and temporal resolution of a single radar altimeter, however, is insufficient to observe mesoscale ocean phenomena like large oceanic eddies that are important indicators of climate change. The high coverage expected for a spaceborne altimeter based on GNSS reflections stimulated investigations on according interferometric methods. Several airborne experiments have been conducted using code observations. Carrier observations have a better precision but are severely affected by noise and have mostly been used in ground-based experiments. A new interferometric approach is presented using carrier observations for airborne application. Implementing a spectral retrieval noise reduction is achieved. A flight experiment was conducted with a Zeppelin airship on 2010/10/12 over Lake Constance at the border between Austria, Germany and Switzerland. The lake surface with an area of 536km2 is suitable for altimetric study as its decimeter range Geoid undulations are well-known. Three GNSS receiver were installed on the airship. A Javad Delta receiver recording direct signals for navigation. The DLR G-REX receiver recording reflected signals for scatterometry and the GORS (GNSS Occultation Reflectometry Scatterometry) receiver recording direct and reflected signals for interferometry. The airship's trajectory is determined from navigation data with a precision better than 10cm using regional augmentation. This presentation focuses on the interferometric analysis of GORS observations. Ray tracing calculations are used to model the difference of direct and reflected signals' path. Spectral retrieval is applied to determine Doppler residuals of modelled path difference and interferometric observations. Lake level

  9. Marine Geoid Undulation Assessment Over South China Sea Using Global Geopotential Models and Airborne Gravity Data

    NASA Astrophysics Data System (ADS)

    Yazid, N. M.; Din, A. H. M.; Omar, K. M.; Som, Z. A. M.; Omar, A. H.; Yahaya, N. A. Z.; Tugi, A.

    2016-09-01

    Global geopotential models (GGMs) are vital in computing global geoid undulations heights. Based on the ellipsoidal height by Global Navigation Satellite System (GNSS) observations, the accurate orthometric height can be calculated by adding precise and accurate geoid undulations model information. However, GGMs also provide data from the satellite gravity missions such as GRACE, GOCE and CHAMP. Thus, this will assist to enhance the global geoid undulations data. A statistical assessment has been made between geoid undulations derived from 4 GGMs and the airborne gravity data provided by Department of Survey and Mapping Malaysia (DSMM). The goal of this study is the selection of the best possible GGM that best matches statistically with the geoid undulations of airborne gravity data under the Marine Geodetic Infrastructures in Malaysian Waters (MAGIC) Project over marine areas in Sabah. The correlation coefficients and the RMS value for the geoid undulations of GGM and airborne gravity data were computed. The correlation coefficients between EGM 2008 and airborne gravity data is 1 while RMS value is 0.1499.In this study, the RMS value of EGM 2008 is the lowest among the others. Regarding to the statistical analysis, it clearly represents that EGM 2008 is the best fit for marine geoid undulations throughout South China Sea.

  10. Airborne Imaging Spectroscopy of Forest Canopy Chemistry in the Andes-Amazon Corridor

    NASA Astrophysics Data System (ADS)

    Martin, R.; Anderson, C.; Knapp, D. E.; Asner, G. P.

    2013-12-01

    The Andes-Amazon corridor is one of the most biologically diverse regions on Earth. Elevation gradients provide opportunities to explore the underlying sources and environmental controls on functional diversity of the forest canopy, however plot-based studies have proven highly variable. We used airborne imaging spectroscopy from the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping System (AToMS) to quantify changes canopy functional traits in a series of eleven 25-ha landscapes distributed along a 3300 m elevation gradient from lowland Amazonia to treeline in the Peruvian Andes. Each landscape encompassed a 1 ha field plot in which all trees reaching the canopy were climbed and leaves were sampled for 20 chemical traits. We used partial least squares regression to relate plot-level chemical values with airborne spectroscopy from the 1 ha area. Sixteen chemical traits produced predictable relationships with the spectra and were used to generate maps of the 25 ha landscape. Ten chemical traits were significantly related to elevation at the 25 ha scale. These ten traits displayed 35% greater accuracy (R2) and precision (rmse) when evaluated at the 25 ha scale compared to values derived from tree climbing alone. The results indicate that high-fidelity imaging spectroscopy can be used as surrogate for laborious tree climbing and chemical assays to understand chemical diversity in Amazonian forests. Understanding how these chemicals vary among forest communities throughout the Andes-Amazon corridor will facilitate mapping of functional diversity and the response of canopies to climate change.

  11. Aspects of detection and tracking of ground targets from an airborne EO/IR sensor

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam; Sithiravel, Rajiv; Daya, Zahir; Kirubarajan, Thiagalingam

    2015-05-01

    An airborne EO/IR (electro-optical/infrared) camera system comprises of a suite of sensors, such as a narrow and wide field of view (FOV) EO and mid-wave IR sensors. EO/IR camera systems are regularly employed on military and search and rescue aircrafts. The EO/IR system can be used to detect and identify objects rapidly in daylight and at night, often with superior performance in challenging conditions such as fog. There exist several algorithms for detecting potential targets in the bearing elevation grid. The nonlinear filtering problem is one of estimation of the kinematic parameters from bearing and elevation measurements from a moving platform. In this paper, we developed a complete model for the state of a target as detected by an airborne EO/IR system and simulated a typical scenario with single target with 1 or 2 airborne sensors. We have demonstrated the ability to track the target with `high precision' and noted the improvement from using two sensors on a single platform or on separate platforms. The performance of the Extended Kalman filter (EKF) is investigated on simulated data. Image/video data collected from an IR sensor on an airborne platform are processed using an image tracking by detection algorithm.

  12. Performance Basis for Airborne Separation

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    2008-01-01

    Emerging applications of Airborne Separation Assistance System (ASAS) technologies make possible new and powerful methods in Air Traffic Management (ATM) that may significantly improve the system-level performance of operations in the future ATM system. These applications typically involve the aircraft managing certain components of its Four Dimensional (4D) trajectory within the degrees of freedom defined by a set of operational constraints negotiated with the Air Navigation Service Provider. It is hypothesized that reliable individual performance by many aircraft will translate into higher total system-level performance. To actually realize this improvement, the new capabilities must be attracted to high demand and complexity regions where high ATM performance is critical. Operational approval for use in such environments will require participating aircraft to be certified to rigorous and appropriate performance standards. Currently, no formal basis exists for defining these standards. This paper provides a context for defining the performance basis for 4D-ASAS operations. The trajectory constraints to be met by the aircraft are defined, categorized, and assessed for performance requirements. A proposed extension of the existing Required Navigation Performance (RNP) construct into a dynamic standard (Dynamic RNP) is outlined. Sample data is presented from an ongoing high-fidelity batch simulation series that is characterizing the performance of an advanced 4D-ASAS application. Data of this type will contribute to the evaluation and validation of the proposed performance basis.

  13. Visualizing Airborne and Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Bierwirth, Victoria A.

    2011-01-01

    Remote sensing is a process able to provide information about Earth to better understand Earth's processes and assist in monitoring Earth's resources. The Cloud Absorption Radiometer (CAR) is one remote sensing instrument dedicated to the cause of collecting data on anthropogenic influences on Earth as well as assisting scientists in understanding land-surface and atmospheric interactions. Landsat is a satellite program dedicated to collecting repetitive coverage of the continental Earth surfaces in seven regions of the electromagnetic spectrum. Combining these two aircraft and satellite remote sensing instruments will provide a detailed and comprehensive data collection able to provide influential information and improve predictions of changes in the future. This project acquired, interpreted, and created composite images from satellite data acquired from Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+). Landsat images were processed for areas covered by CAR during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCT AS), Cloud and Land Surface Interaction Campaign (CLASIC), Intercontinental Chemical Transport Experiment-Phase B (INTEXB), and Southern African Regional Science Initiative (SAFARI) 2000 missions. The acquisition of Landsat data will provide supplemental information to assist in visualizing and interpreting airborne and satellite imagery.

  14. ESA Cryovex 2011 Airborne Campaign for CRYOSAT-2 Calibration and Validation

    NASA Astrophysics Data System (ADS)

    Skourup, H.; Einarsson, I.; Sandberg, L.; Forsberg, R.; Stenseng, L.; Hendricks, S.; Helm, V.; Davidson, M.

    2011-12-01

    After the successful launch of CryoSat-2 in April 2010, the first direct validation campaign of the satellite was carried out in the April-May 2011. DTU Space has been involved in ESA's CryoSat Validation Experiment (CryoVEx) with airborne activities since 2003. To validate the performance of the CryoSat-2 radar altimeter (SIRAL), the aircraft is equipped with an airborne version of the SIRAL altimeter (ASIRAS) together with a laser scanner. Of particular interest is to study the penetration depth of SIRAL into both land- and sea ice. This can be done by comparing the radar and laser measurements, as the laser reflects on the surface, and by overflight of laser reflectors. In the spring of 2011 the DTU Space airborne team visited five main validation sites: Devon ice cap (Canada), Austfonna ice cap (Svalbard), the EGIG line crossing the Greenland Ice Sheet, as well as the sea ice north of Alert and sea ice around Svalbard in the Fram Strait. Selected tracks were planned to match CryoSat-2 passes and a few of them were flown in formation flight with the Alfred Wegener Institute (AWI) Polar-5 carrying an EM-bird. We present an overview of the 2011 airborne campaign together with first results of the CryoSat-2 underflights.

  15. Simulation evaluation of combined 4D RNAV and airborne traffic situation displays and procedures applied to terminal aerial maneuvers

    NASA Technical Reports Server (NTRS)

    Athans, M.; Connelly, M. E.

    1979-01-01

    Simulation scenarios were developed in which subject pilots must simultaneously follow a 3D terminal airspace structure and arrive at fixed waypoints within the structure precisely at pre-scheduled times in the presence of a full range of wind conditions aloft, and monitor nearby traffic on an airborne traffic situation display, especially during merging and spacing operations, and detect blunders and resolve conflicts in a safe manner. Open-loop simulator tests of the single-stage 4D RNAV algorithm indicate that a descending pilot can comply quite closely with an assigned time of arrival at a 3D waypoint simply by tracking a pre-calculated speed profile. Initial experiments show that the aircraft arrives at the 3D waypoint within a few seconds of the anticipated time. The presence of headwinds or tailwinds does not affect the arrival time error as long as the wind is accurately modeled in the descent algorithm. Results all but quarantee that a 5 second standard deviation in arrival time error can be realized in closed-loop descents at very moderate pilot workload levels.

  16. Error Analysis for the Airborne Direct Georeferincing Technique

    NASA Astrophysics Data System (ADS)

    Elsharkawy, Ahmed S.; Habib, Ayman F.

    2016-10-01

    Direct Georeferencing was shown to be an important alternative to standard indirect image orientation using classical or GPS-supported aerial triangulation. Since direct Georeferencing without ground control relies on an extrapolation process only, particular focus has to be laid on the overall system calibration procedure. The accuracy performance of integrated GPS/inertial systems for direct Georeferencing in airborne photogrammetric environments has been tested extensively in the last years. In this approach, the limiting factor is a correct overall system calibration including the GPS/inertial component as well as the imaging sensor itself. Therefore remaining errors in the system calibration will significantly decrease the quality of object point determination. This research paper presents an error analysis for the airborne direct Georeferencing technique, where integrated GPS/IMU positioning and navigation systems are used, in conjunction with aerial cameras for airborne mapping compared with GPS/INS supported AT through the implementation of certain amount of error on the EOP and Boresight parameters and study the effect of these errors on the final ground coordinates. The data set is a block of images consists of 32 images distributed over six flight lines, the interior orientation parameters, IOP, are known through careful camera calibration procedure, also 37 ground control points are known through terrestrial surveying procedure. The exact location of camera station at time of exposure, exterior orientation parameters, EOP, is known through GPS/INS integration process. The preliminary results show that firstly, the DG and GPS-supported AT have similar accuracy and comparing with the conventional aerial photography method, the two technologies reduces the dependence on ground control (used only for quality control purposes). Secondly, In the DG Correcting overall system calibration including the GPS/inertial component as well as the imaging sensor itself

  17. Airborne experiment results for spaceborne atmospheric synchronous correction system

    NASA Astrophysics Data System (ADS)

    Cui, Wenyu; Yi, Weining; Du, Lili; Liu, Xiao

    2015-10-01

    The image quality of optical remote sensing satellite is affected by the atmosphere, thus the image needs to be corrected. Due to the spatial and temporal variability of atmospheric conditions, correction by using synchronous atmospheric parameters can effectively improve the remote sensing image quality. For this reason, a small light spaceborne instrument, the atmospheric synchronous correction device (airborne prototype), is developed by AIOFM of CAS(Anhui Institute of Optics and Fine Mechanics of Chinese Academy of Sciences). With this instrument, of which the detection mode is timing synchronization and spatial coverage, the atmospheric parameters consistent with the images to be corrected in time and space can be obtained, and then the correction is achieved by radiative transfer model. To verify the technical process and treatment effect of spaceborne atmospheric correction system, the first airborne experiment is designed and completed. The experiment is implemented by the "satellite-airborne-ground" synchronous measuring method. A high resolution(0.4 m) camera and the atmospheric correction device are equipped on the aircraft, which photograph the ground with the satellite observation over the top simultaneously. And aerosol optical depth (AOD) and columnar water vapor (CWV) in the imagery area are also acquired, which are used for the atmospheric correction for satellite and aerial images. Experimental results show that using the AOD and CWV of imagery area retrieved by the data obtained by the device to correct aviation and satellite images, can improve image definition and contrast by more than 30%, and increase MTF by more than 1 time, which means atmospheric correction for satellite images by using the data of spaceborne atmospheric synchronous correction device is accurate and effective.

  18. Precision Medicine in Cancer Treatment

    Cancer.gov

    Precision medicine helps doctors select cancer treatments that are most likely to help patients based on a genetic understanding of their disease. Learn about the promise of precision medicine and the role it plays in cancer treatment.

  19. Precision Joining Center

    NASA Technical Reports Server (NTRS)

    Powell, John W.

    1991-01-01

    The establishment of a Precision Joining Center (PJC) is proposed. The PJC will be a cooperatively operated center with participation from U.S. private industry, the Colorado School of Mines, and various government agencies, including the Department of Energy's Nuclear Weapons Complex (NWC). The PJC's primary mission will be as a training center for advanced joining technologies. This will accomplish the following objectives: (1) it will provide an effective mechanism to transfer joining technology from the NWC to private industry; (2) it will provide a center for testing new joining processes for the NWC and private industry; and (3) it will provide highly trained personnel to support advance joining processes for the NWC and private industry.

  20. Precision spectroscopy of Helium

    SciTech Connect

    Cancio, P.; Giusfredi, G.; Mazzotti, D.; De Natale, P.; De Mauro, C.; Krachmalnicoff, V.; Inguscio, M.

    2005-05-05

    Accurate Quantum-Electrodynamics (QED) tests of the simplest bound three body atomic system are performed by precise laser spectroscopic measurements in atomic Helium. In this paper, we present a review of measurements between triplet states at 1083 nm (23S-23P) and at 389 nm (23S-33P). In 4He, such data have been used to measure the fine structure of the triplet P levels and, then, to determine the fine structure constant when compared with equally accurate theoretical calculations. Moreover, the absolute frequencies of the optical transitions have been used for Lamb-shift determinations of the levels involved with unprecedented accuracy. Finally, determination of the He isotopes nuclear structure and, in particular, a measurement of the nuclear charge radius, are performed by using hyperfine structure and isotope-shift measurements.

  1. Space and Airborne Communications for the Future Force

    DTIC Science & Technology

    2010-03-01

    Existing - Military Strategic and Tactical Relay (MILSTAR); Defense Satellite Communication System (DSCS); UHF Follow-On ( UFO )); Global Broadcast...System (GBS)) is an ad-on package to the UFO satellites. 7 Figure 2: SATCOM Current and Future Figure 3: Existing SATCOM 8 Future Future...decade. UFO and MUOS are for individuals or moving platforms. But they are low data rate and quickly saturate with number of users. All of

  2. Present and Future Airborne and Space-borne Systems

    DTIC Science & Technology

    2007-02-01

    subsidence by means of differential SAR interferometry, In Proc. IGARSS03, Toulouse. Mittermayer J., Alberga V., Buckreuss S., Riegger S...TerraSAR-X: Predicted Performance”, Proc. SPIE2002, Vol. 4881, Agia Pelagia, Crete, Greece, 22 - 27 September 2002. Mittermayer J., Lord R., Boerner E...in press. Mittermayer J., Runge H., “Conceptual Studies for Exploiting the TerraSAR-X Dual Receiving Antenna”, proc. IGARSS 2003, Toulouse, 2003. R

  3. Present and Future Airborne and Space-Borne Systems

    DTIC Science & Technology

    2005-02-01

    Riegger, I. Hajnsek, D. Hounam, G. Krieger, A. Moreira,M. Werner: Single-Pass SAR Interferometry with a Tandem TerraSAR-X Configuration Mittermayer ...September 2002. Mittermayer J., Lord R., Boerner E., “Sliding Spotlight SAR Processing for TerraSAR-X Using a New Formulation of the Extended Chirp...Scaling Algorithm”, proc. IGARSS 2003, Toulouse, 2003, in press. Mittermayer J., Runge H., “Conceptual Studies for Exploiting the TerraSAR-X Dual

  4. Precision Spectroscopy of Tellurium

    NASA Astrophysics Data System (ADS)

    Coker, J.; Furneaux, J. E.

    2013-06-01

    Tellurium (Te_2) is widely used as a frequency reference, largely due to the fact that it has an optical transition roughly every 2-3 GHz throughout a large portion of the visible spectrum. Although a standard atlas encompassing over 5200 cm^{-1} already exists [1], Doppler broadening present in that work buries a significant portion of the features [2]. More recent studies of Te_2 exist which do not exhibit Doppler broadening, such as Refs. [3-5], and each covers different parts of the spectrum. This work adds to that knowledge a few hundred transitions in the vicinity of 444 nm, measured with high precision in order to improve measurement of the spectroscopic constants of Te_2's excited states. Using a Fabry Perot cavity in a shock-absorbing, temperature and pressure regulated chamber, locked to a Zeeman stabilized HeNe laser, we measure changes in frequency of our diode laser to ˜1 MHz precision. This diode laser is scanned over 1000 GHz for use in a saturated-absorption spectroscopy cell filled with Te_2 vapor. Details of the cavity and its short and long-term stability are discussed, as well as spectroscopic properties of Te_2. References: J. Cariou, and P. Luc, Atlas du spectre d'absorption de la molecule de tellure, Laboratoire Aime-Cotton (1980). J. Coker et al., J. Opt. Soc. Am. B {28}, 2934 (2011). J. Verges et al., Physica Scripta {25}, 338 (1982). Ph. Courteille et al., Appl. Phys. B {59}, 187 (1994) T.J. Scholl et al., J. Opt. Soc. Am. B {22}, 1128 (2005).

  5. Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station

    NASA Astrophysics Data System (ADS)

    Aguilar, M.; Ali Cavasonza, L.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Başeǧmez-du Pree, S.; Battarbee, M.; Battiston, R.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bindel, K. F.; Bindi, V.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Boschini, M. J.; Bourquin, M.; Bueno, E. F.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Castellini, G.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dai, Y. M.; Delgado, C.; Della Torre, S.; Demakov, O.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Dong, F.; Donnini, F.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eronen, T.; Feng, J.; Fiandrini, E.; Finch, E.; Fisher, P.; Formato, V.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R. J.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Giovacchini, F.; Goglov, P.; Gómez-Coral, D. M.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guo, K. H.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kang, S. C.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Konak, C.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. S.; Li, J. Q.; Li, J. Q.; Li, Q.; Li, T. X.; Li, W.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, Hu; Lordello, V. D.; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Machate, F.; Majka, R.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mikuni, V. M.; Mo, D. C.; Morescalchi, L.; Mott, P.; Nelson, T.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Pauluzzi, M.; Pensotti, S.; Pereira, R.; Picot-Clemente, N.; Pilo, F.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Putze, A.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Schael, S.; Schmidt, S. M.; Schulz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Siedenburg, T.; Son, D.; Song, J. W.; Sun, W. H.; Tacconi, M.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vázquez Acosta, M.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Vitillo, S.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, X.; Wang, X. Q.; Wang, Z. X.; Wei, C. C.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Wu, H.; Wu, X.; Xia, X.; Xiong, R. Q.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Yang, Y.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, C.; Zhang, J.; Zhang, J. H.; Zhang, S. D.; Zhang, S. W.; Zhang, Z.; Zheng, Z. M.; Zhu, Z. Q.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; AMS Collaboration

    2016-12-01

    Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B /C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variation with rigidity of the B /C spectral index is reported for the first time. The B /C ratio does not show any significant structures in contrast to many cosmic ray models that require such structures at high rigidities. Remarkably, above 65 GV, the B /C ratio is well described by a single power law RΔ with index Δ =-0.333 ±0.014 (fit ) ±0.005 (syst ) , in good agreement with the Kolmogorov theory of turbulence which predicts Δ =-1 /3 asymptotically.

  6. Mathematics for modern precision engineering.

    PubMed

    Scott, Paul J; Forbes, Alistair B

    2012-08-28

    The aim of precision engineering is the accurate control of geometry. For this reason, mathematics has a long association with precision engineering: from the calculation and correction of angular scales used in surveying and astronomical instrumentation to statistical averaging techniques used to increase precision. This study illustrates the enabling role the mathematical sciences are playing in precision engineering: modelling physical processes, instruments and complex geometries, statistical characterization of metrology systems and error compensation.

  7. High precision applications of the global positioning system

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    1991-01-01

    The Global Positioning System (GPS) is a constellation of U.S. defense navigation satellites which can be used for military and civilian positioning applications. A wide variety of GPS scientific applications were identified and precise positioning capabilities with GPS were already demonstrated with data available from the present partial satellite constellation. Expected applications include: measurements of Earth crustal motion, particularly in seismically active regions; measurements of the Earth's rotation rate and pole orientation; high-precision Earth orbiter tracking; surveying; measurements of media propagation delays for calibration of deep space radiometric data in support of NASA planetary missions; determination of precise ground station coordinates; and precise time transfer worldwide.

  8. Proceedings of the Annual NASA and Department of Defense Precise Time and Time Interval (PITI) Planning Meeting (5th), Held at Goddard Space Flight Center on December 4-6, 1973

    DTIC Science & Technology

    1972-01-01

    bit, thin film, hybrid low power module . Its specifications are shown in Figure 3. The pins have the same spacing as a dual in line integrated...0.19 12 BIT DIGITAL TO ANALOG CONVERTER POWER CONSUMPTION: LINEARITY: TEMPERATURE RANGE CONSTRUCTION: INPUT: OUTPUT: 570 MW ± 1/2 LSB...satellite PN modulation and radiated power levels at the ir)0/400MHz channels will be satisfactory for nanosecond to submicrosecond. PTT1 applications

  9. Field tests of a new, extractive, airborne 1.4 μm -TDLAS hygrometer (SEALDH-I) on a Learjet 35A

    NASA Astrophysics Data System (ADS)

    Buchholz, Bernhard; Ebert, Volker

    2013-04-01

    easier to validate the sensor function e.g. by a direct comparison with a primary water standard and to ensure traceability of the results to metrological standards. On the other hand it remains important to investigate sampling effects and artifacts in order to provide true measurements of the outside air. The SEALDH-I (Selective Extractive Airborne Laser Diode Hygrometer) is a new, absolute 1.37 μm Tunable Diode Laser Absorption Spectroscopy (TDLAS) hygrometer, which uses an advanced spectroscopic multiline fit and instrument stabilization process to enable a calibrations-free [1] evaluation of TDLAS signals [2]. SEALDHI is a compact (19" 4 HU), light weight (23 kg), fully extractive TDL hygrometer especially designed for space- and weight-limited airborne applications. It is based on an internal optical cell with 1.5 m optical path length. SEALDH-I's time resolution is limited by the flow through the cell: With an unpressurized inlet and gas handling system, we achieve with typical flows of 40 liter/min which leads to exchange times in the order of 0.5 sec. The laser scanning frequency of typically 140 Hz sets a maximum time resolution of 7 msec. Averaging data for about 2.1 sec ensures an excellent precision of 0.033 ppmv, which results in a band width and path length normalized precision of 72 ppbv?m?(Hz)-1-2. A dynamic range from 30 to 30000 ppmv has been proved and already validated in a blind intercomparison campaign [3]. The fast measurements, its excellent precision, validated accuracy, and absolute, calibration-free evaluation in combination with the compact, robust setup, allows airborne measurements from ground level up to the lower stratosphere. Furthermore SEALDH-I permits via its fast response time in combination with the large concentration range the resolution of fine atmospheric spatial structures and temporal fluctuations, particularly in clouds [4], where concentration gradients of 1000 ppmv per second can be present. We will present the result of

  10. Quick response airborne command post communications

    NASA Astrophysics Data System (ADS)

    Blaisdell, Randy L.

    1988-08-01

    National emergencies and strategic crises come in all forms and sizes ranging from natural disasters at one end of the scale up to and including global nuclear warfare at the other. Since the early 1960s the U.S. Government has spent billions of dollars fielding airborne command posts to ensure continuity of government and the command and control function during times of theater conventional, theater nuclear, and global nuclear warfare. Unfortunately, cost has prevented the extension of the airborne command post technology developed for these relatively unlikely events to the lower level, though much more likely to occur, crises such as natural disasters, terrorist acts, political insurgencies, etc. This thesis proposes the implementation of an economical airborne command post concept to address the wide variety of crises ignored by existing military airborne command posts. The system is known as the Quick Response Airborne Command Post (QRAC Post) and is based on the exclusive use of commercially owned and operated aircraft, and commercially available automated data processing and communications resources. The thesis addresses the QRAC Post concept at a systems level and is primarily intended to demonstrate how current technology can be exploited to economically achieve a national objective.

  11. Inference of lithologic distributions in an alluvial aquifer using airborne transient electromagnetic surveys

    USGS Publications Warehouse

    Dickinson, Jesse E.; Pool, D.R.; Groom, R.W.; Davis, L.J.

    2010-01-01

    An airborne transient electromagnetic (TEM) survey was completed in the Upper San Pedro Basin in southeastern Arizona to map resistivity distributions within the alluvial aquifer. This investigation evaluated the utility of 1D vertical resistivity models of the TEM data to infer lithologic distributions in an alluvial aquifer. Comparisons of the resistivity values and layers in the 1D resistivity models of airborne TEM data to 1D resistivity models of ground TEM data, borehole resistivity logs, and lithologic descriptions in drill logs indicated that the airborne TEM identified thick conductive fine-grained sediments that result in semiconfined groundwater conditions. One-dimensional models of ground-based TEM surveys and subsurface lithology at three sites were used to determine starting models and constraints to invert airborne TEM data using a constrained Marquardt-styleunderparameterized method. A maximum structural resolution of six layers underlain by a half-space was determined from the resistivity structure of the 1D models of the ground TEM data. The 1D resistivity models of the airborne TEM data compared well with the control data to depths of approximately 100 m in areas of thick conductive silt and clay and to depths of 200 m in areas of resistive sand and gravel. Comparison of a 3D interpolation of the 1D resistivity models to drill logs indicated resistive (mean of 65 ohm-m ) coarse-grained sediments along basin margins and conductive (mean of 8 ohm-m ) fine-grained sediments at the basin center. Extents of hydrologically significant thick silt and clay were well mapped by the 1D resistivity models of airborne TEM data. Areas of uncertain lithology remain below conductive fine-grained sediments where the 1D resistivity structure is not resolved: in areas where multiple lithologies have similar resistivity values and in areas of high salinity.

  12. Mapping permafrost with airborne electromagnetics

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Ball, L. B.; Bloss, B. R.; Kass, A.; Pastick, N.; Smith, B. D.; Voss, C. I.; Walsh, D. O.; Walvoord, M. A.; Wylie, B. K.

    2014-12-01

    Permafrost is a key characteristic of cold region landscapes, yet detailed assessments of how the subsurface distribution of permafrost impacts the environment, hydrologic systems, and infrastructure are lacking. Data acquired from several airborne electromagnetic (AEM) surveys in Alaska provide significant new insight into the spatial extent of permafrost over larger areas (hundreds to thousands of square kilometers) than can be mapped using ground-based geophysical methods or through drilling. We compare several AEM datasets from different areas of interior Alaska, and explore the capacity of these data to infer geologic structure, permafrost extent, and related hydrologic processes. We also assess the impact of fires on permafrost by comparing data from different burn years within similar geological environments. Ultimately, interpretations rely on understanding the relationship between electrical resistivity measured by AEM surveys and the physical properties of interest such as geology, permafrost, and unfrozen water content in the subsurface. These relationships are often ambiguous and non-unique, so additional information is useful for reducing uncertainty. Shallow (upper ~1m) permafrost and soil characteristics identified from remotely sensed imagery and field observations help to constrain and aerially extend near-surface AEM interpretations, where correlations between the AEM and remote sensing data are identified using empirical multivariate analyses. Surface nuclear magnetic resonance (sNMR) measurements quantify the contribution of unfrozen water at depth to the AEM-derived electrical resistivity models at several locations within one survey area. AEM surveys fill a critical data gap in the subsurface characterization of permafrost environments and will be valuable in future mapping and monitoring programs in cold regions.

  13. Airborne geophysical surveys over the eastern Adirondacks, New York State

    USGS Publications Warehouse

    Shah, Anjana K.

    2016-01-01

    Airborne geophysical surveys were conducted in the eastern Adirondacks from Dec. 7, 2015 - Dec. 21, 2015, by Goldak Airborne Surveys. The area was flown along a draped surface with a nominal survey height above ground of 200 meters. The flight line spacing was 250 meters for traverse lines and 2500 meters for control lines. Here we present downloadable magnetic and radiometric (gamma spectrometry) data from those surveys as image (Geotiff) and flight line data (csv format).BackgroundThe Eastern Adirondacks region was known for iron mining in the 1800's and 1900's but it also contains deposits of rare earth minerals. Rare earth minerals are used in advanced technology such as in cell phones, rechargeable batteries and super-magnets. In many areas rare earth minerals appear to be associated with iron ore.The surveys were flown in order to map geologic variations in three dimensions. Magnetic surveys measure subtle changes in Earth's magnetic field that reflect different types of buried rock, such as iron-rich ore bodies. Radiometric methods detect naturally occurring gamma particles. The energy spectra of these particles can be used to estimate relative amounts of potassium, uranium and thorium (also referred to as gamma ray spectrometry), which are sometimes associated with rare earth elements. Together, these data provide insights into the regional tectonic and magmatic history as well as mineral resources in the area.

  14. The Multi-Center Airborne Coherent Atmospheric Wind Sensor, MACAWS

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Menzies, Robert T.; Howell, James; Johnson, Steven C.; Tratt, David M.; Olivier, Lisa D.; Banta, Robert M.

    1997-01-01

    In 1992 the atmospheric lidar remote sensing groups of the NASA Marshall Space Flight Center, NOAA Environmental Technology Laboratory, and Jet Propulsion Laboratory began a joint collaboration to develop an airborne high-energy Doppler laser radar (lidar) system for atmospheric research and satellite validation and simulation studies. The result is the Multi-center Airborne Coherent Atmospheric Wind Sensor, MACAWS, which has the capability to remotely sense the distribution of wind and absolute aerosol backscatter in the troposphere and lower stratosphere. A factor critical to the programmatic feasibility and technical success of this collaboration has been the utilization of existing components and expertise which were developed for previous atmospheric research by the respective institutions. The motivation for the MACAWS program Is three-fold: to obtain fundamental measurements of sub-synoptic scale processes and features which may be used as a basis to improve sub-grid scale parameterizations in large-scale models; to obtain similar datasets in order to improve the understanding and predictive capabilities on the mesoscale; and to validate (simulate) the performance of existing (planned) satellite-borne sensors. Examples of the latter include participation in the validation of the NASA Scatterometer and the assessment of prospective satellite Doppler lidar for global tropospheric wind measurement. Initial flight tests were made in September 1995; subsequent flights were made in June 1996 following improvements. This paper describes the MACAWS instrument, principles of operation, examples of measurements over the eastern Pacific Ocean and western United States, and future applications.

  15. DC-8 Airborne Laboratory arrival at NASA Dryden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's DC-8 Airborne Science platform landing at Edwards Air Force Base, California, to join the fleet of aircraft at NASA's Dryden Flight Research Center. The white aircraft with a blue stripe running horizontally from the nose to the tail is shown with its main landing gear just above the runway. The former airliner is a 'dash-72' model and has a range of 5,400 miles. The craft can stay airborne for 12 hours and has an operational speed range between 300 and 500 knots. The research flights are made at between 500 and 41,000 feet. The aircraft can carry up to 30,000 lbs of research/science payload equipment installed in 15 mission-definable spaces. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  16. Airborne laser mapping of Assateague National Seashore Beach

    USGS Publications Warehouse

    Krabill, W.B.; Wright, C.W.; Swift, R.N.; Frederick, E.B.; Manizade, S.S.; Yungel, J.K.; Martin, C.F.; Sonntag, J.G.; Duffy, Mark; Hulslander, William; Brock, John C.

    2000-01-01

    Results are presented from topographic surveys of the Assateague Island National Seashore using an airborne scanning laser altimeter and kinematic Global Positioning System (GPS) technology. The instrument used was the Airborne Topographic Mapper (ATM), developed by the NASA Arctic Ice Mapping (AIM) group from the Goddard Space Flight Center's Wallops Flight Facility. In November, 1995, and again in May, 1996, these topographic surveys were flown as a functionality check prior to conducting missions to measure the elevation of extensive sections of the Greenland Ice Sheet as part of NASA's Global Climate Change program. Differences between overlapping portions of both surveys are compared for quality control. An independent assessment of the accuracy of the ATM survey is provided by comparison to surface surveys which were conducted using standard techniques. The goal of these projects is to make these measurements to an accuracy of ± 10 cm. Differences between the fall 1995 and 1996 surveys provides an assessment of net changes in the beach morphology over an annual cycle.

  17. High precision redundant robotic manipulator

    DOEpatents

    Young, Kar-Keung David

    1998-01-01

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degreed of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns.

  18. High precision redundant robotic manipulator

    DOEpatents

    Young, K.K.D.

    1998-09-22

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs.

  19. Second International Airborne Remote Sensing Conference and Exhibition

    NASA Technical Reports Server (NTRS)

    1996-01-01

    cloud cover analysis, Quadantid meteor shower studies, extra-solar far infrared ionic structure lines measurement, Cape Kennedy launch support, and studies in air pollution, The Products and Services Exhibit showcased new sensor and image processing technologies, aircraft data collection services, unmanned vehicle technology, platform equipment, turn-key services, software a workstations, GPS services, publications, and processing and integration systems by 58 exhibitors. The participation of aircraft users and crews provided unique dialogue between those who plan data collection a operate the remote sensing technology, and those who supply the data processing and integration equipment. Research results using hyperspectral imagery, radar and optical sensors, lidar, digital aerial photography, a integrated systems were presented. Major research and development programs and campaigns we reviewed, including CNR's LARA Project and European Space Agency's 1991-1995 Airborne Campaign. The pre-conference short courses addressed airborne video, photogrammetry, hyperspectral data analysis, digital orthophotography, imagery and GIS integration, IFSAR, GPS, and spectrometer calibration.

  20. Development and flight test of a helicopter compact, portable, precision landing system concept

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Clary, G. R.; Davis, T. J.; Chisholm, J. P.

    1984-01-01

    An airborne, radar based, precision approach concept is being developed and flight tested as a part of NASA's Rotorcraft All-Weather Operations Research Program. A transponder based beacon landing system (BLS) applying state of the art X band radar technology and digital processing techniques, has been built and is being flight tested to demonstrate the concept feasibility. The BLS airborne hardware consists of an add on microprocessor, installed in conjunction with the aircraft weather/mapping radar, which analyzes the radar beacon receiver returns and determines range, localizer deviation, and glide slope derivation. The ground station is an inexpensive, portable unit which can be quickly deployed at a landing site. Results from the flight test program show that the BLS concept has a significant potential for providing rotorcraft with low cost, precision instrument approach capability in remote areas.