Science.gov

Sample records for airborne prism experiment

  1. APEX - the Hyperspectral ESA Airborne Prism Experiment

    PubMed Central

    Itten, Klaus I.; Dell'Endice, Francesco; Hueni, Andreas; Kneubühler, Mathias; Schläpfer, Daniel; Odermatt, Daniel; Seidel, Felix; Huber, Silvia; Schopfer, Jürg; Kellenberger, Tobias; Bühler, Yves; D'Odorico, Petra; Nieke, Jens; Alberti, Edoardo; Meuleman, Koen

    2008-01-01

    The airborne ESA-APEX (Airborne Prism Experiment) hyperspectral mission simulator is described with its distinct specifications to provide high quality remote sensing data. The concept of an automatic calibration, performed in the Calibration Home Base (CHB) by using the Control Test Master (CTM), the In-Flight Calibration facility (IFC), quality flagging (QF) and specific processing in a dedicated Processing and Archiving Facility (PAF), and vicarious calibration experiments are presented. A preview on major applications and the corresponding development efforts to provide scientific data products up to level 2/3 to the user is presented for limnology, vegetation, aerosols, general classification routines and rapid mapping tasks. BRDF (Bidirectional Reflectance Distribution Function) issues are discussed and the spectral database SPECCHIO (Spectral Input/Output) introduced. The optical performance as well as the dedicated software utilities make APEX a state-of-the-art hyperspectral sensor, capable of (a) satisfying the needs of several research communities and (b) helping the understanding of the Earth's complex mechanisms.

  2. Some Experiments with Thin Prisms.

    ERIC Educational Resources Information Center

    Fernando, P. C. B.

    1980-01-01

    Described are several experiments, for a course in geometrical optics or for a college physics laboratory, which have a bearing on ophthalmic optics. Experiments include the single thin prism, crossed prisms, and the prismatic power of a lens. (Author/DS)

  3. Impacts of dichroic prism coatings on radiometry of the airborne imaging spectrometer APEX.

    PubMed

    Hueni, A; Schlaepfer, D; Jehle, M; Schaepman, M

    2014-08-20

    The generation of well-calibrated radiometric measurements from imaging spectrometer data requires careful consideration of all influencing factors, as well as an instrument calibration based on a detailed sensor model. Deviations of ambient parameters (i.e., pressure, humidity, temperature) from standard laboratory conditions during airborne operations can lead to biases that should be accounted for and properly compensated by using dedicated instrument models. This study introduces a model for the airborne imaging spectrometer airborne prism experiment (APEX), describing the impact of spectral shifts as well as polarization effects on the radiometric system response due to changing ambient parameters. Key issues are related to changing properties of the dichroic coating applied to the dispersing elements within the optical path. We present a model based on discrete numerical simulations. With the improved modeling approach, we predict radiometric biases with an root mean square error (RMSE) below 1%, leading to a substantial improvement of radiometric stability and predictability of system behavior. PMID:25321104

  4. Some experiments with thin prisms

    NASA Astrophysics Data System (ADS)

    Fernando, P. C. B.

    1980-11-01

    In most attempts at modernizing the college physics curriculum one of the first branches of physics to be eliminated is geometrical optics. However, in developing countries where the curriculum must give emphasis to applied areas (if physics is to survive at all!), geometrical optics has a role to play, especially in its relationship to the professional course ''Optometry.'' The author presents a few experiments in geometrical optics with an ophthalmic opitics bias, which could be introduced into the college physics laboratory.

  5. Design of an Airborne Portable Remote Imaging Spectrometer (PRISM) for the Coastal Ocean

    NASA Technical Reports Server (NTRS)

    Mouroulis, P.; vanGorp, B.; Green, R. O.; Cohen, D.; Wilson, D.; Randall, D.; Rodriguez, J.; Polanco, O.; Dierssen, H.; Balasubramanian, K.; Vargas, R.; Hein, R.; Sobel, H.; Eastwood, M.

    2010-01-01

    PRISM is a pushbroom imaging spectrometer currently under development at the Jet Propulsion Laboratory, intended to address the needs of airborne coastal ocean science research. We describe here the instrument design and the technologies that enable it to achieve its distinguishing characteristics. PRISM covers the 350-1050 nm range with a 3.1 nm sampling and a 33(deg) field of view. The design provides for high signal to noise ratio, high uniformity of response, and low polarization sensitivity. The complete instrument also incorporates two additional wavelength bands at 1240 and 1610 nm in a spot radiometer configuration to aid with atmospheric correction.

  6. Negative Refraction experiments in Photonic Crystal prisms

    NASA Astrophysics Data System (ADS)

    Vodo, Plarenta; Parimi, Patanjali. V.; Lu, Wentao. T.; di Gennaro, Emiliano; Sridhar, Srinivas

    2004-03-01

    We have experimentally demonstrated negative refraction in metallic photonic crystal (PC) prisms [1]. The refracted fields in the parallel plate waveguide (PPW) are measured by an automated dipole antenna, which scans the desired area, while the free space (FS) measurements, performed in a anechoic chamber, are measured by a rectangular X-band horn that swings in an arc in far field area. Both TE and TM excitation modes are used in FS experiments. Numerical calculations of the band structure and equi-frequency surface simulations are used to determine frequency regions of negative refraction of the triangular lattice PC. Angle of refraction determined by theoretical simulations and experimental results, are in exceptional good agreement, yielding the negative refraction index. FS and PPW refraction experimental results agree remarkably with simulations. 1. "Negative Refraction and Left-handed electromagnetism in Microwave Photonic Crystals", P.V Parimi, W.T Lu, P.Vodo J. Sokoloff and S.Sridhar, cond-mat/0306109 (2003)

  7. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  8. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  9. Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE)

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.

    1998-01-01

    Scanning holographic lidar receivers are currently in use in two operational lidar systems, PHASERS (Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing) and now HARLIE (Holographic Airborne Rotating Lidar Instrument Experiment). These systems are based on volume phase holograms made in dichromated gelatin (DCG) sandwiched between 2 layers of high quality float glass. They have demonstrated the practical application of this technology to compact scanning lidar systems at 532 and 1064 nm wavelengths, the ability to withstand moderately high laser power and energy loading, sufficient optical quality for most direct detection systems, overall efficiencies rivaling conventional receivers, and the stability to last several years under typical lidar system environments. Their size and weight are approximately half of similar performing scanning systems using reflective optics. The cost of holographic systems will eventually be lower than the reflective optical systems depending on their degree of commercialization. There are a number of applications that require or can greatly benefit from a scanning capability. Several of these are airborne systems, which either use focal plane scanning, as in the Laser Vegetation Imaging System or use primary aperture scanning, as in the Airborne Oceanographic Lidar or the Large Aperture Scanning Airborne Lidar. The latter class requires a large clear aperture opening or window in the aircraft. This type of system can greatly benefit from the use of scanning transmission holograms of the HARLIE type because the clear aperture required is only about 25% larger than the collecting aperture as opposed to 200-300% larger for scan angles of 45 degrees off nadir.

  10. CALIOPE and TAISIR airborne experiment platform

    SciTech Connect

    Chocol, C.J.

    1994-07-01

    Between 1950 and 1970, scientific ballooning achieved many new objectives and made a substantial contribution to understanding near-earth and space environments. In 1986, the Lawrence Livermore National Laboratory (LLNL) began development of ballooning technology capable of addressing issues associated with precision tracking of ballistic missiles. In 1993, the Radar Ocean Imaging Project identified the need for a low altitude (1 km) airborne platform for its Radar system. These two technologies and experience base have been merged with the acquisition of government surplus Aerostats by Lawrence Livermore National Laboratory. The CALIOPE and TAISIR Programs can benefit directly from this technology by using the Aerostat as an experiment platform for measurements of the spill facility at NTS.

  11. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  12. Airborne Trace Gas Mapping During the GOSAT-COMEX Experiment

    NASA Astrophysics Data System (ADS)

    Tratt, D. M.; Leifer, I.; Buckland, K. N.; Johnson, P. D.; Van Damme, M.; Pierre-Francois, C.; Clarisse, L.

    2015-12-01

    The GOSAT-COMEX-IASI (Greenhouse gases Observing SATellite - CO2 and Methane EXperiment - Infrared Atmospheric Sounding Interferometer) experiment acquired data on 24-27 April 2015 with two aircraft, a mobile ground-based sampling suite, and the GOSAT and IASI platforms. Collections comprised the Kern Front and Kern River oil fields north of Bakersfield, Calif. and the Chino stockyard complex in the eastern Los Angeles Basin. The nested-grid experiment examined the convergence of multiple approaches to total trace gas flux estimation from the experimental area on multiple length-scales, which entailed the integrated analysis of ground-based, airborne, and space-based measurements. Airborne remote sensing was employed to map the spatial distribution of discrete emission sites - crucial information to understanding their relative aggregate contribution to the overall flux estimation. This contribution discusses the methodology in the context of the airborne GHG source mapping component of the GOSAT-COMEX experiment and its application to satellite validation.

  13. Study of airborne science experiment management concepts for application to space shuttle, volume 2

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    Airborne research management and shuttle sortie planning at the Ames Research Center are reported. Topics discussed include: basic criteria and procedures for the formulation and approval of airborne missions; ASO management structure and procedures; experiment design, development, and testing aircraft characteristics and experiment interfaces; information handling for airborne science missions; mission documentation requirements; and airborne science methods and shuttle sortie planning.

  14. Rise time of inverted triangular prism intruder in vibrating granular bed: Experiments and model

    NASA Astrophysics Data System (ADS)

    Nuraini, N.; Adriani, I. K.; Baladram, M. S.; Viridi, S.

    2012-05-01

    Experiment results and a qualitative model of the phenomenon called Brazil nut effect (BNE) with inverted triangular prism are reported in this work. The model is constructed by considering some forces (earth gravitational force, buoyant force, and fluid viscous force) and using Newton's second law of motion. The rise time of BNE T is defined as time needed for the intruder to be on granular surface with all of his parts (no part is still immersed in the granular bed). One side of the triangular base of the intruder l is varied from 1.5 to 5 cm with other two sides are kept in constant values (1 and 3 cm). It has been observed in experiment that l with value 3-4 cm gives the smaller rise time. Plot of T versus l has the form of concave up parabolic curve with minimum lies at l between 3-4 cm. This observation has been confirmed by the proposed model with the same order of magnitude and similar curve trend.

  15. Airborne Visible Laser Optical Communications (AVLOC) experiment

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A series of optical communication experiments between a high altitude aircraft at 18.3 km (60,000 ft) and a ground station were conducted by NASA from summer 1972 through winter 1973. The basic system was an optical tracker and transmitter located in each terminal. The aircraft transceiver consisted of a 5-mW HeNe laser transmitter with a 30-megabit modulator. The ground station beacon was an argon laser operating at 488 nm. A separate pulsed laser radar was used for initial acquisition. The objective of the experiment was to obtain engineering data on the precision tracking and communication system performance at both terminals. Atmospheric effects on the system performance was also an experiment objective. The system description, engineering analysis, testing, and flight results are discussed.

  16. Automated alexandrite transmitter for airborne DIAL experiments

    NASA Technical Reports Server (NTRS)

    Degnan, John J.

    1988-01-01

    An account is given of the performance characteristics and development status of an automated dual alexandrite laser transmitter that is to be carried aloft by NASA's ER-2 research aircraft for water vapor DIAL experiments; these efforts are part of NASA's Lidar Atmospheric Sensing Experiment (LASE). The LASE transmitter encompasses control unit, thermal unit, and two lamp driver unit subsystems. Major reductions in system size and weight relative to commercially available alexandrite lasers were necessary; a total weight of only 330 lbs has been achieved. Attention is given to subsystem flight test results.

  17. Airborne visible laser optical communication experiment.

    NASA Technical Reports Server (NTRS)

    Randall, J. L.

    1972-01-01

    A series of optical communication experiments between a high altitude aircraft at 18.3 km (60,000 ft) and a ground station are planned by NASA in the summer of 1972. The basic concept is that an optical tracker and transmitter will be located in each terminal. The aircraft transceiver consists of a 5-mW HeNe laser transmitter with a 30-megabit modulator. The ground station beacon is an argon laser operating at 488 nm. A separate pulsed laser radar is used for initial acquisition. The objective of the experiment is to obtain engineering data on the precision tracking and communication system performance at both terminals. Atmospheric effects on the system performance are of prime importance.

  18. Study on automatic airborne image positioning model and its application in FY-3A airborne experiment

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Yang, Zhongdong; Guan, Min; Zhang, Liyang; Wang, Tiantian

    2009-08-01

    This paper addresses the issue on airborne image positioning model and its application in FY-3A experiment. First, the FY-3A Medium Resolution Spectral Imager (MERSI)'s viewing vector is derived from MERSI's imaging pattern. Then, the image positioning model is analyzed mathematically in detail which is based on Earth-aircraft geometry. The model parameters are mainly determined by both the sensor - aircraft alignment and the onboard discrete measurements of the positioning and orientation. Flight trials are flown at an altitude of 8300 m over the Qinghai Lake China. It is shown that the image positioning accuracy (about 1~4 pixels) is better than previous methods (more than 7 pixels, [G. J. Jedlovec et al. NASA Technical Memorandum TM - 100352 (1989) and D. P. Roy et al. Int. J. Rem. Sens. 18(9), 1865 - 1887 (1997)]). It is also shown that the model has the potential to hold the image positioning errors within one pixel. The model can operate automatically, and does not need ground control points data. Since our algorithm get the image positioning results through an observation geometric perspective which is in computing the point at which the sensor viewing vector intersects the earth surface, our algorithm assumes the airborne data are from the plain area.

  19. Airborne experiment results for spaceborne atmospheric synchronous correction system

    NASA Astrophysics Data System (ADS)

    Cui, Wenyu; Yi, Weining; Du, Lili; Liu, Xiao

    2015-10-01

    The image quality of optical remote sensing satellite is affected by the atmosphere, thus the image needs to be corrected. Due to the spatial and temporal variability of atmospheric conditions, correction by using synchronous atmospheric parameters can effectively improve the remote sensing image quality. For this reason, a small light spaceborne instrument, the atmospheric synchronous correction device (airborne prototype), is developed by AIOFM of CAS(Anhui Institute of Optics and Fine Mechanics of Chinese Academy of Sciences). With this instrument, of which the detection mode is timing synchronization and spatial coverage, the atmospheric parameters consistent with the images to be corrected in time and space can be obtained, and then the correction is achieved by radiative transfer model. To verify the technical process and treatment effect of spaceborne atmospheric correction system, the first airborne experiment is designed and completed. The experiment is implemented by the "satellite-airborne-ground" synchronous measuring method. A high resolution(0.4 m) camera and the atmospheric correction device are equipped on the aircraft, which photograph the ground with the satellite observation over the top simultaneously. And aerosol optical depth (AOD) and columnar water vapor (CWV) in the imagery area are also acquired, which are used for the atmospheric correction for satellite and aerial images. Experimental results show that using the AOD and CWV of imagery area retrieved by the data obtained by the device to correct aviation and satellite images, can improve image definition and contrast by more than 30%, and increase MTF by more than 1 time, which means atmospheric correction for satellite images by using the data of spaceborne atmospheric synchronous correction device is accurate and effective.

  20. Theoretical support for the Airborne Antarctic Ozone Experiment. Final report

    SciTech Connect

    Hartmann, D.L.

    1992-03-01

    This investigation was to provide theoretical support during and after the deployment of NASA research aircraft to Punta Arenas, Chile during August and September of 1987 to conduct the Airborne Antarctic Ozone Experiment. The experiment was very successful in demonstrating the role of anthropogenic chlorine in producing the ozone hole over Antarctica during September and October of 1987. The PI worked primarily on using tracer data from the ER-2 aircraft to show that transport could not have caused the ozone hole in 1987, and that transport of chemical species into the polar vortex was very weak during the period of the experiment. The presence of gravity waves was also very apparent in the ER-2 data, and papers were published on this analysis and on the use of meteorological analyses to position the aircraft within the vortex.

  1. Theoretical support for the Airborne Antarctic Ozone Experiment

    NASA Technical Reports Server (NTRS)

    Hartmann, Dennis L.

    1992-01-01

    This investigation was to provide theoretical support during and after the deployment of NASA research aircraft to Punta Arenas, Chile during August and September of 1987 to conduct the Airborne Antarctic Ozone Experiment. The experiment was very successful in demonstrating the role of anthropogenic chlorine in producing the ozone hole over Antarctica during September and October of 1987. The PI worked primarily on using tracer data from the ER-2 aircraft to show that transport could not have caused the ozone hole in 1987, and that transport of chemical species into the polar vortex was very weak during the period of the experiment. The presence of gravity waves was also very apparent in the ER-2 data, and papers were published on this analysis and on the use of meteorological analyses to position the aircraft within the vortex.

  2. Airborne Oceanographic Lidar results. Spring removal experiments, April 1985

    SciTech Connect

    Hoge, F.

    1985-06-21

    This document contains the preliminary results from the analysis of data acquired with the NASA Airborne Oceanographic Lidar (AOL) during the recent Spring Removal Experiment (SPREX). A total of four flights were made with the NASA P-3A aircraft in direct support of the SPREX studies. In addition, a single pass extending from the Sargasso Sea, across the Gulf Stream, and into Savannah was flown as the final leg of the ONR sponsored BIOWATT experiment. The relative distribution of surface temperature and the concentration of chlorophyll and phycoerythrin photopigments across the study area are provided. Also included are along track profiles of sea surface temperature and chlorophyll and phycoerythrin fluorescence emission for each of the individual flight lines. Both the chlorophyll and phycoerythrin laser induced fluorescence signals have been normalized by the water Raman backscatter signal and are each expressed as relative ratio's.

  3. Airborne Tropical TRopopause EXperiment (ATTREX) 2014 Western Pacific Campaign

    NASA Technical Reports Server (NTRS)

    Jensen, E.; Pfister, L.

    2014-01-01

    The NASA Airborne Tropical TRopopause EXperiment (ATTREX) is a series of airborne campaigns focused on understanding physical processes in the Tropical Tropopause Layer (TTL) and their role in atmospheric chemistry and climate. ATTREX is using the high-altitude, long-duration NASA Global Hawk Unmanned Air System to make in situ and remote-sensing measurements spanning the Pacific. A particular ATTREX emphasis is to better understand the dehydration of air as it passes through the cold tropical tropopause region. The ATTREX payload contains 12 in situ and remote sensing instruments that measure water vapor, carbon dioxide, methane, nonmethane hydrocarbons, sulfur hexafluoride, chlorofluorocarbons, nitrous oxide), reactive chemical compounds (ozone, bromine, nitrous oxide), meteorological parameters, and radiative fluxes. During January-March, 2014, the Global Hawk was deployed to Guam for ATTREX flights. Six science flights were conducted from Guam (in addition to the transits across the Pacific), resulting in over 100 hours of Western Pacific TTL sampling and about 180 vertical profiles through the TTL. I will provide an overview of the dataset, with examples of the measurements including meteorological parameters, clouds and water vapor, and chemical tracers.

  4. Catalog of far-ultraviolet objective-prism spectrophotometry: Skylab experiment S-019, ultraviolet steller astronomy

    NASA Technical Reports Server (NTRS)

    Henize, K. G.; Wray, J. D.; Parsons, S. B.; Benedict, G. F.

    1979-01-01

    Ultraviolet stellar spectra in the wavelength region from 1300 to 5000 A (130 to 500) were photographed during the three manned Skylab missions using a 15 cm aperture objective-prism telescope. The prismatic dispersion varied from 58 A mm/1 at 1400 A to 1600 A mm/1 at 3000 A. Approximately 1000 spectra representing 500 stars were measured and reduced to observed fluxes. About 100 stars show absorption lines of Si IV, C IV, or C II. Numerous line features are also recorded in supergiant stars, shell stars, A and F stars, and Wolf-Rayet stars. Most of the stars in the catalog are of spectral class B, with a number of O and A type stars and a sampling of WC, WN, F and C type stars. Spectrophotometric results are tabulated for these 500 stars.

  5. Study of airborne science experiment management concepts for application to space shuttle. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    The management concepts and operating procedures are documented as they apply to the planning of shuttle spacelab operations. Areas discussed include: airborne missions; formulation of missions; management procedures; experimenter involvement; experiment development and performance; data handling; safety procedures; and applications to shuttle spacelab planning. Characteristics of the airborne science experience are listed, and references and figures are included.

  6. Airborne Tunable Laser Absorption Spectrometer (ATLAS) instrument characterization: Accuracy of the AASE (Airborne Arctic Stratospheric Expedition) and AAOE (Airborne Antarctic Ozone Experiment) nitrous oxide data sets

    SciTech Connect

    Loewenstein, M.; Podolske, J.R. ); Strahan, S.E. )

    1990-03-01

    ATLAS, the Airborne Tunable Laser Absorption Spectrometer, was used to measure nitrous oxide in the 1987 Airborne Antarctic Ozone Experiment (AAOE) and in the 1989 Airborne Arctic Stratospheric Expedition (AASE). After the AASE, a detailed study of the ATLAS characteristics was undertaken to quantify the error inherent in the in situ measurement of atmospheric N{sub 2}O. Using the latest calibration of the ATLAS (June 1989) and incorporating the recognized errors arising in the flight environment of ATLAS, the authors have established that for both the AASE and the AAOE most of the acquired N{sub 2}O data sets are accurate to {plus minus}10% (2 sigma). Data from two of the earlier AAOE flights had a larger uncertainty.

  7. Design and performance of a ZnSe tetra-prism for homogeneous substrate heating using a CO2 laser for pulsed laser deposition experiments.

    PubMed

    May-Smith, T C; Muir, A C; Darby, M S B; Eason, R W

    2008-04-10

    We report on the design and performance of a ZnSe tetra-prism for homogeneous substrate heating using a continuous wave CO(2) laser beam in pulsed laser deposition experiments. We discuss here three potential designs for homogenizing prisms and use ray-tracing modeling to compare their operation to an alternative square-tapered beam-pipe design. A square-pyramidal tetra-prism design was found to be optimal and was subjected to modeling and experimental testing to determine the influence of interference and diffraction effects on the homogeneity of the resultant intensity profile produced at the substrate surface. A heat diffusion model has been used to compare the temperature distributions produced when using various different source intensity profiles. The modeling work has revealed the importance of substrate thickness as a thermal diffuser in producing a resultant homogeneous substrate temperature distribution. PMID:18404174

  8. The 1994 TIMS airborne calibration experiment: Castaic Lake, California

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J.; Hook, Simon J.; Vandenbosch, Jeannette

    1995-01-01

    This summary describes the 9 March 1994 Thermal Infrared Multispectral Scanner (TIMS) airborne calibration experiment conducted at Castaic Lake, California. This experiment was a collaborative effort between the TIMS and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) science teams at the Jet Propulsion Laboratory (JPL). TIMS was flown on the NASA/Ames Research Center C130 with the new retractable air fence installed in the TIMS instrument bay. The purpose of this experiment was to determine if the fence would reduce the air turbulence in the TIMS instrument bay, thereby reducing the errors in calibration caused by wind-blast cooling of the blackbody reference sources internal to TIMS. Previous experiments have indicated that the wind blast effect could cause TIMS to over-estimate surface temperatures by more than 10 C. We have examined the TIMS data from twelve lines flown over Castaic Lake. Four of the lines were flown at an altitude of approximately 2.5 km (MSL), four at an altitude of approximately 6.7 km, and four at approximately 8.3 km. At each altitude there were flights with northern and southern headings, with the aircraft level and at a positive pitch (nose-up attitude). The suite of twelve flights was designed to subject the TIMS/air fence system to different wind conditions and air temperatures. The TIMS flights were supported by a ground-truth team, who measured lake surface temperatures from a boat, and an atmosphere characterization team, who launched an airsonde and measured solar irradiance with a Reagan Sun Photometer. The Reagan measurements were used to construct a time-series of estimates of the total abundance of water vapor in the atmospheric column. These estimates were used to constrain modifications of the airsonde water vapor profile measurements made when processing the TIMS data with a customized version of the MODTRAN radiative transfer code.

  9. Overview of the Airborne Tropical TRopopause EXperiment (ATTREX)

    NASA Technical Reports Server (NTRS)

    Jensen, Eric

    2015-01-01

    The NASA Airborne Tropical TRopopause EXperiment (ATTREX) is a series of airborne campaigns focused on understanding physical processes in the Tropical Tropopause Layer (TTL) and their role in atmospheric chemistry and climate. ATTREX is using the high-altitude, long-duration NASA Global Hawk Unmanned Air System to make in situ and remote-sensing measurements spanning the Pacific. A particular ATTREX emphasis is to better understand the dehydration of air as it passes through the cold tropical tropopause region. The ATTREX payload contains 12 in situ and remote sensing instruments that measure water vapor, clouds, multiple gaseous tracers (CO, CO2, CH4, NMHC, SF6, CFCs, N2O), reactive chemical compounds (O3, BrO, NO2), meteorological parameters, and radiative fluxes. ATTREX flight series have been conducted in the fall of 2011 from Armstrong Flight Research Center (AFRC) in California, in the winter of 2013 from AFRC, and in the winter/spring of 2014 from Guam. The first two flight series provided extensive sampling of the central and eastern Pacific, whereas the last flight series permitted sampling in the western Pacific. The sampling strategy has primarily involved repeated ascents and descents through the depth of the TTL (about 13-19 km). Over 100 TTL profiles were obtained on each flight series. The ATTREX dataset includes TTL water vapor measurements with unprecedented accuracy, ice crystal size distributions and habits. The cloud and water measurements provide unique information about TTL cloud formation, the persistence of super-saturation with respect to ice, and dehydration. The plethora of tracers measured on the Global Hawk flights are providing unique information about TTL transport pathways and time scales. The meteorological measurements are revealing dynamical phenomena controlling the TTL thermal structure, and the radiation measurements are providing information about heating rates associated with TTL clouds and water vapor. This presentation

  10. Overview of the Airborne Tropical TRopopause EXperiment (ATTREX)

    NASA Astrophysics Data System (ADS)

    Singh, H. B.; Jensen, E. J.; Pfister, L.

    2014-12-01

    The NASA Airborne Tropical TRopopause EXperiment (ATTREX) is a series of airborne campaigns focused on understanding physical processes in the Tropical Tropopause Layer (TTL) and their role in atmospheric chemistry and climate. ATTREX is using the high-altitude, long-duration NASA Global Hawk Unmanned Air System to make in situ and remote-sensing measurements spanning the Pacific. A particular ATTREX emphasis is to better understand the dehydration of air as it passes through the cold tropical tropopause region. The ATTREX payload contains 12 in situ and remote sensing instruments that measure water vapor, clouds, multiple gaseous tracers (CO, CO2, CH4, NMHC, SF6, CFCs, N2O), reactive chemical compounds (O3, BrO, NO2), meteorological parameters, and radiative fluxes.ATTREX flight series have been conducted in the fall of 2011 from Armstrong Flight Research Center (AFRC) in California, in the winter of 2013 from AFRC, and in the winter/spring of 2014 from Guam. The first two flight series provided extensive sampling of the central and eastern Pacific, whereas the last flight series permitted sampling in the western Pacific. The sampling strategy has primarily involved repeated ascents and descents through the depth of the TTL (about 13-19 km). Over 100 TTL profiles were obtained on each flight series. The ATTREX dataset includes TTL water vapor measurements with unprecedented accuracy, ice crystal size distributions and habits. The cloud and water measurements provide unique information about TTL cloud formation, the persistence of supersaturation with respect to ice, and dehydration. The plethora of tracers measured on the Global Hawk flights are providing unique information about TTL transport pathways and time scales. The meteorological measurements are revealing dynamical phenomena controlling the TTL thermal structure, and the radiation measurements are providing information about heating rates associated with TTL clouds and water vapor.This presentation will

  11. The Sunphotometer Airborne Validation Experiment 2012: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Estellés, Victor; Marenco, Franco; Ryder, Claire L.; Campanelli, Monica; Expósito, Francisco; Solá, Yolanda; Segura, Sara; Marcos, Carlos; Toledano, Carlos; Berjón, Alberto; Guirado, Carmen; Claxton, Bernard; Todd, Martin

    2013-04-01

    With the aim of validating columnar integrated aerosol properties retrieved by AERONET and SKYNET from ground sunphotometric measurements, with the integrated vertical profiles of airborne in-situ aerosol measurements, the "Sunphotometer Airborne Validation Experiment" field campaign was held in the Tenerife (Canary Islands) and western Sahara areas, during June 2012. The Aerosol Robotic Network (AERONET) (http://aeronet.gsfc.nasa.gov/) and the Skyrad Network (SKYNET) (http://atmos.cr.chiba-u.ac.jp/) are two different international ground based networks that provide global aerosol properties. AERONET is an operative network run by NASA that makes use of an improved inversion methodology to derive the aerosol properties from measurements of the Cimel CE318 sunphotometer and its data is extensively used worldwide and archived in climate data records. In turn, SKYNET is a research network lead by the Universities of Chiba and Tokyo (Japan) and is present in Europe through the new European Skynet Radiometers network (ESR). SKYNET adopts the Prede POM sky radiometer as the standard instrument and an alternative inversion algorithm called SKYRAD. Previous research has shown important discrepancies between the AERONET and SKYRAD inversion algorithms (Campanelli et al., 2010; Estellés et al., 2012) even in the case of applying these algorithms to the same instrument datasets and with the same calibration coefficients. Still no explanation is provided for these discrepancies, although it is crucial to state the responsible processes and address them so as to provide more accurate aerosol retrievals for climate recordings. The SAVEX experiment took place alongside the FENNEC aircraft campaigns of June 2011 and 2012. The UK BAe146 was equipped with in-situ aerosol instrumentation to measure size distributions from 0.1 to 300 microns diameter, scattering and absorption properties, and aerosol composition. Vertical profiles and horizontal legs were performed over ground sites

  12. Airborne lidar experiments at the Savannah River Plant, June 1985

    SciTech Connect

    Krabill, W.B.; Swift, R.N.

    1987-09-01

    Results are presented from a series of studies conducted at the Department of Energy (DOE) Savannah River Plant (SRP) with the NASA Airborne Oceanographic Lidar (AOL). These studies included a topographic survey of a {approximately}1000 acre lake basin (presently designated L Lake) which had been excavated for use as a cooling pond for L Reactor; a study of the movement of discharged cooling water in Pond C and the warm arm of Par Pond using Rhodamine WT dye as a tag; initial baseline studies of the vegetation cover of the Steel Creek corridor (through which the outflow of L Lake is carried to the Savannah River); and a demonstration of potential forestry applications of the AOL. These investigations were conducted over a 3-day period in June 1985. The AOL is an advanced airborne laser system capable of making temporal or time history measurements of laser backscatter (bathymetry mode) or spectral measurements of laser induced fluorescence from waterborne constituents (fluorosensing mode). The AOL is flown together with auxiliary instruments and camera systems on board a four engine P-3A aircraft. Recent modifications to the AOL allow in-flight changes between the two basic operational modes of the instrument which permitted the topographic study to be conducted on the same flights as the fluorescent dye study. The L Lake topographic survey represents a state-of-the-art demonstration of airborne laser surveying capability.

  13. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  14. Initial Retrieval Validation from the Joint Airborne IASI Validation Experiment (JAIVEx)

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Smith, WIlliam L.; Larar, Allen M.; Taylor, Jonathan P.; Revercomb, Henry E.; Mango, Stephen A.; Schluessel, Peter; Calbet, Xavier

    2007-01-01

    The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite, but also included a strong component focusing on validation of the Atmospheric InfraRed Sounder (AIRS) aboard the AQUA satellite. The cross validation of IASI and AIRS is important for the joint use of their data in the global Numerical Weather Prediction process. Initial inter-comparisons of geophysical products have been conducted from different aspects, such as using different measurements from airborne ultraspectral Fourier transform spectrometers (specifically, the NPOESS Airborne Sounder Testbed Interferometer (NAST-I) and the Scanning-High resolution Interferometer Sounder (S-HIS) aboard the NASA WB-57 aircraft), UK Facility for Airborne Atmospheric Measurements (FAAM) BAe146-301 aircraft insitu instruments, dedicated dropsondes, radiosondes, and ground based Raman Lidar. An overview of the JAIVEx retrieval validation plan and some initial results of this field campaign are presented.

  15. The Portable Remote Imaging Spectrometer (PRISM) Coastal Ocean Sensor

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; VanGorp, Byron E.; Green, Robert O.; Eastwppd, Michael; Wilson, Daniel W.; Richardson, Brandon; Dierssen, Heidi

    2012-01-01

    PRISM is an airborne pushbroom imaging spectrometer intended to address the needs of airborne coastal ocean science research. Its critical characteristics are high throughput and signal-to-noise ratio, high uniformity of response to reduce spectral artifacts, and low polarization sensitivity. We give a brief overview of the instrument and results from laboratory calibration measurements regarding the spatial, spectral, radiometric and polarization characteristics.

  16. Vegetation Water Content Mapping in a Diverse Agricultural Landscape: The National Airborne Field Experiment 2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE’06), it is challenging to provide accurate high resolution vegetation i...

  17. Composite Spectrometer Prisms

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Page, N. A.; Rodgers, J. M.

    1985-01-01

    Efficient linear dispersive element for spectrometer instruments achieved using several different glasses in multiple-element prism. Good results obtained in both two-and three-element prisms using variety of different glass materials.

  18. Australopithecine enamel prism patterns.

    PubMed

    Vrba, E S; Grine, F E

    1978-11-24

    Following a recent suggestion that tooth enamel prism shape differs within Hominoidea, the teeth of a number of extinct and extant hominoid species were analyzed by scanning electron microscopy. The enamel prism patterns of some gracile and robust australopithecine specimens from Sterkfontein, Swartkrans, and Kromdraai are recorded. The characteristic arrangements of enamel prisms in all modern and extinct hominoid species were found to be essentially similar. The implications of enamel prisms for phylogenetic deduction in Hominoidea are discussed. PMID:102032

  19. Radiative effects of polar stratospheric clouds during the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.

    1992-01-01

    Results are presented of a study of the radiative effects of polar stratospheric clouds during the Airborne Antarctic Ozone Experiment (AAOE) and the Airborne Arctic Stratospheric Expedition (AASE) in which daily 3D Type I nitric acid trihydrate (NAT) and Type II water ice polar stratospheric clouds (PSCs) were generated in the polar regions during AAOE and the AASE aircraft missions. Mission data on particular composition and size, together with NMC-analyzed temperatures, are used. For AAOE, both Type I and Type II clouds were formed for the time period August 23 to September 17, after which only Type I clouds formed. During AASE, while Type I clouds were formed for each day between January 3 and February 10, Type II clouds formed on only two days, January 24 and 31. Mie theory and a radiative transfer model are used to compute the radiative heating rates during the mission periods, for clear and cloudy lower sky cases. Only the Type II water ice clouds have a significant radiative effect, with the Type I NATO PSCs generating a net heating or cooling of 0.1 K/d or less.

  20. Laboratory experiments on membrane filter sampling of airborne mycotoxins produced by Stachybotrys atra corda

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.; Nikulin, M.; Tuomainen, M.; Berg, S.; Parikka, P.; Hintikka, E.-L.

    A membrane filter method for sampling of airborne stachybotrystoxins was studied in the laboratory. Toxigenic strains of Stachybotrys atra on wallpaper, grain, hay and straw were used as toxin sources in the experiments. Air samples were collected on cellulose nitrate and polycarbonate membrane filters at air flow rates of 10-20 ℓ min -1. After the filter sampling, the air was passed through methanol. The results showed that stachybotrystoxins (trichothecenes) were concentrated in airborne fungal propagules, and thus can be collected on filters. Polycarbonate filters with a pore size of 0.2 μm collected the highest percentage of toxic samples. The laboratory experiments indicated that polycarbonate filter sampling for the collection of airborne mycotoxins is a promising method for extension to field measurements.

  1. Multiparametric airborne radar observations of the melting layer during the Wakasa Bay experiment

    NASA Technical Reports Server (NTRS)

    Tanelli, S.; Meagher, J.; Durden, S. L.; Im, E.

    2003-01-01

    The NASA/JPL airborne precipitation radar APR-2 (cross-track scanning, dual-frequency - 14 and 35 GHz, Doppler and dual polarization, see Sadowy et al. (2003) for detailed description of the instrument) was operated on the NASA P-3 aircraft during the Wakasa Bay experiment.

  2. Oil spill experiment using airborne DLR ESAR off the coast of Diu, India.

    PubMed

    Sasamal, S K; Rao, M V

    2015-05-15

    Oil spill experiment results in the coastal waters of Diu, India, with an airborne DLR ESAR sensor are discussed with reference to the SAR frequency, polarization and viewing angle. The SAR data acquired in the quad polarization of the L band and dual polarization of the C band over two spills are studied. A higher oil and water contrast is observed in the L-VV polarization than in the C-HH mode. Oil spill discrimination is possible over a wider view angle of the airborne SAR sensor data in L band than in C band. This study has also analyzed the spread and drift of oil in coastal waters. PMID:25813716

  3. Development of a high-altitude airborne dial system: The Lidar Atmospheric Sensing Experiment (LASE)

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Vaughan, W. R.; Hall, W. M.; Degnan, J. J.; Averill, R. D.; Wells, J. G.; Hinton, D. E.; Goad, J. H.

    1986-01-01

    The ability of a Differential Absorption Lidar (DIAL) system to measure vertical profiles of H2O in the lower atmosphere was demonstrated both in ground-based and airborne experiments. In these experiments, tunable lasers were used that required real-time experimenter control to locate and lock onto the atmospheric H2O absorption line for the DIAL measurements. The Lidar Atmospheric Sensing Experiment (LASE) is the first step in a long-range effort to develop and demonstrate an autonomous DIAL system for airborne and spaceborne flight experiments. The LASE instrument is being developed to measure H2O, aerosol, and cloud profiles from a high-altitude ER-2 (extended range U-2) aircraft. The science of the LASE program, the LASE system design, and the expected measurement capability of the system are discussed.

  4. The manned hydrogen balloon - an appropriate platform for airborne Lagrange experiments in atmospheric research

    SciTech Connect

    Rabl, P.F.H.; Euskirchen, J.

    1996-10-01

    During the last decade hydrogen ballooning provided a reliable basis for special airborne measurements especially for experiments that give evidence about atmospheric chemistry and structure. Although the balloon is not quite a small particle without inertia, Lagrange-like movements of atmospheric mass can be simulated. During two experiments, the vertical gradients of ozone concentration were measured in the downwind area of Munich. The results show remarkable differences in ozone concentration and production, dependent of the daytime. 3 refs., 3 figs.

  5. Overview of the first Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment: conversion of a ground-based lidar for airborne applications

    NASA Astrophysics Data System (ADS)

    Howell, James N.; Hardesty, R. Michael; Rothermel, Jeffrey; Menzies, Robert T.

    1996-11-01

    The first Multi center Airborne Coherent Atmospheric Wind Sensor (MACAWS) field experiment demonstrated an airborne high energy TEA CO2 Doppler lidar system for measurement of atmospheric wind fields and aerosol structure. The system was deployed on the NASA DC-8 during September 1995 in a series of checkout flights to observe several important atmospheric phenomena, including upper level winds in a Pacific hurricane, marine boundary layer winds, cirrus cloud properties, and land-sea breeze structure. The instrument, with its capability to measure 3D winds and backscatter fields, promises to be a valuable tool for climate and global change, severe weather, and air quality research. In this paper, we describe the airborne instrument, assess its performance, discuss future improvements, and show some preliminary results from the September experiments.

  6. Wide FOV wedge prism endoscope.

    PubMed

    Kim, Keri; Kim, Daeyoung; Matsumiya, Kiyoshi; Kobayashi, Etsuko; Dohi, Takeyoshi

    2005-01-01

    We.. have developed a novel robotic endoscope system. It can be used to observe a wide field of view without moving or bending the whole endoscope system. .. It consists of a rigid endoscope and two wedge prisms at the distal tip. Rotating each wedge prism respectively, we can change the direction of view. Accordingly it becomes possible to observe a wide field of view even in a small space, and suited to clinical uses because it does not damage body tissues or internal organs. .. Wedge prisms are designed to avoid vignetting which is caused by the refraction or the reflection at prisms. The endoscope has 10mm in diameter, and the drive unit is simply separable for the sterilization. In addition, since it has a simple and small drive unit, it does not obstruct surgeon or other surgery robots. The maximum movement of local field of view is 19degrees, and global field of view is 93degrees. In the evaluation experiment, we conformed that both of the image quality and the performance are acceptable. PMID:17281566

  7. Penta prism laser polarizer.

    PubMed

    Lotem, H; Rabinovitch, K

    1993-04-20

    A novel type of laser prism polarizer is proposed. The polarizer is characterized by a high transmission efficiency, a high optical damage threshold, and a high extinction ratio. The polarizer is shaped like a regular penta prism and, thus, it is a constant deviation angle device. Polarization effects occur upon the two internal cascade reflections in the prism. Anisotropic and Isotropic types of the polarizer are discussed. The isotropic polarizer is a prism made of a high refractive-index glass coated by multilayer polarization-type dielectric coatings. Efficient s-state polarization is obtained because of p-state leakage upon the two internal cascade reflections. The anisotropic polarizer is made of a birefringent crystal in which angular polarization splitting is obtained by the bireflectance (double-reflection) effect. Fanning of a laser beam into up to eight polarized beams is possible in a prism made of a biaxial crystal. PMID:20820335

  8. Field experiment on spray drift: deposition and airborne drift during application to a winter wheat crop.

    PubMed

    Wolters, André; Linnemann, Volker; van de Zande, Jan C; Vereecken, Harry

    2008-11-01

    A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done according to good agricultural practice. Deposition was measured by horizontal collectors in various arrangements in and outside the treated area. Airborne spray drift was measured both with a passive and an active air collecting system. Spray deposits on top of the treated canopy ranged between 68 and 71% of the applied dose and showed only small differences for various arrangements of the collectors. Furthermore, only small variations were measured within the various groups of collectors used for these arrangements. Generally, the highest spray deposition outside the treated area was measured close to the sprayed plot and was accompanied by a high variability of values, while a rapid decline of deposits was detected in more remote areas. Estimations of spray deposits with the IMAG Drift Calculator were in accordance with experimental findings only for areas located at a distance of 0.5-4.5 m from the last nozzle, while there was an overestimation of a factor of 4 at a distance of 2.0-3.0 m, thus revealing a high level of uncertainty of the estimation of deposition for short distances. Airborne spray drift measured by passive and active air collecting systems was approximately at the same level, when taking into consideration the collector efficiency of the woven nylon wire used as sampling material for the passive collecting system. The maximum value of total airborne spray drift for both spray applications (0.79% of the applied dose) was determined by the active collecting system. However, the comparatively high variability of measurements at various heights above the soil by active and passive collecting systems revealed need for further studies to elucidate the spatial

  9. Optical switch using Risley prisms

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2003-04-15

    An optical switch using Risley prisms and rotary microactuators to independently rotate the wedge prisms of each Risley prism pair is disclosed. The optical switch comprises an array of input Risley prism pairs that selectively redirect light beams from a plurality of input ports to an array of output Risley prism pairs that similarly direct the light beams to a plurality of output ports. Each wedge prism of each Risley prism pair can be independently rotated by a variable-reluctance stepping rotary microactuator that is fabricated by a multi-layer LIGA process. Each wedge prism can be formed integral to the annular rotor of the rotary microactuator by a DXRL process.

  10. Optical Switch Using Risley Prisms

    SciTech Connect

    Sweatt, William C.; Christenson, Todd R.

    2005-02-22

    An optical switch using Risley prisms and rotary microactuators to independently rotate the wedge prisms of each Risley prism pair is disclosed. The optical switch comprises an array of input Risley prism pairs that selectively redirect light beams from a plurality of input ports to an array of output Risley prism pairs that similarly direct the light beams to a plurality of output ports. Each wedge prism of each Risley prism pair can be independently rotated by a variable-reluctance stepping rotary microactuator that is fabricated by a multi-layer LIGA process. Each wedge prism can be formed integral to the annular rotor of the rotary microactuator by a DXRL process.

  11. Prism adaptation in schizophrenia.

    PubMed

    Bigelow, Nirav O; Turner, Beth M; Andreasen, Nancy C; Paulsen, Jane S; O'Leary, Daniel S; Ho, Beng-Choon

    2006-08-01

    The prism adaptation test examines procedural learning (PL) in which performance facilitation occurs with practice on tasks without the need for conscious awareness. Dynamic interactions between frontostriatal cortices, basal ganglia, and the cerebellum have been shown to play key roles in PL. Disruptions within these neural networks have also been implicated in schizophrenia, and such disruptions may manifest as impairment in prism adaptation test performance in schizophrenia patients. This study examined prism adaptation in a sample of patients diagnosed with schizophrenia (N=91) and healthy normal controls (N=58). Quantitative indices of performance during prism adaptation conditions with and without visual feedback were studied. Schizophrenia patients were significantly more impaired in adapting to prism distortion and demonstrated poorer quality of PL. Patients did not differ from healthy controls on aftereffects when the prisms were removed, but they had significantly greater difficulties in reorientation. Deficits in prism adaptation among schizophrenia patients may be due to abnormalities in motor programming arising from the disruptions within the neural networks that subserve PL. PMID:16510223

  12. A portable direct view configuration prism spectrometer using a double Amici prism

    NASA Astrophysics Data System (ADS)

    Sun, Lanjun; Zhang, Yanchao; Tian, Zhaoshuo; Ren, Xiuyun; Fu, Shiyou

    2015-10-01

    In this paper, we present a prism spectrometer that exploits a double Amici prism dispersion structure. The system consists of a slit, a collimating lens, a double Amici prism, an imaging lens and a CCD. The incident light enter into slit, and then is paralleled by a collimating lens to the double Amici prism. The double Amici prism is used to realize spectral dispersion. The dispersed light is collected by an imaging lens and image on the photosensitive surface of the CCD. The dispersion resolution is theoretical analyzed from the ray tracing point of view. In addition, the imaging position on CCD element at different wavelength is presented according to nonlinear curve of dispersion. The designed prism spectrometer can obtain a high light throughput and less optical distortion spectrum in the spectral range of 370-700nm. In experiment, we measured the spectral resolution of the designed prism spectrometer at five wavelength used a grating monochromator. The designed in-line, direct view configuration prism spectrometer owns the advantages of high light throughput, less optical distortions, compact structure, small volume and easy operation, which has important role in application of laser spectral measurement especially laser remote sensing spectral detection.

  13. Prism users guide.

    SciTech Connect

    Weirs, V. Gregory

    2012-03-01

    Prism is a ParaView plugin that simultaneously displays simulation data and material model data. This document describes its capabilities and how to use them. A demonstration of Prism is given in the first section. The second section contains more detailed notes on less obvious behavior. The third and fourth sections are specifically for Alegra and CTH users. They tell how to generate the simulation data and SESAME files and how to handle aspects of Prism use particular to each of these codes.

  14. Near-real-time TOMS, telecommunications and meteorological support for the 1987 Airborne Antarctic Ozone Experiment

    NASA Technical Reports Server (NTRS)

    Ardanuy, P.; Victorine, J.; Sechrist, F.; Feiner, A.; Penn, L.

    1988-01-01

    The goal of the 1987 Airborne Antarctic Ozone Experiment was to improve the understanding of the mechanisms involved in the formation of the Antarctic ozone hole. Total ozone data taken by the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) played a central role in the successful outcome of the experiment. During the experiment, the near-real-time TOMS total ozone observations were supplied within hours of real time to the operations center in Punta Arenas, Chile. The final report summarizes the role which Research and Data Systems (RDS) Corporation played in the support of the experiment. The RDS provided telecommunications to support the science and operations efforts for the Airborne Antarctic Ozone Experiment, and supplied near real-time weather information to ensure flight and crew safety; designed and installed the telecommunications network to link NASA-GSFC, the United Kingdom Meteorological Office (UKMO), Palmer Station, the European Center for Medium-Range Weather Forecasts (ECMWF) to the operation at Punta Arenas; engineered and installed stations and other stand-alone systems to collect data from designated low-orbiting polar satellites and beacons; provided analyses of Nimbus-7 TOMS data and backup data products to Punta Arenas; and provided synoptic meteorological data analysis and reduction.

  15. PRISM Spectrograph Optical Design

    NASA Technical Reports Server (NTRS)

    Chipman, Russell A.

    1995-01-01

    The objective of this contract is to explore optical design concepts for the PRISM spectrograph and produce a preliminary optical design. An exciting optical configuration has been developed which will allow both wavelength bands to be imaged onto the same detector array. At present the optical design is only partially complete because PRISM will require a fairly elaborate optical system to meet its specification for throughput (area*solid angle). The most complex part of the design, the spectrograph camera, is complete, providing proof of principle that a feasible design is attainable. This camera requires 3 aspheric mirrors to fit inside the 20x60 cm cross-section package. A complete design with reduced throughput (1/9th) has been prepared. The design documents the optical configuration concept. A suitable dispersing prism material, CdTe, has been identified for the prism spectrograph, after a comparison of many materials.

  16. Prism validation. Technical report

    SciTech Connect

    Daniell, R.E.; Whartenby, W.; Brown, L.D.

    1994-06-13

    This report describes the validation of PRISM, a parameterized, real-time ionospheric specification model, which was described in PL-TR-91-2299. Data were obtained from both analog and digital ionosondes, polarimeters measuring TEC, incoherent scatter radar (ISR), and in situ measurements of electron density, ion velocity, and auroral particle precipitation. Some of the data was used to drive the model while the remainder of the data was held in reserve for comparison with model output. The authors found that near ionospheric measurements (i.e., within the decorrelation length of the ionosphere), PRISM provides better than 50% improvement in f sub 0(F sub 2), N sub m(F sub 2), and TEC over the ICED, the currently operational ionospheric model at AFSFC. At distances beyond the decorrelation length, PRISM performs as well as ICED and other climatological models. They conclude that PRISM will significantly enhance the ionospheric specification capability of AFSFC.

  17. The Geologic Remote Sensing Field Experiment (GRSFE): The first geology multisensor airborne campaign

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.; Arvidson, Raymond E.

    1991-01-01

    The primary objective of the Geologic Remote Sensing Field Experiment (GRSFE) is to acquire relevant data for geological sites that can be used to test models for extraction of surface property information from remote sensing data for earth, Mars and Venus in support of the Earth Observing System (EOS), Mars Observer, and Magellan, respectively. Over forty scientists from eight universities and three NASA centers are participating in GRSFE which is co-sponsored by the NASA Planetary Geology and Geophysics Program and the NASA Geology Program. Highlights of the airborne campaign included the first simultaneous acquisition of Airborne Visible and Infrared Imaging Spectrometer (AVRIS) and Thermal Infrared Multispectral Scanner (TIMS) data on September 29, 1989, and acquisition of Advanced Solid-State Array Spectroradiometer (ASAS), Polarimetric Synthetic Aperture Radar (AIRSAR), and Airborne Terrain Laser Altimeter System (ATLAS) data all within three months of each other. The sites covered were Lunar Crater Volcanic Field and Fish Lake Valley in Nevada; and Cima Volcanic Field, Death Valley, and Ubehebe Crater in California. Coincident field measurements included meteorological and atmospheric measurements, visible/near-infrared and thermal spectra, and characterization of geology and vegetation cover. The GRSFE airborne and field data will be reduced to a suite of standard products and submitted, along with appropriate documentation, to the Planetary Data System (PDS) and the Pilot Land Data System (PLDS). These data will be used for a variety of investigations including paleoclimatic studies in the arid southwestern United States, and analysis of Magellan data. GRSFE data will also be used to support Mars Observer Laser Altimeter (MOLA) and Mars Rover Sample Return (MRSR) simulation studies.

  18. Portable Remote Imaging Spectrometer (PRISM): Laboratory and Field Calibration

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Van Gorp, Byron; Green, Robert O.; Eastwood, Michael; Boardman, Joseph; Richardson, Brandon S.; Rodriguez, Jose I.; Urquiza, Eugenio; Franklin, Brian D.; Gao, Bo-Cai

    2012-01-01

    We report the characteristics of the Portable Remote Imaging Spectrometer, an airborne sensor specifically designed for the challenges of coastal ocean research. PRISM has high signal to noise ratio and uniformity, as well as low polarization sensitivity. Acquisition of high quality data has been demonstrated with the first engineering flight.

  19. Airborne laser topographic mapping results from initial joint NASA/US Army Corps of Engineers experiment

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Swift, R. N.; Butler, M. L.

    1980-01-01

    Initial results from a series of joint NASA/US Army Corps of Engineers experiments are presented. The NASA Airborne Oceanographic Lidar (AOL) was exercised over various terrain conditions, collecting both profile and scan data from which river basin cross sections are extracted. Comparisons of the laser data with both photogrammetry and ground surveys are made, with 12 to 27 cm agreement observed over open ground. Foliage penetration tests, utilizing the unique time-waveform sampling capability of the AOL, indicate 50 cm agreement with photogrammetry (known to have difficulty in foliage covered terrain).

  20. Experiment of monitoring thermal discharge drained from nuclear plant through airborne infrared remote sensing

    NASA Astrophysics Data System (ADS)

    Wang, Difeng; Pan, Delu; Li, Ning

    2009-07-01

    The State Development and Planning Commission has approved nuclear power projects with the total capacity of 23,000 MW. The plants will be built in Zhejiang, Jiangsu, Guangdong, Shandong, Liaoning and Fujian Province before 2020. However, along with the nuclear power policy of accelerated development in our country, the quantity of nuclear plants and machine sets increases quickly. As a result the environment influence of thermal discharge will be a problem that can't be slid over. So evaluation of the environment influence and engineering simulation must be performed before station design and construction. Further more real-time monitoring of water temperature need to be arranged after fulfillment, reflecting variety of water temperature in time and provided to related managing department. Which will help to ensure the operation of nuclear plant would not result in excess environment breakage. At the end of 2007, an airborne thermal discharge monitoring experiment has been carried out by making use of MAMS, a marine multi-spectral scanner equipped on the China Marine Surveillance Force airplane. And experimental subject was sea area near Qin Shan nuclear plant. This paper introduces the related specification and function of MAMS instrument, and decrypts design and process of the airborne remote sensing experiment. Experiment showed that applying MAMS to monitoring thermal discharge is viable. The remote sensing on a base of thermal infrared monitoring technique told us that thermal discharge of Qin Shan nuclear plant was controlled in a small scope, never breaching national water quality standard.

  1. PRISM project optical instrument

    NASA Technical Reports Server (NTRS)

    Taylor, Charles R.

    1994-01-01

    The scientific goal of the Passively-cooled Reconnaissance of the InterStellar Medium (PRISM) project is to map the emission of molecular hydrogen at 17.035 micrometers and 28.221 micrometers. Since the atmosphere is opaque at these infrared wavelengths, an orbiting telescope is being studied. The availability of infrared focal plane arrays enables infrared imaging spectroscopy at the molecular hydrogen wavelengths. The array proposed for PRISM is 128 pixels square, with a pixel size of 75 micrometers. In order to map the sky in a period of six months, and to resolve the nearer molecular clouds, each pixel must cover 0.5 arcminutes. This sets the focal length at 51.6 cm. In order for the pixel size to be half the diameter of the central diffraction peak at 28 micrometers would require a telescope aperture of 24 cm; an aperture of 60 cm has been selected for the PRISM study for greater light gathering power.

  2. Nitrous oxide as a dynamical tracer in the 1987 Airborne Antarctic Ozone Experiment

    NASA Astrophysics Data System (ADS)

    Loewenstein, M.; Podolske, J. R.; Chan, K. R.; Strahan, S. E.

    1989-08-01

    In situ N2O measurements were made using an airborne tunable laser absorption spectrometer (ATLAS) on 12 flights into the Antarctic vortex, as well as on five transit flights outside the vortex region in August and September 1987, as part of the Airborne Antartic Ozone Experiment. Vertical profiles of N2O were obtained within the vortex on most of these flights and were obtained outside the vortex on several occasions. Flights into the vortex region show N2O decreasing southward between 53 and 72 S latitude on constant potential temperature surfaces in the lower stratosphere. The data lead to two important conclusions about the vortex region: (1) the lower stratosphere in August/September 1987 was occupied by 'old' air, which had subsided several kilometers during polar winter; (2) the N2O profile in the vortex was in an approximately steady state in August/September 1987, which indicates that the spring upwelling, suggested by several theories, did not occur.

  3. Radiative flux measurements during the Airborne Tropical Tropopause Experiment (ATTREX) Guam Deployment.

    NASA Astrophysics Data System (ADS)

    Kindel, B. C.; Pilewskie, P.; Schmidt, S.

    2015-12-01

    The Airborne Tropical Tropopause Experiment was a field program utilizing the NASA Global Hawk aircraft, to make extensive measurements of tropical tropopause layer (TTL) over the Pacific Ocean. In February and March of 2014, the NASA Global Hawk was deployed to Guam and flew six long duration science flights. The aircraft was outfitted with a suite of instruments to study the composition of the TTL. Measurements included: water vapor amount, cloud particle size and shape, various gaseous species (e.g. CO, CH4, CO2, O3), and radiation measurements. The radiation measurements were comprised of the Solar Spectral Flux Radiometer (SSFR) that made spectrally resolved measurements of upwelling and downwelling solar irradiance from 350 to 2200 nm and thermal broadband (4μm to 42 μm) upwelling and downwelling irradiance. Once airborne, the Global Hawk made numerous vertical profiles (14 - 18 km) through the TTL. In this work we present results of combined solar spectral irradiance and broadband thermal irradiance measurements. Solar spectral measurements are correlated, wavelength-by-wavelength, with broadband thermal measurements. The radiative impact in the TTL of water vapor and cirrus clouds are examined both in the solar and thermal wavelengths from both upwelling and downwelling irradiances. The spectral measurements are used in an attempt to attribute physical mechanisms to the thermal (spectrally integrated) measurements. Measurements of heating rates are also presented, highlighting the difficultly in obtaining reliable results from aircraft measurements.

  4. Observational results of microwave temperature profile measurements from the airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L.

    1988-01-01

    The Microwave Temperature Profiler, MTP, is installed on NASA's ER-2 aircraft. MTP measures profiles of air temperature versus altitude. Temperatures are obtained every 13.7 seconds for 15 altitudes in an altitude region that is approximately 5 km thick (at high flight levels). MTP is a passive microwave radiometer, operating at the frequencies 57.3 and 58.8 GHz. Thermal emission from oxygen molecules provides the signal that is converted to air temperature. MTP is unique in that it is the only airborne instrument of its kind. The MTP instrument was used during the Airborne Antarctic Ozone Experiment, AAOE, to enable potential vorticity to be measured along the flight track. Other uses for the MTP data have become apparent. The most intriguing unexpected use is the detection and characterization of mountain waves that were encountered during flights over the Palmer Peninsula. Mountain waves that propagate into the polar vortex may have implications for the formation of the ozone hole. Upward excursions of air parcels lead to a brief cooling. This can begin the process of cloud formation. It is important to determine how much additional formation of polar stratospheric cloud (PSC) material is possible by the passage of air parcels through a mountain wave pattern that endures for long periods. Other mountain wave effects have been suggested, such as a speeding up of the vortex, and a consequent cooling of large air volumes (which in turn might add to PSC production).

  5. Less-expensive Rochon prisms

    NASA Technical Reports Server (NTRS)

    Ammann, E. O.; Massey, G. A.

    1970-01-01

    Inexpensive Rochon prisms can be produced by substituting easily polished glass for one-half of the calcite. Reciprocal polarizing properties of a conventional Rochon prism are retained, and angular separation between ordinary and extraordinary rays is the same as in all-calcite prism.

  6. Generalization of Prism Adaptation

    ERIC Educational Resources Information Center

    Redding, Gordon M.; Wallace, Benjamin

    2006-01-01

    Prism exposure produces 2 kinds of adaptive response. Recalibration is ordinary strategic remapping of spatially coded movement commands to rapidly reduce performance error. Realignment is the extraordinary process of transforming spatial maps to bring the origins of coordinate systems into correspondence. Realignment occurs when spatial…

  7. Prism Adaptation in Schizophrenia

    ERIC Educational Resources Information Center

    Bigelow, Nirav O.; Turner, Beth M.; Andreasen, Nancy C.; Paulsen, Jane S.; O'Leary, Daniel S.; Ho, Beng-Choon

    2006-01-01

    The prism adaptation test examines procedural learning (PL) in which performance facilitation occurs with practice on tasks without the need for conscious awareness. Dynamic interactions between frontostriatal cortices, basal ganglia, and the cerebellum have been shown to play key roles in PL. Disruptions within these neural networks have also…

  8. Dove prism heterodyne refractometer

    NASA Astrophysics Data System (ADS)

    Hsu, Cheng-Chih; Lee, Chia-Yun; Chu, Kuan-Ho; Wu, Tsai-Chen

    2015-10-01

    In this study, we proposed an alternative method, integrating a Dove prism and precision circular heterodyne interferometry, for measuring the refractive index and concentration of sodium chloride and hydrogen peroxide solutions with low phase error. Due to the optical properties of the Dove prism, the test light undergoes total internal reflection (TIR) at the interface between the test sample and the prism. The light beam travels in and out of the Dove prism while maintaining the same direction. Therefore, only slight alignment is required, leading to only small errors in the phase and refractive index. In this study, the phase error, refractive index error, and resolution of the concentration are approximated to be 0.003°, 2×10-5, and 1×10-3 M, respectively. The proposed method has the advantages of a simple optical configuration, ease of operation, little alignment required, and high stability, and it allows for high-precision measurement of the refractive index and concentration of the liquid sample.

  9. Acoustic dispersive prism.

    PubMed

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  10. Reflection by Porro Prisms

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2010-04-01

    Students all know that reflection from a plane mirror produces an image that is reversed right to left and so cannot be read by anyone but Leonardo da Vinci, who kept his notes in mirror writing. A useful counter-example is the Porro prism, which produces an image that is not reversed.

  11. Acoustic dispersive prism

    PubMed Central

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  12. Acoustic dispersive prism

    NASA Astrophysics Data System (ADS)

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  13. How to Get the Full Prism Effect.

    PubMed

    Pochopien, Klaudia; Fahle, Manfred

    2015-08-01

    We investigate how the immediate correction effect decreases mispointing under prisms. Subjects performed rhythmic pointing movements under different conditions with horizontally shifting prisms. Even the first (initial) pointing error is much smaller than the prismatic shift, a phenomenon called the immediate correction effect. Knowledge about the structure of the room and of objects in the room obtained before the prisms were worn may limit the amount of the prismatic displacement perceived. We therefore compared the direct prism effect as well as prismatic adaptation with room illumination switched on versus switched off. Our 44 subjects participated in two experiments, with varying amounts of information about room structure available. The results show a direct effect corresponding to the optical power of the prisms in the dark condition, when in addition body position was slightly rotated in direction of the prismatic shift. But even in the dark, a significant immediate correction effect arises with the fixed body position. The largest immediate correction amounting to almost half of optical displacement arose in the standard condition of bright light and fixed body position. PMID:27433319

  14. How to Get the Full Prism Effect

    PubMed Central

    Fahle, Manfred

    2015-01-01

    We investigate how the immediate correction effect decreases mispointing under prisms. Subjects performed rhythmic pointing movements under different conditions with horizontally shifting prisms. Even the first (initial) pointing error is much smaller than the prismatic shift, a phenomenon called the immediate correction effect. Knowledge about the structure of the room and of objects in the room obtained before the prisms were worn may limit the amount of the prismatic displacement perceived. We therefore compared the direct prism effect as well as prismatic adaptation with room illumination switched on versus switched off. Our 44 subjects participated in two experiments, with varying amounts of information about room structure available. The results show a direct effect corresponding to the optical power of the prisms in the dark condition, when in addition body position was slightly rotated in direction of the prismatic shift. But even in the dark, a significant immediate correction effect arises with the fixed body position. The largest immediate correction amounting to almost half of optical displacement arose in the standard condition of bright light and fixed body position. PMID:27433319

  15. Observations of condensation nuclei in the 1987 airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Smith, S. D.; Ferry, G. V.; Loewenstein, M.

    1988-01-01

    The condensation nucleus counter (CNC) flown of the NASA ER-2 in the Airborne Antarctic Ozone Experiment provides a measurement of the number mixing ratio of particles which can be grown by exposure to supersaturated n-butyl alcohol vapor to diameters of a few microns. Such particles are referred to as condensation nuclei (CN). The ER-2 CNC was calibrated with aerosols of known size and concentration and was found to provide an accurate measure of the number concentration of particles larger than about 0.02 micron. Since the number distribution of stratospheric aerosols is usually dominated by particles less than a few tenths of micron in diameter, the upper cutoff of the ER-2 CNC has not been determined experimentally. However, theory suggests that the sampling and counting efficiency should remain near one for particles as large as 1 micron in diameter. Thus, the CN mixing ratio is usually a good measure of the mixing ratio of submicron particles.

  16. Airborne ROWS data report for the high resolution experiment, June 1993

    NASA Technical Reports Server (NTRS)

    Vandemark, D.; Hines, D.; Bailey, S.; Stewart, K.

    1994-01-01

    Airborne radar ocean wave spectrometer (ROWS) data collected during the Office of Naval Research's High Resolution Remote Sensing Experiment of June 1993 are presented. This data summary covers six flights made using NASA's T-39 aircraft over a region of the North Atlantic off the coast of North Carolina and includes multiple crossings of the gulf stream. The Ku-band ROWS was operated in a configuration which continuously switched between an altimeter and a spectrometer channel. Data derived from the two channels include altimeter radar cross section, altimeter-derived sea surface mean square slope and wind speed, and directional and nondirectional longwave spectra. Discussion is provided for several events of particular interest.

  17. Observational results using the microwave temperature profiler during the Airborne Antarctic Ozone Experiment

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L.

    1989-01-01

    The Microwave Temperature Profiler (MTP) measures profiles of air temperature versus altitude. The altitude coverage is about 5 km at a flight altitude of 20 km (66,000 feet), and the profiles are obtained every 14 s. The MTP instrument is installed on NASA's ER-2 aircraft, which flew 13 missions over Antarctica during the Airborne Antarctic Ozone Experiment. Altitude temperature profiles were used to derive potential temperature cross sections. These cross sections have been useful in detecting atmospheric waves. Many wave encounters have been identified as 'mountain waves'. The mountain waves are found to extend from the lowest altitudes measured to the highest (about 24 km). The southern part of the Palmer Peninsula was found to be associated with mountain waves more than half the time. Altitude temperature profiles were also used to measure the lapse rate along the flight track. Lapse rate versus latitude plots do not show significant changes at the ozone hole boundary.

  18. Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A)

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Setzer, A.; Ward, D.; Tanre, D.; Holben, B. N.; Menzel, P.; Pereira, M. C.; Rasmussen, R.

    1992-01-01

    Results are presented on measurements of the trace gas and particulate matter emissions due to biomass burning during deforestation and grassland fires in South America, conducted as part of the Biomass Burning Airborne and Spaceborne Experiment in the Amazonas in September 1989. Field observations by an instrumented aircraft were used to estimate concentrations of O3, CO2, CO, CH4, and particulate matter. Fires were observed from satellite imagery, and the smoke optical thickness, particle size, and profiles of the extinction coefficient were measured from the aircraft and from the ground. Four smoke plumes were sampled, three vertical profiles were measured, and extensive ground measurements of smoke optical characteristics were carried out for different smoke types. The simultaneous measurements of the trace gases, smoke particles, and the distribution of fires were used to correlate biomass burning with the elevated levels of ozone.

  19. Matter Wave Deflection through a Light Prism

    NASA Astrophysics Data System (ADS)

    Ronan, Joseph; Cronin, Alexander; Holmgren, William; Hromada, Ivan; Trubko, Raisa

    2011-10-01

    In optics, it is a well-known fact that a glass prism will bend a light beam incident on its surface. We present an atom optics experiment analogous to this phenomenon, but instead we use a light prism to deflect a beam of potassium atoms. We use a Mach-Zehnder atom interferometer to precisely measure atom beam deflections of as small as 5 nm. Through studying the beam deflection, we are able to investigate the dynamic polarizability and the magic zero wavelength of potassium.

  20. Comparing Volumes of Prisms and Pyramids

    ERIC Educational Resources Information Center

    Vinogradova, Natalya

    2012-01-01

    Students' experience in using formulas for volumes is often limited to substituting numbers into given formulas. An activity presented in this article may help students make connections between the formulas for volumes of prisms and volumes of pyramids. In addition, some interesting facts from number theory arise, demonstrating strong connections…

  1. Optical vortices generation using the Wollaston prism

    SciTech Connect

    Kurzynowski, Piotr; Wozniak, Wladyslaw A.; Fraczek, Ewa

    2006-10-20

    A new setup of interferometers is proposed in which the set of specific optical markers - optical vortices - could be generated. The classical Mach-Zender two-beam interferometer has been modernized using the Wollaston prism. In this setup, the optical vortices could be obtained for a wide range of both beam parameters. The numerical analysis and experiments confirm our theoretical predictions.

  2. Evaluation of Airborne Precision Spacing in a Human-in-the-Loop Experiment

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.

    2005-01-01

    A significant bottleneck in the current air traffic system occurs at the runway. Expanding airports and adding new runways will help solve this problem; however, this comes with significant costs: financially, politically and environmentally. A complementary solution is to safely increase the capacity of current runways. This can be achieved by precisely spacing aircraft at the runway threshold, with a resulting reduction in the spacing bu er required under today s operations. At NASA's Langley Research Center, the Airspace Systems program has been investigating airborne technologies and procedures that will assist the flight crew in achieving precise spacing behind another aircraft. A new spacing clearance allows the pilot to follow speed cues from a new on-board guidance system called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR). AMSTAR receives Automatic Dependent Surveillance-Broadcast (ADS-B) reports from an assigned, leading aircraft and calculates the appropriate speed for the ownship to fly to achieve the desired spacing interval, time- or distance-based, at the runway threshold. Since the goal is overall system capacity, the speed guidance algorithm is designed to provide system-wide benefits and stability to a string of arriving aircraft. An experiment was recently performed at the NASA Langley Air Traffic Operations Laboratory (ATOL) to test the flexibility of Airborne Precision Spacing operations under a variety of operational conditions. These included several types of merge and approach geometries along with the complementary merging and in-trail operations. Twelve airline pilots and four controllers participated in this simulation. Performance and questionnaire data were collected from a total of eighty-four individual arrivals. The pilots were able to achieve precise spacing with a mean error of 0.5 seconds and a standard deviation of 4.7 seconds. No statistically significant di erences in spacing performance were found between in

  3. NASA's Student Airborne Research Program as a model for effective professional development experience in Oceanography

    NASA Astrophysics Data System (ADS)

    Palacios, S. L.; Kudela, R. M.; Clinton, N. E.; Atkins, N.; Austerberry, D.; Johnson, M.; McGonigle, J.; McIntosh, K.; O'Shea, J. J.; Shirshikova, Z.; Singer, N.; Snow, A.; Woods, R.; Schaller, E.; Shetter, R. E.

    2011-12-01

    With over half of the current earth and space science workforce expected to retire within the next 15 years, NASA has responded by cultivating young minds through programs such as the Student Airborne Research Program (SARP). SARP is a competitive internship that introduces upper-level undergraduates and early graduate students to Earth System Science research and NASA's Airborne Science Program. The program serves as a model for recruitment of very high caliber students into the scientific workforce. Its uniqueness derives from total vertical integration of hands-on experience at every stage of airborne science: aircraft instrumentation, flight planning, mission participation, field-work, analysis, and reporting of results in a competitive environment. At the conclusion of the program, students presented their work to NASA administrators, faculty, mentors, and the other participants with the incentive of being selected as best talk and earning a trip to the fall AGU meeting to present their work at the NASA booth. We hope lessons learned can inform the decisions of scientists at the highest levels seeking to broaden the appeal of research. In 2011, SARP was divided into three disciplinary themes: Oceanography, Land Use, and Atmospheric Chemistry. Each research group was mentored by an upper-level graduate student who was supervised by an expert faculty member. A coordinator managed the program and was supervised by a senior research scientist/administrator. The program is a model of knowledge transfer among the several levels of research: agency administration to the program coordinator, established scientific experts to the research mentors, and the research mentors to the pre-career student participants. The outcomes from this program include mission planning and institutional knowledge transfer from administrators and expert scientists to the coordinator and research mentors; personnel and project management from the coordinator and expert scientists to the

  4. Vegetation Water Content Mapping in a Diverse Agricultural Landscape: National Airborne Field Experiment 2006

    NASA Technical Reports Server (NTRS)

    Cosh, Michael H.; Jing Tao; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2011-01-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE 06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE 06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/sq m. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. Keywords: Vegetation, field experimentation, thematic mapper, NDWI, agriculture.

  5. Analysis of satellite and airborne wind measurements during the SEMAPHORE experiment

    SciTech Connect

    Tournadre, J.; Hauser, D.

    1994-12-31

    During the SEMAPHORE experiment Intensive Observation Period (IOP), held in October and November 1993 in the Azores-Madeira region, two airplanes, instrumented for atmospheric research, and two oceanographic research vessels have conducted in situ measurements in a 500km x 500km domain. Within the framework of SEMAPHORE, the SOFIA program is dedicated to the study of the air-sea fluxes and interactions from local scale up to mesoscale. The analysis of the structure of the wind and wave fields and their relations to the surface fluxes (especially near oceanic fronts) and the validation of the satellite data are two of the main goals of the SOFIA program. During the IOP, the experiment domain was regularly overflown by the ERS-1 and Topex-Poseidon (TP) satellites. This study presents a preliminary analysis of the ERS-1 and TP altimeter wind and wave measurement and ERS-1 scatterometer wind fields. The data from the airborne RESSAC (a radar ocean wave spectrometer) are also presented.

  6. Vegetation water content mapping in a diverse agricultural landscape: National Airborne Field Experiment 2006

    NASA Astrophysics Data System (ADS)

    Cosh, Michael H.; Tao, Jing; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2010-05-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE'06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE'06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/m2. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy.

  7. Tropospheric ozone in the vicinity of the ozone hole - 1987 Airborne Antarctic Ozone Experiment

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Warren, Linda S.; Hypes, Warren D.; Tuck, Adrian F.; Kelly, Kenneth K.; Krueger, Arlin J.

    1989-01-01

    Results are presented on ozone measurements in the upper troposphere/lower stratosphere over Antarctica, obtained by NASA DC-8 aircraft during the August/September 1987 Airborne Antarctic Ozone Experiment. The ozone mixing ratios as high as several hundred ppbv were measured, but in all cases these ratios were observed in pockets of upper atmospheric air, both in the vicinity of and away from the location of the ozone hole. The background ozone values in the surrounding troposphere were typically in the range of 20-50 ppbv. Correlation of tropospheric ozone observations with the boundaries of the ozone hole differed in the course of the experiment. During the August 28 - September 2 flights, encounters with ozone-rich air were limited, and the background tropospheric ozone appeared to decrease beneath the hole. For the later flights, and as the ozone hole deepened, the ozone-rich air was frequently observed in the vicinity of the hole, and the average ozone values at the flight altitude were frequently higher than the background values.

  8. The 1987 Airborne Antarctic Ozone Experiment: the Nimbus-7 TOMS Data Atlas

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.; Ardanuy, Philip E.; Sechrist, Frank S.; Penn, Lanning M.; Larko, David E.; Doiron, Scott D.; Galimore, Reginald N.

    1988-01-01

    Total ozone data taken by the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) played a central role in the successful outcome of the 1987 Airborne Antarctic Ozone Experiment. The near-real-time TOMS total ozone observations were suppled within hours of real time to the operations center in Punta Arenas, Chile, over a telecommunications network designed specifically for this purpose. The TOMS data preparation and method of transfer over the telecommunications links are reviewed. This atlas includes a complete set of the near-real-time TOMS orbital overpass data over regions around the Palmer Peninsula of Antarctica for the period of August 8 through September 29, 1987. Also provided are daily polar orthographic projections of TOMS total ozone measurements over the Southern Hemisphere from August through November 1987. In addition, a chronology of the salient points of the experiment, along with some latitudinal cross sections and time series at locations of interest of the TOMS total ozone observations are presented. The TOMS total ozone measurements are evaluated along the flight tracks of each of the ER-2 and DC-8 missions during the experiment. The ozone hole is shown here to develop in a monotonic progression throughout late August and September. The minimum total ozone amount was found on 5 October, when its all-time lowest value of 109 DU is recorded. The hole remains well defined, but fills gradually from mid-October through mid-November. The hole's dissolution is observed here to begin in mid-November, when it elongates and begins to rotate. By the end of November, the south pole is no longer located within the ozone hole.

  9. Tropospheric ozone and aerosols measured by airborne lidar during the 1988 Arctic boundary layer experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Ozone (O3) and aerosol distributions were measured from an aircraft using a differential absorption lidar (DIAL) system as part of the 1988 NASA Global Tropospheric Experiment - Arctic Boundary Layer Experiment (ABLE-3A) to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during the summer. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere. Several cases of continental polar air masses were examined during the experiment. The aerosol scattering associated with these air masses was very low, and the atmospheric distribution of aerosols was quite homogeneous for those air masses that had been transported over the ice for greater than or = 3 days. The transition in O3 and aerosol distributions from tundra to marine conditions was examined several times. The aerosol data clearly show an abrupt change in aerosol scattering properties within the mixed layer from lower values over the tundra to generally higher values over the water. The distinct differences in the heights of the mixed layers in the two regions was also readily apparent. Several cases of enhanced O3 were observed during ABLE-3 in conjunction with enhanced aerosol scattering in layers in the free atmosphere. Examples are presented of the large scale variations of O3 and aerosols observed with the airborne lidar system from near the surface to above the tropopause over the Arctic during ABLE-3.

  10. Airborne multiangle spectropolarimetric imager (AirMSPI) observations over California during NASA's polarimeter definition experiment (PODEX)

    NASA Astrophysics Data System (ADS)

    Diner, David J.; Garay, Michael J.; Kalashnikova, Olga V.; Rheingans, Brian E.; Geier, Sven; Bull, Michael A.; Jovanovic, Veljko M.; Xu, Feng; Bruegge, Carol J.; Davis, Ab; Crabtree, Karlton; Chipman, Russell A.

    2013-09-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is an ultraviolet/visible/near-infrared pushbroom camera mounted on a single-axis gimbal to acquire multiangle imagery over a +/-67° along-track range. The instrument flies aboard NASA's high-altitude ER-2 aircraft, and acquires Earth imagery with ~10 m spatial resolution across an 11- km wide swath. Radiance data are obtained in eight spectral bands (355, 380, 445, 470, 555, 660, 865, 935 nm). Dual photoelastic modulators (PEMs), achromatic quarter-wave plates, and wire-grid polarizers also enable imagery of the linear polarization Stokes components Q and U at 470, 660, and 865 nm. During January-February 2013, AirMSPI data were acquired over California as part of NASA's Polarimeter Definition Experiment (PODEX), a field campaign designed to refine requirements for the future Aerosol-Cloud-Ecosystem (ACE) satellite mission. Observations of aerosols, low- and mid-level cloud fields, cirrus, aircraft contrails, and clear skies were obtained over the San Joaquin Valley and the Pacific Ocean during PODEX. Example radiance and polarization images are presented to illustrate some of the instrument's capabilities.

  11. The Tropical Forest and fire emissions experiment: overview and airborne fire emission factor measurements

    NASA Astrophysics Data System (ADS)

    Yokelson, R. J.; Karl, T.; Artaxo, P.; Blake, D. R.; Christian, T. J.; Griffith, D. W. T.; Guenther, A.; Hao, W. M.

    2007-05-01

    The Tropical Forest and Fire Emissions Experiment (TROFFEE) used laboratory measurements followed by airborne and ground based field campaigns during the 2004 Amazon dry season to quantify the emissions from pristine tropical forest and several plantations as well as the emissions, fuel consumption, and fire ecology of tropical deforestation fires. The airborne campaign used an Embraer 110B aircraft outfitted with whole air sampling in canisters, mass-calibrated nephelometry, ozone by uv absorbance, Fourier transform infrared spectroscopy (FTIR), and proton-transfer mass spectrometry (PTR-MS) to measure PM10, O3, CO2, CO, NO, NO2, HONO, HCN, NH3, OCS, DMS, CH4, and up to 48 non-methane organic compounds (NMOC). The Brazilian smoke/haze layers extended to 2-3 km altitude, which is much lower than the 5-6 km observed at the same latitude, time of year, and local time in Africa in 2000. Emission factors (EF) were computed for the 19 tropical deforestation fires sampled and they largely compare well to previous work. However, the TROFFEE EF are mostly based on a much larger number of samples than previously available and they also include results for significant emissions not previously reported such as: nitrous acid, acrylonitrile, pyrrole, methylvinylketone, methacrolein, crotonaldehyde, methylethylketone, methylpropanal, "acetol plus methylacetate," furaldehydes, dimethylsulfide, and C1-C4 alkyl nitrates. Thus, we recommend these EF for all tropical deforestation fires. The NMOC emissions were ~80% reactive, oxygenated volatile organic compounds (OVOC). Our EF for PM10 (17.8±4 g/kg) is ~25% higher than previously reported for tropical forest fires and may reflect a trend towards, and sampling of, larger fires than in earlier studies. A large fraction of the total burning for 2004 likely occurred during a two-week period of very low humidity. The combined output of these fires created a massive "mega-plume" >500 km across that we sampled on September 8. The mega

  12. Horizontal variability of aerosol optical properties observed during the ARCTAS airborne experiment

    NASA Astrophysics Data System (ADS)

    Shinozuka, Y.; Redemann, J.; Russell, P. B.; Livingston, J. M.; Clarke, A. D.; Podolske, J. R.

    2010-12-01

    The properties of tropospheric aerosol and gas vary within a satellite grid cell and between ground-based instruments. This hinders comparison between satellite and suborbital measurements of different spatial scales as well as their applications to climate and air quality studies. This paper quantifies the realistic range of the variability in aerosol optical depth (AOD), its Angstrom exponent, in-situ extinction coefficient and carbon monoxide mixing ratio over horizontal distances of 1-30 km, using measurements from the ARCTAS airborne experiment. The Canada phase in June and July 2008, in which smoke from local forest fires was sampled, likely represents the most heterogeneous of the ambient aerosol environments common over the globe. The relative standard deviation (stdrel) of AOD measured with the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14) has median 19.4% (at 499 nm) among thousands of horizontal 20 km segments. For 6 km segments the analogous median is 9.1%. Another measure of horizontal variability, the autocorrelation (r) of AOD499 across 20 km and 6 km segments is 0.37 and 0.71, respectively. In contrast, the Alaska phase in April 2008, which sampled particles transported from Asia, is presumably among the most homogeneous environments. The median stdrel is 3.0% and r is 0.90, both over 30 km, only slightly different from those for 1 km (stdrel=0.4% and r=1.00). r in the Canada phase is ~0.2 less for in situ extinction coefficient (from a nephelometer and a particle soot absorption photometer) than for the AOD. It is ~0.1 less than for the carbon monoxide mixing ratio. The trends of horizontal variability with distance and aerosol environment are different for the wavelength dependence and the humidity response of light scattering. We discuss challenges in estimating aerosol optical properties, particle size and chemical composition from measurements at a distant location. The statistical parameters thus help interpret existing remote

  13. Tropospheric ozone in the vicinity of the ozone hole: 1987 Airborne Antarctic Ozone Experiment

    SciTech Connect

    Gregory, G.L.; Warren, L.S. ); Hypes, W.D. ); Tuck, A.F.; Kelly, K.K. ); Krueger, A.J. )

    1989-11-30

    Tropospheric ozone measurements over Antarctica aboard the NASA DC-8 aircraft are summarized. As part of the August/September 1987 Airborne Antarctic Ozone Experiment, the aircraft flew 13 missions covering a latitude of 53{degree}-90{degree}S, at altitudes to 13 km. Ozone mixing ratios as high as several hundred parts per billion by volume (ppbv) were measured, but in all cases these ratios were observed in pockets or patches of upper atmospheric air. These pockets were observed both in the vicinity of and away from the location of the ozone hole. At times, and as a result of these pockets, the ozone levels at the flight altitude of the aircraft, as averaged beneath the boundaries of the stratospheric ozone hole, were 2-3 times higher than background tropospheric values. The data suggest that the ozone-rich air seldom penetrated below about 9-km altitude. Background ozone values in the surrounding troposphere were typically in the range of 20-50 ppbv. Correlation of tropospheric ozone observations with the boundaries of the ozone hole differed during the experiment. During the early flights (August 28 through September 2), encounters with ozone-rich air were limited and background tropospheric ozone (at the flight altitude) appeared to decrease beneath the hole. For many of the later flights, and as the hole deepened, the reverse was noted, in that ozone-rich air was frequently observed in the vicinity of the hole and, as noted earlier, average ozone at the flight altitude was frequently higher than background values.

  14. An airborne perfluorocarbon tracer system and its first application for a Lagrangian experiment

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Baumann, R.; Schlager, H.

    2015-01-01

    A perfluorocarbon tracer system (PERTRAS), specifically designed for Lagrangian aircraft experiments, has been developed by the Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center, DLR). It consists of three main parts: a tracer release unit (RU), an adsorption tube sampler (ATS), and a tracer analytical system. The RU was designed for airborne tracer release experiments; meanwhile, it can be used on various platforms for different experimental purposes (here research vessel). PERTRAS was for the first time applied in the field campaign Stratospheric ozone: Halogen Impacts in a Varying Atmosphere (SHIVA) in November 2011. An amount of 8.8 kg perfluoromethylcyclopentane (PMCP) was released aboard the research vessel Sonne (RV Sonne) near the operational site of this campaign, Miri, Malaysia, on 21 November. The tracer samples collected using the ATS onboard the DLR research aircraft Falcon were analyzed in the laboratory using a thermal desorber-gas chromatography-mass spectrometry (TD-GC-MS) system. Guided by forecasts calculated with the Lagrangian model Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT), 64 tracer samples were collected onboard the Falcon approximately 5 and 25 h after the release, mostly with a time resolution of 1 min. Enhanced PMCP concentrations relative to ambient PMCP background values (mean: 6.62 fmol mol-1) were detected during three intersects of the fresh tracer plume (age 5 h), with a maximum value of 301.33 fmol mol-1. This indicates that the fresh tracer plume was successfully intercepted at the forecast position. During the second flight, 25 h after the release, the center of tracer plume was not detected by the sampling system due to a faster advection of the plume than forecast. The newly developed PERTRAS system has been successfully deployed for the first time. The instrumental setup and comparisons between the measurements and HYSPLIT simulations are presented in this study.

  15. An airborne perfluorocarbon tracer system and its first application for a Lagrangian experiment

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Baumann, R.; Schlager, H.

    2014-07-01

    A perfluorocarbon tracer system (PERTRAS), specifically designed for Lagrangian aircraft experiments, has been developed by the Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center, DLR). It consists of three main parts: a tracer release unit (RU), an adsorption tube sampler (ATS) and a tracer analytical system. The RU was designed for airborne tracer release experiments; meanwhile, it can be used on various platforms for different experimental purpose (here research vessel). PERTRAS was for the first time applied in the field campaign Stratospheric ozone: halogen Impacts in a Varying Atmosphere (SHIVA) in November 2011. An amount of 8.8 kg perfluoromethylcyclopentane (PMCP) was released aboard the research vessel Sonne (RV Sonne) near the operational site of this campaign, Miri, Malaysia, on 21 November. The tracer samples collected using the ATS on board the DLR research aircraft Falcon were analyzed in the laboratory using a thermal desorber/gas chromatography/mass spectrometry (TD/GC/MS) system. Guided by forecasts calculated with the Lagrangian model, Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT), 64 tracer samples were collected onboard the Falcon approximately 5 and 25 h after the release, respectively, mostly with a time resolution of 1 min. Enhanced PMCP concentrations relative to ambient PMCP background values (mean: 6.62 fmol mol-1) were detected during three intersects of the fresh tracer plume (age 5 h), with a maximum value of 301.33 fmol mol-1. This indicates that the fresh tracer plume was successfully intercepted at the forecasted position. During the second flight, 25 h after the release, the center of tracer plume was not detected by the sampling system due to a faster advection of the plume than forecasted. The newly developed PERTRAS system has been successfully deployed for the first time. The instrumental set-up and comparisons between the measurements and HYSPLIT simulations are presented in this study.

  16. Multibeam collimator uses prism stack

    NASA Technical Reports Server (NTRS)

    Minott, P. O.

    1981-01-01

    Optical instrument creates many divergent light beams for surveying and machine element alignment applications. Angles and refractive indices of stack of prisms are selected to divert incoming laser beam by small increments, different for each prism. Angles of emerging beams thus differ by small, precisely-controlled amounts. Instrument is nearly immune to vibration, changes in gravitational force, temperature variations, and mechanical distortion.

  17. APEX: current status of the airborne dispersive pushbroom imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Nieke, Jens; Itten, Klaus I.; Kaiser, Johannes W.; Schlapfer, Daniel R.; Brazile, Jason; Debruyn, Walter; Meuleman, Koen; Kempeneers, Pieter B.; Neukom, Andreas; Feusi, Hans; Adolph, Peter; Moser, Renzo; Schilliger, Thomas; van Quickelberghe, Marie; Alder, John; Mollet, Dominique; De Vos, Lieve; Kohler, Peter; Meng, Markus; Piesbergen, Jens; Strobl, Peter; Schaepman, Michael E.; Gavira, Jose; Ulbrich, Gerd J.; Meynart, Roland

    2004-10-01

    Recently, a joint Swiss/Belgian initiative started a project to build a new generation airborne imaging spectrometer, namely APEX (Airborne Prism Experiment) under the ESA funding scheme named PRODEX. APEX is a dispersive pushbroom imaging spectrometer operating in the spectral range between 380 - 2500 nm. The spectral resolution will be better then 10 nm in the SWIR and < 5 nm in the VNIR range of the solar reflected range of the spectrum. The total FOV will be +/- 14 deg, recording 1000 pixels across track with max. 300 spectral bands simultaneously. APEX is subdivided into an industrial team responsible for the optical instrument, the calibration homebase, and the detectors, and a science and operational team, responsible for the processing and archiving of the imaging spectrometer data, as well as for its operation. APEX is in its design phase and the instrument will be operationally available to the user community in the year 2006.

  18. Airborne Observations and Satellite Validation: INTEX-A Experience and INTEX-B Plans

    NASA Technical Reports Server (NTRS)

    Crawford, James H.; Singh, Hanwant B.; Brune, William H.; Jacob, Daniel J.

    2005-01-01

    Intercontinental Chemical Transport Experiment (INTEX; http://cloudl.arc.nasa.gov) is an ongoing two-phase integrated atmospheric field experiment being performed over North America (NA). Its first phase (INTEX-A) was performed in the summer of 2004 and the second phase (INTEX-B) is planned for the early spring of 2006. The main goal of INTEX-NA is to understand the transport and transformation of gases and aerosols on transcontinental/intercontinental scales and to assess their impact on air quality and climate. Central to achieving this goal is the need to relate space-based observations with those from airborne and surface platforms. During INTEX-A, NASA s DC-8 was joined by some dozen other aircraft from a large number of European and North American partners to focus on the outflow of pollution from NA to the Atlantic. Several instances of Asian pollution over NA were also encountered. INTEX-A flight planning extensively relied on satellite observations and in turn Satellite validation (Terra, Aqua, and Envisat) was given high priority. Over 20 validation profiles were successfully carried out. DC-8 sampling of smoke from Alaskan fires and formaldehyde over forested regions, and simultaneous satellite observations of these provided excellent opportunities for the interplay of these platforms. The planning for INTEX-5 is currently underway, and a vast majority of "standard" and "research" products to be retrieved from Aura instruments will be measured during INTEX-B throughout the troposphere. INTEX-B will focus on the inflow of pollution from Asia to North America and validation of satellite observations with emphasis on Aura. Several national and international partners are expected to coordinate activities with INTEX-B, and we expect its scope to expand in the coming months. An important new development involves partnership with an NSF-sponsored campaign called MIRAGE (Megacity Impacts on Regional and Global Environments- Mexico City Pollution Outflow Field

  19. Compound prism design principles, II: triplet and Janssen prisms

    PubMed Central

    Hagen, Nathan; Tkaczyk, Tomasz S.

    2011-01-01

    Continuing the work of the first paper in this series [Appl. Opt. 50, 4998–5011 (2011)], we extend our design methods to compound prisms composed of three independent elements. The increased degrees of freedom of these asymmetric prisms allow designers to achieve greatly improved dispersion linearity. They also, however, require a more careful tailoring of the merit function to achieve design targets, and so we present several new operands for manipulating the compound prisms’ design algorithm. We show that with asymmetric triplet prisms, one can linearize the angular dispersion such that the spectral sampling rate varies by no more than 4% across the entire visible spectral range. Doing this, however, requires large prisms and causes beam compression. By adding a beam compression penalty to the merit function, we show that one can compromise between dispersion linearity and beam compression in order to produce practical systems. For prisms that do not deviate the beam, we show that Janssen prisms provide a form that maintains the degrees of freedom of the triplet and that are capable of up to 32° of dispersion across the visible spectral range. Finally, in order to showcase some of the design flexibility of three-element prisms, we also show how to design for higher-order spectral dispersion to create a two-dimensional spectrum. PMID:22423146

  20. Pure rotation of a prism on a ramp

    PubMed Central

    Zhao, Zhen; Liu, Caishan; Ma, Daolin

    2014-01-01

    In this work, we study a prism with a cross section in polygon rolling on a ramp inclined at a small angle. The prism under gravity rolls purely around each individual edge, intermittently interrupted by a sequence of face collisions between the side face of the prism and the ramp. By limiting the prism in a planar motion, we propose a mathematical model to deal with the events of the impacts. With a pair of laser-Doppler vibrometers, experiments are also conducted to measure the motions of various prisms made of different materials and with different edge number. Not only are good agreements achieved between our numerical and experimental results, but also an intriguing physical phenomenon is discovered: the purely rolling motion is nearly independent of the prism's materials, yet it is closely related to the prism's geometry. Imagine that an ideal circular section can be approximately equivalent to a polygon with a large enough edge number N, the finding presented in this paper may help discover the physical mechanism of rolling friction. PMID:25197242

  1. Filter measurements of chemical composition during the airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Grandrud, B. W.; Sperry, P. D.; Sanford, L.

    1988-01-01

    During the Airborne Antarctic Ozone Experiment campaign, a filter sampler was flown to measure the bulk composition of aerosol and gas phases. The background sulfate aerosol was measured in regions inside and outside of the chemically perturbed region (CPR) of the polar vortex. The mass ratio of sulfate outside to inside was 2.8. This is indicative of a cleansing mechanism effecting the CPR or of a different air mass inside versus outside. The absolute value of the sulfate mixing ratio shows that the background aerosol has not been influenced by recent volcanic eruptions. The sulfate measured on the ferry flight returning to NASA Ames shows a decrease towards the equator with increasing concentrations in the northern hemisphere. Nitrate in the aerosol phase was observed on two flights. The largest amount of nitrate measured in the aerosol was 44 percent of the total amount of nitrate observed. Other samples on the same flights show no nitrate in the aerosol phase. The presence of nitrate in the aerosol is correlated with the coldest temperatures observed on a given flight. Total nitrate (aerosol plus acidic vapor nitrate) concentrations were observed to increase at flight altitude with increasing latitude north and south of the equator. Total nitrate was lower inside the CPR than outside. Chloride and flouride were not detected in the aerosol phase. From the concentrations of acidic chloride vapor, the ratio of acidic vapor Cl to acidic vapor F and a summing of the individual chloride containing species to yield a total chloride concentration, there is a suggestion that some of the air sampled was dechlorinated. Acidic vapor phase fluoride was observed to increase at flight altitude with increasing latitude both north and south of the equator. The acidic vapor phase fluoride was the only compound measured with the filter technique that exhibited larger concentrations inside the CPR than outside.

  2. Airborne measurements of NOx, tracer species, and small particles during the European Lightning Nitrogen Oxides Experiment

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Feigl, C.; Schlager, H.; Schröder, F.; Gerbig, C.; van Velthoven, P.; Flatøy, F.; Théry, C.; Petzold, A.; Höller, H.; Schumann, U.

    2002-06-01

    Airborne in situ measurements of NO, NO2, NOy, CO, CO2, O3, J(NO2), and CN were performed in European thunderstorms during the field experiment EULINOX in July 1998. The measurements in the upper troposphere show enhanced NOx (= NO + NO2) concentrations within thunderstorms and their outflow at horizontal scales from 300 m to several 100 km. The maximum NO mixing ratio measured inside a thundercloud close to lightning (the aircraft was also hit by a small lightning strike) was 25 ppbv. A regional NOx enhancement of 0.5 ppbv over central Europe could be traced back to a thunderstorm event starting ~24 hours earlier over Spain. The fractions of NOx in thunderclouds which are produced by lightning and convectively transported from the polluted boundary layer are determined by using CO2 and CO as tracers for boundary layer air. The analyses show that on average about 70% of the NOx increase measured in the anvil region was found to result from production by lightning and about 30% from NOx in the boundary layer. Thunderstorms are also strong sources of small particles. The peak CN concentrations measured within thunderstorm outflows (>30,000 particles STP cm-3) were distinctly higher than in the polluted boundary layer. The amount of NOx produced per thunderstorm and NO produced per lightning flash was estimated. The results imply that the annual mean NOx budget in the upper troposphere over Europe is dominated by aircraft emissions (0.1 TgN yr-1) in comparison to lightning production (~0.03 TgN yr-1). On the global scale, NOx produced by lightning (mean 3 TgN yr-1) prevails over aircraft-produced NOx (0.6 TgN yr-1).

  3. The NASA Airborne Tropical TRopopause EXperiment (ATTREX):High-Altitude Aircraft Measurements in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Pfister, L.; Jordan, D. E.; Bui, T. V.; Ueyama, R.; Singh, H. B.; Lawson, P.; Thornberry, T.; Diskin, G.; McGill, M.; Pittman, J.; Atlas, E.; Kim, J.

    2016-01-01

    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes.

  4. Ku band airborne radar altimeter observations of marginal sea ice during the 1984 Marginal Ice Zone Experiment

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1991-01-01

    Pulse-limited, airborne radar data taken in June and July 1984 with a 13.8-GHz altimeter over the Fram Strait marginal ice zone are analyzed with the aid of large-format aerial photography, airborne synthetic aperture radar data, and surface observations. Variations in the radar return pulse waveforms are quantified and correlated with ice properties recorded during the Marginal Ice Zone Experiment. Results indicate that the wide-beam altimeter is a flexible instrument, capable of identifying the ice edge with a high degree of accuracy, calculating the ice concentration, and discriminating a number of different ice classes. This suggests that microwave radar altimeters have a sensitivity to sea ice which has not yet been fully exploited. When fused with SSM/I, AVHRR and ERS-1 synthetic aperture radar imagery, future ERS-1 altimeter data are expected to provide some missing pieces to the sea ice geophysics puzzle.

  5. Compound prism design principles, I

    PubMed Central

    Hagen, Nathan; Tkaczyk, Tomasz S.

    2011-01-01

    Prisms have been needlessly neglected as components used in modern optical design. In optical throughput, stray light, flexibility, and in their ability to be used in direct-view geometry, they excel over gratings. Here we show that even their well-known weak dispersion relative to gratings has been overrated by designing doublet and double Amici direct-vision compound prisms that have 14° and 23° of dispersion across the visible spectrum, equivalent to 800 and 1300 lines/mm gratings. By taking advantage of the multiple degrees of freedom available in a compound prism design, we also show prisms whose angular dispersion shows improved linearity in wavelength. In order to achieve these designs, we exploit the well-behaved nature of prism design space to write customized algorithms that optimize directly in the nonlinear design space. Using these algorithms, we showcase a number of prism designs that illustrate a performance and flexibility that goes beyond what has often been considered possible with prisms. PMID:22423145

  6. Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouche, N.; Pichon, J.-M.; Bourianne, T.; Gomes, L.; Prevot, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2014-02-01

    yields, we were able to predict ~50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA and have an impact on aerosol composition on a regional scale.

  7. Characterizing the impact of urban emissions on regional aerosol particles; airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouch, N.; Pichon, J.-M.; Prévôt, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2013-09-01

    The MEGAPOLI experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) giving detailed information of the non-refractory submicron aerosol species. The mass concentration of BC, measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), black carbon and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy). Plotting the equivalent ratios for the Positive Matrix Factorization (PMF) resolved species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA). Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in Mexico city, Mexico and in New England, USA. Using the measured VOCs species together with recent organic aerosol formation yields we predicted ~ 50% of the measured organics. These airborne measurements during the MEGAPOLI experiment show that urban emissions contribute to the formation of OA

  8. Study of airborne science experiment management concepts for application to space shuttle. Volume 3: Appendixes

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    Detailed information is presented concerning specific airborne missions in support of the ASSESS program. These missions are the AIDJEX expeditions, meteor shower expeditions, CAT and atmospheric sampling missions, ocean color expeditions, and the Lear Jet missions. For Vol. 2, see N73-31729.

  9. Optical design of prism-grating-prism imaging spectrometers

    NASA Astrophysics Data System (ADS)

    Zhu, Shanbing; Tang, Minxue; Ji, Yiqun; Gong, Guangbiao; Zhang, Ruirui; Shen, Weimin

    2008-12-01

    Imaging spectrometers can provide imagery and spectrum information of objects and form so-called three-dimensional spectral imagery, two spatial and one spectral dimension. Most of imaging spectrometers use conventional spectroscopic elements or systems, such as reflective diffraction gratings, prisms, filters, spatial modulated interferometers, and so on. Here a special imaging spectrometer which is based on a novel cemented Prism-Grating-Prism (PGP) is reported. Its spectroscopic element PGP consists of two prisms and a holographic transmission volume grating, which is cemented between these prisms. The two prisms mainly function as beam deviation, the grating as a disperser. In addition to the high light efficiency of the volume gratings that is required for high spectral resolution, the cementing difficulty when surface relief gratings are used can be avoided due to its voluminal characteristic. The PGP imaging spectrometer has advantages of direct vision, dispersion uniform, compactness, low cost, and facility to be used. The principle, structure, and optimized design of the PGP imaging spectrometer are given in detail. Its front collimation optics and rear focusing lenses are same so as to reduce its cost further. The spectral coverage, resolution, and track length of the designed system are respectively visible light from 400nm to 800nm, 1.6nm/pixel, and 85mm. From its performance evaluation, it is shown that the PGP imaging spectrometer has the potentiality to be used in microscopic hyperspectral imagers and hyperspectral imaging remote sensors.

  10. A comparison of airborne and ground-based radar observations with rain gages during the CaPE experiment

    NASA Technical Reports Server (NTRS)

    Satake, Makoto; Short, David A.; Iguchi, Toshio

    1992-01-01

    The vicinity of KSC, where the primary ground truth site of the Tropical Rainfall Measuring Mission (TRMM) program is located, was the focal point of the Convection and Precipitation/Electrification (CaPE) experiment in Jul. and Aug. 1991. In addition to several specialized radars, local coverage was provided by the C-band (5 cm) radar at Patrick AFB. Point measurements of rain rate were provided by tipping bucket rain gage networks. Besides these ground-based activities, airborne radar measurements with X- and Ka-band nadir-looking radars on board an aircraft were also recorded. A unique combination data set of airborne radar observations with ground-based observations was obtained in the summer convective rain regime of central Florida. We present a comparison of these data intending a preliminary validation. A convective rain event was observed simultaneously by all three instrument types on the evening of 27 Jul. 1991. The high resolution aircraft radar was flown over convective cells with tops exceeding 10 km and observed reflectivities of 40 to 50 dBZ at 4 to 5 km altitude, while the low resolution surface radar observed 35 to 55 dBZ echoes and a rain gage indicated maximum surface rain rates exceeding 100 mm/hr. The height profile of reflectivity measured with the airborne radar show an attenuation of 6.5 dB/km (two way) for X-band, corresponding to a rainfall rate of 95 mm/hr.

  11. A comparison of airborne and ground-based radar observations with rain gages during the CaPE experiment

    NASA Technical Reports Server (NTRS)

    Satake, Makoto; Short, David A.; Iguchi, Toshio

    1992-01-01

    The vicinity of KSC, where the primary ground truth site of the Tropical Rainfall Measuring Mission (TRMM) program is located, was the focal point of the Convection and Precipitation/Electrification (CaPE) experiment in July and Aug. 1991. In addition to several specialized radars, local coverage was provided by the C-band (5 cm) radar at Patrick AFB. Point measurements of rain rate were provided by tipping bucket rain gage networks. Besides these ground-based activities, airborne radar measurements with X- and Ka-band nadir-looking radars on board an aircraft were also recorded. A unique combination data set of airborne radar observations with ground-based observations was obtained in the summer convective rain regime of central Florida. We present a comparison of these data intending a preliminary validation. A convective rain event was observed simultaneously by all three instrument types on the evening of 27 July 1991. The high resolution aircraft radar was flown over convective cells with tops exceeding 10 km and observed reflectivities of 40 to 50 dBZ at 4 to 5 km altitude, while the low resolution surface radar observed 35 to 55 dBZ echoes and a rain gage indicated maximum surface rain rates exceeding 100 mm/hr. The height profile of reflectivity measured with the airborne radar show an attenuation of 6.5 dB/km (two way) for X-band, corresponding to a rainfall rate of 95 mm/hr.

  12. 21 CFR 886.1660 - Gonioscopic prism.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gonioscopic prism. 886.1660 Section 886.1660 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1660 Gonioscopic prism. (a) Identification. A gonioscopic prism is a device that is a prism intended to be placed on the eye to study the anterior...

  13. 21 CFR 886.1660 - Gonioscopic prism.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gonioscopic prism. 886.1660 Section 886.1660 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1660 Gonioscopic prism. (a) Identification. A gonioscopic prism is a device that is a prism intended to be placed on the eye to study the anterior...

  14. 21 CFR 886.1660 - Gonioscopic prism.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gonioscopic prism. 886.1660 Section 886.1660 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1660 Gonioscopic prism. (a) Identification. A gonioscopic prism is a device that is a prism intended to be placed on the eye to study the anterior...

  15. 21 CFR 886.1660 - Gonioscopic prism.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gonioscopic prism. 886.1660 Section 886.1660 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1660 Gonioscopic prism. (a) Identification. A gonioscopic prism is a device that is a prism intended to be placed on the eye to study the anterior...

  16. 21 CFR 886.1660 - Gonioscopic prism.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gonioscopic prism. 886.1660 Section 886.1660 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1660 Gonioscopic prism. (a) Identification. A gonioscopic prism is a device that is a prism intended to be placed on the eye to study the anterior...

  17. into the accretionary prism

    NASA Astrophysics Data System (ADS)

    Okamoto, Atsushi; Musya, Michimasa; Hashimoto, Yoshitaka; Tsuchiya, Noriyoshi

    2014-12-01

    Carbon dioxide and methane are major components in geofluids; however, there is little evidence showing how C-H-O fluids evolve in a subduction zone. We investigated fluid inclusions in quartz veins from the Eocene-Oligocene Shimanto belt (Murotohanto subbelt) on Muroto Peninsula, SW Japan using microthermometry and laser Raman spectroscopy. Quartz veins that cut the cleavage of the host rocks in the Murotohanto subbelt contain one-phase carbonic inclusions (CH4) and two-phase aqueous inclusions (CH4 ± CO2 vapor and H2O liquid). The vapor in the two-phase inclusions is essentially CH4 in the northern part of the belt and a CO2-CH4 mixture in the southern part; values of [InlineEquation not available: see fulltext.] (=CO2 / (CO2 + CH4)) vary from 0 to 0.9. Within a single CO2-bearing vein, [InlineEquation not available: see fulltext.] values decrease from the vein wall ([InlineEquation not available: see fulltext.] = 0.5 to 0.9) to the vein center ([InlineEquation not available: see fulltext.] = 0), and the homogenization temperature increases from approximately 180°C to 240°C-250°C, indicating a transition of the carbonic species from CO2-CH4 to CH4 during vein formation. CO2-dominant fluids are rare in most accretionary prisms formed under low-grade metamorphic conditions, and the generation of CO2 cannot be explained by diagenesis of organic matter in sediments under the P-T conditions of formation of the CO2-bearing veins (235°C to 245°C, 165 to 200 MPa). The CO2 fluids are distributed preferentially near an out-of-sequence thrust that brings the Murotohanto subbelt into contact with the late Oligocene-early Miocene Nabae subbelt and its many volcanic and intrusive rocks. We therefore suggest that the CO2 fluids were generated in association with near-trench magmatism during the middle Miocene and that the fluids were injected and mixed with the CH4 pore fluids of the sediments in the accretionary prism.

  18. Prism Window for Optical Alignment

    NASA Technical Reports Server (NTRS)

    Tang, Hong

    2008-01-01

    A prism window has been devised for use, with an autocollimator, in aligning optical components that are (1) required to be oriented parallel to each other and/or at a specified angle of incidence with respect to a common optical path and (2) mounted at different positions along the common optical path. The prism window can also be used to align a single optical component at a specified angle of incidence. Prism windows could be generally useful for orienting optical components in manufacture of optical instruments. "Prism window" denotes an application-specific unit comprising two beam-splitter windows that are bonded together at an angle chosen to obtain the specified angle of incidence.

  19. Prism beamswitch for radio telescopes.

    PubMed

    Payne, J M; Ulich, B L

    1978-12-01

    A dielectric prism and switching mechanism have been constructed for beamswitching a Cassegrain radio telescope. Spatially extended radio sources may be mapped without significant confusion utilizing the sensitivity and stability inherent in the conventional Dicke radiometer. PMID:18699031

  20. Dust Transport Across the Atlantic Studied by Airborne Doppler Wind Lidar During the Saltrace Experiment in 2013

    NASA Astrophysics Data System (ADS)

    Chouza, Fernando; Reitebuch, Oliver; Rahm, Stephan; Weinzierl, Bernadett

    2016-06-01

    During the SALTRACE field experiment, conducted during June/July 2013, the Saharan dust transport across the Atlantic was analyzed by a set of ground based, in-situ and airborne instruments, including a 2-μm coherent DWL (Doppler wind lidar) mounted onboard the DLR Falcon 20 research aircraft. An overview of the measurements of aerosol backscatter and extinction, horizontal and vertical winds retrieved from the DWL are presented together with a brief description of the applied methods. The retrieved measurements provide direct observation of Saharan dust transport mechanisms across the Atlantic as well as island induced lee waves in the Barbados region.

  1. Extracting Tree Height from Repeat-Pass PolInSAR Data : Experiments with JPL and ESA Airborne Systems

    NASA Technical Reports Server (NTRS)

    Lavalle, Marco; Ahmed, Razi; Neumann, Maxim; Hensley, Scott

    2013-01-01

    In this paper we present our latest developments and experiments with the random-motion-over-ground (RMoG) model used to extract canopy height and other important forest parameters from repeat-pass polarimetricinterferometric SAR (Pol-InSAR) data. More specifically, we summarize the key features of the RMoG model in contrast with the random-volume-over-ground (RVoG) model, describe in detail a possible inversion scheme for the RMoG model and illustrate the results of the RMoG inversion using airborne data collected by the Jet Propulsion Laboratory (JPL) and the European Space Agency (ESA).

  2. Designing an in-flight airborne calibration site using experience from vicarious radiometric satellite calibration

    NASA Astrophysics Data System (ADS)

    Livens, Stefan; Debruyn, Walter; Sterckx, Sindy; Reusen, Ils

    2011-11-01

    Laboratory calibration of electro-optical sensors is preferably complemented by regular in-flight verification. This checks whether the lab calibration parameters remain valid or recalibration is necessary. In-flight verification can be achieved by vicarious calibration using in-flight measurements of calibration targets. We intend to identify and design a set of suitable radiometric calibration targets. For this, we borrow from expertise gained with the PROBA-V satellite calibration system, which uses multiple vicarious methods relying on diverse natural on-ground targets. Besides reflectance based calibration using ground measurements, the PROBA-V calibration methods are unproven for use in airborne calibration. The selected targets should be suitable for the calibration of both multispectral and hyperspectral imagers. We start from general requirements for radiometric targets and investigate their applicability to airborne calibration. From this we identify two possible sets of natural calibration sites in Belgium. One set, located in the Campine region, contains small water bodies and sandy lakesides. Another set is located in the Westhoek region near the Belgian coast. It offers better suitable water bodies, as well as sandy areas, grass fields and dark targets. Airborne calibration lends itself to the use of smaller artifical targets. We propose to complement the natural targets with a portable target consisting of agricultural nets with different densities. The definition of sets of calibration targets, both natural and artificial can facilitate the investigation of the usability of vicarious targets and method for inflight radiometric verification.

  3. PRISM: Processing routines in IDL for spectroscopic measurements (installation manual and user's guide, version 1.0)

    USGS Publications Warehouse

    Kokaly, Raymond F.

    2011-01-01

    This report describes procedures for installing and using the U.S. Geological Survey Processing Routines in IDL for Spectroscopic Measurements (PRISM) software. PRISM provides a framework to conduct spectroscopic analysis of measurements made using laboratory, field, airborne, and space-based spectrometers. Using PRISM functions, the user can compare the spectra of materials of unknown composition with reference spectra of known materials. This spectroscopic analysis allows the composition of the material to be identified and characterized. Among its other functions, PRISM contains routines for the storage of spectra in database files, import/export of ENVI spectral libraries, importation of field spectra, correction of spectra to absolute reflectance, arithmetic operations on spectra, interactive continuum removal and comparison of spectral features, correction of imaging spectrometer data to ground-calibrated reflectance, and identification and mapping of materials using spectral feature-based analysis of reflectance data. This report provides step-by-step instructions for installing the PRISM software and running its functions.

  4. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE): An Airborne Direct Detection Doppler Lidar Instrument Development Program

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    Global measurement of tropospheric winds is a key measurement for understanding atmospheric dynamics and improving numerical weather prediction. Global wind profiles remain a high priority for the operational weather community and also for a variety of research applications including studies of the global hydrologic cycle and transport studies of aerosols and trace species. In addition to space based winds, a high altitude airborne system flown on UAV or other advanced platforms would be of great interest for studying mesoscale dynamics and hurricanes. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE) project was selected in 2005 by the NASA Earth Sun Technology Office as part of the Instrument Incubator Program. TWiLiTE will leverage significant research and development investments in key technologies made in the past several years. The primary focus will be on integrating these sub-systems into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57, so that the nadir viewing lidar will be able to profile winds through the full troposphere. TWiLiTE is a collaboration involving scientists and technologists from NASA Goddard, NOAA ESRL, Utah State University Space Dynamics Lab and industry partners Michigan Aerospace Corporation and Sigma Space Corporation. NASA Goddard and it's partners have been at the forefront in the development of key lidar technologies (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a fixture spaceborne tropospheric wind system. The completed system will have the capability to profile winds in clear air from the aircraft altitude of 18 h to the surface with 250 m vertical

  5. Correlation of N2O and ozone in the Southern Polar vortex during the airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Strahan, S. E.; Loewenstein, M.; Podolske, J. R.; Starr, Walter L.; Proffitt, M. H.; Kelly, K. K.; Chan, K. Roland

    1988-01-01

    In situ N20 mixing ratios, measured by an airborne laser spectrometer (ATLAS), have been used along with in situ ozone measurements to determine the correlation of N2O and ozone in the Antarctic stratosphere during the late austral winter. During the 1987 Airborne Antarctic Ozone Experiment (AAOE), N2O data were collected by a laser absorption spectrometer on board the ER-2 on five ferry flights between Ames Research Center (37 deg N) and Punta Arenas, Chile (53 deg S), and on twelve flights over Antarctica (53 S to 72 S). Of all the trace gas species measured by instruments on board the ER-2, only one showed a relationship to the N2O/O3 correlations in the vortex. With few exceptions, positive N20/O3 correlations coincided with total water mixing ratios of greater than 2.9 ppmv, and total water mixing ratios of less than 2.9 ppmv corresponded to negative correlations. The lower water mixing ratios, or dehydrated regions, are colocated with the negative correlations within the vortex, while the wetter regions always occur near the vortex edge.

  6. The PRISM4 (mid-Piacenzian) Palaeoenvironmental Reconstruction

    NASA Technical Reports Server (NTRS)

    Dowsett, Harry; Dolan, Aisling; Rowley, David; Moucha, Robert; Forte, Alessandro M.; Mitrovica, Jerry X.; Pound, Matthew; Salzmann, Ulrich; Robinson, Marci; Chandler, Mark; Foley, Kevin; Haywood, Alan

    2016-01-01

    The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions as well as means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a paleoenvironmental reconstruction of the mid-Piacenzian (approximately 3 Ma) containing data for paleogeography, land and sea ice, sea-surface temperature, vegetation, soils, and lakes. Our retrodicted paleogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) experiments.

  7. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction

    NASA Astrophysics Data System (ADS)

    Dowsett, Harry; Dolan, Aisling; Rowley, David; Moucha, Robert; Forte, Alessandro M.; Mitrovica, Jerry X.; Pound, Matthew; Salzmann, Ulrich; Robinson, Marci; Chandler, Mark; Foley, Kevin; Haywood, Alan

    2016-07-01

    The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions as well as means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a paleoenvironmental reconstruction of the mid-Piacenzian ( ˜ 3 Ma) containing data for paleogeography, land and sea ice, sea-surface temperature, vegetation, soils, and lakes. Our retrodicted paleogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) experiments.

  8. PRISM3 Global Paleoclimate Reconstruction: A Global Warming Data Set

    NASA Astrophysics Data System (ADS)

    Dowsett, H. J.; Chandler, M. A.; Cronin, T. M.; Dwyer, G. S.; Haywood, A. M.; Hill, D. J.; Robinson, M. M.; Salzmann, U.; Williams, M.

    2007-12-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project provides a conceptual model and synoptic view of the earth during the last interval considerably warmer than modern (3.3 to 3.0 Ma) through reconstruction of sea-surface temperature (SST) and other paleoenvironmental parameters. The first PRISM reconstruction, with its foundation in a global network of paleontological analyses, was completed in the early 1990s. Since then, several significant revisions have been released culminating in the PRISM2 data set. The primary goal of PRISM remains a better understanding of the Earth's climate system during the mid-Pliocene, and to that end, includes the development of digital data sets for use with climate models. The new PRISM3 reconstruction, slated to be released early in 2008, has revised SST fields based upon integration of previous and new faunal and floral analyses with new geochemical proxies and biomarkers, a revised vegetation/land cover data set utilizing the BIOME 4 vegetation classification scheme, 3-dimensional land ice distribution based upon ice-sheet model experiments, new sea level estimates based upon stable isotopes and bottom water temperatures, and revised sea-ice distribution. A deep ocean temperature reconstruction, PRISM3D, adds a 3- dimensional component, which can be used for initiating coupled ocean-atmosphere GCM simulations. PRISM3 is a collaborative effort between the U.S. Geological Survey (USGS), National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), British Antarctic Survey (BAS), and several national and international academic institutions (Columbia University, Duke University, George Mason University, University of Leeds and University of Leicester).

  9. Emergency medical training in the 82d Airborne Division. The Gulf War experience.

    PubMed

    Cancio, L C; Goforth, G A

    1993-01-01

    The 82d Airborne Division, as the Army's worldwide contingency division, places unique demands on its medical personnel. This was true particularly during Operations Desert Shield and Desert Storm in 1990-1991. An unprecedented emergency medical training program was carried out in preparation for the Gulf War. All levels of expertise were involved: non-medical Combat Lifesavers, medics, physician assistants, and physicians. Courses provided included Combat Lifesaver provider and refresher training, Basic Trauma Life Support (BTLS) provider and instructor training, Chemical Casualty courses, and a Combat Surgical Skills course. Approximately 736 personnel, including 80 Saudi and allied physicians and medics, participated in these courses. Confidence and competence in handling war casualties at all levels was enhanced greatly. Prepackaged courses such as BTLS enabled the rapid training of large numbers of medical personnel under challenging conditions. PMID:10155478

  10. Prism Foil from an LCD Monitor as a Tool for Teaching Introductory Optics

    ERIC Educational Resources Information Center

    Planinsic, Gorazd; Gojkosek, Mihael

    2011-01-01

    Transparent prism foil is part of a backlight system in LCD monitors that are widely used today. This paper describes the optical properties of the prism foil and several pedagogical applications suitable for undergraduate introductory physics level. Examples include experiments that employ refraction, total internal reflection, diffraction and…

  11. Rotatable prism for pan and tilt

    NASA Technical Reports Server (NTRS)

    Ball, W. B.

    1980-01-01

    Compact, inexpensive, motor-driven prisms change field of view of TV camera. Camera and prism rotate about lens axis to produce pan effect. Rotating prism around axis parallel to lens produces tilt. Size of drive unit and required clearance are little more than size of camera.

  12. Preserving with Prisms: Producing Nets

    ERIC Educational Resources Information Center

    Prummer, Kathy E.; Amador, Julie M.; Wallin, Abraham J.

    2016-01-01

    Two mathematics teachers in a small rural school decided to create a task that would engage seventh graders. The goal of the real-world activity was to help students develop geometric and spatial reasoning and to support their understanding of volume of rectangular prisms. The impetus for the task came from the teachers' desire to engage students…

  13. MODIS airborne simulator visible and near-infrared calibration, 1992 ASTEX field experiment. Calibration version: ASTEX King 1.0

    NASA Technical Reports Server (NTRS)

    Arnold, G. Thomas; Fitzgerald, Michael; Grant, Patrick S.; King, Michael D.

    1994-01-01

    Calibration of the visible and near-infrared (near-IR) channels of the MODIS Airborne Simulator (MAS) is derived from observations of a calibrated light source. For the 1992 Atlantic Stratocumulus Transition Experiment (ASTEX) field deployment, the calibrated light source was the NASA Goddard 48-inch integrating hemisphere. Tests during the ASTEX deployment were conducted to calibrate the hemisphere and then the MAS. This report summarizes the ASTEX hemisphere calibration, and then describes how the MAS was calibrated from the hemisphere data. All MAS calibration measurements are presented and determination of the MAS calibration coefficients (raw counts to radiance conversion) is discussed. In addition, comparisons to an independent MAS calibration by Ames personnel using their 30-inch integrating sphere is discussed.

  14. Airborne Active and Passive L-Band Observations in Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12)

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Yueh, S. H.; Chazanoff, S.; Jackson, T. J.; McNairn, H.; Bullock, P.; Wiseman, G.; Berg, A. A.; Magagi, R.; Njoku, E. G.

    2012-12-01

    NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in October 2014. The objective of the mission is global mapping of soil moisture and freeze/thaw state. Merging of active and passive L-band observations of the mission will enable unprecedented combination of accuracy, resolution, coverage and revisit-time for soil moisture and freeze/thaw state retrieval. For pre-launch algorithm development and validation the SMAP project and NASA coordinated a field campaign named as SMAPVEX12 (Soil Moisture Active Passive Validation Experiment 2012) together with Agriculture and Agri-Food Canada in the vicinity of Winnipeg, Canada in June-July, 2012. The main objective of SMAPVEX12 was acquisition of data record that features long-time series with varying soil moisture and vegetation conditions (for testing the application of time-series approach) over aerial domain of multiple parallel lines (for spatial disaggregation studies). The coincident active and passive L-band data were acquired using the Passive Active L-band System (PALS), which is an airborne radiometer and radar developed for testing L-band retrieval algorithms. For SMAPVEX12 PALS was installed on a Twin Otter aircraft. The flight plan included flights at two altitudes. The higher altitude was used to map the whole experiment domain and the lower altitude was used to obtain measurements over a specific set of field sites. The spatial resolution (and swath) of the radar and radiometer from low altitude was about 600 m and from high altitude about 1500 m. The PALS acquisitions were complemented with high resolution (~10 m) L-band SAR measurements carried out by UAVSAR instrument on-board G-III aircraft. The campaign ran from June 7 until July 19. The PALS instrument conducted 17 brightness temperature and backscatter measurement flights and the UAVSAR conducted 14 backscatter measurement flights. The airborne data acquisition was supported by

  15. The Australian National Airborne Field Experiment 2005: Soil Moisture Remote Sensing at 60 Meter Resolution and Up

    NASA Technical Reports Server (NTRS)

    Kim, E. J.; Walker, J. P.; Panciera, R.; Kalma, J. D.

    2006-01-01

    truth collection over a range of grid spacings, to provide a basis for examining the effects of subpixel variability. However, the native footprint size of the airborne L-band radiometers was always a few hundred meters. During the recently completed (November, 2005) National Airborne Field Experiment (NAFE) campaign in Australia, a compact L-band radiometer was deployed on a small aircraft. This new combination permitted routine observations at native resolutions as high as 60 meters, substantially finer than in previous airborne soil moisture campaigns, as well as satellite footprint areal coverage. The radiometer, the Polarimetric L-band Microwave Radiometer (PLMR) performed extremely well and operations included extensive calibration-related observations. Thus, along with the extensive fine-scale ground truth, the NAFE dataset includes all the ingredients for the first scaling studies involving very-high-native resolution soil moisture observations and the effects of vegetation, roughness, etc. A brief overview of the NAFE will be presented, then examples of the airborne observations with resolutions from 60 m to 1 km will be shown, and early results from scaling studies will be discussed.

  16. Calibration, Sensor Model Improvements and Uncertainty Budget of the Airborne Imaging Spectrometer APEX

    NASA Astrophysics Data System (ADS)

    Hueni, A.

    2015-12-01

    ESA's Airborne Imaging Spectrometer APEX (Airborne Prism Experiment) was developed under the PRODEX (PROgramme de Développement d'EXpériences scientifiques) program by a Swiss-Belgian consortium and entered its operational phase at the end of 2010 (Schaepman et al., 2015). Work on the sensor model has been carried out extensively within the framework of European Metrology Research Program as part of the Metrology for Earth Observation and Climate (MetEOC and MetEOC2). The focus has been to improve laboratory calibration procedures in order to reduce uncertainties, to establish a laboratory uncertainty budget and to upgrade the sensor model to compensate for sensor specific biases. The updated sensor model relies largely on data collected during dedicated characterisation experiments in the APEX calibration home base but includes airborne data as well where the simulation of environmental conditions in the given laboratory setup was not feasible. The additions to the model deal with artefacts caused by environmental changes and electronic features, namely the impact of ambient air pressure changes on the radiometry in combination with dichroic coatings, influences of external air temperatures and consequently instrument baffle temperatures on the radiometry, and electronic anomalies causing radiometric errors in the four shortwave infrared detector readout blocks. Many of these resolved issues might be expected to be present in other imaging spectrometers to some degree or in some variation. Consequently, the work clearly shows the difficulties of extending a laboratory-based uncertainty to data collected under in-flight conditions. The results are hence not only of interest to the calibration scientist but also to the spectroscopy end user, in particular when commercial sensor systems are used for data collection and relevant sensor characteristic information tends to be sparse. Schaepman, et al, 2015. Advanced radiometry measurements and Earth science

  17. Diffractively corrected counter-rotating Risley prisms.

    PubMed

    Nie, Xin; Yang, Hongfang; Xue, Changxi

    2015-12-10

    Using the vector refraction equation and the vector diffraction equation, we obtain the expressions of the direction cosines of the refractive rays for the two wedge prisms, and the direction cosines of the diffractive rays for two wedge grisms, in which diffractive gratings were etched into the prism faces to correct the chromatic aberrations. A mathematical model between the two vector equations is proposed to compare the difference angle chromatic aberrations when the Risley prisms/grisms are rotating at different angles. We conclude that the use of diffractively corrected prisms offers a new method to correct chromatic aberrations in Risley prisms. PMID:26836873

  18. A Liquid Prism for Refractive Index Studies

    NASA Astrophysics Data System (ADS)

    Edmiston, Michael D.

    2001-11-01

    A hollow glass prism filled with liquid becomes a "liquid prism". A simple method for constructing hollow glass prisms is presented. A method is given for a demonstration that uses the liquid prism with a laser or laser pointer so the audience can observe differences in refractive index for various liquids. The demonstration provides a quick and easy determination of the sugar content of soft drinks and juices. The prism makes it easy to determine a numerical value for the refractive index of a liquid.

  19. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  20. Experience with a prototype of the Test Ban Treaty monitoring system for air-borne radioactivity

    NASA Astrophysics Data System (ADS)

    Measday, David F.; Ho, Ernest C. Y.

    2004-01-01

    Monitoring of air-borne radioactivity has been tested on behalf of the Comprehensive Test Ban Treaty Organization. A prototype system was installed at the University of British Columbia, Vancouver, BC in April 1996 and has been operating successfully since then. The air is drawn through a glass-fibre filter for a period of 24 h. A cooling period eliminates products of 222Rn in the uranium series. A germanium detector then counts the γ-rays. Several anthropogenic nuclides such as 123I and 99mTc have been observed from local medical facilities. In addition many natural nuclides have been detected and the most abundant are the products of thoron viz 220Rn, which is in the thorium series. The 239 keV γ-ray from 212Pb has been studied to investigate the reason for significant fluctuations in its intensity. It was found that rain, wind, low temperature and maritime air all decrease the observed activity. A model was created which mimics the variation reasonably well.

  1. Mapping methane concentrations from a controlled release experiment using the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRISng)

    NASA Astrophysics Data System (ADS)

    Thorpe, A. K.; Frankenberg, C.; Roberts, D. A.; Aubrey, A. D.; Green, R. O.; Hulley, G. C.; Hook, S. J.

    2014-12-01

    Airborne imaging spectrometers like the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRISng) are well suited for monitoring local methane sources by covering large regions with the high spatial resolution necessary to resolve emissions. As part of a field campaign with controlled methane releases at the Rocky Mountain Oilfield Testing Center (RMOTC), a number of methane plumes were clearly visible at multiple flux rates and flight altitudes. Images of plumes appeared consistent with wind directions measured at ground stations and were present for fluxes as low as 14.2 cubic meters of methane per hour, equivalent to 0.09 kt/year. Direct comparison of results from AVIRISng and plume dispersion models is ongoing and will be used to assess the potential of constraining emission fluxes using AVIRISng. Methane plumes observed at RMOTC with the Hyperspectral Thermal Emission Spectrometer (HyTES) will also be presented. This controlled release experiment was used to determine the methane sensitivity of AVIRISng and inform sensor design for future imaging spectrometers that could constrain natural and anthropogenic methane emissions on local and regional scales. Imaging spectrometers permit direct attribution of emissions to individual point sources which is particularly useful given the large uncertainties associated with anthropogenic emissions, including industrial point source emissions and fugitive methane from the oil and gas industry. Figure caption: a. AVIRISng true color image indicating tube trailer (TT), meteorological tower (MT), and release point (RP). b. Prominent methane plume and measured enhancements for 70.8 cubic meters per hour methane flux is consistent with wind speed and direction (see arrow) measured by meteorological tower. A linear transect is shown in red and corresponds to enhancements shown in c. d. True color image showing release point (RP). e. Smaller methane plume for 14.2 cubic meters per hour flux. f. Methane

  2. Prism adaptation contrasts perceptual habituation for repetitive somatosensory stimuli.

    PubMed

    Torta, D M; Tatu, M K; Cotroneo, D; Alamia, A; Folegatti, A; Trojan, J

    2016-03-01

    Prism adaptation (PA) is a non-invasive procedure that requires performing a visuo-motor pointing task while wearing prism goggles inducing a visual displacement of the pointed target. This procedure involves a reorganization of sensorimotor coordination, and induces long-lasting effects on numerous higher-order cognitive functions in healthy volunteers and neglect patients. Prismatic displacement (PD) of the visual field can be induced when prisms are worn but no sensorimotor task is required. In this case, it is unlikely that any subsequent reorganization takes place. The effects of PD are short-lived in the sense that they last as long as prisms are worn. In this study we aimed, to the best of our knowledge for the first time, at investigating whether PA and PD induce changes in the perception of intensity of nociceptive and non- nociceptive somatosensory stimuli. We induced, in healthy volunteers, PD (experiment 1), or PA (experiment 2) and asked participants to rate the intensity of the stimuli applied to the hand undergoing the visuo-proprioceptive conflict (experiment 1) or adaptation (experiment 2). Our results indicate that: 1) the visuo-proprioceptive conflict induced by PD does not reduce the perceived intensity of the stimuli, 2) PA prevents perceptual habituation for both nociceptive and non-nociceptive somatosensory stimuli. Moreover, to investigate the possible underlying mechanisms of the effects of PA we conducted a third experiment in which stimuli were applied both at the adapted and the non-adapted hand. In line with the results of experiment 2, we found that perceptual habituation was prevented for stimuli applied onto the adapted hand. Moreover, we observed the same finding for stimuli applied onto the non-adapted hand. This result suggests that the detention of habituation is not merely driven by changes in spatial attention allocation. Taken together, these data indicate that prisms can affect the perceived intensity of somatosensory stimuli

  3. Southern Hemispheric nitrous oxide measurements obtained during 1987 airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Podolske, J. R.; Loewenstein, M.; Strahan, S. E.; Chan, K. Roland

    1988-01-01

    The chemical lifetime of N2O is about 150 years, which makes it an excellent dynamical tracer of air motion on the time scale of the ozone depletion event. For these reasons it was chosen to help test whether dynamical theories of ozone loss over Antarctica were plausible, particularly the theory that upwelling ozone-poor air from the troposphere was replacing ozone-rich stratospheric air. The N2O measurements were made with the Airborne Tunable Laser Absorption Spectrometer (ATLAS) aboard the NASA ER-2 aircraft. The detection technique involves measuring the diffential absorption of the IR laser radiation as it is rapidly scanned over an N2O absorption feature. For the AAOE mission, the instrument was capable of making measurements with a 1 ppb sensitivity, 1 second response time, over an altitude range of 10 to 20 kilometers. The AAOE mission consisted of a series of 12 flights from Punta Arenas (53S) into the polar vortex (approximately 72S) at which time a vertical profile from 65 to 45 km and back was performed. Comparison of the observed profiles inside the vortex with N2O profiles obtained by balloon flights during the austral summer showed that an overall subsidence had occurred during the winter of about 5 to 6 km. Also, over the course of the mission (mid-August to late September), no trend in the N2O vertical profile, either upward or downward, was discernible, eliminating the possibility that upwelling was the cause of the observed ozone decrease.

  4. PRISM Polarimetry of Massive Stars

    NASA Astrophysics Data System (ADS)

    Kerkstra, Brennan; Lomax, Jamie R.; Bjorkman, Karen S.; Bjorkman, Jon Eric; Skiff, Brian; Covey, Kevin R.; Wisniewski, John P.

    2016-01-01

    We present the early results from our long-term, multi-epoch filter polarization survey of massive stars in and around young Galactic clusters. These BVRI polarization data were obtained using the PRISM instrument mounted on the 1.8m Perkins Telescope at Lowell Observatory. We first detail the creation of our new semi-automated polarization data reduction pipeline that we developed to process these data. Next, we present our analysis of the instrumental polarization properties of the PRISM instrument, via observations of polarized and unpolarized standard stars. Finally, we present early results on the total and intrinsic polarization behavior of several isolated, previously suggested classical Be stars, and discuss these results in the context of the larger project.BK acknowledges support from a NSF/REU at the University of Oklahoma. This program was also supported by NSF-AST 11411563, 1412110, and 1412135.

  5. Three timescales in prism adaptation.

    PubMed

    Inoue, Masato; Uchimura, Motoaki; Karibe, Ayaka; O'Shea, Jacinta; Rossetti, Yves; Kitazawa, Shigeru

    2015-01-01

    It has been proposed that motor adaptation depends on at least two learning systems, one that learns fast but with poor retention and another that learns slowly but with better retention (Smith MA, Ghazizadeh A, Shadmehr R. PLoS Biol 4: e179, 2006). This two-state model has been shown to account for a range of behavior in the force field adaptation task. In the present study, we examined whether such a two-state model could also account for behavior arising from adaptation to a prismatic displacement of the visual field. We first confirmed that an "adaptation rebound," a critical prediction of the two-state model, occurred when visual feedback was deprived after an adaptation-extinction episode. We then examined the speed of decay of the prism aftereffect (without any visual feedback) after repetitions of 30, 150, and 500 trials of prism exposure. The speed of decay decreased with the number of exposure trials, a phenomenon that was best explained by assuming an "ultraslow" system, in addition to the fast and slow systems. Finally, we compared retention of aftereffects 24 h after 150 or 500 trials of exposure: retention was significantly greater after 500 than 150 trials. This difference in retention could not be explained by the two-state model but was well explained by the three-state model as arising from the difference in the amount of adaptation of the "ultraslow process." These results suggest that there are not only fast and slow systems but also an ultraslow learning system in prism adaptation that is activated by prolonged prism exposure of 150-500 trials. PMID:25298383

  6. PRISM3/GISS Topographic Reconstruction

    USGS Publications Warehouse

    Sohl, Linda E.; Chandler, Mark A.; Schmunk, Robert B.; Mankoff, Ken; Jonas, Jeffrey A.; Foley, Kevin M.; Dowsett, Harry J.

    2009-01-01

    The PRISM3/GISS topographic reconstruction is one of the global data sets incorporated into a new reconstruction for the mid-Piacenzian warm interval of the Pliocene, at about 3.3 to 3.0 Ma. The PRISM3/GISS topography-gridded data set is a digitization of a graphical reconstruction, provided at 2 deg x 2 deg resolution and based on updated paleoaltimetry data and a refined land/ocean mask. Mid-Piacenzian topography as shown in this data set is generally quite similar to modern topography, with three notable differences: (1) the coastline as shown is 25 meters higher than modern sea level, reflecting the hypothesized reduction in ice sheet volume; (2) Hudson Bay is filled in to low elevation, in the absence of evidence for submergence at that time; and (3) the West Antarctic ice sheet is absent, permitting open seaways to exist in Ellsworth and Marie Byrd Lands. Two alternate ice sheet configurations with corresponding vegetation schemes are available; one is a minor modification of the PRISM2 ice reconstruction, and one is derived from the British Antarctic Survey Ice Sheet Model (BAS ISM).

  7. ePRISM: A case study in multiple proxy and mixed temporal resolution integration

    USGS Publications Warehouse

    Robinson, Marci M.; Dowsett, Harry J.

    2010-01-01

    As part of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project, we present the ePRISM experiment designed I) to provide climate modelers with a reconstruction of an early Pliocene warm period that was warmer than the PRISM interval (similar to 3.3 to 3.0 Ma), yet still similar in many ways to modern conditions and 2) to provide an example of how best to integrate multiple-proxy sea surface temperature (SST) data from time series with varying degrees of temporal resolution and age control as we begin to build the next generation of PRISM, the PRISM4 reconstruction, spanning a constricted time interval. While it is possible to tie individual SST estimates to a single light (warm) oxygen isotope event, we find that the warm peak average of SST estimates over a narrowed time interval is preferential for paleoclimate reconstruction as it allows for the inclusion of more records of multiple paleotemperature proxies.

  8. Temperature and horizontal wind measurements on the ER-2 aircraft during the 1987 airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Chan, K. Roland; Scott, Stan G.; Bui, T. Paul; Bowen, Stuart W.; Day, Jon

    1988-01-01

    The NASA ER-2 aircraft is equipped with special instrumentation to provide accurate in situ measurement of the atmospheric state variables during flight. The Meteorological Measurement System (MMS) on the ER-2 aircraft is described. Since the meteorological parameters (temperature, pressure, and wind vector) are extensively used by other ER-2 experimenters for data processing and interpretation, the accuracy and resolution of each of these parameters are assessed and discussed. During the 1987 Airborne Antarctic Ozone Experiment (AAOE) mission, the ER-2 aircraft was stationed at Punta Arenas, Chile (53 S, 72 W), and successfully flew over Antarctica on 12 occasions between August 17 and September 22, 1987. On each of the 12 flights, the ER-2 aircraft flight plan was to take off at approximately the same local time, fly southward at a near constant potential temperature surface, descend and ascend at the southernmost terminus at about 72 S over Antarctica and return northward at either the same or a different constant potential temperature surface. The measurements of the MMS experiment during the AAOE mission are presented. MMS data are organized to provide a composite view of the polar atmosphere, which is characterized by frigid temperatures and high zonal winds. Altitudinal variations of the temperature measurement (during takeoff/landing at Punta Arenas and during descent/ascent at the southern terminus) and latitudinal variations of the zonal wind (on near constant potential temperature surfaces) are emphasized and discussed.

  9. A laser communication experiment utilizing the ACT satellite and an airborne laser transceiver

    NASA Technical Reports Server (NTRS)

    Provencher, Charles E., Jr.; Spence, Rodney L.

    1988-01-01

    The launch of a laser communication transmitter package into geosynchronous Earth orbit onboard the Advanced Communications Technology Satellite (ACTS) will present an excellent opportunity for the experimental reception of laser communication signals transmitted from a space orbit. The ACTS laser package includes both a heterodyne transmitter (Lincoln Labs design) and a direct detection transmitter (Goddard Space Flight Center design) with both sharing some common optical components. NASA Lewis Research Center's Space Electronics Division is planning to perform a space communication experiment utilizing the GSFC direct detection laser transceiver. The laser receiver will be installed within an aircraft provided with a glass port for the reception of the signal. This paper describes the experiment and the approach to performing such an experiment. Described are the constraints placed on the NASA Lewis experiment by the performance parameters of the laser transmitter and by the ACTS spacecraft operations. The conceptual design of the receiving terminal is given; also included is the anticipated capability of the detector.

  10. Cardiac rate detection method based on the beam splitter prism

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Liu, Xiaohua; Liu, Ming; Zhao, Yuejin; Dong, Liquan; Zhao, Ruirui; Jin, Xiaoli; Zhao, Jingsheng

    2013-09-01

    A new cardiac rate measurement method is proposed. Through the beam splitter prism, the common-path optical system of transmitting and receiving signals is achieved. By the focusing effect of the lens, the small amplitude motion artifact is inhibited and the signal-to-noise is improved. The cardiac rate is obtained based on the PhotoPlethysmoGraphy (PPG). We use LED as the light source and use photoelectric diode as the receiving tube. The LED and the photoelectric diode are on the different sides of the beam splitter prism and they form the optical system. The signal processing and display unit is composed by the signal processing circuit, data acquisition device and computer. The light emitted by the modulated LED is collimated by the lens and irradiates the measurement target through the beam splitter prism. The light reflected by the target is focused on the receiving tube through the beam splitter prism and another lens. The signal received by the photoelectric diode is processed by the analog circuit and obtained by the data acquisition device. Through the filtering and Fast Fourier Transform, the cardiac rate is achieved. We get the real time cardiac rate by the moving average method. We experiment with 30 volunteers, containing different genders and different ages. We compare the signals captured by this method to a conventional PPG signal captured concurrently from a finger. The results of the experiments are all relatively agreeable and the biggest deviation value is about 2bmp.

  11. Inverse solutions for tilting orthogonal double prisms.

    PubMed

    Li, Anhu; Ding, Ye; Bian, Yongming; Liu, Liren

    2014-06-10

    An analytical reverse solution and actual examples are given to show how to direct a laser beam from a pair of orthogonal prisms to given targets in free space. Considering the influences of double-prism structural parameters, a lookup table method to seek the numerical reverse solution of each prism's tilting angle is also proposed for steering the double-prism orientation to track a target position located in the near field. Some case studies, as well as a specified elliptical target trajectory scanned by the cam-based driving double prisms, exhibit the significant application values of the theoretical derivation. The analytic reverse and numerical solutions can be generalized to investigate the synthesis of scanning patterns and the controlling strategy of double-prism tilting motion, the potentials of which can be explored to perform the orientation and position tracking functions in applications of precision engineering fields. PMID:24921137

  12. Error and adjustment of reflecting prisms

    NASA Astrophysics Data System (ADS)

    Mao, Wenwei

    1997-12-01

    A manufacturing error in the orientation of the working planes of a reflecting prism, such as an angle error or an edge error, will cause the optical axis to deviate and the image to lean. So does an adjustment (position error) of a reflecting prism. A universal method to be used to calculate the optical axis deviation and the image lean caused by the manufacturing error of a reflecting prism is presented. It is suited to all types of reflecting prisms. A means to offset the position error against the manufacturing error of a reflecting prism and the changes of image orientation is discussed. For the calculation to be feasible, a surface named the 'separating surface' is introduced just in front of the real exit face of a real prism. It is the image of the entrance face formed by all reflecting surfaces of the real prism. It can be used to separate the image orientation change caused by the error of the prism's reflecting surfaces from the image orientation change caused by the error of the prism's refracting surface. Based on ray tracing, a set of simple and explicit formulas of the optical axis deviation and the image lean for a general optical wedge is derived.

  13. MSFC Doppler Lidar Science experiments and operations plans for 1981 airborne test flight

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Bilbro, J. W.; Kaufman, J. W.

    1981-01-01

    The flight experiment and operations plans for the Doppler Lidar System (DLS) are provided. Application of DLS to the study of severe storms and local weather penomena is addressed. Test plans involve 66 hours of flight time. Plans also include ground based severe storm and local weather data acquisition.

  14. Near UV atmospheric absorption measurements from the DC-8 aircraft during the 1987 airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Wahner, A.; Jakoubek, R. O.; Ravishankara, A. R.; Mount, G. H.; Schmeltekopf, A. L.

    1988-01-01

    During the Airborne Antarctic Ozone Experiment from 28 August to 30 September 1987 near UV zenith scattered sky measurements were made over Antarctic from the NASA DC-8 aircraft using a one third m spectrograph equipped with a diode-array detector. Scattered sky light data in the wavelength range 348 nm to 388 nm was spectrally analyzed for O3, NO2, OClO, and BrO column abundances. Slant column abudances of O3, NO2, OClO and BrO were determined, using a computer algorithm of non-linear and linear least square correlation of Antarctic scattered sky spectra to laboratory absorption cross section data. Using measured vertical electrochemical sonde ozone profiles from Palmer, Halley Bay, and the South Pole Stations the slant columns of O3 were converted into vertical column abundances. The vertical column amounts of NO2, OClO, and BrO were derived using vertical profiles calculated by a chemical model appropriate for Antarctica. NO2 vertical column abundances show steep latitudinal decrease with increasing latitude for all 13 flights carried out during the mission. In the regions where NO2 abudances are low, OClO and BrO were observed. The spatial and temporal vertical column abundances of these species are discussed in the context of the chemistry and dynamics in the antarctic polar vortex during the austral spring.

  15. Computational economy improvements in PRISM

    SciTech Connect

    Tonse, Shaheen R.; Brown, Nancy J.

    2003-01-29

    The PRISM piecewise solution mapping procedure, in which the solution of the chemical kinetic ODE system is parameterized with quadratic polynomials, is applied to CFD simulations of H{sub 2}+air combustion. Initial cost of polynomial construction is expensive, but it is recouped as the polynomial is reused. We present two methods that help us to parameterize only in places that will ultimately have high reuse. We also implement non-orthogonal Gosset factorial designs, that reduce polynomial construction costs by a factor of two over previously used orthogonal factorial designs.

  16. Preliminary results from an airborne experiment using along-track interferometry for ground moving target indication

    NASA Technical Reports Server (NTRS)

    Chapin, Elaine; Chen, Curtis W.

    2005-01-01

    Synthetic aperture radar (SAR) along track interferometry (ATI) has been used extensively to measure ocean surface currents. Given its ability to measure small velocities of relatively radar-dark water surfaces, there is great potential that this technique can be adapted for ground moving target indication (GMTI) applications, particularly as a method for detecting very slwo targets with small radar cross sections. In this paper we describe preliminary results from an ATI GMTI experiment.

  17. Rotating prism design for continuous image compensation cameras.

    PubMed

    Waddell, J H

    1966-07-01

    The rotating prisms used in high-speed motion-picture cameras have been designed empirically since their first use thirty-two years ago. During that period, there have been advances made in glass technology and fabrication which have resulted in the production of better images. This paper summarizes the latest state of the art wherein it is demonstrated that prism design should not be confined to the D line of the spectrum, but expanded to cover the uv and ir portions of the spectrum. The prism design shall cover: (1) selection of the average angle of incidence for exposure; (2) the choice of glass or other transparent media; (3) the correlationship between image and film velocity; and (4) discussion of the inherent aberrations, namely, nonlinear distortion, sagittal and tangential coma, prismatic astigmatism, change in back focus due to prism rotation; (5) shuttering action; and (6) aperture design. There have only been fragmentary data published on the subject to date. It is necessary to secure this thirty years' experience before this datum is forever lost. Recommendation for future action is made, including computer studies for optimization of design. PMID:20049049

  18. New insights into the properties of contrail cirrus and their impact on climate from airborne experiments

    NASA Astrophysics Data System (ADS)

    Voigt, Christiane; Schumann, Ulrich; Minikin, Andreas; Schlager, Hans; Anderson, Bruce

    2016-04-01

    Current growth rates in aviation demand a profound scientific data base of contrail cirrus properties in order to accurately assess their climate impact. In particular, the differentiation of contrail cirrus in natural cirrus fields is challenging. Direct observations of contrail cirrus throughout their life cycle are scarce and therefore limit our understanding of the climate effects from contrail cirrus. Here, we give new insights into the growth, life-cycle and climate impact from contrail cirrus based on results from suite of aircraft experiments. NASA's ACCESSII mission focused on the detection of aircraft emissions and initial contrail stages. Nascent contrails were detected at cruise altitudes at 100 m distance to the engine exit. Contrail growth to 10-min contrail age was investigated during DLR's CONCERT campaigns. Finally, the objective of the ML-CIRRUS experiment was to study the life cycle and climate impact of contrail cirrus. The contrail measurements are related to previous observations and discussed in the context of recent developments in contrail modeling. Highlights include the quantification of the effects of aircraft type on contrail microphysics, the analysis of ice particle shapes and the quantitative distinction of contrail cirrus and natural cirrus.

  19. Airborne tunable diode laser measurements of formaldehyde during the 1997 North Atlantic Regional Experiment

    NASA Astrophysics Data System (ADS)

    Fried, Alan; Wert, Bryan P.; Henry, Bruce E.; Drummond, James R.; Frost, Gregory J.; Lee, Yin-Nan

    1999-10-01

    Accurate measurements of formaldehyde (CH2O), a trace gas found throughout the atmosphere, are important for furthering our understanding of hydrocarbon oxidation processes in the atmosphere. During the 1997 North Atlantic Regional Experiment numerous trace gases, including CH2O, were measured onboard a WP3 aircraft operated by the National Oceanic and Atmospheric Administration to study continental transport and photochemistry over remote regions of the North Atlantic Ocean. A highly sensitive tunable diode laser absorption spectrometer was employed in acquiring ambient CH2O measurements on 10 different flights during this campaign. A second instrument, based on chemical derivatization of ambient CH2O with DNPH, was also operated on the WP3 aircraft. This paper will briefly summarize the aircraft TDLAS system employed and discuss the level of agreement obtained between both instruments. This will be followed by a brief discussion of the results, and concludes with a preliminary comparison of the measurements with a 0-dimensional box model constrained by the measurements of other species during the campaign.

  20. Preliminary airborne measurements for the SR-71 sonic boom propagation experiment

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Ehernberger, L. J.; Whitmore, Stephen A.

    1995-01-01

    SR-71 sonic boom signatures were measured to validate sonic boom propagation prediction codes. An SR-71 aircraft generated sonic booms from Mach 1.25 to Mach 1.6, at altitudes of 31,000 to 48,000 ft, and at various gross weights. An F-16XL aircraft measured the SR-71 near-field shock waves from close to the aircraft to more than 8,000 ft below, gathering 105 signatures. A YO-3A aircraft measured the SR-71 sonic booms from 21,000 to 38,000 feet below, recording 17 passes. The sonic booms at ground level and atmospheric data were recorded for each flight. Data analysis is underway. Preliminary results show that shock wave patterns and coalescence vary with SR-71 gross weight, Mach number, and altitude. For example, noncoalesced shock wave signatures were measured by the YO-3A at 21,000 ft below the SR-71 aircraft while at a low gross weight, Mach 1.25, and 31,000-ft altitude. This paper describes the design and execution of the flight research experiment. Instrumentation and flight maneuvers of the SR-71, F-16XL, and YO-3A aircraft and sample sonic boom signatures are included.

  1. Development of the Lidar Atmospheric Sensing Experiment (LASE): An Advanced Airborne DIAL Instrument

    NASA Technical Reports Server (NTRS)

    Moore, Alvah S., Jr.; Brown, Kevin E.; Hall, William M.; Barnes, James C.; Edwards, William C.; Petway, Larry B.; Little, Alan D.; Luck, William S., Jr.; Jones, Irby W.; Antill, Charles W., Jr.

    1997-01-01

    The Lidar Atmospheric Sensing Experiment (LASE) Instrument is the first fully-engineered, autonomous Differential Absorption Lidar (DIAL) System for the measurement of water vapor in the troposphere (aerosol and cloud measurements are included). LASE uses a double-pulsed Ti:Sapphire laser for the transmitter with a 30 ns pulse length and 150 mJ/pulse. The laser beam is "seeded" to operate on a selected water vapor absorption line in the 815-nm region using a laser diode and an onboard absorption reference cell. A 40 cm diameter telescope collects the backscattered signals and directs them onto two detectors. LASE collects DIAL data at 5 Hz while onboard a NASA/Ames ER-2 aircraft flying at altitudes from 16-21 km. LASE was designed to operate autonomously within the environment and physical constraints of the ER-2 aircraft and to make water vapor profile measurements across the troposphere to better than 10% accuracy. LASE has flown 19 times during the development of the instrument and the validation of the science data. This paper describes the design, operation, and reliability of the LASE Instrument.

  2. Generation of High Resolution Global DSM from ALOS PRISM

    NASA Astrophysics Data System (ADS)

    Takaku, J.; Tadono, T.; Tsutsui, K.

    2014-04-01

    Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), one of onboard sensors carried on the Advanced Land Observing Satellite (ALOS), was designed to generate worldwide topographic data with its optical stereoscopic observation. The sensor consists of three independent panchromatic radiometers for viewing forward, nadir, and backward in 2.5 m ground resolution producing a triplet stereoscopic image along its track. The sensor had observed huge amount of stereo images all over the world during the mission life of the satellite from 2006 through 2011. We have semi-automatically processed Digital Surface Model (DSM) data with the image archives in some limited areas. The height accuracy of the dataset was estimated at less than 5 m (rms) from the evaluation with ground control points (GCPs) or reference DSMs derived from the Light Detection and Ranging (LiDAR). Then, we decided to process the global DSM datasets from all available archives of PRISM stereo images by the end of March 2016. This paper briefly reports on the latest processing algorithms for the global DSM datasets as well as their preliminary results on some test sites. The accuracies and error characteristics of datasets are analyzed and discussed on various fields by the comparison with existing global datasets such as Ice, Cloud, and land Elevation Satellite (ICESat) data and Shuttle Radar Topography Mission (SRTM) data, as well as the GCPs and the reference airborne LiDAR/DSM.

  3. Application of airborne laser scanner measurements of ocean roughness to the calibration and validation of a satellite bistatic radar experiment

    NASA Astrophysics Data System (ADS)

    Parrin, J.; Garrison, J. L.

    2006-12-01

    A high-resolution airborne laser scanner, from the National Center for Airborne Laser Mapping (NCALM) was used to profile the ocean surface in an attempt to experimentally measure the ocean height spectrum down to wavelengths as small as a few centimetres. In October of 2005, three data collections were scheduled, during overpasses of the UK-DMC satellite, off the coast of Virginia. UK-DMC carries an experimental bistatic radar receiver, which uses Global Navigation Satellite System (GNSS) signals as illumination sources. Most models for reflected GNSS signals relate the shape of the signal correlation waveforms to the ocean roughness, parameterized as a probability distribution (PDF) of surface slopes. This statistical description of the ocean surface must first be filtered to wavelengths greater than some fraction of the GNSS wavelength of 19 cm. Past experimental campaigns have used more common in-situ measurements, such as wind speed, for comparison with GNSS waveforms. These types of measurements will require the assumption of some empirical model for the ocean height spectrum, allowing the computation of the filtered slope statistics. Proposed applications of reflected GNSS signals include the correction of ocean roughness effects in passive microwave radiometry. To evaluate the feasibility of GNSS reflections for this measurement, it is important to make a more direct measurement of the ocean surface slope statistics, without the assumption of a spectrum model. In these experiments, a direct measurement of this spectrum was attempted, using the NCALM system. The laser scanner was operated on a low altitude (500 m) aircraft, at the highest sample rate (33KHz), generating ocean height measurements with an along-track separation of a few millimetres. The laser illuminates a spot on the ocean surface that is smaller than 10 cm, however, limiting the smallest resolvable wavelength to something on that order. Laser data were collected along multiple flight lines

  4. Forest Inventory Attribute Estimation Using Airborne Laser Scanning, Aerial Stereo Imagery, Radargrammetry and Interferometry-Finnish Experiences of the 3d Techniques

    NASA Astrophysics Data System (ADS)

    Holopainen, M.; Vastaranta, M.; Karjalainen, M.; Karila, K.; Kaasalainen, S.; Honkavaara, E.; Hyyppä, J.

    2015-03-01

    Three-dimensional (3D) remote sensing has enabled detailed mapping of terrain and vegetation heights. Consequently, forest inventory attributes are estimated more and more using point clouds and normalized surface models. In practical applications, mainly airborne laser scanning (ALS) has been used in forest resource mapping. The current status is that ALS-based forest inventories are widespread, and the popularity of ALS has also raised interest toward alternative 3D techniques, including airborne and spaceborne techniques. Point clouds can be generated using photogrammetry, radargrammetry and interferometry. Airborne stereo imagery can be used in deriving photogrammetric point clouds, as very-high-resolution synthetic aperture radar (SAR) data are used in radargrammetry and interferometry. ALS is capable of mapping both the terrain and tree heights in mixed forest conditions, which is an advantage over aerial images or SAR data. However, in many jurisdictions, a detailed ALS-based digital terrain model is already available, and that enables linking photogrammetric or SAR-derived heights to heights above the ground. In other words, in forest conditions, the height of single trees, height of the canopy and/or density of the canopy can be measured and used in estimation of forest inventory attributes. In this paper, first we review experiences of the use of digital stereo imagery and spaceborne SAR in estimation of forest inventory attributes in Finland, and we compare techniques to ALS. In addition, we aim to present new implications based on our experiences.

  5. Airborne atmospheric electricity experiments

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.

    1985-01-01

    During the 1984 U2 spring flight program, lightning spectra were measured in the wavelengths from 380 nm to 900 nm with a temporal resolution of 5 ms. With this capability, researchers simultaneously acquired both visible near-infrared lightning spectra on a pulse to pulse basis, so that the spectral variability within a flash, as well as flash to flash variations, can be studied. Preliminary results suggest that important variations do occur, particularly in the strengths of the hydrogen and singly ionized nitrogen emission lines. Also, the results have revealed significant differences in the integrated energy distributions between the lightning spectra measured above clouds and the spectral measurements of cloud-to-ground lightning made at the ground. In particular, the ratio of the energy in the near-IR to that in the visible is around 1 to 2 for cloud top spectra versus about 1/3 for surface observations. Detailed analyses of the 1984 lightning spectral data is being conducted. This data should provide improved understanding about the optical transmission properties of thunderclouds and the physics of the lightning discharge process. Efforts continue on developing and testing background signal removal algorithms using U2 spectometer and optical array sensor day-flight data sets. The goal of this research is to develop an algorithm satisfying Lightning Mapper Sensor requirements.

  6. Highly dispersive photonic band-gap prism.

    PubMed

    Lin, S Y; Hietala, V M; Wang, L; Jones, E D

    1996-11-01

    We propose the concept of a photonic band-gap (PBG) prism based on two-dimensional PBG structures and realize it in the millimeter-wave spectral regime. We recognize the highly nonlinear dispersion of PBG materials near Brillouin zone edges and utilize the dispersion to achieve strong prism action. Such a PBG prism is very compact if operated in the optical regime, ~20 mm in size for lambda ~ 700 nm, and can serve as a dispersive element for building ultracompact miniature spectrometers. PMID:19881796

  7. Characteristic analysis of a polarization output coupling Porro prism resonator

    NASA Astrophysics Data System (ADS)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-02-01

    An Electro-optical Q-switched Nd:YAG slab laser with a crossed misalignment Porro prism resonator for space applications has been theoretically and experimentally investigated. The phase shift induced by the combination of different wave plates and Porro prism azimuth angles have been studied for creating high loss condition prior to Q-switching. The relationship of the effective output coupling reflectivity and the employed Q-switch driving voltage is explored by using Jones matrix optics. In the experiment, the maximum output pulse energy of 93 mJ with 14-ns pulse duration is obtained at the repetition rate of 20 Hz and the optical-to-optical conversion efficiency is 16.8%. The beam quality factors are M 2 x = 2.5 and M 2y = 2.2, respectively.

  8. Relationship between frequency and deflection angle in the DNA prism.

    PubMed

    Chen, Zhen; Dorfman, Kevin D

    2013-01-01

    The DNA prism is a modification of the standard pulsed-field electrophoresis protocol to provide a continuous separation, where the DNA are deflected at an angle that depends on their molecular weight. The standard switchback model for the DNA prism predicts a monotonic increase in the deflection angle as a function of the frequency for switching the field until a plateau regime is reached. However, experiments indicate that the deflection angle achieves a maximum value before decaying to a size-independent value at high frequencies. Using Brownian dynamics simulations, we show that the maximum in the deflection angle is related to the reorientation time for the DNA and the decay in deflection angle at high frequencies is due to inadequate stretching. The generic features of the dependence of the deflection angle on molecular weight, switching frequency, and electric field strength explain a number of experimental phenomena. PMID:23410375

  9. 21 CFR 886.1650 - Ophthalmic bar prism.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic bar prism. 886.1650 Section 886.1650...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1650 Ophthalmic bar prism. (a) Identification. An ophthalmic bar prism is a device that is a bar composed of fused prisms of gradually...

  10. 21 CFR 886.1650 - Ophthalmic bar prism.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic bar prism. 886.1650 Section 886.1650...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1650 Ophthalmic bar prism. (a) Identification. An ophthalmic bar prism is a device that is a bar composed of fused prisms of gradually...

  11. 21 CFR 886.1650 - Ophthalmic bar prism.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic bar prism. 886.1650 Section 886.1650...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1650 Ophthalmic bar prism. (a) Identification. An ophthalmic bar prism is a device that is a bar composed of fused prisms of gradually...

  12. 21 CFR 886.1650 - Ophthalmic bar prism.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic bar prism. 886.1650 Section 886.1650...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1650 Ophthalmic bar prism. (a) Identification. An ophthalmic bar prism is a device that is a bar composed of fused prisms of gradually...

  13. 21 CFR 886.1650 - Ophthalmic bar prism.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic bar prism. 886.1650 Section 886.1650...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1650 Ophthalmic bar prism. (a) Identification. An ophthalmic bar prism is a device that is a bar composed of fused prisms of gradually...

  14. Orientation of Oblique Airborne Image Sets - Experiences from the Isprs/eurosdr Benchmark on Multi-Platform Photogrammetry

    NASA Astrophysics Data System (ADS)

    Gerke, M.; Nex, F.; Remondino, F.; Jacobsen, K.; Kremer, J.; Karel, W.; Hu, H.; Ostrowski, W.

    2016-06-01

    During the last decade the use of airborne multi camera systems increased significantly. The development in digital camera technology allows mounting several mid- or small-format cameras efficiently onto one platform and thus enables image capture under different angles. Those oblique images turn out to be interesting for a number of applications since lateral parts of elevated objects, like buildings or trees, are visible. However, occlusion or illumination differences might challenge image processing. From an image orientation point of view those multi-camera systems bring the advantage of a better ray intersection geometry compared to nadir-only image blocks. On the other hand, varying scale, occlusion and atmospheric influences which are difficult to model impose problems to the image matching and bundle adjustment tasks. In order to understand current limitations of image orientation approaches and the influence of different parameters such as image overlap or GCP distribution, a commonly available dataset was released. The originally captured data comprises of a state-of-the-art image block with very high overlap, but in the first stage of the so-called ISPRS/EUROSDR benchmark on multi-platform photogrammetry only a reduced set of images was released. In this paper some first results obtained with this dataset are presented. They refer to different aspects like tie point matching across the viewing directions, influence of the oblique images onto the bundle adjustment, the role of image overlap and GCP distribution. As far as the tie point matching is concerned we observed that matching of overlapping images pointing to the same cardinal direction, or between nadir and oblique views in general is quite successful. Due to the quite different perspective between images of different viewing directions the standard tie point matching, for instance based on interest points does not work well. How to address occlusion and ambiguities due to different views onto

  15. Observations of TTL water vapor and cirrus properties from the NASA Global Hawk during the Airborne Tropical TRopopause EXperiment

    NASA Astrophysics Data System (ADS)

    Thornberry, Troy; Rollins, Andrew; Gao, Ru-Shan; Woods, Sarah; Lawson, Paul; Bui, Thaopaul; Pfister, Leonhard; Fahey, David

    2015-04-01

    Despite its very low mixing ratios relative to the troposphere, water vapor in the lower stratosphere (LS) plays a significant role in Earth's radiative balance and climate system and is an important constituent in stratospheric chemistry. The low H2O content of air entering the LS is established to first order by dehydration processes controlled by the cold temperatures of the tropical tropopause layer (TTL), especially over the western Pacific. Cirrus clouds occur with high frequency and large spatial extent in the TTL, and those occurring near the thermal tropopause facilitate the final dehydration of stratosphere-bound air parcels. Uncertainties in aspects of the nucleation and growth of cirrus cloud particles and the sparseness of in situ water vapor and cirrus cloud observations with sufficient spatial resolution limit our ability to fully describe the final stages of the dehydration process before air enters the LS in the tropics. The NASA Airborne Tropical TRopopause EXperiment (ATTREX) measurement campaign has yielded more than 140 hours of sampling from the Global Hawk UAS in the Pacific TTL during deployments in winter 2013 and 2014, including more than 30 hours sampling TTL cirrus. Cirrus clouds were encountered throughout the TTL, up to the tropopause (17-18 km), with ice water contents (IWC) down to the detection limit of 3 μg m-3 and water vapor mixing ratios as low as 1.5 ppm. Most TTL cirrus sampled had particle number concentrations of less than 100 L-1, but some had concentrations ranging up to more than 1000 L-1. The mean value for relative humidity with respect to ice within cirrus was near 100%, but encompassed a range from < 50% to higher than 150%. The high spatial and temporal resolution in situ measurements of water vapor and cirrus cloud properties made during ATTREX provide an outstanding dataset by which to characterize the Pacific TTL environment and evaluate our current understanding of the dynamical and microphysical processes that

  16. An Easily Constructed Trigonal Prism Model.

    ERIC Educational Resources Information Center

    Yamana, Shukichi

    1984-01-01

    A model of a trigonal prism which is useful for teaching stereochemistry (especially of the neodymium enneahydrate ion), can be made easily by using a sealed, empty envelope. The steps necessary to accomplish this task are presented. (JN)

  17. Polarisation losses in a ring prism cavity

    SciTech Connect

    Kuryatov, V N; Sokolov, A L

    2000-02-28

    The polarisation losses in a ring cavity, formed by total-internal-reflection prisms, were analysed. All the sources of the polarisation losses are indicated and expressions for their calculation are presented. The limit to loss reduction in cavities of this kind, set by the difference between the radii of curvature of the radiation wavefront and of the refracting prism faces, was determined. (laser gyroscopes)

  18. OPERA: Objective Prism Enhanced Reduction Algorithms

    NASA Astrophysics Data System (ADS)

    Universidad Complutense de Madrid Astrophysics Research Group

    2015-09-01

    OPERA (Objective Prism Enhanced Reduction Algorithms) automatically analyzes astronomical images using the objective-prism (OP) technique to register thousands of low resolution spectra in large areas. It detects objects in an image, extracts one-dimensional spectra, and identifies the emission line feature. The main advantages of this method are: 1) to avoid subjectivity inherent to visual inspection used in past studies; and 2) the ability to obtain physical parameters without follow-up spectroscopy.

  19. A Cryogenic, Insulating Suspension System for the High Resolution Airborne Wideband Camera (HAWC)and Submillemeter And Far Infrared Experiment (SAFIRE) Adiabatic Demagnetization Refrigerators (ADRs)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Jackson, Michael L.; Shirron, Peter J.; Tuttle, James G.

    2002-01-01

    The High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter And Far Infrared Experiment (SAFIRE) will use identical Adiabatic Demagnetization Refrigerators (ADR) to cool their detectors to 200mK and 100mK, respectively. In order to minimize thermal loads on the salt pill, a Kevlar suspension system is used to hold it in place. An innovative, kinematic suspension system is presented. The suspension system is unique in that it consists of two parts that can be assembled and tensioned offline, and later bolted onto the salt pill.

  20. Operational overview of NASA GTE/CITE 1 airborne instrument intercomparisons - Carbon monoxide, nitric oxide, and hydroxyl instrumentation. [Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation

    NASA Technical Reports Server (NTRS)

    Beck, Sherwin M.; Bendura, Richard J.; Mcdougal, David S.; Hoell, James M., Jr.; Gregory, Gerald L.; Sachse, Glen W.; Hill, Gerald F.; Curfman, Howard J., Jr.; Torres, Arnold L.; Condon, Estelle P.

    1987-01-01

    An overview of the airborne intercomparisons of CO, NO, and OH instrumentation is presented in this first paper of the series on the NASA Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation (GTE/CITE 1). This paper provides the reader with background information about several important characteristics of the project. These include the overall objectives and approach, the measurements taken, the intercomparison protocol, aircraft platform, profiles of each aircraft flight, and the participants. A synopsis of the overall results of the CO, NO, and OH instrument intercomparisons is also included. Companion papers discuss the detailed results of the CO and NO intercomparison tests as well as pertinent scientific findings.

  1. Remote sensing observations of daytime column NO sub 2 during the Airborne Antarctic Ozone Experiment, August 22 to October 2, 1987

    SciTech Connect

    Wahner, A.; Jakoubek, R.O.; Mount, G.H.; Ravishankara, A.R.; Schmeltekopf, A.L. )

    1989-11-30

    A sensitive absorption spectrograph was flown on the NASA DC-8 aircraft as part of the 1987 Airborne Antarctic Ozone Experiment to measure column abundances of O{sub 3}, NO{sub 2}, OClO, and BrO inside the Antarctic polar vortex. The instrument functioned successfully on all flights. Slant column NO{sub 2} measurements were made every 300 s whenever light levels permitted observation with an absolute accuracy better than 20% and with a detection limit of 3.4 {times} 10{sup 15} cm{sup {minus}2} slant column. These measurements are presented and compared with TOMS total ozone along the flight track.

  2. Development of the APEX experiment, preparatory activities for an airborne system supporting future space-borne imaging spectrometers in Europe

    NASA Astrophysics Data System (ADS)

    Schaepman, M.

    2002-06-01

    APEX is an airborne imaging spectrometer built in the framework of ESA PRODEX (Programme développement d'expériences scientifiques) with the support of ESA EO-EP. It is based on a Swiss/Belgian initiative and designed to be an airborne simulator for the support and development of future spaceborne systems for the study of land surface processes. It will be able to contribute to the simulation, calibration, and validation of planned ESA imaging spectrometer missions (e.g., MERIS/ENVISAT, SPECTRA, etc.) in the 400 - 2500 nm region of the spectrum. APEX will foster the use of imaging spectrometer data in Europe and will support the application development for imaging spectroscopy products. The industrial consortium building the instrument is composed out of joint Swiss/Belgian industries with the support of ESA EO-EP (e.g., detectors, calibration, technical management).

  3. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  4. The PRISM3D paleoenvironmental reconstruction

    USGS Publications Warehouse

    Dowsett, H.; Robinson, M.; Haywood, A.M.; Salzmann, U.; Hill, Daniel; Sohl, L.E.; Chandler, M.; Williams, Mark; Foley, K.; Stoll, D.K.

    2010-01-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstruction is an internally consistent and comprehensive global synthesis of a past interval of relatively warm and stable climate. It is regularly used in model studies that aim to better understand Pliocene climate, to improve model performance in future climate scenarios, and to distinguish model-dependent climate effects. The PRISM reconstruction is constantly evolving in order to incorporate additional geographic sites and environmental parameters, and is continuously refined by independent research findings. The new PRISM three dimensional (3D) reconstruction differs from previous PRISM reconstructions in that it includes a subsurface ocean temperature reconstruction, integrates geochemical sea surface temperature proxies to supplement the faunal-based temperature estimates, and uses numerical models for the first time to augment fossil data. Here we describe the components of PRISM3D and describe new findings specific to the new reconstruction. Highlights of the new PRISM3D reconstruction include removal of Hudson Bay and the Great Lakes and creation of open waterways in locations where the current bedrock elevation is less than 25m above modern sea level, due to the removal of the West Antarctic Ice Sheet and the reduction of the East Antarctic Ice Sheet. The mid-Piacenzian oceans were characterized by a reduced east-west temperature gradient in the equatorial Pacific, but PRISM3D data do not imply permanent El Niño conditions. The reduced equator-to-pole temperature gradient that characterized previous PRISM reconstructions is supported by significant displacement of vegetation belts toward the poles, is extended into the Arctic Ocean, and is confirmed by multiple proxies in PRISM3D. Arctic warmth coupled with increased dryness suggests the formation of warm and salty paleo North Atlantic Deep Water (NADW) and a more vigorous thermohaline circulation system that may

  5. Column-integrated aerosol optical properties from ground-based spectroradiometer measurements at Barrax (Spain) during the Digital Airborne Imaging Spectrometer Experiment (DAISEX) campaigns

    NASA Astrophysics Data System (ADS)

    Pedrós, Roberto; Martinez-Lozano, Jose A.; Utrillas, Maria P.; Gómez-Amo, José L.; Tena, Fernando

    2003-09-01

    The Digital Airborne Imaging Spectrometer Experiment (DAISEX) was carried out for the European Space Agency (ESA) in order to develop the potential of spaceborne imaging spectroscopy for a range of different scientific applications. DAISEX involved simultaneous data acquisitions using different airborne imaging spectrometers over test sites in southeast Spain (Barrax) and the Upper Rhine valley (Colmar, France, and Hartheim, Germany). This paper presents the results corresponding to the column-integrated aerosol optical properties from ground-based spectroradiometer measurements over the Barrax area during the DAISEX campaign days in the years 1998, 1999, and 2000. The instruments used for spectral irradiance measurements were two Licor 1800 and one Optronic OL-754 spectroradiometers. The analysis of the spectral aerosol optical depth in the visible range shows in all cases the predominance of the coarse-particle mode over the fine-particle mode. The analysis of the back trajectories of the air masses indicates a predominance of marine-type aerosols in the lower atmospheric layers in all cases. Overall, the results obtained show that during the DAISEX there was a combination of maritime aerosols with smaller continental aerosols.

  6. COMET and PRISM - Search for Charged Lepton Flavor Violation with Muons

    NASA Astrophysics Data System (ADS)

    Kuno, Yoshitaka

    2012-04-01

    The experiment (COMET) at J-PARC to search for a charged-lepton-flavor-violating process of muon to electron conversion in a muonic atom is described. Future prospects of an experiment (PRISM) with even higher sensitivity is mentioned. On-going R&D on a highly intense muon source (MuSIC) at Osaka University is presented.

  7. X-ray Interferometer Using Prism Optics

    SciTech Connect

    Suzuki, Yoshio

    2004-05-12

    Two-beam X-ray interferometer using refractive optics has been developed. A prism made of acrylic resin is used as the beam deflector for hard X-ray wavefront dividing interferometer. This configuration is the same as that of the Fresnel's bi-prism interferometer or the Leith-Upatnieks type two-beam holography in visible light region. Therefore, quantitative analysis of the degree of transversal coherence can be performed by measuring the visibility of interference fringes. It is also possible to realize two-beam holographic imaging in hard X-ray regions.

  8. Airborne polar experiment (APE): tests and qualification of the scientific instrumentation installed on the stratospheric platform M-55 aircraft

    NASA Astrophysics Data System (ADS)

    de Rossi, Giuseppe; Puccini, Massimo; Puccetti, Giuseppe

    1995-12-01

    The paper describes the environmental tests to be carried out on the scientific instrumentation to be flown on the M-55 Geophysika in the frame of the APE Program. The instruments, developed by different European research institutes, are for remote sensing and in situ measurements of the major components of the Earth's stratosphere. The paper presents the technological activities that ENEA (Ente Nazionale per le Nuove Tecnologie l'Energia e l'Ambiente) is carrying out in its laboratories to verify the correspondence of the various instruments to meet the requirements for airborne application. The reference documents used have been the RTCA/DO-160C and the MDB (Myasishchev Design Bureau) specifications.

  9. Ultradispersive adaptive prism based on a coherently prepared atomic medium

    SciTech Connect

    Sautenkov, Vladimir A.; Li Hebin; Rostovtsev, Yuri V.; Scully, Marlan O.

    2010-06-15

    We have experimentally demonstrated an ultra-dispersive optical prism made from a coherently driven Rb atomic vapor. The prism possesses spectral angular dispersion that is 6 orders of magnitude higher than that of a prism made of optical glass; such angular dispersion allows one to spatially resolve light beams with different frequencies separated by a few kilohertz. The prism operates near the resonant frequency of atomic vapor and its dispersion is optically controlled by a coherent driving field.

  10. 21 CFR 886.5810 - Ophthalmic prism reader.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic prism reader. 886.5810 Section 886.5810...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5810 Ophthalmic prism reader. (a) Identification. An ophthalmic prism reader is a device intended for use by a patient who is in a supine...

  11. 21 CFR 886.5810 - Ophthalmic prism reader.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic prism reader. 886.5810 Section 886.5810...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5810 Ophthalmic prism reader. (a) Identification. An ophthalmic prism reader is a device intended for use by a patient who is in a supine...

  12. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld...

  13. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings...

  14. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld...

  15. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld...

  16. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings...

  17. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld...

  18. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings...

  19. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings...

  20. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings...

  1. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld...

  2. Symmetry Breaking Analysis of Prism Adaptation's Latent Aftereffect

    ERIC Educational Resources Information Center

    Frank, Till D.; Blau, Julia J. C.; Turvey, Michael T.

    2012-01-01

    The effect of prism adaptation on movement is typically reduced when the movement at test (prisms off) differs on some dimension from the movement at training (prisms on). Some adaptation is latent, however, and only revealed through further testing in which the movement at training is fully reinstated. Applying a nonlinear attractor dynamic model…

  3. 21 CFR 886.5810 - Ophthalmic prism reader.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic prism reader. 886.5810 Section 886.5810...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5810 Ophthalmic prism reader. (a) Identification. An ophthalmic prism reader is a device intended for use by a patient who is in a supine...

  4. 21 CFR 886.5810 - Ophthalmic prism reader.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic prism reader. 886.5810 Section 886.5810...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5810 Ophthalmic prism reader. (a) Identification. An ophthalmic prism reader is a device intended for use by a patient who is in a supine...

  5. 21 CFR 886.5810 - Ophthalmic prism reader.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic prism reader. 886.5810 Section 886.5810...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5810 Ophthalmic prism reader. (a) Identification. An ophthalmic prism reader is a device intended for use by a patient who is in a supine...

  6. Magnetic prism alignment system for measuring large-angle strabismus.

    PubMed

    Bishop, John Edward

    2014-02-01

    Prismatic measurement of large-angle strabismus requires the simultaneous use of two or more prisms for neutralization. To facilitate the clinical measurement of large-angle strabismus a new prism system was designed utilizing a flat plate and a ferrous metal surface coupled with prisms containing rare earth magnets implanted in their base and bottom surfaces. PMID:24569000

  7. Airborne Remote Sensing of Sea Surface Temperature Using the Ball Experimental Sea Surface Temperature (BESST) Radiometer With A Discussion of the 2013 Marginal Ice Zone Observation Processes EXperiment.

    NASA Astrophysics Data System (ADS)

    Tooth, M.; Emery, W. J.

    2014-12-01

    Airborne remote sensing has opened up new possibilities for scientists to study oceanic and atmospheric problems that are relevant to industry, environmental groups, and the scientific community as a whole. Data obtained from these platforms can provide much higher resolution imagery in comparison to satellite observations that allow for more detailed analyses of important regions. Sea surface temperature (SST) data obtained from instruments like the BESST radiometer can be used to provide more insight into issues like natural disasters and oceanographic problems of interest; such as the influence of melting sea ice on SST. During the 2013 Marginal Ice Zone Observation Processes EXperiment (MIZOPEX), BESST was flown on a Scan Eagle UAS in the Alaskan Marginal Ice Zone to acquire SST data. These observations will be discussed, along with possible future uses for the BESST radiometer.

  8. Dual-prism interferometer for collimation testing

    SciTech Connect

    Hii, King Ung; Kwek, Kuan Hiang

    2009-01-10

    An air-wedge lateral-shear interferometer using two prisms is presented. With a variable shear, the interferometer is suitable for testing collimation of a wide range of beam sizes down to a few millimeters in diameter. No antireflection coatings are necessary. Collimation for a light source with short coherent length is also demonstrated.

  9. Prisms Throw Light on Developmental Disorders

    ERIC Educational Resources Information Center

    Brookes, Rebecca L.; Nicolson, Roderick I.; Fawcett, Angela J.

    2007-01-01

    Prism adaptation, in which the participant adapts to prismatic glasses that deflect vision laterally, is a specific test of cerebellar function. Fourteen dyslexic children (mean age 13.5 years); 14 children with developmental coordination disorder (DCD): 6 of whom had comorbid dyslexia; and 12 control children matched for age and IQ underwent…

  10. Comparing the Volumes of Rectangular Prisms

    ERIC Educational Resources Information Center

    Assuah, Charles K.; Wiest, Lynda R.

    2010-01-01

    Can middle-grades students determine which of two rectangular prisms has a larger volume? Can they do so without using a formula? Geometry, and particularly the concept of volume, is important in many subjects, such as physics and chemistry. Students greatly enhance their mathematics knowledge when they make generalizations and construct arguments…

  11. Reflecting Schmidt/Littrow Prism Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Page, N. A.; Shack, R. V.; Shannon, R. R.

    1985-01-01

    High resolution achieved with wide field of view. Imaging Spectrometer features off-axis reflecting optics, including reflecting "slit" that also serves as field flattener. Only refracting element is prism. By scanning slit across object or scene and timing out signal, both spectral and spatial information in scene are obtained.

  12. Precise Global DEM Generation by ALOS PRISM

    NASA Astrophysics Data System (ADS)

    Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H.

    2014-04-01

    The Japan Aerospace Exploration Agency (JAXA) generated the global digital elevation/surface model (DEM/DSM) and orthorectified image (ORI) using the archived data of the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observing Satellite (ALOS, nicknamed "Daichi"), which was operated from 2006 to 2011. PRISM consisted of three panchromatic radiometers that acquired along-track stereo images. It had a spatial resolution of 2.5 m in the nadir-looking radiometer and achieved global coverage, making it a suitable potential candidate for precise global DSM and ORI generation. In the past 10 years or so, JAXA has conducted the calibration of the system corrected standard products of PRISM in order to improve absolute accuracies as well as to validate the high-level products such as DSM and ORI. In this paper, we introduce an overview of the global DEM/DSM dataset generation project, including a summary of ALOS and PRISM, in addition to the global data archive status. It is also necessary to consider data processing strategies, since the processing capabilities of the level 1 standard product and the high-level products must be developed in terms of both hardware and software to achieve the project aims. The automatic DSM/ORI processing software and its test processing results are also described.

  13. Boolean Operations with Prism Algebraic Patches.

    PubMed

    Bajaj, Chandrajit; Paoluzzi, Alberto; Portuesi, Simone; Lei, Na; Zhao, Wenqi

    2008-01-01

    In this paper we discuss a symbolic-numeric algorithm for Boolean operations, closed in the algebra of curved polyhedra whose boundary is triangulated with algebraic patches (A-patches). This approach uses a linear polyhedron as a first approximation of both the arguments and the result. On each triangle of a boundary representation of such linear approximation, a piecewise cubic algebraic interpolant is built, using a C(1)-continuous prism algebraic patch (prism A-patch) that interpolates the three triangle vertices, with given normal vectors. The boundary representation only stores the vertices of the initial triangulation and their external vertex normals. In order to represent also flat and/or sharp local features, the corresponding normal-per-face and/or normal-per-edge may be also given, respectively. The topology is described by storing, for each curved triangle, the two triples of pointers to incident vertices and to adjacent triangles. For each triangle, a scaffolding prism is built, produced by its extreme vertices and normals, which provides a containment volume for the curved interpolating A-patch. When looking for the result of a regularized Boolean operation, the 0-set of a tri-variate polynomial within each such prism is generated, and intersected with the analogous 0-sets of the other curved polyhedron, when two prisms have non-empty intersection. The intersection curves of the boundaries are traced and used to decompose each boundary into the 3 standard classes of subpatches, denoted in, out and on. While tracing the intersection curves, the locally refined triangulation of intersecting patches is produced, and added to the boundary representation. PMID:21516262

  14. High-Power Prismatic Devices for Oblique Peripheral Prisms

    PubMed Central

    Peli, Eli; Bowers, Alex R.; Keeney, Karen; Jung, Jae-Hyun

    2016-01-01

    ABSTRACT Purpose Horizontal peripheral prisms for hemianopia provide field expansion above and below the horizontal meridian; however, there is a vertical gap leaving the central area (important for driving) without expansion. In the oblique design, tilting the bases of both prism segments toward the horizontal meridian moves the field expansion area vertically and centrally (closing the central gap) while the prisms remain in the peripheral location. However, tilting the prisms results also in a reduction of the lateral field expansion. Higher prism powers are needed to counter this effect. Methods We developed, implemented, and tested a series of designs aimed at increasing the prism power to reduce the central gap while maintaining wide lateral expansion. The designs included inserting the peripheral prisms into carrier lenses that included yoked prism in the opposite direction, combination of two Fresnel segments attached at the base and angled to each other (bi-part prisms), and creating Fresnel prism–like segments from nonparallel periscopic mirror pairs (reflective prisms). Results A modest increase in lateral power was achieved with yoked-prism carriers. Bi-part combination of 36Δ Fresnel segments provided high power with some reduction in image quality. Fresnel reflective prism segments have potential for high power with superior optical quality but may be limited in field extent or by interruptions of the expanded field. Extended apical scotomas, even with unilateral fitting, may limit the utility of very high power prisms. The high-power bi-part and reflective prisms enable a wider effective eye scanning range (more than 15 degrees) into the blind hemifield. Conclusions Conventional prisms of powers higher than the available 57Δ are limited by the binocular impact of a wider apical scotoma and a reduced effective eye scanning range to the blind side. The various designs that we developed may overcome these limitations and find use in various other

  15. THREE-DIMENSIONAL IGNITION AND GROWTH REACTIVE FLOW MODELING OF PRISM FAILURE TESTS ON PBX 9502

    SciTech Connect

    Garcia, M L; Tarver, C M

    2006-06-20

    The Ignition and Growth reactive flow model for shock initiation and detonation of solid explosives based on triaminotirnitrobenzene (TATB) is applied to three-dimensional detonation wave propagation. The most comprehensive set of three-dimensional detonation wave propagation data is that measured using the trapezoidal prism test. In this test, a PBX 9501 (95% HMX, 2.5% Estane, and 2.5% BDNPA/F) line detonator initiates a detonation wave along the trapezoidal face of a PBX 9502 (95% TATB and 5% Kel-F binder) prism. The failure thickness, which has been shown experimentally to be roughly half of the failure diameter of a long cylindrical charge, is measured after 50 mm of detonation wave propagation by impact with an aluminum witness plate. The effects of confinement impedance on the PBX 9502 failure thickness have been measured using air (unconfined), water, PMMA, magnesium, aluminum, lead, and copper placed in contact with the rectangular faces of the prism parallel to the direction of detonation propagation. These prism test results are modeled using the two-dimensional PBX 9502 Ignition and Growth model parameters determined by calculating failure diameter and tested on recent corner turning experiments. Good agreement between experimentally measured and calculated prism failure thicknesses for unconfined and confined PBX 9502 is reported.

  16. Comparison of optical characteristics according to shape change based on micro prism pattern

    NASA Astrophysics Data System (ADS)

    Je, Tae-Jin; Kim, Chang-Eui; Choi, Hwan-Jin; Kang, Myoung-Chang; Jeon, Eun-chae; Park, Min-gyu; Jo, Byeong-Muk; Lee, Bong-Jae

    2015-07-01

    For high-functional optical films composed of micro patterns, the optical properties, such as the diffraction, reflection and diffusion, depend on the pattern size, shape, and arrangement. For this reason, a high precision machining process and the technology of pattern design were studied in order to increase function and efficiency. The basic shapes of micro patterns are often prisms, square pyramids and triangular pyramids. Generally, a prism pattern on a flat surface can be continuously grooved by a diamond tool same as a shape angle of the pattern. The square pyramid shape is perpendicularly machined on the prism pattern. The triangular pyramid is made with a bisection of the square pyramid along the diagonal direction. Thus, optical properties can be changed according to prism patterns produced by mechanical machining. In this paper, prism, square pyramid and triangular pyramid pattern molds were machined, and optical properties of the respective shapes were compared. The machining experiment employed an ultra-precision 4-axis planer, V-shape diamond tools, and Cu-plating molds. The machined micro patterns were replicated using UV-resin; then light-transmission measurements were performed to confirm the optical properties of the mold pattern.

  17. Affective three-dimensional brain-computer interface created using a prism array-based display

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Park, Min-Chul

    2014-12-01

    To avoid the vergence-accommodation mismatch and provide a strong sense of presence to users, we applied a prism array-based display when presenting three-dimensional (3-D) objects. Emotional pictures were used as visual stimuli to increase the signal-to-noise ratios of steady-state visually evoked potentials (SSVEPs) because involuntarily motivated selective attention by affective mechanisms can enhance SSVEP amplitudes, thus producing increased interaction efficiency. Ten male and nine female participants voluntarily participated in our experiments. Participants were asked to control objects under three viewing conditions: two-dimension (2-D), stereoscopic 3-D, and prism. The participants performed each condition in a counter-balanced order. One-way repeated measures analysis of variance showed significant increases in the positive predictive values in the prism condition compared to the 2-D and 3-D conditions. Participants' subjective ratings of realness and engagement were also significantly greater in the prism condition than in the 2-D and 3-D conditions, while the ratings for visual fatigue were significantly reduced in the prism condition than in the 3-D condition. The proposed methods are expected to enhance the sense of reality in 3-D space without causing critical visual fatigue. In addition, people who are especially susceptible to stereoscopic 3-D may be able to use the affective brain-computer interface.

  18. Self-referenced prism deflection measurement schemes with microradian precision

    SciTech Connect

    Olson, Rebecca; Paul, Justin; Bergeson, Scott; Durfee, Dallin S

    2005-08-01

    We have demonstrated several inexpensive methods that can be used to measure the deflection angles of prisms with microradian precision. The methods are self-referenced, where various reversals are used to achieve absolute measurements without the need of a reference prism or any expensive precision components other than the prisms under test. These techniques are based on laser interferometry and have been used in our laboratory to characterize parallel-plate beam splitters, penta prisms, right-angle prisms, and corner cube reflectors using only components typically available in an optics laboratory.

  19. Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms.

    PubMed

    Kaur, K S; Subramanian, A Z; Cardile, P; Verplancke, R; Van Kerrebrouck, J; Spiga, S; Meyer, R; Bauwelinck, J; Baets, R; Van Steenberge, G

    2015-11-01

    This article presents the flip-chip bonding of vertical-cavity surface-emitting lasers (VCSELs) to silicon grating couplers (GCs) via SU8 prisms. The SU8 prisms are defined on top of the GCs using non-uniform laser ablation process. The prisms enable perfectly vertical coupling from the bonded VCSELs to the GCs. The VCSELs are flip-chip bonded on top of the silicon GCs employing the laser-induced forward transfer (LIFT)-assisted thermocompression technique. An excess loss of < 1 dB at 1.55 µm measured from the bonded assemblies is reported in this paper. The results of high speed transmission experiments performed on the bonded assemblies with clear eye openings up to 20 Gb/s are also presented. PMID:26561097

  20. Measurements of aerosol distributions and properties from Airborne High Spectral Resolution Lidar and DRAGON during the DISCOVER-AQ California Experiment (Invited)

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Burton, S. P.; Scarino, A. J.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Mueller, D.; Chemyakin, E.; Cook, A. L.; Harper, D. B.; Hare, R.; Holben, B. N.; Schafer, J.; Anderson, B. E.; Sawamura, P.

    2011-12-01

    The new NASA Langley Research Center airborne High Spectral Resolution Lidar-2 (HSRL-2) was deployed from the NASA Langley King Air aircraft for the DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) and DRAGON experiments that occurred over the San Joaquin Valley during January and February, 2013. The HSRL-2, which is the world's first airborne multiwavelength HSRL, measures aerosol extinction at 355 and 532 nm via the HSRL technique, as well as aerosol backscatter and depolarization at 355, 532, and 1064 nm. Additional HSRL-2 data products include aerosol type, mixed layer depth, and range-resolved aerosol microphysical parameters (e.g., effective radius, index of refraction, single scatter albedo, and concentration). During this mission, the King Air flights and HSRL-2 measurements were acquired over the DRAGON network and long-term AERONET sites and were closely coordinated with flights of the NASA P-3 aircraft that carried a suite of in situ aerosol instruments. In this presentation, we discuss how the HSRL-2 and DRAGON observations have been used to examine aerosol optical and microphysical properties as well as spatial and temporal variability. On some days, both HSRL-2 and DRAGON measurements indicated that coarse mode dust contributed a significant fraction of the aerosol optical thickness (AOT); in these cases, HSRL-2 measurements indicated that this depolarizing layer was located at the top of the boundary layer. We discuss differences in the aerosol properties between two episodes of high surface PM2.5 concentrations as revealed by the HSRL-2 and DRAGON measurements. Both the HSRL-2 and DRAGON measurements reveal considerable day-to-day spatial variability in the aerosol distributions across the valley. The HSRL-2 measurements also show variability in the daily evolution of the vertical distribution of aerosols.

  1. Measurements of aerosol distributions and properties from Airborne High Spectral Resolution Lidar and DRAGON during the DISCOVER-AQ California Experiment (Invited)

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Burton, S. P.; Scarino, A. J.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Mueller, D.; Chemyakin, E.; Cook, A. L.; Harper, D. B.; Hare, R.; Holben, B. N.; Schafer, J.; Anderson, B. E.; Sawamura, P.

    2013-12-01

    The new NASA Langley Research Center airborne High Spectral Resolution Lidar-2 (HSRL-2) was deployed from the NASA Langley King Air aircraft for the DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) and DRAGON experiments that occurred over the San Joaquin Valley during January and February, 2013. The HSRL-2, which is the world's first airborne multiwavelength HSRL, measures aerosol extinction at 355 and 532 nm via the HSRL technique, as well as aerosol backscatter and depolarization at 355, 532, and 1064 nm. Additional HSRL-2 data products include aerosol type, mixed layer depth, and range-resolved aerosol microphysical parameters (e.g., effective radius, index of refraction, single scatter albedo, and concentration). During this mission, the King Air flights and HSRL-2 measurements were acquired over the DRAGON network and long-term AERONET sites and were closely coordinated with flights of the NASA P-3 aircraft that carried a suite of in situ aerosol instruments. In this presentation, we discuss how the HSRL-2 and DRAGON observations have been used to examine aerosol optical and microphysical properties as well as spatial and temporal variability. On some days, both HSRL-2 and DRAGON measurements indicated that coarse mode dust contributed a significant fraction of the aerosol optical thickness (AOT); in these cases, HSRL-2 measurements indicated that this depolarizing layer was located at the top of the boundary layer. We discuss differences in the aerosol properties between two episodes of high surface PM2.5 concentrations as revealed by the HSRL-2 and DRAGON measurements. Both the HSRL-2 and DRAGON measurements reveal considerable day-to-day spatial variability in the aerosol distributions across the valley. The HSRL-2 measurements also show variability in the daily evolution of the vertical distribution of aerosols.

  2. Effects of Prism Eyeglasses on Objective and Subjective Fixation Disparity

    PubMed Central

    Schroth, Volkhard; Joos, Roland; Jaschinski, Wolfgang

    2015-01-01

    In optometry of binocular vision, the question may arise whether prisms should be included in eyeglasses to compensate an oculomotor and/or sensory imbalance between the two eyes. The corresponding measures of objective and subjective fixation disparity may be reduced by the prisms, or the adaptability of the binocular vergence system may diminish effects of the prisms over time. This study investigates effects of wearing prisms constantly for about 5 weeks in daily life. Two groups of 12 participants received eyeglasses with prisms having either a base-in direction or a base-out direction with an amount up to 8 prism diopters. Prisms were prescribed based on clinical fixation disparity test plates at 6 m. Two dependent variables were used: (1) subjective fixation disparity was indicated by a perceived offset of dichoptic nonius lines that were superimposed on the fusion stimuli and (2) objective fixation disparity was measured with a video based eye tracker relative to monocular calibration. Stimuli were presented at 6 m and included either central or more peripheral fusion stimuli. Repeated measurements were made without the prisms and with the prisms after about 5 weeks of wearing these prisms. Objective and subjective fixation disparity were correlated, but the type of fusion stimulus and the direction of the required prism may play a role. The prisms did not reduce the fixation disparity to zero, but induced significant changes in fixation disparity with large effect sizes. Participants receiving base-out prisms showed hypothesized effects, which were concurrent in both types of fixation disparity. In participants receiving base-in prisms, the individual effects of subjective and objective effects were negatively correlated: the larger the subjective (sensory) effect, the smaller the objective (motor) effect. This response pattern was related to the vergence adaptability, i.e. the individual fusional vergence reserves. PMID:26431525

  3. Effects of Prism Eyeglasses on Objective and Subjective Fixation Disparity.

    PubMed

    Schroth, Volkhard; Joos, Roland; Jaschinski, Wolfgang

    2015-01-01

    In optometry of binocular vision, the question may arise whether prisms should be included in eyeglasses to compensate an oculomotor and/or sensory imbalance between the two eyes. The corresponding measures of objective and subjective fixation disparity may be reduced by the prisms, or the adaptability of the binocular vergence system may diminish effects of the prisms over time. This study investigates effects of wearing prisms constantly for about 5 weeks in daily life. Two groups of 12 participants received eyeglasses with prisms having either a base-in direction or a base-out direction with an amount up to 8 prism diopters. Prisms were prescribed based on clinical fixation disparity test plates at 6 m. Two dependent variables were used: (1) subjective fixation disparity was indicated by a perceived offset of dichoptic nonius lines that were superimposed on the fusion stimuli and (2) objective fixation disparity was measured with a video based eye tracker relative to monocular calibration. Stimuli were presented at 6 m and included either central or more peripheral fusion stimuli. Repeated measurements were made without the prisms and with the prisms after about 5 weeks of wearing these prisms. Objective and subjective fixation disparity were correlated, but the type of fusion stimulus and the direction of the required prism may play a role. The prisms did not reduce the fixation disparity to zero, but induced significant changes in fixation disparity with large effect sizes. Participants receiving base-out prisms showed hypothesized effects, which were concurrent in both types of fixation disparity. In participants receiving base-in prisms, the individual effects of subjective and objective effects were negatively correlated: the larger the subjective (sensory) effect, the smaller the objective (motor) effect. This response pattern was related to the vergence adaptability, i.e. the individual fusional vergence reserves. PMID:26431525

  4. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  5. CALIOPE airborne CO{sub 2} DIAL (CACDI) system design

    SciTech Connect

    Mietz, D.; Archuleta, B.; Archuleta, J.

    1997-09-01

    Los Alamos National Laboratory is currently developing an airborne CO{sub 2} Differential Absorption Lidar (DIAL) system based on second generation technology demonstrated last summer at NTS. The CALIOPE Airborne CO{sub 2} DIAL (CACDI) system requirements have been compiled based on the mission objectives and SONDIAL model trade studies. Subsystem designs have been developed based on flow down from these system requirements, as well as experience gained from second generation ground tests and N-ABLE (Non-proliferation AirBorne Lidar Experiments) airborne experiments. This paper presents the CACDI mission objectives, system requirements, the current subsystem design, and provides an overview of the airborne experimental plan.

  6. PRISM3 DOT1 Atlantic Basin Reconstruction

    USGS Publications Warehouse

    Dowsett, Harry; Robinson, Marci; Dwyer, Gary; Chandler, Mark; Cronin, Thomas

    2006-01-01

    PRISM3 DOT1 (Pliocene Research, Interpretation and Synoptic Mapping 3, Deep Ocean Temperature 1) provides a three-dimensional temperature reconstruction for the mid-Pliocene Atlantic basin, the first of several regional data sets that will comprise a global mid-Pliocene reconstruction. DOT1 is an alteration of modern temperature values for the Atlantic Ocean in 4 degree x 5 degree cells in 13 depth layers for December 1 based on Mg/Ca-derived BWT estimates from seventeen DSDP and ODP Sites and SST estimates from the PRISM2 reconstruction (Dowsett et al., 1999). DOT1 reflects a vaguely modern circulation system, assuming similar processes of deep-water formation; however, North Atlantic Deep Water (NADW) production is increased, and Antarctic Bottom Water (AABW) production is decreased. Pliocene NADW was approximately 2 degreesC warmer than modern temperatures, and Pliocene AABW was approximately 0.3 degreesC warmer than modern temperatures.

  7. Rotationally shearing interferometer employing modified Dove prisms

    NASA Astrophysics Data System (ADS)

    Paez, Gonzalo; Strojnik, Marija; Moreno, Ivan

    2003-12-01

    We describe the rotationally shearing interferometer (RSI) employing modified Dove prisms, designed with a widened aperture to increase throughput and with larger base angles to minimize the wave-front tilt introduced due to manufacturing errors. Experimental results obtained with the RSI ascertain the feasibility of the design. This work demonstrates that the rotationally shearing interferometry may be used to perform some functions of the traditional astronomical instruments.

  8. Development of rotating prism mechanism and athermalized prism mounting for space

    NASA Astrophysics Data System (ADS)

    Beebe, Chip R.; Brooks, Mark J.; Davis, Michael W.; Klar, Robert A.; Roberts, John M.; Roming, Peter W. A.; Rose, Randall J.; Winters, Gregory S.

    2013-09-01

    Space and launch environments demand robust, low mass, and thermally insensitive mechanisms and optical mount designs. The rotating prism mechanism (RPM), a component of the stabilized dispersive focal plane system (SDFPS), is a spectral disperser mechanism that enables the SDFPS to deliver spectroscopic or direct imaging functionality using only a single optical path. The RPM is a redundant, vacuum-compatible, self-indexing, motorized mechanism that provides robust, athermalized prism mounting for two sets of matching prisms. Each set is composed of a BK7 and a CaF2 prism, both 70 mm in diameter. With the prism sets separated by 1 mm, the RPM rotates the two sets relative to one another over a 180° range, and maintains their alignment over a wide temperature range (190-308K). The RPM design incorporates self-indexing and backlash prevention features as well as redundant motors, bearings, and drive trains. The RPM was functionally tested in a thermal vacuum chamber at 210K and <1.0x10-6 mbar, and employed in the top-level SDFPS system testing. This paper presents the mechanical design, analysis, alignment measurements, and test results from the prototype RPM development effort.

  9. Evaluations of 1990 PRISM design revisions

    SciTech Connect

    Van Tuyle, G.J.; Slovik, G.C.; Chan, B.C.; Aronson, A.L.; Kennett, R.J.

    1992-03-01

    Analyses of the 1990 version of the PRISM Advanced Liquid Metal Reactor (ALMR) design are presented and discussed. Most of the calculations were performed using BNL computer codes, particularly SSC and MINET. In many cases, independent BNL calculations were compared against analyses presented by General Electric when they submitted the PRISM design revisions for evaluation by the Nuclear Regulatory Commission (NRC). The current PRISM design utilizes the metallic fuel developed by Argonne National Laboratory (ANL) which facilitates the passive/``inherent`` shutdown mechanism that acts to shut down reactor power production whenever the system overheats. There are a few vulnerabilities in the passive shutdown, with the most worrisome being the positive feedback from sodium density decreases or sodium voiding. Various postulated unscrammed events were examined by GE and/or BNL, and much of the analysis discussed in this report is focused on this category of events. For the most part, the BNL evaluations confirm the information submitted by General Electric. The principal areas of concern are related to the performance of the ternary metal fuel, and may be resolved as ANL continues with its fuel development and testing program.

  10. Risley prism universal pointing system (RPUPS)

    NASA Astrophysics Data System (ADS)

    Dixon, John; Engel, James R.; Vaillancourt, Robert; Schwarze, Craig; Potter, Kevin

    2015-09-01

    OPTRA is currently developing a Risley Prism Universal Pointing System (RPUPS): a highly customizable cued beamsteering system. The RPUPS consists of a visible or infrared cueing imager co-aligned with an optical beam steering system's pointing-field-of-regard. The cueing imager is used to identify a region-of-interest within its wide field-of-view, via a wireless tablet device. The tablet user can choose to manually or automatically, identify and track regions-of-interest. The optical beam steering system uses a matched pair of Risley Prisms to direct an interrogating optical system's instantaneous-field-of-view onto the identified region-of-interest. The tablet updates the user with real time information from both the cueing imager and the interrogating optical system. Risley prism material and geometry choices provide operating wavelength, aperture size, and field-of-regard flexibility for this front-end pointing component. Back-end components may be receive-only, transmit-only, or transmit/receive combinations. The flexibility of the RPUPS allows for mission specific customization where applications include but are not limited to: synthetic foveated imaging, spectroscopic probes and laser (LIDAR) ranging and tracking. This paper will focus on the design and anticipated applications of the RPUPS.

  11. A data assimilation experiment of RASTA airborne cloud radar data during HyMeX IOP16

    NASA Astrophysics Data System (ADS)

    Saussereau, Gaël; Caumont, Olivier; Delanoë, Julien

    2015-04-01

    The main goal of HyMeX first special observing period (SOP1), which took place from 5 September to 5 November 2012, was to document the heavy precipitation events and flash floods that regularly affect the north-western Mediterranean coastal areas. In the two-month campaign, around twenty rainfall events were documented in France, Italy, and Spain. Among the instrumental platforms that were deployed during SOP1, the Falcon 20 of the Safire unit (http://www.safire.fr/) made numerous flights in storm systems so as to document their thermodynamic, microphysical, and dynamical properties. In particular, the RASTA cloud radar (http://rali.projet.latmos.ipsl.fr/) was aboard this aircraft. This radar measures vertical profiles of reflectivity and Doppler velocity above and below the aircraft. This unique instrument thus allows us to document the microphysical properties and the speed of wind and hydrometeors in the clouds, quasi-continuously in time and at a 60-m vertical resolution. For this field campaign, a special version of the numerical weather prediction (NWP) Arome system was developed to cover the whole north-western Mediterranean basin. This version, called Arome-WMed, ran in real time during the SOP in order to, notably, schedule the airborne operations, especially in storm systems. Like the operational version, Arome-WMed delivers forecasts at a horizontal resolution of 2.5 km with a one-moment microphysical scheme that predicts the evolution of six water species: water vapour, cloud liquid water, rainwater, pristine ice, snow, and graupel. Its three-dimensional variational (3DVar) data assimilation (DA) system ingests every three hours (at 00 UTC, 03 UTC, etc.) numerous observations (radiosoundings, ground automatic weather stations, radar, satellite, GPS, etc.). In order to provide improved initial conditions to Arome-WMed, especially for heavy precipitation events, RASTA data were assimilated in Arome-WMed 3DVar DA system for IOP16 (26 October 2012), to

  12. MODIS airborne simulator visible and near-infrared calibration, 1991 FIRE-Cirrus field experiment. Calibration version: FIRE King 1.1

    NASA Technical Reports Server (NTRS)

    Arnold, G. Thomas; Fitzgerald, Michael; Grant, Patrick S.; King, Michael D.

    1994-01-01

    Calibration of the visible and near-infrared channels of the MODIS Airborne Simulator (MAS) is derived from observations of a calibrated light source. For the 1991 FIRE-Cirrus field experiment, the calibrated light source was the NASA Goddard 48-inch integrating hemisphere. Laboratory tests during the FIRE Cirrus field experiment were conducted to calibrate the hemisphere and from the hemisphere to the MAS. The purpose of this report is to summarize the FIRE-Cirrus hemisphere calibration, and then describe how the MAS was calibrated from observations of the hemisphere data. All MAS calibration measurements are presented, and determination of the MAS calibration coefficients (raw counts to radiance conversion) is discussed. Thermal sensitivity of the MAS visible and near-infrared calibration is also discussed. Typically, the MAS in-flight is 30 to 60 degrees C colder than the room temperature laboratory calibration. Results from in-flight temperature measurements and tests of the MAS in a cold chamber are given, and from these, equations are derived to adjust the MAS in-flight data to what the value would be at laboratory conditions. For FIRE-Cirrus data, only channels 3 through 6 were found to be temperature sensitive. The final section of this report describes comparisons to an independent MAS (room temperature) calibration by Ames personnel using their 30-inch integrating sphere.

  13. Compound prism design principles, III: linear-in-wavenumber and optical coherence tomography prisms

    PubMed Central

    Hagen, Nathan; Tkaczyk, Tomasz S.

    2011-01-01

    We extend the work of the first two papers in this series [Appl. Opt. 50, 4998–5011 (2011), Appl. Opt. 50, 5012–5022 (2011)] to design compound prisms for linear-in-wavenumber dispersion, especially for application in spectral domain optical coherence tomography (OCT). These dispersive prism designs are believed to be the first to meet the requirements of high resolution OCT systems in direct-view geometry, where they can be used to shrink system size, to improve light throughput, to reduce stray light, and to reduce errors resulting from interpolating between wavelength- and wavenumber-sampled domains. We show prism designs that can be used for thermal sources or for wideband superluminescent diodes centered around wavelengths 850, 900, 1300, and 1375 nm. PMID:22423147

  14. PRogram In Support of Moms (PRISM): Development and Beta Testing.

    PubMed

    Byatt, Nancy; Pbert, Lori; Hosein, Safiyah; Swartz, Holly A; Weinreb, Linda; Allison, Jeroan; Ziedonis, Douglas

    2016-08-01

    Most women with perinatal depression do not receive depression treatment. The authors describe the development and beta testing of a new program, PRogram In Support of Moms (PRISM), to improve treatment of perinatal depression in obstetric practices. A multidisciplinary work group of seven perinatal and behavioral health professionals was convened to design, refine, and beta-test PRISM in an obstetric practice. Iterative feedback and problem solving facilitated development of PRISM components, which include provider training and a toolkit, screening procedures, implementation assistance, and access to immediate psychiatric consultation. Beta testing with 50 patients over two months demonstrated feasibility and suggested that PRISM may improve provider screening rates and self-efficacy to address depression. On the basis of lessons learned, PRISM will be enhanced to integrate proactive patient engagement and monitoring into obstetric practices. PRISM may help overcome patient-, provider-, and system-level barriers to managing perinatal depression in obstetric settings. PMID:27079994

  15. The medium dispersion prism of the UK Schmidt Telescope

    NASA Astrophysics Data System (ADS)

    Cannon, R. D.; Dawe, J. A.; Morgan, D. H.; Savage, A.; Smith, M. G.

    The UK 1.2-m Schmidt Telescope acquired its first full aperture objective prism in 1975. This was a very low dispersion prism which was found to be particularly useful in searching for faint QSO's. However, the dispersion in the red is so low that nearly all plates have been taken on the blue-sensitive IIIa J emulsion, and it has been extremely difficult to identify quasars with redshifts larger than z=3. It was, therefore, decided to obtain a second objective prism having a three times higher dispersion. It is expected that this prism will make it possible to conduct searches for quasars having redshifts greater than the long-standing limit at z approximately 3.5. The prism should also be useful for stellar classification work in the UV/blue part of the spectrum. A description is presented of some results obtained during the recent commissioning run with the new prism.

  16. Illusory Reversal of Causality between Touch and Vision has No Effect on Prism Adaptation Rate.

    PubMed

    Tanaka, Hirokazu; Homma, Kazuhiro; Imamizu, Hiroshi

    2012-01-01

    Learning, according to Oxford Dictionary, is "to gain knowledge or skill by studying, from experience, from being taught, etc." In order to learn from experience, the central nervous system has to decide what action leads to what consequence, and temporal perception plays a critical role in determining the causality between actions and consequences. In motor adaptation, causality between action and consequence is implicitly assumed so that a subject adapts to a new environment based on the consequence caused by her action. Adaptation to visual displacement induced by prisms is a prime example; the visual error signal associated with the motor output contributes to the recovery of accurate reaching, and a delayed feedback of visual error can decrease the adaptation rate. Subjective feeling of temporal order of action and consequence, however, can be modified or even reversed when her sense of simultaneity is manipulated with an artificially delayed feedback. Our previous study (Tanaka et al., 2011; Exp. Brain Res.) demonstrated that the rate of prism adaptation was unaffected when the subjective delay of visual feedback was shortened. This study asked whether subjects could adapt to prism adaptation and whether the rate of prism adaptation was affected when the subjective temporal order was illusory reversed. Adapting to additional 100 ms delay and its sudden removal caused a positive shift of point of simultaneity in a temporal order judgment experiment, indicating an illusory reversal of action and consequence. We found that, even in this case, the subjects were able to adapt to prism displacement with the learning rate that was statistically indistinguishable to that without temporal adaptation. This result provides further evidence to the dissociation between conscious temporal perception and motor adaptation. PMID:23248609

  17. Airborne laser topographic mapping results

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Link, L. E.; Swift, R. N.; Butler, M. L.

    1984-01-01

    The results of terrain mapping experiments utilizing the National Aeronautics and Space Administration (NASA) Airborne Oceanographic Lidar (AOL) over forested areas are presented. The flight tests were conducted as part of a joint NASA/U.S. Army Corps of Engineers (CE) investigation aimed at evaluating the potential of an airborne laser ranging system to provide cross-sectional topographic data on flood plains that are difficult and expensive to survey using conventional techniques. The data described in this paper were obtained in the Wolf River Basin located near Memphis, TN. Results from surveys conducted under winter 'leaves off' and summer 'leaves on' conditions, aspects of day and night operation, and data obtained from decidous and coniferous tree types are compared. Data processing techniques are reviewed. Conclusions relative to accuracy and present limitations of the AOL, and airborne lidar systems in general, to terrain mapping over forested areas are discussed.

  18. Airborne Sunphotometer Measurements of Aerosol Optical Depth and Columnar Water Vapor During the Puerto Rico Dust Experiment, and Comparison with Land, Aircraft, and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Russell, Philip B.; Reid, Jeffrey; Redemann, Jens; Schmid, Beat; Allen, Duane A.; Torres, Omar; Levy, Robert C.; Remer, Lorraine A.; Holben, Brent N.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    Analyses of aerosol optical depth (AOD) and columnar water vapor (CWV) measurements obtained with the six-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) mounted on a twin-engine aircraft during the summer 2000 Puerto Rico Dust Experiment are presented. In general, aerosol extinction values calculated from AATS-6 AOD measurements acquired during aircraft profiles up to 5 km ASL reproduce the vertical structure measured by coincident aircraft in-situ measurements of total aerosol number and surface area concentration. Calculations show that the spectral dependence of AOD was small (mean Angstrom wavelength exponents of approximately 0.20) within three atmospheric layers defined as the total column beneath the top of each aircraft profile, the region beneath the trade wind inversion, and the region within the Saharan Air Layer (SAL) above the trade inversion. This spectral behavior is consistent with attenuation of incoming solar radiation by large dust particles or by dust plus sea salt. Values of CWV calculated from profile measurements by AATS-6 at 941.9 nm and from aircraft in-situ measurements by a chilled mirror dewpoint hygrometer agree to within approximately 4% (0.13 g/sq cm). AATS-6 AOD values measured on the ground at Roosevelt Roads Naval Air Station and during low altitude aircraft runs over the adjacent Cabras Island aerosol/radiation ground site agree to within 0.004 to 0.030 with coincident data obtained with an AERONET Sun/sky Cimel radiometer located at Cabras Island. For the same observation times, AERONET retrievals of CWV exceed AATS-6 values by a mean of 0.74 g/sq cm (approximately 21 %) for the 2.9-3.9 g/sq cm measured by AATS-6. Comparison of AATS-6 aerosol extinction values obtained during four aircraft ascents over Cabras Island with corresponding values calculated from coincident aerosol backscatter measurements by a ground-based micro-pulse lidar (MPL-Net) located at Cabras yields a similar vertical structure above the trade

  19. Wollaston prism phase-stepping point diffraction interferometer and method

    DOEpatents

    Rushford, Michael C.

    2004-10-12

    A Wollaston prism phase-stepping point diffraction interferometer for testing a test optic. The Wollaston prism shears light into reference and signal beams, and provides phase stepping at increased accuracy by translating the Wollaston prism in a lateral direction with respect to the optical path. The reference beam produced by the Wollaston prism is directed through a pinhole of a diaphragm to produce a perfect spherical reference wave. The spherical reference wave is recombined with the signal beam to produce an interference fringe pattern of greater accuracy.

  20. Prism fingerprint sensor that uses a holographic optical element

    NASA Astrophysics Data System (ADS)

    Bahuguna, R. D.; Corboline, Tom

    1996-09-01

    A prism fingerprint sensor is described that uses a holographic grating glued to a right-angled prism. A light source normally illuminates the hypotenuse side of the prism with the finger pressed against the grating. The ridges and valleys of the finger are sensed on the basis of the principle of total internal reflection. The grating is used essentially to correct the distortion usually present with prism sensors. The quality of the fingerprint is very good: the pores on the ridges can be seen.

  1. Notes on Experiments.

    ERIC Educational Resources Information Center

    Physics Education, 1989

    1989-01-01

    Described are three physics experiments: (1) "Holographic Prism"; (2) "Teaching about Energy with the Gravicar"; and (3) "The Coherer." In each experiment, a brief description of the experiment devised is provided with diagrams and references. (YP)

  2. Inverse solutions for a Risley prism scanner with iterative refinement by a forward solution.

    PubMed

    Li, Anhu; Gao, Xinjian; Sun, Wansong; Yi, Wanli; Bian, Yongming; Liu, Hongzhan; Liu, Liren

    2015-11-20

    Risley prism scanners are increasingly used for laser beam steering due to their wide angular scanning range and high resolution. However, the inverse problem, which focuses on obtaining the required prisms' orientations for a given target position, has not been perfectly solved so far. The existing inverse solutions are not accurate or efficient enough for high-accuracy and real-time tracking. An iterative method that combines an approximate inverse solution with an iterative refinement by the forward solution is set forth in this paper. Two case studies indicate that the rotation motions of Risley prism pairs controlled by iterative solutions can slew the beam to create the desired tracking pattern quickly and accurately. Based on this method, a Risley prism scanner developed as a standard trajectory generator is implemented for the error measurement of a robotic manipulator in our experiments. The simulation and experimental results show that the inverse solution for one target point can be obtained within nine iterations for a prescribed tracking error threshold. PMID:26836567

  3. Prism adaptation and spatial neglect: the need for dose-finding studies

    PubMed Central

    Goedert, Kelly M.; Zhang, Jeffrey Y.; Barrett, A. M.

    2015-01-01

    Spatial neglect is a devastating disorder in 50–70% of right-brain stroke survivors, who have problems attending to, or making movements towards, left-sided stimuli, and experience a high risk of chronic dependence. Prism adaptation is a promising treatment for neglect that involves brief, daily visuo-motor training sessions while wearing optical prisms. Its benefits extend to functional behaviors such as dressing, with effects lasting 6 months or longer. Because one to two sessions of prism adaptation induce adaptive changes in both spatial-motor behavior (Fortis et al., 2011) and brain function (Saj et al., 2013), it is possible stroke patients may benefit from treatment periods shorter than the standard, intensive protocol of ten sessions over two weeks—a protocol that is impractical for either US inpatient or outpatient rehabilitation. Demonstrating the effectiveness of a lower dose will maximize the availability of neglect treatment. We present preliminary data suggesting that four to six sessions of prism treatment may induce a large treatment effect, maintained three to four weeks post-treatment. We call for a systematic, randomized clinical trial to establish the minimal effective dose suitable for stroke intervention. PMID:25983688

  4. Prism adaptation and spatial neglect: the need for dose-finding studies.

    PubMed

    Goedert, Kelly M; Zhang, Jeffrey Y; Barrett, A M

    2015-01-01

    Spatial neglect is a devastating disorder in 50-70% of right-brain stroke survivors, who have problems attending to, or making movements towards, left-sided stimuli, and experience a high risk of chronic dependence. Prism adaptation is a promising treatment for neglect that involves brief, daily visuo-motor training sessions while wearing optical prisms. Its benefits extend to functional behaviors such as dressing, with effects lasting 6 months or longer. Because one to two sessions of prism adaptation induce adaptive changes in both spatial-motor behavior (Fortis et al., 2011) and brain function (Saj et al., 2013), it is possible stroke patients may benefit from treatment periods shorter than the standard, intensive protocol of ten sessions over two weeks-a protocol that is impractical for either US inpatient or outpatient rehabilitation. Demonstrating the effectiveness of a lower dose will maximize the availability of neglect treatment. We present preliminary data suggesting that four to six sessions of prism treatment may induce a large treatment effect, maintained three to four weeks post-treatment. We call for a systematic, randomized clinical trial to establish the minimal effective dose suitable for stroke intervention. PMID:25983688

  5. Airborne Lidar measurements of aerosols, mixed layer heights, and ozone during the 1980 PEPE/NEROS summer field experiment

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Shipley, S. T.; Butler, C. F.; Ismail, S.

    1985-01-01

    A detailed summary of the NASA Ultraviolet Differential Absorption Lidar (UV DIAL) data archive obtained during the EPA Persistent Elevated Pollution Episode/Northeast Regional Oxidant Study (PEPE/NEROS) Summer Field Experiment Program (July through August 1980) is presented. The UV dial data set consists of remote measurements of mixed layer heights, aerosol backscatter cross sections, and sequential ozone profiles taken during 14 long-range flights onboard the NASA Wallops Flight Center Electra aircraft. These data are presented in graphic and tabular form, and they have been submitted to the PEPE/NEROS data archive on digital magnetic tape. The derivation of mixing heights and ozone profiles from UV Dial signals is discussed, and detailed intercomparisons with measurements obtained by in situ sensors are presented.

  6. Airborne In-Situ Measurements of Formaldehyde over California: First Results from the Compact Formaldehyde Fluorescence Experiment (COFFEE) Instrument

    NASA Technical Reports Server (NTRS)

    Marrero, Josette; St. Clair, Jason; Yates, Emma L.; Gore, Warren; Swanson, Andrew K.; Iraci, Laura T.; Hanisco, Thomas F.

    2016-01-01

    Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role multiple atmospheric processes. Measurements of HCHO can be used to help quantify convective transport, the abundance of VOCs, and ozone production in urban environments. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of HCHO as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. Developed at NASA GSFC, COFFEE is a small, low maintenance instrument with a sensitivity of 100 pptv and a quick response time (1 sec). The COFFEE instrument has been customized to fit in an external wing pod on the Alpha Jet aircraft based at NASA ARC. The instrument can operate over a broad range of altitudes, from boundary layer to lower stratosphere, making it well suited for the Alpha Jet, which can access altitudes from the surface up to 40,000 ft. Results of the first COFFEE science flights preformed over the California's Central Valley will be presented. Boundary layer measurements and vertical profiles in the tropospheric column will both be included. This region is of particular interest, due to its elevated levels of HCHO, revealed in satellite images, as well as its high ozone concentrations. In addition to HCHO, the AJAX payload includes measurements of atmospheric ozone, methane, and carbon dioxide. Formaldehyde is one of the few urban pollutants that can be measured from space. Plans to compare in-situ COFFEE data with satellite-based HCHO observations such as those from OMI (Aura) and OMPS (SuomiNPP) will also be presented.

  7. Airborne In-Situ Measurements of Formaldehyde Over California: First Results from the Compact Formaldehyde Fluorescence Experiment (COFFEE) Instrument

    NASA Technical Reports Server (NTRS)

    Marrero, Josette Elizabeth; Saint Clair, Jason; Yates, Emma L.; Gore, Warren; Swanson, Andrew K.; Iraci, Laura T.; Hanisco, Thomas F.

    2016-01-01

    Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role multiple atmospheric processes. Measurements of HCHO can be used to help quantify convective transport, the abundance of VOCs, and ozone production in urban environments. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of HCHO as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. Developed at NASA GSFC, COFFEE is a small, low maintenance instrument with a sensitivity of 100 pptv and a quick response time (1 sec). The COFFEE instrument has been customized to fit in an external wing pod on the Alpha Jet aircraft based at NASA ARC. The instrument can operate over a broad range of altitudes, from boundary layer to lower stratosphere, making it well suited for the Alpha Jet, which can access altitudes from the surface up to 40,000 ft. Results of the first COFFEE science flights preformed over the California's Central Valley will be presented. Boundary layer measurements and vertical profiles in the tropospheric column will both be included. This region is of particular interest, due to its elevated levels of HCHO, revealed in satellite images, as well as its high ozone concentrations. In addition to HCHO, the AJAX payload includes measurements of atmospheric ozone, methane, and carbon dioxide. Formaldehyde is one of the few urban pollutants that can be measured from space. Plans to compare in-situ COFFEE data with satellite-based HCHO observations such as those from OMI (Aura) and OMPS (SuomiNPP) will also be presented.

  8. New Light on a Prism: The Concert for All Reasons

    ERIC Educational Resources Information Center

    Linaberry, Robin

    2004-01-01

    The prism concert concept was introduced in this country at the Eastman School of Music in 1975. The development of Eastman's inaugural prism concert is commonly attributed to Donald Hunsberger and Gustav Meier, conductors of the wind ensemble and orchestra, respectively. The basic idea is that different styles of music performed by different…

  9. Priorities in School Mathematics: Executive Summary of the PRISM Project.

    ERIC Educational Resources Information Center

    National Council of Teachers of Mathematics, Inc., Reston, VA.

    The Priorities in School Mathematics Project (PRISM) was designed by the National Council of Teachers of Mathematics to collect information on current beliefs and reactions to possible mathematics curriculum changes during the 1980's. The first component of PRISM was a survey of preferences for alternative content topics, instructional goals,…

  10. Signal processing for airborne doppler radar detection of hazardous wind shear as applied to NASA 1991 radar flight experiment data

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1992-01-01

    Radar data collected during the 1991 NASA flight tests have been selectively analyzed to support research directed at developing both improved as well as new algorithms for detecting hazardous low-altitude windshear. Analysis of aircraft attitude data from several flights indicated that platform stability bandwidths were small compared to the data rate bandwidths which should support an assumption that radar returns can be treated as short time stationary. Various approaches at detection of weather returns in the presence of ground clutter are being investigated. Non-coventional clutter rejection through spectrum mode tracking and classification algorithms is a subject of continuing research. Based upon autoregressive modeling of the radar return time sequence, this approach may offer an alternative to overcome errors in conventional pulse-pair estimates. Adaptive filtering is being evaluated as a means of rejecting clutter with emphasis on low signal-to-clutter ratio situations, particularly in the presence of discrete clutter interference. An analysis of out-of-range clutter returns is included to illustrate effects of ground clutter interference due to range aliasing for aircraft on final approach. Data are presented to indicate how aircraft groundspeed might be corrected from the radar data as well as point to an observed problem of groundspeed estimate bias variation with radar antenna scan angle. A description of how recorded clutter return data are mixed with simulated weather returns is included. This enables the researcher to run controlled experiments to test signal processing algorithms. In the summary research efforts involving improved modelling of radar ground clutter returns and a Bayesian approach at hazard factor estimation are mentioned.

  11. Neutral density filters with Risley prisms: analysis and design.

    PubMed

    Duma, Virgil-Florin; Nicolov, Mirela

    2009-05-10

    We achieve the analysis and design of optical attenuators with double-prism neutral density filters. A comparative study is performed on three possible device configurations; only two are presented in the literature but without their design calculus. The characteristic parameters of this optical attenuator with Risley translating prisms for each of the three setups are defined and their analytical expressions are derived: adjustment scale (attenuation range) and interval, minimum transmission coefficient and sensitivity. The setups are compared to select the optimal device, and, from this study, the best solution for double-prism neutral density filters, both from a mechanical and an optical point of view, is determined with two identical, symmetrically movable, no mechanical contact prisms. The design calculus of this optimal device is developed in essential steps. The parameters of the prisms, particularly their angles, are studied to improve the design, and we demonstrate the maximum attenuation range that this type of attenuator can provide. PMID:19424388

  12. Joint Variability of Airborne Passive Microwave and Ground-based Radar Observations Obtained in the TRMM Kwajalein Experiment

    NASA Astrophysics Data System (ADS)

    Yuter, S. E.; Kingsmill, D. E.

    2007-12-01

    The Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX) held July-September 1999 in the west Pacific was designed to obtain an empirical physical characterization of precipitating convective clouds over the tropical ocean. The majority of the precipitation was from mixed-phase clouds. Coordinated data sets were obtained from aircraft and ground-based sensors including passive microwave measurements by the Advanced Microwave Precipitation Radiometer (AMPR) instrument on the NASA DC-8 aircraft and S-band volumetric radar data by the KPOL radar. The AMPR and KPOL data sets were processed to yield a set of 25,049 matching observations at ~ 2 km x 2 km horizontal spatial resolution and within 6 min. The TRMM satellite Microwave Imager (TMI) has a similar set of channels to AMPR but coarser spatial resolution (19 GHz: 35 km, 85 GHz: 7.7 km). During KWAJEX, the 0 deg C level height was nearly constant at ~ 4800 m. Hence, two potential sources of uncertainty in relating passive microwave brightness temperatures (Tbs) to surface precipitation, inhomogeneous beam filling and variations in depth of the rain layer are much smaller sources of error in the KWAJEX data set than for TMI. TRMM was originally designed to yield monthly rainfall estimates over 5 deg x 5 deg grid boxes. The use of these data to yield instantaneous rainrate products at smaller spatial scales is more sensitive to the detailed characteristics of the joint distributions of passive microwave Tbs versus rain rate. KWAJEX data sets reveal poor correlations, very wide scatter, and weak modes in these distributions. The spread of emission Tb values for a given rain-layer reflectivity (e.g., 75 K at 30 dBZ for 19 GHz) is similar or larger within convective compared to stratiform precipitation regions. This result implies that the enhancement in emission Tbs associated with partially melted ice particles can occur whether the particles are concentrated within a thin layer in stratiform

  13. Motion control of the wedge prisms in Risley-prism-based beam steering system for precise target tracking.

    PubMed

    Zhou, Yuan; Lu, Yafei; Hei, Mo; Liu, Guangcan; Fan, Dapeng

    2013-04-20

    Two exact inverse solutions of Risley prisms have been given by previous authors, based on which we calculate the gradients of the scan field that open a way to investigate the nonlinear relationship between the slewing rate of the beam and the required angular velocities of the two wedge prisms in the Risley-prism-based beam steering system for target tracking. The limited regions and singularity point at the center and the edge of the field of regard are discussed. It is found that the maximum required rotational velocities of the two prisms for target tracking are nearly the same and are dependent on the altitude angle. The central limited region is almost independent of the prism parameters. The control singularity at the crossing center path can be avoided by switching the two solutions. PMID:23669697

  14. Active stereo vision routines using PRISM-3

    NASA Astrophysics Data System (ADS)

    Antonisse, Hendrick J.

    1992-11-01

    This paper describes work in progress on a set of visual routines and supporting capabilities implemented on the PRISM-3 real-time vision system. The routines are used in an outdoor robot retrieval task. The task requires the robot to locate a donor agent -- a Hero2000 -- which holds the object to be retrieved, to navigate to the donor, to accept the object from the donor, and return to its original location. The routines described here will form an integral part of the navigation and wide-area search tasks. Active perception is exploited to locate the donor using real-time stereo ranging directed by a pan/tilt/verge mechanism. A framework for orchestrating visual search has been implemented and is briefly described.

  15. Large beam deflection using cascaded prism array

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Tsui, Chi-Leung

    2012-04-01

    Endoscopes have been utilize in the medical field to observe the internals of the human body to assist the diagnosis of diseases, such as breathing disorders, internal bleeding, stomach ulcers, and urinary tract infections. Endoscopy is also utilized in the procedure of biopsy for the diagnosis of cancer. Conventional endoscopes suffer from the compromise between overall size and image quality due to the required size of the sensor for acceptable image quality. To overcome the size constraint while maintaining the capture image quality, we propose an electro-optic beam steering device based on thermal-plastic polymer, which has a small foot-print (~5mmx5mm), and can be easily fabricated using conventional hot-embossing and micro-fabrication techniques. The proposed device can be implemented as an imaging device inside endoscopes to allow reduction in the overall system size. In our previous work, a single prism design has been used to amplify the deflection generated by the index change of the thermal-plastic polymer when a voltage is applied; it yields a result of 5.6° deflection. To further amplify the deflection, a new design utilizing a cascading three-prism array has been implemented and a deflection angle to 29.2° is observed. The new design amplifies the beam deflection, while keeping the advantage of simple fabrication made possible by thermal-plastic polymer. Also, a photo-resist based collimator lens array has been added to reduce and provide collimation of the beam for high quality imaging purposes. The collimator is able to collimate the exiting beam at 4 μm diameter for up to 25mm, which potentially allows high resolution image capturing.

  16. The Beginnings of Airborne Astronomy, 1920 - 1930: an Historical Narrative

    NASA Technical Reports Server (NTRS)

    Craine, E. R.

    1984-01-01

    The emergence of airborne astronomy in the early twentieth century is recounted. The aerial expedition to observe the solar eclipse on September 10, 1923, is described. Observation of the total solar eclipse of January 24, 1925, is discussed. The Honey Lake aerial expedition to study the solar eclipse of April 28, 1930, is also described. Four major accomplishments in airborne astronomy during the period 1920 to 1930 are listed. Airborne expeditions were undertaken at every logical opportunity, starting a continuous sequence of airborne astronomical expeditions which was to remain unbroken, except by World War II, to the present day. Although the scientific returns of the first ten years were modest, they did exist. Interest in, and support for, airborne astronomy was generated not only among astronomers but also among the public. Albert Stevens, arguably the true father of airborne astronomy, was to become interested in applying his considerable skill and experience to the airborne acquisition of astronomical data.

  17. Continuum percolation for randomly oriented soft-core prisms.

    PubMed

    Saar, Martin O; Manga, Michael

    2002-05-01

    We study continuum percolation of three-dimensional randomly oriented soft-core polyhedra (prisms). The prisms are biaxial or triaxial and range in aspect ratio over six orders of magnitude. Results for prisms are compared with studies for ellipsoids, rods, ellipses, and polygons and differences are explained using the concept of the average excluded volume, . For large-shape anisotropies we find close agreement between prisms and most of the above-mentioned shapes for the critical total average excluded volume, n(c), where n(c) is the critical number density of objects at the percolation threshold. In the extreme oblate and prolate limits simulations yield n(c) approximately 2.3 and n(c) approximately 1.3, respectively. Cubes exhibit the lowest-shape anisotropy of prisms minimizing the importance of randomness in orientation. As a result, the maximum prism value, n(c) approximately 2.79, is reached for cubes, a value close to n(c)=2.8 for the most equant shape, a sphere. Similarly, cubes yield a maximum critical object volume fraction of phi(c)=0.22. phi(c) decreases for more prolate and oblate prisms and reaches a linear relationship with respect to aspect ratio for aspect ratios greater than about 50. Curves of phi(c) as a function of aspect ratio for prisms and ellipsoids are offset at low-shape anisotropies but converge in the extreme oblate and prolate limits. The offset appears to be a function of the ratio of the normalized average excluded volume for ellipsoids over that for prisms, R=(e)/(p). This ratio is at its minimum of R=0.758 for spheres and cubes, where phi(c(sphere))=0.2896 may be related to phi c(cube))=0.22 by phi(c(cube))=1-[1-phi(c(sphere))](R)=0.23. With respect to biaxial prisms, triaxial prisms show increased normalized average excluded volumes, , due to increased shape anisotropies, resulting in reduced values of phi(c). We confirm that B(c)=n(c)=2C(c) applies to

  18. Image Quality Evalutation on ALOS/PRISM and AVNIR-2

    NASA Astrophysics Data System (ADS)

    Mukaida, Akira; Imoto, Naritoshi; Tadono, Takeo; Murakami, Hiroshi; Kawamoto, Sachi

    2008-11-01

    Image quality evaluation on ALOS (Advanced Land Observing Satellite) / PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) and AVNIR-2 (Advanced Visible and Near Infrared Radiometer 2) has been carried out during operational phase. This is a report on result of evaluation for image quality in terms of MTF (Modulation Transfer Function) and SNR (Signal to Noise Ratio) for both PRISM and AVNIR-2. SNR of PRISM image has been increased following the up dating of radiometric correction and implementation of JPEG noise reduction filter. The result was in range of specification for both sensors.

  19. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  20. Thermal infrared spectral imager for airborne science applications

    NASA Astrophysics Data System (ADS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Realmuto, Vincent; Eng, Bjorn T.

    2009-05-01

    An airborne thermal hyperspectral imager is underdevelopment which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of emissivity for various known standard minerals (quartz). A comparison is made using data from the ASTER spectral library.

  1. Towards HyTES: an airborne thermal imaging spectroscopy instrument

    NASA Astrophysics Data System (ADS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Realmuto, Vincent; Eng, Bjorn T.

    2009-08-01

    An airborne thermal hyperspectral imager is underdevelopment which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of emissivity for various known standard minerals (quartz). A comparison is made using data from the ASTER spectral library.

  2. Hard X-ray Holographic Microscopy using Refractive Prism and Fresnel Zone Plate Objective

    SciTech Connect

    Suzuki, Yoshio; Takeuchi, Akihisa

    2007-01-19

    Imaging holography in hard x-ray region is realized by combining imaging microscopy with a refractive prism interferometer. The prism is placed behind the back-focal-plane of objective lens in order to configure a wave-front-division interferometer, and a magnified interferogram of object image is generated at an image plane. Spatial resolution of the image hologram is essentially determined by the performance of objective lens. However, speckle noise is a serious problem for fully coherent illumination. We have tried 'asymmetric spatial coherence' to reduce the speckle noise. A synchrotron radiation light source with small coupling constant is very suitable for this purpose. The spatial coherence is sufficiently high in the vertical direction to make an interferogram, and low enough in the horizontal direction to suppress the speckle noise. Preliminary experiments at BL20XU of SPring-8 are shown.

  3. Satellite and airborne IR sensor validation by an airborne interferometer

    SciTech Connect

    Gumley, L.E.; Delst, P.F. van; Moeller, C.C.

    1996-11-01

    The validation of in-orbit longwave IR radiances from the GOES-8 Sounder and inflight longwave IR radiances from the MODIS Airborne Simulator (MAS) is described. The reference used is the airborne University of Wisconsin High Resolution Interferometer Sounder (HIS). The calibration of each sensor is described. Data collected during the Ocean Temperature Interferometric Survey (OTIS) experiment in January 1995 is used in the comparison between sensors. Detailed forward calculations of at-sensor radiance are used to account for the difference in GOES-8 and HIS altitude and viewing geometry. MAS radiances and spectrally averaged HIS radiances are compared directly. Differences between GOES-8 and HIS brightness temperatures, and GOES-8 and MAS brightness temperatures, are found to be with 1.0 K for the majority of longwave channels examined. The same validation approach will be used for future sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). 11 refs., 2 figs., 4 tabs.

  4. Prisms with total internal reflection as solar reflectors

    DOEpatents

    Rabl, Arnulf; Rabl, Veronika

    1978-01-01

    An improved reflective wall for radiant energy collection and concentration devices is provided. The wall is comprised of a plurality of prisms whose frontal faces are adjacent and which reflect the desired radiation by total internal reflection.

  5. NORTHERLY STRETCH OF MILLBURY PORTION; GENERAL VIEW ACROSS CANAL PRISM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHERLY STRETCH OF MILLBURY PORTION; GENERAL VIEW ACROSS CANAL PRISM TO TOWPATH BERM (LATER FILL ENCROACHING LEFT) NEAR CENTER OF THIS STRETCH; VIEW TO SOUTHWEST - Blackstone Canal Worcester-Millbury Segment, Eastern bank of Blackstone River, Millbury, Worcester County, MA

  6. 3. ELEVATION. FROM SOUTH WITH CANAL PRISM. Canal Road ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. ELEVATION. FROM SOUTH WITH CANAL PRISM. - Canal Road Bridge, Canal Road spanning Delaware Canal Diversion, Locks 22 & 23 in Delaware Canal State Park in Williams Township, Raubsville, Northampton County, PA

  7. Development of an unbonded capping system for clay masonry prisms

    SciTech Connect

    Crouch, L.K.; Henderson, R.C.; Sneed, W.A. Jr.

    1999-07-01

    To ascertain if an unbonded capping system was feasible for clay masonry prisms, the compressive strengths of thirty clay masonry prisms capped with an unbonded capping system modeled after ASTM C 1231 were compared with those of thirty masonry prisms capped with ASTM C 67 approved high-strength gypsum cement at the ages of 7 and 28 days. All prisms were constructed by a professional mason using Grade SW, Type FBS cored face brick from the same lot and ASTM C 270 Type S PC-lime mortar. There was no significant difference in mean compressive strength for the two capping methods at either age. In addition, capping with the unbonded capping system was faster and easier. Further, 28-day results obtained using the unbonded capping system had a lower coefficient of variation and higher mean compressive strength than those obtained with high-strength gypsum.

  8. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  9. 5. VIEW NORTHWEST SHOWING AQUEDUCT PRISM. NOTE INTERIOR STONE WORK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW NORTHWEST SHOWING AQUEDUCT PRISM. NOTE INTERIOR STONE WORK OF THE PARAPET WALL AND REMAINS OF 1920 TIMBER AND CONCRETE FLOORING SYSTEM. - Chesapeake & Ohio Canal, Conococheague Creek Aqueduct, Milepost 99.80, Williamsport, Washington County, MD

  10. Dynamics of a microliquid prism actuated by electrowetting.

    PubMed

    Lee, Duck-Gyu; Park, Jaebum; Bae, Jungmok; Kim, Ho-Young

    2013-01-21

    A microliquid prism is a microchannel filled with two immiscible liquids, whose interface acts as a refractive surface. To steer a light beam that constructs optical images, the interface profile or the contact angle is modulated through electrowetting on a dielectric. Accurate, yet agile actuation of the liquid prism critically depends on the understanding of dynamics of the fluid interface. Here we fabricate liquid prisms, visualize the shape evolution of the interface, and theoretically model its dynamics. By comparing the magnitude of capillary forces to those of viscous, inertial and hydrostatic forces, we find that the meniscus motion within submillimetric channels is dominated by the capillary effect. The theoretical predictions for microscale meniscus dynamics are shown to agree well with the experimental measurements. We then discuss the formation of waves in millimetric liquid prisms, which may significantly limit fast and reliable operation of the optofluidic device. PMID:23165931

  11. Why Is White Light Dispersed by a Prism?

    ERIC Educational Resources Information Center

    Crawford, Frank S.

    1979-01-01

    Presents the answer to a question, which is intended for high school students, about the dispersion of white light by a glass prism. Why the high frequency waves travel slower than the lower frequencies in glass is also presented. (HM)

  12. Wedge Prism for Direction Resolved Speckle Correlation Interferometry

    SciTech Connect

    Pechersky, M.J.

    1999-01-20

    The role of a wedge prism for strain sign determination and enhancing the sensitivity for sub-fringe changes is emphasized. The design and incorporation aspects for in-plane sensitive interferometers have been described in detail. Some experimental results dealing with stress determination by laser annealing and speckle corelation interferometry are presented. The prism can also be applied to produce standardized carrier fringes in spatial phase shifting interferometry.

  13. Wedge prism for direction resolved speckle correlation interferometry

    SciTech Connect

    Vikram, C.S.; Pechersky, M.J.

    1999-10-01

    The role of a wedge prism for strain sign determination and to enhance the sensitivity for subfringe changes is presented. The design and incorporation aspects for in-plane sensitive interferometers are described in detail. Some experimental results dealing with stress determination by laser annealing and speckle correlation interferometry are presented. The prism can also be applied to produce standardized carrier fringes in spatial phase shifting interferometry. {copyright} {ital 1999 Society of Photo-Optical Instrumentation Engineers.}

  14. PRISM: a planned risk information seeking model.

    PubMed

    Kahlor, LeeAnn

    2010-06-01

    Recent attention on health-related information seeking has focused primarily on information seeking within specific health and health risk contexts. This study attempts to shift some of that focus to individual-level variables that may impact health risk information seeking across contexts. To locate these variables, the researcher posits an integrated model, the Planned Risk Information Seeking Model (PRISM). The model, which treats risk information seeking as a deliberate (planned) behavior, maps variables found in the Theory of Planned Behavior (TPB; Ajzen, 1991) and the Risk Information Seeking and Processing Model (RISP; Griffin, Dunwoody, & Neuwirth, 1999), and posits linkages among those variables. This effort is further informed by Kahlor's (2007) Augmented RISP, the Theory of Motivated Information Management (Afifi & Weiner, 2004), the Comprehensive Model of Information Seeking (Johnson & Meischke, 1993), the Health Information Acquisition Model (Freimuth, Stein, & Kean, 1989), and the Extended Parallel Processing Model (Witte, 1998). The resulting integrated model accounted for 59% of the variance in health risk information-seeking intent and performed better than the TPB or the RISP alone. PMID:20512716

  15. The Prism Multi-Object Survey (PRIMUS)

    NASA Astrophysics Data System (ADS)

    Wong, K.; Blanton, M.; Burles, S.; Coil, A.; Cool, R.; Eisenstein, D.; Moustakas, J.; Rujopakarn, W.; Zhu, G.

    2010-06-01

    The Prism Multi-Object Survey (PRIMUS) is a galaxy redshift survey covering ˜10 square degrees to a flux limit of i ˜ 23 mag. We acquire roughly 200,000 spectra of galaxies out to z ˜ 1 in fields with existing multiwavelength data in the UV, X-ray, and infrared. By mutiplexing in the wavelength direction, we sacrifice spectral resolution for throughput, allowing us to observe ˜3000 objects per mask for 121 masks over just 39 dark nights at Magellan. Our goal is to combine our redshifts with the existing data to study various aspects of galaxy evolution with redshift, such as star formation rates, stellar mass, luminosity functions, and clustering properties. One of the initial science projects will be to use UV data from the Galaxy Evolution Explorer (GALEX) to derive specific star formation rates for close galaxy pairs (projected separation ≤ 50 h-1 kpc) and compare the enhancement of UV luminosity to isolated galaxies in the field. We will use our redshifts to identify interlopers that are close in projected separation but separated in redshift space to improve the quality of our sample.

  16. Optical materials for near infrared Wollaston prisms

    NASA Astrophysics Data System (ADS)

    Oliva, E.; Gennari, S.; Vanzi, L.; Caruso, A.; Ciofini, M.

    1997-05-01

    The optical characteristics of birefringent materials transmitting in the near IR (0.9-2.5 microns) are analyzed. Wollaston prisms with large beam separation and virtually free from lateral chromatism -- e.g. with fields of view $>1$ arcmin and image elongation ! 3 cm^{-1}) beyond 2.25 microns. The absorption does not decrease significantly when the crystals is cooled, CaCO_3 should not be therefore used in instruments working beyond 2.0 microns.

  17. Advanced prism-grating-prism imaging spectrograph in online industrial applications

    NASA Astrophysics Data System (ADS)

    Vaarala, Tapio; Aikio, Mauri; Keraenen, Heimo

    1997-08-01

    Imaging spectrographs have traditionally been utilized in aerial and remote sensing applications. A novel, compact and inexpensive imaging spectrograph developed by VTT Electronics is now available. It contains a multichannel fiber optic sensor head, a dispersive prism-grating-prism (PGP) component and digital CCD matrix camera capable of area integration. In rolled steel manufacturing, a protective oil film is applied on steel to resist corrosion while in transport and storage. The main problems in the oiling machine are film thickness control and jet failures. In this application, the spectrum of fluorescence of an oil film was measured simultaneously with parallel fibers. A relatively simple calibration and analysis procedure was used to calculate the oil film thickness. On-line color control for color reproduction is essential in both consumer and industrial products. The instrument was tested and analyzed for measuring differences in color by multivariate analysis of the spectra and by color space coordinate estimation. In general, a continuous spectrum is not absolute requirement. In these two examples, filter-based measurement would probably cost less thana PGP spectrograph solution. On the other hand, by measuring the spectrum and using an advanced signal processing algorithm one production version will cover all installations in both applications. In practice, only the fiber sensor mechanics need to be modified.

  18. Do dissociated or associated phoria predict the comfortable prism?

    PubMed Central

    Otto, Joanna M. N.; Kromeier, Miriam; Bach, Michael

    2008-01-01

    Background Dissociated and associated phoria are measures of latent strabismus under artificial viewing conditions. We examined to what extent dissociated and associated phoria predict the “comfortable prism”, i.e. the prism that appears most comfortable under natural viewing conditions. Methods For associated phoria, a configuration resembling the Mallett test was employed: both eyes were presented with a fixation cross, surrounded by fusionable objects. Nonius lines served as monocular markers. For dissociated phoria, the left eye was presented with all the Mallett elements, while only a white spot was presented to the right eye. To determine the comfortable prism, all the Mallett elements, including the Nonius lines, were shown to both eyes. In each of the three tests, the observer had to adjust a pair of counterrotating prisms. To avoid any (possibly prejudiced) influence of the experimenter, the prismatic power was recorded with a potentiometer. Twenty non-strabismic subjects with a visual acuity of ≥1.0 in each eye were examined. Results The range of the intertrial mean was for dissociated phoria from +9.3 eso to −5.9 cm/m exo, for associated phoria from +11.2 eso to −3.3 cm/m exo, and for the comfortable prism from +4.8 eso to −4.1 cm/m exo (cm/m = prism dioptre). In most observers, the phoria parameters differed greatly from the comfortable prism. On average, the phoria values were shifted about 2 cm/m towards the eso direction in relation to the comfortable prism (associated phoria not less than dissociated phoria). Conclusions The deviation of both, dissociated and associated phoria, from the comfortable prism suggests that the abnormal viewing conditions under which the phoria parameters are determined induce artefacts. Accordingly, the findings cast doubt on current textbook recommendations to use dissociated or associated phoria as a basis for therapeutic prisms. Rather, patients should be allowed to determine their comfortable prism

  19. Limb-specific autonomic dysfunction in complex regional pain syndrome modulated by wearing prism glasses.

    PubMed

    Moseley, G Lorimer; Gallace, Alberto; Di Pietro, Flavia; Spence, Charles; Iannetti, Gian Domenico

    2013-11-01

    In unilateral upper-limb complex regional pain syndrome (CRPS), the temperature of the hands is modulated by where the arms are located relative to the body midline. We hypothesized that this effect depends on the perceived location of the hands, not on their actual location, nor on their anatomical alignment. In 2 separate cross-sectional randomized experiments, 10 (6 female) unilateral CRPS patients wore prism glasses that laterally shifted the visual field by 20°. Skin temperature was measured before and after 9-minute periods in which the position of one hand was changed. Placing the affected hand on the healthy side of the body midline increased its temperature (Δ°C=+0.47 ± 0.14°C), but not if prism glasses made the hand appear to be on the body midline (Δ°C=+0.07 ± 0.06°C). Similarly, when prism glasses made the affected hand appear to be on the healthy side of the body midline, even though it was not, the affected hand warmed up (Δ°C=+0.28 ± 0.14°C). When prism glasses made the healthy hand appear to be on the affected side of the body midline, even though it was not, the healthy hand cooled down (Δ°C=-0.30 ± 0.15°C). Friedman's analysis of variance and Wilcoxon pairs tests upheld the results (P<0.01 for all). We conclude that, in CRPS, cortical mechanisms responsible for encoding the perceived location of the limbs in space modulate the temperature of the hands. PMID:23886518

  20. Hurricane Wind Field Measurements with Scanning Airborne Doppler Lidar During CAMEX-3

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, D. R.; Howell, J. N.; Darby, L. S.; Hardesty, R. M.; Traff, D. M.; Menzies, R. T.

    2000-01-01

    During the 1998 Convection and Moisture Experiment (CAMEX-3), the first hurricane wind field measurements with Doppler lidar were achieved. Wind fields were mapped within the eye, along the eyewall, in the central dense overcast, and in the marine boundary layer encompassing the inflow region. Spatial coverage was determined primarily by cloud distribution and opacity. Within optically-thin cirrus slant range of 20- 25 km was achieved, whereas no propagation was obtained during penetration of dense cloud. Measurements were obtained with the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) on the NASA DC-8 research aircraft. MACAWS was developed and operated cooperatively by the atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory. A pseudo-dual Doppler technique ("co-planar scanning") is used to map the horizontal component of the wind at several vertical levels. Pulses from the laser are directed out the left side of the aircraft in the desired directions using computer-controlled rotating prisms. Upon exiting the aircraft, the beam is completely eyesafe. Aircraft attitude and speed are taken into account during real-time signal processing, resulting in determination of the ground-relative wind to an accuracy of about 1 m/s magnitude and about 10 deg direction. Beam pointing angle errors are about 0.1 deg, equivalent to about 17 m at 10 km. Horizontal resolution is about 1 km (along-track) for typical signal processor and scanner settings; vertical resolution varies with range. Results from CAMEX-3 suggest that scanning Doppler wind lidar can complement airborne Doppler radar by providing wind field measurements in regions that are devoid of hydrometeors. At present MACAWS observations are being assimilated into experimental forecast models and satellite Doppler wind lidar simulations to evaluate the relative impact.

  1. NASA Student Airborne Research Program

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Shetter, R. E.

    2012-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for advanced undergraduates and early graduate students majoring in the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2012, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA P-3B aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. We will discuss the results and effectiveness of the program from the first four summers and discuss plans for the future.

  2. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  3. Structural development of the North-Sumatran Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Geersen, Jacob; McNeill, Lisa; Henstock, Tim; Gaedicke, Christoph; Ladage, Stefan; Kopp, Heidrun

    2014-05-01

    The accretionary prism of northern Sumatra differs from classical prism examples in a number of ways. It consists of an almost flat, up to 130 km wide plateau and a small but steep outer wedge. Along its entire width from the deformation front to the rear of the prism it is composed of multiple, up to 5 km thick undeformed blocks of layered sediments that are adjacent to seismically chaotic units. The intact thrust blocks are the same thickness as the 5 km thick incoming sediment section and are usually bounded on both sides by steep landward and seaward vergent faults. Similar sedimentary blocks, bounded by conjugate normal faults that relate to bending of the subducting oceanic plate, are also observed in the incoming section. Another striking structural feature is the occurrence of landward vergent (seaward dipping) thrust faults in the outer prism. These unusual deformation structures differ from the common fold-and-thrust belt model in the dip direction of the thrust sheets and have, to a similar extent, only been reported from the Cascadia margin. Seismic reflection data also image a series of high-amplitude negative-polarity reflective faults in the prism and the incoming sediment section that only produce minor displacements. These faults do not intersect the seafloor or the plate-boundary at depth and dip both landward and seaward at a lower angle than most prism thrust faults. We use a combination of reflection seismic and bathymetric data to investigate the parameters and processes that lead to the development of the unusual prism structure and morphology. In addition to detailed structural and morphologic descriptions we summarize and compare fault dips in the incoming section and the prism in order to analyse how proto-deformation of oceanic plate sediments influences the structural development of the prism. We present a conceptual model in line with our observations that could be transferable to accretionary margins with a similar geologic history

  4. Prism-based single-camera system for stereo display

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Cui, Xiaoyu; Wang, Zhiguo; Chen, Hongsheng; Fan, Heyu; Wu, Teresa

    2016-06-01

    This paper combines the prism and single camera and puts forward a method of stereo imaging with low cost. First of all, according to the principle of geometrical optics, we can deduce the relationship between the prism single-camera system and dual-camera system, and according to the principle of binocular vision we can deduce the relationship between binoculars and dual camera. Thus we can establish the relationship between the prism single-camera system and binoculars and get the positional relation of prism, camera, and object with the best effect of stereo display. Finally, using the active shutter stereo glasses of NVIDIA Company, we can realize the three-dimensional (3-D) display of the object. The experimental results show that the proposed approach can make use of the prism single-camera system to simulate the various observation manners of eyes. The stereo imaging system, which is designed by the method proposed by this paper, can restore the 3-D shape of the object being photographed factually.

  5. The Program for Regional and International Shorebird Monitoring (PRISM)

    USGS Publications Warehouse

    Bart, J.; Andres, B.; Brown, S.; Donaldson, G.; Harrington, B.; Johnston, V.; Jones, S.; Morrison, R.I.G.; Skagen, S.K.

    2005-01-01

    This report describes the a??Program for Regional and International Shorebird Monitoringa?? (PRISM). PRISM is being implemented by a Canada-United States Shorebird Monitoring and Assessment Committee formed in 2001 by the Canadian Shorebird Working Group and the U.S. Shorebird Council. PRISM provides a single blueprint for implementing the shorebird conservation plans recently completed in Canada and the United States. The goals of PRISM are to (1) estimate the size of breeding population of 74 shorebird taxa in North America; (2) describe the distribution, abundance, and habitat relationships for each of these taxa; (3) monitor trends in shorebird population size; (4) monitor shorebird numbers at stopover locations, and; (5) assist local managers in meeting their shorebird conservation goals. PRISM has four main components: arctic and boreal breeding surveys, temperate breeding surveys, temperate non-breeding surveys, and neotropical surveys. Progress on, and action items for, each major component are described. The more important major tasks for immediate action are carrying out the northern surveys, conducting regional analyses to design the program of migration counts, and evaluating aerial photographic surveys for migration and winter counts.

  6. Study of dose calculation on breast brachytherapy using prism TPS

    NASA Astrophysics Data System (ADS)

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-01

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm3. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm3. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  7. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM).

    PubMed

    Skinnider, Michael A; Dejong, Chris A; Rees, Philip N; Johnston, Chad W; Li, Haoxin; Webster, Andrew L H; Wyatt, Morgan A; Magarvey, Nathan A

    2015-11-16

    Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/. PMID:26442528

  8. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM)

    PubMed Central

    Skinnider, Michael A.; Dejong, Chris A.; Rees, Philip N.; Johnston, Chad W.; Li, Haoxin; Webster, Andrew L. H.; Wyatt, Morgan A.; Magarvey, Nathan A.

    2015-01-01

    Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/. PMID:26442528

  9. Prism adaptation changes the subjective proprioceptive localization of the hands.

    PubMed

    Scarpina, Federica; Van der Stigchel, Stefan; Nijboer, Tanja Cornelia Wilhelmina; Dijkerman, Hendrik Christiaan

    2015-03-01

    Prism adaptation involves a proprioceptive, a visual and a motor component. As the existing paradigms are not able to distinguish between these three components, the contribution of the proprioceptive component remains unclear. In the current study, a proprioceptive judgement task, in the absence of motor responses, was used to investigate how prism adaptation would specifically influences the felt position of the hands in healthy participants. The task was administered before and after adaptation to left and right displacing prisms using either the left or the right hand during the adaptation procedure. The results appeared to suggest that the prisms induced a drift in the felt position of the hands, although the after-effect depended on the combination of the pointing hand and the visual deviation induced by prisms. The results are interpreted as in line with the hypothesis of an asymmetrical neural architecture of somatosensory processing. Moreover, the passive proprioception of the hand position revealed different effects of proprioceptive re-alignment compared to active pointing straight ahead: different mechanisms about how visuo-proprioceptive discrepancy is resolved were hypothesized. PMID:24266883

  10. Research on beam splitting prism in laser heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Fu, Xiu-hua; Xiong, Shi-fu; Kou, Yang; Pan, Yong-gang; Chen, Heng; Li, Zeng-yu; Zhang, Chuan-xin

    2014-08-01

    With the rapid development of optical testing technology, laser heterodyne interferometer has been used more and more widely. As the testing precision requirements continue to increase, the technical prism is an important component of heterodyne interference. The research utilizing thin film technology to improve optical performance of interferometer has been a new focus. In the article, based on the use requirements of interferometer beam splitting prism, select Ta2O5 and SiO2 as high and low refractive index materials respectively, deposit on substrate K9. With the help of TFCalc design software and Needle method, adopting electron gun evaporation and ion assisted deposition, the beam splitting prism is prepared successfully and the ratio of transmittance and reflectance for this beam splitting prism in 500~850 nm band, incident angle 45 degree is 8:2. After repeated tests, solved the difference problem of film deposition process parameters ,controlled thickness monitoring precision effectively and finally prepared the ideal beam splitting prism which is high adhesion and stable optics properties. The film the laser induced damage threshold and it meet the requirements of heterodyne interferometer for use.

  11. Optical measurements of nasa/usaf crres high altitude rocket borne chemical release experiments in conjunction with the USAF airborne ionospheric observatory aircraft. Final report, 9 January 1991-30 September 1992

    SciTech Connect

    Boquist, W.P.; Ledley, B.G.

    1992-10-01

    In order to provide post experiment optical imagery data for correlation of airborne measurements of satellite signal modification from intervening chemical vapor clouds released in the upper atmosphere, Technology International Corporation provided and operated as part of the NASA/USAF PL/CRRES research program a ground optics station on Grand Turk Island in the Caribbean during June-July 1992. Optical data was acquired on the AA-1 event (approximately 95%) and the AA-7 event (approximately 60%). The third release (AA-2 event) occurred when the Grand Turk optics site was fully obscured by clouds for the duration of the normal period of visibility. All three rocket borne experiments were launched at morning twilight.

  12. Toolsets for Airborne Data

    Atmospheric Science Data Center

    2015-04-02

    article title:  Toolsets for Airborne Data     View larger image The ... limit of detection values. Prior to accessing the TAD Web Application ( https://tad.larc.nasa.gov ) for the first time, users must ...

  13. PRISM: A Practical Mealtime Imaging Stereo Matcher

    NASA Astrophysics Data System (ADS)

    Nishihara, H. K.

    1984-02-01

    A fast stereo-matching algorithm designed to operate in the presence of noise is described. The algorithm has its roots in the zero-crossing theory of Marr and Poggio but does not explicitly match zero-crossing contours. While these contours are for the most part stably tied to fixed surface locations, some fraction is always perturbed significantly by system noise. Zero-crossing contour based matching algorithms tend to I- very sensitive to these local distortions and ar, prevented from operating well on signals with moderate noise levels even though a substantial amount of information may still be present. The dual representation ¬â€?regions of constant sign in the V2G convolution persist much further into the noise than does the local geometry of the zero-crossing contours that delimit them. The PRISM system was designed to test this approach. The initial design task of the implementation has been to rapidly detect obstacles in a robotics work space and determine their rough extents and heights. In this case speed and reliability are important but precision is less critical. The system uses a pair of inexpensive vidicon cameras mounted above the workspace of a PUMA robot manipulator. The digitized video signals are fed to a high speed digital convolver that applies a 322 VG operator to the images at a 106 pixel per second rate. Matching is accomplished in software on a lisp machine with individual near/far tests taking less than i3luth of a second. A 36 by 26 matrix of absolute height measurements - in mm - over a 100 pixel disparity range is produced in 30 seconds from image acquisition to final output. Three scales of resolution are used in a coarse guides fine search. Acknowledgment: This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of 'Technology Support for the laboratory's artificial intelligence research is provided in part by the Advanced Research Projects Agency of the Department of Defense

  14. Airborne laser communication technology and flight test

    NASA Astrophysics Data System (ADS)

    Meng, Li-xin; Zhang, Li-zhong; Li, Xiao-ming; Li, Ying-chao; Jiang, Hui-lin

    2015-11-01

    Reconnaissance aircraft is an important node of the space-air-ground integrated information network, on which equipped with a large number of high-resolution surveillance equipment, and need high speed communications equipment to transmit detected information in real time. Currently RF communication methods cannot meet the needs of communication bandwidth. Wireless laser communication has outstanding advantages high speed, high capacity, security, etc., is an important means to solve the high-speed information transmission of airborne platforms. In this paper, detailed analysis of how the system works, the system components, work processes, link power and the key technologies of airborne laser communication were discussed. On this basis, a prototype airborne laser communications was developed, and high-speed, long-distance communications tests were carried out between the two fixed-wing aircraft, and the airborne precision aiming, atmospheric laser communication impacts on laser communication were tested. The experiments ultimately realize that, the communication distance is 144km, the communication rate is 2.5Gbps. The Airborne laser communication experiments provide technical basis for the application of the conversion equipment.

  15. The airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven; Schall, Harold; Shattuck, Paul

    2007-05-01

    The Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the current program status.

  16. Intramolecular energy transfer with butadiyne-linked chlorophyll and porphyrin dimer-faced, self-assembled prisms.

    SciTech Connect

    Kelley, R. F.; Lee, S. J.; Wilson, T. M.; Nakamura, Y.; Tiede, D. M.; Osuka, A.; Hupp, J. T.; Wasielewski, M. R.; SUF-USR; Chemical Sciences and Engineering Division; Northwestern Univ.; Kyoto Univ.

    2008-01-01

    The synthesis and photophysical properties of butadiyne-linked chlorophyll and porphyrin dimers in toluene solution and in several self-assembled prismatic structures are described. The butadiyne linkage between the 20-positions of the macrocycles results in new electronic transitions polarized along the long axes of the dimers. These transitions greatly increase the ability of these dimers to absorb the solar spectrum over a broad wavelength range. Femtosecond transient absorption spectroscopy reveals the relative rate of rotation of the macrocycles around the butadiyne bond joining them. Following addition of 3-fold symmetric, metal-coordinating ligands, both macrocyclic dimers self-assemble into prismatic structures in which the dimers comprise the faces of the prisms. These structures were confirmed by small-angle X-ray scattering experiments in solution using a synchrotron source. Photoexcitation of the prismatic assemblies reveals that efficient, through-space energy transfer occurs between the macrocyclic dimers within the prisms. The distance dependence of energy transfer between the faces of the prisms was observed by varying the size of the prismatic assemblies through the use of 3-fold symmetric ligands having arms with different lengths. These results show that self-assembly of discrete macrocyclic prisms provides a useful new strategy for controlling singlet exciton flow in antenna systems for artificial photosynthesis and solar cell applications.

  17. Synchrotron texture analysis of clay-rich sediments from the Nankai trench and accretionary prism

    NASA Astrophysics Data System (ADS)

    Schumann, Kai; Stipp, Michael; Leiss, Bernd; Behrmann, Jan-Hinrich

    2013-04-01

    depth. Also the original samples from the accretionary prism show a bedding-related texture, but the relation to sediment depth is not so clear. This is probably related to the intense reworking of the accretionary prism sediments by slumping and/or by tectonic deformation, especially in the zone between the frontal thrust and the megasplay fault. The experimentally deformed samples show an increasingly strong texture of the clay minerals with increasing axial strain. While the low strain samples show relict bedding, which rotates towards an orientation perpendicular to the axial shortening direction, no such relict bedding orientation can be observed in the very high strain experiments up to 60% axial shortening.

  18. Enhanced scanning agility using a double pair of Risley prisms.

    PubMed

    Roy, Gilles; Cao, Xiaoying; Bernier, Robert; Roy, Simon

    2015-12-01

    Scanners with one pair of Risley prisms are robust and precise and they can be operated continuously. In this paper, we present a new scanner based on the use of two pairs of Risley prisms. The concept was driven by the need to add flexibility to Risley prism scanners used for lidar 3D mapping applications, while maintaining compactness and robustness. The first pair covers a FOV narrower than the second pair. The second pair is used to position the first Risley pair scan pattern anywhere within its own, larger, FOV. Doing so, it becomes possible, without additional scanner components, to increase the sampling point density at a specific location, to increase the sampling uniformity of the scanned area, and, while in motion, to maintain the sampling of a specific area of interest. PMID:26836680

  19. Birefringent neutron prisms for spin echo scattering angle measurement

    NASA Astrophysics Data System (ADS)

    Pynn, Roger; Fitzsimmons, M. R.; Lee, W. T.; Stonaha, P.; Shah, V. R.; Washington, A. L.; Kirby, B. J.; Majkrzak, C. F.; Maranville, B. B.

    2009-09-01

    In the first decade of the 19th century, an English chemist, William Wollaston, invented an arrangement of birefringent prisms that splits a beam of light into two spatially separated beams with orthogonal polarizations. We have constructed similar devices for neutrons using triangular cross-section solenoids and employed them for Spin Echo Scattering Angle Measurement (SESAME). A key difference between birefringent neutron prisms and their optical analogues is that it is hard to embed the former in a medium which has absolutely no birefringence because this implies the removal of all magnetic fields. We have overcome this problem by using the symmetry properties of the Wollaston neutron prisms and of the overall spin echo arrangement. These symmetries cause a cancellation of Larmor phase aberrations and provide robust coding of neutron scattering angles with simple equipment.

  20. Quartz-Enhanced Photoacoustic Spectroscopy with Right-Angle Prism

    PubMed Central

    Liu, Yongning; Chang, Jun; Lian, Jie; Liu, Zhaojun; Wang, Qiang; Qin, Zengguang

    2016-01-01

    A right-angle prism was used to enhance the acoustic signal of a quartz-enhanced photoacoustic spectroscopy (QEPAS) system. The incident laser beam was parallelly inverted by the right-angle prism and passed through the gap between two tuning fork prongs again to produce another acoustic excitation. Correspondingly, two pairs of rigid metal tubes were used as acoustic resonators with resonance enhancement factors of 16 and 12, respectively. The QEPAS signal was enhanced by a factor of 22.4 compared with the original signal, which was acquired without resonators or a prism. In addition, the system noise was reduced a little with double resonators due to the Q factor decrease. The signal-to-noise ratio (SNR) was greatly improved. Additionally, a normalized noise equivalent absorption coefficient (NNEA) of 5.8 × 10−8 W·cm−1·Hz−1/2 was achieved for water vapor detection in the atmosphere. PMID:26861344

  1. Advanced hyperspectral video imaging system using Amici prism.

    PubMed

    Feng, Jiao; Fang, Xiaojing; Cao, Xun; Ma, Chenguang; Dai, Qionghai; Zhu, Hongbo; Wang, Yongjin

    2014-08-11

    In this paper, we propose an advanced hyperspectral video imaging system (AHVIS), which consists of an objective lens, an occlusion mask, a relay lens, an Amici prism and two cameras. An RGB camera is used for spatial reading and a gray scale camera is used for measuring the scene with spectral information. The objective lens collects more light energy from the observed scene and images the scene on an occlusion mask, which subsamples the image of the observed scene. Then, the subsampled image is sent to the gray scale camera through the relay lens and the Amici prism. The Amici prism that is used to realize spectral dispersion along the optical path reduces optical distortions and offers direct view of the scene. The main advantages of the proposed system are improved light throughput and less optical distortion. Furthermore, the presented configuration is more compact, robust and practicable. PMID:25321019

  2. Clinical and Laboratory Evaluation of Peripheral Prism Glasses for Hemianopia

    PubMed Central

    Giorgi, Robert G.; Woods, Russell L.; Peli, Eli

    2008-01-01

    Purpose Homonymous hemianopia (the loss of vision on the same side in each eye) impairs the ability to navigate and walk safely. We evaluated peripheral prism glasses as a low vision optical device for hemianopia in an extended wearing trial. Methods Twenty-three patients with complete hemianopia (13 right) with neither visual neglect nor cognitive deficit enrolled in the 5-visit study. To expand the horizontal visual field, patients’ spectacles were fitted with both upper and lower Press-On™ Fresnel prism segments (each 40 prism diopters) across the upper and lower portions of the lens on the hemianopic (“blind”) side. Patients were asked to wear these spectacles as much as possible for the duration of the study, which averaged 9 (range: 5 to 13) weeks. Clinical success (continued wear, indicating perceived overall benefit), visual field expansion, perceived direction and perceived quality of life were measured. Results Clinical Success: 14 of 21 (67%) patients chose to continue to wear the peripheral prism glasses at the end of the study (2 patients did not complete the study for non-vision reasons). At long-term follow-up (8 to 51 months), 5 of 12 (42%) patients reported still wearing the device. Visual Field Expansion: Expansion of about 22 degrees in both the upper and lower quadrants was demonstrated for all patients (binocular perimetry, Goldmann V4e). Perceived Direction: Two patients demonstrated a transient adaptation to the change in visual direction produced by the peripheral prism glasses. Quality of Life: At study end, reduced difficulty noticing obstacles on the hemianopic side was reported. Conclusions The peripheral prism glasses provided reported benefits (usually in obstacle avoidance) to 2/3 of the patients completing the study, a very good success rate for a vision rehabilitation device. Possible reasons for long-term discontinuation and limited adaptation of perceived direction are discussed. PMID:19357552

  3. Dynamics of Dual Prism Adaptation: Relating Novel Experimental Results to a Minimalistic Neural Model

    PubMed Central

    Arévalo, Orlando; Bornschlegl, Mona A.; Eberhardt, Sven; Ernst, Udo; Pawelzik, Klaus; Fahle, Manfred

    2013-01-01

    In everyday life, humans interact with a dynamic environment often requiring rapid adaptation of visual perception and motor control. In particular, new visuo–motor mappings must be learned while old skills have to be kept, such that after adaptation, subjects may be able to quickly change between two different modes of generating movements (‘dual–adaptation’). A fundamental question is how the adaptation schedule determines the acquisition speed of new skills. Given a fixed number of movements in two different environments, will dual–adaptation be faster if switches (‘phase changes’) between the environments occur more frequently? We investigated the dynamics of dual–adaptation under different training schedules in a virtual pointing experiment. Surprisingly, we found that acquisition speed of dual visuo–motor mappings in a pointing task is largely independent of the number of phase changes. Next, we studied the neuronal mechanisms underlying this result and other key phenomena of dual–adaptation by relating model simulations to experimental data. We propose a simple and yet biologically plausible neural model consisting of a spatial mapping from an input layer to a pointing angle which is subjected to a global gain modulation. Adaptation is performed by reinforcement learning on the model parameters. Despite its simplicity, the model provides a unifying account for a broad range of experimental data: It quantitatively reproduced the learning rates in dual–adaptation experiments for both direct effect, i.e. adaptation to prisms, and aftereffect, i.e. behavior after removal of prisms, and their independence on the number of phase changes. Several other phenomena, e.g. initial pointing errors that are far smaller than the induced optical shift, were also captured. Moreover, the underlying mechanisms, a local adaptation of a spatial mapping and a global adaptation of a gain factor, explained asymmetric spatial transfer and generalization of

  4. Dynamics of dual prism adaptation: relating novel experimental results to a minimalistic neural model.

    PubMed

    Arévalo, Orlando; Bornschlegl, Mona A; Eberhardt, Sven; Ernst, Udo; Pawelzik, Klaus; Fahle, Manfred

    2013-01-01

    In everyday life, humans interact with a dynamic environment often requiring rapid adaptation of visual perception and motor control. In particular, new visuo-motor mappings must be learned while old skills have to be kept, such that after adaptation, subjects may be able to quickly change between two different modes of generating movements ('dual-adaptation'). A fundamental question is how the adaptation schedule determines the acquisition speed of new skills. Given a fixed number of movements in two different environments, will dual-adaptation be faster if switches ('phase changes') between the environments occur more frequently? We investigated the dynamics of dual-adaptation under different training schedules in a virtual pointing experiment. Surprisingly, we found that acquisition speed of dual visuo-motor mappings in a pointing task is largely independent of the number of phase changes. Next, we studied the neuronal mechanisms underlying this result and other key phenomena of dual-adaptation by relating model simulations to experimental data. We propose a simple and yet biologically plausible neural model consisting of a spatial mapping from an input layer to a pointing angle which is subjected to a global gain modulation. Adaptation is performed by reinforcement learning on the model parameters. Despite its simplicity, the model provides a unifying account for a broad range of experimental data: It quantitatively reproduced the learning rates in dual-adaptation experiments for both direct effect, i.e. adaptation to prisms, and aftereffect, i.e. behavior after removal of prisms, and their independence on the number of phase changes. Several other phenomena, e.g. initial pointing errors that are far smaller than the induced optical shift, were also captured. Moreover, the underlying mechanisms, a local adaptation of a spatial mapping and a global adaptation of a gain factor, explained asymmetric spatial transfer and generalization of prism adaptation, as

  5. Assessment of prism responses to loss of flow events

    SciTech Connect

    Slovik, G.C.; Van Tuyle, G.J.; Sands, S.

    1992-09-01

    The Nuclear Regulatory Commission (NRC), with Brookhaven national Laboratory providing technical support, is continuing a preapplication review of the 471 MWt, advanced liquid metal reactor (ALMR), PRISM by General Electric. The revised design has been evaluated using the SSC code, for a series of loss of flow events (LOF) with and without gas expansion modules (GEMs). These devices have a net worth of 69{cents} and have reduced the seriousness of the LOF in PRISM. However, it was found that the extremely low probability case of an instantaneous loss of 4 EM pumps without scram could lead to sodium boiling even with the GEMs.

  6. Imaging of neuronal tissue using a prism adjunct

    NASA Astrophysics Data System (ADS)

    Broadbridge, Philip; Bradu, Adrian; Lall, Gurprit; Podoleanu, Adrian G.

    2014-03-01

    We present the use of a prism as an imaging adjunct with a multimodal system of optical coherence tomography and confocal microscopy operating at 1320 nm and 970 nm respectively. A comparison is performed between en-face OCT images acquired using the system and cross section OCT images obtained through a prism inserted into neuronal tissue of an intact ex-vivo murine brain. The en-face images and cross section images are scans of the same area; however each method has shown different aspects, allowing for greater interpretation of the neuronal tissue.

  7. Digital spatial wavelength domain multiplexing (DSWDM) using a prism-grating-prism (PGP) and a CMOS imager: implementation and initial testing

    NASA Astrophysics Data System (ADS)

    Christiansen, Martin B.; Chen, Steve; Baldwin, Christopher S.; Niemczuk, John B.; Kiddy, Jason S.; Chen, Peter C.; Kopola, Harri K.; Aikio, Mauri; Suopajarvi, Pekka; Buckley, Steven G.

    2001-08-01

    A CMOS imager-based spectrometer is used to interrogate a network containing a large number of Bragg grating sensors on multiple fibers as part of a proprietary structural health monitoring system. The spectrometer uses a Prism-Grating-Prism (PGP) to spectrally separate serially multiplexed Bragg reflections on a single fiber. As a result, each Bragg grating produces a discrete spot on the CMOS imager that shifts horizontally as the Bragg grating experiences changes in strain or temperature. The reflected wavelength of the Bragg grating can be determined by finding the center of the spot produced. The use of a random addressing CMOS imager enables a flexible sampling rate. Some fibers can be interrogated at a high sampling rate while others can be interrogated at a lower sampling rate. However, the use of a CMOS camera brings several specific problems in terms of signal processing. These include a logarithmic pixel response, a low signal-to-noise ratio, the long pixel time constant, obtaining sufficient process priority for the control program, and proper selection of the window of interest. In this paper we investigate computer algorithms and hardware solutions to address these problems. We also present experimental data to validate these solutions including calibration data and initial field-testing data with 24 sensors on 4 fibers.

  8. Beam distortion of rotation double prisms with an arbitrary incident angle.

    PubMed

    Li, Anhu; Zuo, Qiyou; Sun, Wansong; Yi, Wanli

    2016-07-01

    The distortion of beam shape in rotation Risley prisms is discussed in this paper. Using the ray-tracing method based on vector refraction theorem, a rigorous theoretical model of beam distortion with an arbitrary incident angle is established to explore the influencing factors. For a specified double-prism pair, the emergent beam is squeezed in one direction while stretched in the mutual perpendicular direction, the distortion of which is determined by the relative rotation angle. Moreover, the distortion of beam shape is greatly influenced by the wedge angles and the refractive indices of the prisms, as well as different double-prism configurations, while uncorrelated to the prism thickness and the distance between two prisms. This paper demonstrates the regular change of the beam shape with multiparameter variations in rotation double prisms, which can be applied to the design of rotation double-prism systems. PMID:27409205

  9. LSNR Airborne LIDAR Mapping System Design and Early Results (Invited)

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Carter, W. E.; Slatton, K. C.

    2009-12-01

    Low signal-to-noise ratio (LSNR) detection techniques allow for implementation of airborne light detection and range (LIDAR) instrumentation aboard platforms with prohibitive power, size, and weight restrictions. The University of Florida has developed the Coastal Area Tactical-mapping System (CATS), a prototype LSNR LIDAR system capable of single photon laser ranging. CATS is designed to operate in a fixed-wing aircraft flying 600 m above ground level, producing 532 nm, 480 ps, 3 μJ output pulses at 8 kHz. To achieve continuous coverage of the terrain with 20 cm spatial resolution in a single pass, a 10x10 array of laser beamlets is scanned. A Risley prism scanner (two rotating V-coated optical wedges) allows the array of laser beamlets to be deflected in a variety of patterns, including conical, spiral, and lines at selected angles to the direction of flight. Backscattered laser photons are imaged onto a 100 channel (10x10 segmented-anode) photomultiplier tube (PMT) with a micro-channel plate (MCP) amplifier. Each channel of the PMT is connected to a multi-stop 2 GHz event timer. Here we report on tests in which ranges for known targets were accumulated for repeated laser shots and statistical analyses were applied to evaluate range accuracy, minimum separation distance, bathymetric mapping depth, and atmospheric scattering. Ground-based field test results have yielded 10 cm range accuracy and sub-meter feature identification at variable scan settings. These experiments also show that a secondary surface can be detected at a distance of 15 cm from the first. Range errors in secondary surface identification for six separate trials were within 7.5 cm, or within the timing resolution limit of the system. Operating at multi-photon sensitivity may have value for situations in which high ambient noise precludes single-photon sensitivity. Low reflectivity targets submerged in highly turbid waters can cause detection issues. CATS offers the capability to adjust the

  10. Seismic structure of the southern Cascadia subduction zone and accretionary prism north of the Mendocino triple junction

    USGS Publications Warehouse

    Gulick, S.P.S.; Meltzer, A.M.; Clarke, S.H., Jr.

    1998-01-01

    Four multichannel-seismic reflection profiles, collected as part of the Mendocino triple junction seismic experiment, image the toe of the southern Cascadia accretionary prism. Today, 250-600 m of sediment is subducting with the Gorda plate, and 1500-3200 m is accreting to the northern California margin. Faults imaged west and east of the deformation front show mixed structural vergence. A north-south trending, 20 km long portion of the central margin is landward vergent for the outer 6-8 km of the toe of the prism. This region of landward vergence exhibits no frontal thrust, is unusually steep and narrow, and is likely caused by a seaward-dipping backstop close to the deformation front. The lack of margin-wide preferred seaward vergence and wedge-taper analysis suggests the prism has low basal shear stress. The three southern lines image wedge-shaped fragments of oceanic crust 1.1-7.3 km in width and 250-700 m thick near the deformation front. These wedges suggest shortening and thickening of the upper oceanic crust. Discontinuities in the seafloor west of the prism provide evidence for mass wasting in the form of slump blocks and debris fans. The southernmost profile extends 75 km west of the prism imaging numerous faults that offset both the Gorda basin oceanic crust and overlying sediments. These high-angle faults, bounding basement highs, are interpreted as strike-slip faults reactivating structures originally formed at the spreading ridge. Northeast or northwest trending strike-slip faults within the basin are consistent with published focal mechanism solutions and are likely caused by north-south Gorda-Pacific plate convergence. Copyright 1998 by the American Geophysical Union.

  11. Seismic structure of the southern Cascadia subduction zone and accretionary prism north of the Mendocino triple junction

    NASA Astrophysics Data System (ADS)

    Gulick, Sean P. S.; Meltzer, Anne M.; Clarke, Samuel H., Jr.

    1998-11-01

    Four multichannel-seismic reflection profiles, collected as part of the Mendocino triple junction seismic experiment, image the toe of the southern Cascadia accretionary prism. Today, 250-600 m of sediment is subducting with the Gorda plate, and 1500-3200 m is accreting to the northern California margin. Faults imaged west and east of the deformation front show mixed structural vergence. A north-south trending, 20 km long portion of the central margin is landward vergent for the outer 6-8 km of the toe of the prism. This region of landward vergence exhibits no frontal thrust, is unusually steep and narrow, and is likely caused by a seaward-dipping backstop close to the deformation front. The lack of margin-wide preferred seaward vergence and wedge-taper analysis suggests the prism has low basal shear stress. The three southern lines image wedge-shaped fragments of oceanic crust 1.1-7.3 km in width and 250-700 m thick near the deformation front. These wedges suggest shortening and thickening of the upper oceanic crust. Discontinuities in the seafloor west of the prism provide evidence for mass wasting in the form of slump blocks and debris fans. The southernmost profile extends 75 km west of the prism imaging numerous faults that offset both the Gorda basin oceanic crust and overlying sediments. These high-angle faults, bounding basement highs, are interpreted as strike-slip faults reactivating structures originally formed at the spreading ridge. Northeast or northwest trending strike-slip faults within the basin are consistent with published focal mechanism solutions and are likely caused by north-south Gorda-Pacific plate convergence.

  12. EVALUATING AND OPTIMIZING ELECTRON MICROSCOPE METHODS FOR CHARACTERIZING AIRBORNE ASBESTOS

    EPA Science Inventory

    Evaluation of EM methods for measuring airborne asbestos fiber concentrations and size distributions was carried out by studying a large number of variables and subprocedures in a five-phase program using elaborate statistically designed experiments. Observations were analyzed by...

  13. 49 CFR 390.203 - PRISM State registration/biennial updates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false PRISM State registration/biennial updates. 390.203... FEDERAL MOTOR CARRIER SAFETY REGULATIONS; GENERAL Unified Registration System § 390.203 PRISM State... the Performance and Registration Information Systems Management (PRISM) program (authorized...

  14. 49 CFR 390.203 - PRISM State registration/biennial updates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false PRISM State registration/biennial updates. 390.203... FEDERAL MOTOR CARRIER SAFETY REGULATIONS; GENERAL Unified Registration System § 390.203 PRISM State... the Performance and Registration Information Systems Management (PRISM) program (authorized...

  15. Coherent coupling of independent grating-surface-emitting diode laser arrays using an external prism

    SciTech Connect

    Carlson, N.W.; Evans, G.A.; Lurie, M.; Hammer, J.M.; Kaiser, C.J.; Liew, S.K. )

    1990-01-08

    Pairs of grating surface-emitting arrays, on a single wafer but free-running, were externally coupled with a prism. The prism acted as an optical coupler between one distributed Bragg reflector in each array. Injection locking was demonstrated by observing a dramatic increase in the lateral coherence of the far field of the prism-coupled arrays.

  16. Airborne Brightness Temperature Measurements of the Polar Winter Troposphere as Part of the Airborne Arctic Stratosphere Experiment 2 and the Effect of Brightness Temperature Variations on the Diabatic Heating in the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Valero, Francisoco P. J.; Platnick, Steven; Kinne, Stefan; Pilewskie, Peter; Bucholtz, Anthony

    1993-01-01

    In this paper we report radiometric measurements of tropospheric brightness temperatures obtained during the AASE 2 experiment. These measurements represent the first attempt to characterize effective radiative temperatures as seen from above the troposphere during the Arctic winter. The reported measurements include brightness temperatures at 6.7 and 10.5 micrometers as seen from the NASA DC-8 aircraft flying at about 11 km altitude. We also present radiative transfer calculations to estimate the effect of tropospheric brightness temperature on the lower stratospheric heating rates. Because of the recent massive eruption of the Pinatubo volcano, we also discuss the effects of a volcanic aerosol layer. It is concluded that small particles like the volcanic aerosol or PSCs type 1 do not affect stratospheric heating rates by much; on the other hand, larger particles, PSCs types 2 and 3, may have significant effects on heating rates and consequently on dynamics of the lower stratosphere. The dynamical effects of local stratospheric temperature variations are briefly discussed.

  17. Airborne brightness temperature measurements of the polar winter troposphere as part of the Airborne Arctic Stratosphere Experiment 2 and the effect of brightness temperature variations on the diabatic heating in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.; Platnick, Steven; Kinne, Stefan; Pilewskie, Peter; Bucholtz, Anthony

    1993-01-01

    In this paper we report radiometric measurements of tropospheric brightness temperatures obtained during the AASE 2 experiment. These measurements represent the first attempt to characterize effective radiative temperatures as seen from above the troposphere during the Arctic winter. The reported measurements include brightness temperatures at 6.7 and 10.5 microns as seen from the NASA DC-8 aircraft flying at about 11 km altitude. We also present radiative transfer calculations to estimate the effect of tropospheric brightness temperature on the lower stratospheric heating rates. Because of the recent massive eruption of the Pinatubo volcano, we also discuss the effects of a volcanic aerosol layer. It is concluded that small particles like the volcanic aerosol or polar stratospheric clouds (PSCs) type 1 do not affect stratospheric heating rates by much; on the other hand, larger particles, PSCs types 2 and 3, may have significant effects on heating rates and consequently on dynamics of the lower stratosphere. The dynamical effects of local stratospheric temperature variations are briefly discussed.

  18. 4. VIEW SOUTH SHOWING AQUEDUCT PRISM. NOTE 1920 TIMBER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW SOUTH SHOWING AQUEDUCT PRISM. NOTE 1920 TIMBER AND CONCRETE FLOORING SYSTEM, POCKETS FOR VERTICAL POSTS AND BRIDGING, STEEL BRACES ADDED BY THE NATIONAL PARK SERVICE CIRCA 1962. - Chesapeake & Ohio Canal, Conococheague Creek Aqueduct, Milepost 99.80, Williamsport, Washington County, MD

  19. Simulation of electrically controlled nematic liquid crystal Rochon prism

    NASA Astrophysics Data System (ADS)

    Buczkowska, M.; Derfel, G.

    2016-09-01

    Operation of an electrically controlled beam steering device based on Rochon prism made by use of nematic liquid crystal is modelled numerically. Deflection angles and angular distribution of light intensity in the deflected beam are calculated. Dynamics of the device is studied. Advantage of application of dual frequency nematic liquid crystal is demonstrated. Role of flexoelectric properties of the nematic is analyzed.

  20. The Pacific Oaks College's Prism Principles Professional Development Approach

    ERIC Educational Resources Information Center

    Beyer, Kalani

    2012-01-01

    In a struggling atmosphere for education, one college is optimistic about the future by offering school districts its PRISM Principles professional development as a means to ensure that "no child is left behind." Pacific Oaks College & Children's School is known for its premiere programs in early childhood education, human…

  1. Budding Architects: Exploring the Designs of Pyramids and Prisms

    ERIC Educational Resources Information Center

    Leavy, Aisling; Hourigan, Mairéad

    2015-01-01

    The context of students as architects is used to examine the similarities and differences between prisms and pyramids. Leavy and Hourigan use the Van Hiele Model as a tool to support teachers to develop expectations for differentiating geometry in the classroom using practical examples.

  2. 3. VIEW SOUTH SHOWING AQUEDUCT PRISM. NOTE 1920 TIMBER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW SOUTH SHOWING AQUEDUCT PRISM. NOTE 1920 TIMBER AND CONCRETE FLOORING SYSTEM, CUT STONE FACE OF PARAPET WALL, AND WROUGHT IRON BOLTS USED TO SECURE THE RUBBING RAIL. - Chesapeake & Ohio Canal, Conococheague Creek Aqueduct, Milepost 99.80, Williamsport, Washington County, MD

  3. Compact prisms for polarisation splitting of fibre laser beams

    SciTech Connect

    Davydov, B L; Yagodkin, D I

    2005-11-30

    Simple compact monoprisms for spatial splitting of polarised laser beams with relatively small diameters (no more than 1 mm) are considered. Prisms can be made of optically inactive CaCO{sub 3}, {alpha}-BaB{sub 2}O{sub 4} ({alpha}-BBO), LiIO{sub 3}, LiNbO{sub 3}, YVO{sub 4}, and TiO{sub 2} crystals known in polarisation optics. The exact solution of the Snell equation for the extraordinary wave reflected from a surface arbitrarily tilted to its wave vector is obtained. The analysis of variants of the solution allows the fabrication of prisms with any deviation angles of the extraordinary wave by preserving the propagation direction of the ordinary wave. Three variants of prisms are considered: with minimised dimensions, with the Brewster output of the extraordinary beam, and with the deviation of the extraordinary wave by 90{sup 0}. Calcite prisms with the deviation angles for the extraordinary beam {approx}19{sup 0} and 90{sup 0} are tested experimentally. (control of laser radiation parameters)

  4. 2. GENERAL VIEW ACROSS CANAL PRISM TO TOWPATH BERM SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW ACROSS CANAL PRISM TO TOWPATH BERM SOUTH OF THE SPILLWAY; VIEW TO SOUTHWEST FROM ROUTE 146 EMBANKMENT. - Blackstone Canal Millbury Segment, Beginning northwest of State Route 146 & McCracken Road, running along west side of Route 146, Millbury, Worcester County, MA

  5. Synthesis and photocatalytic activity of porous bismuth oxychloride hexagonal prisms.

    PubMed

    Ding, Liyong; Chen, Huan; Wang, Qingqian; Zhou, Tengfei; Jiang, Qingqing; Yuan, Yuhong; Li, Jinlin; Hu, Juncheng

    2016-01-18

    Porous BiOCl hexagonal prisms have been successfully prepared through a simple solvothermal route. These novel BiOCl HPs with porous structures are assembled from nanoparticles and exhibit high activity and selectivity toward the photocatalytic aerobic oxidation of benzyl alcohol to benzaldehyde and degradation of methyl orange. PMID:26592759

  6. 3. GENERAL VIEW ACROSS CANAL PRISM TO TOWPATH BERM NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. GENERAL VIEW ACROSS CANAL PRISM TO TOWPATH BERM NORTH OF THE SPILLWAY; VIEW TO WEST FROM ROUTE 146 EMBANKMENT. - Blackstone Canal Millbury Segment, Beginning northwest of State Route 146 & McCracken Road, running along west side of Route 146, Millbury, Worcester County, MA

  7. 1. GENERAL VIEW, TOWPATH BERM (CENTER) AND CANAL PRISM (LEFT) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW, TOWPATH BERM (CENTER) AND CANAL PRISM (LEFT) SOUTH OF THE SPILLWAY; VIEW TO SOUTH. - Blackstone Canal Millbury Segment, Beginning northwest of State Route 146 & McCracken Road, running along west side of Route 146, Millbury, Worcester County, MA

  8. Liquid-crystal prisms for tip-tilt adaptive optics.

    PubMed

    Love, G D; Major, J V; Purvis, A

    1994-08-01

    Results from an electrically addressed liquid-crystal cell producing continuous phase profiles are presented. The adaptive deflection of a beam of light for use in a tip-tilt adaptive optics system is demonstrated. We compare the optical performance of liquid-crystal prisms with experimental data on atmospheric seeing at the William Herschel Telescope. PMID:19844566

  9. Payloads with Resource-Efficient Integration for Science Missions (PRISM)

    NASA Astrophysics Data System (ADS)

    Emam, O.; FitzGeorge, T.; Whittaker, A.; Wishart, A.; Fowell, S.; Prochazka, M.; Bentley, R.; Cole, R.; Brown, P.; Carr, C.; Cupido, E.; Oddy, T.

    2009-05-01

    PRISM is a collaborative industry and academia project to demonstrate the practicality of a highly integrated payload processing architecture, in order to exploit improvements in spacecraft computer performance to reduce multi-instrument payload mass and power requirements. Integrated architectures also provide opportunities for a greater degree of autonomy and advanced target selection (e.g. inter-instrument triggering). The PRISM architecture has potential advantages for missions such as EJSM (Europa Jupiter System Mission) or Solar Orbiter. The key technology objectives of PRISM are application partitioning on a qualifiable operating system, supported by the software required for fault-tolerant centralised processing, and the development of an application development environment for writing and testing instrument control applications. A working demonstrator has been implemented on a LEON3 platform, with representative payload applications from an in-situ magnetometer and a remote sensing extreme ultra-violet imager, both proposed for Solar Orbiter. PRISM is supported by the UK Science and Technology Facilities Council (STFC).

  10. Electrowetting-Controlled Dual Liquid Prism for Adaptive Beam Steering

    NASA Astrophysics Data System (ADS)

    Cheng, Jiangtao

    2015-03-01

    The use of concentrating photovoltaic (CPV) technology has been the most promising method of harvesting solar radiation. These CPV systems often require motor-driven tracking devices to steer the sun's beams onto solar cells. The cost of maintaining these tracking systems is the primary inhibitor for widespread application. We aim to overcome the need for mechanical trackers through the use of an electrowetting-driven solar tracking (EWST) system. The electrowetting-driven solar tracking system consists of an array of novel electrowetting-controlled dual liquid prisms, which are filled with immiscible fluids that have large differences in refractive indices. The naturally formed meniscus between the fluids can function as a dynamic optical prism. Via the full-range modulation of the liquid prisms, incident sunlight can be adaptively tracked, steered, and focused onto CPV cells through a fixed optical condenser. Furthermore, unlike the conventional and cumbersome motor-driven tracking systems used today, the liquid prism system would be suitable for rooftop applications. The results of this project reveal that the EWST system has the potential to generate ~ 70% more green energy at 50% of the conventional capital cost.

  11. Prism adaptation for spatial neglect after stroke: translational practice gaps

    PubMed Central

    Barrett, A. M.; Goedert, Kelly M.; Basso, Julia C.

    2012-01-01

    Spatial neglect increases hospital morbidity and costs in around 50% of the 795,000 people per year in the USA who survive stroke, and an urgent need exists to reduce the care burden of this condition. However, effective acute treatment for neglect has been elusive. In this article, we review 48 studies of a treatment of intense neuroscience interest: prism adaptation training. Due to its effects on spatial motor ‘aiming’, prism adaptation training may act to reduce neglect-related disability. However, research failed, first, to suggest methods to identify the 50–75% of patients who respond to treatment; second, to measure short-term and long-term outcomes in both mechanism-specific and functionally valid ways; third, to confirm treatment utility during the critical first 8 weeks poststroke; and last, to base treatment protocols on systematic dose–response data. Thus, considerable investment in prism adaptation research has not yet touched the fundamentals needed for clinical implementation. We suggest improved standards and better spatial motor models for further research, so as to clarify when, how and for whom prism adaptation should be applied. PMID:22926312

  12. Comparison of retracking algorithms using airborne radar and laser altimeter measurements of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-05-01

    In 1991, NASA conducted a multisensor airborne altimetry experiment over the Greenland ice sheet. The experiment consisted of ten flights. Four types of radar altimeter retracking algorithms which include the Advanced Application Flight Experiment (AAFE) Ku-band altimeter, the NASA Airborne Oceanographic Lidar (AOL), the NASA Airborne Terrain Laser Altimeter System (ATLAS) and the NASA Ka-band Surface Contour Radar (SCR) were used. In this paper, these four continental ice sheet radar altimeter tracking algorithms were compared.

  13. Airborne gamma radiation soil moisture measurements over short flight lines

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.; Carrol, Thomas R.; Lipinski, Daniel M.

    1990-01-01

    Results are presented on airborne gamma radiation measurements of soil moisture condition, carried out along short flight lines as part of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE). Data were collected over an area in Kansas during the summers of 1987 and 1989. The airborne surveys, together with ground measurements, provide the most comprehensive set of airborne and ground truth data available in the U.S. for calibrating and evaluating airborne gamma flight lines. Analysis showed that, using standard National Weather Service weights for the K, Tl, and Gc radiation windows, the airborne soil moisture estimates for the FIFE lines had a root mean square error of no greater than 3.0 percent soil moisture. The soil moisture estimates for sections having acquisition time of at least 15 sec were found to be reliable.

  14. Superconducting magnetic Wollaston prism for neutron spin encoding

    SciTech Connect

    Li, F. Parnell, S. R.; Wang, T.; Baxter, D. V.; Hamilton, W. A.; Maranville, B. B.; Semerad, R.; Cremer, J. T.; Pynn, R.

    2014-05-15

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ∼30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ∼98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 μm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

  15. Superconducting magnetic Wollaston prism for neutron spin encoding.

    PubMed

    Li, F; Parnell, S R; Hamilton, W A; Maranville, B B; Wang, T; Semerad, R; Baxter, D V; Cremer, J T; Pynn, R

    2014-05-01

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ~30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ~98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 μm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed. PMID:24880360

  16. Sediment compaction and fluid migration in the Makran Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Minshull, Tim; White, Robert

    1989-06-01

    The Makran continental margin in the Gulf of Oman forms the seaward extremity of an accretionary sediment prism which extends several hundred kilometers inland. A recently acquired multichannel seismic reflection profile shot across the margin imaged the structure of the prism in greater detail than was previously possible and allowed us to investigate the relationship between deformation and pore fluid motion in the region. Velocity analyses of the common midpoint gathers reveal a marked change in velocity structure at the toe of the accretionary wedge, as seen in previous sonobuoy wide-angle data. Accreted sediments show significantly higher vertical velocity gradients than those of sediments entering the prism; this change is interpreted as due to porosity reduction as pore fluids are squeezed out of the compacting sediment. A prominent "bottom simulating reflector" appears 500-800 m beneath the sea bed. Several lines of evidence suggest that this reflector represents the base of a gas hydrate zone underlain by widespread free gas, which may be exsolved from pore water migrating from deep within the sediment pile up permeable fault planes imaged in the profile. The hydrate reflector appears to shallow in the region of some faults, suggesting a temperature anomaly due to the presence of warm pore fluids. A heat flow profile derived from the depth of the hydrate reflector does not show the expected landward decrease as the sediment pile thickens. Simple thermal modeling suggests that advective heat flow within the prism may explain this anomaly. The inferred presence of overpressured pore fluids in the Makran suggests that accreted sediments have a low permeability. The seismic evidence suggests a two-stage compaction process, with rapid initial dewatering through intergranular permeability as sediment enters the prism followed by a buildup of pore pressure as the permeability decreases and fluid migration is restricted to fault zones.

  17. Study of dose calculation on breast brachytherapy using prism TPS

    SciTech Connect

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-30

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm{sup 3}. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm{sup 3}. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  18. Validation of "AW3D" Global Dsm Generated from Alos Prism

    NASA Astrophysics Data System (ADS)

    Takaku, Junichi; Tadono, Takeo; Tsutsui, Ken; Ichikawa, Mayumi

    2016-06-01

    Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), one of onboard sensors carried by Advanced Land Observing Satellite (ALOS), was designed to generate worldwide topographic data with its optical stereoscopic observation. It has an exclusive ability to perform a triplet stereo observation which views forward, nadir, and backward along the satellite track in 2.5 m ground resolution, and collected its derived images all over the world during the mission life of the satellite from 2006 through 2011. A new project, which generates global elevation datasets with the image archives, was started in 2014. The data is processed in unprecedented 5 m grid spacing utilizing the original triplet stereo images in 2.5 m resolution. As the number of processed data is growing steadily so that the global land areas are almost covered, a trend of global data qualities became apparent. This paper reports on up-to-date results of the validations for the accuracy of data products as well as the status of data coverage in global areas. The accuracies and error characteristics of datasets are analyzed by the comparison with existing global datasets such as Ice, Cloud, and land Elevation Satellite (ICESat) data, as well as ground control points (GCPs) and the reference Digital Elevation Model (DEM) derived from the airborne Light Detection and Ranging (LiDAR).

  19. The Airborne Laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-09-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  20. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  1. The ESA/NASA Multi-Aircraft ATV-1 Re-Entry Campaign: Analysis of Airborne Intensified Video Observations from the NASA/JSC Experiment

    NASA Technical Reports Server (NTRS)

    Barker, Ed; Maley, Paul; Mulrooney, Mark; Beaulieu, Kevin

    2009-01-01

    In September 2008, a joint ESA/NASA multi-instrument airborne observing campaign was conducted over the Southern Pacific ocean. The objective was the acquisition of data to support detailed atmospheric re-entry analysis for the first flight of the European Automated Transfer Vehicle (ATV)-1. Skilled observers were deployed aboard two aircraft which were flown at 12.8 km altitude within visible range of the ATV-1 re-entry zone. The observers operated a suite of instruments with low-light-level detection sensitivity including still cameras, high speed and 30 fps video cameras, and spectrographs. The collected data has provided valuable information regarding the dynamic time evolution of the ATV-1 re-entry fragmentation. Specifically, the data has satisfied the primary mission objective of recording the explosion of ATV-1's primary fuel tank and thereby validating predictions regarding the tanks demise and the altitude of its occurrence. Furthermore, the data contains the brightness and trajectories of several hundred ATV-1 fragments. It is the analysis of these properties, as recorded by the particular instrument set sponsored by NASA/Johnson Space Center, which we present here.

  2. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  3. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  4. Morphine enhances the release of /sup 3/H-purines from rat brain cerebral cortical prisms

    SciTech Connect

    Wu, P.H.; Phillis, J.W.; Yuen, H.

    1982-10-01

    In vitro experiments have shown that /sup 3/H-purines can be released from /sup 3/H-adenosine preloaded rat brain cortical prisms by a KCl-evoked depolarization. The KCl-evoked release of /sup 3/H-purines is dependent on the concentration of KCl present in the superfusate. At concentrations of 10(-7) approximately 10(-5)M morphine did not influence the basal release of /sup 3/H-purines from the prisms, although it enhanced the KCl-evoked release of /sup 3/H-purines. The enhancement of KCl-evoked /sup 3/H-purine release by morphine was concentration-dependent and was antagonized by naloxone, suggesting the involvement of opiate receptors. Uptake studies with rat brain cerebral cortical synaptosomes show that morphine is a very weak inhibitor of adenosine uptake. Comparisons with dipyridamole, a potent inhibitor of adenosine uptake, suggest that this low level of inhibition of the uptake did not contribute significantly to the release of /sup 3/H-purine by morphine seen in our experiments. It is therefore suggested that morphine enhances KCl-evoked /sup 3/H-purine release by an interaction with opiate receptors and that the resultant increase in extracellular purine (adenosine) levels may account for some of the actions of morphine.

  5. Experimental static aerodynamics of a regular hexagonal prism in a low density hypervelocity flow

    NASA Technical Reports Server (NTRS)

    Guy, R. W.; Mueller, J. N.; Lee, L. P.

    1972-01-01

    A regular hexagonal prism, having a fineness ratio of 1.67, has been tested in a wind tunnel to determine its static aerodynamic characteristics in a low-density hypervelocity flow. The prism tested was a 1/4-scale model of the graphite heat shield which houses the radioactive fuel for the Viking spacecraft auxiliary power supply. The basic hexagonal prism was also modified to simulate a prism on which ablation of one of the six side flats had occurred. This modified hexagonal prism was tested to determine the effects on the aerodynamic characteristics of a shape change caused by ablation during a possible side-on stable reentry.

  6. The 3D inversion of airborne gamma-ray spectrometric data

    NASA Astrophysics Data System (ADS)

    Minty, Brian; Brodie, Ross

    2016-07-01

    We present a new method for the inversion of airborne gamma-ray spectrometric line data to a regular grid of radioelement concentration estimates on the ground. The method incorporates the height of the aircraft, the 3D terrain within the field of view of the spectrometer, the directional sensitivity of rectangular detectors, and a source model comprising vertical rectangular prisms with the same horizontal dimensions as the required grid cell size. The top of each prism is a plane surface derived from a best-fit plane to the digital elevation model of the earth's surface within each grid cell area. The method is a significant improvement on current methods, and gives superior interpolation between flight lines. It also eliminates terrain effects that would normally remain in the data after the conventional processing of these data assuming a flat-earth model.

  7. Increasing the effective aperture of a detector and enlarging the receiving field of view in a 3D imaging lidar system through hexagonal prism beam splitting.

    PubMed

    Lee, Xiaobao; Wang, Xiaoyi; Cui, Tianxiang; Wang, Chunhui; Li, Yunxi; Li, Hailong; Wang, Qi

    2016-07-11

    The detector in a highly accurate and high-definition scanning 3D imaging lidar system requires high frequency bandwidth and sufficient photosensitive area. To solve the problem of small photosensitive area of an existing indium gallium arsenide detector with a certain frequency bandwidth, this study proposes a method for increasing the receiving field of view (FOV) and enlarging the effective photosensitive aperture of such detector through hexagonal prism beam splitting. The principle and construction of hexagonal prism beam splitting is also discussed in this research. Accordingly, a receiving optical system with two hexagonal prisms is provided and the splitting beam effect of the simulation experiment is analyzed. Using this novel method, the receiving optical system's FOV can be improved effectively up to ±5°, and the effective photosensitive aperture of the detector is increased from 0.5 mm to 1.5 mm. PMID:27410800

  8. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Knerr, T. J.; Schaffner, P. R.; Mielke, R. R.; Gilreath, M. C.

    1980-01-01

    A procedure for numerically calculating radiation patterns of fuselage-mounted airborne antennas using the Volumetric Pattern Analysis Program is presented. Special attention is given to aircraft modeling. An actual case study involving a large commercial aircraft is included to illustrate the analysis procedure.

  9. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  10. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  11. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  12. Multiresolution processing for fractal analysis of airborne remotely sensed data

    NASA Technical Reports Server (NTRS)

    Jaggi, S.; Quattrochi, D.; Lam, N.

    1992-01-01

    Images acquired by NASA's Calibrated Airborne Multispectral Scanner are used to compute the fractal dimension as a function of spatial resolution. Three methods are used to determine the fractal dimension: Shelberg's (1982, 1983) line-divider method, the variogram method, and the triangular prism method. A description of these methods and the result of applying these methods to a remotely-sensed image is also presented. The scanner data was acquired over western Puerto Rico in January, 1990 over land and water. The aim is to study impacts of man-induced changes on land that affect sedimentation into the near-shore environment. The data were obtained over the same area at three different pixel sizes: 10 m, 20 m, and 30 m.

  13. Design of partially optically stable reflector systems and prisms

    NASA Astrophysics Data System (ADS)

    Tsai, Chuang-Yu

    2010-09-01

    The characteristics and design method of the total optically stable (TOS) reflector systems/prisms were introduced in an early paper (Tsai and Lin in Appl. Opt. 47:4158-4163, 2008), where only two types of TOS reflector system exist, namely preservation or retroreflection. In this paper, we introduce the partially optically stable (POS) reflector system, which is only optically stable about a specific directional vector; nevertheless, the exiting light ray is not restricted to preservation or retroreflection. The proposed paper also presents an analytic method for the design of POS reflector systems comprised of multiple reflectors. Furthermore, it is shown that a POS prism can be obtained by adding two refracting flat boundary surfaces with specific conditions at the entrance and exit positions of the light ray in an optical system with multiple reflectors.

  14. Planar prism spectrometer based on adiabatically connected waveguiding slabs

    NASA Astrophysics Data System (ADS)

    Civitci, F.; Hammer, M.; Hoekstra, H. J. W. M.

    2016-04-01

    The device principle of a prism-based on-chip spectrometer for TE polarization is introduced. The spectrometer exploits the modal dispersion in planar waveguides in a layout with slab regions having two different thicknesses of the guiding layer. The set-up uses parabolic mirrors, for the collimation of light of the input waveguide and focusing of the light to the receiver waveguides, which relies on total internal reflection at the interface between two such regions. These regions are connected adiabatically to prevent unwanted mode conversion and loss at the edges of the prism. The structure can be fabricated with two wet etching steps. The paper presents basic theory and a general approach for device optimization. The latter is illustrated with a numerical example assuming SiON technology.

  15. Extremely simple single-prism ultrashort- pulse compressor.

    PubMed

    Akturk, Selcuk; Gu, Xun; Kimmel, Mark; Trebino, Rick

    2006-10-16

    We have designed and demonstrated a very simple and compact ultrashort-pulse compressor using a single prism and a corner-cube. Our design is significantly easier to align and tune compared with previous designs. Angle-tuning the prism wavelength-tunes, and translating the corner cube varies the group-delay dispersion over a wide range. When tuned, the device automatically maintains zero angular dispersion, zero pulse-front tilt, zero spatial chirp, and unity magnification. The device can easily be built so that its output beam remains collinear with the input beam, and when the input beam or pulse compressor moves, the input and output beams remain collinear. PMID:19529405

  16. Prism-coupled light emission from tunnel junctions

    NASA Technical Reports Server (NTRS)

    Ushioda, S.; Rutledge, J. E.; Pierce, R. M.

    1985-01-01

    Completely p-polarized light emission has been observed from smooth Al-AlO(x)-Au tunnel junctions placed on a prism coupler. The angle and polarization dependence demonstrate unambiguously that the emitted light is radiated by the fast-mode surface plasmon polariton. The emission spectra suggest that the dominant process for the excitation of the fast mode is through conversion of the slow mode to the fast mode mediated by residual roughness on the junction surface.

  17. Stereovision Imaging in Smart Mobile Phone Using Add on Prisms

    NASA Astrophysics Data System (ADS)

    Bar-Magen Numhauser, Jonathan; Zalevsky, Zeev

    2014-03-01

    In this work we present the use of a prism-based add on component installed on top of a smart phone to achieve stereovision capabilities using iPhone mobile operating system. Through these components and the combination of the appropriate application programming interface and mathematical algorithms the obtained results will permit the analysis of possible enhancements for new uses to such system, in a variety of areas including medicine and communications.

  18. Controllable Sonar Lenses and Prisms Based on ERFs

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Chang, Zensheu; Bao, Xiaoqi; Paustian, Iris; Lopes, Joseph; Folds, Donald

    2004-01-01

    Sonar-beam-steering devices of the proposed type would contain no moving parts and would be considerably smaller and less power-hungry, relative to conventional multiple-beam sonar arrays. The proposed devices are under consideration for installation on future small autonomous underwater vehicles because the sizes and power demands of conventional multiple-beam arrays are excessive, and motors used in single-beam mechanically scanned systems are also not reliable. The proposed devices would include a variety of electrically controllable acoustic prisms, lenses, and prism/lens combinations both simple and compound. These devices would contain electrorheological fluids (ERFs) between electrodes. An ERF typically consists of dielectric particles floating in a dielectric fluid. When an electric field is applied to the fluid, the particles become grouped into fibrils aligned in rows, with a consequent increase in the viscosity of the fluid and a corresponding increase in the speed of sound in the fluid. The change in the speed of sound increases with an increase in the applied electric field. By thus varying the speed of sound, one varies the acoustic index of refraction, analogously to varying the index of refraction of an optical lens or prism. In the proposed acoustic devices, this effect would be exploited to control the angles of refraction of acoustic beams, thereby steering the beams and, in the case of lenses, controlling focal lengths.

  19. Spatial Compression Impairs Prism Adaptation in Healthy Individuals

    PubMed Central

    Scriven, Rachel J.; Newport, Roger

    2013-01-01

    Neglect patients typically present with gross inattention to one side of space following damage to the contralateral hemisphere. While prism-adaptation (PA) is effective in ameliorating some neglect behaviors, the mechanisms involved and their relationship to neglect remain unclear. Recent studies have shown that conscious strategic control (SC) processes in PA may be impaired in neglect patients, who are also reported to show extraordinarily long aftereffects compared to healthy participants. Determining the underlying cause of these effects may be the key to understanding therapeutic benefits. Alternative accounts suggest that reduced SC might result from a failure to detect prism-induced reaching errors properly either because (a) the size of the error is underestimated in compressed visual space or (b) pathologically increased error-detection thresholds reduce the requirement for error correction. The purpose of this study was to model these two alternatives in healthy participants and to examine whether SC and subsequent aftereffects were abnormal compared to standard PA. Each participant completed three PA procedures within a MIRAGE mediated reality environment with direction errors recorded before, during and after adaptation. During PA, visual feedback of the reach could be compressed, perturbed by noise, or represented veridically. Compressed visual space significantly reduced SC and aftereffects compared to control and noise conditions. These results support recent observations in neglect patients, suggesting that a distortion of spatial representation may successfully model neglect and explain neglect performance while adapting to prisms. PMID:23675332

  20. SSC analysis of the GEMs for reactivity control in PRISM

    SciTech Connect

    Slovik, G.C.; Rodnizki, J.

    1992-01-01

    The performance of three Gas Expansion Modules (GEMS) utilized the Advanced Liquid Metal Reactor (ALMR) concept, PRISM, was analyzed using the computer code, SSC. GE has submitted the PRISM design for a Preapplication Safety Evaluation Report (PSER). The draft PSER indicated a potential weakness in the Unscrammed Loss of Flow (ULOF) event, and GE modified the design by adding three GEMs. The PRISM design was analyzed by SSC for two cases. First, the design's original response to a ULOF where one Electro Magnetic (EM) pump fails to produce a coastdown was analyzed. Then the revised design with the GEMs included was analyzed. The original design had little or no safety margin for this case. The peak fuel temperature in the hot channel was predicted to be 1358K, which is above the solidus temperature of the fuel. However, after the GEMs were added, the loss of one EM pump coastdown became a benign event. The GEM feedback was predicted by SSC to dominate the other reactivity feedbacks and the GEMS, essentially, responded like passive control rods. The fuel temperature quickly dropped below operating temperatures, while the margin to sodium boiling was predicted to be greater than 350K.

  1. SSC analysis of the GEMs for reactivity control in PRISM

    SciTech Connect

    Slovik, G.C.; Rodnizki, J.

    1992-12-31

    The performance of three Gas Expansion Modules (GEMS) utilized the Advanced Liquid Metal Reactor (ALMR) concept, PRISM, was analyzed using the computer code, SSC. GE has submitted the PRISM design for a Preapplication Safety Evaluation Report (PSER). The draft PSER indicated a potential weakness in the Unscrammed Loss of Flow (ULOF) event, and GE modified the design by adding three GEMs. The PRISM design was analyzed by SSC for two cases. First, the design`s original response to a ULOF where one Electro Magnetic (EM) pump fails to produce a coastdown was analyzed. Then the revised design with the GEMs included was analyzed. The original design had little or no safety margin for this case. The peak fuel temperature in the hot channel was predicted to be 1358K, which is above the solidus temperature of the fuel. However, after the GEMs were added, the loss of one EM pump coastdown became a benign event. The GEM feedback was predicted by SSC to dominate the other reactivity feedbacks and the GEMS, essentially, responded like passive control rods. The fuel temperature quickly dropped below operating temperatures, while the margin to sodium boiling was predicted to be greater than 350K.

  2. Spatial compression impairs prism adaptation in healthy individuals.

    PubMed

    Scriven, Rachel J; Newport, Roger

    2013-01-01

    Neglect patients typically present with gross inattention to one side of space following damage to the contralateral hemisphere. While prism-adaptation (PA) is effective in ameliorating some neglect behaviors, the mechanisms involved and their relationship to neglect remain unclear. Recent studies have shown that conscious strategic control (SC) processes in PA may be impaired in neglect patients, who are also reported to show extraordinarily long aftereffects compared to healthy participants. Determining the underlying cause of these effects may be the key to understanding therapeutic benefits. Alternative accounts suggest that reduced SC might result from a failure to detect prism-induced reaching errors properly either because (a) the size of the error is underestimated in compressed visual space or (b) pathologically increased error-detection thresholds reduce the requirement for error correction. The purpose of this study was to model these two alternatives in healthy participants and to examine whether SC and subsequent aftereffects were abnormal compared to standard PA. Each participant completed three PA procedures within a MIRAGE mediated reality environment with direction errors recorded before, during and after adaptation. During PA, visual feedback of the reach could be compressed, perturbed by noise, or represented veridically. Compressed visual space significantly reduced SC and aftereffects compared to control and noise conditions. These results support recent observations in neglect patients, suggesting that a distortion of spatial representation may successfully model neglect and explain neglect performance while adapting to prisms. PMID:23675332

  3. Effect of prism adaptation on thermoregulatory control in humans.

    PubMed

    Calzolari, Elena; Gallace, Alberto; Moseley, G Lorimer; Vallar, Giuseppe

    2016-01-01

    The physiological regulation of skin temperature can be modulated not only by autonomic brain regions, but also by a network of higher-level cortical areas involved in the maintenance of a coherent representation of the body. In this study we assessed in healthy participants if the sensorimotor changes taking place during motor adaptation to the lateral displacement of the visual scene induced by wearing prismatic lenses (prism adaptation, PA), and the aftereffects, after prisms' removal, on the ability to process spatial coordinates, were associated with skin temperature regulation changes. We found a difference in thermoregulatory control as a function of the direction of the prism-induced displacement of the visual scene, and the subsequent sensorimotor adaptation. After PA to rightward displacing lenses, with leftward aftereffects (the same directional procedure efficaciously used for ameliorating left spatial neglect in right-brain-damaged patients) the hands' temperature decreased. Conversely, after adaptation to neutral lenses, and PA to leftward displacing lenses, with rightward aftereffects, the temperature of both hands increased. These results suggest a lateral asymmetry in the effects of PA on skin temperature regulation, and a relationship between body spatial representations and homeostatic control in humans. PMID:26354443

  4. Adjustable planar lightguide solar concentrators with liquid-prism structure

    NASA Astrophysics Data System (ADS)

    Tsai, Meng-Che; Whang, Allen Jong-Woei; Lee, Tsung-Xian; Chen, Yi-Yung

    2013-03-01

    Research interests on sunlight applications are booming in recent years, due to the worldwide green-energy trends. Either using PV cells to store sunlight then convert to electricity, or to use sunlight for direct illumination source are among the many research projects which deserve investigation. In this research, we focus a design combined the above two features together: direct sunlight illumination, and store the sunlight for later usage. Our design structure is as follows: 1. On the surface of outer layer, we use the liquid-prism structure to increase the angle tolerance range of solar concentrator; 2. Combine the micro structure of the solid-state prism and aspheric surfaces to produce a planar light guide structure, which compresses the plane light source into line light source, then guide the light into solar cells area; 3. Design a light switch using the liquid-prism of inside layer, and guides the sunlight into solar cells channel or indoor illumination channel. We apply it in the NLIS® developed at NTUST, not only retain the advantages of the static concentrator modules, but also eliminate the complex procedure of transmitting and emitting, reduce the loss and cost of energy transfer.

  5. Analytical direct solutions of the Risley prism systems for tracking and pointing.

    PubMed

    Peng, Qi; Wang, Xinghui; Ren, Ge; Chen, Hongbin; Cao, Lei; Wang, Jihong

    2014-05-01

    The Risley prism systems, which had many different configurations, are only composed of two wedge prisms. The expressions of the direction cosines of the refractive ray of the two wedge prisms are given by nonparaxial ray tracing in a local coordinate referenced to the wedge prism, and the power of ray deviation of the two wedge prisms are shown by curves for systems using prisms of different materials and opening angles. The analytical direct solutions of the Risley prism systems are derived from the expressions of the direction cosines of the wedge prism through the coordinate transformation, and are also deduced from the two exact orientations for the same pointing position of precision tracking and pointing systems, which arise from applications of the Risley prisms to free-space communications. The exact expressions for the problem of precision tracking are generalized to investigate the synthesis of tracking a given target, i.e., to track a desirable path on some plane perpendicular to the optical axis of the system by controlling the circular motion of the two prisms. PMID:24921893

  6. First-order approximation error analysis of Risley-prism-based beam directing system.

    PubMed

    Zhao, Yanyan; Yuan, Yan

    2014-12-01

    To improve the performance of a Risley-prism system for optical detection and measuring applications, it is necessary to be able to determine the direction of the outgoing beam with high accuracy. In previous works, error sources and their impact on the performance of the Risley-prism system have been analyzed, but their numerical approximation accuracy was not high. Besides, pointing error analysis of the Risley-prism system has provided results for the case when the component errors, prism orientation errors, and assembly errors are certain. In this work, the prototype of a Risley-prism system was designed. The first-order approximations of the error analysis were derived and compared with the exact results. The directing errors of a Risley-prism system associated with wedge-angle errors, prism mounting errors, and bearing assembly errors were analyzed based on the exact formula and the first-order approximation. The comparisons indicated that our first-order approximation is accurate. In addition, the combined errors produced by the wedge-angle errors and mounting errors of the two prisms together were derived and in both cases were proved to be the sum of errors caused by the first and the second prism separately. Based on these results, the system error of our prototype was estimated. The derived formulas can be implemented to evaluate beam directing errors of any Risley-prism beam directing system with a similar configuration. PMID:25607958

  7. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  8. Alternating prism exposure causes dual adaptation and generalization to a novel displacement

    NASA Technical Reports Server (NTRS)

    Welch, Robert B.; Bridgeman, Bruce; Anand, Sulekha; Browman, Kaitlin E.

    1993-01-01

    In two experiments, we examined the hypothesis that repeatedly adapting and readapting to two mutually conflicting sensory environments fosters the development of a separate adaptation to each situation (dual adaptation) as well as an increased ability to adapt to a novel displacement (adaptive generalization). In the preliminary study, subjects alternated between adapting their visuomotor coordination to 30-diopter prismatic displacement and readapting to normal vision. Dual adaptation was observed by the end of 10 alternation cycles. However, an unconfounded test of adaptive generalization was prevented by an unexpected prism-adaptive shift in preexposure baselines for the dual-adapted subjects. In the primary experiment, the subjects adapted and readapted to opposite 15-diopter displacements for a total of 12 cycles. Both dual adaptation and adaptive generalization to a 30-diopter displacement were obtained. These findings may be understood in terms of serial reversal learning and 'learning to learn'.

  9. User definition and mission requirements for unmanned airborne platforms, revised

    NASA Technical Reports Server (NTRS)

    Kuhner, M. B.; Mcdowell, J. R.

    1979-01-01

    The airborne measurement requirements of the scientific and applications experiment user community were assessed with respect to the suitability of proposed strawman airborne platforms. These platforms provide a spectrum of measurement capabilities supporting associated mission tradeoffs such as payload weight, operating altitude, range, duration, flight profile control, deployment flexibility, quick response, and recoverability. The results of the survey are used to examine whether the development of platforms is warranted and to determine platform system requirements as well as research and technology needs.

  10. Stabilization of a self-referenced, prism-based, Cr:forsterite laser frequency comb using an intracavity prism

    SciTech Connect

    Tillman, Karl A.; Thapa, Rajesh; Knabe, Kevin; Wu Shun; Lim, Jinkang; Washburn, Brian R.; Corwin, Kristan L.

    2009-12-20

    The frequency comb from a prism-based Cr:forsterite laser has been frequency stabilized using intracavity prism insertion and pump power modulation. Absolute frequency measurements of a CW fiber laser stabilized to the P(13) transition of acetylene demonstrate a fractional instability of {approx}2x10{sup -11} at a 1 s gate time, limited by a commercial Global Positioning System (GPS)-disciplined rubidium oscillator. Additionally, absolute frequency measurements made simultaneously using a second frequency comb indicate relative instabilities of 3x10{sup -12} for both combs for a 1 s gate time. Estimations of the carrier-envelope offset frequency linewidth based on relative intensity noise and the response dynamics of the carrier-envelope offset to pump power changes confirm the observed linewidths.

  11. Education through the prism of computation

    NASA Astrophysics Data System (ADS)

    Kaurov, Vitaliy

    2014-03-01

    With the rapid development of technology, computation claims its irrevocable place among research components of modern science. Thus to foster a successful future scientist, engineer or educator we need to add computation to the foundations of scientific education. We will discuss what type of paradigm shifts it brings to these foundations on the example of Wolfram Science Summer School. It is one of the most advanced computational outreach programs run by Wolfram Foundation, welcoming participants of almost all ages and backgrounds. Centered on complexity science and physics, it also covers numerous adjacent and interdisciplinary fields such as finance, biology, medicine and even music. We will talk about educational and research experiences in this program during the 12 years of its existence. We will review statistics and outputs the program has produced. Among these are interactive electronic publications at the Wolfram Demonstrations Project and contributions to the computational knowledge engine Wolfram|Alpa.

  12. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  13. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  14. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  15. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles. PMID:7005667

  16. Forest Biomass Mapping from Prism Triplet, Palsar and Landsat Data

    NASA Astrophysics Data System (ADS)

    Ranson, J.; Sun, G.; Ni, W.

    2014-12-01

    The loss of sensitivity at higher biomass levels is a common problem in biomass mapping using optical multi-spectral data or radar backscattering data due to the lack of information on canopy vertical structure. Studies have shown that adding implicit information of forest vertical structure improves the performance of forest biomass mapping from optical reflectance and radar backscattering data. LiDAR, InSAR and stereo imager are the data sources for obtaining forest structural information. The potential of providing information on forest vertical structure by stereoscopic imagery data has drawn attention recently due to the availability of high-resolution digital stereo imaging from space and the advances of digital stereo image processing software. The Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observation Satellite (ALOS) has acquired multiple global coverage from June 2006 to April 2011 providing a good data source for regional/global forest studies. In this study, five PRISM triplets acquired on June 14, 2008, August 19 and September 5, 2009; PALSAR dual-pol images acquired on July 12, 2008 and August 30, 2009; and LANDSAT 5 TM images acquired on September 5, 2009 and the field plot data collected in 2009 and 2010 were used to map forest biomass at 50m pixel in an area of about 4000 km2in Maine, USA ( 45.2 deg N 68.6 deg W). PRISM triplets were used to generate point cloud data at 2m pixel first and then the average height of points above NED (National Elevation Dataset) within a 50m by 50m pixel was calculated. Five images were mosaicked and used as canopy height information in the biomass estimation along with the PALSAR HH, HV radar backscattering and optical reflectance vegetation indices from L-5 TM data. A small portion of this region was covered by the Land Vegetation and Ice Sensor (LVIS) in 2009. The biomass maps from the LVIS data was used to evaluate the results from combined use of PRISM, PALSAR and

  17. Local Seismicity Recorded by ChilePEPPER: Implications for Dynamic Accretionary Prism Response and Long-term Prism Evolution

    NASA Astrophysics Data System (ADS)

    de Moor, A.; Trehu, A. M.; Tryon, M. D.

    2015-12-01

    To investigate the dynamic response of the outer accretionary wedge updip from the patch of greatest slip during the Mw8.8 2010 Maule earthquake, 10 Ocean Bottom Seismometers (OBS) were deployed from May 2012 to March 2013 in a small array with an inter-instrument spacing of ~12 km . Nine instruments were recovered, with 4 recording data on 3 intermediate-band 3-component seismometers and a differential pressure gauge and 5 recording data from absolute pressure gauges. [note: All instruments were also equipped with a fluid flow meter sensitive to flow rates as low as 0.0001 cm/yr in or out of the sediments. However, no flow signal was detected.] Here we present hypocenters for 569 local events that have S-P times less than 17 seconds (i.e. within ~125 km of the array) using hand-picked arrival times and a 1D velocity model derived from a 2D seismic refraction profile through the region (Moscoso et al 2011, EPSL). We analyze the distribution of seismicity in the context of published slip models, ChilePEPPER high-resolution seismic reflection data, critical taper analysis done by Cubas et al 2013 (EPSL), and offshore gravity data. The data show distinct segmentation within the outer prism. The northern section of the study area is characterized by a lack of seismicity, accretion of nearly all incoming sediment and a prism at critical taper. In contrast, abundant seismicity, significant sediment underthrusting at the deformation front and a prism below critical taper angle characterize the southern part of the study area. Both coseismic slip and post-rupture local seismicity can be related to density anomalies within the upper plate as revealed by free air gravity data corrected for the effects of bathymetry and the subducting plate. [ChilePEPPER - Project Evaluating Prism Post-Earthquake Response

  18. Performance metrics for an airborne imaging system

    NASA Astrophysics Data System (ADS)

    Dayton, David C.; Gonglewski, John D.

    2004-11-01

    A series of airborne imaging experiments have been conducted on the island of Maui and at North Oscura Peak in New Mexico. Two platform altitudes were considered 3000 meters and 600 meters, both with a slant range to the target up to 10000 meters. The airborne imaging platform was a Twin Otter aircraft, which circled ground target sites. The second was a fixed platform on a mountain peak overlooking a valley 600 meters below. The experiments were performed during the day using solar illuminated target buildings. Imaging system performance predictions were calculated using standard atmospheric turbulence models, and aircraft boundary layer models. Several different measurement approaches were then used to estimate the actual system performance, and make comparisons with the calculations.

  19. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  20. The 50 Ma granodiorite of the eastern Gulf of Alaska - Melting in an accretionary prism in the forearc

    NASA Astrophysics Data System (ADS)

    Barker, Fred; Farmer, G. L.; Ayuso, R. A.; Plafker, George; Lull, J. S.

    1992-05-01

    The paper addresses the generation of granitic rocks by the melting of flyschoid sediments in an accretionary prism as part of an investigation of 50-Ma silicic igneous rocks in the Gulf of Alaska, near Cordova, Alaska. Three intrusive bodies exhibiting a range of chemical and initial isotopic compositions were chosen: the McKinley Peak, Rude River, and Sheep Bay plutons. The present chemical data, modeling, and comparison with melting experiments of graywacke by Conrad et al. (1988) indicate that the granodiorite originated by large fractions (65-90 percent) of melting of the Orca Group graywacke and argillite. Plagioclase, pyroxene, and biotite were residual to melting at about 850-950 C and at low H2O activities. It is suggested that the distinct chemical and isotopic compositions of the McKinley Peak pluton result from variations in the character of the flysch at depth in the prism, rather than from mixing between melts of the flysch and mafic magmas injected into the prism itself.

  1. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  2. Comparison of airborne passive and active L-band System (PALS) brightness temperature measurements to SMOS observations during the SMAP validation experiment 2012 (SMAPVEX12)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of SMAP (Soil Moisture Active Passive) Validation Experiment 2012 (SMAPVEX12) campaign was to collect data for the pre-launch development and validation of SMAP soil moisture algorithms. SMAP is a National Aeronautics and Space Administration’s (NASA) satellite mission designed for the m...

  3. Asymmetric transmission in prisms using structures and materials with isotropic-type dispersion.

    PubMed

    Gundogdu, Funda Tamara; Serebryannikov, Andriy E; Cakmak, A Ozgur; Ozbay, Ekmel

    2015-09-21

    It is demonstrated that strong asymmetry in transmission can be obtained at the Gaussian beam illumination for a single prism based on a photonic crystal (PhC) with isotropic-type dispersion, as well as for its analog made of a homogeneous material. Asymmetric transmission can be realized with the aid of refraction at a proper orientation of the interfaces and wedges of the prism, whereas neither contribution of higher diffraction orders nor anisotropic-type dispersion is required. Furthermore, incidence toward a prism wedge can be used for one of two opposite directions in order to obtain asymmetry. Thus, asymmetric transmission is a general property of the prism configurations, which can be obtained by using simple geometries and quite conventional materials. The obtained results show that strong asymmetry can be achieved in PhC prisms with (nearly) circular shape of equifrequency dispersion contours, in both cases associated with the index of refraction 01. For the comparison purposes, results are also presented for solid uniform non-magnetic prisms made of a material with the same value of n. It is shown in zero-loss approximation that the PhC prism and the ultralow-index material prism (0prism and the solid dielectric prism can show the same scenario at n>1. Possible contributions of scattering on the individual rods and diffraction on the wedge to the resulting mechanism are discussed. Analogs of unidirectional splitting and unidirectional deflection regimes, which are known from the studies of PhC gratings, are obtained in PhC prisms and solid uniform prisms, i.e. without higher diffraction orders. PMID:26406618

  4. Design and fabrication of a freeform prism array for 3D microscopy.

    PubMed

    Li, Lei; Yi, Allen Y

    2010-12-01

    Traditional microscopes have limitations in obtaining true 3D (three-dimensional) stereovision. Although some optical microscopes have been developed for 3D vision, many of them are complex, expensive, or limited to transparent samples. In this research, a freeform optical prism array was designed and fabricated to achieve 3D stereo imaging capability for microscope and machine vision applications. To form clear stereo images from multiple directions simultaneously, freeform optical surface design was applied to the prisms. In a ray tracing operation to determine the optical performance of the freeform prisms, Taylor series was used to calculate the surface shape. The virtual image spot diagrams were generated by using ray tracing methods for both the freeform prisms and the regular prisms. The results showed that all the light rays can be traced back to a single point for the freeform prism, and aberration was much smaller than that of the regular prism. The ray spots formed by the freeform prisms were adequate for image formation. Furthermore, the freeform prism array was fabricated by using a combined ultraprecision diamond turning and slow tool servo broaching process in a single, uninterrupted operation. The slow tool servo process ensured that the relative tolerance among prisms is guaranteed by the precision of the ultraprecision machine without the need for assembly. Finally 3D imaging tests were conducted to verify the freeform prism array's optical performance. The principle of the freeform prism array investigated in this research can be applied to microscopy, machine vision, robotic sensing, and many other areas. PMID:21119746

  5. Latest Advancement In Airborne Relative Gravity Instrumentation.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2011-12-01

    Airborne gravity surveying has been performed with widely varying degrees of success since early experimentation with the Lacoste and Romberg dynamic meter in the 1950s. There are a number of different survey systems currently in operation including relative gravity meters and gradiometers. Airborne gravity is ideally suited to rapid, wide coverage surveying and is not significantly more expensive in more remote and inhospitable terrain which makes airborne measurements one of the few viable options available for cost effective exploration. As improved instrumentation has become available, scientific applications have also been able to take advantage for use in determining sub surface geologic structures, for example under ice sheets in Antarctica, and more recently direct measurement of the geoid to improve the vertical datum in the United States. In 2004, Lacoste and Romberg (now Micro-g Lacoste) decided to build on their success with the newly developed AirSea II dynamic meter and use that system as the basis for a dedicated airborne gravity instrument. Advances in electronics, timing and positioning technology created the opportunity to refine both the hardware and software, and to develop a truly turnkey system that would work well for users with little or no airborne gravity experience as well as those with more extensive experience. The resulting Turnkey Airborne Gravity System (TAGS) was successfully introduced in 2007 and has since been flown in applications from oil, gas and mineral exploration surveys to regional gravity mapping and geoid mapping. The system has been mounted in a variety of airborne platforms including depending on the application of interest. The development experience with the TAGS enabled Micro-g Lacoste to embark on a new project in 2010 to completely redesign the mechanical and electronic components of the system rather than continuing incremental upgrades. Building on the capabilities of the original TAGS, the objectives for the

  6. Research on airborne infrared leakage detection of natural gas pipeline

    NASA Astrophysics Data System (ADS)

    Tan, Dongjie; Xu, Bin; Xu, Xu; Wang, Hongchao; Yu, Dongliang; Tian, Shengjie

    2011-12-01

    An airborne laser remote sensing technology is proposed to detect natural gas pipeline leakage in helicopter which carrying a detector, and the detector can detect a high spatial resolution of trace of methane on the ground. The principle of the airborne laser remote sensing system is based on tunable diode laser absorption spectroscopy (TDLAS). The system consists of an optical unit containing the laser, camera, helicopter mount, electronic unit with DGPS antenna, a notebook computer and a pilot monitor. And the system is mounted on a helicopter. The principle and the architecture of the airborne laser remote sensing system are presented. Field test experiments are carried out on West-East Natural Gas Pipeline of China, and the results show that airborne detection method is suitable for detecting gas leak of pipeline on plain, desert, hills but unfit for the area with large altitude diversification.

  7. Thermal Infrared Spectral Imager for Airborne Science Applications

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2009-01-01

    An airborne thermal hyperspectral imager is under development which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution for lighter-than-air (LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of apparent emissivity for various known standard minerals (such as quartz). A comparison is made using data from the ASTER spectral library.

  8. Separation of multiple images via directional guidance using structured prism and pyramid arrays.

    PubMed

    Lee, Hyemin; Seo, Hyein; Kang, Sunghwan; Yoon, Hyunsik

    2016-09-01

    We propose a new concept of separating images through a directional guide of multi-visuals by using structured prism or pyramid arrays. By placing prism arrays onto two different image arrays, the two collective images below the facets are guided to different directions. Using optical calculations, we identify a condition for successful image separation. Transparent pyramid arrays are used to separate four images into four directions. The direction of refracted rays can be controlled by the refractive index of prisms and liquid filled into the voids. In addition, the images can be switched by stretching and releasing an elastomeric prism array. PMID:27607698

  9. Closed form analytical inverse solutions for Risley-prism-based beam steering systems in different configurations.

    PubMed

    Li, Yajun

    2011-08-01

    Nonparaxial ray tracing through Risley prisms of four different configurations is performed to give the exact solution of the inverse problem arisen from applications of Risley prisms to free space communications. Predictions of the exact solution and the third-order theory [Appl. Opt. 50, 679 (2011)] are compared and results are shown by curves for systems using prisms of different materials. The exact solution for the problem of precision pointing is generalized to investigate the synthesis of the scan pattern, i.e., to create a desirable scan pattern on some plane perpendicular to the optical axis of the system by controlling the circular motion of the two prisms. PMID:21833103

  10. Ray-optical negative refraction and pseudoscopic imaging with Dove-prism arrays

    NASA Astrophysics Data System (ADS)

    Courtial, Johannes; Nelson, John

    2008-02-01

    A sheet consisting of an array of small, aligned Dove prisms can locally (on the scale of the width of the prisms) invert one component of the ray direction. A sandwich of two such Dove-prism sheets that inverts both transverse components of the ray direction is a ray-optical approximation to the interface between two media with refractive indices +n and n. We demonstrate the simulated imaging properties of such a Dove-prism-sheet sandwich, including a demonstration of pseudoscopic imaging.

  11. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  12. Airborne radioactive contamination monitoring

    SciTech Connect

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  13. Overland Tidal Power Generation Using Modular Tidal Prism

    SciTech Connect

    Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

    2010-03-01

    Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (≈ 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

  14. Airborne Raman lidar

    NASA Astrophysics Data System (ADS)

    Heaps, Wm. S.; Burris, J.

    1996-12-01

    We designed and tested an airborne lidar system using Raman scattering to make simultaneous measurements of methane, water vapor, and temperature in a series of flights on a NASA-operated C-130 aircraft. We present the results for methane detection, which show that the instrument has the requisite sensitivity to atmospheric trace gases. Ultimately these measurements can be used to examine the transport of chemically processed air from within the polar vortex to mid-latitudinal regions and the exchange of stratospheric air between tropical and mid-latitudinal regions.

  15. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  16. Airborne LIDAR Measurements of Water Vapor, Ozone, Clouds, and Aerosols in the Tropics Near Central America During the TC4 Experiment

    NASA Technical Reports Server (NTRS)

    Kooi, Susan; Fenn, Marta; Ismail, Syed; Ferrare, Richard; Hair, John; Browell, Edward; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Simpson, Steven

    2008-01-01

    Large scale distributions of ozone, water vapor, aerosols, and clouds were measured throughout the troposphere by two NASA Langley lidar systems on board the NASA DC-8 aircraft as part of the Tropical Composition, Cloud, and Climate Coupling Experiment (TC4) over Central and South America and adjacent oceans in the summer of 2007. Special emphasis was placed on the sampling of convective outflow and transport, sub-visible cirrus clouds, boundary layer aerosols, Saharan dust, volcanic emissions, and urban and biomass burning plumes. This paper presents preliminary results from this campaign, and demonstrates the value of coordinated measurements by the two lidar systems.

  17. Beam shaping system based on a prism array for improving the throughput of a dispersive spectrometer.

    PubMed

    Shi, Zhendong; Fang, Liang; Fan, Bin; Zhou, Chongxi

    2015-04-01

    A beam shaping system (BSS) for improving the throughput of a dispersive spectrometer is presented by employing two anamorphic lenses and a prism array to segment the beam. The BSS was designed based on the inverse method of beam shaping for laser diode bars and the means of an optical slicer. In an experiment, a BSS was set up so that the incident light of a neon lamp with a circular spot from an input fiber was transformed into an elliptical spot coupled into a slit of a spectrometer without a change of divergence. Spectral measurement results demonstrate that the throughput of the dispersive spectrometer was doubled without loss of spectral resolution. The BSS can be combined with the existing dispersive spectrometer to improve the luminous flux and signal-to-noise ratio. PMID:25967181

  18. The PRISM palaeoclimate reconstruction and Pliocene sea-surface temperature

    USGS Publications Warehouse

    Dowsett, H.J.

    2007-01-01

    In this paper, I present a summary of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) palaeoenvironmental reconstruction, with emphasis on its historical development and range of boundary condition datasets. Sea-surface temperature (SST), sea level, sea ice, land cover (vegetation and ice) and topography are discussed as well as many of the assumptions required to create an integrated global-scale reconstruction. New multiproxy research shows good general agreement on the magnitude of mid-Pliocene SST warming. Future directions, including maximum and minimum SST analyses and deep ocean temperature estimates aimed at a full three-dimensional reconstruction, are presented. ?? The Micropalaeontological Society 2007.

  19. Simulation of electrowetting lens and prism arrays for wavefront compensation.

    PubMed

    Gopinath, Juliet T; Bright, Victor M; Cogswell, Carol C; Niederriter, Robert D; Watson, Alexander; Zahreddine, Ramzi; Cormack, Robert H

    2012-09-20

    A novel application of electrowetting devices has been simulated: wavefront correction using an array of electrowetting lenses and prisms. Five waves of distortion can be corrected with Strehl ratios of 0.9 or higher, utilizing piston, tip-tilt, and curvature corrections from arrays of 19 elements and fill factors as low as 40%. Effective control of piston can be achieved by placing the liquid lens array at the focus of two microlens arrays. Seven waves of piston delay can be generated with variation in focal length between 1.5 and 500 mm. PMID:23033033

  20. Ultrafine Metal-Organic Right Square Prism Shaped Nanowires.

    PubMed

    Otake, Ken-Ichi; Otsubo, Kazuya; Sugimoto, Kunihisa; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2016-05-23

    We report the structural design and control of electronic states of a new series of ultrafine metal-organic right square prism-shaped nanowires. These nanowires have a very small inner diameter of about 2.0 Å, which is larger than hydrogen and similar to xenon atomic diameters. The electronic states of nanowires can be widely controlled by substitution of structural components. Moreover, the platinum homometallic nanowire shows a 100 times higher proton conductivity than a palladium/platinum heterometallic one depending on the electronic states. PMID:27080935

  1. Sealed One Piece Battery Having A Prism Shape Container

    DOEpatents

    Verhoog, Roelof; Barbotin, Jean-Loup

    2000-03-28

    A sealed one-piece battery having a prism-shaped container including: a tank consisting of a single plastic material, a member fixed and sealed to the tank and to partitions on the side of the tank opposite the transverse wall to seal the tank, two flanges fixed and sealed to longitudinal walls defining flow compartments for a heat-conducting fluid, and two tubes on the transverse wall of the tank forming an inlet and an outlet for fluid common to the compartments.

  2. An objective prism survey of emission line galaxies

    NASA Astrophysics Data System (ADS)

    Liu, J.-Y.; Huang, Y.-W.; Feng, X.-C.

    1986-09-01

    The first list of emission line objects detected as part of an object prism survey of emission line galaxies begun in China in 1981 is presented. The instrument and observations are described, and the identification of emission-line galaxies is discussed. The spectral structural classification of the presented objects is addressed. On a dozen plates covering some 220 square degrees of sky, 50 emission line objects were detected, 47 of which are galaxies and the other three of which are planetary nebulae. Finding charts of the objects are presented.

  3. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  4. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  5. Airborne source localization in shallow water

    NASA Astrophysics Data System (ADS)

    Peng, Zhaohui; Wang, Guangxu

    2012-11-01

    Owing to the great difference of acoustic characteristic impedance between air and water, the sound transmission loss from an airborne source into water is very high. So, it is very difficult to do experimental research on air-to-water sound propagation. An experiment was conducted for air-to-water sound propagation in the South China Sea in 2010. A HLA placed on the sea bottom was used to receive signals sent by a high-power loudspeaker hung on a research ship floating 1km to 4km away from the HLA. The locations of airborne sources are estimated from the signals measured by the HLA. The estimated DOA and ranges are in agreement with the GPS records.

  6. Estimating fire radiative power obscuration by tree canopies through laboratory experiments: Estimating fire radiative energy in a longleaf pine forest from airborne thermal imagery

    NASA Astrophysics Data System (ADS)

    Mathews, William

    Remote sensing has been proven as a useful tool in characterizing the effects of fire on a landscape scale. The radiant energy released during biomass burning can be measured remotely, and is directly related to the rate biomass consumed from the fire. This is an important measurement as it can characterize fire effects on the ground along with provide important information about the amount of gases produced by the fire. One source of error associated with estimating the fire radiative energy (FRE) remotely is the obscuration of the signal by the forest canopy. We quantify the relationship between canopy cover and the amount of energy observed by a sensor rom laboratory experiments. A prescribed fire was conducted in northwestern Florida and a suite of pre-, active, and post-fire measurements were taken by an interdisciplinary team. From those data we measured the amount of biomass consumed by the fire FRE estimates.

  7. Airborne transmission of lyssaviruses.

    PubMed

    Johnson, N; Phillpotts, R; Fooks, A R

    2006-06-01

    In 2002, a Scottish bat conservationist developed a rabies-like disease and subsequently died. This was caused by infection with European bat lyssavirus 2 (EBLV-2), a virus closely related to Rabies virus (RABV). The source of this infection and the means of transmission have not yet been confirmed. In this study, the hypothesis that lyssaviruses, particularly RABV and the bat variant EBLV-2, might be transmitted via the airborne route was tested. Mice were challenged via direct introduction of lyssavirus into the nasal passages. Two hours after intranasal challenge with a mouse-adapted strain of RABV (Challenge Virus Standard), viral RNA was detectable in the tongue, lungs and stomach. All of the mice challenged by direct intranasal inoculation developed disease signs by 7 days post-infection. Two out of five mice challenged by direct intranasal inoculation of EBLV-2 developed disease between 16 and 19 days post-infection. In addition, a simple apparatus was evaluated in which mice could be exposed experimentally to infectious doses of lyssavirus from an aerosol. Using this approach, mice challenged with RABV, but not those challenged with EBLV-2, were highly susceptible to infection by inhalation. These data support the hypothesis that lyssaviruses, and RABV in particular, can be spread by airborne transmission in a dose-dependent manner. This could present a particular hazard to personnel exposed to aerosols of infectious RABV following accidental release in a laboratory environment. PMID:16687600

  8. Airborne flux measurements and budget estimates of trace species over the Amazon Basin during the GTE/ABLE 2B expedition. [Global Tropospheric Experiment/Amazon Boundary Layer Experiment

    NASA Technical Reports Server (NTRS)

    Ritter, John A.; Barrick, John D. W.; Gregory, Gerald L.; Sachse, Glen W.; Hill, Gerald F.; Lenschow, Donald H.

    1990-01-01

    In situ airborne measurements of turbulent heat, moisture, momentum, ozone, and carbon monoxide fluxes in a convective boundary layer were obtained over a tropical rain forest between 1100 and 1630 LT on May 4, 1987. The aircraft flight path was chosen so as to fly over the tower site at the Ducke Forest Reserve near Manaus, Amazonas, Brazil. Both turbulence statistics and mean quantities were used to study the budgets of heat, water vapor, ozone, and carbon monoxide. The ozone budget study shows an accumulation rate in the boundary layer of 0.3 + or - 0.2 ppbv/h. The surface resistance to ozone during this flight was determined to be 0.06 + or - 0.03 s/cm, while the aerodynamic resistance was 0.14-0.17 s/cm. Results from the CO budget analysis show a midday accumulation rate of 0.6 + or - 0.3 ppbv/h in the Amazonian boundary layer. The evidence suggests production of CO in the PBL. A source of CO may exist below the lowest flight level (about 150 m), although it was not possible to determine what part of the flux at flight level was due to chemical production and what part may be due to surface emission.

  9. A Pilot Study of Perceptual-Motor Training for Peripheral Prisms

    PubMed Central

    Houston, Kevin E.; Bowers, Alex R.; Fu, Xianping; Liu, Rui; Goldstein, Robert B.; Churchill, Jeff; Wiegand, Jean-Paul; Soo, Tim; Tang, Qu; Peli, Eli

    2016-01-01

    Purpose Peripheral prisms (p-prisms) shift peripheral portions of the visual field of one eye, providing visual field expansion for patients with hemianopia. However, patients rarely show adaption to the shift, incorrectly localizing objects viewed within the p-prisms. A pilot evaluation of a novel computerized perceptual-motor training program aiming to promote p-prism adaption was conducted. Methods Thirteen patients with hemianopia fitted with 57Δ oblique p-prisms completed the training protocol. They attended six 1-hour visits reaching and touching peripheral checkerboard stimuli presented over videos of driving scenes while fixating a central target. Performance was measured at each visit and after 3 months. Results There was a significant reduction in touch error (P = 0.01) for p-prism zone stimuli from pretraining median of 16.6° (IQR 12.1°–19.6°) to 2.7° ( IQR 1.0°–8.5°) at the end of training. P-prism zone reaction times did not change significantly with training (P > 0.05). P-prism zone detection improved significantly (P = 0.01) from a pretraining median 70% (IQR 50%–88%) to 95% at the end of training (IQR 73%–98%). Three months after training improvements had regressed but performance was still better than pretraining. Conclusions Improved pointing accuracy for stimuli detected in prism-expanded vision of patients with hemianopia wearing 57Δ oblique p-prisms is possible and training appears to further improve detection. Translational Relevance This is the first use of this novel software to train adaptation of visual direction in patients with hemianopia wearing peripheral prisms. PMID:26933522

  10. Kinematic markers dissociate error correction from sensorimotor realignment during prism adaptation.

    PubMed

    O'Shea, Jacinta; Gaveau, Valérie; Kandel, Matthieu; Koga, Kazuo; Susami, Kenji; Prablanc, Claude; Rossetti, Yves

    2014-03-01

    This study investigated the motor control mechanisms that enable healthy individuals to adapt their pointing movements during prism exposure to a rightward optical shift. In the prism adaptation literature, two processes are typically distinguished. Strategic motor adjustments are thought to drive the pattern of rapid endpoint error correction typically observed during the early stage of prism exposure. This is distinguished from so-called 'true sensorimotor realignment', normally measured with a different pointing task, at the end of prism exposure, which reveals a compensatory leftward 'prism after-effect'. Here, we tested whether each mode of motor compensation - strategic adjustments versus 'true sensorimotor realignment' - could be distinguished, by analyzing patterns of kinematic change during prism exposure. We hypothesized that fast feedforward versus slower feedback error corrective processes would map onto two distinct phases of the reach trajectory. Specifically, we predicted that feedforward adjustments would drive rapid compensation of the initial (acceleration) phase of the reach, resulting in the rapid reduction of endpoint errors typically observed early during prism exposure. By contrast, we expected visual-proprioceptive realignment to unfold more slowly and to reflect feedback influences during the terminal (deceleration) phase of the reach. The results confirmed these hypotheses. Rapid error reduction during the early stage of prism exposure was achieved by trial-by-trial adjustments of the motor plan, which were proportional to the endpoint error feedback from the previous trial. By contrast, compensation of the terminal reach phase unfolded slowly across the duration of prism exposure. Even after 100 trials of pointing through prisms, adaptation was incomplete, with participants continuing to exhibit a small rightward shift in both the reach endpoints and in the terminal phase of reach trajectories. Individual differences in the degree of

  11. Biomass burning layers measured with an airborne Single Particle Soot Photometer (SP2) during the Deep Convective Clouds and Chemistry (DC3) experiment

    NASA Astrophysics Data System (ADS)

    Heimerl, K.; Weinzierl, B.; Minikin, A.; Sauer, D. N.; Fütterer, D.; Lichtenstern, M.; Schlager, H.; Schwarz, J. P.; Markovic, M. Z.; Perring, A. E.; Fahey, D. W.; Huntrieser, H.

    2013-12-01

    The 2012 wildfire season in the U.S. was one of the worst in the past decade. Coinciding with the period of intense wildfires in the western U.S., the Deep Convective Clouds and Chemistry (DC3) experiment took place in the central U.S. in May and June of 2012. Although the main goal of this experiment was to characterize chemical processes in and around thunderstorms, biomass burning plumes from wildfires were also measured during almost every flight. Measurements were performed with three different research aircraft (NCAR GV, NASA DC8 and DLR Falcon 20E), accompanied by ground based measurements with radars and radiosondes, and measurements of meteorological parameters and lightning. The instrumentation aboard the DLR Falcon included measurements of the trace gases NO, CO, O3, CO2, CH4, SO2, volatile organic compounds, and a variety of aerosol microphysical parameters. To cover a wide range of aerosol particle sizes, the DLR Falcon payload included optical particle counters (UHSAS-A, FSSP-300, FSSP-100, PCASP-100X/SPP-200 and Sky-OPC 1.129), a multi-channel CPC system for measuring total and non-volatile particle concentrations and, for absorbing particles, a three-wavelength PSAP and a Single Particle Soot Photometer (SP2). We will focus on the latter in this presentation. The SP2 measures both the mass of refractory black carbon (rBC) particles as well as their optical size, providing information about the mixing state of particles in the biomass burning layers. Most biomass burning layers were found between 3 and 8 km altitude. We will discuss measurements of plumes originating from New Mexico wildfires (Little Bear wildfire on June 11th of 2012 and Whitewater-Baldy wildfire on May 29th and 30th of 2012). Peaks of the rBC mass concentration in the plumes were as high as 2μg/m3, the fraction of rBC particles with thick coatings was higher than what is usually found in the boundary layer. During the Falcon transfer flights from Germany to the U.S. and back

  12. The PRISM (Pliocene Palaeoclimate) reconstruction: Time for a paradigm shift

    USGS Publications Warehouse

    Dowsett, Harry J.; Robinson, Marci M.; Stoll, Danielle K.; Foley, Kevin M.; Johnson, Andrew L. A.; Williams, Mark; Riesselman, Christina

    2013-01-01

    Global palaeoclimate reconstructions have been invaluable to our understanding of the causes and effects of climate change, but single-temperature representations of the oceanic mixed layer for data–model comparisons are outdated, and the time for a paradigm shift in marine palaeoclimate reconstruction is overdue. The new paradigm in marine palaeoclimate reconstruction stems the loss of valuable climate information and instead presents a holistic and nuanced interpretation of multi-dimensional oceanographic processes and responses. A wealth of environmental information is hidden within the US Geological Survey's Pliocene Research,Interpretation and Synoptic Mapping (PRISM) marine palaeoclimate reconstruction, and we introduce here a plan to incorporate all valuable climate data into the next generation of PRISM products. Beyond the global approach and focus, we plan to incorporate regional climate dynamics with emphasis on processes, integrating multiple environmental proxies wherever available in order to better characterize the mixed layer, and developing a finer time slice within the Mid-Piacenzian Age of the Pliocene, complemented by underused proxies that offer snapshots into environmental conditions. The result will be a proxy-rich, temporally nested, process-oriented approach in a digital format—a relational database with geographic information system capabilities comprising a three-dimensional grid representing the surface layer, with a plethora of data in each cell.

  13. Spectra of Eta Carina from Objective Prism Photographic Plates

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, M.; Barker, T.

    2008-05-01

    Brightness and spectral variations of Eta Carina occur over a 5.5 year cycle. Emission lines were observed to fade in 1948, 1962, 1981, 1987, and 1992 (Damineli 1996, ApJ, 460, L49), and 1997 (Eta Carinae at the Millennium, ASP Conf. Ser. 179, ed. J.A. Morse, R.M. Humphreys, and A. Damineli). Gaps in the observation of spectra occur in 1970 and 1975 when two other such occurrences of the 5.5 year cycle were expected. Objective prism photographic plates of Eta Carina were found in the Astronomical Photographic Data Archive located at Pisgah Astronomical Research Institute. The plates belong to the University of Michigan survey (Houk 1978, Michigan Catalogue of Two-dimensional Spectral Types for the HD Stars). One plate, IN emulsion + RG1 filter, was taken on 1968 July 4 UT. The other plate, IIaO emulsion, was taken on 1972 March 12 UT. These plates were taken between the 5.5 year cyclic events of 1970 and 1975 and therefore represent the usual emission line spectra. The spectrum of Eta Car was extracted from each of the objective prism plates and will be presented.

  14. The PRISM (Pliocene palaeoclimate) reconstruction: time for a paradigm shift.

    PubMed

    Dowsett, Harry J; Robinson, Marci M; Stoll, Danielle K; Foley, Kevin M; Johnson, Andrew L A; Williams, Mark; Riesselman, Christina R

    2013-10-28

    Global palaeoclimate reconstructions have been invaluable to our understanding of the causes and effects of climate change, but single-temperature representations of the oceanic mixed layer for data-model comparisons are outdated, and the time for a paradigm shift in marine palaeoclimate reconstruction is overdue. The new paradigm in marine palaeoclimate reconstruction stems the loss of valuable climate information and instead presents a holistic and nuanced interpretation of multi-dimensional oceanographic processes and responses. A wealth of environmental information is hidden within the US Geological Survey's Pliocene Research, Interpretation and Synoptic Mapping (PRISM) marine palaeoclimate reconstruction, and we introduce here a plan to incorporate all valuable climate data into the next generation of PRISM products. Beyond the global approach and focus, we plan to incorporate regional climate dynamics with emphasis on processes, integrating multiple environmental proxies wherever available in order to better characterize the mixed layer, and developing a finer time slice within the Mid-Piacenzian Age of the Pliocene, complemented by underused proxies that offer snapshots into environmental conditions. The result will be a proxy-rich, temporally nested, process-oriented approach in a digital format-a relational database with geographic information system capabilities comprising a three-dimensional grid representing the surface layer, with a plethora of data in each cell. PMID:24043866

  15. Portable digital micromirror device projector using a prism

    NASA Astrophysics Data System (ADS)

    Pan, Jui-Wen; Wang, Chih-Ming; Sun, Wen-Shing; Chang, Jenq-Yang

    2007-08-01

    A newly designed ultrasmall total internal reflection prism with a size of 29 mm×22 mm×24 mm and weight of 19.5 g is proposed for use in a pocket-sized Digital Micromirror Device projector. The entire projector, including an arc lamp illumination, relay, and projection system, has a height of 48 mm and a footprint of 80 mm×132 mm. By using an overdriving f/2.0 projection lens, the geometric efficiency of the projection system, ηgeo-pro, can be enhanced from 80% to 92%. Although, at the same time, the contrast decreased from 1200:1 to 500:1, this can be enhanced using an off-axis stop. By tuning the position of the stop, the contrast can be as high as 3700:1 for a ηgeo-pro equal to 90%. Using what we believe to be a novel prism design, we can get a very compact optical system with a high efficiency and good contrast ratio.

  16. Portable digital micromirror device projector using a prism.

    PubMed

    Pan, Jui-Wen; Wang, Chih-Ming; Sun, Wen-Shing; Chang, Jenq-Yang

    2007-08-01

    A newly designed ultrasmall total internal reflection prism with a size of 29 mm x 22 mm x 24 mm and weight of 19.5 g is proposed for use in a pocket-sized Digital Micromirror Device projector. The entire projector, including an arc lamp illumination, relay, and projection system, has a height of 48 mm and a footprint of 80 mm x 132 mm. By using an overdriving f/2.0 projection lens, the geometric efficiency of the projection system, eta(geo-pro), can be enhanced from 80% to 92%. Although, at the same time, the contrast decreased from 1200:1 to 500:1, this can be enhanced using an off-axis stop. By tuning the position of the stop, the contrast can be as high as 3700:1 for a eta(geo-pro) equal to 90%. Using what we believe to be a novel prism design, we can get a very compact optical system with a high efficiency and good contrast ratio. PMID:17676119

  17. Analysis of Measurements of Saharan Dust by Airborne and Ground-based Remote Sensing Methods during the Puerto Rico Dust Experiment (PRIDE)

    NASA Technical Reports Server (NTRS)

    Reid, Jeffrey S.; Kinney, James E.; Westphal, Douglas L.; Holben, Brent N.; Welton, E. Judd; Tsay, Si-Chee; Eleuterio, Daniel P.; Campbell, James; Christopher, Sundar A.; Jonsson, Haflidi H.

    2003-01-01

    For 26 days in mid-June and July 2000, a research group comprised of U.S. Navy, NASA, and university scientists conducted the Puerto Rico Dust Experiment (PRIDE). In this paper we give a brief overview of mean meteorological conditions during the study. We focus on findings on African dust transported into the Caribbean utilizing Navajo aircraft and AERONET Sun photometer data. During the study midvisible aerosol optical thickness (AOT) in Puerto Rico averaged 0.25, with a maximum less than 0.5 and with clean marine periods of _0.08. Dust AOTs near the coast of Africa (Cape Verde Islands and Dakar) averaged _0.4, 30% less than previous years. By analyzing dust vertical profiles in addition to supplemental meteorology and MPLNET lidar data we found that dust transport cannot be easily categorized into any particular conceptual model. Toward the end of the study period, the vertical distribution of dust was similar to the commonly assumed Saharan Air Layer (SAL) transport. During the early periods of the study, dust had the highest concentrations in the marine and convective boundary layers with only a, weak dust layer in the SAL being present, a state usually associated with wintertime transport patterns. We corroborate the findings of Maring et al. that in most cases, there was an unexpected lack of vertical stratification of dust particle size. We systematically analyze processes which may impact dust vertical distribution and determine and speculate that dust vertical distribution predominately influenced by flow patterns over Africa and differential advection couple with mixing by easterly waves and regional subsidence.

  18. Analysis of measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE)

    NASA Astrophysics Data System (ADS)

    Reid, Jeffrey S.; Kinney, James E.; Westphal, Douglas L.; Holben, Brent N.; Welton, Ellsworth J.; Tsay, Si-Chee; Eleuterio, Daniel P.; Campbell, James R.; Christopher, Sundar A.; Colarco, P. R.; Jonsson, Haflidi H.; Livingston, John M.; Maring, Hal B.; Meier, Michael L.; Pilewskie, Peter; Prospero, Joseph M.; Reid, Elizabeth A.; Remer, Lorraine A.; Russell, Philip B.; Savoie, Dennis L.; Smirnov, Alexander; Tanré, Didier

    2003-10-01

    For 26 days in mid-June and July 2000, a research group comprised of U.S. Navy, NASA, and university scientists conducted the Puerto Rico Dust Experiment (PRIDE). In this paper we give a brief overview of mean meteorological conditions during the study. We focus on our findings on African dust transported into the Caribbean utilizing a Navajo aircraft and AERONET Sun photometer data. During the study midvisible aerosol optical thickness (AOT) in Puerto Rico averaged 0.25, with a maximum >0.5 and with clean marine periods of ˜0.08. Dust AOTs near the coast of Africa (Cape Verde Islands and Dakar) averaged ˜0.4, 30% less than previous years. By analyzing dust vertical profiles in addition to supplemental meteorology and MPLNET lidar data we found that dust transport cannot be easily categorized into any particular conceptual model. Toward the end of the study period, the vertical distribution of dust was similar to the commonly assumed Saharan Air Layer (SAL) transport. During the early periods of the study, dust had the highest concentrations in the marine and convective boundary layers with only a weak dust layer in the SAL being present, a state usually associated with wintertime transport patterns. We corroborate the findings of [2003] that in most cases, there was an unexpected lack of vertical stratification of dust particle size. We systematically analyze processes that may impact dust vertical distribution and speculate that dust vertical distribution predominately influenced by flow patterns over Africa and differential advection coupled with fair weather cloud entrainment, mixing by easterly waves, and regional subsidence.

  19. Relating Hyperspectral Airborne Data to Ground Measurements in a Complex and Discontinuous Canopy

    NASA Astrophysics Data System (ADS)

    Calleja, Javier F.; Hellmann, Christine; Mendiguren, Gorka; Punalekar, Suvarna; Peón, Juanjo; MacArthur, Alasdair; Alonso, Luis

    2015-12-01

    The work described in this paper is aimed at validating hyperspectral airborne reflectance data collected during the Regional Experiments For Land-atmosphere EXchanges (REFLEX) campaign. Ground reflectance data measured in a vineyard were compared with airborne reflectance data. A sampling strategy and subsequent ground data processing had to be devised so as to capture a representative spectral sample of this complex crop. A linear model between airborne and ground data was tried and statistically tested. Results reveal a sound correspondence between ground and airborne reflectance data (R2 > 0.97), validating the atmospheric correction of the latter.

  20. Hierarchically triangular prism structured Co3O4: Self-supported fabrication and photocatalytic property

    EPA Science Inventory

    The formation of ammonium cobalt (II) phosphate was utilized to synthesize unprecedented 3D structures of Co3O4, triangular prisms and trunk-like structures, via a self-supported and organics-free method. The length of a triangular side of the prepared 3D triangular prisms is ~1...

  1. Investigating First Year Elementary Mathematics Teacher Education Students' Knowledge of Prism

    ERIC Educational Resources Information Center

    Bozkurt, Ali; Koc, Yusuf

    2012-01-01

    The purpose of this study was to investigate first year elementary mathematics teacher education students' knowledge of prism. For this goal, the participants were asked to define the geometric concept of prism. The participants were 158 first year elementary mathematics teacher education students from a public university in Southern Turkey. The…

  2. Standardization of motion sickness induced by left-right and up-down reversing prisms

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Vanderploeg, J. M.; Brumley, E. A.; Kolafa, J. J.; Wood, S. J.

    1990-01-01

    Reversing prisms are known to produce symptoms of motion sickness, and have been used to provide a chronic stimulus for training subjects on symptom recognition and regulation. However, testing procedures with reversing prisms have not been standardized. A set of procedures were evaluated which could be standardized using prisms for provocation and to compare the results between Right/Left Reversing Prisms (R/L-RP) and Up/Down Reversing Prisms (U/D-RP). Fifteen subjects were tested with both types of prisms using a self paced walking course throughout the laboratory with work stations established at specified intervals. The work stations provided tasks requiring eye-hand-foot coordination and various head movements. Comparisons were also made between these prism tests and two other standardized susceptibility tests, the KC-135 parabolic static chair test and the Staircase Velocity Motion Test (SVMT). Two different types of subjective symptom reports were compared. The R/L-RP were significantly more provocative than the U/D-RP. The incidence of motion sickness symptoms for the R/L-RP was similar to the KC-135 parabolic static chair test. Poor correlations were found between the prism tests and the other standardized susceptibility tests, which might indicate that different mechanisms are involved in provoking motion sickness for these different tests.

  3. DEVELOPMENT OF A NEW OREGON PRECIPITATION MAP USING THE PRISM MODEL

    EPA Science Inventory

    Significant progress in our ability to distribute point monthly and annual precipitation data to a regular grid in complex terrain has recently been achieved through the development of PRISM (Precipitation-elevation Regressions on Independent Slopes Model) . PRISM is well suited ...

  4. Electron sharing and anion-π recognition in molecular triangular prisms.

    PubMed

    Schneebeli, Severin T; Frasconi, Marco; Liu, Zhichang; Wu, Yilei; Gardner, Daniel M; Strutt, Nathan L; Cheng, Chuyang; Carmieli, Raanan; Wasielewski, Michael R; Stoddart, J Fraser

    2013-12-01

    Stacking on a full belly: Triangular molecular prisms display electron sharing among their triangularly arranged naphthalenediimide (NDI) redox centers. Their electron-deficient cavities encapsulate linear triiodide anions, leading to the formation of supramolecular helices in the solid state. Chirality transfer is observed from the six chiral centers of the filled prisms to the single-handed helices. PMID:24227594

  5. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  6. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  7. Improved triangular prism methods for fractal analysis of remotely sensed images

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Fung, Tung; Leung, Yee

    2016-05-01

    Feature extraction has been a major area of research in remote sensing, and fractal feature is a natural characterization of complex objects across scales. Extending on the modified triangular prism (MTP) method, we systematically discuss three factors closely related to the estimation of fractal dimensions of remotely sensed images. They are namely the (F1) number of steps, (F2) step size, and (F3) estimation accuracy of the facets' areas of the triangular prisms. Differing from the existing improved algorithms that separately consider these factors, we simultaneously take all factors to construct three new algorithms, namely the modification of the eight-pixel algorithm, the four corner and the moving-average MTP. Numerical experiments based on 4000 generated images show their superior performances over existing algorithms: our algorithms not only overcome the limitation of image size suffered by existing algorithms but also obtain similar average fractal dimension with smaller standard deviation, only 50% for images with high fractal dimensions. In the case of real-life application, our algorithms more likely obtain fractal dimensions within the theoretical range. Thus, the fractal nature uncovered by our algorithms is more reasonable in quantifying the complexity of remotely sensed images. Despite the similar performance of these three new algorithms, the moving-average MTP can mitigate the sensitivity of the MTP to noise and extreme values. Based on the numerical and real-life case study, we check the effect of the three factors, (F1)-(F3), and demonstrate that these three factors can be simultaneously considered for improving the performance of the MTP method.

  8. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  9. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  10. Potential airborne release from soil-working operations in a contaminated area

    SciTech Connect

    Sutter, S.L.

    1980-08-01

    Experiments were performed to provide an indication of how much material could be made airborne during soil-working operations in a contaminated area. Approximately 50 kg of contaminated soil were collected, dried, and mixed, and particle size distribution and /sup 137/Cs content were characterized. In four experiments performed in a 2 ft x 2 ft wind tunnel at the Radioactive Aerosol Release Test Facility, soil was pumped into an airstream moving at 3.2, 10.4, 15.2, and 20 mph. These experiments were designed to maximize airborne releases by fluidizing the soil as it was pumped into the wind tunnel. Thus the airborne releases should represent upper limit values for soil-working operations. Airborne concentration and particle size samples were collected and all of the material deposited downstream was collected to calculate a mass balance. The fraction airborne was calculated using these measurements.

  11. Pointing error analysis of Risley-prism-based beam steering system.

    PubMed

    Zhou, Yuan; Lu, Yafei; Hei, Mo; Liu, Guangcan; Fan, Dapeng

    2014-09-01

    Based on the vector form Snell's law, ray tracing is performed to quantify the pointing errors of Risley-prism-based beam steering systems, induced by component errors, prism orientation errors, and assembly errors. Case examples are given to elucidate the pointing error distributions in the field of regard and evaluate the allowances of the error sources for a given pointing accuracy. It is found that the assembly errors of the second prism will result in more remarkable pointing errors in contrast with the first one. The pointing errors induced by prism tilt depend on the tilt direction. The allowances of bearing tilt and prism tilt are almost identical if the same pointing accuracy is planned. All conclusions can provide a theoretical foundation for practical works. PMID:25321377

  12. A unit structure Rochon prism based on the extraordinary refraction of uniaxial birefringent crystals.

    PubMed

    Wu, Wendi; Wu, Fuquan; Shi, Meng; Su, Fufang; Han, Peigao; Ma, Lili

    2013-06-01

    Based on the Fermat's principle, the universal theory of refraction and reflection of extraordinary rays (e-rays) in the uniaxial crystal is formulated. Using this theory, a new unit structure prism is designed, and its properties are studied. Based on the theoretical results, such a prism is achieved experimentally by using the Iceland crystal. In both theoretical and experimental studies, this new prism shows excellent polarization splitting performances such as big and adjustable splitting angle, comparing to the conventional Rochon prism. For the sample prism with the optical axis angle of 45°, the splitting angle reaches 19.8°in the normal incidence, and the maximum splitting angle reaches 28.44° while the incidence angle is -4°. PMID:23736569

  13. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  14. Foreword: contributions of Arctic PRISM to monitoring western hemispheric shorebirds

    USGS Publications Warehouse

    Skagen, Susan K.; Smith, Paul A.; Andres, Brad A.; Donaldson, Garry; Brown, Stephen

    2012-01-01

    listing under the U.S. Endangered Species Act and the Canadian Species at Risk Act. To meet the need for information on population size and trends, shorebird biologists from Canada and the United States proposed a shared blueprint for shorebird monitoring across the Western Hemisphere in the late 1990s; this effort was undertaken in concert with the development of the Canadian and the U.S. Shorebird Conservation Plans. Soon thereafter, partners in the monitoring effort adopted the name "Program for Regional and International Shorebird Monitoring" (PRISM). Among the primary objectives of PRISM were to estimate the population sizes and trends of breeding North American shorebirds and describe their distributions. PRISM members evaluated ongoing and potential monitoring approached to address 74 taxa (including subspecies) and proposed a combination of arctic and boreal breeding surveys, temperate breeding and non-breeding surveys, and neotropical surveys.

  15. Contributions of Arctic PRISM to monitoring western hemispheric shorebirds

    USGS Publications Warehouse

    Skagen, Susan K.; Smith, Paul A.; Andres, Brad A.; Donaldson, Garry; Brown, Stephen

    2012-01-01

    for assessing its vulnerability and subsequent listing under the U.S. Endangered Species Act and the Canadian Species at Risk Act. To meet the need for information on population size and trends, shorebird biologists from Canada and the United States proposed a shared blueprint for shorebird monitoring across the Western Hemisphere in the late 1990s; this effort was undertaken in concert with the development of the Canadian and U.S. Shorebird Conservation Plans (Donaldson et al. 2000, Brown et aL 2001). Soon thereafter, partners in the monitoring effort adopted the name "Program for Regional and International Shorebird Monitoring" (PRISM). Among the primary objectives of PRISM were to estimate the population sizes and trends of breeding North American shorebirds and describe their distributions (Bart et al. 2002). PRISM members evaluated ongoing and potential monitoring approaches to address 74 taxa (including subspecies) and proposed a combination of arctic andboreal breeding surveys, temperate breeding and non-breeding surveys, and neotropical surveys.

  16. Understanding tectonic stress and rock strength in the Nankai Trough accretionary prism, offshore SW Japan

    NASA Astrophysics Data System (ADS)

    Huffman, Katelyn A.

    Understanding the orientation and magnitude of tectonic stress in active tectonic margins like subduction zones is important for understanding fault mechanics. In the Nankai Trough subduction zone, faults in the accretionary prism are thought to have historically slipped during or immediately following deep plate boundary earthquakes, often generating devastating tsunamis. I focus on quantifying stress at two locations of interest in the Nankai Trough accretionary prism, offshore Southwest Japan. I employ a method to constrain stress magnitude that combines observations of compressional borehole failure from logging-while-drilling resistivity-at-the-bit generated images (RAB) with estimates of rock strength and the relationship between tectonic stress and stress at the wall of a borehole. I use the method to constrain stress at Ocean Drilling Program (ODP) Site 808 and Integrated Ocean Drilling Program (IODP) Site C0002. At Site 808, I consider a range of parameters (assumed rock strength, friction coefficient, breakout width, and fluid pressure) in the method to constrain stress to explore uncertainty in stress magnitudes and discuss stress results in terms of the seismic cycle. I find a combination of increased fluid pressure and decreased friction along the frontal thrust or other weak faults could produce thrust-style failure, without the entire prism being at critical state failure, as other kinematic models of accretionary prism behavior during earthquakes imply. Rock strength is typically inferred using a failure criterion and unconfined compressive strength from empirical relations with P-wave velocity. I minimize uncertainty in rock strength by measuring rock strength in triaxial tests on Nankai core. I find strength of Nankai core is significantly less than empirical relations predict. I create a new empirical fit to our experiments and explore implications of this on stress magnitude estimates. I find using the new empirical fit can decrease stress

  17. Visualizing Airborne and Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Bierwirth, Victoria A.

    2011-01-01

    Remote sensing is a process able to provide information about Earth to better understand Earth's processes and assist in monitoring Earth's resources. The Cloud Absorption Radiometer (CAR) is one remote sensing instrument dedicated to the cause of collecting data on anthropogenic influences on Earth as well as assisting scientists in understanding land-surface and atmospheric interactions. Landsat is a satellite program dedicated to collecting repetitive coverage of the continental Earth surfaces in seven regions of the electromagnetic spectrum. Combining these two aircraft and satellite remote sensing instruments will provide a detailed and comprehensive data collection able to provide influential information and improve predictions of changes in the future. This project acquired, interpreted, and created composite images from satellite data acquired from Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+). Landsat images were processed for areas covered by CAR during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCT AS), Cloud and Land Surface Interaction Campaign (CLASIC), Intercontinental Chemical Transport Experiment-Phase B (INTEXB), and Southern African Regional Science Initiative (SAFARI) 2000 missions. The acquisition of Landsat data will provide supplemental information to assist in visualizing and interpreting airborne and satellite imagery.

  18. MATLAB code for estimating magnetic basement depth using prisms

    NASA Astrophysics Data System (ADS)

    Aydın, Ibrahim; Oksum, Erdinc

    2012-09-01

    There is a need, within both geophysical exploration and deep geophysical research, to estimate magnetic basement depth. Forward and inverse modeling studies to map the basement depth are commonly used within petroleum geophysics. To obtain the basement topography, modeling studies are made of the 2D profile data or 3D map data. In this study, a different algorithm was introduced to estimate the magnetic basement depth from map data. The algorithm is based on the analytical solution of exponential equations obtained from Fourier transformation of magnetic data. This algorithm has been tested on synthetic magnetic anomalies originated from multi-prisms. Following encouraging test results, the proposed algorithm was also tested on field data. The depths obtained from the proposed approach were satisfactory in comparison with the depths obtained from seismic survey cross-sections and boreholes. Basic MATLAB code is included in the Appendix.

  19. Dove prism based rotating dual beam bidirectional Doppler OCT.

    PubMed

    Blatter, Cedric; Coquoz, Séverine; Grajciar, Branislav; Singh, Amardeep S G; Bonesi, Marco; Werkmeister, René M; Schmetterer, Leopold; Leitgeb, Rainer A

    2013-07-01

    Traditional Doppler OCT is highly sensitive to motion artifacts due to the dependence on the Doppler angle. This limits its accuracy in clinical practice. To overcome this limitation, we use a bidirectional dual beam technique equipped with a novel rotating scanning scheme employing a Dove prism. The volume is probed from two distinct illumination directions with variable controlled incidence plane, allowing for reconstruction of the true flow velocity at arbitrary vessel orientations. The principle is implemented with Swept Source OCT at 1060nm with 100,000 A-Scans/s. We apply the system to resolve pulsatile retinal absolute blood velocity by performing segment scans around the optic nerve head and circumpapillary scan time series. PMID:23847742

  20. Dove prism based rotating dual beam bidirectional Doppler OCT

    PubMed Central

    Blatter, Cedric; Coquoz, Séverine; Grajciar, Branislav; Singh, Amardeep S. G.; Bonesi, Marco; Werkmeister, René M.; Schmetterer, Leopold; Leitgeb, Rainer A.

    2013-01-01

    Traditional Doppler OCT is highly sensitive to motion artifacts due to the dependence on the Doppler angle. This limits its accuracy in clinical practice. To overcome this limitation, we use a bidirectional dual beam technique equipped with a novel rotating scanning scheme employing a Dove prism. The volume is probed from two distinct illumination directions with variable controlled incidence plane, allowing for reconstruction of the true flow velocity at arbitrary vessel orientations. The principle is implemented with Swept Source OCT at 1060nm with 100,000 A-Scans/s. We apply the system to resolve pulsatile retinal absolute blood velocity by performing segment scans around the optic nerve head and circumpapillary scan time series. PMID:23847742

  1. Hybrid-integrated prism array optoelectronic targeting system

    NASA Astrophysics Data System (ADS)

    Chang, C. C.; Chang, H. C.; Tang, L. C.; Young, W. K.; Wang, J. C.; Huang, K. L.

    2005-11-01

    This investigation proposes a cost-effective, compact, and robust optoelectronic targeting system for measuring ballistic impact velocity and the distribution of projectile motion. The major elements of this system are four photo-gates hybridized by compound one-dimensional prism array and analog/digital electronic components. The number of light sources and photodetectors used in a photo-gate was reduced to one pair of light source and photodetector. The average velocity and location of the projectile are determined according to the measured time intervals ( ˜10 -8 s) passing each pair. The system can accurately measure the velocity of a bullet as it leaves a gun barrel, as well as the velocity at specific points along the trajectory outside the firearm. Additionally, the system uses a widespread low-powered laser pointer as a light source. Compared with other optoelectronic targeting systems that use high-powered lasers, the proposed system is both economical and safe.

  2. Optical device with conical input and output prism faces

    DOEpatents

    Brunsden, Barry S.

    1981-01-01

    A device for radially translating radiation in which a right circular cylinder is provided at each end thereof with conical prism faces. The faces are oppositely extending and the device may be severed in the middle and separated to allow access to the central part of the beam. Radiation entering the input end of the device is radially translated such that radiation entering the input end at the perimeter is concentrated toward the output central axis and radiation at the input central axis is dispersed toward the output perimeter. Devices are disclosed for compressing beam energy to enhance drilling techniques, for beam manipulation of optical spatial frequencies in the Fourier plane and for simplification of dark field and color contrast microscopy. Both refracting and reflecting devices are disclosed.

  3. Structure of a growing accretionary prism, Hikurangi margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Davey, F. J.; Hampton, M.; Childs, J.; Fisher, M. A.; Lewis, K.; Pettinga, J. R.

    1986-08-01

    The Hikurangi margin of eastern North Island, New Zealand, represents the feather edge of the Indian plate at its convergent boundary with the subducting Pacific plate. A migrated seismic reflection profile across this margin clearly displays the structural evolution of an accretionary prism. A 25-km-wide band of “protothrusts” is delineated between the toe of the slope and a converging seamount; this illustrates an early stage in the seaward propagation of a deformation front. Landward-tilted trench-slope basins are separated by ridges that have clearly defined thrusts, which appear to sole out at a decollement. The decollement continues at an angle of only 3° beneath the 150-km-wide margin to a depth of 14 km near the coast where it coincides with an onshore zone of high seismicity.

  4. The PRISM project: Infrastructure and algorithms for parallel eigensolvers

    SciTech Connect

    Bischof, C.; Sun, X.; Huss-Lederman, S.; Tsao, A.

    1993-12-31

    The goal of the PRISM project is the development of infrastructure and algorithms for the parallel solution of eigenvalue problems. We are currently investigating a complete eigensolver based on the Invariant Subspace Decomposition Algorithm for dense symmetric matrices (SYISDA). After briefly reviewing the SYISDA approach, we discuss the algorithmic highlights of a distributed-memory implementation of an eigensolver based on this approach. These include a fast matrix-matrix multiplication algorithm, a new approach to parallel band reduction and tridiagonalization, and a harness for coordinating the divide-and-conquer parallelism in the problem. We also present performance results of these kernels as well as the overall SYISDA implementation on the Intel Touchstone Delta prototype and the IBM SP/1.

  5. Extreme efficiency of mud volcanism in dewatering accretionary prisms

    NASA Astrophysics Data System (ADS)

    Kopf, Achim; Klaeschen, Dirk; Mascle, Jean

    2001-07-01

    Drilling results from two mud volcanoes on the Mediterranean Ridge accretionary complex as well as bottom sampling and the wealth of geophysical data acquired recently have provided fundamental knowledge of the 3D geometry of mud extrusions. Mud volcanism is generally related to buoyancy (density inversion), and is triggered by the collision of the African and Eurasian blocks, forcing undercompacted clayey sediments to extrude along faults in the central and hinterlandward parts of the prism. Volumetric estimates of extruded mud in several well-studied areas were based on pre-stack depth-migrated seismic profiles across the entire, up to >150 km wide, prism. The resulting volumes of mud were combined with ages from mud dome drilling, so that rates of mud extrusion were obtained. Subtracting the solid rock mass from the bulk mud volume using physical property data, fluid flux as a function of mud volcanism alone has been quantified for the first time. The volume of fluid extruding with the mud is found to be variable, but reaches up to 15 km 3 fluid per km trench length and Ma along cross sections with abundant mud volcanoes. Such large fluid quantities in a region some 50-150 km behind the deformation front exceed estimates from those elsewhere (where undoubtedly the majority of the interstitial fluid is lost due to compaction). Such fluids near the backstop are likely to result predominantly from mineral dehydration and diagenetic reactions at depth, and consequently provide a window to understand deeper processes along the deep décollement. More importantly, the enormous rates with which such fluids and liquified mud escape along the out-of-sequence faults alter fluid budget calculations in subduction zones drastically.

  6. Larmor labeling of neutron spin using superconducting Wollaston prisms

    NASA Astrophysics Data System (ADS)

    Li, Fankang

    Neutron spin Larmor labeling using magnetic Wollaston prisms (WP) provides a way to overcome some of the limitations arising from the nature of neutron beams: low flux and divergence. Using superconducting films and tapes, a series of strong, well-defined shaped magnetic fields can be produced due to both the zero-resistance and Meissner effect in superconductors. Using finite element simulations, the criterion to build a superconducting magnetic Wollaston prism with high encoding efficiency and low Larmor phase aberrations are presented. To achieve a high magnetic field and simplify the maintenance, we optimize the design using careful thermal analysis. The measured neutron spin flipping efficiency is measured to be independent of both the neutron wavelength and energizing current, which is a significant improvement over other devices with similar functions. A highly linear variation of the Larmor phase is measured across the device, which ensures a highly uniform encoding of scattering angles into the neutron spin Larmor phase. Using two WPs, the correlation function for a colloidal silica sample was measured by spin echo modulated small angle neutron scattering (SEMSANS) and agrees well with other techniques. Using Monte Carlo code (McStas), we further investigated the SEMSANS setup and showed the requirements to improve its performance. We have proposed a new technique to implement neutron spin echo on a triple axis neutron spectrometer to achieve high resolution measurements of the lifetime of dispersive phonon excitations. The spin echo is tuned by appropriate choice of magnetic fields instead of physically tilting the coils used in traditional methods. This new approach allows a higher energy resolution and a larger effective tilting angle and hence larger group velocity to be measured.

  7. Airborne midwave and longwave infrared hyperspectral imaging of gases

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Duval, Marc; Farley, Vincent; Chamberland, Martin

    2014-05-01

    Characterization of gas clouds are challenging situations to address due to the large and uneven distribution of these fast moving entities. Whether gas characterization is carried out for gas leaks surveys or environmental monitoring purposes, explosives and/or toxic chemicals are often involved. In such situations, airborne measurements present distinct advantages over ground based-techniques since large areas can be covered efficiently from a safe distance. In order to illustrate the potential of airborne thermal infrared hyperspectral imaging for gas cloud characterization, measurements were carried out above smokestacks and a ground-based gas release experiment. Quantitative airborne chemical images of carbon monoxide (CO) and ethylene (C2H4) were obtained from measurements carried out using a midwave (MWIR, 3-5 μm) and a longwave (LWIR, 8-12 μm) airborne infrared hyperspectral sensor respectively. Scattering effects were observed in the MWIR experiments on smokestacks as a result of water condensation upon rapid cool down of the hot emission gases. Airborne measurements were carried out using both mapping and targeting acquisition modes. The later provides unique time-dependent information such as the gas cloud direction and velocity.

  8. Airborne midwave and longwave infrared hyperspectral imaging of gases

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Duval, Marc; Farley, Vincent; Chamberland, Martin

    2014-11-01

    Characterization of gas clouds are challenging situations to address due to the large and uneven distribution of these fast moving entities. Whether gas characterization is carried out for gas leaks surveys or environmental monitoring purposes, explosives and/or toxic chemicals are often involved. In such situations, airborne measurements present distinct advantages over ground based-techniques since large areas can be covered efficiently from a safe distance. In order to illustrate the potential of airborne thermal infrared hyperspectral imaging for gas cloud characterization, measurements were carried out above smokestacks and a ground-based gas release experiment. Quantitative airborne chemical images of carbon monoxide (CO) and ethylene (C2H4) were obtained from measurements carried out using a midwave (MWIR, 3-5 μm) and a longwave (LWIR, 8-12 μm) airborne infrared hyperspectral sensor respectively. Scattering effects were observed in the MWIR experiments on smokestacks as a result of water condensation upon rapid cool down of the hot emission gases. Airborne measurements were carried out using both mapping and targeting acquisition modes. The later provides unique time-dependent information such as the gas cloud direction and velocity.

  9. Airborne midwave and longwave infrared hyperspectral imaging of gases

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Duval, Marc; Farley, Vincent; Guyot, Éric; Chamberland, Martin

    2014-10-01

    Characterization of gas clouds are challenging situations to address due to the large and uneven distribution of these fast moving entities. Whether gas characterization is carried out for gas leaks surveys or environmental monitoring purposes, explosives and/or toxic chemicals are often involved. In such situations, airborne measurements present distinct advantages over ground based-techniques since large areas can be covered efficiently from a safe distance. In order to illustrate the potential of airborne thermal infrared hyperspectral imaging for gas cloud characterization, measurements were carried out above smokestacks and a ground-based gas release experiment. Quantitative airborne chemical images of carbon monoxide (CO) and ethylene (C2H4) were obtained from measurements carried out using a midwave (MWIR, 3-5 μm) and a longwave (LWIR, 8-12 μm) airborne infrared hyperspectral sensor respectively. Scattering effects were observed in the MWIR experiments on smokestacks as a result of water condensation upon rapid cool down of the hot emission gases. Airborne measurements were carried out using both mapping and targeting acquisition modes. The later provides unique time-dependent information such as the gas cloud direction and velocity.

  10. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  11. Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM)

    PubMed Central

    Gao, Hao; Yu, Hengyong; Osher, Stanley; Wang, Ge

    2011-01-01

    We propose a compressive sensing approach for multi-energy computed tomography (CT), namely the prior rank, intensity and sparsity model (PRISM). To further compress the multi-energy image for allowing the reconstruction with fewer CT data and less radiation dose, the PRISM models a multi-energy image as the superposition of a low-rank matrix and a sparse matrix (with row dimension in space and column dimension in energy), where the low-rank matrix corresponds to the stationary background over energy that has a low matrix rank, and the sparse matrix represents the rest of distinct spectral features that are often sparse. Distinct from previous methods, the PRISM utilizes the generalized rank, e.g., the matrix rank of tight-frame transform of a multi-energy image, which offers a way to characterize the multi-level and multi-filtered image coherence across the energy spectrum. Besides, the energy-dependent intensity information can be incorporated into the PRISM in terms of the spectral curves for base materials, with which the restoration of the multi-energy image becomes the reconstruction of the energy-independent material composition matrix. In other words, the PRISM utilizes prior knowledge on the generalized rank and sparsity of a multi-energy image, and intensity/spectral characteristics of base materials. Furthermore, we develop an accurate and fast split Bregman method for the PRISM and demonstrate the superior performance of the PRISM relative to several competing methods in simulations. PMID:22223929

  12. Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM).

    PubMed

    Gao, Hao; Yu, Hengyong; Osher, Stanley; Wang, Ge

    2011-11-01

    We propose a compressive sensing approach for multi-energy computed tomography (CT), namely the prior rank, intensity and sparsity model (PRISM). To further compress the multi-energy image for allowing the reconstruction with fewer CT data and less radiation dose, the PRISM models a multi-energy image as the superposition of a low-rank matrix and a sparse matrix (with row dimension in space and column dimension in energy), where the low-rank matrix corresponds to the stationary background over energy that has a low matrix rank, and the sparse matrix represents the rest of distinct spectral features that are often sparse. Distinct from previous methods, the PRISM utilizes the generalized rank, e.g., the matrix rank of tight-frame transform of a multi-energy image, which offers a way to characterize the multi-level and multi-filtered image coherence across the energy spectrum. Besides, the energy-dependent intensity information can be incorporated into the PRISM in terms of the spectral curves for base materials, with which the restoration of the multi-energy image becomes the reconstruction of the energy-independent material composition matrix. In other words, the PRISM utilizes prior knowledge on the generalized rank and sparsity of a multi-energy image, and intensity/spectral characteristics of base materials. Furthermore, we develop an accurate and fast split Bregman method for the PRISM and demonstrate the superior performance of the PRISM relative to several competing methods in simulations. PMID:22223929

  13. The penta-prism LTP: A long-trace-profiler with stationary optical head and moving penta prism

    SciTech Connect

    Qian, S.; Jark, W. ); Takacs, P.Z. )

    1995-03-01

    Metrology requirements for optical components for third-generation synchrotron sources are taxing the state of the art in manufacturing technology. We have investigated a number of error sources in a commercial figure measurement instrument, the Long-Trace-Profiler II, and have demonstrated that, with some simple modifications, we can significantly reduce the effect of error sources and improve the accuracy and reliability of the measurement. By keeping the optical head stationary and moving a penta prism along the translation stage, as in the original pencil-beam interferometer design of von Bieren, the stability of the optical system is greatly improved, and the remaining error signals can be corrected by a simple reference beam subtraction. We illustrate the performance of the modified system by investigating the distortion produced by gravity on a typical synchrotron mirror and demonstrate the repeatability of the instrument despite relaxed tolerances on the translation stage.

  14. The penta-prism LTP: A long-trace-profiler with stationary optical head and moving penta prism (abstract)

    SciTech Connect

    Qian, S.; Jark, W. ); Takacs, P.Z. )

    1995-02-01

    Metrology requirements for optical components for third generation synchrotron sources are taxing the state-of-the-art in manufacturing technology. We have investigated a number of effect sources in a commercial figure measurement instrument, the Long Trace Profiler II (LTP II), and have demonstrated that, with some simple modifications, we can significantly reduce the effect of error sources and improve the accuracy and reliability of the measurement. By keeping the optical head stationary and moving a penta prism along the translation stage, the stability of the optical system is greatly improved, and the remaining error signals can be corrected by a simple reference beam subtraction. We illustrate the performance of the modified system by investigating the distortion produced by gravity on a typical synchrotron mirror and demonstrate the repeatability of the instrument despite relaxed tolerances on the translation stage.

  15. Is the Aligning Prism Measured with the Mallett Unit Correlated with Fusional Vergence Reserves?

    PubMed Central

    Conway, Miriam L.; Thomas, Jennifer; Subramanian, Ahalya

    2012-01-01

    Background The Mallett Unit is a clinical test designed to detect the fixation disparity that is most likely to occur in the presence of a decompensated heterophoria. It measures the associated phoria, which is the “aligning prism” needed to nullify the subjective disparity. The technique has gained widespread acceptance within professions such as optometry, for investigating suspected cases of decompensating heterophoria; it is, however, rarely used by orthoptists and ophthalmologists. The aim of this study was to investigate whether fusional vergence reserves, measured routinely by both orthoptists and ophthalmologists to detect heterophoria decompensation, were correlated with aligning prism (associated phoria) in a normal clinical population. Methodology/Principal Findings Aligning prism (using the Mallett Unit) and fusional vergence reserves (using a prism bar) were measured in 500 participants (mean 41.63 years; standard deviation 11.86 years) at 40 cm and 6 m. At 40 cm a strong correlation (p<0.001) between base in aligning prism (Exo FD) and positive fusional reserves was found. Of the participants with zero aligning prism 30% had reduced fusional reserves. At 6 m a weak correlation between base out aligning prism (Eso FD) and negative fusional reserves was found to break (p = 0.01) and to recovery (p = 0.048). Of the participants with zero aligning prism 12% reported reduced fusional reserves. Conclusions/Significance For near vision testing, the strong inverse correlation between base in aligning prism (Exo FD) and fusional vergence reserves supports the notion that both measures are indicators of decompensation of heterophoria. For distance vision testing and for those patients reporting zero aligning prism further research is required to determine why the relationship appears to be weak/non-existent? PMID:22905174

  16. Airborne GLM Simulator (FEGS)

    NASA Astrophysics Data System (ADS)

    Quick, M.; Blakeslee, R. J.; Christian, H. J., Jr.; Stewart, M. F.; Podgorny, S.; Corredor, D.

    2015-12-01

    Real time lightning observations have proven to be useful for advanced warning and now-casting of severe weather events. In anticipation of the launch of the Geostationary Lightning Mapper (GLM) onboard GOES-R that will provide continuous real time observations of total (both cloud and ground) lightning, the Fly's Eye GLM Simulator (FEGS) is in production. FEGS is an airborne instrument designed to provide cal/val measurements for GLM from high altitude aircraft. It consists of a 5 x 5 array of telescopes each with a narrow passband filter to isolate the 777.4 nm neutral oxygen emission triplet radiated by lightning. The telescopes will measure the optical radiance emitted by lightning that is transmitted through the cloud top with a temporal resolution of 10 μs. When integrated on the NASA ER-2 aircraft, the FEGS array with its 90° field-of-view will observe a cloud top area nearly equal to a single GLM pixel. This design will allow FEGS to determine the temporal and spatial variation of light that contributes to a GLM event detection. In addition to the primary telescope array, the instrument includes 5 supplementary optical channels that observe alternate spectral emission features and will enable the use of FEGS for interesting lightning physics applications. Here we present an up-to-date summary of the project and a description of its scientific applications.

  17. Airborne rescue system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1991-01-01

    The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

  18. In-situ stress and strength in the Nankai inner accretionary prism at Site C0002, IODP NanTroSEIZE

    NASA Astrophysics Data System (ADS)

    Kitajima, H.; Valdez, R. D.; Kitamura, M.; Sone, H.; Saffer, D. M.; Tobin, H. J.; Hirose, T.; Kuo, S. T.

    2015-12-01

    As a part of the International Ocean Discovery Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE), a deep riser borehole has been drilled into the Kumano forearc basin and the underlying inner accretionary wedge at Site C0002, located ~35 km landward from the trench. One of the primary objectives of drilling the riser site was to characterize in-situ stress and pore pressure in the hanging wall above the locked plate boundary. Here, we: (1) investigate the mechanical strength and deformation behavior of prism sediment via laboratory experiments on core samples; and (2) quantify in-situ stress (Sv, Sh, and SH), and pore pressure (Pp) in the Kumano basin and the inner prism. We conducted triaxial compression experiments on core samples recovered from ~ 2200 meters below sea floor (mbsf) during IODP Expedition 348, at effective pressures (Pe) ranging from 8 and 36 MPa, and at temperatures of either 25°C or 60°C. Our preliminary results indicate that the prism (20 - 42% porosity) rocks deform brittlely at Pe < 22 MPa, but exhibit strain hardening at Pe = 36 MPa. This pressure-porosity condition for a brittle-ductile transition is consistent with previous work defining yield models for incoming sediments at the Nankai Trough (Kitajima and Saffer, 2012). Combining P-wave velocity logs and downhole measurements of leak-off pressure at Site C0002 with an empirical relationship between P-wave velocity, porosity, and effective stress, we show that the Kumano forearc basin is in a uniaxial-strain loading path, which defines a normal faulting stress regime (Sv>SH>=Sh), whereas the inner accretionary prism is in a triaxial-strain loading path that defines a strike-slip faulting regime (SH>Sv>Sh). We estimate excess pore pressure below ~2000 mbsf ranging from 0-12 MPa, corresponding to a pore pressure ratio λ* of 0 - 0.40.

  19. A bi-prism interferometer for hard x-ray photons

    SciTech Connect

    Isakovic, A.F.; Siddons, D.; Stein, A.; Warren, J.B.; Sandy, A.R.; Narayanan, M.S.; Ablett, J.M.; Metzler, M. and Evans-Lutterodt, K.

    2010-04-06

    Micro-fabricated bi-prisms have been used to create an interference pattern from an incident hard X-ray beam, and the intensity of the pattern probed with fluorescence from a 30 nm-thick metal film. Maximum fringe visibility exceeded 0.9 owing to the nano-sized probe and the choice of single-crystal prism material. A full near-field analysis is necessary to describe the fringe field intensities, and the transverse coherence lengths were extracted at APS beamline 8-ID-I. It is also shown that the maximum number of fringes is dependent only on the complex refractive index of the prism material.

  20. CLESSIDRA: Focusing Hard X-Rays Efficiently with Arrays Composed of Small Prisms

    SciTech Connect

    Jark, Werner; Perennes, Frederic; Matteucci, Marco; Mancini, Lucia; Menk, Ralf H.; Rigon, Luigi

    2007-01-19

    Small prisms arranged such that the number of prisms to traverse by an x-ray beam is linearly increasing with distance from the symmetry axis of the device will direct an incident wave to a common cross over point. This structure can be understood as a special form of the Fresnel version of a concave refractive x-ray lens. Indeed it is obtained by removing blocks of optically passive material of equal height from the concave lens shape. It will be shown that the structure has a high refraction efficiency and that the losses are produced by problems in the fabrication of sufficiently sharp tips for the prisms.

  1. Properties of YMnO{sub 3} self-assembled nanocrystalline prisms on GaN

    SciTech Connect

    Keenan, Cameron; Chandril, Sandeep; Myers, Thomas H.; Lederman, David; Ramos-Moore, E.; Cabrera, A. L.

    2008-01-07

    Growth of YMnO{sub 3} on GaN (0001) using molecular beam epitaxy at temperatures greater than 850 deg. C resulted in the spontaneous formation of crystalline prisms, ranging from 20 to 60 nm in height and 50 to 500 nm in lateral size, surrounded by a 6 nm thick continuous YMnO{sub 3} film. The local dielectric properties were measured using scanning surface probe microscopy. The prisms were ferroelectric at room temperature and their ferroelectric properties were enhanced for taller prisms. This is consistent with these structures being less constrained than the continuous layer, which is clamped by the surrounding unpolarized film.

  2. Third-order theory of the Risley-prism-based beam steering system.

    PubMed

    Li, Yajun

    2011-02-10

    Nonparaxial ray tracing is performed to investigate the field scanned out by a single beam through two rotatable thick prisms with different parameters, and a general solution is obtained and then expanded into a power series to establish the third-order theory for Risley prisms that paves the way to investigate topics of interest such as optical distortions in the scan pattern and an analytical solution of the inverse problem of a Risley-prism-based laser beam steering system; i.e., the problem is concerned with how to direct a laser beam to any specified direction within the angular range of the system. PMID:21343989

  3. Enhanced performance of wind energy harvester by aerodynamic treatment of a square prism

    NASA Astrophysics Data System (ADS)

    Hu, Gang; Tse, K. T.; Kwok, K. C. S.

    2016-03-01

    This letter presents the effects that fitting fins to various corners of a square-prism galloping-based piezoelectric energy harvester (PEH) has on its performance, based on results from a series of wind tunnel model tests. The results show that attaching fins to the leading edge significantly improves the efficiency of the harvester, achieving a maximum power 2.5 times that attained by a plain square prism PEH. Furthermore, a length that is 1/6 of the prism's cross-sectional width is found to be optimal for fins that are attached to the harvester.

  4. DC-8 Airborne Laboratory in flight over Mt. Whitney

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The DC-8 banking over the jagged peak of Mount Whitney on a February 25, 1998 flight. The DC-8 and a pair of ER-2 aircraft are operated by the Airborne Science program at the NASA Dryden Flight Research Center. NASA, other governmental agencies, academia, and scientific and technical organizations employ the DC-8 for a variety of experiments.

  5. Ozone Hole Airborne Arctic Stratospheric Expedition (Pre-Flight)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The first segment of this video gives an overview of the Ozone Hole Airborne Arctic Stratospheric Expedition, an international effort using balloon payloads, ground based instruments, and airborne instruments to study ozone depletion and the hole in the ozone over Antarctica which occurs every spring. False color imagery taken from NASA's Nimbus 7 satellite which documents daily changes in ozone is also shown. The second segment of this video shows actual take-off and flight footage of the two aircraft used in the experiment: the DC-8 Flying Laboratory and the high flying ER-2.

  6. Research of the coastal zone by the airborne laser scanning data (Verbyanaya bay-bar, sea of Azov)

    NASA Astrophysics Data System (ADS)

    Pogorelov, Anatoliy V.; Antonenko, Mihail; Boyko, Evgeniy

    2015-06-01

    In the area Verbyanaya bay-bar (Sea of Azov) in an attempt to create large-scale cartographic base and subsequent thematic mapping of the geographical environment components airborne laser scanning and aerial photography were conducted. Airborne laser scanning data formed the basis of a comprehensive study of the coastal zone components. Methodical research apparatus includes receiving and processing technology of laser reflection points, constructing highprecision digital elevation model and raster surfaces. Mosaic of aerial photography is converted into a format mosaic - a geometrically correct image of the terrain. Set of high-precision digital surface models and thematic raster images obtained for specific dates, allows to analyze the dynamic adjustment of components of the coastal zone (shoreline, beach, shore dam with surge prism).

  7. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  8. Airborne lidar detection of subsurface oceanic scattering layers

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Wright, C. Wayne; Krabill, William B.; Buntzen, Rodney R.; Gilbert, Gary D.

    1988-01-01

    The airborne lidar detection and cross-sectional mapping of submerged oceanic scattering layers are reported. The field experiment was conducted in the Atlantic Ocean southeast of Assateague Island, VA. NASA's Airborne Oceanographic Lidar was operated in the bathymetric mode to acquire on-wavelength 532-nm depth-resolved backscatter signals from shelf/slope waters. Unwanted laser pulse reflection from the air-water interface was minimized by spatial filtering and off-nadir operation. The presence of thermal stratification over the shelf was verified by the deployment of airborne expendable bathythermographs. Optical beam transmission measurements acquired from a surface truthing vessel indicated the presence of a layer of turbid water near the sea floor over the inner portion of the shelf.

  9. Airborne signals of communication in sagebrush: a pharmacological approach

    PubMed Central

    Shiojiri, Kaori; Ishizaki, Satomi; Ozawa, Rika; Karban, Richard

    2015-01-01

    When plants receive volatiles from a damaged plant, the receivers become more resistant to herbivory. This phenomenon has been reported in many plant species and called plant-plant communication. Lab experiments have suggested that several compounds may be functioning as airborne signals. The objective of this study is to identify potential airborne signals used in communication between sagebrush (Artemisia tridentata) individuals in the field. We collected volatiles of one branch from each of 99 sagebrush individual plants. Eighteen different volatiles were detected by GC-MS analysis. Among these, 4 compounds; 1.8-cineol, β-caryophyllene, α-pinene and borneol, were investigated as signals of communication under natural conditions. The branches which received either 1,8-cineol or β-caryophyllene tended to get less damage than controls. These results suggested that 1,8-cineol and β-caryophyllene should be considered further as possible candidates for generalized airborne signals in sagebrush. PMID:26418970

  10. Airborne lidar detection of subsurface oceanic scattering layers.

    PubMed

    Hoge, F E; Wright, C W; Krabill, W B; Buntzen, R R; Gilbert, G D; Swift, R N; Yungel, J K; Berry, R E

    1988-10-01

    The airborne lidar detection and cross-sectional mapping of submerged oceanic scattering layers are reported. The field experiment was conducted in the Atlantic Ocean southeast of Assateague Island, VA. NASA's Airborne Oceanographic Lidar was operated in the bathymetric mode to acquire on-wavelength 532-nm depth-resolved backscatter signals from shelf/slope waters. Unwanted laser pulse reflection from the airwater interface was minimized by spatial filtering and off-nadir operation. The presence of thermal stratification over the shelf was verified by the deployment of airborne expendable bathythermographs. Optical beam transmission measurements acquired from a surface truthing vessel indicated the presence of a layer of turbid water near the sea floor over the inner portion of the shelf. PMID:20539503

  11. Earthquake faulting in subduction zones: insights from fault rocks in accretionary prisms

    NASA Astrophysics Data System (ADS)

    Ujiie, Kohtaro; Kimura, Gaku

    2014-12-01

    Subduction earthquakes on plate-boundary megathrusts accommodate most of the global seismic moment release, frequently resulting in devastating damage by ground shaking and tsunamis. As many earthquakes occur in deep-sea regions, the dynamics of earthquake faulting in subduction zones is poorly understood. However, the Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) and fault rock studies in accretionary prisms exhumed from source depths of subduction earthquakes have greatly improved our understanding of earthquake faulting in subduction zones. Here, we review key advances that have been made over the last decade in the studies of fault rocks and in laboratory experiments using fault zone materials, with a particular focus on the Nankai Trough subduction zone and its on-land analog, the Shimanto accretionary complex in Japan. New insights into earthquake faulting in subduction zones are summarized in terms of the following: (1) the occurrence of seismic slip along velocity-strengthening materials both at shallow and deep depths; (2) dynamic weakening of faults by melt lubrication and fluidization, and possible factors controlling coseismic deformation mechanisms; (3) fluid-rock interactions and mineralogical and geochemical changes during earthquakes; and (4) geological and experimental aspects of slow earthquakes.

  12. Airborne Oceanographic Lidar (AOL) flight mission participation

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.

    1988-01-01

    From February 1986 to the present, the AOL participated in six interagency flight missions. (1) Shelf Edge Exchange Processes (SEEP II) (Department of Energy). The SEEP experiments are designed to assess the assimilative capacity of the Continental Shelf to absorb the energy by-products introduced into the near-shore ocean environment from coastal communities and marine activities such as energy production plants and offshore oil operations. (2) BIOWATT II (Office of Naval Research). The major objective of this study was to provide a better understanding of the relationships between ocean physics, biology, bioluminescence, and optics in oligotrophic portions of the Atlantic Ocean. (3) Fall Experiment (FLEX) (Department of Energy). The FLEX studies were designed to determine the fate of low salinity water in the coastal boundary zone that is advected south towards the Florida coast during autumn. (4) Greenland Sea and Icelandic Marine Biological Experiments (NASA). The investigations were designed to evaluate the distribution of surface layer chlorophyll in the Greeland Sea and in the coastal waters in the vicinity of Iceland. (5) Submerged Oceanic Scattering Layer Experiment (Naval Ocean Systems Center). This flight experiment demonstrated for the first time the feasibility of detecting and metrically measuring the depth to submerged layers of particulate matter in the shelf break region and in the inner coastal zone. (6) Microbial Exchanges and Coupling in Coastal Atlantic Systems (National Science Foundation). This investigation was designed to study the transportation and fate of particulates in coastal waters and in particular the Chesapeake Bay/coastal Atlantic Ocean. Shortly after the conduct of the flight experiments, airborne laser-induced chlorophyll a and phycoerythrin fluorescence data, as well as sea surface temperature and airborne expendable bathythermograph water column temperature profiles are supplied to cooperating institutions.

  13. Airborne Oceanographic Lidar (AOL) flight mission participation

    NASA Astrophysics Data System (ADS)

    Hoge, F. E.

    From February 1986 to the present, the AOL participated in six interagency flight missions. (1) Shelf Edge Exchange Processes (SEEP II) (Department of Energy). The SEEP experiments are designed to assess the assimilative capacity of the Continental Shelf to absorb the energy by-products introduced into the near-shore ocean environment from coastal communities and marine activities such as energy production plants and offshore oil operations. (2) BIOWATT II (Office of Naval Research). The major objective of this study was to provide a better understanding of the relationships between ocean physics, biology, bioluminescence, and optics in oligotrophic portions of the Atlantic Ocean. (3) Fall Experiment (FLEX) (Department of Energy). The FLEX studies were designed to determine the fate of low salinity water in the coastal boundary zone that is advected south towards the Florida coast during autumn. (4) Greenland Sea and Icelandic Marine Biological Experiments (NASA). The investigations were designed to evaluate the distribution of surface layer chlorophyll in the Greeland Sea and in the coastal waters in the vicinity of Iceland. (5) Submerged Oceanic Scattering Layer Experiment (Naval Ocean Systems Center). This flight experiment demonstrated for the first time the feasibility of detecting and metrically measuring the depth to submerged layers of particulate matter in the shelf break region and in the inner coastal zone. (6) Microbial Exchanges and Coupling in Coastal Atlantic Systems (National Science Foundation). This investigation was designed to study the transportation and fate of particulates in coastal waters and in particular the Chesapeake Bay/coastal Atlantic Ocean. Shortly after the conduct of the flight experiments, airborne laser-induced chlorophyll a and phycoerythrin fluorescence data, as well as sea surface temperature and airborne expendable bathythermograph water column temperature profiles are supplied to cooperating institutions.

  14. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  15. CO2 Budget and Rectification Airborne Study

    NASA Technical Reports Server (NTRS)

    Grainger, C. A.

    2004-01-01

    The main purpose of this award was to supply a platform for the airborne measurements of gases associated with the CO2 Budget and Regional Airborne Study (COBRA). The original program was to consist of three field programs: the first was to be in 1999, the second in 2000, and the third in 2001. At the end of the second field program, it was agreed that the science could better be served by making the measurements in northern Brazil, rather than in North America. The final North American program would be postponed until after two field programs in Brazil. A substantial amount of effort was diverted into making plans and preparations for the Brazil field programs. The Brazil field programs were originally scheduled to take place in the Fall of 2002 and Spring of 2003. Carrying out the field program in Brazil was going to logistically much more involved than a program in the US. Shipping of equipment, customs, and site preparations required work to begin many months prior to the actual measurement program. Permission to fly in that country was also not trivial and indeed proved to be a major obstacle. When we were not able to get permission to fly in Brazil for the 2002 portion of the experiment, the program was pushed back to 2003. When permission by the Brazilian government was not given in time for a Spring of 2003 field program, the experiment was postponed again to begin in the Fall of 2003.

  16. Measurement of two-dimensional small angle deviation with a prism interferometer

    SciTech Connect

    Chatterjee, Sanjib; Kumar, Y. Pavan

    2008-09-20

    A new technique for the measurement of two-dimensional small angular deviation is presented. A compound prism, which effectively produces a combination of two right-angled prisms in orthogonal directions, and plane reference surfaces have been utilized for the measurement of the orthogonal components of the angular tilt of an incident plane wavefront. Each orthogonal component of the angular tilt is separately measured from the angular rotation of the resultant wedge fringes between two plane wavefronts generated due to splitting of the incident plane wavefront by the corresponding set of right-angled prism and plane reference surface. The technique is shown to have high sensitivity for the measurement of small angle deviation. A monolithic prism interferometer, which is practically insensitive to vibration, is also proposed. Results obtained for the measurement of a known tilt angle are presented.

  17. C&O Canal prism, with towpath (left) and fill under WM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    C&O Canal prism, with towpath (left) and fill under WM roadbed (right), milepost 142 vicinity, looking southwest. - Western Maryland Railway, Cumberland Extension, Pearre to North Branch, from WM milepost 125 to 160, Pearre, Washington County, MD

  18. Theoretical and experimental determination of steering mechanism for Risley prism systems.

    PubMed

    Lu, Yafei; Zhou, Yuan; Hei, Mo; Fan, Dapeng

    2013-03-01

    Two different analytical methods, the first-order paraxial approximation method and the nonparaxial ray tracing method, are applied to determine the steering mechanism of the Risley prism system, including the pointing prediction and the complete and exact inverse orientation solutions. The analytical results obtained with the two different methods are investigated in detail about the pointing prediction and the two groups of inverse orientation solutions, respectively. Risley prism equipment for wide angular range beam scanning is assembled and the experimental setup is built to test the steering mechanism of the Risley prism system. Experimental results validate the availability of the nonparaxial ray tracing method to discuss the beam steering mechanism for the Risley prism system. PMID:23458790

  19. Modelling and design of modified Wollaston prisms and the application in differential interference contrast microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Site; Zhong, Huiying; Wyrowski, Frank

    2016-03-01

    Wollaston prisms and the modified Wollaston prisms, which are interesting for various applications like optical metrology, topography of surfaces and biological imaging, has been theoretically studied and also been practically applied. The previous studies are mostly based on ray tracing analysis and, as a result, the information that can be obtained are somehow restricted. In this paper, we propose a geometric field tracing technique for the simulation of light propagation through Wollaston prisms. In geometric field tracing we seek for the solutions to Maxwell's equations under the geometrical optics approximation, so that all the properties of light as electromagnetic field are retained. Using the proposed simulation technique, we present the simulation of a differential interference contrast (DIC) microscopy, in which the modified Wollaston prism is used as the key component.

  20. Effect of prism index on sensitivity of lossy mode resonance sensors operating in visible region

    NASA Astrophysics Data System (ADS)

    Kaur, Davinder; Sharma, Vinod K.; Kapoor, Avinashi

    2015-01-01

    We present the theoretical results of the optimization of lossy mode resonance sensors at visible wavelengths. Both angular and spectral interrogations are carried out for absorbing indium tin oxide (ITO) films placed on glass prism. The inclusion of a low-index layer between the prism and the lossy (ITO) layer can produce an efficient refractive index sensor for bio/chemical applications. Further increase in sensitivity can be achieved by changing the index of the prism. It is shown that the sensitivity has strong dependence on the index of prism. Sensitivities as high as 4670 nm/RIU for spectral mode and 67 deg/RIU for angular mode with small values of full width at half maximum (FWHM) can be achieved. Dependence of sensitivity and FWHM on refractive index and thickness of low-index matching layer is also investigated.

  1. The initial point of collimator CCD imagine calibration by pyramid prism

    NASA Astrophysics Data System (ADS)

    Wang, Zongping; Jin, Shangzhong; Wang, Weicheng; Zhu, Xiaoping

    2013-12-01

    This paper briefly introduces the commonly used photoelectric auto collimator structure and its working principle. A new method for calibrating the initial point of collimator CCD imagine by a pyramid prism was proposed. It consists of a two-dimension rotate instrument, a pyramid prism and a collimator. By combing with the algorithm of calculating the center position of beam spot, a more precise calibration of the initial point of the collimator CCD imagine was realized. Optical properties of the pyramid prism and its impact of initial point calibration were analysed under the oblique incidence. At the same time, effect of the manufacturing errors of pyramid prism on the calibration accuracy was analysed. Experimental data shows that the method has a good reproducibility with a relative standard deviation of less than 10%.

  2. Prism-C2n carbon dimer, trimer, and nano-sheets: A quantum chemical study

    NASA Astrophysics Data System (ADS)

    Ohno, Koichi; Satoh, Hiroko; Iwamoto, Takeaki

    2015-07-01

    Quantum chemical calculations have predicted the existence of a new carbon family with double-layered structures formed by arranging prism-C2n (n = 6, 8, and 12) units. Theoretical explorations of potential energy surfaces suggest the lowest barriers of the reaction channels to be ca. 30 kJ mol-1 for a D2h prism-C16 dimer and a D3h prism-C24 trimer. Geometry optimizations under periodic boundary conditions yield some prism-C2n sheets composed of CC single bonds of ca. 0.15-0.16 nm. The relative energies per one atom with respect to graphene are 90-160 kJ mol-1. Van der Waals thickness is estimated to be ca. 0.5 nm.

  3. Cavity Enhanced Absorption Spectroscopy Using a Broadband Prism Cavity and a Supercontinuum Source

    NASA Astrophysics Data System (ADS)

    Johnston, Paul S.; Lehmann, Kevin K.

    2009-06-01

    The multiplex advantage of current cavity enhanced spectrometers is limited by the high reflectivity bandwidth of the mirrors used to construct the high finesse cavity. Previously, we reported the design and construction of a new spectrometer that circumvents this limitation by utilizing Brewster^{,}s angle prism retroreflectors. The prisms, made from fused silica and combined with a supercontinuum source generated by pumping a highly nonlinear photonic crystal fiber, yields a spectral window ranging from 500 nm to 1750 nm. Recent progress in the instruments development will be discussed, including work on modeling the prism cavity losses, alternative prism material for use in the UV and mid-IR spectral regions, and a new high power supercontinuum source based on mode-locked picosecond laser.

  4. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  5. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  6. Paired-Pulse Parietal-Motor Stimulation Differentially Modulates Corticospinal Excitability across Hemispheres When Combined with Prism Adaptation

    PubMed Central

    Martín-Arévalo, Elisa; Salemme, Romeo; Pisella, Laure; Farnè, Alessandro

    2016-01-01

    Rightward prism adaptation ameliorates neglect symptoms while leftward prism adaptation (LPA) induces neglect-like biases in healthy individuals. Similarly, inhibitory repetitive transcranial magnetic stimulation (rTMS) on the right posterior parietal cortex (PPC) induces neglect-like behavior, whereas on the left PPC it ameliorates neglect symptoms and normalizes hyperexcitability of left hemisphere parietal-motor (PPC-M1) connectivity. Based on this analogy we hypothesized that LPA increases PPC-M1 excitability in the left hemisphere and decreases it in the right one. In an attempt to shed some light on the mechanisms underlying LPA's effects on cognition, we investigated this hypothesis in healthy individuals measuring PPC-M1 excitability with dual-site paired-pulse TMS (ppTMS). We found a left hemisphere increase and a right hemisphere decrease in the amplitude of motor evoked potentials elicited by paired as well as single pulses on M1. While this could indicate that LPA biases interhemispheric connectivity, it contradicts previous evidence that M1-only MEPs are unchanged after LPA. A control experiment showed that input-output curves were not affected by LPA per se. We conclude that LPA combined with ppTMS on PPC-M1 differentially alters the excitability of the left and right M1. PMID:27418979

  7. Paired-Pulse Parietal-Motor Stimulation Differentially Modulates Corticospinal Excitability across Hemispheres When Combined with Prism Adaptation.

    PubMed

    Schintu, Selene; Martín-Arévalo, Elisa; Vesia, Michael; Rossetti, Yves; Salemme, Romeo; Pisella, Laure; Farnè, Alessandro; Reilly, Karen T

    2016-01-01

    Rightward prism adaptation ameliorates neglect symptoms while leftward prism adaptation (LPA) induces neglect-like biases in healthy individuals. Similarly, inhibitory repetitive transcranial magnetic stimulation (rTMS) on the right posterior parietal cortex (PPC) induces neglect-like behavior, whereas on the left PPC it ameliorates neglect symptoms and normalizes hyperexcitability of left hemisphere parietal-motor (PPC-M1) connectivity. Based on this analogy we hypothesized that LPA increases PPC-M1 excitability in the left hemisphere and decreases it in the right one. In an attempt to shed some light on the mechanisms underlying LPA's effects on cognition, we investigated this hypothesis in healthy individuals measuring PPC-M1 excitability with dual-site paired-pulse TMS (ppTMS). We found a left hemisphere increase and a right hemisphere decrease in the amplitude of motor evoked potentials elicited by paired as well as single pulses on M1. While this could indicate that LPA biases interhemispheric connectivity, it contradicts previous evidence that M1-only MEPs are unchanged after LPA. A control experiment showed that input-output curves were not affected by LPA per se. We conclude that LPA combined with ppTMS on PPC-M1 differentially alters the excitability of the left and right M1. PMID:27418979

  8. PRISM: A DATA-DRIVEN PLATFORM FOR MONITORING MENTAL HEALTH.

    PubMed

    Kamdar, Maulik R; Wu, Michelle J

    2016-01-01

    Neuropsychiatric disorders are the leading cause of disability worldwide and there is no gold standard currently available for the measurement of mental health. This issue is exacerbated by the fact that the information physicians use to diagnose these disorders is episodic and often subjective. Current methods to monitor mental health involve the use of subjective DSM-5 guidelines, and advances in EEG and video monitoring technologies have not been widely adopted due to invasiveness and inconvenience. Wearable technologies have surfaced as a ubiquitous and unobtrusive method for providing continuous, quantitative data about a patient. Here, we introduce PRISM-Passive, Real-time Information for Sensing Mental Health. This platform integrates motion, light and heart rate data from a smart watch application with user interactions and text entries from a web application. We have demonstrated a proof of concept by collecting preliminary data through a pilot study of 13 subjects. We have engineered appropriate features and applied both unsupervised and supervised learning to develop models that are predictive of user-reported ratings of their emotional state, demonstrating that the data has the potential to be useful for evaluating mental health. This platform could allow patients and clinicians to leverage continuous streams of passive data for early and accurate diagnosis as well as constant monitoring of patients suffering from mental disorders. PMID:26776198

  9. PrismTech Data Distribution Service Java API Evaluation

    NASA Technical Reports Server (NTRS)

    Riggs, Cortney

    2008-01-01

    My internship duties with Launch Control Systems required me to start performance testing of an Object Management Group's (OMG) Data Distribution Service (DDS) specification implementation by PrismTech Limited through the Java programming language application programming interface (API). DDS is a networking middleware for Real-Time Data Distribution. The performance testing involves latency, redundant publishers, extended duration, redundant failover, and read performance. Time constraints allowed only for a data throughput test. I have designed the testing applications to perform all performance tests when time is allowed. Performance evaluation data such as megabits per second and central processing unit (CPU) time consumption were not easily attainable through the Java programming language; they required new methods and classes created in the test applications. Evaluation of this product showed the rate that data can be sent across the network. Performance rates are better on Linux platforms than AIX and Sun platforms. Compared to previous C++ programming language API, the performance evaluation also shows the language differences for the implementation. The Java API of the DDS has a lower throughput performance than the C++ API.

  10. Surface plasmon resonance prism coupler for enhanced circular dichroism sensing.

    PubMed

    Phan, Quoc-Hung; Lo, Yu-Lung; Huang, Chih-Ling

    2016-06-13

    A novel method for enhanced circular dichroism (CD) detection is proposed based on a surface plasmon resonance (SPR) prism coupler and a polarization scanning ellipsometry technique. An analytical model is derived to extract the CD and degree of polarization (DOP) properties of optical samples with and without scattering effects, respectively. The validity of the analytical model is confirmed by means of numerical simulations. The simulation results show that the proposed detection method has a sensitivity of 10-5~10-6 RIU (refractive index unit) for refractive indices in the range of 1.32~1.36 and 1.3100~1.3118. The practical feasibility of the proposed method is demonstrated by the experimental results for the sensitivity of the CD with the chlorophyllin samples with/without scattering effect. It is shown that for both types of sample, the extracted CD value increases linearly with the chlorophyll concentration over the considered range. In general, the results obtained in this study show that the measured CD response is highly sensitive to the polarization scanning angle. Consequently, the potential of polarization scanning ellipsometry for high-resolution CD detection is confirmed. PMID:27410300

  11. Hypnotizability and Performance on a Prism Adaptation Test.

    PubMed

    Menzocchi, Manuel; Mecacci, Giulio; Zeppi, Andrea; Carli, Giancarlo; Santarcangelo, Enrica L

    2015-12-01

    The susceptibility to hypnosis, which can be measured by scales, is not merely a cognitive trait. In fact, it is associated with a number of physiological correlates in the ordinary state of consciousness and in the absence of suggestions. The hypnotizability-related differences observed in sensorimotor integration suggested a major role of the cerebellum in the peculiar performance of healthy subjects with high scores of hypnotic susceptibility (highs). In order to provide behavioral evidence of this hypothesis, we submitted 20 highs and 21 low hypnotizable participants (lows) to the classical cerebellar Prism Adaptation Test (PAT). We found that the highs' performance was significantly less accurate and more variable than the lows' one, even though the two groups shared the same characteristics of adaptation to prismatic lenses. Although further studies are required to interpret these findings, they could account for earlier reports of hypnotizability-related differences in postural control and blink rate, as they indicate that hypnotizability influences the cerebellar control of sensorimotor integration. PMID:25913127

  12. PrISM: Mapping Nearby Galaxies with Slit Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sterling Rich, Jeffrey Austin

    2015-08-01

    The information gained from spatially resolved optical spectroscopy has proven crucial to understanding the complete picture of galaxies and their contents. In order to fully understand the interplay between the processes that govern and regulate star formation and galaxy evolution we are building building a sample of the largest, highest spatial resolution, and widest spectral coverage data cubes ever taken for nearby galaxies: the Las Campanas PrISM Survey.I will present recent results and ongoing work using our data cubes to map the ionized ISM and its properties at spatial scales of order 10 pc in nearby galaxies such as M83. The high spatial resolution of our data affords us the opportunity to study the characteristics and total contribution of diffuse ionized gas, a less well-understood component of nearby galaxies, as well as metallicties, star formation rates gas kinematics and more. I will also discuss how resolved spectroscopy can help detect, quantify and distinguish between star formation, shocks, diffuse ionized gas and AGN to help better inform larger, less resolved studies of galaxy properties.

  13. Data Management Challenges for Airborne NASA Earth Venture Sub-Orbital Investigations

    NASA Astrophysics Data System (ADS)

    Boyer, A.; Lindsley, C.; Wright, D.; Cook, R. B.; Santhana Vannan, S. K.

    2015-12-01

    The Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) is developing technology infrastructure to archive airborne remote sensing observations from two of NASA's Earth Venture Sub-orbital Missions. The two missions are CARVE (Carbon in Arctic Reservoirs Vulnerability Experiment) and AirMOSS (Airborne Microwave Observatory of Subcanopy and Subsurface). These missions collected over 140 TB of data from extensive ground-based and airborne instruments. The metadata and documentation requirements necessary for proper archive and dissemination of such transect-based, and often 3-dimensional, airborne data are quite different from traditional field campaign data and satellite remote sensing data streams. Staff at the ORNL DAAC have developed a metadata and data infrastructure for airborne data that enables spatial or keyword-based search and discovery, integration of related satellite- or ground-based data sets, and subsetting and visualization tools for both CARVE and AirMOSS. Here we discuss challenges, progress, and lessons learned.

  14. Rhomboid prism pair for rotating the plane of parallel light beams

    NASA Technical Reports Server (NTRS)

    Orloff, K. L. (Inventor); Yanagita, H.

    1982-01-01

    An optical system is described for rotating the plane defined by a pair of parallel light beams. In one embodiment a single pair of rhomboid prisms have their respective input faces disposed to receive the respective input beams. Each prism is rotated about an axis of revolution coaxial with each of the respective input beams by means of a suitable motor and gear arrangement to cause the plane of the parallel output beams to be rotated relative to the plane of the input beams. In a second embodiment, two pairs of rhomboid prisms are provided. In a first angular orientation of the output beams, the prisms merely decrease the lateral displacement of the output beams in order to keep in the same plane as the input beams. In a second angular orientation of the prisms, the input faces of the second pair of prisms are brought into coincidence with the input beams for rotating the plane of the output beams by a substantial angle such as 90 deg.

  15. Optical system design of the Dyson imaging spectrometer based on the Fery prism

    NASA Astrophysics Data System (ADS)

    Pei, Linlin; Xiangli, Bin; Lv, Qunbo; Shao, Xiaopeng

    2016-08-01

    Imaging spectrometer has obtained wide development since rich feature information can be obtained by it; now, we focus on its high spectral resolution and miniaturization. In this paper, we design the Dyson imaging spectrometer system based on Fery prism. The average spectral resolution is 4.3 nm and the structure of the total length is 229 mm. It is a small, high-spectrometer imaging system. The front and rear surface of the traditional prism are plane, but the surfaces of the Fery prism are spherical, which can provide some optical power to realize imaging function and produce the dispersion effect. The Fery prism does not need to be placed in the parallel optical path, which simplifies the collimator lens and the imaging lens and are necessary in the prism spectrometer, making it possible to obtain a compact spectrometer. Full-spectrum transmittance of the prism is up to 94 %. Compared to the convex grating, the energy efficiency is greatly improved, and the free spectral range is wider, and its dispersion will not bring higher-order spectral aliasing problem. The small high spectrometer only includes two components. Its spectral range is from 400 to 1000 nm, covering the near-ultraviolet to near-infrared. The various aberrations of the typical spectrum are corrected. The spectrometer is excellent in performance.

  16. Application of derivative matrices of skew rays to design of compound dispersion prisms.

    PubMed

    Lin, Psang Dain

    2016-09-01

    Numerous optimization methods have been developed in recent decades for optical system design. However, these methods rely heavily on ray tracing and finite difference techniques to estimate the derivative matrices of the rays. Consequently, the accuracy of the results obtained from these methods is critically dependent on the incremental step size used in the tuning stage. To overcome this limitation, the present study proposes a comprehensive methodology for the design of compound dispersion prisms based on the first- and second-order derivative matrices of skew rays. The proposed method facilitates the analysis and design of prisms with respect to arbitrary system variables and provides an ideal basis for automatic prism design applications. Four illustrative examples are given. It is shown that the optical quantities required to evaluate the prism performance can be extracted directly from the proposed derivative matrices. In addition, it is shown in this study that the single-element 3D prism can have the same deviation angle and spectral dispersion as the 2D compound prism. PMID:27607509

  17. Prism adaptation reverses the local processing bias in patients with right temporo-parietal junction lesions

    PubMed Central

    Rafal, Robert D.; List, Alexandra

    2009-01-01

    Lesions to the right temporo-parietal cortex commonly result in hemispatial neglect. Lesions to the same area are also associated with hyperattention to local details of a scene and difficulty perceiving the global structure. This local processing bias is an important factor contributing to neglect and may contribute to the higher prevalence of the disorder following right compared with left hemisphere strokes. In recent years, visuomotor adaptation to rightward-shifting prisms has been introduced as a promising treatment for hemispatial neglect. Explanations for these improvements have generally described a leftward realignment of attention, however, the present investigation provides evidence that prism adaptation reduces the local processing bias. Five patients with right temporal-parietal junction lesions were asked to identify the global or local levels of hierarchical figures before and after visuomotor adaptation to rightward-shifting prisms. Prior to prism adaptation the patients had difficulty ignoring the local elements when identifying the global component. Following prism adaptation, however, this pattern was reversed, with greater global interference during local level identification. The results suggest that prism adaptation may improve non-spatially lateralized deficits that contribute to the neglect syndrome. PMID:19416951

  18. Modelling the differential effects of prisms on perception and action in neglect.

    PubMed

    Leigh, Steven; Danckert, James; Eliasmith, Chris

    2015-03-01

    Damage to the right parietal cortex often leads to a syndrome known as unilateral neglect in which the patient fails to attend or respond to stimuli in left space. Recent work attempting to rehabilitate the disorder has made use of rightward-shifting prisms that displace visual input further rightward. After a brief period of adaptation to prisms, many of the symptoms of neglect show improvements that can last for hours or longer, depending on the adaptation procedure. Recent work has shown, however, that differential effects of prisms can be observed on actions (which are typically improved) and perceptual biases (which often remain unchanged). Here, we present a computational model capable of explaining some basic symptoms of neglect (line bisection behaviour), the effects of prism adaptation in both healthy controls and neglect patients and the observed dissociation between action and perception following prisms. The results of our simulations support recent contentions that prisms primarily influence behaviours normally thought to be controlled by the dorsal stream. PMID:25430546

  19. Structure of the conchiolin cases of the prisms in Mytilus edulis Linne.

    PubMed

    GREGOIRE, C

    1961-02-01

    The prisms in the shell of Mytilus edulis Linné are calcite needles. Their small size and their thin conchiolin cases distinguish them from the prisms of many other species of mollusks. These Mytilus prisms have been studied with the electron microscope. The material consisted of positive replicas of surfaces of the prismatic layer, etched with chelating agents, and of preparations of tubular cases from decalcified prisms which were compared with the conchiolin from decalcified mother-of-pearl of the same species. In the replicas, the cases appear as thin pellicles in the intervals between the prism crystals. Both the prism cases and the nacreous conchiolin, disintegrated by exposure to ultrasonic waves and sedimented on supporting films, appear in the form of tightly meshed, reticulated sheets, described as "tight pelecypod pattern" in former studies on nacreous conchiolin of Mytilus. The results show that in the shell of this species the same conchiolin structure is associated with aragonite in mother-of-pearl and with calcite in the prismatic layer. PMID:13708397

  20. STRUCTURE OF THE CONCHIOLIN CASES OF THE PRISMS IN MYTILUS EDULIS LINNE

    PubMed Central

    Grégoire, Charles

    1961-01-01

    The prisms in the shell of Mytilus edulis Linné are calcite needles. Their small size and their thin conchiolin cases distinguish them from the prisms of many other species of mollusks. These Mytilus prisms have been studied with the electron microscope. The material consisted of positive replicas of surfaces of the prismatic layer, etched with chelating agents, and of preparations of tubular cases from decalcified prisms which were compared with the conchiolin from decalcified mother-of-pearl of the same species. In the replicas, the cases appear as thin pellicles in the intervals between the prism crystals. Both the prism cases and the nacreous conchiolin, disintegrated by exposure to ultrasonic waves and sedimented on supporting films, appear in the form of tightly meshed, reticulated sheets, described as "tight pelecypod pattern" in former studies on nacreous conchiolin of Mytilus. The results show that in the shell of this species the same conchiolin structure is associated with aragonite in mother-of-pearl and with calcite in the prismatic layer. PMID:13708397